WO2015056765A1 - 半芳香族ポリアミド樹脂組成物およびそれを成形してなる成形体 - Google Patents

半芳香族ポリアミド樹脂組成物およびそれを成形してなる成形体 Download PDF

Info

Publication number
WO2015056765A1
WO2015056765A1 PCT/JP2014/077627 JP2014077627W WO2015056765A1 WO 2015056765 A1 WO2015056765 A1 WO 2015056765A1 JP 2014077627 W JP2014077627 W JP 2014077627W WO 2015056765 A1 WO2015056765 A1 WO 2015056765A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
aromatic polyamide
resin composition
mass
polyamide resin
Prior art date
Application number
PCT/JP2014/077627
Other languages
English (en)
French (fr)
Inventor
竹谷 豊
泰生 上川
淳一 三井
太陽 甘利
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2015542671A priority Critical patent/JPWO2015056765A1/ja
Publication of WO2015056765A1 publication Critical patent/WO2015056765A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/10Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing bromine or iodine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/308Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings

Definitions

  • the present invention relates to a semi-aromatic polyamide resin composition having flame retardancy.
  • Semi-aromatic polyamides are used in many electrical and electronic parts and parts around automobile engines because they are excellent in heat resistance and mechanical properties. Among them, when used for electric / electronic parts, the semi-aromatic polyamide is required to have flame retardancy.
  • Patent Document 1 discloses a flame retardant resin composition comprising a semi-aromatic polyamide, a brominated flame retardant, sodium antimonate, and an inorganic compound.
  • this flame retardant resin composition has a problem that the fluidity at the time of extrusion or molding is low, the flame retardancy is not sufficient, and the decomposition gas of the flame retardant may be generated.
  • the present invention provides a semi-aromatic polyamide resin composition having excellent heat resistance and mechanical properties, excellent fluidity and flame retardancy during extrusion and molding, and suppressed generation of decomposition gas.
  • the purpose is to do.
  • the present inventors have made a semi-aromatic polyamide contain a specific amount of an aliphatic monocarboxylic acid component, and a semi-aromatic polyamide resin composition contains an anti-drip agent.
  • a semi-aromatic polyamide resin composition contains an anti-drip agent.
  • Semi-aromatic polyamide (A) 100 parts by mass, brominated flame retardant (B) 15 to 130 parts by mass, flame retardant aid (C) 2 to 25 parts by mass, and anti-drip agent (D) 0.3 to A semi-aromatic polyamide resin composition containing 7.0 parts by weight
  • the semi-aromatic polyamide (A) contains a terephthalic acid component, an aliphatic diamine component and an aliphatic monocarboxylic acid component
  • a semi-aromatic polyamide resin composition wherein the content of the aliphatic monocarboxylic acid component in the semi-aromatic polyamide (A) is 0.3 to 4.0 mol%.
  • the aliphatic monocarboxylic acid component is one or more selected from the group consisting of aliphatic monocarboxylic acids having 15 to 30 carbon atoms, according to any one of (1) to (4)
  • the brominated flame retardant (B) is at least one selected from the group consisting of ethylenebis (tetrabromophthal) imide, brominated epoxy resin and brominated polystyrene.
  • the semi-aromatic polyamide resin composition according to any one of (5).
  • the flame retardant aid (C) is at least one selected from the group consisting of zinc stannate, zinc borate, antimony trioxide, antimony pentoxide and sodium antimonate
  • a semi-aromatic polyamide resin composition excellent in fluidity and flame retardancy at the time of extrusion and molding and having suppressed generation of decomposition gas is provided. be able to. Furthermore, since the semi-aromatic polyamide resin composition of the present invention contains an anti-drip agent, not only flame retardancy is improved but also creep characteristics are improved. In addition, since the semi-aromatic polyamide contains an aliphatic monocarboxylic acid component, the fluidity is improved, and the decrease in fluidity and weld strength caused by the inclusion of the anti-drip agent can be suppressed. Generation
  • production of the decomposition gas derived from a flame retardant can be suppressed.
  • the semi-aromatic polyamide resin composition of the present invention contains a semi-aromatic polyamide (A), a brominated flame retardant (B), a flame retardant aid (C) and an anti-drip agent (D).
  • the semi-aromatic polyamide (A) used in the present invention contains a terephthalic acid component, an aliphatic diamine component, and an aliphatic monocarboxylic acid component.
  • the dicarboxylic acid component in the semi-aromatic polyamide (A) needs to contain terephthalic acid from the viewpoint of heat resistance, and the content of terephthalic acid in the dicarboxylic acid component should be 95 mol% or more. Preferably, it is 100 mol%.
  • Dicarboxylic acids other than terephthalic acid include aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, Examples thereof include aliphatic dicarboxylic acids such as azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid.
  • the aliphatic diamine component in the semi-aromatic polyamide (A) is preferably an aliphatic diamine having 8 to 12 carbon atoms from the viewpoint of heat resistance and processability, and the aliphatic diamine component having 8 to 12 carbon atoms in the diamine component.
  • the diamine content is preferably 95 mol% or more, and more preferably 100 mol%.
  • Examples of the aliphatic diamine having 8 to 12 carbon atoms include 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, and 1,12-dodecanediamine. Of these, 1,10-decanediamine is preferred because of its high versatility.
  • diamines other than aliphatic diamines having 8 to 12 carbon atoms include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6, and the like.
  • -Aliphatic diamines such as hexanediamine, 1,7-heptanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1,15-pentadecanediamine, alicyclic diamines such as cyclohexanediamine, Examples thereof include aromatic diamines such as range amine and benzene diamine.
  • an aliphatic monocarboxylic acid component needs to be a constituent component.
  • a monocarboxylic acid that is not an aliphatic monocarboxylic acid is used as a constituent component, the effect of improving the fluidity of the semi-aromatic polyamide (A) is poor.
  • those having 15 to 30 carbon atoms are preferably used, and those having 18 to 29 carbon atoms are more preferably used.
  • an aliphatic monocarboxylic acid having less than 15 carbon atoms is used as the monocarboxylic acid component, the fluidity improving effect may not be obtained.
  • crystallization is hindered and molding processability and heat resistance may be lowered.
  • the aliphatic monocarboxylic acid having 15 to 30 carbon atoms include pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, Melicic acid is mentioned.
  • the aliphatic monocarboxylic acid component may be used alone or in combination.
  • the content of the aliphatic monocarboxylic acid component needs to be 0.3 to 4.0 mol% with respect to all monomers constituting the semiaromatic polyamide (A), and 0.6 to 3. It is preferably 5 mol%.
  • the resulting semi-aromatic polyamide (A) has a high molecular weight, generates a decomposition gas during extrusion or molding, The improvement effect may not be obtained.
  • the content of the aliphatic monocarboxylic acid component exceeds 4.0 mol%, the resulting molded article may have reduced mechanical properties.
  • the semi-aromatic polyamide (A) used in the present invention may contain lactams such as caprolactam and laurolactam, and ⁇ -aminocarboxylic acids such as aminocaproic acid and 11-aminoundecanoic acid, if necessary.
  • the semi-aromatic polyamide (A) preferably has a relative viscosity of 1.5 to 3.5 when measured at 25 ° C. in a 96% sulfuric acid at a concentration of 1 g / dL, which is an index of molecular weight. It is more preferably from 0.7 to 3.5, and even more preferably from 1.9 to 3.1. If the relative viscosity is less than 1.5, the mechanical properties may deteriorate.
  • Semi-aromatic polyamide (A) can be produced using a conventionally known method such as a heat polymerization method or a solution polymerization method.
  • a heat polymerization method is preferably used because it is industrially advantageous.
  • the heat polymerization method includes a step (i) of obtaining a reaction product from a terephthalic acid component, an aliphatic diamine component, and an aliphatic monocarboxylic acid component, and a step (ii) of polymerizing the obtained reaction product.
  • the method which consists of is mentioned.
  • terephthalic acid powder and aliphatic monocarboxylic acid are mixed and heated in advance to a temperature not lower than the melting point of aliphatic diamine and not higher than the melting point of terephthalic acid.
  • a method of adding an aliphatic diamine without substantially containing water so as to keep the terephthalic acid powder in the aliphatic monocarboxylic acid can be mentioned.
  • a suspension composed of a molten aliphatic diamine, an aliphatic monocarboxylic acid, and solid terephthalic acid is stirred and mixed to obtain a mixed solution, and then finally formed into a half
  • a salt formation reaction by reaction of terephthalic acid, aliphatic diamine and aliphatic monocarboxylic acid and a low polymerization product reaction by polymerization of the generated salt are carried out.
  • a method for obtaining a mixture of polymers is mentioned. In this case, crushing may be performed while the reaction is performed, or crushing may be performed after the reaction is once taken out.
  • the former is preferable because the shape of the reaction product can be easily controlled.
  • the reaction product obtained in the step (i) is solid-phase polymerized at a temperature lower than the melting point of the semi-aromatic polyamide to be finally produced to increase the molecular weight to a predetermined molecular weight.
  • a method for obtaining a semi-aromatic polyamide is preferably performed in a stream of inert gas such as nitrogen at a polymerization temperature of 180 to 270 ° C. and a reaction time of 0.5 to 10 hours.
  • the reaction apparatus in step (i) and step (ii) is not particularly limited, and a known apparatus may be used. Step (i) and step (ii) may be performed by the same apparatus or may be performed by different apparatuses.
  • a polymerization catalyst may be used in order to increase the efficiency of polymerization.
  • the polymerization catalyst include phosphoric acid, phosphorous acid, hypophosphorous acid, and salts thereof.
  • the addition amount of the polymerization catalyst is preferably 2 mol% or less with respect to all monomers constituting the semi-aromatic polyamide (A).
  • the brominated flame retardant (B) used in the present invention preferably has a bromine atom content of 50% by mass or more, more preferably 58% by mass or more. If the bromine atom content is less than 50% by mass, the amount of flame retardant added to the resin composition increases in order to impart the required flame retardancy, resulting in a decrease in mechanical properties, The amount generated may increase.
  • brominated flame retardant (B) used in the present invention examples include hexabromocyclododecane, bis (dibromopropyl) tetrabromo-bisphenol A, bis (dibromopropyl) tetrabromo-bisphenol S, tris (dibromopropyl) isocyanurate, tris.
  • brominated polystyrene examples include, for example, “Great Lakes CP-44HF”, “Great Lakes PBS-64HW”, “Great Lakes PDBS-80” manufactured by Chemtura, “SAYTEX HP-7010” manufactured by Albemarle. “SAYTEX HP-3010”.
