WO2015050134A1 - 圧縮耐久性に優れた網状構造体 - Google Patents

圧縮耐久性に優れた網状構造体 Download PDF

Info

Publication number
WO2015050134A1
WO2015050134A1 PCT/JP2014/076150 JP2014076150W WO2015050134A1 WO 2015050134 A1 WO2015050134 A1 WO 2015050134A1 JP 2014076150 W JP2014076150 W JP 2014076150W WO 2015050134 A1 WO2015050134 A1 WO 2015050134A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
network structure
hardness
constant displacement
repeated compression
Prior art date
Application number
PCT/JP2014/076150
Other languages
English (en)
French (fr)
Inventor
輝之 谷中
小淵 信一
洋行 涌井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013206381A external-priority patent/JP5454733B1/ja
Priority claimed from JP2013206382A external-priority patent/JP5454734B1/ja
Priority claimed from JP2013206384A external-priority patent/JP5532179B1/ja
Priority claimed from JP2013206383A external-priority patent/JP5532178B1/ja
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020167008288A priority Critical patent/KR102083055B1/ko
Priority to EP14850151.3A priority patent/EP2966206B1/en
Priority to CN201811302538.2A priority patent/CN109680413B/zh
Priority to US15/026,424 priority patent/US9970140B2/en
Priority to CN201480054790.XA priority patent/CN105612279A/zh
Publication of WO2015050134A1 publication Critical patent/WO2015050134A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/12Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton
    • A47C27/122Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with fibrous inlays, e.g. made of wool, of cotton with special fibres, such as acrylic thread, coconut, horsehair
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/02Seat parts
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47DFURNITURE SPECIALLY ADAPTED FOR CHILDREN
    • A47D1/00Children's chairs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47DFURNITURE SPECIALLY ADAPTED FOR CHILDREN
    • A47D15/00Accessories for children's furniture, e.g. safety belts or baby-bottle holders
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G27/00Floor fabrics; Fastenings therefor
    • A47G27/02Carpets; Stair runners; Bedside rugs; Foot mats
    • A47G27/0212Carpets; Stair runners; Bedside rugs; Foot mats to support or cushion
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G9/00Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/70Upholstery springs ; Upholstery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P7/00Securing or covering of load on vehicles
    • B60P7/06Securing of load
    • B60P7/08Securing to the vehicle floor or sides
    • B60P7/0823Straps; Tighteners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D33/00Seats
    • B61D33/0007Details; Accessories
    • B61D33/0035Cushions or the like; Covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J1/00Saddles or other seats for cycles; Arrangement thereof; Component parts
    • B62J1/18Covers for saddles or other seats; Paddings
    • B62J1/26Paddings involving other resilient material, e.g. sponge rubber with inflatable compartments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/08Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated carboxylic acids or unsaturated organic esters, e.g. polyacrylic esters, polyvinyl acetate
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/062Load-responsive characteristics stiff, shape retention
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/06Bed linen
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/06Bed linen
    • D10B2503/062Fitted bedsheets
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/08Upholstery, mattresses
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles

Definitions

  • the present invention is excellent in repeated compression durability, such as office chairs, furniture, sofas, beddings such as beds, cushioning materials used for vehicle seats such as trains, automobiles, motorcycles, strollers, child seats, floor mats, collisions and pinchings.
  • the present invention relates to a net-like structure suitable for an impact absorbing mat such as an anti-skid member.
  • foam-crosslinked urethane is widely used as a cushioning material for furniture, bedding such as beds, and seats for vehicles such as trains, automobiles, and motorcycles.
  • Foam-crosslinked urethane has good durability as a cushioning material, but has poor moisture permeability and air permeability, and has a problem of being easily stuffy due to heat storage.
  • it since it is not thermoplastic, it is difficult to recycle. For this reason, when it is incinerated, problems have been pointed out such as damage to the incinerator and cost for removing toxic gases. Therefore, landfill is often disposed, but there is a problem that the landfill site is limited and the cost is increased because it is difficult to stabilize the ground. Further, various problems have been pointed out, such as pollution problems of chemicals used during production, residual chemicals after foaming, and odors associated therewith, although the processability is excellent.
  • Patent Documents 1 and 2 disclose a network structure. This can solve various problems derived from the above-mentioned foam-crosslinked urethane, and is excellent in cushioning performance.
  • the cyclic compression endurance characteristic is 20% or less in the 20,000-time repeated compression residual strain, which is excellent in performance with respect to the repeated compression residual strain, but the hardness retention at 50% compression after repeated compression is about 83%. There is a problem that the hardness after repeated use is lowered.
  • Patent Document 3 discloses a method for producing a low resilience cushion using a polyolefin-based thermoplastic elastomer. In this manufacturing method, it is possible to obtain a network structure having good low resilience characteristics, but it is difficult to manufacture a network structure excellent in high resilience characteristics.
  • the present invention has been made against the background of the above-described problems of the prior art, and provides a network structure having a small repeated compression residual strain, a high hardness retention after repeated compression, and an excellent repeated compression durability. It is to be an issue.
  • the present invention is as follows. 1. Continuously having a fineness of 100 dtex or more and 60000 dtex or less consisting of at least one thermoplastic elastic resin selected from the group consisting of polyolefin-based thermoplastic elastomers, ethylene-vinyl acetate copolymers, polyurethane-based thermoplastic elastomers and polyamide-based thermoplastic elastomers.
  • a three-dimensional random loop joined structure in which a linear body is twisted to form a random loop, and the respective loops are brought into contact with each other in a molten state, and the apparent density is 0.005 g / cm 3 to 0.20 g / cm. 3 , a 50% constant displacement repeated compression residual strain is 15% or less, and a 50% compression hardness retention after 50% constant displacement repeated compression is 85% or more.
  • 2. The network structure according to 1 above, wherein the hysteresis loss is 35% or less. 3.
  • the three-dimensional random loop joint structure is made of a polyurethane-based thermoplastic elastomer or a polyamide-based thermoplastic elastomer, and the hardness retention at 25% compression after 50% constant displacement repeated compression is 75% or more, according to 1 or 2 above Reticulated structure. 6). 6. The network structure according to any one of 1 to 5 above, wherein the thickness of the network structure is 10 mm or more and 300 mm or less. 7). 7. The network structure according to any one of 1 to 6 above, wherein the cross-sectional shape of the continuous linear body constituting the network structure is a hollow section and / or a modified section.
  • the network structure according to the present invention is a network structure with small repeated compression residual strain, high hardness retention after repeated compression, and excellent in repeated compression durability. is there. Furthermore, it is a network structure excellent in high resilience. Due to this excellent repeated compression durability and high resilience, cushioning materials used in office chairs, furniture, sofas, bedding such as beds, seats for vehicles such as trains, automobiles, motorcycles, strollers, child seats, floor mats and collisions It has become possible to provide a network structure suitable for a shock absorbing mat such as a pinching prevention member.
  • the network structure of the present invention has a fineness composed of at least one thermoplastic elastic resin selected from the group consisting of polyolefin-based thermoplastic elastomers, ethylene-vinyl acetate copolymers, polyurethane-based thermoplastic elastomers, and polyamide-based thermoplastic elastomers.
  • a three-dimensional random loop bonded structure in which a continuous linear body of 100 dtex or more and 60000 dtex or less is twisted to form a random loop, and each loop is brought into contact with each other in a molten state, and the apparent density is 0.005 g /
  • a network structure having a cm 3 to 0.20 g / cm 3 , a 50% constant displacement repeated compression residual strain of 15% or less, and a 50% compression hardness retention after 85% constant displacement repeated compression of 85% or more. Is the body.
  • the polymer constituting the network structure is preferably a low density polyethylene resin having a specific gravity of 0.94 g / cm 3 or less, particularly from ethylene and an ⁇ -olefin having 3 or more carbon atoms. It is preferably made of an ethylene / ⁇ -olefin copolymer resin.
  • the ethylene / ⁇ -olefin copolymer of the present invention is preferably a copolymer described in JP-A-6-293131, and is obtained by copolymerizing ethylene and an ⁇ -olefin having 3 or more carbon atoms. It is.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene, butene-1, pentene-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, and decene.
  • ⁇ -olefins Two or more of these can be used, and these ⁇ -olefins are usually copolymerized in an amount of 1 to 40% by weight.
  • This copolymer can be obtained by copolymerizing ethylene and an ⁇ -olefin using a catalyst system having a specific metallocene compound and an organometallic compound as basic components.
  • a catalyst system having a specific metallocene compound and an organometallic compound as basic components.
  • two or more kinds of polymers polymerized by the above method, and polymers such as hydrogenated polybutadiene and hydrogenated polyisoprene can be blended.
  • an antioxidant, an antifungal agent, a flame retardant, and the like can be added as necessary.
  • the specific gravity of the polyolefin-based thermoplastic elastomer of the present invention exceeds 0.94 g / cm 3 , the cushion material tends to become hard, which is not preferable. More preferably, it is 0.935 g / cm 3 or less, and further 0.93 g / cm 3 or less is preferable. Although a minimum is not specifically limited, 0.8 g / cm ⁇ 3 > or more is preferable from a viewpoint of intensity
  • the component comprising the polyolefin-based thermoplastic elastomer constituting the network structure excellent in repeated compression durability of the present invention preferably has an endothermic peak below the melting point in the melting curve measured with a differential scanning calorimeter. Those having an endothermic peak below the melting point are significantly improved in heat resistance and sag resistance than those having no endothermic peak.
  • a preferable polyolefin-based thermoplastic elastomer of the present invention hexane, hexene, and ethylene are polymerized by a known method using a metallocene compound as a catalyst. If the number is reduced, the crystallinity of the hard segment is improved, plastic deformation is difficult, and heat sag resistance is improved.
  • annealing at a temperature at least 10 ° C. lower than the melting point results in higher heat resistance. Improves drooling.
  • the sample can be heat-treated at a temperature lower by at least 10 ° C. than the melting point, but the heat distortion resistance is further improved by applying compressive strain.
  • An endothermic peak is more clearly expressed in a melting curve measured with a differential scanning calorimeter at a temperature not lower than the room temperature and not higher than the melting point of the cushion layer subjected to such treatment. In the case where annealing is not performed, an endothermic peak is not clearly expressed in the melting curve from room temperature to the melting point.
  • the polymer constituting the network structure preferably has a specific gravity of 0.91 to 0.965.
  • the specific gravity varies depending on the vinyl acetate content, and the vinyl acetate content is preferably 1 to 35%. If the vinyl acetate content is small, rubber elasticity may be poor. From such a viewpoint, the vinyl acetate content is preferably 1% or more, more preferably 2% or more, and further preferably 3% or more. If the vinyl acetate content is increased, the rubber elasticity is excellent, but the melting point is lowered and the heat resistance may be poor. Therefore, the vinyl acetate content is preferably 35% or less, more preferably 30% or less, and preferably 26% or less. Further preferred.
  • the ethylene vinyl acetate copolymer of the present invention can also copolymerize an ⁇ -olefin having 3 or more carbon atoms.
  • the ⁇ -olefin having 3 or more carbon atoms include propylene, butene-1, pentene-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, and decene.
  • polymers polymerized by the above method and polymer modifiers such as hydrogenated polybutadiene and hydrogenated polyisoprene can be blended.
  • a lubricant, an antioxidant, an antifungal agent, a flame retardant and the like can be added as necessary.
  • the component comprising the ethylene-vinyl acetate copolymer constituting the network structure excellent in repeated compression durability of the present invention preferably has an endothermic peak below the melting point in the melting curve measured with a differential scanning calorimeter. . Those having an endothermic peak below the melting point are significantly improved in heat resistance and sag resistance than those having no endothermic peak.
  • the preferred ethylene vinyl acetate copolymer of the present invention has a vinyl acetate content ratio of preferably 35% or less, more preferably 30% or less, and even more preferably 26% or less. When the vinyl acetate content ratio is reduced, the crystallinity of the hard segment is improved, the plastic deformation is difficult, and the heat sag resistance is improved.
  • the heat sag resistance is further improved.
  • the sample can be heat-treated at a temperature lower by at least 10 ° C. than the melting point, but the heat distortion resistance is further improved by applying compressive strain.
  • An endothermic peak is more clearly expressed in a melting curve measured with a differential scanning calorimeter at a temperature not lower than the room temperature and not higher than the melting point of the cushion layer subjected to such treatment. In the case where annealing is not performed, an endothermic peak is not clearly expressed in the melting curve from room temperature to the melting point.
  • the polyurethane-based thermoplastic elastomer of the present invention includes (A) a polyether having a hydroxyl group at the terminal having a number average molecular weight of 1000 to 6000 and / or in the presence or absence of a normal solvent (dimethylformamide, dimethylacetamide, etc.) and / or Polyurethane elastomer in which (B) a polypolymer containing diamine as a main component is chain-extended to a prepolymer in which both ends are isocyanate groups obtained by reacting a polyester and (B) a polyisocyanate containing organic diisocyanate as a main component.
  • a polyether having a hydroxyl group at the terminal having a number average molecular weight of 1000 to 6000 and / or in the presence or absence of a normal solvent (dimethylformamide, dimethylacetamide, etc.) and / or Polyurethane elastomer in which (B) a polypolymer containing di
  • polyesters and polyethers As the polyesters and polyethers (A), polybutylene adipate copolymer polyesters having a number average molecular weight of about 1000 to 6000, preferably 1300 to 5000, polyethylene glycol, polypropylene glycol, polytetra Polyalkylenediols such as glycols consisting of methylene glycol and ethylene oxide-propylene oxide copolymers are preferred.
  • polyisocyanate (B) conventionally known polyisocyanates can be used. An isocyanate mainly composed of diphenylmethane 4,4′-diisocyanate may be used, and if necessary, a conventionally known triisocyanate may be added in a small amount.
  • polyamine (C) known diamines such as ethylenediamine and 1,2-propylenediamine are mainly used, and a small amount of triamine and tetraamine may be used in combination as required. These polyurethane-based thermoplastic elastomers may be used alone or in combination of two or more.
  • the melting point of the polyurethane-based thermoplastic elastomer of the present invention is preferably 140 ° C. or higher, which can maintain heat resistance, and more preferably 150 ° C. or higher because the heat durability is improved.
  • an antioxidant, a light-resistant agent and the like can be added to improve durability. It is also effective to increase the molecular weight of the polyurethane-based thermoplastic elastomer in order to improve heat resistance and sag resistance.
  • the polyurethane thermoplastic elastomers of the present invention include those obtained by blending non-elastomeric components with the above polyurethane thermoplastic elastomers, those obtained by copolymerization, those obtained by using polyolefin components as soft segments, and the like. Furthermore, what added various additives etc. to the polyurethane-type thermoplastic elastomer as needed is also included.
  • the soft segment content of the polyurethane-based thermoplastic elastomer is preferably 15% by weight or more, more preferably 25%. % By weight or more, more preferably 30% by weight or more, most preferably 40% by weight or more, and preferably 80% by weight or less, more preferably 70% by weight from the viewpoint of ensuring hardness and heat and sag resistance. % Or less.
  • the component comprising the polyurethane-based thermoplastic elastomer constituting the network structure having excellent repeated compression durability of the present invention preferably has an endothermic peak below the melting point in the melting curve measured with a differential scanning calorimeter. Those having an endothermic peak below the melting point are significantly improved in heat resistance and sag resistance than those having no endothermic peak.
  • preferred polyurethane-based thermoplastic elastomers of the present invention include those containing 90 mol% or more of terephthalic acid or naphthalene 2,6-dicarboxylic acid having a rigid hard segment acid component, more preferably terephthalic acid or naphthalene.
  • the content of 2,6-dicarboxylic acid is 95 mol% or more, more preferably 100 mol%, and the glycol component is transesterified and then polymerized to the required degree of polymerization, and then the polyalkylene diol preferably has an average molecular weight of 500 More than 5000, more preferably 700 to 3000, more preferably 800 to 1800 polytetramethylene glycol is preferably 15% to 80% by weight, more preferably 25% to 70% by weight, and still more preferably Is 30 wt% or more and 70 wt%
  • the copolymerization amount is most preferably 40% by weight or more and 70% by weight or less, if the hard segment has a high content of terephthalic acid or naphthalene 2,6-dicarboxylic acid which is rigid in the acid component of the hard segment, The crystallinity is improved, the plastic deformation is difficult, and the heat sag resistance is improved.
  • the heat sag resistance is further improved by annealing at a temperature lower by at least 10 ° C. than the melting point after the fusion bonding.
  • the annealing treatment it is sufficient that the sample can be heat-treated at a temperature lower by at least 10 ° C. than the melting point, but the heat distortion resistance is further improved by applying compressive strain.
  • An endothermic peak is more clearly expressed in a melting curve measured with a differential scanning calorimeter at a temperature not lower than the room temperature and not higher than the melting point of the cushion layer subjected to such treatment. In the case where annealing is not performed, an endothermic peak is not clearly expressed in the melting curve from room temperature to the melting point.
  • the sag resistance is good in applications that can be relatively high temperature, such as a vehicle cushion in which a heater is used and a floor mat that is floor heated. Useful.
  • polyamide-based thermoplastic elastomer of the present invention examples include those in which polyamide is used as a hard segment, polyol is used as a soft segment, and both are copolymerized.
  • the hard segment polyamide compound include at least one polyamide oligomer obtained from a reaction product such as a lactam compound and a dicarboxylic acid or a diamine and a dicarboxylic acid.
  • the soft segment includes at least one or more of polyether polyol, polyester polyol, polycarbonate polyol, and the like.
  • lactam compound examples include at least one of aliphatic lactams having 5 to 20 carbon atoms such as ⁇ -butyrolactam, ⁇ -caprolactam, ⁇ -heptalactam, ⁇ -undecalactam, and ⁇ -lauryllactam.
  • Dicarboxylic acids such as oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid and other aliphatic dicarboxylic acids having 2 to 20 carbon atoms, and cyclohexanedicarboxylic acid and other fats
  • dicarboxylic acid compound such as an aromatic dicarboxylic acid such as a cyclic dicarboxylic acid, terephthalic acid, isophthalic acid, and orthophthalic acid.
  • Diamines include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecanemethylenediamine, 2,2,4-trimethylhexa
  • aliphatic diamines such as methylene diamine, 2,4,4-trimethylhexamethylene diamine, and 3-methylpentamethylene diamine
  • aromatic diamines such as meta-xylene diamine.
  • Polyether polyols such as polyethylene glycol having a number average molecular weight of about 300 to 5,000, polypropylene glycol, polytetramethylene glycol, glycol comprising ethylene oxide-propylene oxide copolymer, etc. Among these, at least one of them can be mentioned.
  • the polycarbonate diol is a reaction product of a low molecular diol and a carbonate compound, and examples thereof include those having a number average molecular weight of about 300 to 5,000.
  • Low molecular diols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6- Of aliphatic diols such as hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol and 1,10-decanediol, and alicyclic diols such as cyclohexanedimethanol and cyclohexanediol There may be mentioned at least one low molecular diol.
  • Examples of the carbonate compound include at least one of dialkyl carbonate, alkylene carbonate, diaryl carbonate, and the like.
  • Examples of the polyester polyol include at least one of polyester diols such as polylactone having a number average molecular weight of about 300 to 5,000. You may use said block copolymer individually or in mixture of 2 or more types. Furthermore, blends of non-elastomeric components, copolymers, and the like can be used in the present invention.
  • the melting point of the polyamide-based thermoplastic elastomer of the present invention is preferably 120 ° C. or higher, which can maintain heat resistance, and more preferably 130 ° C. or higher because the heat durability is improved.
  • an antioxidant, a light-resistant agent and the like can be added to improve durability. It is also effective to increase the molecular weight of the polyamide-based thermoplastic elastomer in order to improve heat resistance and sag resistance.
  • the polyamide thermoplastic elastomers of the present invention include those obtained by blending non-elastomeric components with the above-mentioned polyamide thermoplastic elastomers, those obtained by copolymerization, those obtained by using polyolefin components as soft segments, and the like. Furthermore, what added various additives etc. to the polyamide-type thermoplastic elastomer as needed is also included.
  • the soft segment content of the polyamide-based thermoplastic elastomer is preferably 5% by weight or more, more preferably 10% by weight or more.
  • the amount is preferably 15% by weight or more, most preferably 20% by weight or more, and is preferably 80% by weight or less, more preferably 70% by weight or less from the viewpoint of ensuring hardness and heat sag resistance.
  • the component comprising the polyamide-based thermoplastic elastomer constituting the network structure excellent in repeated compression durability of the present invention preferably has an endothermic peak below the melting point in the melting curve measured with a differential scanning calorimeter. Those having an endothermic peak below the melting point are significantly improved in heat resistance and sag resistance than those having no endothermic peak.
  • polyamide-based thermoplastic elastomer of the present invention those containing 90 mol% or more of polyamide 6, polyamide 11 or polyamide 12 in the hard segment, more preferably 95 mol% or more, particularly preferably 100 mol%, glycol
  • the polymer is polymerized to the required degree of polymerization, and then, as a polyalkylene diol, polytetramethylene having an average molecular weight of preferably 500 to 5000, more preferably 700 to 3000, and still more preferably 800 to 2000 5 to 80% by weight of glycol, more preferably 10 to 70% by weight, more preferably 15 to 70% by weight, and still more preferably 20 to 70% by weight
  • a polyalkylene diol polytetramethylene having an average molecular weight of preferably 500 to 5000, more preferably 700 to 3000, and still more preferably 800 to 2000 5 to 80% by weight of glycol, more preferably 10 to 70% by weight, more preferably 15 to 70% by weight, and still more preferably 20 to 70% by weight
  • the heat sag resistance is further improved by annealing at a temperature of at least 10 ° C. lower than the melting point after melting and heat bonding. To do. In the annealing treatment, it is sufficient that the sample can be heat-treated at a temperature lower by at least 10 ° C. than the melting point, but the heat distortion resistance is further improved by applying compressive strain. An endothermic peak is more clearly expressed in a melting curve measured with a differential scanning calorimeter at a temperature not lower than the room temperature and not higher than the melting point of the cushion layer subjected to such treatment. In the case where annealing is not performed, an endothermic peak is not clearly expressed in the melting curve from room temperature to the melting point.
  • the sag resistance is good in applications that can be relatively high temperature, such as a vehicle cushion in which a heater is used and a floor mat that is floor heated. Useful.
  • the fineness of the continuous linear body constituting the network structure of the present invention is too small to maintain the necessary hardness when used as a cushioning material, conversely, if the fineness is too large, it becomes too hard. It is necessary to set to an appropriate range.
  • the fineness is 100 dtex or more, preferably 300 dtex or more. When the fineness is less than 100 dtex, the fineness is too fine, and the fineness and soft touch are good, but it is difficult to secure the necessary hardness for the network structure. Further, the fineness is 60000 dtex or less, preferably 50000 dtex or less. If the fineness exceeds 60000 dtex, the network structure can have a sufficient hardness, but the network structure becomes rough and other cushion performance may be inferior.
  • Apparent density of the network structure of the present invention is 0.005g / cm 3 ⁇ 0.20g / cm 3, preferably 0.01g / cm 3 ⁇ 0.18g / cm 3, more preferably 0.02 g / The range is from cm 3 to 0.15 g / cm 3 .