  • the content of the brominated flame retardant (B) is required to be 15 to 130 parts by mass, preferably 25 to 100 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A). . If the content of the brominated flame retardant (B) is less than 15 parts by mass, the effect of improving flame retardancy cannot be obtained. On the other hand, when the content of the brominated flame retardant (B) exceeds 130 parts by mass, the flame retardancy is excellent, but the generation of decomposition gas during extrusion and molding increases.
  • Examples of the flame retardant aid (C) used in the present invention include antimony trioxide, antimony pentoxide, sodium antimonate, sodium oxide, tin oxide, zinc stannate, zinc oxide, iron oxide, magnesium hydroxide, and hydroxide.
  • Examples include calcium and zinc borate. Of these, zinc stannate and zinc borate are preferred because they have a high synergistic effect with brominated flame retardants and can suppress the generation of cracked gas. These may be used alone or in combination.
  • Specific product names include, for example, “FLAMARD S” (zinc stannate) manufactured by Nippon Light Metal Co., Ltd. and “FIRE BRAKE 415” (zinc borate) manufactured by Borax.
  • the content of the flame retardant aid (C) is required to be 2 to 25 parts by mass, preferably 5 to 20 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A). If the content of the flame retardant aid (C) is less than 2 parts by mass, the effect of improving flame retardancy cannot be obtained. On the other hand, if the content of the flame retardant auxiliary (C) exceeds 25 parts by mass, the flame retardancy of the obtained molded article is lowered.
  • the mass ratio (B / C) of the brominated flame retardant (B) and the flame retardant aid (C) used in the present invention is preferably 95/5 to 60/40, and 90/10 to 70/30. More preferably.
  • the mass ratio of (C) is preferably 95/5 to 60/40, and 90/10 to 70/30. More preferably.
  • flame retardancy can be improved.
  • the mass ratio of (C) to the total of (B) and (C) exceeds 40% by mass, the effect of improving flame retardancy reaches saturation, which may be economically disadvantageous.
  • the anti-drip agent (D) used in the present invention a known compound can be used as long as it has an effect of preventing dripping during combustion.
  • the anti-drip agent (D) include polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer.
  • Examples thereof include polymers, hexafluoropropylene-propylene copolymers, polyvinylidene fluoride, vinylidene fluoride-ethylene copolymers, polychlorotrifluoroethylene, and modified polytetrafluoroethylene.
  • polytetrafluoroethylene and acrylic-modified polytetrafluoroethylene which have a high anti-dripping effect, are preferred.
  • Specific product names include, for example, “Polyflon MPA FA-500H” (polytetrafluoroethylene) manufactured by Daikin Industries, Ltd., “Metabrene A-3750”, “Metabrene A-3800” (acrylic modified polytetra Fluoroethylene). These may be used alone or in combination.
  • the content of the anti-drip agent (D) must be 0.3 to 7 parts by mass, and 0.5 to 5 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A). Is preferred.
  • the content of the anti-drip agent (D) is less than 0.3 parts by mass, the anti-drip effect is insufficient, so that it may be melted and dropped during combustion, which is not preferable.
  • the content of the anti-drip agent (D) exceeds 7 parts by mass, it may be difficult to melt and knead the resin composition.
  • a fluororesin such as polytetrafluoroethylene or acrylic-modified polytetrafluoroethylene
  • the anti-drip agent (D) not only a dripping prevention effect is obtained, but also sliding characteristics and creep characteristics are improved.
  • fluorocarbon resins the use of acrylic-modified polytetrafluoroethylene has a higher effect of improving sliding characteristics and creep characteristics.
  • the resin composition may have reduced fluidity or further reduced weld strength.
  • the semi-aromatic polyamide contains an aliphatic monocarboxylic acid component, the resin composition of the present invention has an effect that the flowability and weld strength are not easily lowered even when the fluororesin is contained. In general, when a molded body, particularly a large molded body, is produced, a weld portion is generated, so that a high weld strength is required.
  • the semi-aromatic polyamide resin composition of the present invention may further contain a fibrous reinforcing material (E).
  • a fibrous reinforcing material examples include glass fiber, carbon fiber, boron fiber, polyvinyl alcohol fiber, polyester fiber, acrylic fiber, aramid fiber, polybenzoxazole fiber, kenaf fiber, bamboo fiber, hemp fiber and bagasse fiber.
  • glass fiber, carbon fiber, and aramid fiber are preferred because they have a high effect of improving mechanical properties, have heat resistance that can withstand the heating temperature during melt kneading with a polyamide resin, and are easily available.
  • Specific product names of glass fibers include “CS3G225S” manufactured by Nittobo Co., Ltd. and “T-781H” manufactured by Nippon Electric Glass Co., Ltd.
  • Specific product names of carbon fibers include, for example, Toho Tenax. "HTA-C6-NR" manufactured by the company can be mentioned.
  • the fibrous reinforcing material (E) may be used alone or in combination.
  • the fiber length and fiber diameter of the fibrous reinforcing material (E) are not particularly limited, but the fiber length is preferably 0.1 to 7 mm, and more preferably 0.5 to 6 mm.
  • the resin composition can be reinforced without adversely affecting the moldability.
  • the fiber diameter is preferably 3 to 20 ⁇ m, more preferably 5 to 13 ⁇ m.
  • the fiber reinforcing material (E) has a fiber diameter of 3 to 20 ⁇ m, the resin composition can be efficiently reinforced without breaking during melt-kneading.
  • Examples of the cross-sectional shape of the fibrous reinforcing material (E) include a circular shape, a rectangular shape, an oval shape, and other irregular cross-sections. A circular shape is preferable among them.
  • the fibrous reinforcing material (E) When the fibrous reinforcing material (E) is used, its content is preferably 200 parts by mass or less, more preferably 5 to 180 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A). The amount is preferably 10 to 170 parts by mass.
  • the content of the fibrous reinforcing material (E) exceeds 200 parts by mass, the mechanical strength reinforcement efficiency decreases, the workability at the time of melt-kneading decreases, or it is difficult to obtain resin composition pellets. It may become.
  • the semi-aromatic polyamide resin composition of the present invention may further contain an antioxidant (F).
  • the antioxidant (F) include phosphorus-based antioxidants, hindered phenol-based antioxidants, hindered amine-based antioxidants, triazine-based compounds, and sulfur-based compounds. Among these, phosphorus-based antioxidants are used. preferable.
  • the surface treatment agent (E) may be thermally decomposed to cause a decrease in mechanical strength.
  • the semi-aromatic polyamide resin composition contains the antioxidant (F)
  • antioxidant (F) is normally contained for the purpose of preventing the molecular weight fall of a semi-aromatic polyamide and color degradation.
  • the residence stability of the resin composition can be improved.
  • the content thereof is preferably 0.1 to 5 parts by mass, and preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide. Is more preferable.
  • the phosphorus-based antioxidant may be an inorganic compound or an organic compound, and is not particularly limited.
  • the semi-aromatic polyamide of the present invention may further contain other polymers as necessary.
  • other polymers include semi-aromatic polyamide resins such as polyamide 6T and polyamide 9T, aliphatic polyamide resins such as polyamide 6, polyamide 66, polyamide 610, polyamide 11 and polyamide 12, and alicyclic polyamides such as polyamide 9C.
  • Resin polyethylene terephthalate, polybutylene terephthalate, liquid crystal polymer, polyarylate, polyester resin such as polycyclohexanedimethylene terephthalate, polyolefin resin such as polyethylene, polystyrene, polypropylene, polyphenylene sulfide resin, polyphenylene ether resin, polyether ether ketone resin It is done.
  • the semi-aromatic polyamide resin composition of the present invention may contain other additives as necessary.
  • Other additives include, for example, fillers such as talc, swellable clay minerals, silica, alumina, glass beads, graphite, pigments, dyes, antistatic agents, plate reinforcements, thermal stabilizers, impact resistance improvers. , Plasticizers, mold release agents, lubricants, crystal nucleating agents, organic peroxides, terminal blockers, and slidability improvers.
  • the method of adding other additives is not particularly limited as long as the effect is not impaired.
  • the additives are added at the time of polymerization of semi-aromatic polyamide or melt kneading.
  • a semi-aromatic polyamide resin composition may contain a light stabilizer further.
  • a white pigment such as titanium oxide
  • the light stabilizer include benzophenone compounds, benzotriazole compounds, salicylate compounds, hindered amine compounds, and hindered phenol compounds. Among these, hindered amine compounds are preferable.
  • the content thereof is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide.
  • the content of the light stabilizer is 0.1 to 5 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide, the light stability can be improved.
  • the light stabilizer is preferably used in combination with the antioxidant (F). By using in combination, it is possible to efficiently prevent photodegradation due to ultraviolet rays or the like during use while improving retention stability during molding.
  • the method of mixing the raw materials constituting the semi-aromatic polyamide resin composition is not particularly limited as long as the effect is not impaired, but the melt-kneading method is more preferable.
  • the melt-kneading method include a method using a batch kneader such as Brabender, a Banbury mixer, a Henschel mixer, a helical rotor, a roll, a single screw extruder, and a twin screw extruder.
  • the melt-kneading temperature is selected from a region where the semi-aromatic polyamide (A) melts and does not decompose.
  • the semi-aromatic polyamide (A) is not only decomposed but also brominated flame retardant (B ) May also be decomposed, and therefore, the melting point (Tm) of the semi-aromatic polyamide (A) ⁇ 20 ° C.) to (Tm + 50 ° C.) is preferable.
  • a processing method of the semi-aromatic polyamide resin composition of the present invention a method of extruding a melt into a strand shape to form a pellet, a method of hot-cutting and underwater cutting the melt into a pellet shape, or a sheet shape And a method of extruding and cutting, and a method of extruding and crushing into a block shape to form a powder.
  • Examples of the method for molding the semi-aromatic polyamide resin composition of the present invention into a molded body include injection molding, extrusion molding, blow molding, and sintering molding, and improved mechanical properties and moldability.
  • the injection molding method is preferred because of its great effect.
  • an injection molding machine For example, a screw in-line type injection molding machine or a plunger type injection molding machine is mentioned.
  • a semi-aromatic polyamide resin composition heated and melted in a cylinder of an injection molding machine is weighed for each shot, injected into a mold in a molten state, cooled to a predetermined shape, solidified, and then formed into a molded body. Removed from the mold.
  • the resin at the time of injection molding is preferably heated and melted at (Tm) to (Tm + 50 ° C.).
  • Tm melting
  • Tm + 50 ° C. melting
  • the semi-aromatic polyamide resin composition pellet it is preferable to use the semi-aromatic polyamide resin composition pellet to be sufficiently dried.
  • the molded body formed by molding the semi-aromatic polyamide resin composition of the present invention can be used for a wide range of applications such as automobile parts, electrical and electronic parts, sundries, civil engineering and building articles, and is particularly excellent in flame retardancy. Suitable for electrical and electronic parts.