  • the hysteresis loss of the network structure of the present invention is preferably 35% or less, more preferably 34% or less, still more preferably 33% or less, and most preferably 30% or less. If the hysteresis loss exceeds 35%, it may be difficult to feel high resilience when sitting, and the performance as a high resilience cushion becomes insufficient, which is not preferable.
  • the lower limit of hysteresis loss is not particularly defined, but in the network structure obtained in the present invention, 1% or more is preferable, and 5% or more is more preferable. If the hysteresis loss is less than 1%, the rebound is too high and the cushioning property is lowered, so 1% or more is preferable, and 5% or more is more preferable.
  • the thickness of the network structure of the present invention is preferably 10 mm or more, more preferably 20 mm or more. If the thickness is less than 10 mm, it may become too thin when used as a cushioning material, resulting in a feeling of bottoming.
  • the upper limit of the thickness is preferably 300 mm or less, more preferably 200 mm or less, and still more preferably 120 mm or less, in view of the manufacturing apparatus.
  • the 70 ° C. compression residual strain is preferably 35% or less.
  • the 70 ° C. compressive residual strain exceeds 35%, the characteristics as a network structure used for the intended cushion material are not satisfied.
  • the lower limit of the 70 ° C. compressive residual strain is not particularly defined, but is 1% or more in the network structure obtained in the present invention.
  • the 50% constant displacement cyclic compressive residual strain of the network structure of the present invention is 15% or less, preferably 10% or less. If the 50% constant displacement repeated compressive residual strain exceeds 15%, the thickness decreases when used for a long time, which is not preferable as a cushioning material.
  • the lower limit value of the 50% constant displacement repeated compression residual strain is not particularly specified, but is 1% or more in the network structure obtained in the present invention.
  • the hardness at 50% compression of the network structure of the present invention is preferably 10 N / ⁇ 200 or more and 1000 N / ⁇ 200 or less. If the hardness at 50% compression is less than 10 N / ⁇ 200, a feeling of bottoming may be felt. Moreover, when it exceeds 1000 N / ⁇ 200, it may be too hard to impair the cushioning property.
  • the hardness at the time of 25% compression of the network structure of the present invention is preferably 5 N / ⁇ 200 or more and 500 N / ⁇ 200 or less. If the hardness at 25% compression is less than 5 N / ⁇ 200, the cushion performance may be insufficient due to being too soft. On the other hand, if it exceeds 500 N / ⁇ 200, the cushioning property may be impaired due to being too hard.
  • the 50% compression hardness retention after 50% constant displacement repeated compression of the network structure of the present invention is 85% or more, preferably 88% or more, more preferably 90% or more. If the hardness retention at 50% compression after 50% constant displacement repeated compression is less than 85%, the cushioning material may have a reduced hardness due to long-term use, and a feeling of bottoming may appear.
  • the upper limit of the 50% compression hardness retention after 50% constant displacement repeated compression is not particularly specified, but in the network structure obtained in the present invention, it is preferably 120% or less, more preferably 115% or less, and 110%. The following are most preferred.
  • the hardness retention rate at 50% compression may exceed 100% because the thickness of the network structure decreases due to repeated compression and the apparent density of the network structure after repeated compression increases, This is because the hardness may increase.
  • the cushioning property is changed, so that it is preferably 120% or less, more preferably 115% or less, and most preferably 110% or less.
  • the 25% compression hardness retention after 50% constant displacement repeated compression is preferably 80% or more, more preferably 82% or more, and 83% or more. More preferably, 85% or more is most preferable. If the hardness retention at 25% compression after 50% constant displacement repeated compression is less than 80%, the cushioning material may decrease in hardness over long periods of time, which may lead to a change in sitting comfort.
  • the upper limit of the hardness retention at 25% compression after 50% constant displacement repeated compression is not particularly defined, but in the network structure obtained in the present invention, it is preferably 120% or less, more preferably 110% or less.
  • the hardness retention rate at 25% compression may exceed 100% because the thickness of the network structure decreases due to repeated compression and the apparent density of the network structure after repeated compression increases, This is because the hardness may increase.
  • the cushioning property is changed, so 120% or less is preferable, and 110% or less is more preferable.
  • the hardness retention at the time of 50% compression after the 50% constant displacement repeated compression is 85% or more, and at the time of 25% compression after the 50% constant displacement repeated compression.
  • the hardness retention is 80% or more.
  • the difference between the network structure having a small 50% constant displacement cyclic compression strain and the network structure of the present invention that has been known so far is that the network structure of the present invention has a This is because the fusion is strengthened and the contact strength between the continuous linear bodies is increased. By increasing the contact strength between the continuous linear bodies constituting the network structure, the hardness retention after 50% constant displacement repeated compression of the network structure could be improved. That is, in the network structure known so far, many contacts between continuous linear bodies constituting the network structure were broken by repeated compression by 50% constant displacement repeated compression. It is thought that the body was able to reduce the destruction of the contacts compared to the conventional one.
  • the hardness retention at 25% compression after 50% constant displacement repeated compression is preferably 65% or more, more preferably 68% or more, and 70% or more. Is more preferable, and 75% or more is most preferable. If the hardness retention at 25% compression after 50% constant displacement repetitive compression is less than 65%, the hardness of the cushion material may decrease due to long-term use, leading to a change in sitting comfort.
  • the upper limit of the hardness retention at 25% compression after 50% constant displacement repeated compression is not particularly defined, but in the network structure obtained in the present invention, it is preferably 120% or less, more preferably 110% or less.
  • the hardness retention rate at 25% compression may exceed 100% because the thickness of the network structure decreases due to repeated compression and the apparent density of the network structure after repeated compression increases, This is because the hardness may increase.
  • the cushioning property is changed, so 120% or less is preferable, and 110% or less is more preferable.
  • the hardness retention at 50% compression after the 50% constant displacement repeated compression is 85% or more, and 25% compression after 50% constant displacement repeated compression. It has a characteristic that the hardness retention is 65% or more.
  • the difference between the network structure having a small 50% constant displacement cyclic compression strain and the network structure of the present invention that has been known so far is that the network structure of the present invention has a This is because the fusion is strengthened and the contact strength between the continuous linear bodies is increased. By increasing the contact strength between the continuous linear bodies constituting the network structure, the hardness retention after 50% constant displacement repeated compression of the network structure could be improved. That is, in the network structure known so far, many contacts between continuous linear bodies constituting the network structure were broken by repeated compression by 50% constant displacement repeated compression. It is thought that the body was able to reduce the destruction of the contacts compared to the conventional one.
  • the hardness retention at 25% compression after 50% constant displacement repeated compression is preferably 75% or more, more preferably 78% or more, and more preferably 80% or more. More preferably, 85% or more is most preferable. If the hardness retention at 25% compression after 50% constant displacement repeated compression is less than 75%, the cushioning material may decrease in hardness over long periods of time, which may lead to a change in sitting comfort.
  • the upper limit of the hardness retention at 25% compression after 50% constant displacement repeated compression is not particularly defined, but in the network structure obtained in the present invention, it is preferably 120% or less, more preferably 110% or less.
  • the hardness retention rate at 25% compression may exceed 100% because the thickness of the network structure decreases due to repeated compression and the apparent density of the network structure after repeated compression increases, This is because the hardness may increase.
  • the cushioning property is changed, so 120% or less is preferable, and 110% or less is more preferable.
  • the hardness retention at the time of 50% compression after the 50% constant displacement repeated compression is 85% or more, and at the time of 25% compression after the 50% constant displacement repeated compression.
  • the hardness retention rate is 75% or more.
  • the difference between the network structure having a small 50% constant displacement cyclic compression strain and the network structure of the present invention that has been known so far is that the network structure of the present invention has a This is because the fusion is strengthened and the contact strength between the continuous linear bodies is increased. By increasing the contact strength between the continuous linear bodies constituting the network structure, the hardness retention after 50% constant displacement repeated compression of the network structure could be improved. That is, in the network structure known so far, many contacts between continuous linear bodies constituting the network structure were broken by repeated compression by 50% constant displacement repeated compression. It is thought that the body was able to reduce the destruction of the contacts compared to the conventional one.
  • the 25% compression hardness retention after 50% constant displacement repeated compression is preferably 75% or more, more preferably 78% or more, and still more preferably. Is 80% or more, and most preferably 85% or more. If the hardness retention at 25% compression after 50% constant displacement repeated compression is less than 75%, the cushioning material may decrease in hardness over long periods of time, which may lead to a change in sitting comfort.
  • the upper limit value of the hardness retention at 25% compression after 50% constant displacement repeated compression is not particularly specified, but in the network structure obtained in the present invention, it is preferably 120% or less, more preferably 115% or less, and 110%. The following is more preferable.
  • the hardness retention rate at 25% compression may exceed 100% because the thickness of the network structure decreases due to repeated compression and the apparent density of the network structure after repeated compression increases, This is because the hardness may increase.
  • the cushioning property is changed, so that it is preferably 120% or less, more preferably 115% or less, and even more preferably 110% or less.
  • the hardness retention at 50% compression after the 50% constant displacement repeated compression is 85% or more, and 25% after 50% constant displacement repeated compression. It has the characteristic that the hardness retention during compression is 75% or more.
  • the difference between the network structure having a small 50% constant displacement cyclic compression strain and the network structure of the present invention that has been known so far is that the network structure of the present invention has a This is because the fusion is strengthened and the contact strength between the continuous linear bodies is increased. By increasing the contact strength between the continuous linear bodies constituting the network structure, the hardness retention after 50% constant displacement repeated compression of the network structure could be improved. That is, in the network structure known so far, many contacts between continuous linear bodies constituting the network structure were broken by repeated compression by 50% constant displacement repeated compression. It is thought that the body was able to reduce the destruction of the contacts compared to the conventional one.
  • the network structure of the present invention has a characteristic that the hysteresis loss is 35% or less.
  • the fusion between continuous linear bodies constituting the network structure is strengthened, and the contact strength between the continuous linear bodies is increased.
  • the mechanism of increasing the contact strength and reducing the hysteresis loss is complicated, and not all are clarified, but are considered as follows.
  • the network structure of the present invention having a high hardness retention after 50% constant displacement repeated compression is obtained, for example, as follows.
  • the network structure is obtained based on a known method described in JP-A-7-68061.
  • at least one thermoplastic elastic resin selected from the group consisting of a polyolefin-based thermoplastic elastomer, an ethylene-vinyl acetate copolymer, a polyurethane-based thermoplastic elastomer, and a polyamide-based thermoplastic elastomer from a multi-row nozzle having a plurality of orifices. It is distributed to the nozzle orifice, discharged downward from the nozzle at a spinning temperature higher than the melting point of the thermoplastic elastic resin by 20 ° C.
  • the obtained network structure can be annealed.
  • the drying process of the network structure may be an annealing process.
  • One means for obtaining a network structure with increased contact strength is, for example, at least one selected from the group consisting of polyolefin-based thermoplastic elastomers, ethylene-vinyl acetate copolymers, polyurethane-based thermoplastic elastomers, and polyamide-based thermoplastic elastomers.
  • polyolefin-based thermoplastic elastomers ethylene-vinyl acetate copolymers
  • polyurethane-based thermoplastic elastomers polyurethane-based thermoplastic elastomers
  • polyamide-based thermoplastic elastomers polyamide-based thermoplastic elastomers
  • thermoplastic elastic resin selected from the group consisting of polyolefin-based thermoplastic elastomers, ethylene-vinyl acetate copolymers, polyurethane-based thermoplastic elastomers and polyamide-based thermoplastic elastomers
  • the length of the heat retaining region under the nozzle is preferably 20 mm or more, more preferably 35 mm or more, and further preferably 50 mm or more.
  • the upper limit of the length of the heat retaining region is preferably 70 mm or less.
  • the length of the heat insulation region is 20 mm or more, the fusion of the continuous linear bodies of the obtained network structure is strengthened, the contact strength between the continuous linear bodies is increased, and as a result, the network structure is repeatedly compressed. Durability can be improved. If the length of the heat retaining region is less than 20 mm, the contact strength is not improved to the extent that repeated compression durability can be satisfied. Further, when the length of the heat retaining region exceeds 70 mm, the surface quality may be deteriorated.
  • This thermal insulation region can be made into a thermal insulation region by utilizing the heat amount brought into the spin pack and the polymer, or the temperature of the fiber falling region directly under the nozzle can be controlled by heating the thermal insulation region with a heater.
  • the heat insulation region may be an iron plate, an aluminum plate, a ceramic plate, or the like, and the heat insulation body may be installed so as to surround the continuous linear body falling under the nozzle. It is more preferable that the heat retaining body is made of the above-described materials and keeps them warm with a heat insulating material. In consideration of the heat retaining effect, it is preferable to install the heat retaining region from the position below 50 mm below the nozzle, more preferably 20 mm or less, and more preferably from just below the nozzle.
  • the aluminum plate is kept warm by enclosing it with a length of 20 mm from directly under the nozzle so as not to come into contact with the yarn, and the aluminum plate is further kept warm with a heat insulating material. It is.
  • the net surface temperature around the dropping position of the continuous linear body of the take-up conveyor net is raised, or in the cooling tank around the dropping position of the continuous linear body For example, raising the cooling water temperature.
  • the surface temperature of the take-up conveyor net is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and more preferably 60 ° C. or higher when the network structure is made of a polyolefin-based thermoplastic elastomer or ethylene vinyl acetate copolymer.
  • the temperature is preferably 80 ° C.
  • the conveyor net temperature is preferably not higher than the melting point of the polymer, and more preferably not higher than 20 ° C. of the melting point.
  • the cooling water temperature is preferably 25 ° C. or higher when the network structure is made of a polyolefin-based thermoplastic elastomer or ethylene-vinyl acetate copolymer, and the network structure is made of a polyurethane-based thermoplastic elastomer or a polyamide-based thermoplastic elastomer. When it consists of a plastic elastomer, it is preferable to make it 80 degreeC or more.
  • the continuous linear body constituting the network structure of the present invention may be a composite linear combination with another thermoplastic resin as long as the object of the present invention is not impaired.
  • the composite form include composite linear bodies such as a sheath / core type, a side-by-side type, and an eccentric sheath / core type when the linear body itself is combined.
  • the network structure of the present invention may have a multilayer structure as long as the object of the present invention is not impaired.
  • the multilayer structure include a structure in which the surface layer and the back layer are composed of linear bodies having different finenesses, and a structure in which the surface layer and the back layer are composed of structures having different apparent densities.
  • Examples of the multi-layering method include a method of stacking network structures and fixing them on a side ground, a method of melting and fixing by heating, a method of bonding with an adhesive, a method of binding with sewing or a band, and the like.
  • the cross-sectional shape of the continuous linear body constituting the network structure of the present invention is not particularly limited, but a preferable anti-compression property and touch can be imparted by making it a hollow cross-section and / or an irregular cross-section.
  • the network structure of the present invention is processed from a resin production process to a molded body within a range not deteriorating the performance, and at any stage of commercialization, deodorizing antibacterial, deodorizing, antifungal, coloring, aroma, flame retardant, moisture absorption and desorption
  • the functional processing such as chemical addition can be performed.
  • the network structure of the present invention thus obtained has excellent repeated compression durability with small repeated compression residual strain and high hardness retention. Furthermore, it has high resilience.
  • Fineness A sample is cut into a size of 20 cm ⁇ 20 cm, and linear bodies are collected from 10 locations.
  • Melting point (Tm) An endothermic peak (melting peak) temperature was determined from an endothermic curve measured using a differential scanning calorimeter Q200 manufactured by TA Instruments Co., Ltd. at a heating rate of 20 ° C./min.
  • Hardness retention at 50% compression after 50% constant displacement repeated compression A sample is cut into a size of 30 cm ⁇ 30 cm, and the thickness before treatment is measured by the method described in (2).
  • the 50% compression hardness measured for the sample whose thickness was measured by the method described in (5) is defined as the pre-treatment load (e).
  • compression recovery was repeated in a cycle of 1 Hz up to 50% of the thickness before treatment in an environment of 20 ° C. ⁇ 2 ° C., and the sample after 80,000 times was left for 30 minutes,
  • the hardness at 50% compression measured by the method described in 5) is defined as a post-treatment load (f).
  • Hysteresis loss A sample is cut into a size of 30 cm ⁇ 30 cm, left unloaded in an environment of 20 ° C. ⁇ 2 ° C. for 24 hours, and then Tensilon manufactured by Orientec in an environment of 20 ° C. ⁇ 2 ° C. Using a pressure plate having a diameter of 200 mm and a thickness of 3 mm, compression of the central portion of the sample is started at a speed of 10 mm / min, and the thickness when the load reaches 5 N is measured to obtain the hardness meter thickness.
  • the position of the pressure plate is set to the zero point, the pressure plate is compressed to 75% of the thickness of the hardness meter at a speed of 100 mm / min, and the pressure plate is returned to the zero point at the same speed without a hold time (first stress strain curve). . Subsequently, the sample is compressed to 75% of the hardness meter thickness at a speed of 100 mm / min without a hold time, and returned to the zero point at the same speed without a hold time (second stress strain curve). Hysteresis loss is determined according to the following equation, with the compression energy (WC) indicated by the second compression stress curve and the compression energy (WC ′) indicated by the second decompression stress curve.
  • thermoplastic elastomers are polymerized with hexane, hexene and ethylene by a known method using a metallocene compound as a catalyst to form an ethylene / ⁇ -olefin copolymer, then added with 2% antioxidant, kneaded and pelletized. Obtained.
  • the obtained polyolefin-based thermoplastic elastomer (thermoplastic elastomer A-1) had a specific gravity of 0.919 g / cm 3 and a melting point of 110 ° C.
  • Vistamax 2125 thermaloplastic elastomer A-2 manufactured by ExxonMobil Chemical was used as a polypropylene thermoplastic elastomer was used.
  • the polypropylene-based thermoplastic elastomer had a specific gravity of 0.87 g / cm 3 and a melting point of 162 ° C.
  • the orifice shape is 2 mm outer diameter, 1.6 mm inner diameter, and the orifice of the triple bridge hollow forming cross section is a staggered arrangement of 5 mm pitch between holes,
  • the obtained polyolefin-based thermoplastic elastomer (A-1) was discharged at a melting temperature of 210 ° C. at a single hole discharge rate of 1.5 g / min below the nozzle, passed through a heat retaining region 30 mm directly below the nozzle, and the nozzle surface A cooling water of 35 ° C.
  • a stainless steel endless net with a width of 150 cm is arranged in parallel with an opening width of 50 mm so that a part of the pair of take-up conveyors comes out on the water surface.
  • the surface temperature of the net is heated by an infrared heater so as to be 60 ° C., and the molten discharge line is bent to form a loop.
  • a three-dimensional network structure is formed while fusing together, and the both sides of the molten network are sandwiched by a take-up conveyor and drawn into 35 ° C. cooling water at a rate of 0.8 m / min to flatten both sides. Then, it was cut into a predetermined size and dried and heat-treated with 70 ° C.
  • the obtained network structure is formed of filaments having a hollow cross section, a hollow ratio of 24%, a fineness of 3000 dtex, an apparent density of 0.035 g / cm 3 , and a surface with a flattened thickness.
  • 25% compression hardness is 110 N / ⁇ 200 mm
  • 50% compression hardness is 219 N / ⁇ 200 mm
  • repetitive compression residual strain is 9.7%
  • 50% compression hardness retention after constant displacement repetitive compression is 88. .3%
  • 50% after constant displacement repeated compression 25% compression hardness retention is 80.4%
  • hysteresis loss is 27.7%
  • the properties of the obtained network structure are shown in Table 1.
  • the obtained network structure satisfied the requirements of the present invention and was a network structure excellent in repeated compression durability and high resilience.
  • Example 1-2 A mesh shape obtained in the same manner as in Example 1-1, except that the heat retaining area immediately below the nozzle was 40 mm, the single hole discharge rate was 1.8 g / min, the nozzle surface-cooling water distance was 32 cm, and the cooling water temperature was 25 ° C.
  • the structure is formed of a filament having a hollow cross section, a hollow ratio of 20%, a fineness of 2700 dtex, an apparent density of 0.045 g / cm 3 , and a flattened thickness of 48 mm, 25 % Compression hardness is 155 N / ⁇ 200 mm, 50% compression hardness is 288 N / ⁇ 200 mm, 50% constant displacement repeated compression residual strain is 8.5%, and 50% constant displacement repeated compression retention is 98%. The hardness retention at the time of 25% compression after compression of .3% and 50% constant displacement was 82.3%, and the hysteresis loss was 24.7%.
  • the properties of the obtained network structure are shown in Table 1.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability and high resilience.
  • Example 1-3 The network structure obtained in the same manner as in Example 1-1 except that the single hole discharge rate was 2.0 g / min, the nozzle surface-cooling water distance was 28 cm, and the conveyor net surface temperature was 40 ° C. without heating.
  • the cross-sectional shape is a hollow cross-section with a hollow ratio of 22%, a fineness of 3300 dtex, an apparent density of 0.040 g / cm 3 , a flattened thickness of 51 mm, and 25% compression Hardness is 137N / ⁇ 200mm, 50% compression hardness is 242N / ⁇ 200mm, 50% constant displacement repeated compression residual strain is 9.0%, 50% constant displacement repeated compression and 50% compression hardness retention is 91.1% The hardness retention at 25% compression after 50% constant displacement repeated compression was 83.5%, and the hysteresis loss was 33.5%.
  • Table 1 The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability and high resilience.
  • Example 1-4 Heat with an infrared heater so that the spinning temperature is 220 ° C, the heat retention area just below the nozzle is 40 mm, the single hole discharge rate is 3.2 g / min, the take-up speed is 1.0 m / min, and the conveyor net surface temperature is 80 ° C.
  • the apparent density is 0.061 g / cm 3
  • the flattened thickness is 50 mm
  • the 25% compression hardness is 267 N / ⁇ 200 mm
  • the 50% compression hardness is 583 N / ⁇ 200 mm
  • the 50% constant displacement cyclic compression residual strain Is 10.1%
  • hardness retention at 50% compression after 50% constant displacement repeated compression is 105.6%
  • hardness retention at 25% compression after 50% constant displacement repeated compression is 85.0%
  • hysteresis low There was 26.8%.
  • the properties of the obtained network structure are shown in Table 1.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability and high resilience.
  • Example 1-5 A polypropylene thermoplastic elastomer (thermoplastic elastomer A-2) was used, except that the spinning temperature was 230 ° C., the single hole discharge rate was 2.0 g / min, and the conveyor net surface temperature was 40 ° C. without heating.
  • the net-like structure obtained in the same manner as in 1-1 was formed with a filament having a hollow cross section, a hollowness of 21%, a fineness of 3300 dtex, an apparent density of 0.041 g / cm 3 , a surface
  • the flattened thickness is 51 mm
  • 25% compression hardness is 58 N / ⁇ 200 mm
  • 50% compression hardness is 124 N / ⁇ 200 mm
  • 50% constant displacement repeated compression residual strain is 8.6%
  • 50% constant displacement repeated compression The hardness retention at 50% compression was 88.2%
  • the hardness retention at 25% compression after 50% constant displacement repeated compression was 81.1%
  • the hysteresis loss was 31.1%.
  • the properties of the obtained network structure are shown in Table 1.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability and high resilience.
  • Example 1-1 Obtained in the same manner as in Example 1-1, except that the heat retaining area directly under the nozzle was eliminated, the single hole discharge rate was 1.7 g / min, the take-off speed was 0.9 m / min, and the nozzle surface-cooling water distance was 32 cm.
  • the net-like structure has a hollow cross section, a hollow section of 26%, a fineness of 3100 dtex, and an apparent density of 0.035 g / cm 3 and a flattened thickness of 51 mm.
  • Example 1-2 Excluding the heat retention area directly under the nozzle, single-hole discharge rate of 2.0 g / min, nozzle surface-cooling water distance of 31 cm, conveyor net is not heated, its surface temperature is 40 ° C, and cooling water temperature is 25 ° C
  • the network structure obtained in the same manner as in Example 1-1 was formed with filaments having a hollow cross section, a hollowness of 23%, a fineness of 3400 dtex, and an apparent density of 0.050 g / cm. 3.
  • the fineness is 4000 decitex, the apparent density is 0.040 g / cm 3 , the flattened thickness is 50 mm, 25% compression hardness is 63 N / ⁇ 200 mm, and 50% compression hardness is 133 N / ⁇ 200 mm, 50% constant displacement repeated compression residual strain is 9.5%, 50% compression after 50% compression repeated compression, 79.4% hardness retention after 50% constant displacement repeated compression 5% -compression hardness retention is 72.2%, the hysteresis loss was 41.0%.
  • the properties of the obtained network structure are shown in Table 1. The obtained network structure did not satisfy the requirements of the present invention, and was a network structure inferior in repeated compression durability and high resilience.
  • Example 2-1 The ethylene-vinyl acetate copolymer was obtained by radical copolymerization of ethylene and vinyl acetate by a known method to obtain an ethylene-vinyl acetate copolymer, which was then added and kneaded with 2% antioxidant and pelletized.
  • thermoplastic elastomer B-1 with a vinyl acetate content of 10%
  • thermoplastic elastomer B-2 with a vinyl acetate content of 20%
  • B-3 with a vinyl acetate content of 5% Obtained.
  • thermoplastic elastomer B-1 has a vinyl acetate content of 10%, a specific gravity of 0.929, and a melting point of 95 ° C.
  • thermoplastic elastomer B-2 has a vinyl acetate content of 20%, a specific gravity of 0.941
  • the melting point was 85 ° C.
  • thermoplastic elastomer B-3 had a vinyl acetate content of 5%, a specific gravity of 0.925, and a melting point of 103 ° C.
  • Table 2 The properties of the polymer obtained are shown in Table 2.
  • width direction width 50mm nozzle to the nozzle which made the orifice shape the outer diameter 2mm, the inner diameter 1.6mm, the orifice which made the triple bridge hollow formation cross section with the hole pitch 5mm staggered arrangement
  • the obtained ethylene vinyl acetate copolymer B-1 was discharged below the nozzle at a melting temperature of 190 ° C. at a rate of a single hole discharge rate of 1.8 g / min. Cooling water at 50 ° C is placed underneath, and a stainless steel endless net with a width of 150 cm is arranged in parallel so that a pair of take-up conveyors are partially exposed on the water surface at an opening width of 40 mm.
  • the surface temperature of the substrate is heated by an infrared heater so as to be 60 ° C., and the molten discharge line is twisted to form a loop to fuse the contact portion.
  • a three-dimensional network structure is formed, and both sides of the molten network are sandwiched by a take-up conveyor and drawn into 50 ° C. cooling water at a rate of 0.9 m / min. It cut
  • the obtained network structure is formed of filaments having a hollow cross section, a hollow ratio of 25%, and a fineness of 3100 dtex, an apparent density of 0.038 g / cm 3 , and a surface with a flattened thickness.
  • 25% compression hardness is 118 N / ⁇ 200 mm
  • 50% compression hardness is 220 N / ⁇ 200 mm
  • 50% constant displacement cyclic compression residual strain is 10.3%
  • 50% constant displacement hardness after 50% compression compression Retention rate is 93.1%
  • 50% constant displacement after repeated compression 25% compression hardness retention rate is 65.1%
  • hysteresis loss is 24.5%, excellent in repeated compression durability and high resilience
  • Table 3 shows the characteristics of the obtained network structure.
  • the obtained network structure satisfied the requirements of the present invention and was a network structure excellent in repeated compression durability and high resilience.
  • Example 2-2 Spinning temperature is 200 ° C, heat retention area just below the nozzle is 40mm, single hole discharge is 2.7g / min, nozzle surface-cooling water distance is 26cm, conveyor net is not heated, surface temperature is 40 ° C, cooling water temperature
  • Example 2-3 B-2 is used as the thermoplastic elastomer, the spinning temperature is 180 ° C, the heat retention area just below the nozzle is 40 mm, the single hole discharge is 2.5 g / min, the nozzle surface-cooling water distance is 30 cm, the conveyor net is not heated
  • the apparent density is 0.055 g / cm 3
  • the flattened thickness is 39 mm
  • the 25% compression hardness is 150 N / ⁇ 200 mm
  • the 50% compression hardness is 298 N / ⁇ 200 mm
  • the 50% constant displacement cyclic compression residual strain is 9.6%
  • hardness retention at 50% compression after 50% constant displacement repeated compression is 98.3%
  • hardness retention at 25% compression after 50% constant displacement repeated compression is 68.3%
  • hysteresis low There was 28.0%.
  • Table 3 shows the characteristics of the obtained network structure.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability and high resilience.
  • Example 2-4 Spinning temperature is 190 ° C, heat retention area just below the nozzle is 30mm, single hole discharge is 2.1g / min, take-up speed is 1.0m / min, nozzle surface-cooling water distance is 31cm, conveyor net surface temperature is 60 ° C.
  • Example 2-5 Example 2 except that B-3 was used as the thermoplastic elastomer, the spinning temperature was 200 ° C., the heat retaining area immediately below the nozzle was 40 mm, the single hole discharge was 2.0 g / min, and the nozzle surface-cooling water distance was 29 cm.
  • Example 2-1 Obtained in the same manner as in Example 2-1, except that the heat retaining area directly under the nozzle was eliminated, the single hole discharge rate was 1.9 g / min, the nozzle surface-cooling water distance was 31 cm, and the opening width of the conveyor net was 38 mm.
  • the network structure is formed of filaments having a hollow cross section, a hollow ratio of 30%, and a fineness of 3300 dtex, an apparent density of 0.042 g / cm 3 , a flattened thickness of 38 mm, 25% compression hardness is 136 N / ⁇ 200 mm, 50% compression hardness is 271 N / ⁇ 200 mm, 50% constant displacement repeated compression residual strain is 12.1%, 50% compression hardness retention after 50% constant displacement repeated compression The hardness retention at the time of 25% compression after 52.3%, 50% constant displacement repeated compression was 58.8%, and the hysteresis loss was 38.1%. Table 3 shows the characteristics of the obtained network structure. The obtained network structure did not satisfy the requirements of the present invention, and was a network structure inferior in repeated compression durability and high resilience.
  • Comparative Example 2-2 The same as Comparative Example 2-1, except that B-2 was used as the thermoplastic elastomer, the single-hole discharge rate was 2.0 g / min, the take-off speed was 1.0 m / min, and the nozzle surface-cooling water distance was 28 cm.
  • the net-like structure thus obtained is formed of a filament having a hollow cross section, a hollow ratio of 31%, a fineness of 3500 dtex, an apparent density of 0.038 g / cm 3 , and a flattened thickness.
  • Example 3-1 The polyurethane elastomer is polymerized by adding 4.4'diphenylmethane diisocyanate (MDI), PTMG having a number average molecular weight of 1500 and 1,4-butanediol (1,4-BD) as a chain extender, Next, 2% of an antioxidant was added, mixed, kneaded, pelletized, and vacuum dried at 50 ° C. for 48 hours to obtain a thermoplastic elastic resin C-1 having a PTMG content of 38% and C-2 having a PTMG content of 64%.
  • MDI 4.4'diphenylmethane diisocyanate
  • PTMG having a number average molecular weight of 1500
  • 1,4-butanediol (1,4-BD) 1,4-butanediol
  • thermoplastic elastic resin C-1 had a PTMG content of 38% by weight and a melting point of 167 ° C.
  • C-2 had a PTMG content of 64% by weight and a melting point of 152 ° C.
  • the resulting polymer composition is shown in Table 4.
  • thermoplastic elastic resin C-1 was discharged at a spinning temperature of 220 ° C. at a single hole discharge rate of 2.7 g / min below the nozzle, passed through a heat retaining region 30 mm directly below the nozzle, and 26 cm below the nozzle surface.
  • Cooling water of 30 ° C is arranged, and a stainless steel endless net with a width of 150 cm is arranged in parallel with an opening width of 38 mm so that a part of the pair of take-out conveyors comes out on the water surface, and the conveyor net on the water surface is heated.
  • the surface temperature is 40 ° C.
  • the discharge line in the molten state is twisted to form a loop, and a contact portion is fused to form a three-dimensional network structure
  • the both sides of the melted mesh are sandwiched by a take-up conveyor and drawn into 30 ° C. cooling water at a speed of 1.4 m / minute to solidify both sides, flattened on both sides, cut to a predetermined size, and heated at 110 ° C.
  • the obtained network structure is formed of filaments having a hollow cross section, a hollow ratio of 30%, and a fineness of 3300 dtex, an apparent density of 0.035 g / cm 3 , and a surface with a flattened thickness.
  • 25% compression hardness is 140N / ⁇ 200mm
  • 50% compression hardness is 271N / ⁇ 200mm
  • repeated compression residual strain is 12.2%
  • 70 ° C compression residual strain is 14.2%
  • 50% constant displacement repeated compression The hardness retention rate after 50% compression is 92.5%, the hardness retention rate at 25% compression after 50% constant displacement repeated compression is 80.1%, and the hysteresis loss is 31.2%. It was a network structure excellent in high resilience. Table 5 shows the characteristics of the obtained network structure.
  • the obtained cushion was a network structure satisfying the requirements of the present invention and excellent in repeated compression durability and high resilience.
  • Example 3-2 Spinning temperature is 230 ° C, heat retention area just below the nozzle is 40mm, single hole discharge is 2.3g / min, take-up speed is 1.1m / min, nozzle surface-cooling water distance is 28cm, conveyor net surface temperature is 120 ° C
  • Example 3-3 Obtained in the same manner as in Example 3-1, except that the heat retaining area immediately below the nozzle was 40 mm, the single hole discharge rate was 2.2 g / min, the take-up speed was 0.9 m / min, and the nozzle surface-cooling water distance was 30 cm.
  • the net-like structure is formed of a filament having a hollow cross section, a hollow ratio of 31%, a fineness of 3000 dtex, an apparent density of 0.048 g / cm 3 , and a flattened thickness of 38 mm. 25% compression hardness 189 N / ⁇ 200 mm, 50% compression hardness 341 N / ⁇ 200 mm, 70 ° C.
  • the obtained cushion was a network structure satisfying the requirements of the present invention and excellent in repeated compression durability and high resilience.
  • Example 3-4 The same as Example 3-1, except that C-2 was used as the thermoplastic elastic resin, the heat retention area just below the nozzle was 40 mm, the single hole discharge rate was 2.8 g / min, and the nozzle surface-cooling water distance was 28 cm.
  • the net-like structure obtained in this way has a hollow cross section, a hollow ratio of 32%, a fineness of 3100 dtex, and an apparent density of 0.038 g / cm 3 and a flattened surface. 38 mm, 25% compression hardness 59 N / ⁇ 200 mm, 50% compression hardness 131 N / ⁇ 200 mm, 70 ° C.
  • Table 5 shows the characteristics of the obtained network structure.
  • the obtained cushion was a network structure satisfying the requirements of the present invention and excellent in repeated compression durability and high resilience.
  • Example 3-5 C-2 is used as a thermoplastic elastic resin, spinning temperature is 210 ° C., single hole discharge is 2.5 g / min, take-up speed is 1.2 m / min, nozzle surface-cooling water distance is 32 cm, conveyor net surface temperature
  • the net-like structure obtained in the same manner as in Example 3-1 was heated with an infrared heater to 80 ° C. and heated to a cooling water temperature of 80 ° C.
  • Example 3-1 Other than heating without heat insulation area directly under the nozzle, single-hole discharge rate of 1.9 g / min, take-off speed of 0.9 m / min, nozzle surface-cooling water distance of 30 cm, and cooling water temperature of 80 ° C.
  • the apparent density is 0.038 g / cm 3
  • the flattened thickness is 38 mm
  • the 25% compression hardness is 65 N / ⁇ 200 mm
  • the 50% compression hardness is 137 N / ⁇ 200 mm
  • the 70 ° C. compression residual strain Is 16.6%
  • 50% constant displacement repeated compression residual strain is 9.6%
  • 50% compression after 50% compression repeated compression 79.1% hardness retention
  • the rate is 70.4%
  • hysteresis loss was 37.2%.
  • Table 5 shows the characteristics of the obtained network structure.
  • the obtained cushion did not satisfy the requirements of the present invention, and was a network structure having poor repeated compression durability and high resilience.
  • a polyamide-based thermoplastic elastomer is obtained by obtaining a polyamide compound by a known method using ⁇ -lauryl lactam and adipic acid, then copolymerizing by a known method using PTMG having a number average molecular weight of 1000, and then antioxidant 1 % Was added and kneaded, pelletized, and vacuum dried at 50 ° C. for 48 hours to obtain a thermoplastic elastomer D-1 having a PTMG content of 35%.
  • Thermoplastic elastomer D-2 was polymerized in the same manner as D-1 using PTMG having a number average molecular weight of 2000 to obtain a thermoplastic elastomer having a PTMG content of 55%.
  • thermoplastic elastomer D-1 had a PTMG content of 35% by weight and a melting point of 159 ° C.
  • D-2 had a PTMG content of 55% by weight and a melting point of 140 ° C.
  • the resulting polymer composition is shown in Table 6.
  • the orifice shape is 2mm outside diameter, 1.6mm inside diameter, and the orifice that has a triple bridge hollow forming cross section is a staggered arrangement with a 5mm pitch between holes.
  • the obtained thermoplastic elastomer D-1 was discharged below the nozzle at a spinning temperature of 220 ° C. at a single hole discharge rate of 2.4 g / min, passed through a heat retaining region 30 mm directly below the nozzle, and 30 cm below the nozzle surface 28 cm.
  • a network structure was obtained by drying and heat treatment with hot air for 15 minutes.
  • the obtained network structure is formed of filaments having a hollow cross section, a hollow ratio of 31%, a fineness of 3600 dtex, an apparent density of 0.038 g / cm 3 , and a surface with a flattened thickness. 40mm, 25% compression hardness 233N / ⁇ 200mm, 50% compression hardness 402N / ⁇ 200mm, 50% constant displacement cyclic compression residual strain 9.1%, 70 ° C compression residual strain 12.2%, 50% The hardness retention at 50% compression after constant displacement repeated compression is 93.4%, the hardness retention at 25% compression after 50% constant displacement repeated compression is 82.2%, and the hysteresis loss is 30.8%.
  • the network structure was excellent in repeated compression durability and high resilience. Table 7 shows the properties of the obtained network structure.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability and high resilience.
  • Example 4-2 Spinning temperature is 230 ° C, heat retention area just below the nozzle is 40mm, single hole discharge is 2.1g / min, take-up speed is 1.0m / min, nozzle surface-cooling water distance is 30cm, conveyor net surface temperature is 120 ° C
  • Example 4-3 The network structure obtained in the same manner as in Example 4-1 except that D-2 was used as the thermoplastic elastomer, the single hole discharge rate was 2.5 g / min, and the nozzle surface-cooling water distance was 30 cm.
  • the shape is a hollow cross section with a hollow ratio of 32%, a fineness of 3400 dtex, and an apparent density of 0.040 g / cm 3 , a flattened thickness of 40 mm, and a 25% compression hardness.
  • Table 7 shows the properties of the obtained network structure.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability and high resilience.
  • Example 4-4 D-2 is used as the thermoplastic elastomer, the spinning temperature is 230 ° C, the heat retaining area immediately below the nozzle is 40 mm, the single hole discharge rate is 2.8 g / min, the take-up speed is 0.9 m / min, and the nozzle surface-cooling water distance
  • the net-like structure obtained in the same manner as in Example 4-1 was heated with an infrared heater so that the surface temperature of the conveyor net was 80 ° C. and the cooling water temperature was 80 ° C.
  • the cross-sectional shape is a hollow cross-section with a hollow ratio of 28%, a fineness of 3200 dtex, an apparent density of 0.060 g / cm 3 , a flattened thickness of 39 mm, and 25% hardness when compressed 182N / ⁇ 200mm, 50% compression hardness 344N / ⁇ 200mm, 70 ° C compression residual strain 12.0%, 50% constant displacement repeated compression residual strain 5.5%, 50% constant displacement repeated compression 50% -compression hardness retention 93.2 percent, 25% -compression hardness retention after 50% constant displacement repeated compression 80.6% hysteresis loss was 22.0%.
  • Table 7 shows the properties of the obtained network structure. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability and high resilience.
  • Example 4-1 Other than heating without heat insulation area just under the nozzle, single-hole discharge rate of 1.9 g / min, take-off speed of 0.8 m / min, nozzle surface-cooling water distance of 29 cm, and cooling water temperature of 80 ° C
  • Comparative Example 4-2 The network structure obtained in the same manner as in Comparative Example 4-1, except that D-2 was used as the thermoplastic elastomer and the cooling water temperature was set to 30 ° C. without overheating, and the cross-sectional shape was hollow and the hollow ratio was 33%. , Formed with a filament having a fineness of 3400 dtex, an apparent density of 0.048 g / cm 3 , a flattened surface thickness of 40 mm, a 25% compression hardness of 83 N / ⁇ 200 mm, and a 50% compression hardness of 192 N / ⁇ 200 mm, 70 ° C.
  • the network structure of the present invention has improved durability after repeated compression, which is a problem of conventional products, without impairing the comfortable sitting comfort and breathability that the network structure has conventionally had, and is used for a long time
  • Cushion materials used for seats for cars such as office chairs, furniture, sofas, beds, bedding, trains, automobiles, motorcycles, strollers, child seats, floor mats, collisions, etc. Since it is possible to provide a net-like structure suitable for a shock absorbing mat such as a pinching prevention member, it contributes greatly to the industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pediatric Medicine (AREA)
  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 解決しようとする課題は、繰返し圧縮残留歪みが小さく、繰返し圧縮後の硬度保持率が大きい、繰返し圧縮耐久性に優れた網状構造体を提供することである。 本発明は、ポリオレフィン系熱可塑性エラストマー、エチレン酢酸ビニル共重合体、ポリウレタン系熱可塑性エラストマー及びポリアミド系熱可塑性エラストマーからなる群から選ばれる少なくとも1種の熱可塑性弾性樹脂からなる繊度が100デシテックス以上60000デシテックス以下の連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめた三次元ランダムループ接合構造体であって、見かけ密度が0.005g/cm~0.20g/cmであり、50%定変位繰返し圧縮残留歪みが15%以下であり、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が85%以上である網状構造体である。