  • automobile parts include a thermostat cover, an IGBT module member of an inverter, an insulator member, an exhaust finisher, a power device housing, an ECU housing, an ECU connector, a motor and a coil insulating material, and a cable covering material.
  • Examples of electrical and electronic components include connectors, LED reflectors, switches, sensors, sockets, capacitors, jacks, fuse holders, relays, coil bobbins, breakers, electromagnetic switches, holders, plugs, portable computers, word processors, and other electrical equipment.
  • Examples include housings for housing parts, resistors, ICs, and LEDs.
  • the semi-aromatic polyamide resin composition was injection molded using an injection molding machine (S2000i-100B model manufactured by FANUC) to prepare a test piece (dumbbell piece).
  • the cylinder temperature was melting point (Tm) + 15 ° C., and the mold temperature was 135 ° C.
  • bending strength and bending elastic modulus were measured according to ISO178.
  • the bending strength is preferably 110 MPa or more, more preferably 120 MPa or more, and further preferably 140 MPa or more.
  • the flexural modulus is preferably 3 GPa or more, and more preferably 5 GPa or more.
  • weld tensile strength Injection molding was performed in the same manner as in (4) above, and a test piece was prepared by pouring resin from both ends of the mold so that a weld portion was formed at the center of the test piece (dumbbell piece).
  • the tensile strength was measured based on ISO527 using the obtained test piece. Practically, the weld tensile strength is preferably 45 MPa or more, more preferably 50 MPa or more, and further preferably 55 MPa or more.
  • the semi-aromatic polyamide resin composition was injected into the cylinder temperature (Tm + 15 ° C.), mold temperature 135 ° C., injection pressure 150 MPa, injection using an injection molding machine (S2000i-100B type manufactured by FANUC).
  • the flow length of the test piece at the time of molding at a time of 8 seconds and a set injection speed of 150 mm / second was measured to obtain a bar flow flow length.
  • a bar flow test mold having a thickness of 0.5 mmt, a width of 20 mm, and a length of 980 mm was used.
  • Bar flow length is an indicator of liquidity. Practically, the bar flow length is preferably 90 mm or more, and more preferably 110 mm or more.
  • Friction coefficient Injection molding similar to that described in (4) above was performed to produce a cylindrical molded piece having an outer diameter of 25.6 mm, an inner diameter of 20 mm, and a thickness of 15 mm.
  • the mating material is S45C steel
  • the load is 0.25 MPa
  • the friction distance is 5 km.
  • the test was conducted under the following conditions. (The value of the friction force detector when the friction distance is reached / the value of the load) was defined as the friction coefficient.
  • the friction coefficient is preferably 0.7 or less.
  • ⁇ Pyrolyzer condition> ⁇ Device: PY-2020iD (manufactured by Frontier Laboratories) Heating: 320 ° C., 10 minutes ⁇ gas chromatographic conditions> ⁇ Apparatus: 6890N (manufactured by Agilent Technologies) Column: UA5 (MS / HT) 30M-0.25F (manufactured by Frontier Laboratories) Inner diameter (mm) x Length (m) 0.25 x 30 Film thickness ( ⁇ m) 0.25 Carrier gas: Helium 1.0 mL / min Injection port: 250 ° C., split ratio 30: 1 -Temperature: 50 ° C (2 minutes) ⁇ [20 ° C / minute] ⁇ 170 ° C (0 minutes) ⁇ [50 ° C / minute] ⁇ 350 ° C (8 minutes) ⁇ Mass spectrometer conditions> Device: 5975C (manufactured by Agilent Technologies) Mass range: m / z 5 to 650 ⁇
  • A-1 Semi-aromatic polyamide / Semi-aromatic polyamide (A-1) 8.70 kg of powdered terephthalic acid (TPA) as an aromatic dicarboxylic acid component, 0.33 kg of stearic acid (STA) as an aliphatic monocarboxylic acid component, and sodium hypophosphite monohydrate as a polymerization catalyst. 3 g was put into a ribbon blender type reactor and heated to 170 ° C. with stirring at a rotation speed of 30 rpm under nitrogen sealing. Thereafter, while maintaining the temperature at 170 ° C. and maintaining the rotation speed at 30 rpm, 2.97 kg of 1,10-decanediamine (DDA) 4.97 kg heated to 100 ° C.
  • TPA powdered terephthalic acid
  • STA stearic acid
  • DDA 1,10-decanediamine
  • reaction product was polymerized by heating at 250 ° C. and a rotation speed of 30 rpm for 8 hours under a nitrogen stream in the same reaction apparatus to prepare a semi-aromatic polyamide powder.
  • the obtained semi-aromatic polyamide powder is formed into a strand shape using a twin-screw kneader, and the strand is cooled and solidified by passing it through a water tank, which is then cut with a pelletizer to obtain a semi-aromatic polyamide (A-1). Pellets were obtained.
  • Semi-aromatic polyamides (A-2) to (A-11) The semi-aromatic polyamides (A-2) to (A-11) were prepared in the same manner as in the production of the semi-aromatic polyamide (A-1) except that the resin composition was changed as shown in Table 2. Got.
  • Table 2 shows the resin compositions and characteristic values of the obtained semiaromatic polyamides (A-1) to (A-11).
  • B-1 Brominated polystyrene, Great Lakes PDBS-80 manufactured by Chemtura Corporation, bromine content 59% by mass
  • B-2 Brominated polystyrene, manufactured by Chemtura Corporation, Great Lakes PBS-64HW, bromine content of 64% by mass
  • B-3 ethylene bis (tetrabromophthal) imide, BT-93 manufactured by Albemarle, bromine content 67% by mass
  • B-4 Brominated epoxy resin, Sakamoto Yakuhin Kogyo SR-T 20000, bromine content 52% by mass
  • Anti-drip agent D-1 Polytetrafluoroethylene, manufactured by Daikin Industries, Ltd.
  • D-2 acrylic-modified polytetrafluoroethylene, Mitsubishi Rayon Co., Ltd. Metablen A-3800
  • Fibrous reinforcing material E-1 Glass fiber, Nittobo CS3G225S, average fiber diameter 9.5 ⁇ m, average fiber length 3 mm
  • E-2 Carbon fiber, HTA-C6-NR manufactured by Toho Tenax Co., Ltd., average fiber diameter 7 ⁇ m, average fiber length 6 mm
  • Antioxidant F-1 Tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylylene diphosphonite, Hostanox P-EPQ manufactured by Clariant
  • Example 1 100 parts by weight of semi-aromatic polyamide (A-1), 15 parts by weight of brominated flame retardant (B-1), 3.3 parts by weight of flame retardant aid (C-1), anti-drip agent (D-1) 1 .4 parts by mass and 0.4 parts by mass of antioxidant (F-1) were dry blended and weighed using a loss-in-weight continuous quantitative supply device (CE-W-1 type manufactured by Kubota Corporation). The mixture was supplied to the main supply port of a 26 mm, L / D50 co-directional twin screw extruder (TEM26SS type manufactured by Toshiba Machine Co., Ltd.), and melt kneaded.
  • CE-W-1 loss-in-weight continuous quantitative supply device
  • fibrous reinforcing material (E-1) was supplied from the side feeder, and further kneaded. After taking out from the die in a strand shape, it was cooled and solidified through a water tank, and was cut with a pelletizer to obtain semi-aromatic polyamide resin composition pellets.
  • the barrel temperature of the extruder was 310 to 340 ° C.
  • the screw rotation speed was 250 rpm
  • the discharge rate was 25 kg / hour.
  • Examples 2 to 40, Comparative Examples 1 to 18 A semi-aromatic polyamide resin composition pellet was obtained in the same manner as in Example 1 except that the composition of the resin composition was changed as shown in Tables 3 to 4. In Comparative Example 15, since the content of the anti-drip agent (D) was large, the semi-aromatic polyamide resin composition could not be stranded and pellets could not be obtained.
  • Tables 3 to 4 show the resin composition and properties of the obtained semi-aromatic polyamide resin composition.
  • the resin compositions of Examples 1 to 40 consist of a semi-aromatic polyamide (A) containing a specific amount of an aliphatic monocarboxylic acid component, a brominated flame retardant (B), a flame retardant aid (C), a drip Since the inhibitor (D) is configured to have a content specified in the present invention, the bar flow flow length is 90 mm or more, the fluidity is high, the amount of gas generated during extrusion or molding is small, and The molded body thus obtained was excellent in mechanical properties and flame retardancy.
  • A semi-aromatic polyamide
  • B brominated flame retardant
  • C flame retardant aid
  • a drip Since the inhibitor (D) is configured to have a content specified in the present invention, the bar flow flow length is 90 mm or more, the fluidity is high, the amount of gas generated during extrusion or molding is small, and The molded body thus obtained was excellent in mechanical properties and flame retardancy.
  • Comparative Example 1 since the content of the aliphatic monocarboxylic acid component in the semi-aromatic polyamide (A) is small, the resin composition has low fluidity and a short bar flow length. On the other hand, in Comparative Example 2, since the content of the aliphatic monocarboxylic acid component was large, the obtained molded article had low mechanical properties. In the resin composition of Comparative Example 3, since the monocarboxylic acid component in the semiaromatic polyamide (A) was an aromatic monocarboxylic acid, the fluidity was low, the bar flow flow length was short, and the anti-drip agent (D ), The flame retardancy was low.
  • Comparative Example 4 when the anti-drip agent (D) was added to the resin composition, flame retardancy and creep characteristics were improved as compared with Comparative Example 3, but the bar flow flow length was reduced by 10 mm, and the weld was reduced. The strength also decreased by 7 MPa. Since the monocarboxylic acid component in the semi-aromatic polyamide (A) is an aliphatic monocarboxylic acid, the resin composition of Comparative Example 18 has higher fluidity than those of Comparative Examples 3 and 4, and has a bar flow flow length. However, since the generation of the decomposition gas derived from the flame retardant is suppressed, the anti-drip agent (D) is not contained, so that the flame retardancy is low.
  • Example 9 in which the anti-drip agent (D) was added to the resin composition of Comparative Example 18, the flame retardancy and creep characteristics were improved and the bar flow flow length was shortened as compared with Comparative Example 18.
  • the flame retardancy and creep characteristics were improved and the bar flow flow length was shortened as compared with Comparative Example 18.
  • the resin composition of Comparative Example 5 had a low content of brominated flame retardant (B)
  • the resulting molded article had low flame retardancy
  • the resin composition of Comparative Example 6 had a brominated flame retardant. Since the content of (B) is large, the amount of cracked gas was large.
  • the resin composition of Comparative Example 7 has a low flame retardant auxiliary (C) content
  • the resulting molded article has low flame retardancy
  • the resin composition of Comparative Example 8 has a flame retardant auxiliary. Since there was much content of (C), the flame retardance of the obtained molded object fell.
  • the resin compositions of Comparative Examples 9 to 14 and 16 to 17 do not contain the anti-drip agent (D) or contain little anti-drip agent (D), as in Comparative Example 18 described above. Compared to the resin composition of the example, the coefficient of friction was high, the creep characteristics were inferior, and the flame retardancy was low. On the other hand, since the resin composition of Comparative Example 15 had a high content of the anti-drip agent (D), it could not be stranded and could not obtain pellets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 半芳香族ポリアミド(A)100質量部、臭素系難燃剤(B)15~130質量部、難燃助剤(C)2~25質量部およびドリップ防止剤(D)0.3~7.0質量部を含有する半芳香族ポリアミド樹脂組成物であり、半芳香族ポリアミド(A)が、テレフタル酸成分、脂肪族ジアミン成分および脂肪族モノカルボン酸成分を含有し、半芳香族ポリアミド(A)における脂肪族モノカルボン酸成分の含有量が0.3~4.0モル%であることを特徴とする半芳香族ポリアミド樹脂組成物。