Description

圧縮耐久性に優れた網状構造体
 本発明は、繰返し圧縮耐久性に優れた、オフィスチェア、家具、ソファー、ベッド等寝具、電車・自動車・二輪車・ベビーカー・チャイルドシート等の車両用座席等に用いられるクッション材、フロアーマットや衝突や挟まれ防止部材等の衝撃吸収用のマット等に好適な網状構造体に関するものである。
 現在、家具、ベッド等寝具、電車・自動車・二輪車等の車両用座席に用いられるクッション材として、発泡-架橋型ウレタンが広く使われている。
 発泡-架橋型ウレタンはクッション材としての耐久性は良好だが、透湿透水性や通気性に劣り、蓄熱性があるため蒸れやすいという問題点がある。さらに、熱可塑性で無いためリサイクルが困難であり、そのため焼却処分される場合は焼却炉の損傷が大きくなったり、有毒ガス除去に経費が掛かるなどの問題点が指摘されている。そこで埋め立て処分されることが多いが、地盤の安定化が困難なため埋め立て場所が限定され、経費も高くなる問題点もある。また、加工性は優れるが製造中に使用される薬品の公害問題やフォーム後の残留薬品やそれに伴う臭気など種々の問題が指摘されている。
 特許文献1および2には、網状構造体が開示されている。これは、上述した発泡-架橋型ウレタンに由来する諸問題を解決でき、クッション性能にも優れているものである。しかし、繰返し圧縮耐久特性は、2万回繰返し圧縮残留歪みで20%以下と繰返し圧縮残留歪みに関しては性能が優れているものの、繰返し圧縮後の50%圧縮時硬度保持率は83%程度であり、繰返し使用後の硬度が低くなるという問題があった。
 従来は、繰返し圧縮残留歪みが小さければ耐久性能として十分と認識されていた。しかし、近年では、繰返し圧縮耐久性に対する要求が高まっており、繰返し圧縮使用後のクッション性能を確保する要求が高まりつつあった。しかしながら、従来の網状構造体では、繰返し圧縮残留歪みが小さく、かつ繰返し圧縮後の硬度保持率が大きいという耐久性能を併せ持つ網状構造体を得ることは困難であった。
 また、近年の消費者ニーズとして、クッション体の特性として低反発タイプだけでなく高反発タイプが望まれる場合が多くなりつつある。ポリオレフィン系熱可塑性エラストマーを用いて低反発クッションを製造する方法が特許文献3に開示されている。この製造方法において、良好な低反発特性を有する網状構造体を得ることが可能であるが、高反発特性に優れた網状構造体を製造することは困難であった。
特開平7-68061号公報 特開2004-244740号公報 特開2006-200118号公報
 本発明は、上記の従来技術の課題を背景になされたもので、繰返し圧縮残留歪みが小さく、繰返し圧縮後の硬度保持率が大きい、繰返し圧縮耐久性に優れた網状構造体を提供することを課題とするものである。
 本発明者らは、上記課題を解決するため鋭意研究した結果、遂に本発明を完成するに到った。すなわち、本発明は以下の通りである。
1.ポリオレフィン系熱可塑性エラストマー、エチレン酢酸ビニル共重合体、ポリウレタン系熱可塑性エラストマーおよびポリアミド系熱可塑性エラストマーからなる群から選ばれる少なくとも1種の熱可塑性弾性樹脂からなる繊度が100デシテックス以上60000デシテックス以下の連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめた三次元ランダムループ接合構造体であって、見かけ密度が0.005g/cm~0.20g/cmであり、50%定変位繰返し圧縮残留歪みが15%以下であり、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が85%以上である網状構造体。
2.ヒステリシスロスが35%以下である上記1に記載の網状構造体。
3.三次元ランダムループ接合構造体がポリオレフィン系熱可塑性エラストマーからなり、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が80%以上である上記1または2に記載の網状構造体。
4.三次元ランダムループ接合構造体がエチレン酢酸ビニル共重合体からなり、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が65%以上である上記1または2に記載の網状構造体。
5.三次元ランダムループ接合構造体がポリウレタン系熱可塑性エラストマーまたはポリアミド系熱可塑性エラストマーからなり、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が75%以上である上記1または2に記載の網状構造体。
6.網状構造体の厚みが10mm以上300mm以下である上記1~5のいずれかに記載の網状構造体。
7.網状構造体を構成する連続線状体の断面形状が中空断面および/または異型断面である上記1~6のいずれかに記載の網状構造体。
 本発明による網状構造体は、繰返し圧縮残留歪みが小さく、しかも繰返し圧縮後の硬度保持率が大きく、繰返し使用しても座り心地、寝心地が変化しにくい、繰返し圧縮耐久性優れた網状構造体である。さらには、高反発性にも優れた網状構造体である。この優れた繰返し圧縮耐久性や高反発性により、オフィスチェア、家具、ソファー、ベッド等寝具、電車・自動車・二輪車・ベビーカー・チャイルドシート等の車両用座席等に用いられるクッション材、フロアーマットや衝突や挟まれ防止部材等の衝撃吸収用のマット等に好適な網状構造体を提供することが可能となった。
網状構造体のヒステリシスロス測定における圧縮・除圧テストの模式的なグラフである。
 以下、本発明を詳細に説明する。
 本発明の網状構造体は、ポリオレフィン系熱可塑性エラストマー、エチレン酢酸ビニル共重合体、ポリウレタン系熱可塑性エラストマーおよびポリアミド系熱可塑性エラストマーからなる群から選ばれる少なくとも1種の熱可塑性弾性樹脂からなる繊度が100デシテックス以上60000デシテックス以下の連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめた三次元ランダムループ接合構造体であって、見かけ密度が0.005g/cm~0.20g/cmであり、50%定変位繰返し圧縮残留歪みが15%以下であり、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が85%以上である網状構造体である。
 本発明のポリオレフィン系熱可塑性エラストマーとしては、網状構造体を構成するポリマーは比重が0.94g/cm以下の低密度ポリエチレン樹脂であることが好ましく、特にエチレンと炭素数3以上のαオレフィンからなるエチレン・α-オレフィン共重合体樹脂からなることが好ましい。本発明のエチレン・α-オレフィン共重合体は、特開平6-293813号公報に記載されている共重合であることが好ましく、エチレンと炭素数3以上のα-オレフィンを共重合してなるものである。ここで、炭素数3以上のα-オレフィンとしては、例えばプロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチル-1-ペンテン、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、エイコセン-1などが挙げられ、好ましくはブテン-1、ペンテン-1、ヘキセン-1、4-メチル-1-ペンテン、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、エイコセン-1である。また、これら2種類以上を用いることもでき、これらα-オレフィンは通常1~40重量%共重合される。この共重合体は、特定のメタロセン化合物と有機金属化合物を基本構成とする触媒系を用いてエチレンとα-オレフィンを共重合することによって得ることができる。
 必要に応じて、上記方法によって重合された二種類以上のポリマーや、水素添加ポリブタジエンや水素添加ポリイソプレンなどのポリマーをブレンドすることができる。改質剤として、酸化防止剤、耐侯剤、難燃剤などを必要に応じて添加することができる。
 本発明のポリオレフィン系熱可塑性エラストマーは、比重が0.94g/cmを越えると、クッション材が硬くなりやすく好ましくない。より好ましくは0.935g/cm以下であり、さらには0.93g/cm以下が好ましい。下限は特に限定するものではないが、強度保持の観点から0.8g/cm以上が好ましく、0.85g/cm以上がより好ましい。
 本発明の繰返し圧縮耐久性に優れた網状構造体を構成するポリオレフィン系熱可塑性エラストマーからなる成分は、示差走査型熱量計にて測定した融解曲線において、融点以下に吸熱ピークを有することが好ましい。融点以下に吸熱ピークを有するものは、耐熱耐へたり性が吸熱ピークを有しないものより著しく向上する。例えば、本発明の好ましいポリオレフィン系熱可塑性エラストマーとして、メタロセン化合物を触媒として、ヘキサン、ヘキセン、エチレンを公知の方法で重合し、得られたエチレン・α-オレフィン共重合体の場合、主鎖の分岐数を少なくするとハードセグメントの結晶性が向上し、塑性変形しにくく、かつ、耐熱耐へたり性が向上するが、溶融熱接着後さらに融点より少なくとも10℃以上低い温度でアニーリング処理するとより耐熱耐へたり性が向上する。アニーリング処理は、融点より少なくとも10℃以上低い温度でサンプルを熱処理することができれば良いが、圧縮歪みを付与することでさらに耐熱耐へたり性が向上する。このような処理をしたクッション層を示差走査型熱量計で測定した融解曲線に室温以上融点以下の温度で吸熱ピークをより明確に発現する。なおアニーリングしない場合は融解曲線に室温以上融点以下に吸熱ピークを明確に発現しない。このことから類推すると、アニーリングによってハードセグメントが再配列された準安定中間相を形成し、耐熱耐へたり性が向上しているのではないかと考えられる。本発明における耐へたり性向上効果の活用方法としては、クッションや敷きマット等、比較的繰り返し圧縮される使用用途において、耐久性を向上させるために有用である。
 本発明のエチレン酢酸ビニル共重合体として、網状構造体を構成するポリマーは比重が0.91~0.965が好ましい。比重は、酢酸ビニル含有率によって変化し、酢酸ビニルの含有率は1~35%が好ましい。酢酸ビニル含有率が小さいとゴム弾性に乏しくなる恐れがあり、そういった観点から酢酸ビニル含有率は1%以上が好ましく、2%以上がより好ましく、3%以上がさらに好ましい。酢酸ビニル含有率が大きくなるとゴム弾性には優れるが、融点が低下し耐熱性に乏しくなる恐れがあるため、酢酸ビニル含有率は35%以下が好ましく、30%以下がより好ましく、26%以下がさらに好ましい。
 本発明のエチレン酢酸ビニル共重合体は、炭素数3以上のα-オレフィンを共重合することもできる。ここで、炭素数3以上のα-オレフィンとしては、例えばプロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチル-1-ペンテン、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、エイコセン-1などが挙げられ、好ましくはブテン-1、ペンテン-1、ヘキセン-1、4-メチル-1-ペンテン、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、エイコセン-1である。また、これら2種類以上を用いることもできる。
 必要に応じて、上記方法によって重合された二種類以上のポリマーや、水素添加ポリブタジエンや水素添加ポリイソプレンなどのポリマー改質剤をブレンドすることができる。改質剤として、滑剤、酸化防止剤、耐侯剤、難燃剤などを必要に応じて添加することができる。
 本発明の繰返し圧縮耐久性に優れた網状構造体を構成するエチレン酢酸ビニル共重合体からなる成分は、示差走査型熱量計にて測定した融解曲線において、融点以下に吸熱ピークを有することが好ましい。融点以下に吸熱ピークを有するものは、耐熱耐へたり性が吸熱ピークを有しないものより著しく向上する。例えば、本発明の好ましいエチレン酢酸ビニル共重合体は、酢酸ビニル含有比率は35%以下が好ましく、30%以下がより好ましく、26%以下がさらに好ましい。酢酸ビニル含有比率を少なくするとハードセグメントの結晶性が向上し、塑性変形しにくく、かつ、耐熱耐へたり性が向上する。溶融熱接着後さらに融点より少なくとも10℃以上低い温度でアニーリング処理するとより耐熱耐へたり性が向上する。アニーリング処理は、融点より少なくとも10℃以上低い温度でサンプルを熱処理することができれば良いが、圧縮歪みを付与することでさらに耐熱耐へたり性が向上する。このような処理をしたクッション層を示差走査型熱量計で測定した融解曲線に室温以上融点以下の温度で吸熱ピークをより明確に発現する。なおアニーリングしない場合は融解曲線に室温以上融点以下に吸熱ピークを明確に発現しない。このことから類推すると、アニーリングによってハードセグメントが再配列された準安定中間相を形成し、耐熱耐へたり性が向上しているのではないかと考えられる。本発明における耐へたり性向上効果の活用方法としては、クッションや敷きマット等、比較的繰り返し圧縮される使用用途において、耐久性を向上させるために有用である。また、耐へたり性向上のためには、酢酸ビニル共重合体の分子量を上げることも効果的である。
 本発明のポリウレタン系熱可塑性エラストマーとしては、通常の溶媒(ジメチルホルムアミド、ジメチルアセトアミド等)の存在または非存在下に、(A)数平均分子量1000~6000の末端に水酸基を有するポリエ-テル及び又はポリエステルと(B)有機ジイソシアネ-トを主成分とするポリイソシアネ-トを反応させた両末端がイソシアネ-ト基であるプレポリマ-に、(C)ジアミンを主成分とするポリアミンにより鎖延長したポリウレタンエラストマ-を代表例として例示できる。(A)のポリエステル、ポリエ-テル類としては、数平均分子量が約1000~6000、好ましくは1300~5000のポリブチレンアジペ-ト共重合ポリエステルやポリエチレングリコ-ル、ポリプロピレングリコ-ル、ポリテトラメチレングリコ-ル、エチレンオキシド-プロピレンオキシド共重合体からなるグリコ-ル等のポリアルキレンジオ-ルが好ましく、(B)のポリイソシアネ-トとしては、従来公知のポリイソシアネ-トを用いることができるが、ジフェニルメタン4,4’-ジイソシアネ-トを主体としたイソシアネ-トを用い、必要に応じ従来公知のトリイソシアネ-ト等を微量添加使用してもよい。(C)のポリアミンとしては、エチレンジアミン、1,2-プロピレンジアミン等公知のジアミンを主体とし、必要に応じて微量のトリアミン、テトラアミンを併用してもよい。これらのポリウレタン系熱可塑性エラストマーは単独又は2種類以上混合して用いてもよい。
 なお、本発明のポリウレタン系熱可塑性エラストマーの融点は、耐熱耐久性が保持できる140℃以上が好ましく、150℃以上のものを用いると耐熱耐久性が向上するのでより好ましい。なお、必要に応じ、酸化防止剤や耐光剤等を添加して耐久性を向上させることができる。また、耐熱耐久性や耐へたり性を向上させるために、ポリウレタン系熱可塑性エラストマーの分子量を上げることも効果的である。
 また、上記のポリウレタン系熱可塑性エラストマーに非エラストマー成分をブレンドしたもの、共重合したもの、ポリオレフィン系成分をソフトセグメントにしたもの等も本発明のポリウレタン系熱可塑性エラストマーに包含される。さらに、ポリウレタン系熱可塑性エラストマーに各種添加剤等を必要に応じ添加したものも包含される。
 本発明の目的である網状構造体の高反発性や適度な硬度および繰返し圧縮耐久性を実現するために、ポリウレタン系熱可塑性エラストマーのソフトセグメント含有量は好ましくは15重量%以上、より好ましくは25重量%以上であり、さらに好ましくは30重量%以上であり、最も好ましくは40重量%以上であり、硬度確保と耐熱耐へたり性からは好ましくは80重量%以下である、より好ましくは70重量%以下である。
 本発明の繰返し圧縮耐久性に優れた網状構造体を構成するポリウレタン系熱可塑性エラストマーからなる成分は、示差走査型熱量計にて測定した融解曲線において、融点以下に吸熱ピークを有することが好ましい。融点以下に吸熱ピークを有するものは、耐熱耐へたり性が吸熱ピークを有しないものより著しく向上する。例えば、本発明の好ましいポリウレタン系熱可塑性エラストマーとして、ハードセグメントの酸成分に剛直性のあるテレフタル酸やナフタレン2,6-ジカルボン酸などを90モル%以上含有するもの、より好ましくはテレフタル酸やナフタレン2,6-ジカルボン酸の含有量は95モル%以上、さらに好ましくは100モル%とグリコール成分をエステル交換後、必要な重合度まで重合し、次いで、ポリアルキレンジオールとして、好ましくは平均分子量が500以上5000以下、より好ましくは700以上3000以下、さらに好ましくは800以上1800以下のポリテトラメチレングリコールを好ましくは15重量%以上80重量%以下、より好ましくは25重量%以上70重量%以下、さらに好ましくは30重量%以上70重量%以下、最も好ましくは40重量%以上70重量%以下を共重合量させた場合、ハードセグメントの酸成分に剛直性のあるテレフタル酸やナフタレン2,6-ジカルボン酸の含有量が多いとハードセグメントの結晶性が向上し、塑性変形しにくく、かつ、耐熱耐へたり性が向上するが、溶融熱接着後さらに融点より少なくとも10℃以上低い温度でアニーリング処理するとより耐熱耐へたり性が向上する。アニーリング処理は、融点より少なくとも10℃以上低い温度でサンプルを熱処理することができれば良いが、圧縮歪みを付与することでさらに耐熱耐へたり性が向上する。このような処理をしたクッション層を示差走査型熱量計で測定した融解曲線に室温以上融点以下の温度で吸熱ピークをより明確に発現する。なおアニーリングしない場合は融解曲線に室温以上融点以下に吸熱ピークを明確に発現しない。このことから類推すると、アニーリングによってハードセグメントが再配列された準安定中間相を形成し、耐熱耐へたり性が向上しているのではないかと考えられる。本発明における耐熱性向上効果の活用方法としては、ヒーターが用いられる車両用のクッションや床暖房された床の敷きマット等、比較的高温になり得る用途において、耐へたり性が良好となるため有用である。
 本発明のポリアミド系熱可塑性エラストマーとしては、ポリアミドをハードセグメントとし、ポリオールをソフトセグメントとし、両者を共重合したものなどが挙げられる。ハードセグメントのポリアミド化合物は、ラクタム化合物とジカルボン酸もしくは、ジアミンとジカルボン酸などの反応物から得られたポリアミドオリゴマーのうち少なくとも1種以上が挙げられる。ソフトセグメントは、ポリエーテルポリオールやポリエステルポリオール、ポリカーボネートポリオールなどのうち少なくとも1種以上が挙げられる。
 ラクタム化合物として、γ-ブチロラクタム、ε-カプロラクタム、ω-ヘプタラクタム、ω-ウンデカラクタム、ω-ラウリルラクタムなどの炭素数5~20の脂肪族ラクタムのうち少なくとも1種以上が挙げられる。
 ジカルボン酸として、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの炭素数2~20の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、オルトフタル酸などの芳香族ジカルボン酸、などのジカルボン酸化合物のうち少なくとも1種以上が挙げられる。
 ジアミンとして、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカンメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミンなどの脂肪族ジアミン、またはメタキシレンジアミンなどの芳香族ジアミンのうち少なくとも1種以上が挙げられる。
 ポリエーテルポリオールとして、数平均分子量が約300~5000のポリエチレングリコ-ル、ポリプロピレングリコ-ル、ポリテトラメチレングリコ-ル、エチレンオキシド-プロピレンオキシド共重合体からなるグリコ-ル等のポリアルキレンジオ-ルのうち少なくとも1種以上が挙げられる。
 ポリカーボネートジオールは、低分子ジオールとカーボネート化合物の反応物であり、数平均分子量が約300~5000のものが挙げられる。低分子ジオールとして、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチルー1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオールなどの脂肪族ジオール、シクロヘキサンジメタノール、シクロヘキサンジオールなどの脂環式ジオールのうち少なくとも1種以上の低分子ジオールが挙げられる。カーボネート化合物として、ジアルキルカーボネート、アルキレンカーボネート、ジアリールカーボネートなどのうち少なくとも1種以上が挙げられる。
 ポリエステルポリオールとして、数平均分子量が約300~5000のポリラクトン等のポリエステルジオールのうち少なくとも1種以上が挙げられる。上記のブロック共重合体を単独または2種類以上混合して用いてもよい。
 さらには、非エラストマー成分をブレンドしたもの、共重合したもの等も本発明に使用できる。
 なお、本発明のポリアミド系熱可塑性エラストマーの融点は、耐熱耐久性が保持できる120℃以上が好ましく、130℃以上のものを用いると耐熱耐久性が向上するのでより好ましい。なお、必要に応じ、酸化防止剤や耐光剤等を添加して耐久性を向上させることができる。また、耐熱耐久性や耐へたり性を向上させるために、ポリアミド系熱可塑性エラストマーの分子量を上げることも効果的である。
 また、上記のポリアミド系熱可塑性エラストマーに非エラストマー成分をブレンドしたもの、共重合したもの、ポリオレフィン系成分をソフトセグメントにしたもの等も本発明のポリアミド系熱可塑性エラストマーに包含される。さらに、ポリアミド系熱可塑性エラストマーに各種添加剤等を必要に応じ添加したものも包含される。
 本発明の目的である網状構造体のクッション性と耐久性を実現するために、ポリアミド系熱可塑性エラストマーのソフトセグメント含有量は好ましくは5重量%以上、より好ましくは10重量%以上であり、さらに好ましくは15重量%以上であり、最も好ましくは20重量%以上であり、硬度確保と耐熱耐へたり性からは好ましくは80重量%以下、より好ましくは70重量%以下である。
 本発明の繰返し圧縮耐久性に優れた網状構造体を構成するポリアミド系熱可塑性エラストマーからなる成分は、示差走査型熱量計にて測定した融解曲線において、融点以下に吸熱ピークを有することが好ましい。融点以下に吸熱ピークを有するものは、耐熱耐へたり性が吸熱ピークを有しないものより著しく向上する。例えば、本発明の好ましいポリアミド系熱可塑性エラストマーとして、ハードセグメントにポリアミド6やポリアミド11、ポリアミド12などを90モル%以上含有するもの、より好ましくは95モル%以上、特に好ましくは100モル%、グリコール成分をエステル交換後、必要な重合度まで重合し、次いで、ポリアルキレンジオールとして、好ましくは平均分子量が500以上5000以下、より好ましくは700以上3000以下、さらに好ましくは800以上2000以下のポリテトラメチレングリコールを5重量%以上80重量%以下、より好ましくは10重量%以上70重量%以下、さらに好ましくは15重量%以上70重量%以下、よりさらに好ましくは20重量%以上70重量%以下を共重合量させた場合、ハードセグメントの結晶性が向上し、塑性変形しにくく、かつ、耐熱耐へたり性が向上するが、溶融熱接着後さらに融点より少なくとも10℃以上低い温度でアニーリング処理するとより耐熱耐へたり性が向上する。アニーリング処理は、融点より少なくとも10℃以上低い温度でサンプルを熱処理することができれば良いが、圧縮歪みを付与することでさらに耐熱耐へたり性が向上する。このような処理をしたクッション層を示差走査型熱量計で測定した融解曲線に室温以上融点以下の温度で吸熱ピークをより明確に発現する。なおアニーリングしない場合は融解曲線に室温以上融点以下に吸熱ピークを明確に発現しない。このことから類推すると、アニーリングによってハードセグメントが再配列された準安定中間相を形成し、耐熱耐へたり性が向上しているのではないかと考えられる。本発明における耐熱性向上効果の活用方法としては、ヒーターが用いられる車両用のクッションや床暖房された床の敷きマット等、比較的高温になり得る用途において、耐へたり性が良好となるため有用である。
 本発明の網状構造体を構成する連続線状体の繊度は、繊度が小さいとクッション材として使用する際に必要な硬度が保てなくなり、逆に繊度が大きすぎると硬くなり過ぎてしまうため、適正な範囲に設定する必要がある。繊度は100デシテックス以上であり、好ましくは300デシテックス以上である。繊度が100デシテックス未満だと細すぎてしまい、緻密性やソフトな触感は良好となるが網状構造体として必要な硬度を確保することが困難である。また、繊度は60000デシテックス以下であり、好ましくは50000デシテックス以下である。繊度が60000デシテックスを超えると網状構造体の硬度は十分に確保できるが、網状構造が粗くなり、他のクッション性能が劣る場合がある。
 本発明の網状構造体の見かけ密度は、0.005g/cm~0.20g/cmであり、好ましくは0.01g/cm~0.18g/cm、より好ましくは0.02g/cm~0.15g/cmの範囲である。見かけ密度が0.005g/cmより小さいとクッション材として使用する際に必要な硬度が保てなくなり、逆に0.20g/cmを越えると硬くなり過ぎてしまいクッション材に不適なものとなる場合がある。
 本発明の網状構造体のヒステリシスロスは、35%以下が好ましく、34%以下がよりに好ましく、33%以下がさらに好ましく、30%以下が最も好ましい。ヒステリシスロスが35%を超えると座った際に高反発性を感じにくい場合があり、高反発性クッションとしての性能が不十分となり好ましくない。ヒステリシスロスの下限値は特に規定しないが、本発明で得られる網状構造体においては、1%以上が好ましく、5%以上がより好ましい。ヒステリシスロスが1%より小さいと高反発過ぎてクッション性が低下するため、1%以上が好ましく、5%以上がより好ましい。
 本発明の網状構造体の厚みは、好ましくは10mm以上であり、より好ましくは20mm以上である。厚みが10mm未満ではクッション材に使用すると薄すぎてしまい底付き感が出てしまう場合がある。厚みの上限は製造装置の関係から、好ましくは300mm以下であり、より好ましくは200mm以下、さらに好ましくは120mm以下である。
 本発明の網状構造体がポリウレタン系熱可塑性エラストマーまたはポリアミド系熱可塑性エラストマーからなる時は、70℃圧縮残留歪が35%以下であることが好ましい。70℃圧縮残留歪が35%を超えるものにあっては、目的とするクッション材に使用する網状構造体としての特性が満たされない。70℃圧縮残留歪の下限値は特に規定しないが、本発明で得られる網状構造体においては1%以上である。
 本発明の網状構造体の50%定変位繰返し圧縮残留歪みは、15%以下であり、好ましくは10%以下である。50%定変位繰返し圧縮残留歪みが15%を超えると、長期間使用すると厚みが低下してしまい、クッション材として好ましくない。なお、50%定変位繰返し圧縮残留歪みの下限値は特に規定しないが、本発明で得られる網状構造体においては、1%以上である。
 本発明の網状構造体の50%圧縮時硬度は、10N/φ200以上1000N/φ200以下が好ましい。50%圧縮時硬度が10N/φ200未満では底付き感を感じる場合がある。また、1000N/φ200を超えると硬すぎてクッション性を損なう場合がある。
 本発明の網状構造体の25%圧縮時硬度は、5N/φ200以上500N/φ200以下が好ましい。25%圧縮時硬度が5N/φ200未満では柔らかすぎてクッション性能が不十分となる場合がある。また、500N/φ200を超えると硬すぎてクッション性を損なう場合がある。
 本発明の網状構造体の50%定変位繰返し圧縮後の50%圧縮時硬度保持率は、85%以上であり、好ましくは88%以上であり、より好ましくは90%以上である。50%定変位繰返し圧縮後の50%圧縮時硬度保持率が85%未満では、長時間使用により、クッション材の硬さが低下してしまい、底付き感が出る場合がある。50%定変位繰返し圧縮後の50%圧縮時硬度保持率の上限値は特に規定しないが、本発明で得られる網状構造体においては、120%以下が好ましく、115%以下がより好ましく、110%以下が最も好ましい。50%圧縮時硬度保持率が100%を超える場合があるのは、繰返し圧縮により網状構造体の厚みが低下し、繰返し圧縮後の網状構造体の見かけ密度が上昇することで、網状構造体の硬度が上昇する場合があるためである。繰返し圧縮によって硬度が上昇すると、クッション性が変化するため、120%以下が好ましく、115%以下がより好ましく、110%以下が最も好ましい。
 本発明の網状構造体がポリエチレン系熱可塑性エラストマーからなる時の50%定変位繰返し圧縮後の25%圧縮時硬度保持率は、80%以上が好ましく、82%以上がより好ましく、83%以上がさらに好ましく、85%以上が最も好ましい。50%定変位繰返し圧縮後の25%圧縮時硬度保持率が80%未満では、長時間使用により、クッション材の硬さが低下してしまい、座り心地の変化に繋がる場合がある。50%定変位繰返し圧縮後の25%圧縮時硬度保持率の上限値は特に規定しないが、本発明で得られる網状構造体においては、120%以下が好ましく、110%以下がより好ましい。25%圧縮時硬度保持率が100%を超える場合があるのは、繰返し圧縮により網状構造体の厚みが低下し、繰返し圧縮後の網状構造体の見かけ密度が上昇することで、網状構造体の硬度が上昇する場合があるためである。繰返し圧縮によって硬度が上昇すると、クッション性が変化するため、120%以下が好ましく、110%以下がより好ましい。
 本発明の網状構造体がポリエチレン系熱可塑性エラストマーからなる時は、前記50%定変位繰返し圧縮後の50%圧縮時硬度保持率が85%以上、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が80%以上となる特性を有している。硬度保持率を上記範囲にすることで、長期間使用後の網状構造体の硬度変化が小さく、座り心地、寝心地の変化が少ない、長期間の使用が可能な網状構造体がはじめて得られる。これまで知られていた50%定変位繰返し圧縮歪みの小さい網状構造体と本発明の網状構造体との違いは、本発明の網状構造体では、網状構造体を構成する連続線状体同士の融着を強固なものとし、連続線状体同士の接点強度を強くしたことである。網状構造体を構成する連続線状体同士の接点強度を強くすることにより、網状構造体の50%定変位繰返し圧縮後の硬度保持率を向上することができたものである。すなわち、これまで知られていた網状構造体は50%定変位繰返し圧縮により、網状構造体を構成する連続線状体同士の多くの接点が繰返し圧縮により破壊されていたが、本発明の網状構造体は接点の破壊を従来のものに比べ減少することができたためと考えられる。