Description

半芳香族ポリアミド樹脂組成物およびそれを成形してなる成形体
 本発明は、難燃性を有する半芳香族ポリアミド樹脂組成物に関する。
 半芳香族ポリアミドは、耐熱性、機械的特性に優れていることから、多くの電気・電子部品、自動車のエンジン周りの部品などに使用されている。中でも、電気・電子部品に使用する場合には、半芳香族ポリアミドは難燃性が要求されている。
 特許文献1には、半芳香族ポリアミドと、臭素系難燃剤と、アンチモン酸ナトリウムと、無機化合物とからなる難燃性樹脂組成物が開示されている。しかしながら、この難燃性樹脂組成物は、押出時や成形時の流動性が低く、難燃性が十分でなく、また難燃剤の分解ガスが発生する場合があるという問題があった。
特開2000-265055号公報
 本発明は、優れた耐熱性、機械的特性を有するとともに、押出時や成形時の流動性や難燃性に優れ、また、分解ガスの発生が抑制された半芳香族ポリアミド樹脂組成物を提供することを目的とする。
 本発明者らは、前記課題を解決するため鋭意研究を重ねた結果、半芳香族ポリアミドに脂肪族モノカルボン酸成分を特定量含有させ、また半芳香族ポリアミド樹脂組成物にドリップ防止剤を含有させることにより、上記目的を達成できることを見出し、本発明に到達した。
 すなわち、本発明の要旨は下記の通りである。
(1)半芳香族ポリアミド(A)100質量部、臭素系難燃剤(B)15~130質量部、難燃助剤(C)2~25質量部およびドリップ防止剤(D)0.3~7.0質量部を含有する半芳香族ポリアミド樹脂組成物であり、
半芳香族ポリアミド(A)が、テレフタル酸成分、脂肪族ジアミン成分および脂肪族モノカルボン酸成分を含有し、
半芳香族ポリアミド(A)における脂肪族モノカルボン酸成分の含有量が0.3~4.0モル%であることを特徴とする半芳香族ポリアミド樹脂組成物。
(2)脂肪族ジアミン成分が、1,10-デカンジアミンであることを特徴とする(1)記載の半芳香族ポリアミド樹脂組成物。
(3)さらに繊維状強化材(E)を200質量部以下含有することを特徴とする(1)または(2)記載の半芳香族ポリアミド樹脂組成物。
(4)臭素系難燃剤(B)と難燃助剤(C)の質量比率(B/C)が、95/5~60/40であることを特徴とする(1)~(3)のいずれかに記載の半芳香族ポリアミド樹脂組成物。
(5)脂肪族モノカルボン酸成分が、炭素数15~30の脂肪族モノカルボン酸からなる群より選ばれた1種以上であることを特徴とする(1)~(4)のいずれかに記載の半芳香族ポリアミド樹脂組成物。
(6)臭素系難燃剤(B)が、エチレンビス(テトラブロモフタル)イミド、臭素化エポキシ樹脂および臭素化ポリスチレンからなる群より選ばれた1種以上であることを特徴とする(1)~(5)のいずれかに記載の半芳香族ポリアミド樹脂組成物。
(7)難燃助剤(C)が、錫酸亜鉛、硼酸亜鉛、三酸化アンチモン、五酸化アンチモンおよびアンチモン酸ナトリウムからなる群より選ばれた1種以上であることを特徴とする(1)~(6)のいずれかに記載の半芳香族ポリアミド樹脂組成物。
(8)ドリップ防止剤(D)が、ポリテトラフルオロエチレンおよび/またはアクリル変性ポリテトラフルオロエチレンであることを特徴とする(1)~(7)のいずれかに記載の半芳香族ポリアミド樹脂組成物。
(9)上記(1)~(8)のいずれかに記載の半芳香族ポリアミド樹脂組成物を成形してなることを特徴とする成形体。
 本発明によれば、優れた耐熱性、機械的特性に加え、押出時や成形時の流動性や難燃性に優れ、分解ガスの発生が抑制された半芳香族ポリアミド樹脂組成物を提供することができる。さらに、本発明の半芳香族ポリアミド樹脂組成物は、ドリップ防止剤を含有するため、難燃性が向上するのみならず、クリープ特性が向上する。また半芳香族ポリアミドが脂肪族モノカルボン酸成分を含有するため、流動性が向上し、ドリップ防止剤を含有することによって生じる流動性の低下やウェルド強度の低下を抑制することができるとともに、難燃剤由来の分解ガスの発生を抑制することができる。
 以下、本発明を詳細に説明する。
 本発明の半芳香族ポリアミド樹脂組成物は、半芳香族ポリアミド(A)、臭素系難燃剤(B)、難燃助剤(C)およびドリップ防止剤(D)を含有する。
 そして、本発明に用いる半芳香族ポリアミド(A)は、テレフタル酸成分と、脂肪族ジアミン成分と、脂肪族モノカルボン酸成分を含有する。
 半芳香族ポリアミド(A)におけるジカルボン酸成分は、耐熱性の観点から、テレフタル酸を含有することが必要であり、ジカルボン酸成分中、テレフタル酸の含有量は、95モル%以上であることが好ましく、100モル%であることがより好ましい。
 テレフタル酸以外に含有されるジカルボン酸としては、フタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸や、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸や、シクロヘキサンジカルボン酸等の脂環式ジカルボン酸が挙げられる。
 半芳香族ポリアミド(A)における脂肪族ジアミン成分は、耐熱性と加工性の観点から、炭素数8~12の脂肪族ジアミンであることが好ましく、ジアミン成分中、炭素数8~12の脂肪族ジアミンの含有量は、95モル%以上であることが好ましく、100モル%であることがより好ましい。
 炭素数8~12の脂肪族ジアミンとしては、例えば、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミンが挙げられ、中でも、汎用性が高いことから1,10-デカンジアミンが好ましい。これらは、単独で用いてもよいし、併用してもよいが、機械的特性の向上の観点から、単独で用いることが好ましい。
 炭素数8~12の脂肪族ジアミン以外の他のジアミンとしては、例えば、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,13-トリデカンジアミン、1,14-テトラデカンジアミン、1,15-ペンタデカンジアミン等の脂肪族ジアミンや、シクロヘキサンジアミン等の脂環式ジアミンや、キシリレンジアミン、ベンゼンジアミン等の芳香族ジアミンが挙げられる。
 本発明に用いる半芳香族ポリアミド(A)においては、脂肪族モノカルボン酸成分を構成成分とすることが必要である。脂肪族モノカルボン酸ではないモノカルボン酸を構成成分とすると、半芳香族ポリアミド(A)の流動性を向上する効果が乏しい。
 脂肪族モノカルボン酸の中でも、炭素数が15~30であるものを用いることが好ましく、炭素数が18~29であるものを用いることがより好ましい。炭素数15~30の脂肪族モノカルボン酸を含有することにより、押出時や成形時の流動性が向上し、分解ガスの発生を抑制することができる。モノカルボン酸成分として炭素数が15未満の脂肪族モノカルボン酸を使用すると、流動性の向上効果が得られない場合がある。また、炭素数が30を超える脂肪族モノカルボン酸を使用すると、結晶化が阻害され、成形加工性や耐熱性が低下する場合がある。
 炭素数が15~30の脂肪族モノカルボン酸としては、例えば、ペンタデシル酸、パルミチン酸、マーガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸が挙げられる。中でも、汎用性が高いことから、ステアリン酸、ベヘン酸、モンタン酸が好ましい。脂肪族モノカルボン酸成分は、単独で用いてもよいし、併用してもよい。 脂肪族モノカルボン酸成分の含有量は、半芳香族ポリアミド(A)を構成する全モノマーに対して、0.3~4.0モル%であることが必要であり、0.6~3.5モル%であることが好ましい。脂肪族モノカルボン酸成分の含有量が0.3モル%未満であると、得られる半芳香族ポリアミド(A)は、分子量が高く、押出時や成形時に分解ガスが発生したり、流動性の向上効果が得られない場合がある。一方、脂肪族モノカルボン酸成分の含有量が4.0モル%を超えると、得られる成形体は機械的特性が低下する場合がある。
 本発明に用いる半芳香族ポリアミド(A)は、必要に応じて、カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、11-アミノウンデカン酸等のω-アミノカルボン酸を含有させてもよい。
 半芳香族ポリアミド(A)は、分子量の指標となる、96%硫酸中、25℃、濃度1g/dLで測定した場合の相対粘度が、1.5~3.5であることが好ましく、1.7~3.5であることがより好ましく、1.9~3.1であることがさらに好ましい。相対粘度が1.5未満であると、機械的特性が低下する場合がある。
 半芳香族ポリアミド(A)は、従来から知られている加熱重合法や溶液重合法の方法を用いて製造することができる。工業的に有利である点から、加熱重合法が好ましく用いられる。加熱重合法としては、テレフタル酸成分と、脂肪族ジアミン成分と、脂肪族モノカルボン酸成分とから反応生成物を得る工程(i)と、得られた反応生成物を重合する工程(ii)とからなる方法が挙げられる。
 工程(i)としては、例えば、テレフタル酸粉末と脂肪族モノカルボン酸とを混合し、予め脂肪族ジアミンの融点以上、かつテレフタル酸の融点以下の温度に加熱し、この温度のテレフタル酸粉末と脂肪族モノカルボン酸とに、テレフタル酸の粉末の状態を保つように、実質的に水を含有させずに、脂肪族ジアミンを添加する方法が挙げられる。あるいは、別の方法としては、溶融状態の脂肪族ジアミンと脂肪族モノカルボン酸と、固体のテレフタル酸とからなる懸濁液を攪拌混合し、混合液を得た後、最終的に生成する半芳香族ポリアミドの融点未満の温度で、テレフタル酸と脂肪族ジアミンと脂肪族モノカルボン酸の反応による塩の生成反応と、生成した塩の重合による低重合物の生成反応とをおこない、塩および低重合物の混合物を得る方法が挙げられる。この場合、反応をさせながら破砕をおこなってもよいし、反応後に一旦取り出してから破砕をおこなってもよい。工程(i)としては、反応生成物の形状の制御が容易な前者の方が好ましい。
 工程(ii)としては、例えば、工程(i)で得られた反応生成物を、最終的に生成する半芳香族ポリアミドの融点未満の温度で固相重合し、所定の分子量まで高分子量化させ、半芳香族ポリアミドを得る方法が挙げられる。固相重合は、重合温度180~270℃、反応時間0.5~10時間で、窒素等の不活性ガス気流中でおこなうことが好ましい。
 工程(i)および工程(ii)の反応装置としては、特に限定されず、公知の装置を用いればよい。工程(i)と工程(ii)を同じ装置で実施してもよいし、異なる装置で実施してもよい。
 半芳香族ポリアミド(A)の製造において、重合の効率を高めるため重合触媒を用いてもよい。重合触媒としては、例えば、リン酸、亜リン酸、次亜リン酸またはそれらの塩が挙げられる。重合触媒の添加量は、通常、半芳香族ポリアミド(A)を構成する全モノマーに対して、2モル%以下で用いることが好ましい。
 本発明に用いる臭素系難燃剤(B)は、臭素原子の含有量が50質量%以上であることが好ましく、58質量%以上であることがより好ましい。臭素原子の含有量が50質量%未満であると、必要とする難燃性を付与するために、樹脂組成物への難燃剤添加量が多くなり、機械的特性が低下したり、分解ガスの発生量が増加する場合がある。
 本発明に用いる臭素系難燃剤(B)としては、例えば、ヘキサブロモシクロドデカン、ビス(ジブロモプロピル)テトラブロモ-ビスフェノールA、ビス(ジブロモプロピル)テトラブロモ-ビスフェノールS、トリス(ジブロモプロピル)イソシアヌレート、トリス(トリブロモネオペンチル)ホスフェート、デカブロモジフェニレンオキサイド、臭素化エポキシ樹脂、ビス(ペンタブロモフェニル)エタン、トリス(トリブロモフェノキシ)トリアジン、エチレンビス(テトラブロモフタル)イミド、エチレンビスペンタブロモフェニル、ポリブロモフェニルインダン、臭素化ポリスチレン、テトラブロモビスフェノールAポリカーボネート、臭素化ポリフェニレンオキシド、ポリペンタブロモベンジルアクリレートが挙げられる。中でも高温での加工に耐えうるエチレンビス(テトラブロモフタル)イミド、臭素化エポキシ樹脂、臭素化ポリスチレンが好ましく、臭素化ポリスチレンがより好ましい。これらは単独で用いてもよいし、併用してもよい。
 臭素化ポリスチレンの具体的な商品名としては、例えば、ケムチュラ社製「Great Lakes CP-44HF」、「Great Lakes PBS-64HW」、「Great Lakes PDBS-80」、アルベマール社製「SAYTEX HP-7010」「SAYTEX HP-3010」が挙げられる。
 臭素系難燃剤(B)の含有量は、半芳香族ポリアミド(A)100質量部に対して、15~130質量部であることが必要であり、25~100質量部であることがましい。臭素系難燃剤(B)の含有量が15質量部未満であると、難燃性の向上効果が得られない。一方、臭素系難燃剤(B)の含有量が130質量部を超えると、難燃性に優れる反面、押出時や成形時の分解ガスの発生が増加する。
 本発明に用いる難燃助剤(C)としては、例えば、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム、酸化ナトリウム、酸化錫、錫酸亜鉛、酸化亜鉛、酸化鉄、水酸化マグネシウム、水酸化カルシウム、硼酸亜鉛が挙げられる。中でも臭素系難燃剤との相乗効果が高く、分解ガス量の発生を抑制できる、錫酸亜鉛、硼酸亜鉛が好ましい。これらは単独で用いてもよいし、併用してもよい。
 具体的な商品名としては、例えば、日本軽金属社製「FLAMTARD S」(錫酸亜鉛)、ボラックス社製「FIRE BRAKE415」(硼酸亜鉛)が挙げられる。
 難燃助剤(C)の含有量は、半芳香族ポリアミド(A)100質量部に対して、2~25質量部であることが必要であり、5~20質量部であることが好ましい。難燃助剤(C)の含有量が2質量部未満であると、難燃性の向上効果が得られない。一方、難燃助剤(C)の含有量が25質量部を超えると、得られる成形体の難燃性が低下する。
 本発明に用いる臭素系難燃剤(B)と難燃助剤(C)の質量比率(B/C)は、95/5~60/40であることが好ましく、90/10~70/30であることがより好ましい。(B)と(C)の合計に対する(C)の質量比率を5質量%以上とすることにより、難燃性を向上させることができる。しかし、(B)と(C)の合計に対する(C)の質量比率が40質量%を超えると難燃性の向上効果が飽和に達してしまい、経済的に不利になる場合がある。
 本発明に用いるドリップ防止剤(D)としては、燃焼時に滴下を防止する効果があれば、公知の化合物が使用できる。ドリップ防止剤(D)としては、例えば、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-エチレン共重合体、ヘキサフルオロプロピレン-プロピレン共重合体、ポリビニリデンフルオライド、ビニリデンフルオライド-エチレン共重合体、ポリクロロトリフルオロエチレン、変性ポリテトラフルオロエチレンが挙げられる。中でも滴下防止効果の高い、ポリテトラフルオロエチレン、アクリル変性ポリテトラフルオロエチレンが好ましい。具体的な商品名としては、例えば、ダイキン工業社製「ポリフロンMPA FA-500H」(ポリテトラフルオロエチレン)、三菱レイヨン社製「メタブレンA-3750」、「メタブレンA-3800」(アクリル変性ポリテトラフルオロエチレン)が挙げられる。これらは単独で用いてもよいし、併用してもよい。
 ドリップ防止剤(D)の含有量は、半芳香族ポリアミド(A)100質量部に対して、0.3~7質量部であることが必要であり、0.5~5質量部であることが好ましい。ドリップ防止剤(D)の含有量が0.3質量部未満の場合、滴下防止効果が不十分であるため、燃焼時に溶融滴下する場合があるので好ましくない。一方、ドリップ防止剤(D)の含有量が7質量部を超えると、樹脂組成物の溶融混練が困難になる場合がある。
 ドリップ防止剤(D)として、ポリテトラフルオロエチレンやアクリル変性ポリテトラフルオロエチレンなどのフッ素樹脂を用いた場合、滴下防止効果が得られるだけでなく、摺動特性やクリープ特性も向上する。フッ素樹脂の中でも、アクリル変性ポリテトラフルオロエチレンを用いる方が、摺動特性やクリープ特性の向上効果がより高い。
 ドリップ防止剤(D)としてポリテトラフルオロエチレンやアクリル変性ポリテトラフルオロエチレンなどのフッ素樹脂を用いると、樹脂組成物は、流動性が低下したり、さらにウェルド強度が低下する場合がある。しかしながら本発明の樹脂組成物は、半芳香族ポリアミドが脂肪族モノカルボン酸成分を含有していることにより、フッ素樹脂を含有しても流動性やウェルド強度が低下しにくくなる効果がある。一般に、成形体、特に大きな成形体を作製する場合には、ウェルド部分が発生するため、ウェルド強度が高いことが要求される。
 本発明の半芳香族ポリアミド樹脂組成物は、さらに繊維状強化材(E)を含有してもよい。繊維状強化材(E)としては、例えば、ガラス繊維、炭素繊維、ボロン繊維、ポリビニルアルコール繊維、ポリエステル繊維、アクリル繊維、アラミド繊維、ポリベンズオキサゾール繊維、ケナフ繊維、竹繊維、麻繊維、バガス繊維、高強度ポリエチレン繊維、アルミナ繊維、炭化ケイ素繊維、チタン酸カリウム繊維、黄銅繊維、ステンレス繊維、スチール繊維、セラミックス繊維、玄武岩繊維が挙げられる。中でも、機械的特性の向上効果が高く、ポリアミド樹脂との溶融混練時の加熱温度に耐え得る耐熱性を有し、入手しやすいことから、ガラス繊維、炭素繊維、アラミド繊維が好ましい。ガラス繊維の具体的な商品名としては、例えば、日東紡社製「CS3G225S」、日本電気硝子社製「T-781H」が挙げられ、炭素繊維の具体的な商品名としては、例えば、東邦テナックス社製「HTA-C6-NR」が挙げられる。繊維状強化材(E)は、単独で用いてもよいし、併用してもよい。
 繊維状強化材(E)の繊維長、繊維径は、特に限定されないが、繊維長は0.1~7mmであることが好ましく、0.5~6mmであることがさらに好ましい。繊維状強化材(E)は、繊維長が0.1~7mmであると、成形性に悪影響を及ぼすことなく、樹脂組成物を補強することができる。また、繊維径は3~20μmであることが好ましく、5~13μmであることがさらに好ましい。繊維状強化材(E)は、繊維径が3~20μmであると、溶融混練時に折損することなく、樹脂組成物を効率よく補強することができる。繊維状強化材(E)の断面形状としては、例えば、円形、長方形、楕円、それ以外の異形断面等が挙げられ、中でも円形が好ましい。
 繊維状強化材(E)を用いる場合、その含有量は、半芳香族ポリアミド(A)100質量部に対して、200質量部以下であることが好ましく、5~180質量部であることがより好ましく、10~170質量部であることがさらに好ましい。繊維状強化材(E)の含有量が200質量部を超えると、機械的強度の補強効率が低下したり、溶融混練時の作業性が低下したり、樹脂組成物のペレットを得ることが困難となる場合がある。
 本発明の半芳香族ポリアミド樹脂組成物は、さらに酸化防止剤(F)を含有してもよい。酸化防止剤(F)としては、例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、トリアジン系化合物、硫黄系化合物が挙げられ、中でも、リン系酸化防止剤が好ましい。
 繊維状強化材(E)を含有する半芳香族ポリアミド樹脂組成物は、射出成形時において、成形サイクルが長い場合や射出量が少ない場合に高温のシリンダー内に長時間滞留すると、繊維状強化材(E)の表面処理剤が熱分解し、機械的強度の低下を引き起こすことがある。しかしながら、半芳香族ポリアミド樹脂組成物が酸化防止剤(F)を含有することにより、前記の機械的強度の低下を抑制することができる。なお、酸化防止剤(F)は、通常、半芳香族ポリアミドの分子量低下や色の退化を防止することを目的に含有させるものである。本発明においては、これらの効果に加えて、樹脂組成物の滞留安定性を向上させることができる。
 酸化防止剤(F)を含有する場合、その含有量は、半芳香族ポリアミド100質量部に対して、0.1~5質量部であることが好ましく、0.2~5質量部であることがさらに好ましい。