 一方、50%定変位繰返し圧縮歪みにおいては、繰返し圧縮後の網状構造体の接点が破壊されていたとしても、連続線状体を構成するポリオレフィン系熱可塑性エラストマーの弾性により、厚みが回復していたため、圧縮歪みは小さいものとなっていたと考えられ、本発明の網状構造体と大差のない50%定変位繰返し圧縮歪みとなっていたと考えられる。
 本発明の網状構造体がエチレン酢酸ビニル共重合体からなる時の50%定変位繰返し圧縮後の25%圧縮時硬度保持率は、65%以上が好ましく、68%以上がより好ましく、70%以上がさらに好ましく、75%以上が最も好ましい。50%定変位繰返し圧縮後の25%圧縮時硬度保持率が65%未満では、長時間使用により、クッション材の硬さが低下してしまい、座り心地の変化に繋がる場合がある。50%定変位繰返し圧縮後の25%圧縮時硬度保持率の上限値は特に規定しないが、本発明で得られる網状構造体においては、120%以下が好ましく、110%以下がより好ましい。25%圧縮時硬度保持率が100%を超える場合があるのは、繰返し圧縮により網状構造体の厚みが低下し、繰返し圧縮後の網状構造体の見掛け密度が上昇することで、網状構造体の硬度が上昇する場合があるためである。繰返し圧縮によって硬度が上昇すると、クッション性が変化するため、120%以下が好ましく、110%以下がより好ましい。
 本発明の網状構造体がエチレン酢酸ビニル共重合体からなる時は、前記50%定変位繰返し圧縮後の50%圧縮時硬度保持率が85%以上、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が65%以上となる特性を有している。硬度保持率を上記範囲にすることで、長期間使用後の網状構造体の硬度変化が小さく、座り心地、寝心地の変化が少ない、長期間の使用が可能な網状構造体がはじめて得られる。これまで知られていた50%定変位繰返し圧縮歪みの小さい網状構造体と本発明の網状構造体との違いは、本発明の網状構造体では、網状構造体を構成する連続線状体同士の融着を強固なものとし、連続線状体同士の接点強度を強くしたことである。網状構造体を構成する連続線状体同士の接点強度を強くすることにより、網状構造体の50%定変位繰返し圧縮後の硬度保持率を向上することができたものである。すなわち、これまで知られていた網状構造体は50%定変位繰返し圧縮により、網状構造体を構成する連続線状体同士の多くの接点が繰返し圧縮により破壊されていたが、本発明の網状構造体は接点の破壊を従来のものに比べ減少することができたためと考えられる。
 一方、50%定変位繰返し圧縮歪みにおいては、繰返し圧縮後の網状構造体の接点が破壊されていたとしても、連続線状体を構成するエチレン酢酸ビニル共重合体の弾性により、厚みが回復していたため、圧縮歪みは小さいものとなっていたと考えられ、本発明の網状構造体と大差のない50%定変位繰返し圧縮歪みとなっていたと考えられる。
 本発明の網状構造体がポリウレタン系熱可塑性エラストマーからなる時の50%定変位繰返し圧縮後の25%圧縮時硬度保持率は、75%以上が好ましく、78%以上がより好ましく、80%以上がさらに好ましく、85%以上が最も好ましい。50%定変位繰返し圧縮後の25%圧縮時硬度保持率が75%未満では、長時間使用により、クッション材の硬さが低下してしまい、座り心地の変化に繋がる場合がある。50%定変位繰返し圧縮後の25%圧縮時硬度保持率の上限値は特に規定しないが、本発明で得られる網状構造体においては、120%以下が好ましく、110%以下がより好ましい。25%圧縮時硬度保持率が100%を超える場合があるのは、繰返し圧縮により網状構造体の厚みが低下し、繰返し圧縮後の網状構造体の見かけ密度が上昇することで、網状構造体の硬度が上昇する場合があるためである。繰返し圧縮によって硬度が上昇すると、クッション性が変化するため、120%以下が好ましく、110%以下がより好ましい。
 本発明の網状構造体がポリウレタン系熱可塑性エラストマーからなる時は、前記50%定変位繰返し圧縮後の50%圧縮時硬度保持率が85%以上、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が75%以上となる特性を有している。硬度保持率を上記範囲にすることで、長期間使用後の網状構造体の硬度変化が小さく、座り心地、寝心地の変化が少ない、長期間の使用が可能な網状構造体がはじめて得られる。これまで知られていた50%定変位繰返し圧縮歪みの小さい網状構造体と本発明の網状構造体との違いは、本発明の網状構造体では、網状構造体を構成する連続線状体同士の融着を強固なものとし、連続線状体同士の接点強度を強くしたことである。網状構造体を構成する連続線状体同士の接点強度を強くすることにより、網状構造体の50%定変位繰返し圧縮後の硬度保持率を向上することができたものである。すなわち、これまで知られていた網状構造体は50%定変位繰返し圧縮により、網状構造体を構成する連続線状体同士の多くの接点が繰返し圧縮により破壊されていたが、本発明の網状構造体は接点の破壊を従来のものに比べ減少することができたためと考えられる。
 一方、50%定変位繰返し圧縮歪みにおいては、繰返し圧縮後の網状構造体の接点が破壊されていたとしても、連続線状体を構成するポリウレタン系熱可塑性エラストマーの弾性により、厚みが回復していたため、圧縮歪みは小さいものとなっていたと考えられ、本発明の網状構造体と大差のない50%定変位繰返し圧縮歪みとなっていたと考えられる。
 本発明の網状構造体がポリアミド系熱可塑性エラストマーからなる時の50%定変位繰返し圧縮後の25%圧縮時硬度保持率は、75%以上が好ましく、より好ましくは78%以上であり、さらに好ましくは80%以上であり、最も好ましくは85%以上である。50%定変位繰返し圧縮後の25%圧縮時硬度保持率が75%未満では、長時間使用により、クッション材の硬さが低下してしまい、座り心地の変化に繋がる場合がある。50%定変位繰返し圧縮後の25%圧縮時硬度保持率の上限値は特に規定しないが、本発明で得られる網状構造体においては、120%以下が好ましく、115%以下がより好ましく、110%以下がさらに好ましい。25%圧縮時硬度保持率が100%を超える場合があるのは、繰返し圧縮により網状構造体の厚みが低下し、繰返し圧縮後の網状構造体の見掛け密度が上昇することで、網状構造体の硬度が上昇する場合があるためである。繰返し圧縮によって硬度が上昇すると、クッション性が変化するため、120%以下が好ましく、115%以下がより好ましく、110%以下がさらに好ましい。
 本発明の網状構造体構造体がポリアミド系熱可塑性エラストマーからなる時は、前記50%定変位繰返し圧縮後の50%圧縮時硬度保持率が85%以上、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が75%以上となる特性を有している。硬度保持率を上記範囲にすることで、長期間使用後の網状構造体の硬度変化が小さく、座り心地、寝心地の変化が少ない、長期間の使用が可能な網状構造体がはじめて得られる。これまで知られていた50%定変位繰返し圧縮歪みの小さい網状構造体と本発明の網状構造体との違いは、本発明の網状構造体では、網状構造体を構成する連続線状体同士の融着を強固なものとし、連続線状体同士の接点強度を強くしたことである。網状構造体を構成する連続線状体同士の接点強度を強くすることにより、網状構造体の50%定変位繰返し圧縮後の硬度保持率を向上することができたものである。すなわち、これまで知られていた網状構造体は50%定変位繰返し圧縮により、網状構造体を構成する連続線状体同士の多くの接点が繰返し圧縮により破壊されていたが、本発明の網状構造体は接点の破壊を従来のものに比べ減少することができたためと考えられる。
 一方、50%定変位繰返し圧縮歪みにおいては、繰返し圧縮後の網状構造体の接点が破壊されていたとしても、連続線状体を構成するポリアミド系熱可塑性エラストマーの弾性により、厚みが回復していたため、圧縮歪みは小さいものとなっていたと考えられ、本発明の網状構造体と大差のない50%定変位繰返し圧縮歪みとなっていたと考えられる。
 また、本発明の網状構造体は、ヒステリシスロスが35%以下となる特性を有している。ヒステリシスロスを上記範囲にすることで、高反発性の座り心地や寝心地を有する網状構造体がはじめて得られる。本発明の網状構造体では、網状構造体を構成する連続線状体同士の融着を強固なものとし、連続線状体同士の接点強度を強くしたことである。接点強度を上げることとヒステリシスロスが小さくなるメカニズムは複雑であり、全てが明らかになっている訳では無いが、下記のように考えられる。
 網状構造体を構成する連続線状体同士の接点強度を強くすることにより、網状体が圧縮される際に接点破壊が起こりにくくなる。次に、圧縮状態から応力が開放されて変形状態から回復する時に各接点が破壊されずに維持されていることで変形状態からの回復が速くなりヒステリシスロスが小さくなったものと考える。すなわち、これまで知られていた網状構造体は所定の予備圧縮や二回目の圧縮により、網状構造体を構成する連続線状体同士の多くの接点が破壊されていたが、本発明の網状構造体は接点の破壊を従来のものに比べ減少することができ、維持された接点がポリマー本来のゴム弾性をより活かすことができるようになったためと考えられる。
 50%定変位繰返し圧縮後の硬度保持率の高い本発明の網状構造体は、例えば次のようにして得られる。網状構造体は特開平7-68061号公報等に記載された公知の方法に基づき得られる。例えば、複数のオリフィスを持つ多列ノズルよりポリオレフィン系熱可塑性エラストマー、エチレン酢酸ビニル共重合体、ポリウレタン系熱可塑性エラストマーおよびポリアミド系熱可塑性エラストマーからなる群から選ばれる少なくとも1種の熱可塑性弾性樹脂をノズルオリフィスに分配し、該熱可塑性弾性樹脂の融点より20℃以上150℃未満高い紡糸温度で、該ノズルより下方に向け吐出させ、溶融状態で互いに連続線状体を接触させて融着させ3次元構造を形成しつつ、引取りコンベアネットで挟み込み、冷却槽中の冷却水で冷却せしめた後、引出し、水切り後または乾燥して、両面または片面が平滑化した網状構造体を得る。片面のみを平滑化させる場合は、傾斜を持つ引取ネット上に吐出させて、溶融状態で互いに接触させて融着させ3次元構造を形成しつつ引取ネット面のみ形態を緩和させつつ冷却すると良い。得られた網状構造体をアニーリング処理することもできる。なお、網状構造体の乾燥処理をアニーリング処理としても良い。
 本発明の網状構造体を得るためには、得られる網状構造体の連続線状体同士の融着を強固なものとし、連続線状体同士の接点強度を強くすることが必要である。網状構造体を構成する連続線状体同士の接点強度を強くすることにより、結果として、網状構造体の繰返し圧縮耐久性を向上することができる。
 接点強度を強くした網状構造体を得る手段の1つとしては、例えばポリオレフィン系熱可塑性エラストマー、エチレン酢酸ビニル共重合体、ポリウレタン系熱可塑性エラストマーおよびポリアミド系熱可塑性エラストマーからなる群から選ばれる少なくとも1種の熱可塑性弾性樹脂を紡出する際に、ノズル下に保温領域を設けることが挙げられる。ポリオレフィン系熱可塑性エラストマー、エチレン酢酸ビニル共重合体、ポリウレタン系熱可塑性エラストマーおよびポリアミド系熱可塑性エラストマーからなる群から選ばれる少なくとも1種の熱可塑性弾性樹脂の紡糸温度を高くすることも考えられるが、ポリマーの熱劣化を防ぐ観点から、ノズル下に保温領域を設ける手段が好ましい。ノズル下の保温領域の長さは、好ましくは20mm以上、より好ましくは35mm以上、さらに好ましくは50mm以上である。保温領域の長さの上限としては、70mm以下が好ましい。保温領域の長さを20mm以上にすると、得られる網状構造体の連続線状体の融着が強固となり、連続線状体同士の接点強度が強くなり、その結果として、網状構造体の繰返し圧縮耐久性を向上することができる。保温領域の長さが20mm未満では繰返し圧縮耐久性が満足できる程度に接点強度が向上しない。また、保温領域の長さが70mmを超えると表面品位が悪くなることがある。
 この保温領域はスピンパック周辺やポリマー持込み熱量を利用して保温領域とすることもできるし、ヒーターで該保温領域を加熱してノズル直下の繊維落下領域の温度を制御することもできる。保温領域は、鉄板やアルミ板、セラミック板等を使用し、ノズル下の落下する連続線状体の周りを囲うように保温体を設置すれば良い。保温体は、上記素材で構成し、それらを断熱材で保温することがより好ましい。保温領域の設置位置としては、保温効果を考慮すると、ノズル下から50mm以下の位置から下方に向けて設置することが好ましく、より好ましくは20mm以下、さらに好ましくはノズル直下から設置するのが良い。好ましい実施形態のひとつとしては、ノズル直下の周辺を糸条に接触しないようにアルミ板でノズル直下から下方に20mmの長さで囲うことで保温し、さらにこのアルミ板を保温材で保温することである。
 接点強度を強くした網状構造体を得る他の手段としては、引取りコンベアネットの連続線状体の落下位置周辺のネット表面温度を上げる、または、連続線状体の落下位置周辺の冷却槽内の冷却水温度を上げること等が挙げられる。引取りコンベアネットの表面温度は、網状構造体がポリオレフィン系熱可塑性エラストマー、エチレン酢酸ビニル共重合体からなる時は40℃以上とすることが好ましく、50℃以上がより好ましく、60℃以上がさらに好ましく、網状構造体がポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーからなる時は80℃以上とすることが好ましく、100℃以上がより好ましい。連続線状体とコンベアネット間の剥離性を良好に保つ観点から、コンベアネット温度は、ポリマーの融点以下であることが好ましく、融点の20℃以下であることがより好ましい。また、冷却水温度については、網状構造体がポリオレフィン系熱可塑性エラストマー、エチレン酢酸ビニル共重合体からなる時は25℃以上にすることが好ましく、網状構造体がポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーからなる時は80℃以上にすることが好ましい。
 本発明の網状構造体を構成する連続線状体は、本発明の目的を損なわない範囲で、他の熱可塑性樹脂と組み合わせた複合線状としても良い。複合形態としては、線状体自身を複合化した場合として、シース・コア型、サイドバイサイド型、偏芯シース・コア型等の複合線状体が挙げられる。
 本発明の網状構造体は、本発明の目的を損なわない範囲で、多層構造化しても良い。多層構造としては、表層と裏層を異なった繊度の線状体で構成することや、表層と裏層で異なった見掛け密度を持つ構造体で構成する等の構造体が挙げられる。多層化方法としては、網状構造体同士を積み重ねて側地等で固定する方法、加熱により溶融固着する方法、接着剤で接着させる方法、縫製やバンド等で拘束する方法等が挙げられる。
 本発明の網状構造体を構成する連続線状体の断面形状は特に限定されないが、中空断面および/または異型断面とすることで好ましい抗圧縮性やタッチを付与することができる。
 本発明の網状構造体は、性能を低下させない範囲で樹脂製造過程から成形体に加工し、製品化する任意の段階で防臭抗菌、消臭、防黴、着色、芳香、難燃、吸放湿等の機能付与を薬剤添加等の処理加工ができる。
 かくして得られた本発明の網状構造体は、繰返し圧縮残留歪みが小さく、硬度保持率が高い、優れた繰返し圧縮耐久性を有するものである。さらには、高反発性を有するものである。
 以下に、実施例を例示し、本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。なお、実施例中における特性値の測定及び評価は下記のようにおこなった。
(1)繊度
 試料を20cm×20cmの大きさに切断し、10か所から線状体を採集する。10か所で採集した線状体の40℃での比重を密度勾配管を用いて測定する。さらに、上記10か所で採集した線状体の断面積を顕微鏡で30倍に拡大した写真より求め、それより線状体の長さ10000m分の体積を求める。得られた比重と体積を乗じた値を繊度(線状体10000m分の重量)とする。(n=10の平均値)
(2)試料厚み及び見掛け密度
 試料を30cm×30cmの大きさに切断し、無荷重で24時間放置した後、高分子計器製FD-80N型測厚器にて4か所の高さを測定して平均値を試料厚みとする。試料重さは、上記試料を電子天秤に載せて計測する。また試料厚みから体積を求め、試料の重さを体積で除した値で示す。(それぞれn=4の平均値)
(3)融点(Tm)
 TAインスツルメント社製 示差走査熱量計Q200を使用し、昇温速度20℃/分で測定した吸発熱曲線から吸熱ピーク(融解ピーク)温度を求めた。
(4)70℃圧縮残留歪み
 試料を30cm×30cmの大きさに切断し、(2)に記載の方法で処理前の厚み(a)を測定する。厚みを測定したサンプルを50%圧縮状態に保持できる冶具に挟み、70℃に設定した乾燥機に入れ、22時間放置する。その後サンプルを取り出し、冷却して圧縮歪みを除き1日放置後の厚み(b)を求め、処理前の厚み(a)とから、式{(a)-(b)}/(a)×100より算出する:単位%(n=3の平均値)。
(5)25%および50%圧縮時硬度
 試料を30cm×30cmの大きさに切断し、20℃±2℃の環境下に無荷重で24時間放置した後、20℃±2℃の環境下にあるオリエンテック社製テンシロンにてφ200mm、厚み3mmの加圧板を用いて、試料の中心部を10mm/minの速度で圧縮を開始し、荷重が5Nになる時の厚みを計測し、硬度計厚みとする。この時の加圧板の位置をゼロ点として、速度100mm/minで硬度計厚みの75%まで圧縮した後、速度100mm/minにて加圧板をゼロ点まで戻す。引き続き速度100mm/minで硬度計厚みの25%ないし50%まで圧縮し、その際の荷重を測定し、各々25%圧縮時硬度、50%圧縮時硬度とした:単位N/φ200(n=3の平均値)。
(6)50%定変位繰返し圧縮残留歪み
 試料を30cm×30cmの大きさに切断し、(2)に記載の方法で処理前の厚み(c)を測定する。厚みを測定したサンプルを島津製作所製サーボパルサーにて、20℃±2℃環境下にて50%の厚みまで1Hzのサイクルで圧縮回復を繰り返し、8万回後の試料を1日静置した後に処理後の厚み(d)を求め、処理前の厚み(c)とから、式{(c)-(d)}/(c)×100より算出する:単位%(n=3の平均値)。
(7)50%定変位繰返し圧縮後の50%圧縮時硬度保持率
 試料を30cm×30cmの大きさに切断し、(2)に記載の方法で処理前の厚みを測定する。厚みを測定したサンプルを(5)に記載の方法で測定した50%圧縮時硬度を処理前荷重(e)とする。その後、島津製作所製サーボパルサーで、20℃±2℃環境下にて処理前厚みの50%の厚みまで1Hzのサイクルで圧縮回復を繰り返し、8万回後の試料を30分静置後、(5)に記載の方法で測定した50%圧縮時硬度を処理後荷重(f)とする。式(f)/(e)×100より50%定変位繰返し圧縮後の50%圧縮時硬度保持率を算出する:単位%(n=3の平均値)。
(8)50%定変位繰返し圧縮後の25%圧縮時硬度保持率
 試料を30cm×30cmの大きさに切断し、(2)に記載の方法で処理前の厚みを測定する。厚みを測定したサンプルを(5)に記載の方法で測定した25%圧縮時硬度を処理前荷重(g)とする。その後、島津製作所サーボパルサーで、20℃±2℃環境下にて処理前厚みの50%の厚みまで1Hzのサイクルで圧縮回復を繰り返し、8万回後の試料を30分静置後、(5)に記載の方法で測定した25%圧縮時硬度を処理後荷重(h)とする。式(h)/(g)×100より50%定変位繰返し圧縮後の25%圧縮時硬度保持率を算出する:単位%(n=3の平均値)。
(9)ヒステリシスロス
 試料を30cm×30cmの大きさに切断し、20℃±2℃の環境下に無荷重で24時間放置した後、20℃±2℃の環境下にあるオリエンテック社製テンシロンにてφ200mm、厚み3mmの加圧板を用いて、試料の中心部を10mm/minの速度で圧縮を開始し、荷重が5Nになる時の厚みを計測し、硬度計厚みとする。この時の加圧板の位置をゼロ点として、速度100mm/minで硬度計厚みの75%まで圧縮し、ホールドタイム無しで同一速度にて加圧板をゼロ点まで戻す(一回目の応力歪み曲線)。引き続きホールドタイム無しで速度100mm/minで硬度計厚みの75%まで圧縮し、ホールドタイム無しで同一速度にてゼロ点まで戻す(二回目の応力歪み曲線)。
 二回目の圧縮時応力曲線の示す圧縮エネルギー(WC)、二回目の除圧時応力曲線の示す圧縮エネルギー(WC‘)とし、下記式に従ってヒステリシスロスを求める。
 ヒステリシスロス(%)=(WC-WC‘)/WC×100
  WC=∫PdT(0%から75%まで圧縮したときの仕事量)
  WC‘=∫PdT(75%から0%まで除圧したときの仕事量)
 簡易的には、例えば図1のような応力歪み曲線が得られたら、パソコンによるデータ解析によって算出することができる。また、斜線部分の面積をWCとし、網掛け部分の面積をWC‘として、その面積比を切り抜いた部分の重さから求めることもできる。(n=3の平均値)
[実施例1-1]
 ポリオレフィン系熱可塑性エラストマーは、メタロセン化合物を触媒としてヘキサン、ヘキセン、エチレンを公知の方法で重合し、エチレン・α-オレフィン共重合体とし、次いで酸化防止剤2%を添加混合練込み後ペレット化して得た。得られたポリオレフィン系熱可塑性エラストマー(熱可塑性エラストマーA-1)は、比重が0.919g/cmで、融点が110℃であった。ポリプロピレン系熱可塑性エラストマーとしてExxonMobil Chemical社製のVistamax 2125(熱可塑性エラストマーA-2)を用いた。ポリプロピレン系熱可塑性エラストマーは、比重が0.87g/cmで、融点が162℃であった。
 幅方向1050mm、厚み方向の幅55mmのノズル有効面にオリフィスの形状は外径2mm、内径1.6mmでトリプルブリッジの中空形成性断面としたオリフィスを孔間ピッチ5mmの千鳥配列としたノズルに、得られたポリオレフィン系熱可塑性エラストマー(A-1)を溶融温度210℃にて、単孔吐出量1.5g/minの速度でノズル下方に吐出させ、ノズル直下30mmの保温領域を経て、ノズル面30cm下に35℃の冷却水を配し、幅150cmのステンレス製エンドレスネットを平行に開口幅50mm間隔で一対の引取りコンベアを水面上に一部出るように配して、その水面上のコンベアネットの表面温度を60℃になるように赤外線ヒーターで加熱し、該溶融状態の吐出線状を曲がりくねらせル-プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状体の両面を引取りコンベア-で挟み込みつつ毎分0.8mの速度で35℃の冷却水中へ引込み固化させ両面をフラット化した後、所定の大きさに切断して70℃熱風にて15分間乾燥熱処理して、網状構造体を得た。得られた網状構造体は、断面形状が中空断面で中空率が24%、繊度が3000デシテックスの線条で形成しており、見かけ密度は0.035g/cm、表面は平坦化された厚みが49mm、25%圧縮時硬度が110N/φ200mm、50%圧縮時硬度が219N/φ200mm、繰り返し圧縮残留歪みが9.7%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が88.3%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が80.4%であり、ヒステリシスロスが27.7%の繰り返し圧縮耐久性と高反発性に優れた網状構造体であった。得られた網状構造体の特性を表1に示す。得られた網状構造体は、本発明の要件を満たし、繰り返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例1-2]
 ノズル直下の保温領域を40mm、単孔吐量を1.8g/min、ノズル面-冷却水距離を32cm、冷却水温度を25℃にした以外、実施例1-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が20%、繊度が2700デシテックスの線条で形成しており、見かけ密度が0.045g/cm、表面が平坦化された厚みが48mm、25%圧縮時硬度が155N/φ200mm、50%圧縮時硬度が288N/φ200mm、50%定変位繰返し圧縮残留歪みが8.5%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が98.3%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が82.3%、ヒステリシスロスが24.7%であった。得られた網状構造体の特性を表1に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例1-3]
 単孔吐量を2.0g/min、ノズル面-冷却水距離を28cm、コンベアネット表面温度を加熱せずに40℃にした以外、実施例1-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が22%、繊度が3300デシテックスの線条で形成しており、見かけ密度が0.040g/cm、表面が平坦化された厚みが51mm、25%圧縮時硬度が137N/φ200mm、50%圧縮時硬度が242N/φ200mm、50%定変位繰返し圧縮残留歪みが9.0%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が91.1%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が83.5%、ヒステリシスロスが33.5%であった。得られた網状構造体の特性を表1に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例1-4]
 紡糸温度を220℃、ノズル直下の保温領域を40mm、単孔吐量を3.2g/min、引き取り速度を毎分1.0m、コンベアネット表面温度を80℃になるように赤外線ヒーターで加熱し、冷却水温度を25℃にした以外、実施例1-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が18%、繊度が2900デシテックスの線条で形成しており、見かけ密度が0.061g/cm、表面が平坦化された厚みが50mm、25%圧縮時硬度が267N/φ200mm、50%圧縮時硬度が583N/φ200mm、50%定変位繰返し圧縮残留歪みが10.1%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が105.6%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が85.0%、ヒステリシスロスが26.8%であった。得られた網状構造体の特性を表1に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例1-5]
 ポリプロピレン系熱可塑性エラストマー(熱可塑性エラストマーA-2)を用い、紡糸温度を230℃、単孔吐量を2.0g/min、コンベアネット表面温度を加熱せずに40℃にした以外、実施例1-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が21%、繊度が3300デシテックスの線条で形成しており、見かけ密度が0.041g/cm、表面が平坦化された厚みが51mm、25%圧縮時硬度が58N/φ200mm、50%圧縮時硬度が124N/φ200mm、50%定変位繰返し圧縮残留歪みが8.6%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が88.2%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が81.1%、ヒステリシスロスが31.1%であった。得られた網状構造体の特性を表1に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[比較例1-1]
 ノズル直下の保温領域をなくし、単孔吐量を1.7g/min、引き取り速度を毎分0.9m、ノズル面-冷却水距離を32cmとした以外、実施例1-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が26%、繊度が3100デシテックスの線条で形成しており、見かけ密度が0.035g/cm、表面が平坦化された厚みが51mm、25%圧縮時硬度が112N/φ200mm、50%圧縮時硬度が222N/φ200mm、50%定変位繰返し圧縮残留歪みが9.6%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が78.8%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が74.4%、ヒステリシスロスが39.2%であった。得られた網状構造体の特性を表1に示す。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性と高反発性に劣る網状構造体であった。
[比較例1-2]
 ノズル直下の保温領域をなくし、単孔吐量を2.0g/min、ノズル面-冷却水距離を31cm、コンベアネットは加熱せずその表面温度は40℃、冷却水温度を25℃にした以外、実施例1-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が23%、繊度が3400デシテックスの線条で形成しており、見かけ密度が0.050g/cm、表面が平坦化された厚みが48mm、25%圧縮時硬度が192N/φ200mm、50%圧縮時硬度が390N/φ200mm、50%定変位繰返し圧縮残留歪みが8.7%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が75.5%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が78.0%、ヒステリシスロスが38.5%であった。得られた網状構造体の特性を表1に示す。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性と高反発性に劣る網状構造体であった。
[比較例1-3]