 上記の酸化防止剤(F)の中でも、特にリン系酸化防止剤を用いることが好ましい。リン系酸化防止剤は、無機化合物でもよいし有機化合物でもよく、特に制限はないが、例えば、リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、亜リン酸ナトリウム、亜リン酸カルシウム、亜リン酸マグネシウム、亜リン酸マンガン等の無機リン酸塩、トリフェニルホスファイト、トリオクタデシルホスファイト、トリデシルホスファイト、トリノニルフェニルホスファイト、ジフェニルイソデシルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4′-ビフェニリレンジホスホナイトが挙げられる。中でも、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトおよびテトラキス(2,4-ジ-tert-ブチルフェニル)-4,4′-ビフェニリレンジホスホナイトが好ましい。具体的な商品名としては、例えば、アデカ社製「アデカスタブPEP-36」(ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト)、「アデカスタブPEP-8」(ジステアリルペンタエリスリトールジホスファイト)、「アデカスタブPEP-4C」(ビス(ノニルフェニル)ペンタエリスリトールジホスファイト)、Clariant社製「ホスタノックスP-EPQ」(テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4′-ビフェニリレンジホスホナイト)が挙げられる。これらは単独で用いてもよいし、併用してもよい。
 本発明の半芳香族ポリアミドは、必要に応じて、さらに他のポリマーを含有してもよい。他のポリマーとしては、例えば、ポリアミド6T、ポリアミド9T等の半芳香族ポリアミド樹脂、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド11、ポリアミド12等の脂肪族ポリアミド樹脂、ポリアミド9C等の脂環族ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、液晶ポリマー、ポリアリレート、ポリシクロヘキサンジメチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリスチレン、ポリプロピレン等のポリオレフィン樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンエーテル樹脂、ポリエーテルエーテルケトン樹脂が挙げられる。
 本発明の半芳香族ポリアミド樹脂組成物には、必要に応じて、他の添加剤を含有してもよい。他の添加剤としては、例えば、タルク、膨潤性粘土鉱物、シリカ、アルミナ、ガラスビーズ、グラファイト等の充填材、顔料、染料、帯電防止剤、板状強化材、熱安定剤、耐衝撃改良剤、可塑剤、離型剤、滑剤、結晶核剤、有機過酸化物、末端封鎖剤、摺動性改良剤が挙げられる。他の添加剤の添加方法は、その効果が損なわれなければ特に限定されないが、例えば、半芳香族ポリアミドの重合時または溶融混練時に添加される。
 なお、本発明の半芳香族ポリアミド樹脂組成物からなる成形体を、エキゾーストフィニッシャーやLEDリフレクタなどとして屋外で使用する場合、半芳香族ポリアミド樹脂組成物は、さらに光安定剤を含有してもよい。特に、酸化チタン等の白色顔料を併せて用いる場合は、酸化チタンが光分解を促進する場合があるので、光安定剤を添加することが好ましい。光安定剤としては、例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリシレート系化合物、ヒンダードアミン系化合物、ヒンダードフェノール系化合物が挙げられ、中でも、ヒンダードアミン系化合物が好ましい。光安定剤を含有する場合、その含有量は、半芳香族ポリアミド100質量部に対し、0.1~5質量部であることが好ましく、0.2~5質量部であることがさらに好ましい。光安定剤の含有量が、半芳香族ポリアミド100質量部に対して、0.1~5質量部であることにより、光安定性を向上させることができる。
 光安定剤は、酸化防止剤(F)と併用することが好ましい。併用することにより、成形時の滞留安定性を向上させつつ、使用時の紫外線等による光劣化を効率的に防止することができる。
 本発明において、半芳香族ポリアミド樹脂組成物を構成する原料を混合する方法は、その効果が損なわれなければ特に限定されないが、溶融混練法がより好ましい。溶融混練法としては、例えば、ブラベンダー等のバッチ式ニーダー、バンバリーミキサー、ヘンシェルミキサー、ヘリカルローター、ロール、一軸押出機、二軸押出機を用いる方法が挙げられる。溶融混練温度は、半芳香族ポリアミド(A)が溶融し、分解しない領域から選ばれ、混練温度が高すぎると、半芳香族ポリアミド(A)が分解するだけでなく、臭素系難燃剤(B)も分解するおそれがあることから、(半芳香族ポリアミド(A)の融点(Tm)-20℃)~(Tm+50℃)であることが好ましい。
 本発明の半芳香族ポリアミド樹脂組成物の加工方法としては、溶融物をストランド状に押出しペレット形状にする方法や、溶融物をホットカット、アンダーウォーターカットしてペレット形状にする方法や、シート状に押出しカッティングする方法、ブロック状に押出し粉砕してパウダー形状にする方法が挙げられる。
 本発明の半芳香族ポリアミド樹脂組成物を成形体に成形する方法としては、例えば、射出成形法、押出成形法、ブロー成形法、焼結成形法が挙げられ、機械的特性、成形性の向上効果が大きいことから、射出成形法が好ましい。射出成形機としては、特に限定されるものではないが、例えば、スクリューインライン式射出成形機またはプランジャ式射出成形機が挙げられる。射出成形機のシリンダー内で加熱溶融された半芳香族ポリアミド樹脂組成物は、ショットごとに計量され、金型内に溶融状態で射出され、所定の形状で冷却、固化された後、成形体として金型から取り出される。射出成形時の樹脂は、(Tm)~(Tm+50℃)で加熱溶融することが好ましい。なお、半芳香族ポリアミド樹脂組成物の加熱溶融時には、用いる半芳香族ポリアミド樹脂組成物ペレットは十分に乾燥されたものを用いることが好ましい。
 本発明の半芳香族ポリアミド樹脂組成物を成形してなる成形体は、自動車部品、電気電子部品、雑貨、土木建築用品等広範な用途に使用でき、難燃性に優れていることから、特に電気電子部品に好適である。自動車部品としては、例えば、サーモスタットカバー、インバータのIGBTモジュール部材、インシュレーター部材、エキゾーストフィニッシャー、パワーデバイス筐体、ECU筐体、ECUコネクタ、モーターやコイルの絶縁材、ケーブルの被覆材が挙げられる。電気電子部品としては、例えば、コネクタ、LEDリフレクタ、スイッチ、センサー、ソケット、コンデンサー、ジャック、ヒューズホルダー、リレー、コイルボビン、ブレーカー、電磁開閉器、ホルダー、プラグ、携帯用パソコンやワープロ等の電気機器の筐体部品、抵抗器、IC、LEDのハウジングが挙げられる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
1.測定方法
 半芳香族ポリアミドおよび半芳香族ポリアミド樹脂組成物の物性測定は以下の方法によりおこなった。
(1)相対粘度
 96質量%硫酸を溶媒とし、濃度1g/dL、25℃で測定した。
(2)融点
 示差走査熱量計(パーキンエルマー社製DSC-7型)用い、昇温速度20℃/分で370℃まで昇温した後、370℃で5分間保持し、降温速度20℃/分で25℃まで降温し、さらに25℃で5分間保持後、再び昇温速度20℃/分で昇温測定した際の吸熱ピークのトップを融点(Tm)とした。
(3)メルトフローレート(MFR)
 JIS K7210に従い、半芳香族ポリアミド(A-1)~(A-6)、(A-9)~(A-11)は330℃で、(A-7)は350℃、(A-8)は320℃で、荷重は全て1.2kgfで測定した。
(4)曲げ強度、曲げ弾性率
 半芳香族ポリアミド樹脂組成物を、射出成形機(ファナック社製S2000i-100B型)を用いて射出成形し、試験片(ダンベル片)を作製した。シリンダー温度は融点(Tm)+15℃、金型温度は135℃でおこなった。
 得られた試験片を用いて、ISO178に準拠して曲げ強度や曲げ弾性率を測定した。
 実用上、曲げ強度は110MPa以上が好ましく、120MPa以上がより好ましく、140MPa以上がさらに好ましい。また、実用上、曲げ弾性率は3GPa以上が好ましく、5GPa以上がより好ましい。
(5)ウェルド引張強度
 上記(4)と同様の射出成形をおこなって、試験片(ダンベル片)の中央部にウェルド部が生じるように金型の両端から樹脂を流し込んで試験片を作製した。
 得られた試験片を用いて、ISO527に準拠して引張強度を測定した。
 実用上、ウェルド引張強度は45MPa以上が好ましく、50MPa以上がより好ましく、55MPa以上がさらに好ましい。
(6)バーフロー流動性
 半芳香族ポリアミド樹脂組成物を、射出成形機(ファナック社製S2000i-100B型)を用いて、シリンダー温度(Tm+15℃)、金型温度135℃、射出圧力150MPa、射出時間8秒、設定射出速度150mm/秒で成形した際の試験片の流動長を測定し、バーフロー流動長とした。金型としては、厚み0.5mmt、幅20mm、長さ980mmのバーフロー試験金型を用いた。バーフロー流動長は、流動性の指標となる。
 実用上、バーフロー流動長は90mm以上が好ましく、110mm以上がより好ましい。
(7)難燃性
 射出成形機(ニイガタマシンテクノ社製CND15)を用いて、シリンダー温度(Tm+25℃)、金型温度135℃の条件で、5インチ(127mm)×1/2インチ(12.7mm)×1/32インチ(0.79mm)の試験片を作製した。
 得られた試験片を用いて、表1に示すUL94(米国Under Writers Laboratories Inc.で定められた規格)の基準に従って評価した。いずれの基準にも満たない場合は、「not V-2」とした。実用上、V-1、V-0であることが好ましい。
 難燃評価が同じ基準の場合、総残炎時間が短いほど、難燃性が高いと判定した。
Figure JPOXMLDOC01-appb-T000001
(8)摩擦係数
 上記(4)と同様の射出成形をおこなって、外径25.6mm、内径20mm、厚み15mmの円筒形の成形片を作製した。
 得られた成形片を用いて、JIS K7218 A法に従って、鈴木式摩擦磨耗試験機(東洋ボールドウィン社製EFM-III-E型)により、相手材をS45C鋼、荷重を0.25MPa、摩擦距離5kmの条件下、試験をおこなった。(摩擦距離に達した時の摩擦力検出器の値/荷重の値)を摩擦係数とした。摩擦係数は0.7以下が好ましい。
(9)クリープ特性