 ポリプロピレン系熱可塑性エラストマー(熱可塑性エラストマーA-2)を用い、紡糸温度を220℃、ノズル直下の保温領域をなくし、単孔吐量を2.0g/min、ノズル面-冷却水距離を22cm、コンベアネットは加熱せずその表面温度は40℃、冷却水温度を25℃にした以外、実施例1-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が29%、繊度が4000デシテックスの線条で形成しており、見かけ密度が0.040g/cm、表面が平坦化された厚みが50mm、25%圧縮時硬度が63N/φ200mm、50%圧縮時硬度が133N/φ200mm、50%定変位繰返し圧縮残留歪みが9.5%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が79.4%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が72.2%、ヒステリシスロスが41.0%であった。得られた網状構造体の特性を表1に示す。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性と高反発性に劣る網状構造体であった。
Figure JPOXMLDOC01-appb-T000001
[実施例2-1]
 エチレン酢酸ビニル共重合体は、エチレンと酢酸ビニルを公知の方法でラジカル共重合し、エチレン酢酸ビニル共重合体とし、次いで酸化防止剤2%を添加混合練込み後ペレット化して得た。重合時の酢酸ビニルの比率を変更し、酢酸ビニル含有率10%の熱可塑性エラストマーB-1、酢酸ビニル含有率20%の熱可塑性エラストマーB-2、酢酸ビニル含有率5%のB-3を得た。熱可塑性エラストマーB-1は、酢酸ビニルの含有率が10%、比重0.929、融点95℃であり、熱可塑性エラストマーB-2は、酢酸ビニルの含有率が20%、比重0.941、融点85℃、熱可塑性エラストマーB-3は、酢酸ビニルの含有率が5%、比重0.925、融点103℃であった。得られたポリマーの特性を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 幅方向1050mm、厚み方向の幅50mmのノズル有効面にオリフィスの形状は外径2mm、内径1.6mmでトリプルブリッジの中空形成性断面としたオリフィスを孔間ピッチ5mmの千鳥配列としたノズルに、得られたエチレン酢酸ビニル共重合体B-1を溶融温度190℃にて、単孔吐出量1.8g/minの速度でノズル下方に吐出させ、ノズル直下30mmの保温領域を経て、ノズル面32cm下に50℃の冷却水を配し、幅150cmのステンレス製エンドレスネットを平行に開口幅40mm間隔で一対の引取りコンベアを水面上に一部出るように配して、その水面上のコンベアネットの表面温度を60℃になるように赤外線ヒーターで加熱し、該溶融状態の吐出線状を曲がりくねらせル-プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状体の両面を引取りコンベア-で挟み込みつつ毎分0.9mの速度で50℃の冷却水中へ引込み固化させ両面をフラット化した後、所定の大きさに切断して50℃熱風にて15分間乾燥熱処理して、網状構造体を得た。得られた網状構造体は、断面形状が中空断面で中空率が25%、繊度が3100デシテックスの線条で形成しており、見掛け密度は0.038g/cm、表面は平坦化された厚みが41mm、25%圧縮時硬度が118N/φ200mm、50%圧縮時硬度が220N/φ200mm、50%定変位繰返し圧縮残留歪みが10.3%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が93.1%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が65.1%、ヒステリシスロスが24.5%であり、繰り返し圧縮耐久性と高反発性に優れた網状構造体であった。得られた網状構造体の特性を表3に示す。得られた網状構造体は、本発明の要件を満たし、繰り返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例2-2]
 紡糸温度を200℃、ノズル直下の保温領域を40mm、単孔吐量を2.7g/min、ノズル面-冷却水距離を26cm、コンベアネットは加熱せずその表面温度は40℃、冷却水温度を25℃にした以外、実施例2-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が23%、繊度が3500デシテックスの線条で形成しており、見掛け密度が0.058g/cm、表面が平坦化された厚みが40mm、25%圧縮時硬度が268N/φ200mm、50%圧縮時硬度が511N/φ200mm、50%定変位繰返し圧縮残留歪みが8.4%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が104.6%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が71.5%、ヒステリシスロスが25.2%であった。得られた網状構造体の特性を表3に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例2-3]
 熱可塑性エラストマーとしてB-2を用い、紡糸温度を180℃、ノズル直下の保温領域を40mm、単孔吐量を2.5g/min、ノズル面-冷却水距離を30cm、コンベアネットは加熱せずその表面温度は40℃にした以外、実施例2-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が23%、繊度が3200デシテックスの線条で形成しており、見掛け密度が0.055g/cm、表面が平坦化された厚みが39mm、25%圧縮時硬度が150N/φ200mm、50%圧縮時硬度が298N/φ200mm、50%定変位繰返し圧縮残留歪みが9.6%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が98.3%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が68.3%、ヒステリシスロスが28.0%であった。得られた網状構造体の特性を表3に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例2-4]
 紡糸温度を190℃、ノズル直下の保温領域を30mm、単孔吐量を2.1g/min、引き取り速度を毎分1.0m、ノズル面-冷却水距離を31cm、コンベアネット表面温度を60℃になるように赤外線ヒーターで加熱し、冷却水温度を25℃にした以外、実施例2-3と同様にして得た網状構造体は、断面形状が中空断面で中空率が26%、繊度が3200デシテックスの線条で形成しており、見掛け密度が0.041g/cm、表面が平坦化された厚みが40mm、25%圧縮時硬度が53N/φ200mm、50%圧縮時硬度が123N/φ200mm、50%定変位繰返し圧縮残留歪みが10.7%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が90.1%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が70.2%、ヒステリシスロスが32.1%であった。得られた網状構造体の特性を表3に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例2-5]
 熱可塑性エラストマーとしてB-3を用い、紡糸温度を200℃、ノズル直下の保温領域を40mm、単孔吐量を2.0g/min、ノズル面-冷却水距離を29cmとした以外、実施例2-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が25%、繊度が3000デシテックスの線条で形成しており、見掛け密度が0.045g/cm、表面が平坦化された厚みが41mm、25%圧縮時硬度が230N/φ200mm、50%圧縮時硬度が421N/φ200mm、50%定変位繰返し圧縮残留歪みが9.0%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が97.0%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が76.0%、ヒステリシスロスが28.8%であった。得られた網状構造体の特性を表3に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[比較例2-1]
 ノズル直下の保温領域をなくし、単孔吐量を1.9g/min、ノズル面-冷却水距離を31cm、コンベアネットの開口幅を38mmとした以外、実施例2-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が30%、繊度が3300デシテックスの線条で形成しており、見掛け密度が0.042g/cm、表面が平坦化された厚みが38mm、25%圧縮時硬度が136N/φ200mm、50%圧縮時硬度が271N/φ200mm、50%定変位繰返し圧縮残留歪みが12.1%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が82.3%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が58.8%、ヒステリシスロスが38.1%であった。得られた網状構造体の特性を表3に示す。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性と高反発性に劣る網状構造体であった。
[比較例2-2]
 熱可塑性エラストマーとしてB-2を用い、単孔吐量を2.0g/min、引き取り速度を毎分1.0m、ノズル面-冷却水距離を28cmにした以外、比較例2-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が31%、繊度が3500デシテックスの線条で形成しており、見掛け密度が0.038g/cm、表面が平坦化された厚みが38mm、25%圧縮時硬度が48N/φ200mm、50%圧縮時硬度が110N/φ200mm、50%定変位繰返し圧縮残留歪みが10.1%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が80.6%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が59.6%、ヒステリシスロスが40.2%であった。得られた網状構造体の特性を表3に示す。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性と高反発性に劣る網状構造体であった。
[比較例2-3]
 熱可塑性エラストマーとしてB-3を用い、紡糸温度を200℃、単孔吐量を1.8g/min、ノズル面-冷却水距離を30cm、コンベアネットは加熱せずその表面温度は40℃、冷却水温度を25℃にした以外、比較例2-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が28%、繊度が3400デシテックスの線条で形成しており、見掛け密度が0.038g/cm、表面が平坦化された厚みが39mm、25%圧縮時硬度が175N/φ200mm、50%圧縮時硬度が340N/φ200mm、50%定変位繰返し圧縮残留歪みが9.5%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が83.1%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が61.9%、ヒステリシスロスが37.8%であった。得られた網状構造体の特性を表3に示す。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性と高反発性に劣る網状構造体であった。
Figure JPOXMLDOC01-appb-T000003
[実施例3-1]
 ポリウレタン系エラストマーは、4・4’ジフェニルメタンジイソシアネ-ト(MDI)と数平均分子量1500のPTMG及び鎖延長剤として1,4-ブタンジオール(1,4-BD)を添加して重合し、次いで抗酸化剤2%を添加混合練込み後ペレット化し、50℃48時間真空乾燥し、PTMG含有率38%の熱可塑性弾性樹脂C-1とPTMG含有率64%のC-2を得た。熱可塑性弾性樹脂C-1は、PTMG含有量が38重量%、融点が167℃、C-2は、PTMG含有量が64重量%、融点が152℃であった。得られたポリマー組成を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 幅方向1050mm、厚み方向の幅50mmのノズル有効面にオリフィスの形状は外径2mm、内径1.6mmでトリプルブリッジの中空形成性断面としたオリフィスを孔間ピッチ5mmの千鳥配列としたノズルに、得られた熱可塑性弾性樹脂C-1を紡糸温度220℃にて、単孔吐出量2.7g/minの速度でノズル下方に吐出させ、ノズル直下30mmの保温領域を経て、ノズル面26cm下に30℃の冷却水を配し、幅150cmのステンレス製エンドレスネットを平行に開口幅38mm間隔で一対の引取りコンベアを水面上に一部出るように配して、その水面上のコンベアネットは加熱せずその表面温度は40℃とし、該溶融状態の吐出線状を曲がりくねらせル-プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状体の両面を引取りコンベア-で挟み込みつつ毎分1.4mの速度で30℃の冷却水中へ引込み固化させ両面をフラット化した後、所定の大きさに切断して110℃熱風にて15分間乾燥熱処理して、網状構造体を得た。得られた網状構造体は、断面形状が中空断面で中空率が30%、繊度が3300デシテックスの線条で形成しており、見かけ密度は0.035g/cm、表面は平坦化された厚みが38mm、25%圧縮時硬度が140N/φ200mm、50%圧縮時硬度が271N/φ200mm、繰り返し圧縮残留歪みが12.2%、70℃圧縮残留歪みが14.2%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が92.5%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が80.1%、ヒステリシスロスが31.2%であり、繰り返し圧縮耐久性と高反発性に優れた網状構造体であった。得られた網状構造体の特性を表5に示す。得られたクッションは、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例3-2]
 紡糸温度を230℃、ノズル直下の保温領域を40mm、単孔吐量を2.3g/min、引き取り速度を毎分1.1m、ノズル面-冷却水距離を28cm、コンベアネット表面温度を120℃になるように赤外線ヒーターで加熱し、冷却水温度を80℃となるように加熱した以外、実施例3-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が33%、繊度が3000デシテックスの線条で形成しており、見かけ密度が0.042g/cm、表面が平坦化された厚みが38mm、25%圧縮時硬度が162N/φ200mm、50%圧縮時硬度が305N/φ200mm、70℃圧縮残留歪みが9.7%、50%定変位繰返し圧縮残留歪みが9.6%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が96.2%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が85.0%、ヒステリシスロスが28.4%であった。得られた網状構造体の特性を表5に示す。得られたクッションは、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例3-3]
 ノズル直下の保温領域を40mm、単孔吐量を2.2g/min、引き取り速度を毎分0.9m、ノズル面-冷却水距離を30cmとした以外、実施例3-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が31%、繊度が3000デシテックスの線条で形成しており、見かけ密度が0.048g/cm、表面が平坦化された厚みが38mm、25%圧縮時硬度が189N/φ200mm、50%圧縮時硬度が341N/φ200mm、70℃圧縮残留歪みが13.0%、50%定変位繰返し圧縮残留歪みが10.2%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が101.1%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が77.4%、ヒステリシスロス26.8%であった。得られた網状構造体の特性を表5に示す。得られたクッションは、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例3-4]
 熱可塑性弾性樹脂としてC-2を用い、ノズル直下の保温領域を40mm、単孔吐量を2.8g/min、ノズル面-冷却水距離を28cmにした以外、実施例3-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が32%、繊度が3100デシテックスの線条で形成しており、見かけ密度が0.038g/cm、表面が平坦化された厚みが38mm、25%圧縮時硬度が59N/φ200mm、50%圧縮時硬度が131N/φ200mm、70℃圧縮残留歪みが12.6%、50%定変位繰返し圧縮残留歪みが8.5%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が99.2%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が80.5%、ヒステリシスロスが24.7%であった。得られた網状構造体の特性を表5に示す。得られたクッションは、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例3-5]
 熱可塑性弾性樹脂としてC-2を用い、紡糸温度を210℃、単孔吐量を2.5g/min、引き取り速度を毎分1.2m、ノズル面-冷却水距離を32cm、コンベアネット表面温度を80℃になるように赤外線ヒーターで加熱し、冷却水温度が80℃になるように加熱した以外、実施例3-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が33%、繊度が2800デシテックスの線条で形成しており、見かけ密度が0.041g/cm、表面が平坦化された厚みが38mm、25%圧縮時硬度が79N/φ200mm、50%圧縮時硬度が154N/φ200mm、70℃圧縮残留歪みが17.7%、50%定変位繰返し圧縮残留歪みが10.5%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が93.1%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が79.0%、ヒステリシスロスが23.0%であった。得られた網状構造体の特性を表5に示す。得られたクッションは、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[比較例3-1]
 ノズル直下の保温領域をなくし、単孔吐量を1.9g/min、引き取り速度を毎分0.9m、ノズル面-冷却水距離を30cm、冷却水温度が80℃となるように加熱した以外、実施例3-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が35%、繊度が3500デシテックスの線条で形成しており、見かけ密度が0.042g/cm、表面が平坦化された厚みが39mm、25%圧縮時硬度が170N/φ200mm、50%圧縮時硬度が308N/φ200mm、70℃圧縮残留歪みが13.8%、50%定変位繰返し圧縮残留歪みが11.0%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が81.0%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が72.2%、ヒステリシスロスが39.1%であった。得られた網状構造体の特性を表5に示す。得られたクッションは、本発明の要件を満たさず、繰返し圧縮耐久性と高反発性に劣る網状構造体であった。
[比較例3-2]
 熱可塑性弾性樹脂としてC-2を用い、ノズル直下の保温領域をなくし、単孔吐量を2.2g/min、引き取り速度を毎分1.1m、ノズル面-冷却水距離を28cm、コンベアネットは加熱せずその表面温度は40℃とした以外、実施例3-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が34%、繊度が3800デシテックスの線条で形成しており、見かけ密度が0.038g/cm、表面が平坦化された厚みが38mm、25%圧縮時硬度が65N/φ200mm、50%圧縮時硬度が137N/φ200mm、70℃圧縮残留歪みが16.6%、50%定変位繰返し圧縮残留歪みが9.6%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が79.1%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が70.4%、ヒステリシスロスが37.2%であった。得られた網状構造体の特性を表5に示す。得られたクッションは、本発明の要件を満たさず、繰返し圧縮耐久性と高反発性に劣る網状構造体であった。
Figure JPOXMLDOC01-appb-T000005
[実施例4-1]
 ポリアミド系熱可塑性エラストマーは、ω-ラウリルラクタム、アジピン酸を用いて公知の方法でポリアミド化合物を得た後、数平均分子量1000のPTMGを用いて公知の方法で共重合し、次いで抗酸化剤1%を添加混合練込み後ペレット化し、50℃48時間真空乾燥し、PTMG含有率35%の熱可塑性エラストマーD-1を得た。熱可塑性エラストマーD-2は、数平均分子量2000のPTMGを用いて、D-1と同様の方法で重合し、PTMG含有率55%の熱可塑性エラストマーを得た。熱可塑性エラストマーD-1は、PTMG含有量が35重量%、融点が159℃、D-2は、PTMG含有量が55重量%、融点が140℃であった。得られたポリマー組成を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 幅方向1050mm、厚み方向の幅45mmのノズル有効面にオリフィスの形状は外径2mm、内径1.6mmでトリプルブリッジの中空形成性断面としたオリフィスを孔間ピッチ5mmの千鳥配列としたノズルに、得られた熱可塑性エラストマーD-1を紡糸温度220℃にて、単孔吐出量2.4g/minの速度でノズル下方に吐出させ、ノズル直下30mmの保温領域を経て、ノズル面28cm下に30℃の冷却水を配し、幅150cmのステンレス製エンドレスネットを平行に開口幅40mm間隔で一対の引取りコンベアを水面上に一部出るように配して、その水面上のコンベアネットは加熱せずその表面温度は40℃とし、該溶融状態の吐出線状を曲がりくねらせル-プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状体の両面を引取りコンベア-で挟み込みつつ毎分1.2mの速度で30℃の冷却水中へ引込み固化させ両面をフラット化した後、所定の大きさに切断して110℃熱風にて15分間乾燥熱処理して、網状構造体を得た。得られた網状構造体は、断面形状が中空断面で中空率が31%、繊度が3600デシテックスの線条で形成しており、見掛け密度は0.038g/cm、表面は平坦化された厚みが40mm、25%圧縮時硬度が233N/φ200mm、50%圧縮時硬度が402N/φ200mm、50%定変位繰返し圧縮残留歪みが9.1%、70℃圧縮残留歪みが12.2%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が93.4%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が82.2%、ヒステリシスロスが30.8%であり、繰り返し圧縮耐久性と高反発性に優れた網状構造体であった。得られた網状構造体の特性を表7に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例4-2]
 紡糸温度を230℃、ノズル直下の保温領域を40mm、単孔吐出量を2.1g/min、引き取り速度を毎分1.0m、ノズル面-冷却水距離を30cm、コンベアネット表面温度を120℃になるように赤外線ヒーターで加熱し、冷却水温度を80℃となるように加熱した以外、実施例4-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が29%、繊度が3300デシテックスの線条で形成しており、見掛け密度が0.042g/cm、表面が平坦化された厚みが39mm、25%圧縮時硬度が250N/φ200mm、50%圧縮時硬度が431N/φ200mm、70℃圧縮残留歪みが8.7%、50%定変位繰返し圧縮残留歪みが7.3%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が98.1%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が86.3%、ヒステリシスロス27.7%であった。得られた網状構造体の特性を表7に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例4-3]
 熱可塑性エラストマーとしてD-2を用い、単孔吐出量を2.5g/min、ノズル面-冷却水距離を30cmとした以外、実施例4-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が32%、繊度が3400デシテックスの線条で形成しており、見掛け密度が0.040g/cm、表面が平坦化された厚みが40mm、25%圧縮時硬度が65N/φ200mm、50%圧縮時硬度が138N/φ200mm、70℃圧縮残留歪みが15.5%、50%定変位繰返し圧縮残留歪みが8.5%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が87.4%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が77.1%、ヒステリシスロス29.3%であった。得られた網状構造体の特性を表7に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[実施例4-4]
 熱可塑性エラストマーとしてD-2を用い、紡糸温度を230℃、ノズル直下の保温領域を40mm、単孔吐出量を2.8g/min、引き取り速度を毎分0.9m、ノズル面-冷却水距離を32cm、コンベアネット表面温度を80℃になるように赤外線ヒーターで加熱し、冷却水温度を80℃となるように加熱した以外、実施例4-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が28%、繊度が3200デシテックスの線条で形成しており、見掛け密度が0.060g/cm、表面が平坦化された厚みが39mm、25%圧縮時硬度が182N/φ200mm、50%圧縮時硬度が344N/φ200mm、70℃圧縮残留歪みが12.0%、50%定変位繰返し圧縮残留歪みが5.5%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が93.2%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が80.6%、ヒステリシスロスが22.0%であった。得られた網状構造体の特性を表7に示す。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性と高反発性に優れた網状構造体であった。
[比較例4-1]
 ノズル直下の保温領域をなくし、単孔吐出量を1.9g/min、引き取り速度を毎分0.8m、ノズル面-冷却水距離を29cm、冷却水温度が80℃となるように加熱した以外、実施例4-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が34%、繊度が3500デシテックスの線条で形成しており、見掛け密度が0.048g/cm、表面が平坦化された厚みが40mm、25%圧縮時硬度が311N/φ200mm、50%圧縮時硬度が602N/φ200mm、70℃圧縮残留歪みが13.9%、50%定変位繰返し圧縮残留歪みが7.1%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が82.0%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が71.2%、ヒステリシスロスが37.0%であった。得られた網状構造体の特性を表7に示す。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性と高反発性に劣る網状構造体であった。
[比較例4-2]
 熱可塑性エラストマーとしてD-2を用い、冷却水温度を過熱せず30℃とした以外、比較例4-1と同様にして得た網状構造体は、断面形状が中空断面で中空率が33%、繊度が3400デシテックスの線条で形成しており、見掛け密度が0.048g/cm、表面が平坦化された厚みが40mm、25%圧縮時硬度が83N/φ200mm、50%圧縮時硬度が192N/φ200mm、70℃圧縮残留歪みが14.0%、50%定変位繰返し圧縮残留歪みが6.6%、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が77.2%、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が68.1%、ヒステリシスロスが38.2%であった。得られた網状構造体の特性を表7に示す。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性と高反発性に劣る網状構造体であった。
Figure JPOXMLDOC01-appb-T000007
 本発明の網状構造体は、網状構造体が従来から有する快適な座り心地や通気性を損なわずに、従来品の課題であった繰返し圧縮後の耐久性を改良したものであり、長期間使用後の厚み低下が少なく、硬度の低下が少ない、オフィスチェア、家具、ソファー、ベッド等寝具、電車・自動車・二輪車・ベビーカー・チャイルドシート等の車両用座席等に用いられるクッション材、フロアーマットや衝突や挟まれ防止部材等の衝撃吸収用のマット等に好適な網状構造体を提供できるため、産業界に寄与すること大である。
 