 上記(4)で作製したダンベル型試験片を用い、安田精機社製No.145-B-PC-6クリープテスターにて測定温度80℃の条件下で引張試験を行った。測定荷重は、繊維状強化材の含有量が、半芳香族ポリアミド(A)100質量部に対して10質量部未満の場合は20MPa、含有量が10~30質量部の場合は60MPa、含有量が30質量部を超える場合は100MPaの一定荷重を100時間継続して加えた。本発明においては、上記条件にて100時間引張試験した後の伸び率(%)をクリープ特性とした。
(10)分解ガスの発生量
 半芳香族ポリアミド樹脂組成物5mgを試料とし、パイロライザーにて加熱発生させた揮発成分について、ガスクロマトグラフ/質量分析計にて測定した。データベース検索により、各ピークの化学構造を特定し、半芳香族ポリアミド、臭素系難燃剤、またはそれ以外のいずれに由来するかを特定した。また、下記の標準試料を同様の方法で測定して得たピーク面積値と物質量の関係をもとに、それぞれのピークについての発生ガス量を定量した。
 分解ガスは、成形時の金型汚れの原因になるため、分解ガスの総量として、9.0mg/g以下であることが好ましく、7.5mg/g以下であることがより好ましい。
<パイロライザー条件>
・装置:PY-2020iD(フロンティア・ラボ社製)
・加熱:320℃、10分
<ガスクロマトグラフ条件>
・装置:6890N(Agilent Technologies社製)
・カラム:UA5(MS/HT)30M-0.25F(フロンティア・ラボ社製)
内径(mm)×長さ(m) 0.25×30
フィルム膜厚(μm) 0.25
・キャリアガス:ヘリウム 1.0mL/分
・注入口:250℃、スプリット比30:1
・温度:50℃(2分)→[20℃/分]→170℃(0分)→[50℃/分]→350℃(8分)
<質量分析計条件>
・装置:5975C(Agilent Technologies社製)
・質量範囲:m/z=5~650
<標準試料>
・100ppmのn-ヘキサデカン/ヘキサン溶液5μL
<データベース>
・NIST Mass Spectal Library Revision 2005 D.05.01(Agilent Technologies社製)
・EGA-MS10Bライブラリー(フロンティア・ラボ社製)
・PyGC-MS10Bライブラリー(フロンティア・ラボ社製)
・ADD-MS08Bライブラリー(フロンティア・ラボ社製)
・Pyrolyzate-MS09Bライブラリー(フロンティア・ラボ社製)
2.原料
 実施例および比較例で用いた原料を以下に示す。
(1)半芳香族ポリアミド
・半芳香族ポリアミド(A-1)
 芳香族ジカルボン酸成分として粉末状のテレフタル酸(TPA)4.70kgと、脂肪族モノカルボン酸成分としてステアリン酸(STA)0.33kgと、重合触媒として次亜リン酸ナトリウム一水和物9.3gとを、リボンブレンダー式の反応装置に入れ、窒素密閉下、回転数30rpmで撹拌しながら170℃に加熱した。その後、温度を170℃に保ち、かつ回転数を30rpmに保ったまま、液注装置を用いて、ジアミン成分として100℃に加温した1,10-デカンジアミン(DDA)4.97kgを、2.5時間かけて連続的(連続液注方式)に添加し反応生成物を得た。なお、原料モノマーのモル比は、TPA:DDA:STA=48.5:49.6:1.9(官能基の当量比率はTPA:DDA:STA=49:50:1)であった。
 続いて、得られた反応生成物を、同じ反応装置で、窒素気流下、250℃、回転数30rpmで8時間加熱して重合し、半芳香族ポリアミドの粉末を作製した。
 その後、得られた半芳香族ポリアミドの粉末を、二軸混練機を用いてストランド状とし、ストランドを水槽に通して冷却固化し、それをペレタイザーでカッティングして半芳香族ポリアミド(A-1)ペレットを得た。
・半芳香族ポリアミド(A-2)~(A-11)
 樹脂組成を表2に示すように変更した以外は、半芳香族ポリアミド(A-1)を作製した際と同様の操作をおこなって、半芳香族ポリアミド(A-2)~(A-11)を得た。
 得られた半芳香族ポリアミド(A-1)~(A-11)の樹脂組成と特性値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(2)臭素系難燃剤
・B-1:臭素化ポリスチレン、ケムチュラ社製 Great Lakes PDBS-80、臭素含有量59質量%
・B-2: 臭素化ポリスチレン、ケムチュラ社製 Great Lakes PBS-64HW、臭素含有量64質量%
・B-3: エチレンビス(テトラブロモフタル)イミド、アルベマール社製 BT-93、臭素含有量67質量%
・B-4:臭素化エポキシ樹脂、阪本薬品工業社製 SR-T20000、臭素含有量52質量%
(3)難燃助剤
・C-1:錫酸亜鉛、日本軽金属社製 FLAMTARD S
・C-2:硼酸亜鉛、ボラックス社製 FIRE BRAKE415
・C-3:三酸化アンチモン、日本精鉱社製 PATOX-M
・C-4:アンチモン酸ナトリウム、日産化学工業社製 サンエポックNA-1070L
・C-5:五酸化アンチモン、日産化学工業社製 サンエポックNA-1030
(4)ドリップ防止剤
・D-1:ポリテトラフルオロエチレン、ダイキン工業社製 ポリフロンMPA FA500H
・D-2:アクリル変性ポリテトラフルオロエチレン、三菱レイヨン社製 メタブレンA-3800
(5)繊維状強化材
・E-1:ガラス繊維、日東紡社製 CS3G225S、平均繊維径9.5μm、平均繊維長3mm
・E-2:炭素繊維、東邦テナックス社製 HTA-C6-NR、平均繊維径7μm、平均繊維長6mm
(6)酸化防止剤
・F-1:テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4′-ビフェニリレンジホスホナイト、Clariant社製 ホスタノックスP-EPQ
実施例1
 半芳香族ポリアミド(A-1)100質量部、臭素系難燃剤(B-1)15質量部、難燃助剤(C-1)3.3質量部、ドリップ防止剤(D-1)1.4質量部および酸化防止剤(F-1)0.4質量部をドライブレンドし、ロスインウェイト式連続定量供給装置(クボタ社製CE-W-1型)を用いて計量し、スクリュー径26mm、L/D50の同方向二軸押出機(東芝機械社製TEM26SS型)の主供給口に供給して、溶融混練をおこなった。途中、サイドフィーダーより繊維状強化材(E-1)52.6質量部を供給し、さらに混練をおこなった。ダイスからストランド状に引き取った後、水槽に通して冷却固化し、それをペレタイザーでカッティングして半芳香族ポリアミド樹脂組成物ペレットを得た。押出機のバレル温度設定は、310~340℃、スクリュー回転数250rpm、吐出量25kg/時間とした。
実施例2~40、比較例1~18
 樹脂組成物の組成を表3~4に示すように変更した以外は、実施例1と同様の操作をおこなって半芳香族ポリアミド樹脂組成物ペレットを得た。なお、比較例15においては、ドリップ防止剤(D)の含有量が多かったため、半芳香族ポリアミド樹脂組成物をストランド化することができず、ペレットを得ることができなかった。
 得られた半芳香族ポリアミド樹脂組成物の樹脂組成および特性を表3~4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~40の樹脂組成物は、脂肪族モノカルボン酸成分を特定量含有する半芳香族ポリアミド(A)と、臭素系難燃剤(B)と、難燃助剤(C)と、ドリップ防止剤(D)とが、本発明で規定する含有量となるよう構成されていたため、バーフロー流動長が90mm以上であり流動性が高く、押出時や成形時の発生ガス量が少なく、得られた成形体は、機械的特性、難燃性に優れていた。実施例6、8、9の対比から、臭素系難燃剤(B)と難燃助剤(C)の合計に対する難燃助剤(C)の質量比率が5質量%以上であると、難燃性の向上がみられた。
 実施例1、2、比較例9の対比、実施例4、5、比較例10の対比、実施例6、7、比較例11の対比、実施例12、13、比較例12の対比、実施例14、15、比較例13の対比、実施例19、20、比較例16の対比、実施例21、22、比較例17の対比から、ポリテトラフルオロエチレンを用いることによる摺動特性やクリープ特性の向上がみられ、アクリル変性ポリテトラフルオロエチレンを用いることによる摺動特性やクリープ特性のさらなる向上がみられた。
 比較例1では、半芳香族ポリアミド(A)における脂肪族モノカルボン酸成分の含有量が少ないため、樹脂組成物は流動性が低く、バーフロー流動長が短かった。一方、比較例2では、脂肪族モノカルボン酸成分の含有量が多いため、得られた成形体は、機械的特性が低かった。
 比較例3の樹脂組成物は、半芳香族ポリアミド(A)におけるモノカルボン酸成分が芳香族モノカルボン酸であったため、流動性が低く、バーフロー流動長が短かく、またドリップ防止剤(D)を含有しないため、難燃性が低いものであった。比較例4において、樹脂組成物にドリップ防止剤(D)を含有させると、比較例3に比較して、難燃性やクリープ特性が向上したが、バーフロー流動長が10mm短くなり、またウェルド強度も7MPa低下した。
 比較例18の樹脂組成物は、半芳香族ポリアミド(A)におけるモノカルボン酸成分が脂肪族モノカルボン酸であるため、比較例3、4と比較して、流動性が高く、バーフロー流動長が長く、難燃剤由来の分解ガスの発生が抑制されているが、ドリップ防止剤(D)を含有しないため、難燃性が低いものであった。しかし、比較例18の樹脂組成物にドリップ防止剤(D)を含有させた実施例9は、比較例18に比較して、難燃性やクリープ特性が向上するとともに、バーフロー流動長の短縮が10mmから4mmに抑制されており、またウェルド強度の低下も7MPaから3MPaに抑制されたものであった。
 比較例5の樹脂組成物は、臭素系難燃剤(B)の含有量が少なかったため、得られた成形体の難燃性が低く、一方、比較例6の樹脂組成物は、臭素系難燃剤(B)の含有量が多いため、分解ガス量が多かった。
 比較例7の樹脂組成物は、難燃助剤(C)の含有量が少ないため、得られた成形体の難燃性が低く、一方、比較例8の樹脂組成物は、難燃助剤(C)の含有量が多いため、得られた成形体の難燃性が低下した。
 比較例9~14、16~17の樹脂組成物は、上述の比較例18と同様、ドリップ防止剤(D)を含有しないか、含有量が少ないため、ドリップ防止剤(D)を含有する実施例の樹脂組成物に比較して、摩擦係数が高く、クリープ特性に劣り、難燃性が低いものであった。一方、比較例15の樹脂組成物は、ドリップ防止剤(D)の含有量が多かったため、ストランド化することができず、ペレットを得ることができなかった。
 
 

Claims (9)

  1.  半芳香族ポリアミド(A)100質量部、臭素系難燃剤(B)15~130質量部、難燃助剤(C)2~25質量部およびドリップ防止剤(D)0.3~7.0質量部を含有する半芳香族ポリアミド樹脂組成物であり、
    半芳香族ポリアミド(A)が、テレフタル酸成分、脂肪族ジアミン成分および脂肪族モノカルボン酸成分を含有し、
    半芳香族ポリアミド(A)における脂肪族モノカルボン酸成分の含有量が0.3~4.0モル%であることを特徴とする半芳香族ポリアミド樹脂組成物。
  2.  脂肪族ジアミン成分が、1,10-デカンジアミンであることを特徴とする請求項1記載の半芳香族ポリアミド樹脂組成物。
  3.  さらに繊維状強化材(E)を200質量部以下含有することを特徴とする請求項1または2記載の半芳香族ポリアミド樹脂組成物。
  4.  臭素系難燃剤(B)と難燃助剤(C)の質量比率(B/C)が、95/5~60/40であることを特徴とする請求項1~3のいずれかに記載の半芳香族ポリアミド樹脂組成物。
  5.  脂肪族モノカルボン酸成分が、炭素数15~30の脂肪族モノカルボン酸からなる群より選ばれた1種以上であることを特徴とする請求項1~4のいずれかに記載の半芳香族ポリアミド樹脂組成物。
  6.  臭素系難燃剤(B)が、エチレンビス(テトラブロモフタル)イミド、臭素化エポキシ樹脂および臭素化ポリスチレンからなる群より選ばれた1種以上であることを特徴とする請求項1~5のいずれかに記載の半芳香族ポリアミド樹脂組成物。
  7.  難燃助剤(C)が、錫酸亜鉛、硼酸亜鉛、三酸化アンチモン、五酸化アンチモンおよびアンチモン酸ナトリウムからなる群より選ばれた1種以上であることを特徴とする請求項1~6のいずれかに記載の半芳香族ポリアミド樹脂組成物。
  8.  ドリップ防止剤(D)が、ポリテトラフルオロエチレンおよび/またはアクリル変性ポリテトラフルオロエチレンであることを特徴とする請求項1~7のいずれかに記載の半芳香族ポリアミド樹脂組成物。
  9.  請求項1~8のいずれかに記載の半芳香族ポリアミド樹脂組成物を成形してなることを特徴とする成形体。
     
     
PCT/JP2014/077627 2013-10-18 2014-10-17 半芳香族ポリアミド樹脂組成物およびそれを成形してなる成形体 WO2015056765A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015542671A JPWO2015056765A1 (ja) 2013-10-18 2014-10-17 半芳香族ポリアミド樹脂組成物およびそれを成形してなる成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-217427 2013-10-18
JP2013217427 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015056765A1 true WO2015056765A1 (ja) 2015-04-23

Family

ID=52828205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077627 WO2015056765A1 (ja) 2013-10-18 2014-10-17 半芳香族ポリアミド樹脂組成物およびそれを成形してなる成形体

Country Status (2)

Country Link
JP (1) JPWO2015056765A1 (ja)
WO (1) WO2015056765A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6138321B1 (ja) * 2016-06-30 2017-05-31 ユニチカ株式会社 熱可塑性樹脂組成物およびそれを成形してなる成形体
WO2018003512A1 (ja) * 2016-06-30 2018-01-04 ユニチカ株式会社 熱可塑性樹脂組成物およびそれを成形してなる成形体
JP2018035208A (ja) * 2016-08-29 2018-03-08 マナック株式会社 難燃性樹脂組成物
JP2018193437A (ja) * 2017-05-15 2018-12-06 ユニチカ株式会社 熱可塑性樹脂組成物およびそれを成形してなる成形体
JP2020012093A (ja) * 2018-07-06 2020-01-23 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物、キット、成形品の製造方法および成形品
WO2021193196A1 (ja) * 2020-03-25 2021-09-30 東洋紡株式会社 ポリアミド樹脂組成物
WO2021205938A1 (ja) * 2020-04-08 2021-10-14 東洋紡株式会社 難燃性ポリアミド樹脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041117A (ja) * 2001-05-21 2003-02-13 Kuraray Co Ltd ポリアミド組成物
JP2003119378A (ja) * 2000-09-12 2003-04-23 Kuraray Co Ltd ポリアミド樹脂組成物
JP2008208383A (ja) * 2002-04-15 2008-09-11 Kuraray Co Ltd ポリアミド樹脂組成物
WO2009017043A1 (ja) * 2007-08-01 2009-02-05 Kuraray Co., Ltd. ポリアミド組成物
WO2013042541A1 (ja) * 2011-09-22 2013-03-28 ユニチカ株式会社 半芳香族ポリアミドおよびそれからなる成形体
JP2013064091A (ja) * 2011-09-20 2013-04-11 Unitika Ltd ポリアミド樹脂組成物およびそれを成形してなる成形体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119378A (ja) * 2000-09-12 2003-04-23 Kuraray Co Ltd ポリアミド樹脂組成物
JP2003041117A (ja) * 2001-05-21 2003-02-13 Kuraray Co Ltd ポリアミド組成物
JP2008208383A (ja) * 2002-04-15 2008-09-11 Kuraray Co Ltd ポリアミド樹脂組成物
WO2009017043A1 (ja) * 2007-08-01 2009-02-05 Kuraray Co., Ltd. ポリアミド組成物
JP2013064091A (ja) * 2011-09-20 2013-04-11 Unitika Ltd ポリアミド樹脂組成物およびそれを成形してなる成形体
WO2013042541A1 (ja) * 2011-09-22 2013-03-28 ユニチカ株式会社 半芳香族ポリアミドおよびそれからなる成形体

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312153B (zh) * 2016-06-30 2021-08-17 尤尼吉可株式会社 热塑性树脂组合物及将其成型而成的成型体
WO2018003512A1 (ja) * 2016-06-30 2018-01-04 ユニチカ株式会社 熱可塑性樹脂組成物およびそれを成形してなる成形体
JP2018002818A (ja) * 2016-06-30 2018-01-11 ユニチカ株式会社 熱可塑性樹脂組成物およびそれを成形してなる成形体
CN109312153A (zh) * 2016-06-30 2019-02-05 尤尼吉可株式会社 热塑性树脂组合物及将其成型而成的成型体
JP6138321B1 (ja) * 2016-06-30 2017-05-31 ユニチカ株式会社 熱可塑性樹脂組成物およびそれを成形してなる成形体
JP2018035208A (ja) * 2016-08-29 2018-03-08 マナック株式会社 難燃性樹脂組成物
JP2018193437A (ja) * 2017-05-15 2018-12-06 ユニチカ株式会社 熱可塑性樹脂組成物およびそれを成形してなる成形体
JP2020012093A (ja) * 2018-07-06 2020-01-23 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物、キット、成形品の製造方法および成形品
JP7197350B2 (ja) 2018-07-06 2022-12-27 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物、キット、成形品の製造方法および成形品
WO2021193196A1 (ja) * 2020-03-25 2021-09-30 東洋紡株式会社 ポリアミド樹脂組成物
CN115279833A (zh) * 2020-03-25 2022-11-01 东洋纺株式会社 聚酰胺树脂组合物
KR20220158221A (ko) 2020-03-25 2022-11-30 도요보 가부시키가이샤 폴리아미드 수지 조성물
CN115279833B (zh) * 2020-03-25 2024-05-17 东洋纺Mc株式会社 聚酰胺树脂组合物
WO2021205938A1 (ja) * 2020-04-08 2021-10-14 東洋紡株式会社 難燃性ポリアミド樹脂組成物

Also Published As

Publication number Publication date
JPWO2015056765A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015056765A1 (ja) 半芳香族ポリアミド樹脂組成物およびそれを成形してなる成形体
JP6609549B2 (ja) 半芳香族ポリアミド樹脂組成物およびそれを成形してなる成形体
CN109312153B (zh) 热塑性树脂组合物及将其成型而成的成型体
WO2020040282A1 (ja) ポリアミド及びポリアミド組成物
JP6249711B2 (ja) 半芳香族ポリアミド樹脂組成物およびそれを成形してなる成形体、摺動部材
TW201249930A (en) Flame retardant semi-aromatic polyamide composition and moulded products made therefrom
JP6129464B1 (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
JP2013064032A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
KR20100115796A (ko) 폴리아미드, 폴리아미드 조성물 및 폴리아미드의 제조 방법
JP6130400B2 (ja) ハロゲンフリーの難燃性ポリアミド組成物の調整方法
WO2014148519A1 (ja) 半芳香族ポリアミド樹脂組成物およびそれを成形してなる成形体
JP6138321B1 (ja) 熱可塑性樹脂組成物およびそれを成形してなる成形体
JP2013064091A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
JPS59191759A (ja) 難燃性ポリアミド組成物
JP2016176060A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形品
JP7093104B2 (ja) 熱可塑性樹脂組成物およびそれを成形してなる成形体
JP7129086B2 (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
WO2021044880A1 (ja) 難燃性ポリアミド樹脂組成物及びそれからなる成形品
JP2021167384A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
JP2018193437A (ja) 熱可塑性樹脂組成物およびそれを成形してなる成形体
JP2003292774A (ja) 耐熱性難燃樹脂組成物
JP7055365B2 (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
JP5345972B2 (ja) ポリブチレンテレフタレート樹脂組成物
JP2018095852A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
JP2018177874A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853523

Country of ref document: EP

Kind code of ref document: A1