Claims (7)

  1.  ポリオレフィン系熱可塑性エラストマー、エチレン酢酸ビニル共重合体、ポリウレタン系熱可塑性エラストマーおよびポリアミド系熱可塑性エラストマーからなる群から選ばれる少なくとも1種の熱可塑性弾性樹脂からなる繊度が100デシテックス以上60000デシテックス以下の連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめた三次元ランダムループ接合構造体であって、見かけ密度が0.005g/cm~0.20g/cmであり、50%定変位繰返し圧縮残留歪みが15%以下であり、50%定変位繰返し圧縮後の50%圧縮時硬度保持率が85%以上である網状構造体。
  2.  ヒステリシスロスが35%以下である請求項1に記載の網状構造体。
  3.  三次元ランダムループ接合構造体がポリオレフィン系熱可塑性エラストマーからなり、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が80%以上である請求項1または2に記載の網状構造体。
  4.  三次元ランダムループ接合構造体がエチレン酢酸ビニル共重合体からなり、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が65%以上である請求項1または2に記載の網状構造体。
  5.  三次元ランダムループ接合構造体がポリウレタン系熱可塑性エラストマーまたはポリアミド系熱可塑性エラストマーからなり、50%定変位繰返し圧縮後の25%圧縮時硬度保持率が75%以上である請求項1または2に記載の網状構造体。
  6.  網状構造体の厚みが10mm以上300mm以下である請求項1~5のいずれかに記載の網状構造体。
  7.  網状構造体を構成する連続線状体の断面形状が中空断面および/または異型断面である請求項1~6のいずれかに記載の網状構造体。
     
PCT/JP2014/076150 2013-10-01 2014-09-30 圧縮耐久性に優れた網状構造体 WO2015050134A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167008288A KR102083055B1 (ko) 2013-10-01 2014-09-30 압축 내구성이 우수한 망상 구조체
EP14850151.3A EP2966206B1 (en) 2013-10-01 2014-09-30 Net-shaped structure having excellent compression durability
CN201811302538.2A CN109680413B (zh) 2013-10-01 2014-09-30 网状结构体
US15/026,424 US9970140B2 (en) 2013-10-01 2014-09-30 Network structure having excellent compression durability
CN201480054790.XA CN105612279A (zh) 2013-10-01 2014-09-30 压缩耐久性优异的网状结构体

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-206381 2013-10-01
JP2013-206384 2013-10-01
JP2013206381A JP5454733B1 (ja) 2013-10-01 2013-10-01 圧縮耐久性に優れた網状構造体
JP2013206382A JP5454734B1 (ja) 2013-10-01 2013-10-01 圧縮耐久性に優れた網状構造体
JP2013206384A JP5532179B1 (ja) 2013-10-01 2013-10-01 圧縮耐久性に優れた網状構造体
JP2013-206382 2013-10-01
JP2013206383A JP5532178B1 (ja) 2013-10-01 2013-10-01 圧縮耐久性に優れた網状構造体
JP2013-206383 2013-10-01

Publications (1)

Publication Number Publication Date
WO2015050134A1 true WO2015050134A1 (ja) 2015-04-09

Family

ID=52778722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076150 WO2015050134A1 (ja) 2013-10-01 2014-09-30 圧縮耐久性に優れた網状構造体

Country Status (6)

Country Link
US (1) US9970140B2 (ja)
EP (1) EP2966206B1 (ja)
KR (1) KR102083055B1 (ja)
CN (2) CN109680413B (ja)
TW (1) TWI662166B (ja)
WO (1) WO2015050134A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614238A (zh) * 2015-05-28 2018-01-19 喜恩吉股份有限公司 三维条形结构

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI597232B (zh) 2012-05-07 2017-09-01 東洋紡股份有限公司 消音性與硬度優異之彈性網狀構造體
JP5569641B1 (ja) * 2013-10-28 2014-08-13 東洋紡株式会社 静粛性と軽量性に優れた弾性網状構造体
TWI639549B (zh) 2013-10-29 2018-11-01 東洋紡股份有限公司 壓縮耐久性優異之網狀構造物
JP5873225B1 (ja) * 2014-07-04 2016-03-01 パネフリ工業株式会社 立体網状繊維集合体
JP6492710B2 (ja) * 2015-02-04 2019-04-03 東洋紡株式会社 低反発性に優れた網状構造体
US20180282924A1 (en) * 2015-04-28 2018-10-04 Toyobo Co., Ltd. Net-like structure
WO2017189095A1 (en) * 2016-04-29 2017-11-02 Dow Global Technologies Llc Propylene-based cushioning network structures, and methods of manufacturing thereof
EP3802659A1 (en) * 2018-05-29 2021-04-14 Dow Global Technologies LLC Composite structure
CN113164265A (zh) 2018-11-12 2021-07-23 奥索冰岛有限公司 包含基于细丝的结构的医疗器材
US11883306B2 (en) 2019-11-12 2024-01-30 Ossur Iceland Ehf Ventilated prosthetic liner
CN111040464A (zh) * 2019-12-31 2020-04-21 安吉万众化纤科技有限公司 一种高回弹环保垫、配方及使用
CN111041605A (zh) * 2019-12-31 2020-04-21 安吉万众化纤科技有限公司 一种高回弹环保垫制造方法
CN113463217B (zh) * 2021-07-12 2023-05-26 无锡科逸新材料有限公司 尺寸安定的层状弹性体
US11780523B2 (en) 2021-12-03 2023-10-10 Harley-Davidson Motor Company, Inc. Multi-material support pad

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293813A (ja) 1993-02-12 1994-10-21 Tosoh Corp エチレン・α−オレフィン共重合体およびフィルム
JPH0768061A (ja) 1993-02-26 1995-03-14 Toyobo Co Ltd クッション用網状構造体及び製法
JP2001003257A (ja) * 1999-06-21 2001-01-09 Ain Kosan Kk スプリング構造樹脂成形品及びその製造方法
JP2002061059A (ja) * 2000-08-16 2002-02-28 Ain Kosan Kk スプリング構造樹脂成形品及びその製造方法
JP2004244740A (ja) 2003-02-12 2004-09-02 Toyobo Co Ltd 敷マット
JP2006200118A (ja) 2004-12-21 2006-08-03 Toyobo Co Ltd ソフト反発性を有する弾性網状構造体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207462A (ja) * 1988-02-09 1989-08-21 Risuron:Kk フィラメントループ集合体からなるマット及びその製造方法及び装置
KR0130813B1 (ko) * 1993-02-26 1998-04-03 시바타 미노루 쿠션용 망상 구조체 및 제법
TW276279B (ja) * 1993-02-26 1996-05-21 Toyo Boseki
JP2001061605A (ja) * 1999-08-27 2001-03-13 Toyobo Co Ltd 車両用座席
EP1832675B1 (en) 2004-12-21 2013-04-24 Toyobo Co., Ltd. Elastic mesh structure
ATE525502T1 (de) * 2006-10-03 2011-10-15 Daiwabo Holdings Co Ltd Verfahren zum kräuseln von verbundfaser und sie enthaltende fasermasse
WO2012029324A1 (ja) * 2010-09-01 2012-03-08 株式会社シーエンジ 座席クッションの成形方法
JP5889013B2 (ja) 2012-02-01 2016-03-22 キヤノン株式会社 画像処理装置及び画像処理方法
JP5339107B1 (ja) 2013-02-27 2013-11-13 東洋紡株式会社 圧縮耐久性に優れた網状構造体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293813A (ja) 1993-02-12 1994-10-21 Tosoh Corp エチレン・α−オレフィン共重合体およびフィルム
JPH0768061A (ja) 1993-02-26 1995-03-14 Toyobo Co Ltd クッション用網状構造体及び製法
JP2001003257A (ja) * 1999-06-21 2001-01-09 Ain Kosan Kk スプリング構造樹脂成形品及びその製造方法
JP2002061059A (ja) * 2000-08-16 2002-02-28 Ain Kosan Kk スプリング構造樹脂成形品及びその製造方法
JP2004244740A (ja) 2003-02-12 2004-09-02 Toyobo Co Ltd 敷マット
JP2006200118A (ja) 2004-12-21 2006-08-03 Toyobo Co Ltd ソフト反発性を有する弾性網状構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2966206A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614238A (zh) * 2015-05-28 2018-01-19 喜恩吉股份有限公司 三维条形结构
EP3305500A4 (en) * 2015-05-28 2018-05-16 C-Eng Co., Ltd. Three-dimensional crosspiece structure
US10233073B2 (en) 2015-05-28 2019-03-19 C-Eng Co., Ltd. Three-dimensional striped structure

Also Published As

Publication number Publication date
CN109680413B (zh) 2022-03-25
EP2966206B1 (en) 2018-11-28
US9970140B2 (en) 2018-05-15
KR102083055B1 (ko) 2020-02-28
CN105612279A (zh) 2016-05-25
EP2966206A1 (en) 2016-01-13
EP2966206A4 (en) 2016-09-07
US20160237603A1 (en) 2016-08-18
KR20160062022A (ko) 2016-06-01
CN109680413A (zh) 2019-04-26
TW201516208A (zh) 2015-05-01
TWI662166B (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2015050134A1 (ja) 圧縮耐久性に優れた網状構造体
JP5339107B1 (ja) 圧縮耐久性に優れた網状構造体
JP5454733B1 (ja) 圧縮耐久性に優れた網状構造体
JP5454734B1 (ja) 圧縮耐久性に優れた網状構造体
KR102148214B1 (ko) 압축 내구성이 우수한 망상 구조체
JP5459436B1 (ja) 熱寸法安定性に優れた網状構造体
JP2004244740A (ja) 敷マット
WO2016175293A1 (ja) 網状構造体
JP5532179B1 (ja) 圧縮耐久性に優れた網状構造体
JP3314837B2 (ja) 異密度網状構造体及びその製造方法
JP5532178B1 (ja) 圧縮耐久性に優れた網状構造体
JP6217780B2 (ja) 網状構造体
JP6318643B2 (ja) 圧縮耐久性に優れた網状構造体
WO2016175294A1 (ja) 網状構造体
JPH07173753A (ja) 網状構造体及びその製造法
JP3314839B2 (ja) 熱接着性網状構造体及びその製法
JP6428868B2 (ja) 網状構造体の製造方法
JP2002000408A (ja) 乗物用座席
WO2023190527A1 (ja) 網状構造体およびその製造方法
JP2001061605A (ja) 車両用座席
WO2015064557A1 (ja) 圧縮耐久性に優れた網状構造体
JPH07173752A (ja) 網状構造体及びその製法
JPH07238455A (ja) 複合弾性網状体とその製法及びそれを用いた製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850151

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014850151

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167008288

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15026424

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE