WO2015064557A1 - 圧縮耐久性に優れた網状構造体 - Google Patents

圧縮耐久性に優れた網状構造体 Download PDF

Info

Publication number
WO2015064557A1
WO2015064557A1 PCT/JP2014/078562 JP2014078562W WO2015064557A1 WO 2015064557 A1 WO2015064557 A1 WO 2015064557A1 JP 2014078562 W JP2014078562 W JP 2014078562W WO 2015064557 A1 WO2015064557 A1 WO 2015064557A1
Authority
WO
WIPO (PCT)
Prior art keywords
network structure
compression
hardness
repeated compression
fiber diameter
Prior art date
Application number
PCT/JP2014/078562
Other languages
English (en)
French (fr)
Inventor
輝之 谷中
小淵 信一
洋行 涌井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014011072A external-priority patent/JP6318643B2/ja
Priority claimed from JP2014025091A external-priority patent/JP6311918B2/ja
Priority claimed from JP2014025092A external-priority patent/JP6311919B2/ja
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to EP14858976.5A priority Critical patent/EP3064628B1/en
Priority to KR1020167010920A priority patent/KR102148214B1/ko
Priority to US15/032,924 priority patent/US9938649B2/en
Priority to CN201480059994.2A priority patent/CN105683434B/zh
Publication of WO2015064557A1 publication Critical patent/WO2015064557A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention is excellent in repeated compression durability, such as office chairs, furniture, sofas, beds and other beddings, cushioning materials used for vehicle seats such as trains, automobiles, motorcycles, child seats, strollers, floor mats, collisions and pinchings.
  • the present invention relates to a net-like structure suitable for an impact absorbing mat such as an anti-skid member.
  • foam-crosslinked urethane is widely used as a cushioning material for furniture, bedding such as beds, and seats for vehicles such as trains, automobiles, and motorcycles.
  • Foam-crosslinked urethane has good durability as a cushioning material, but has poor moisture permeability and air permeability, and has a problem of being easily stuffy due to heat storage. Furthermore, since it is not thermoplastic, it is difficult to recycle. Therefore, when it is incinerated, damage to the incinerator becomes large, and there are problems such as high costs for removing toxic gases. Therefore, landfill is often disposed, but there is a problem that the landfill site is limited and the cost is increased because it is difficult to stabilize the ground. Further, various problems have been pointed out, such as pollution problems of chemicals used during production, residual chemicals after foaming, and odors associated therewith, although the processability is excellent.
  • Patent Documents 1 and 2 disclose a network structure. This can solve various problems derived from the above-mentioned foam-crosslinked urethane, and is excellent in cushioning performance.
  • the repeated compression endurance characteristics are only excellent in 50% constant displacement repeated compression residual strain, and the hardness retention at 50% compression after 50% repeated compression is about 83%. There was a problem that the hardness was lowered.
  • Patent Document 3 discloses a different fineness network structure and a manufacturing method thereof. This is because the surface layer and the basic layer define the fineness difference using the ratio of the moment of inertia of the round cross section, the soft layer with a thin fiber diameter on the surface, and the inner layer with a large fiber diameter that bears durability on the basic layer Cushioning and durability are improved by providing.
  • the conventional 50% constant displacement repeated compressibility was excellent, but the stricter 750N constant load repeated compression durability targeted by this patent is not necessarily superior. It was difficult to achieve the scope of the patent.
  • the object of the present invention is to solve the above-mentioned conventional problems, wherein the 750N constant load repeated compression residual strain is 15% or less, and the 40% hardness retention after 750N constant load repeated compression is 55% or more. It is an object of the present invention to provide a network structure having excellent repeated compression characteristics.
  • the present inventors have invented a network structure excellent in repeated compression durability and excellent in hardness retention and thickness retention.
  • a random loop is formed by curving a continuous linear body composed of at least one thermoplastic elastomer selected from the group consisting of a polyester-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, and an ethylene-vinyl acetate copolymer,
  • the network structure according to the present invention has a small constant load repeated compression residual strain, an excellent hardness retention rate, hardly changes in sitting comfort even after repeated use, and has a characteristic of excellent repeated compression durability. Can provide. With this excellent repeated compression durability, it is possible to provide a reticulated structure cushion with excellent repeated compression durability used for bedding such as office chairs, furniture, sofas, beds, and vehicle seats such as trains and cars. .
  • the network structure of the present invention comprises a continuous linear body composed of at least one thermoplastic elastomer selected from the group consisting of a polyester-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, and an ethylene vinyl acetate copolymer.
  • a network structure comprising a three-dimensional random loop joining structure in which loops are formed and the loops are brought into contact with each other in a molten state, and the fiber diameter of the continuous linear body is 0.1 mm to 3.0 mm, and the network structure
  • the fiber diameter of the surface layer portion of the body is 1.05 times or more of the fiber diameter of the inner layer portion, the apparent density is 0.01 g / cm 3 or more and 0.20 g / cm 3 or less, 750N constant load repeated compression residual strain is 15% or less,
  • polyester-based thermoplastic elastomer in the present invention a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylene diol as a soft segment, or a polyester ester block copolymer having an aliphatic polyester as a soft segment. Can be illustrated.
  • polyester ether block copolymer examples include terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid and the like.
  • Dicarboxylic acids selected from aromatic dicarboxylic acids, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as oxalic acid, adipic acid, and sebacic acid dimer acid, or ester-forming derivatives thereof.
  • At least one acid, and aliphatic diols such as 1,4-butanediol, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, 1,1-cyclohexanedimethanol, 1,4- Cyclohexanedimethanol and other alicyclic rings
  • the polyester ester block copolymer is a ternary block copolymer composed of at least one of the dicarboxylic acid, diol, and polyester diol such as polylactone having a number average molecular weight of about 300 to 5000.
  • dicarboxylic acid is terephthalic acid or naphthalene 2,6-dicarboxylic acid
  • diol component is 1,4-butanediol
  • the diol is particularly preferably a polytetramethylene glycol ternary block copolymer or the polyester diol as a polylactone ternary block copolymer.
  • a polysiloxane-based soft segment can be used.
  • the polyester-based thermoplastic elastomer of the present invention includes those obtained by blending non-elastomeric components with the polyester-based thermoplastic elastomer, those copolymerized, those having a polyolefin-based component as a soft segment, and the like. These polyester elastomers may be used alone or in combination of two or more. If necessary, it is possible to improve durability by adding an antioxidant, a light-proofing agent, or the like. It is also effective to increase the molecular weight of the thermoplastic resin in order to improve heat resistance and sag resistance.
  • the melting point of the polyester-based thermoplastic elastomer of the present invention is preferably 140 ° C. or higher, which can maintain the heat durability, and more preferably 160 ° C. or higher because the heat durability is improved.
  • the soft segment content of the polyester-based thermoplastic elastomer is preferably 15% by weight or more, more preferably 25% by weight or more, and still more preferably. Is 30% by weight or more, particularly preferably 40% by weight or more, and is preferably 80% by weight or less, more preferably 70% by weight or less, from the viewpoint of ensuring hardness and heat-resistant sag resistance.
  • the component comprising the polyester-based thermoplastic elastomer constituting the network structure excellent in repeated compression durability of the present invention may have an endothermic peak below the melting point in the melting curve measured with a differential scanning calorimeter. preferable. Those having an endothermic peak below the melting point have significantly improved heat sag resistance compared to those having no endothermic peak.
  • preferred polyester-based thermoplastic elastomers of the present invention include those containing 90 mol% or more of terephthalic acid or naphthalene 2,6-dicarboxylic acid having a rigid hard segment acid component, more preferably terephthalic acid or naphthalene.
  • the content of 2,6-dicarboxylic acid is 95 mol% or more, particularly preferably 100 mol%, and after the glycol component is transesterified, it is polymerized to the required degree of polymerization, and is then preferably used as a polyalkylenediol.
  • Polytetramethylene glycol having an average molecular weight of 500 or more and 5000 or less, more preferably 700 or more and 3000 or less, and further preferably 800 or more and 1800 or less is preferably 15% by weight or more and 80% by weight or less, more preferably 25% by weight or more and 70% or less.
  • % By weight or less, more preferably 30% by weight or more and 70% by weight Particularly preferably, when the copolymerization amount is 40% by weight or more and 70% by weight or less, if the content of terephthalic acid or naphthalene 2,6-dicarboxylic acid, which is rigid in the acid component of the hard segment, is high, -Improvement in crystallinity of the segment, resistance to plastic deformation, and improved heat resistance and sag resistance. However, annealing at a temperature at least 10 ° C lower than the melting point after fusion heat bonding further improves heat resistance and resistance. It improves the performance.
  • the sample can be heat-treated at a temperature lower by at least 10 ° C. than the melting point, but the heat distortion resistance is further improved by applying compressive strain.
  • An endothermic peak is more clearly expressed in a melting curve measured with a differential scanning calorimeter at a temperature not lower than the room temperature and not higher than the melting point of the cushion layer subjected to such treatment. If the annealing is not performed, the endothermic peak is not clearly expressed in the melting curve above the room temperature and below the melting point.
  • the sag resistance is good in applications that can be relatively high temperature, such as a vehicle cushion in which a heater is used and a floor mat that is floor heated. Useful.
  • the polymer constituting the network structure is preferably a low density polyethylene resin having a specific gravity of 0.94 g / cm 3 or less, particularly from ethylene and an ⁇ -olefin having 3 or more carbon atoms. It is preferably made of an ethylene / ⁇ -olefin copolymer resin.
  • the ethylene / ⁇ -olefin copolymer of the present invention is preferably a copolymer described in JP-A-6-293131, and is obtained by copolymerizing ethylene and an ⁇ -olefin having 3 or more carbon atoms. It is.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene, butene-1, pentene-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, and decene.
  • ⁇ -olefins Two or more of these can be used, and these ⁇ -olefins are usually copolymerized in an amount of 1 to 40% by weight.
  • This copolymer can be obtained by copolymerizing ethylene and an ⁇ -olefin using a catalyst system having a specific metallocene compound and an organometallic compound as basic components.
  • a catalyst system having a specific metallocene compound and an organometallic compound as basic components.
  • two or more kinds of polymers polymerized by the above method, and polymers such as hydrogenated polybutadiene and hydrogenated polyisoprene can be blended.
  • an antioxidant, an antifungal agent, a flame retardant, and the like can be added as necessary.
  • the cushion material tends to be hard, which is not preferable. More preferably, it is 0.935 g / cm 3 or less, and further 0.93 g / cm 3 or less is preferable. Although a minimum is not specifically limited, 0.8 g / cm ⁇ 3 > or more is preferable from a viewpoint of intensity
  • the component comprising the polyolefin-based thermoplastic elastomer constituting the network structure excellent in repeated compression durability of the present invention preferably has an endothermic peak below the melting point in the melting curve measured with a differential scanning calorimeter. Those having an endothermic peak below the melting point are significantly improved in heat resistance and sag resistance than those having no endothermic peak.
  • a preferable polyolefin-based thermoplastic elastomer of the present invention hexane, hexene, and ethylene are polymerized by a known method using a metallocene compound as a catalyst. If the number is reduced, the crystallinity of the hard segment is improved, plastic deformation is difficult, and heat sag resistance is improved.
  • annealing at a temperature at least 10 ° C. lower than the melting point results in higher heat resistance. Improves drooling.
  • the sample can be heat-treated at a temperature lower by at least 10 ° C. than the melting point, but the heat distortion resistance is further improved by applying compressive strain.
  • An endothermic peak is more clearly expressed in a melting curve measured with a differential scanning calorimeter at a temperature not lower than the room temperature and not higher than the melting point of the cushion layer subjected to such treatment. In the case where annealing is not performed, an endothermic peak is not clearly expressed in the melting curve from room temperature to the melting point.
  • the polymer constituting the network structure preferably has a specific gravity of 0.91 to 0.965.
  • the specific gravity varies depending on the vinyl acetate content, and the vinyl acetate content is preferably 1 to 35%. If the vinyl acetate content is small, rubber elasticity may be poor. From such a viewpoint, the vinyl acetate content is preferably 1% or more, more preferably 2% or more, and further preferably 3% or more. If the vinyl acetate content is increased, the rubber elasticity is excellent, but the melting point is lowered and the heat resistance may be poor. Therefore, the vinyl acetate content is preferably 35% or less, more preferably 30% or less, and preferably 26% or less. Further preferred.
  • the ethylene vinyl acetate copolymer of the present invention can also copolymerize an ⁇ -olefin having 3 or more carbon atoms.
  • the ⁇ -olefin having 3 or more carbon atoms include propylene, butene-1, pentene-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, and decene.
  • polymers polymerized by the above method and polymer modifiers such as hydrogenated polybutadiene and hydrogenated polyisoprene can be blended.
  • a lubricant, an antioxidant, an antifungal agent, a flame retardant and the like can be added as necessary.
  • the component comprising the ethylene-vinyl acetate copolymer constituting the network structure excellent in repeated compression durability of the present invention preferably has an endothermic peak below the melting point in the melting curve measured with a differential scanning calorimeter. . Those having an endothermic peak below the melting point are significantly improved in heat resistance and sag resistance than those having no endothermic peak.
  • the preferred ethylene vinyl acetate copolymer of the present invention has a vinyl acetate content ratio of preferably 35% or less, more preferably 30% or less, and even more preferably 26% or less. When the vinyl acetate content ratio is reduced, the crystallinity of the hard segment is improved, the plastic deformation is difficult, and the heat sag resistance is improved.
  • the heat sag resistance is further improved.
  • the sample can be heat-treated at a temperature lower by at least 10 ° C. than the melting point, but the heat distortion resistance is further improved by applying compressive strain.
  • An endothermic peak is more clearly expressed in a melting curve measured with a differential scanning calorimeter at a temperature not lower than the room temperature and not higher than the melting point of the cushion layer subjected to such treatment. In the case where annealing is not performed, an endothermic peak is not clearly expressed in the melting curve from room temperature to the melting point.
  • the fiber diameter of the continuous linear body constituting the network structure of the present invention is small, the required hardness when used as a cushioning material cannot be maintained, and conversely, if the fiber diameter is too large, the fiber diameter becomes too hard. Therefore, it is necessary to set within an appropriate range.
  • the fiber diameter is 0.1 mm or more and 3.0 mm or less, preferably 0.2 mm or more and 2.5 mm or less. If the fiber diameter is less than 0.1 mm, the fiber will be too thin, and the denseness and soft feel will be good, but it may be difficult to ensure the necessary hardness for the network structure. When the fiber diameter exceeds 3.0 mm, the network structure can have a sufficient hardness, but the network structure becomes rough and other cushioning performance may be inferior.
  • the fiber diameter of the surface layer portion is 1.05 times or more, preferably 1.08 times or more, more preferably 1.10 times or more the fiber diameter of the inner layer portion. If the fiber diameter of the surface layer portion is less than 1.05 times the fiber diameter of the inner layer portion, the required surface rigidity and surface contact strength cannot be ensured, and the hardness retention required for cushion characteristics cannot be achieved stably. There is a case.
  • the upper limit of the ratio of the fiber diameter of the surface layer portion to the fiber diameter of the inner layer portion is not particularly defined, but is 1.25 times or less in the present invention.
  • the apparent density of the network structure of the present invention is 0.01 g / cm 3 to 0.20 g / cm 3 , preferably 0.02 g / cm 3 to 0.15 g / cm 3 , more preferably 0.025 g / cm 3 . cm 3 to 0.12 g / cm 3 . If the apparent density is less than 0.01 g / cm 3 , the cushion will not be able to maintain the required hardness when used as a cushioning material. Conversely, if it exceeds 0.20 g / cm 3 , the cushion becomes too hard and a soft tactile sensation is obtained. It may be unsuitable as a material.
  • the 750N constant load cyclic compressive residual strain of the network structure of the present invention is 15% or less, preferably 10% or less.
  • the 750N constant load repeated compressive residual strain exceeds 15%, the thickness of the network structure decreases when used for a long time, which is not preferable as a cushioning material.
  • the lower limit of the 750N constant load repeated compression residual strain is not particularly defined, but is 0.1% or more in the network structure obtained in the present invention.
  • the 40% compression hardness of the network structure of the present invention is preferably 40 N / ⁇ 200 to 1000 N / ⁇ 200. If the hardness at 40% compression is less than 40 N / ⁇ 200, a feeling of bottoming may be felt, and if it exceeds 1000 N / ⁇ 200, it may be too hard to impair cushioning properties.
  • the network structure according to the present invention has a 40% compression hardness retention after repeated compression at 750 N constant load of 55% or more, preferably 60% or more, more preferably 65% or more, and even more preferably 70% or more. It is. If the 40% -compression hardness retention after 750 N constant load repeated compression is less than 55%, the cushion material may decrease in hardness over time and may feel that the hardness has changed significantly.
  • the upper limit value of 40% hardness retention after 750 N constant load repeated compression is not particularly specified, but is 95% or less in the network structure obtained in the present invention.
  • the hardness at 65% compression of the network structure of the present invention is preferably 80 N / ⁇ 200 to 2000 N / ⁇ 200. If the hardness at 65% compression is less than 80 N / ⁇ 200, a feeling of bottoming may be felt, and if it exceeds 2000 N / ⁇ 200, it may be too hard to impair cushioning properties.
  • the network structure of the present invention has a 65% compression hardness retention after 70% constant load repeated compression of 70% or more, preferably 73% or more, more preferably 75% or more, and still more preferably 80%. % Or more. If the 65% hardness retention after repeated compression at a constant load of 750 N is less than 70%, the cushion material may be reduced in hardness for a long time, and a feeling of bottoming may be felt.
  • the upper limit value of the hardness retention at 65% compression after 750N constant load repeated compression is not particularly specified, but is 99% or less in the network structure obtained in the present invention.
  • the compression deflection coefficient of the network structure of the present invention is preferably 2.5 or more, more preferably 2.8 or more, and further preferably 3.0 or more. If it is less than 2.5, the sitting comfort and sleeping comfort as a cushioning material may be impaired.
  • the upper limit value of the compression deflection coefficient is not particularly defined, but is 8.0 or less in the network structure obtained by the present invention.
  • the thickness of the network structure of the present invention is preferably 10 mm or more, more preferably 20 mm or more. If the thickness is less than 10 mm, it may become too thin when used as a cushioning material, resulting in a feeling of bottoming.
  • the upper limit of the thickness is preferably 300 mm or less, more preferably 200 mm or less, and still more preferably 120 mm or less, in view of the manufacturing apparatus.
  • the hardness at 25% compression of the network structure of the present invention is preferably 10 N / ⁇ 200 to 600 N / ⁇ 200. If the hardness at 25% compression is less than 10 N / ⁇ 200, a feeling of bottoming may be felt, and if it exceeds 600 N / ⁇ 200, it may be too hard to impair cushioning properties.
  • the 70 ° C. compressive residual strain is preferably 35% or less.
  • the 70 ° C. compressive residual strain exceeds 35%, the characteristics as a network structure used for the intended cushion material are not satisfied.
  • the lower limit of the 70 ° C. compressive residual strain is not particularly defined, but is 0.1% or more in the network structure obtained in the present invention.
  • the network structure of the present invention has characteristics that the hardness retention at 40% compression after 750N constant load repeated compression is 55% or more, and the hardness retention at 65% compression after 750N constant load repeated compression is 70% or more. It is preferable.
  • the 750N constant load repeated compression test is a test for evaluating higher durability than the 50% constant displacement repeated compression test that has been focused on in the prior literature.
  • the amount of compression is fixed at 50% of the thickness from the start of processing to the end of processing, but in the case of the 750N constant load repeated compression durability test, for example, the load 750N is thick at the start of processing. Even if it corresponds to a displacement of 50%, the hardness decreases during the repeated compression process, so the compression amount exceeds 50% of the thickness at the end of the process, and the deformation amount that the sample undergoes during the test is 50%. This is because it becomes larger than the constant displacement repeated compression test.
  • the external load (750N) is received at the surface layer of the network structure, and the load is distributed on the surface layer to reduce the burden on the inner layer.
  • the present inventors have found that it is necessary to maintain the load dispersion effect on the surface layer even during the constant load repeated compression test.
  • the former can be solved for the first time by providing a structural difference between the surface layer portion and the inner layer portion, and the latter by strengthening the contact strength between the continuous linear bodies existing in the surface layer portion. That is, the difference between the network structure having a small 50% constant displacement cyclic compression strain known so far and the network structure of the present invention is that the network structure of the present invention has a continuous linear structure constituting the network structure.
  • the contact strength between the continuous linear bodies is increased, and at the same time, the fiber diameter of the surface layer part of the network structure is made higher than the fiber diameter of the inner layer part, The difference in the inner layer structure is given, the contact area of the continuous line is increased, the contact strength of the surface layer of the network structure is higher than that of the inner layer part, and the destruction of the contacts that occur during repeated compression processing is further suppressed. This is the point that the effect of surface-dispersing the load (750 N) received during repeated compression at the surface layer portion is maintained.
  • the fibers of the surface layer The surface rigidity was increased by selectively increasing the diameter, the contact strength between the surface layer lines was designed to be higher, and the structure difference between the inner layer and the surface layer could be achieved stably.
  • the network structure of the present invention it is necessary to provide a structural difference between the surface layer portion and the inner layer portion and to increase the contact strength between the continuous linear portions of the surface layer portion. , It can be obtained by making the fiber diameter of the surface layer portion 1.05 times or more the fiber diameter of the inner layer portion.
  • the structural difference between the surface layer portion and the inner layer portion is small, and the required surface rigidity cannot be obtained. For this reason, the effect of surface dispersion at the surface layer portion of the load received during repeated compression is reduced, and a sufficient hardness retention cannot be obtained.
  • Patent Document 3 has improved cushioning and durability by providing a soft layer with a thin fiber diameter on the surface and an inner layer with a large fiber diameter responsible for durability on the basic layer.
  • the surface fiber diameter is increased by increasing the fiber diameter of the surface layer to improve the hardness retention, and the essential design concept is different.
  • the conventional 50% constant displacement repeated compressibility was excellent, but the stricter 750N constant load repeated compression durability targeted by this patent is not necessarily excellent. It was difficult to achieve the scope of this patent.
  • the network structure of the present invention preferably has a characteristic that the compression deflection coefficient is 2.5 or more.
  • the compression deflection coefficient is expressed as a ratio of 25% compression hardness and 65% compression hardness, and the coefficient can be increased by either decreasing the 25% compression hardness or increasing the 65% compression hardness.
  • the mechanism by which the compression deflection coefficient is improved has not been fully elucidated, but probably the fiber diameter of the surface layer part described above is large and the surface rigidity is high, and the hardness at the time of compression is 65%. It is presumed that this is because it is getting larger. It is considered that this effect can stably increase the compression deflection coefficient.
  • the network structure of the present invention can be obtained, for example, as follows.
  • the network structure is obtained based on a known method described in JP-A-7-68061.
  • at least one thermoplastic elastomer selected from the group consisting of a polyester-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, and an ethylene vinyl acetate copolymer is distributed from a multi-row nozzle having a plurality of orifices to the nozzle orifice, Below the nozzle at a spinning temperature that is 20 ° C. or more and less than 120 ° C.
  • thermoplastic elastomer selected from the group consisting of polyester-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, and ethylene-vinyl acetate copolymers.
  • the obtained network structure can be annealed.
  • the drying process of the network structure may be an annealing process.
  • One means for obtaining a network structure with increased contact strength is, for example, at least one thermoplastic elastomer selected from the group consisting of polyester-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, and ethylene-vinyl acetate copolymers. It is preferable to increase the spinning temperature.
  • the spinning temperature varies depending on the characteristics of the resin, but in the present invention, the melting point is preferably at least 30 ° C. and 150 ° C., more preferably 40 ° C. and 140 ° C., and even more preferably 50 ° C. and 130 ° C.
  • a method for imparting a difference in fiber diameter between the surface layer portion and the inner layer portion a method in which only the fibers on the surface of the network structure are cooled quickly to increase the fiber diameter only in the surface layer portion is preferable.
  • One of the methods In the method of giving a difference in fiber diameter by a nozzle configuration in which the hole diameter of the nozzle as described in Patent Document 3 is changed between the surface layer portion and the inner layer portion to increase the fiber diameter only in the surface layer portion, the loop shape of the surface layer portion is distorted. With the aim of this patent, the density difference becomes clear and the quality problem, the discharge balance of the surface layer part and the inner layer part is easily lost, the production stability and the production of uniform products are difficult It was difficult to obtain a certain 750 N constant load repeated compression durability.
  • Measures for cooling only the fibers on the surface of the network structure include a method of setting the ambient temperature low and a method of selectively blowing cooling air to the surface.
  • the atmospheric temperature is the temperature measured by a thermometer located in the same space as the spinning machine, located at a distance of 1 m or more and less than 1.5 m from the spinning machine, and located at the height from the discharge surface to the water surface. Point to.
  • the atmospheric temperature is preferably 50 ° C. or lower, more preferably 40 ° C. or lower, and further preferably 35 ° C. or lower.
  • the atmospheric temperature is preferably ⁇ 10 ° C. or higher from the viewpoint of preventing the contact strength from significantly decreasing.
  • the temperature of the cooling air is preferably equal to or lower than the melting point of the resin, and preferably equal to or higher than the ambient temperature.
  • the cooling air velocity is preferably 0.3 m / second or less, and more preferably 0.2 m / second or less.
  • the apparatus for blowing cooling air preferably has a structure that covers the entire width direction toward the thickness direction of the network structure and blows from both sides.
  • An apparatus for blowing cooling air can be appropriately selected according to the network structure to be obtained.
  • the installation location in the height direction of the device for blowing the cooling air may be any location between the nozzle surface and the cooling water, and the height may be changed as necessary.
  • the heights need not all be the same in the width direction, and may vary depending on the part. You may spray only to the location which makes surface formation stronger, according to a use, you may spray only one side, or you may spray cooling air from the whole surface toward the thickness direction of a network structure.
  • the cooling air preferably has at least one rectification unit such as a wire mesh in order to make the wind speed as uniform as possible. When raising the temperature of the cooling air, it is preferable to use a hot air generator, and exhaust heat around the nozzle can also be used.
  • the continuous linear body constituting the network structure of the present invention may be a composite linear combination with another thermoplastic resin as long as the object of the present invention is not impaired.
  • the composite form include composite linear bodies such as a sheath / core type, a side-by-side type, and an eccentric sheath / core type when the linear body itself is combined.
  • the network structure of the present invention may have a multilayer structure as long as the object of the present invention is not impaired.
  • Examples of the multi-layered structure include a method of stacking network structures and fixing them with a side ground, a method of melting and fixing by heating, a method of bonding with an adhesive, and a method of binding with sewing or a band.
  • the cross-sectional shape of the continuous linear body constituting the network structure of the present invention is not particularly limited, but a preferable anti-compression property and touch can be imparted by making it a hollow cross-section and / or an irregular cross-section.
  • the network structure of the present invention is processed from a resin production process to a molded body within a range not deteriorating the performance, and at any stage of commercialization, deodorizing antibacterial, deodorizing, antifungal, coloring, aroma, flame retardant, moisture absorption and desorption
  • the functional processing such as chemical addition can be performed.
  • the network structure of the present invention thus obtained has excellent repeated compression durability with small repeated compression residual strain and high hardness retention.
  • Fiber diameter A sample is cut into a size of 20 cm ⁇ 20 cm, and a linear body is collected at a length of about 5 mm from each of 10 portions of the surface layer portion and the inner layer portion of the network structure.
  • the surface layer fiber is collected from the outermost layer in the thickness direction of the network structure, that is, from the position where no fiber exists outside the fiber, and the inner layer fiber has a thickness of 30 based on the center portion in the thickness direction of the network structure. Collect from within% range.
  • the fiber diameters of the linear bodies collected from 10 places are measured by focusing an optical microscope at a fiber diameter measurement place at an appropriate magnification.
  • the fiber diameter obtained from the surface layer fiber is the fiber diameter of the surface layer part, and the fiber diameter obtained from the inner layer fiber is the fiber diameter of the inner layer part (unit: mm).
  • Melting point (Tm) An endothermic peak (melting peak) temperature was determined from an endothermic curve measured using a differential scanning calorimeter Q200 manufactured by TA Instruments Co., Ltd. at a heating rate of 20 ° C./min.
  • the sample was cut into a size of 40 cm ⁇ 40 cm, left in an environment of 23 ° C. ⁇ 2 ° C. with no load for 24 hours, and then at 23 ° C. ⁇ 2 ° C. Measurement is performed in accordance with ISO 2439 (2008) E method using an autograph AG-X plus manufactured by Shimadzu Corporation under the environment. A sample is placed so that a pressure plate of ⁇ 200 mm is at the center of the sample, and the thickness when the load is 5 N is measured to obtain the initial hardness meter thickness.
  • the pressurizer uses a circular shape with a radius of curvature of 25 ⁇ 1 mm at the bottom edge, a diameter of 250 ⁇ 1 mm and a flat bottom surface, a load of 750 N ⁇ 20 N, a compression frequency of 70 ⁇ 5 times per minute, and the number of compressions
  • the time during which the pressure is applied to 80,000 times and the maximum of 750 ⁇ 20 N is 25% or less of the time required for repeated compression.
  • After repeated compression leave the specimen for 10 ⁇ 0.5 minutes without applying any force, and place the sample so that the pressure plate of ⁇ 200mm is at the center of the sample using Shimadzu Autograph AG-X plus.
  • the thickness when the load reaches 5 N is measured, and the hardness meter thickness (d) is measured after repeated compression.
  • the pressurizer uses a circular shape with a radius of curvature of 25 ⁇ 1 mm at the bottom edge, a diameter of 250 ⁇ 1 mm and a flat bottom surface, a load of 750 N ⁇ 20 N, a compression frequency of 70 ⁇ 5 times per minute, and the number of compressions
  • the time during which the pressure is applied to 80,000 times and the maximum of 750 ⁇ 20 N is 25% or less of the time required for repeated compression. After repeated compression, leave the specimen for 10 ⁇ 0.5 minutes without applying any force, and place the sample so that the pressure plate of ⁇ 200mm is at the center of the sample using Shimadzu Autograph AG-X plus.
  • the sample thickness is 750N, with the initial hardness meter thickness before constant load repeated compression as zero point, pre-compression is performed once to 75% of the initial hardness meter thickness at a speed of 100mm / min, and the pressure plate is returned to the zero point at the same speed. After that, the sample is left as it is for 4 minutes. Immediately after the elapse of a predetermined time, it is compressed to 40% of the initial hardness meter thickness at a speed of 100 mm / min, and the load at that time is 40% after repeated compression at a constant load of 750 N.
  • the pressurizer uses a circular shape with a radius of curvature of 25 ⁇ 1 mm at the bottom edge, a diameter of 250 ⁇ 1 mm and a flat bottom surface, a load of 750 N ⁇ 20 N, a compression frequency of 70 ⁇ 5 times per minute, and the number of compressions
  • the time during which the pressure is applied to 80,000 times and the maximum of 750 ⁇ 20 N is 25% or less of the time required for repeated compression. After repeated compression, leave the specimen for 10 ⁇ 0.5 minutes without applying any force, and place the sample so that the pressure plate of ⁇ 200mm is at the center of the sample using Shimadzu Autograph AG-X plus.
  • polyester-based thermoplastic elastomer As a polyester-based thermoplastic elastomer, dimethyl terephthalate (DMT) and 1,4-butanediol (1,4BD) are charged with a small amount of catalyst, transesterified by a conventional method, and then added with polytetramethylene glycol (PTMG). Polyether ester block copolymer elastomer is formed by polycondensation while reducing the temperature, and then 2% of antioxidant is added, kneaded, pelletized, and vacuum-dried at 50 ° C. for 48 hours. The prescription is shown in Table 1.
  • DMT dimethyl terephthalate
  • 1,4BD 1,4-butanediol
  • PTMG polytetramethylene glycol
  • thermoplastic elastic resin A-1 was applied at a spinning temperature of 260 ° C. to a nozzle in which orifices with a hole diameter of 1.0 mm were arranged in a staggered arrangement with a hole pitch of 5 mm on the nozzle effective surface having a width direction of 1050 mm and a width direction of 50 mm.
  • a single hole discharge rate of 0.85 g / min is discharged below the nozzle, passes through a cooling space with an ambient temperature of 30 ° C., does not blow cooling air, distributes cooling water under the nozzle surface 23 cm, and has a width of 150 cm.
  • a pair of take-up conveyors are arranged in parallel so that the endless nets made in parallel with an opening width of 45 mm are provided on the surface of the water, the discharge line in the molten state is twisted to form a loop, and the contact portion is fused.
  • a three-dimensional network structure was formed while the both sides of the molten network structure were sandwiched by a take-up conveyor and drawn into cooling water at a rate of 0.8 m / min to solidify both sides. , It was cut to a predetermined size, and dried heat-treated for 15 minutes at 110 ° C. hot air to obtain a network structure.
  • Table 2 shows the characteristics of the network structure formed of the thermoplastic elastic resin.
  • the obtained network structure is formed of filaments having a fiber diameter of the surface layer portion of 0.53 mm and a fiber diameter of the inner layer portion of 0.48 mm, the apparent density is 0.055 g / cm 3 , and the surface is flattened.
  • a thickness of 45 mm 70 ° C. compression residual strain of 9.7%, 25% compression hardness of 204 N / ⁇ 200 mm, 40% compression hardness of 260 N / ⁇ 200 mm, 65% compression hardness of 548 N / ⁇ 200 mm, 750 N Strain is 7.4%, hardness retention at 40% compression after 750N repeated compression is 62.3%, hardness retention at 65% compression after 750N repeated compression is 78.8%, and compression deflection coefficient is 2.7. It was a network structure. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability.
  • Example 1-2 Using a nozzle with an outer diameter of 2.0 mm, an inner diameter of 1.6 mm, and a triple-bridge hollow-forming cross section in a staggered arrangement with a hole pitch of 5 mm, a spinning temperature of 260 ° C., a single hole discharge rate of 1.8 / min A network structure as in Example 1 except that the ambient temperature was 40 ° C., the cooling air temperature was 100 ° C., the cooling air speed was 0.2 m / sec, the take-up speed was 1.5 m / min, and the nozzle surface-cooling water distance was 28 cm.
  • Table 2 shows the characteristics of the network structure formed of the thermoplastic elastic resin.
  • the obtained network structure is formed of filaments having a fiber diameter of 0.57 mm in the surface layer portion and a fiber diameter of 0.50 mm in the inner layer portion, the apparent density is 0.059 g / cm 3 , and the surface is flattened. Thickness is 45 mm, 70 ° C compression residual strain is 13.1%, 25% compression hardness is 310 N / ⁇ 200 mm, 40% compression hardness is 399 N / ⁇ 200 mm, 65% compression hardness is 924 N / ⁇ 200 mm, 750 N repeated compression A net having a residual strain of 7.7%, a 40% hardness retention after repeated compression of 750N, 73.4%, a 65% hardness retention after repeated compression of 750N, 82.0%, and a compression deflection coefficient of 3.0. It was a structure. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability.
  • Example 1-3 Except for thermoplastic elastic resin A-2, spinning temperature 240 ° C., cooling air temperature 80 ° C., cooling air speed 0.1 m / sec, take-up speed 1.6 m / min, nozzle surface-cooling water distance 25 cm.
  • a network structure was obtained.
  • Table 2 shows the characteristics of the network structure formed of the thermoplastic elastic resin.
  • the obtained network structure is formed of filaments having a fiber diameter of 0.65 mm in the surface layer portion and a fiber diameter of 0.57 mm in the inner layer portion, the apparent density is 0.055 g / cm 3 , and the surface is flattened.
  • Thickness is 45mm, 70 ° C compression residual strain is 10.8%, 25% compression hardness is 105N / ⁇ 200mm, 40% compression hardness is 177N / ⁇ 200mm, 65% compression hardness is 399N / ⁇ 200mm, 750N repeated compression
  • Example 1-4 Thermoplastic elastic resin A-3, spinning temperature 240 ° C., ambient temperature 20 ° C., cooling air temperature 80 ° C., cooling air speed 0.1 m / sec, take-off speed 1.2 m / min, nozzle surface-cooling water distance 30 cm, A network structure was obtained in the same manner as in Example 2 except that the opening width of the conveyor net was 40 mm.
  • Table 2 shows the characteristics of the network structure formed of the thermoplastic elastic resin.
  • the obtained network structure is formed of filaments having a fiber diameter of the surface layer portion of 0.80 mm and a fiber diameter of the inner layer portion of 0.75 mm, the apparent density is 0.054 g / cm 3 , and the surface is flattened.
  • Example 1-2 Thermoplastic elastic resin A-2, spinning temperature 210 ° C, single hole discharge rate 0.8g / min, ambient temperature 40 ° C, cooling air is not blown, take-up speed 0.8m / min, nozzle surface-cooling
  • a network structure was obtained in the same manner as in Example 1 except that the water distance was 25 cm and the opening width of the conveyor net was 40 mm.
  • Table 2 shows the characteristics of the network structure formed of the thermoplastic elastic resin.
  • the obtained network structure is formed of filaments having a fiber diameter of the surface layer portion of 0.44 mm and a fiber diameter of the inner layer portion of 0.43 mm, the apparent density is 0.055 g / cm 3 , and the surface is flattened.
  • the nozzle hole diameter is 1.0 mm from the first row to the eighth row in the thickness direction on the nozzle effective surface having a width direction of 500 mm and a thickness direction width of 50 mm, and the inter-hole pitch in the thickness direction is 5 mm and the inter-hole pitch in the width direction is 10 mm.
  • the 9th to 11th rows have an orifice hole diameter of 0.7 mm, nozzles with a hole pitch of 5 mm in the thickness direction and a pitch of 2.5 mm between the holes in the width direction, A-3 thermoplastic spinning resin, spinning temperature 210 ° C, single hole discharge rate 1.0g / min, ambient temperature 40 ° C, cooling air is not blown, take-off speed 1.0m / min, nozzle surface-cooling water distance 20cm, conveyor net opening width 40mm
  • a network structure was obtained in the same manner as in Example 2 except that. Table 2 shows the characteristics of the network structure formed of the thermoplastic elastic resin.
  • the obtained network structure is formed of filaments having a fiber diameter of the surface layer portion of 1.04 mm and a fiber diameter of the inner layer portion of 0.51 mm, the apparent density is 0.050 g / cm 3 , and the surface is flattened. 40mm thickness, 70 ° C compression residual strain 10.4%, 25% compression hardness 65N / ⁇ 200mm, 40% compression hardness 127N / ⁇ 200mm, 65% compression hardness 190N / ⁇ 200mm, 750N repeated compression A net having a residual strain of 7.0%, a 40% hardness retention after repeated compression of 750N, 53.9%, a 65% hardness retention after repeated compression of 750N, 64.8%, and a compression deflection coefficient of 2.9. It was a structure. The obtained network structure did not satisfy the requirements of the present invention, and was a network structure inferior in repeated compression durability.
  • Ethylene and hexene-1 are polymerized by a known method using hexane as a solvent and a metallocene compound as a catalyst to form an ethylene / ⁇ -olefin copolymer, and then 2% antioxidant is added and kneaded and pelletized To obtain a polyolefin-based thermoplastic elastomer (B-1).
  • the obtained polyolefin-based thermoplastic elastomer (B-1) had a specific gravity of 0.919 g / cm 3 and a melting point of 110 ° C.
  • Ethylene and propylene are polymerized by a known method using hexane as a solvent and a metallocene compound as a catalyst to form an ethylene / ⁇ -olefin copolymer, then 2% antioxidant is added and kneaded and pelletized.
  • a polyolefin-based thermoplastic elastomer (B-2) was obtained.
  • the obtained polyolefin-based thermoplastic elastomer (B-2) had a specific gravity of 0.887 g / cm 3 and a melting point of 155 ° C.
  • Example 2-1 The obtained polyolefin-based thermoplastic elastomer (B-1) was spun at a spinning temperature of 200 to a nozzle in which orifices having a hole diameter of 0.8 mm were arranged in a staggered arrangement with a hole pitch of 5 mm on a nozzle effective surface having a width direction of 1050 mm and a width direction of 60 mm.
  • the nozzle is discharged at a rate of 1.0 g / min at a single hole discharge rate, passes through a cooling space with an ambient temperature of 20 °C, and the cooling air is not blown, and cooling water is arranged under 22 cm of the nozzle surface,
  • a stainless steel endless net with a width of 150 cm is arranged in parallel with an opening width of 45 mm so that a part of the pair of take-up conveyors comes out on the water surface, and the molten discharge line is twisted to form a loop.
  • a three-dimensional network structure is formed while fusing the contact parts, and the molten network structure is drawn into the cooling water at a rate of 0.9 m / min while being sandwiched by a take-up conveyor.
  • Table 3 shows the properties of the network structure composed of the obtained polyolefin-based thermoplastic elastomer (B-1).
  • the obtained network structure is formed in a linear shape having a solid cross-sectional shape with a fiber diameter of the surface layer portion of 0.52 mm and a fiber diameter of the inner layer portion of 0.48 mm, and the apparent density is 0.061 g / cm 3.
  • the surface is flattened with a thickness of 46 mm, 25% compression hardness is 155 N / ⁇ 200 mm, 40% compression hardness is 225 N / ⁇ 200 mm, 65% compression hardness is 470 N / ⁇ 200 mm, and 750 N repetitive compression residual strain is 8.0%.
  • Example 2-2 On the nozzle effective surface of the nozzle of width direction 1050mm and thickness direction width 60mm, the shape of the orifice is 2mm outer diameter, 1.6mm inner diameter, and the orifice which made the triple bridge hollow formation cross section into the nozzle which made the staggered arrangement of the hole pitch 5mm, A polyolefin-based thermoplastic elastomer (B-1) was discharged below the nozzle at a spinning hole temperature of 210 ° C.
  • a three-dimensional network structure is formed by arranging a loop so that a part of the discharge line in a molten state is twisted to form a loop, and a contact portion is fused.
  • the both sides of the network structure in the molten state are sandwiched by a take-up conveyor, drawn into cooling water at a rate of 1.6 m / min and solidified by flattening both sides, then cut into a predetermined size and heated to 70 ° C. with hot air For 15 minutes to obtain a network structure.
  • Table 3 shows the properties of the network structure composed of the obtained polyolefin-based thermoplastic elastomer (B-1).
  • the obtained network structure is formed of filaments having a hollow cross-sectional shape, a hollow ratio of 25%, a fiber diameter of the surface layer portion of 0.71 mm, and a fiber diameter of the inner layer portion of 0.65 mm.
  • the density is 0.053 g / cm 3
  • the flattened thickness is 46 mm
  • 25% compression hardness is 185 N / ⁇ 200 mm
  • 40% compression hardness is 242 N / ⁇ 200 mm
  • 65% compression hardness is 573 N / ⁇ 200 mm
  • 750 N Repetitive compression residual strain is 8.0%
  • 40% hardness retention after 750N repeated compression is 66.4%
  • 65% hardness retention after 750N repeated compression is 79.1%
  • compression deflection coefficient is 3.1. It was a network structure.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability.
  • Example 2-3 A network structure was obtained in the same manner as in Example 2-2, except that the ambient temperature of the cooling space was 15 ° C., and the opening width of the endless net was 40 mm.
  • Table 3 shows the properties of the network structure composed of the obtained polyolefin-based thermoplastic elastomer (B-1).
  • the obtained network structure is formed of filaments having a hollow cross-sectional shape, a hollowness ratio of 25%, a fiber diameter of the surface layer portion of 0.76 mm, and a fiber diameter of the inner layer portion of 0.68 mm.
  • the density is 0.060 g / cm 3 , the flattened thickness is 41 mm, 25% compression hardness is 208 N / ⁇ 200 mm, 40% compression hardness is 279 N / ⁇ 200 mm, 65% compression hardness is 629 N / ⁇ 200 mm, 750 N Repeated compression residual strain is 7.9%, 40% hardness retention after 750N repeated compression is 70.2%, 65% hardness retention after 750N repeated compression is 80.1%, and compression deflection coefficient is 3.0. It was a network structure. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability.
  • Example 2-4 A network structure was obtained in the same manner as in Example 2-3 except that the polyolefin-based thermoplastic elastomer (B-2) was used and the spinning temperature was 230 ° C.
  • Table 3 shows the characteristics of the network structure made of the polyolefin-based thermoplastic elastomer (B-2).
  • the obtained network structure has a hollow cross-sectional shape, a hollow ratio of 22%, a fiber diameter of the surface layer portion of 0.69 mm, and a fiber diameter of the inner layer portion of 0.60 mm.
  • the density is 0.060 g / cm 3 , the flattened thickness is 41 mm, 25% compression hardness is 215 N / ⁇ 200 mm, 40% compression hardness is 281 N / ⁇ 200 mm, 65% compression hardness is 645 N / ⁇ 200 mm, 750 N Repeated compression residual strain is 8.1%, 40% hardness retention after 750N repeated compression is 72.1%, 65% hardness retention after 750N repeated compression is 81.4%, and compression deflection coefficient is 3.0. It was a network structure. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability.
  • Example 2-1 A network structure was obtained in the same manner as in Example 2-1, except that the spinning temperature was 190 ° C., no cooling space was provided, and the opening width of the stainless steel endless net was 50 mm.
  • Table 3 shows the characteristics of the network structure made of the polyolefin-based thermoplastic elastomer.
  • the obtained network structure is formed of filaments having a solid cross-sectional shape with a fiber diameter of the surface layer portion of 0.51 mm and a fiber diameter of the inner layer portion of 0.49 mm, and an apparent density of 0.056 g / cm 3 , Surface flattened thickness is 50mm, 25% compression hardness is 162N / ⁇ 200mm, 40% compression hardness is 216N / ⁇ 200mm, 65% compression hardness is 469N / ⁇ 200mm, 750N repeated compression residual strain is 8.9%
  • the network structure had a 40% hardness retention after repeated compression of 750N of 51.6%, a 65% hardness retention after repeated compression of 750N of 67.6%, and a compression deflection coefficient of 2.9.
  • the obtained network structure did not satisfy the requirements of the present invention, and was a network structure slightly inferior in repeated compression durability.
  • Example 2-2 A network structure was obtained in the same manner as in Example 2-2 except that the spinning temperature was 190 ° C., no cooling space was provided, no cooling air was blown, and the opening width of the stainless steel endless net was 50 mm.
  • Table 3 shows the characteristics of the network structure made of the polyolefin-based thermoplastic elastomer.
  • the obtained network structure is formed of filaments having a hollow cross-sectional shape, a hollowness ratio of 24%, a fiber diameter of the surface layer portion of 0.70 mm, and a fiber diameter of the inner layer portion of 0.68 mm.
  • Density is 0.048 g / cm 3 , surface flattened thickness is 50 mm, 25% compression hardness is 152 N / ⁇ 200 mm, 40% compression hardness is 219 N / ⁇ 200 mm, 65% compression hardness is 490 N / ⁇ 200 mm, 750 N Repetitive compressive residual strain is 11.3%, 40% hardness retention after 750N repeated compression is 53.1%, 65% hardness retention after 750N repeated compression is 68.9%, and compression deflection coefficient is 2.4. Some inferior network structure. The obtained cushion did not satisfy the requirements of the present invention, and was a network structure slightly inferior in repeated compression durability.
  • Example 2-3 A network structure was obtained in the same manner as in Comparative Example 2-2 except that the polyolefin-based thermoplastic elastomer (B-2) was used.
  • Table 3 shows the characteristics of the network structure made of the polyolefin-based thermoplastic elastomer (B-2).
  • the obtained network structure is formed of filaments having a hollow cross-sectional shape, a hollowness of 23%, a fiber diameter of the surface layer portion of 0.71 mm, and a fiber diameter of the inner layer portion of 0.70 mm.
  • the density is 0.048 g / cm 3
  • the flattened thickness is 50 mm
  • the hardness at 25% compression is 148 N / ⁇ 200 mm
  • the hardness at 40% compression is 213 N / ⁇ 200 mm
  • the hardness at 65% compression is 452 N / ⁇ 200 mm
  • 750 N Repeated compression residual strain was 12.1%
  • 40% hardness retention after 750N repeated compression was 52.3%
  • 65% hardness retention after 750N repeated compression was 68.2%
  • compression deflection coefficient was 3.1. It was a network structure.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability.
  • the ethylene-vinyl acetate copolymer was obtained by radical copolymerization of ethylene and vinyl acetate by a known method to obtain an ethylene-vinyl acetate copolymer, which was then added and kneaded with 2% antioxidant and pelletized.
  • an ethylene vinyl acetate copolymer C-1 having a vinyl acetate content of 10% and an ethylene vinyl acetate copolymer C-2 having a vinyl acetate content of 20% were obtained.
  • the ethylene vinyl acetate copolymer C-1 has a vinyl acetate content of 10%, a specific gravity of 0.929, and a melting point of 95 ° C.
  • the ethylene vinyl acetate copolymer C-2 has a vinyl acetate content of 20%.
  • the specific gravity was 0.941, and the melting point was 85 ° C.
  • the properties of the obtained polymer are shown in Table 4.
  • Example 3-1 The obtained ethylene-vinyl acetate copolymer C-1 was spun at a temperature of 190 ° C. in a nozzle having an effective surface of a nozzle having a width direction of 1050 mm and a width direction of 60 mm and an orifice having a hole diameter of 0.8 mm arranged in a staggered arrangement with a pitch of 5 mm between holes.
  • a single-hole discharge rate of 1.0 g / min is discharged below the nozzle, and after passing through a cooling space with an atmospheric temperature of 20 ° C., cooling water is arranged 22 cm below the nozzle surface, and a stainless endless net with a width of 150 cm is formed.
  • a pair of take-up conveyors with an opening width of 45 mm is arranged so as to partially protrude on the surface of the water, and the discharge line shape in the molten state is twisted to form a loop to fuse the contact portion.
  • a three-dimensional network structure is formed, and both sides of the molten network structure are sandwiched by a take-up conveyor and drawn into cooling water at a speed of 0.8 m / min. And dried heat-treated for 15 minutes at 70 ° C. hot air and cut to a size to give a network structure.
  • Table 5 shows the properties of the network structure made of the ethylene-vinyl acetate copolymer.
  • the obtained network structure is formed of filaments having a solid cross-sectional shape with a fiber diameter of the surface layer portion of 0.51 mm and a fiber diameter of the inner layer portion of 0.47 mm, and the apparent density is 0.068 g / cm 3.
  • the surface is flattened thickness 46 mm, 25% compression hardness 175 N / ⁇ 200 mm, 40% hardness 240 N / ⁇ 200 mm, 65% compression hardness 550 N / ⁇ 200 mm, 750 N repeated compression residual strain 8.2%, 750 N
  • the network structure had a 40% hardness retention after repeated compression of 56.1%, a 65% hardness retention after repeated compression of 750N of 72.1%, and a compression deflection coefficient of 3.1.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability.
  • Example 3-2 A network structure was obtained in the same manner as in Example 3-1, except that ethylene vinyl acetate copolymer C-2 was used. Table 2 shows the properties of the network structure formed of the ethylene-vinyl acetate copolymer C-2.
  • the obtained network structure is formed of filaments having a solid cross-sectional shape with a fiber diameter of the surface layer portion of 0.50 mm and a fiber diameter of the inner layer portion of 0.47 mm, and the apparent density is 0.068 g / cm 3.
  • the surface is flattened with a thickness of 46 mm, 25% compression hardness of 165 N / ⁇ 200 mm, 40% hardness of 232 N / ⁇ 200 mm, 65% compression hardness of 530 N / ⁇ 200 mm, 750 N repeated compression residual strain of 8.3%, 750 N
  • the network structure had a 40% hardness retention after repeated compression of 61.1%, a 65% hardness retention after repeated compression of 750N of 74.5%, and a compression deflection coefficient of 3.2.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability.
  • Example 3-3 On the nozzle effective surface of the nozzle of width direction 1050mm and thickness direction width 60mm, the shape of the orifice is 2mm outer diameter, 1.6mm inner diameter, and the orifice which made the triple bridge hollow formation cross section into the nozzle which made the staggered arrangement of the hole pitch 5mm, The resulting ethylene-vinyl acetate copolymer C-1 was discharged at a spinning temperature of 200 ° C. at a single hole discharge rate of 1.6 g / min below the nozzle, passed through a cooling space at an ambient temperature of 20 ° C., and cooled air Cooling air is blown at a temperature of 40 ° C.
  • cooling water is arranged 30 cm below the nozzle surface, and a pair of take-up conveyors are placed on the surface of a stainless steel endless net with a width of 150 cm in parallel with an opening width of 45 mm.
  • a three-dimensional network structure is formed by twisting the discharge line in the molten state to form a loop so that the contact portion is fused to form a three-dimensional network structure.
  • the both sides of the network structure in the state are sandwiched by a take-up conveyor and drawn into cooling water at a speed of 1.6 m / minute to solidify both sides, flatten both sides, cut into a predetermined size, and heated at 70 ° C.
  • Table 5 shows the properties of the network structure formed of the ethylene-vinyl acetate copolymer C-1.
  • the obtained network structure is formed of filaments having a hollow cross-sectional shape and a hollow ratio of 26%, a fiber diameter of the surface layer portion of 0.72 mm, and a fiber diameter of the inner layer portion of 0.66 mm, Apparent density 0.057g / cm 3 , surface flattened thickness 46mm, 25% compression hardness 170N / ⁇ 200mm, 40% hardness 225N / ⁇ 200mm, 65% compression hardness 523N / ⁇ 200mm, 750N repeated compression A net having a residual strain of 8.1%, a 40% hardness retention after repeated compression of 750N of 65.0%, a 65% hardness retention after repeated compression of 750N of 75.5%, and a compression deflection coefficient of 3.1. It was a structure. The obtained network structure satisfied the requirements of the present invention, and was
  • Example 3-4 A network structure was obtained in the same manner as in Example 3-3 except that the ambient temperature of the cooling space was 15 ° C., and the opening width of the endless net was 40 mm.
  • Table 5 shows the properties of the network structure formed of the ethylene-vinyl acetate copolymer C-1.
  • the obtained network structure is formed of a filament having a hollow cross-sectional shape and a hollow ratio of 26%, a fiber diameter of the surface layer portion of 0.75 mm, and a fiber diameter of the inner layer portion of 0.67 mm, Apparent density 0.064g / cm 3 , surface flattened thickness 41mm, 25% compression hardness 215N / ⁇ 200mm, 40% hardness 278N / ⁇ 200mm, 65% compression hardness 640N / ⁇ 200mm, 750N repeated compression A net having a residual strain of 8.1%, a 40% hardness retention after repeated compression of 750N is 70.1%, a 65% hardness retention after repeated compression of 750N is 80.2%, and a compression deflection coefficient is 3.0. It was a structure. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in repeated compression durability.
  • Example 3-1 A network structure was obtained in the same manner as in Example 3-1, except that the spinning temperature was 180 ° C., no cooling space was provided, and the opening width of the stainless steel endless net was 50 mm.
  • Table 5 shows the properties of the network structure formed of the ethylene-vinyl acetate copolymer C-1.
  • the obtained network structure is formed of filaments having a solid cross-sectional shape with a fiber diameter of the surface layer portion of 0.50 mm and a fiber diameter of the inner layer portion of 0.49 mm, and the apparent density is 0.062 g / cm 3.
  • the surface is flattened thickness 50 mm, 25% compression hardness 143 N / ⁇ 200 mm, 40% hardness 205 N / ⁇ 200 mm, 65% compression hardness 430 N / ⁇ 200 mm, 750 N repetitive compression residual strain 9.0%, 750 N
  • the network structure had a 40% hardness retention after repeated compression of 47.1%, a 65% hardness retention after repeated compression of 750N of 59.3%, and a compression deflection coefficient of 3.0.
  • the obtained network structure did not satisfy the requirements of the present invention, and was a network structure slightly inferior in repeated compression durability.
  • Example 3-2 A network structure was obtained in the same manner as in Example 3-3 except that the spinning temperature was 190 ° C., no cooling space was provided, cooling air was not blown, and the opening width of the stainless steel endless net was 50 mm.
  • Table 5 shows the properties of the network structure formed of the ethylene-vinyl acetate copolymer C-1.
  • the obtained network structure is formed of filaments having a hollow cross-sectional shape and a hollowness ratio of 25%, a fiber diameter of the surface layer portion of 0.70 mm, and a fiber diameter of the inner layer portion of 0.68 mm, Apparent density 0.052g / cm 3 , surface flattened thickness 50mm, 25% compression hardness 170N / ⁇ 200mm, 40% hardness 211N / ⁇ 200mm, 65% compression hardness 410N / ⁇ 200mm, 750N repeated compression A net having a residual strain of 13.4%, a 40% hardness retention after repeated compression of 750N, 42.0%, a 65% hardness retention after repeated compression of 750N, 55.1%, and a compression deflection coefficient of 2.4. It was a structure. The obtained network structure did not satisfy the requirements of the present invention, and was a network structure slightly inferior in repeated compression durability.
  • the network structure of the present invention is an improvement in the durability after repeated compression of 750 N constant load, which was a problem of the conventional product, without impairing the comfortable sitting comfort and air permeability that the network structure has conventionally had, Cushions and floor mats used for seats for office chairs, furniture, sofas, bedding such as beds, trains, cars, motorcycles, child seats, strollers, etc.
  • a net-like structure suitable for a shock absorbing mat such as a member for preventing collision and pinching, and thus greatly contributing to the industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

 解決しようとする課題は、繰返し圧縮特性に優れた網状構造体を提供することである。 本発明は、ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー及びエチレン酢酸ビニル共重合体からなる群から選ばれる少なくとも1種の熱可塑性エラストマーからなる連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめた三次元ランダムループ接合構造からなる網状構造体であって、連続線状体の繊維径が0.1mm以上3.0mm以下、網状構造体の表層部の繊維径が内層部の繊維経の1.05倍以上、見かけ密度が0.01g/cm以上0.20g/cm以下、750N定荷重繰返し圧縮残留歪みが15%以下、750N定荷重繰返し圧縮後の40%圧縮時硬度保持率が55%以上である網状構造体である。

Description

圧縮耐久性に優れた網状構造体
 本発明は、繰返し圧縮耐久性に優れた、オフィスチェア、家具、ソファー、ベッド等寝具、電車・自動車・二輪車・チャイルドシート・ベビーカー等の車両用座席等に用いられるクッション材、フロアーマットや衝突や挟まれ防止部材等の衝撃吸収用のマット等に好適な網状構造体に関するものである。
 現在、家具、ベッド等寝具、電車・自動車・二輪車等の車両用座席に用いられるクッション材として、発泡-架橋型ウレタンが広く使われている。
 発泡-架橋型ウレタンはクッション材としての耐久性は良好だが、透湿透水性や通気性に劣り、蓄熱性があるため蒸れやすいという問題点がある。さらに、熱可塑性で無いためリサイクルが困難であり、そのため焼却処分される場合は焼却炉の損傷が大きくなり、有毒ガス除去に経費が掛かるなどの問題点が指摘されている。そこで埋め立て処分されることが多いが、地盤の安定化が困難なため埋め立て場所が限定され、経費も高くなる問題点もある。また、加工性は優れるが製造中に使用される薬品の公害問題やフォーム後の残留薬品やそれに伴う臭気など種々の問題が指摘されている。
 特許文献1および2には、網状構造体が開示されている。これは、上述した発泡-架橋型ウレタンに由来する諸問題を解決でき、クッション性能にも優れているものである。しかし、繰返し圧縮耐久特性は、50%定変位の繰返し圧縮残留歪が優れているのにすぎず、50%繰返し圧縮後の50%圧縮時硬度保持率は83%程度であり、繰返し使用後の硬度が低くなるという課題があった。
 従来は、繰返し圧縮残留歪みが小さければ耐久性能として十分と認識されていた。しかし、近年では、繰返し圧縮耐久性に対する要求が高まっており、50%定変位繰返し圧縮耐久性という評価方法よりも、人間の体重約76kgに相当する750N定荷重繰返し圧縮後の40%圧縮時硬度保持率が重視されてきており、この定荷重繰返し圧縮耐久性を高める要求が高まっている。従来の網状構造体は、750N定荷重繰返し圧縮後の40%圧縮時硬度保持率は50%程度しかなく、この改善が望まれていた。しかしながら、従来の知られている網状構造体では、定荷重繰返し圧縮後の硬度保持率が高い網状構造体を得ることは困難であった。
 特許文献3に、異繊度網状構造体及びその製法が開示されている。これは、表面層と基本層において、丸断面の断面二次モーメントの比を用いて繊度差を規定し、表面に繊維径が細いソフト層と、基本層に耐久性を担う繊維径が太い内層を設けることによってクッション性と耐久性を改善させている。これらの製法においては、従来の50%定変位繰返し圧縮性においては優れたものであったが、本特許の目標とするさらに厳しい750N定荷重繰返し圧縮耐久性には、必ずしも優れておらず、本特許の範囲を達成することは困難であった。
特開平7-68061号公報 特開2004-244740号公報 特開平7-189105号公報
 本発明の目的は、上記の従来の問題点を解決することにあり、750N定荷重繰返し圧縮残留歪みが15%以下であり、750N定荷重繰返し圧縮後の40%硬度保持率が55%以上を有する、繰返し圧縮特性に優れた網状構造体を提供することを課題とするものである。
 本発明者らは、上記課題を解決するため鋭意研究した結果、硬度保持率と厚み保持率に優れた繰返し圧縮耐久性に優れた網状構造体を発明するに至った。
 すなわち、本発明は以下の通りである。
(1)ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマーおよびエチレン酢酸ビニル共重合体からなる群から選ばれる少なくとも1種の熱可塑性エラストマーからなる連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめた三次元ランダムループ接合構造からなる網状構造体であって、連続線状体の繊維径が0.1mm以上3.0mm以下、網状構造体の表層部の繊維径が内層部の繊維経の1.05倍以上、見かけ密度が0.01g/cm以上0.20g/cm以下、750N定荷重繰返し圧縮残留歪みが15%以下、750N定荷重繰返し圧縮後の40%圧縮時硬度保持率が55%以上である網状構造体。
(2)750N定荷重繰返し圧縮後の65%圧縮時硬度保持率が70%以上である(1)に記載の網状構造体。
(3)圧縮たわみ係数が2.5以上である(1)または(2)に記載の網状構造体。
(4)網状構造体の厚みが10mm以上300mm以下である(1)~(3)のいずれかに記載の網状構造体。
(5)750N定荷重繰返し圧縮後の40%圧縮時硬度保持率が60%以上である(1)~(4)のいずれかに記載の網状構造体。
(6)750N定荷重繰返し圧縮後の40%圧縮時硬度保持率が65%以上である(1)~(5)のいずれかに記載の網状構造体。
(7)750N定荷重繰返し圧縮後の65%圧縮時硬度保持率が73%以上である(1)~(6)のいずれかに記載の網状構造体。
 本発明による網状構造体は、定荷重繰返し圧縮残留歪みが小さく、硬度保持率が優れており、繰返し使用しても座り心地が変化しにくく、繰返し圧縮耐久性に優れた特徴を有する網状構造体を提供できる。この優れた繰返し圧縮耐久性により、オフィスチェア、家具、ソファー、ベッド等の寝具、電車や車などの車両用座席等に用いられる繰返し圧縮耐久性に優れた網状構造体クッションを提供することができる。
 以下、本発明を詳細に説明する。
 本発明の網状構造体は、ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマーおよびエチレン酢酸ビニル共重合体からなる群から選ばれる少なくとも1種の熱可塑性エラストマーからなる連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめた三次元ランダムループ接合構造からなる網状構造体であって、連続線状体の繊維径が0.1mm以上3.0mm以下、網状構造体の表層部の繊維径が内層部の繊維経の1.05倍以上、見かけ密度が0.01g/cm以上0.20g/cm以下、750N定荷重繰返し圧縮残留歪みが15%以下、750N定荷重繰返し圧縮後の40%圧縮時硬度保持率が55%以上である網状構造体である。
 本発明におけるポリエステル系熱可塑性エラストマーとしては、熱可塑性ポリエステルをハードセグメントとし、ポリアルキレンジオールをソフトセグメントとするポリエステルエーテルブロック共重合体、または、脂肪族ポリエステルをソフトセグメントとするポリエステルエステルブロック共重合体が例示できる。
 ポリエステルエーテルブロック共重合体のより具体的な事例としては、テレフタル酸、イソフタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4’-ジカルボン酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、琥珀酸、アジピン酸、セバシン酸ダイマー酸等の脂肪族ジカルボン酸または、これらのエステル形成性誘導体などから選ばれたジカルボン酸の少なくとも1種と、1,4-ブタンジオール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール等の脂肪族ジオール、1,1-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール等の脂環族ジオール、またはこれらのエステル形成性誘導体などから選ばれたジオール成分の少なくとも1種、および数平均分子量が約300以上5000以下のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキシド-プロピレンオキシド共重合体からなるグリコール等のポリアルキレンジオールのうち少なくとも1種から構成される三元ブロック共重合体である。
 ポリエステルエステルブロック共重合体としては、上記ジカルボン酸とジオール及び数平均分子量が約300以上5000以下のポリラクトン等のポリエステルジオールのうち少なくとも各1種から構成される三元ブロック共重合体である。熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮すると、ジカルボン酸としてはテレフタル酸、または、及びナフタレン2,6-ジカルボン酸、ジオール成分としては1,4-ブタンジオール、ポリアルキレンジオールとしてはポリテトラメチレングリコールの3元ブロック共重合体または、ポリエステルジオールとしてポリラクトンの3元ブロック共重合体が特に好ましい。特殊な例では、ポリシロキサン系のソフトセグメントを導入したものも使うことができる。
 また、上記ポリエステル系熱可塑性エラストマーに非エラストマー成分をブレンドしたもの、共重合したもの、ポリオレフィン系成分をソフトセグメントにしたもの等も本発明のポリエステル系熱可塑性エラストマーに包含される。これらのポリエステル系エラストマーは単独又は2種類以上混合して用いてもよい。必要に応じ、酸化防止剤や耐光剤等を添加して耐久性を向上させることができる。また、耐熱耐久性や耐へたり性を向上させるために、熱可塑性樹脂の分子量を上げることも効果的である。
 本発明のポリエステル系熱可塑性エラストマーの融点は耐熱耐久性が保持できる140℃以上が好ましく、160℃以上のものを用いると耐熱耐久性が向上するのでより好ましい。
 本発明の目的である網状構造体の繰返し圧縮耐久性を実現するために、ポリエステル系熱可塑性エラストマーのソフトセグメント含有量は好ましくは15重量%以上、より好ましくは25重量%以上であり、さらに好ましくは30重量%以上であり、特に好ましくは40重量%以上であり、硬度確保と耐熱耐へたり性からは80重量%以下が好ましく、より好ましくは70重量%以下である。
 本発明の繰返し圧縮耐久性に優れた網状構造体を構成するポリエステル系熱可塑性エラストマーからなる成分は、示差走査型熱量計にて測定した融解曲線において、融点以下に吸熱ピ-クを有することが好ましい。融点以下に吸熱ピークを有するものは、吸熱ピークを有しないものに比べて耐熱耐へたり性が著しく向上する。例えば、本発明の好ましいポリエステル系熱可塑性エラストマーとして、ハードセグメントの酸成分に剛直性のあるテレフタル酸やナフタレン2,6-ジカルボン酸などを90モル%以上含有するもの、より好ましくはテレフタル酸やナフタレン2,6-ジカルボン酸の含有量は95モル%以上、特に好ましくは100モル%とグリコ-ル成分をエステル交換後、必要な重合度まで重合し、次いで、ポリアルキレンジオ-ルとして、好ましくは平均分子量が500以上5000以下、より好ましくは700以上3000以下、さらに好ましくは800以上1800以下のポリテトラメチレングリコ-ルを好ましくは15重量%以上80重量%以下、より好ましくは25重量%以上70重量%以下、さらに好ましくは30重量%以上70重量%以下、特に好ましくは40重量%以上70重量%以下を共重合量させた場合、ハ-ドセグメントの酸成分に剛直性のあるテレフタル酸やナフタレン2,6-ジカルボン酸の含有量が多いとハ-ドセグメントの結晶性が向上し、塑性変形しにくく、かつ、耐熱耐へたり性が向上するが、溶融熱接着後さらに融点より少なくとも10℃以上低い温度でアニ-リング処理するとより耐熱耐へたり性が向上する。アニーリング処理は、融点より少なくとも10℃以上低い温度でサンプルを熱処理することができれば良いが、圧縮歪みを付与することでさらに耐熱耐へたり性が向上する。このような処理をしたクッション層を示差走査型熱量計で測定した融解曲線に室温以上融点以下の温度で吸熱ピークをより明確に発現する。なおアニ-リングしない場合は融解曲線に室温以上融点以下に吸熱ピ-クを明確に発現しない。このことから類推すると、アニーリングによってハードセグメントが再配列された準安定中間相を形成し、耐熱耐へたり性が向上しているのではないかとも考えられる。本発明における耐熱性向上効果の活用方法としては、ヒーターが用いられる車両用のクッションや床暖房された床の敷きマット等、比較的高温になり得る用途において、耐へたり性が良好となるため有用である。
 本発明におけるポリオレフィン系熱可塑性エラストマーとしては、網状構造体を構成するポリマーは比重が0.94g/cm以下の低密度ポリエチレン樹脂であることが好ましく、特にエチレンと炭素数3以上のαオレフィンからなるエチレン・α-オレフィン共重合体樹脂からなることが好ましい。本発明のエチレン・α-オレフィン共重合体は、特開平6-293813号公報に記載されている共重合であることが好ましく、エチレンと炭素数3以上のα-オレフィンを共重合してなるものである。ここで、炭素数3以上のα-オレフィンとしては、例えばプロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチル-1-ペンテン、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、エイコセン-1などが挙げられ、好ましくはブテン-1、ペンテン-1、ヘキセン-1、4-メチル-1-ペンテン、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、エイコセン-1である。また、これら2種類以上を用いることもでき、これらα-オレフィンは通常1~40重量%共重合される。この共重合体は、特定のメタロセン化合物と有機金属化合物を基本構成とする触媒系を用いてエチレンとα-オレフィンを共重合することによって得ることができる。
 必要に応じて、上記方法によって重合された二種類以上のポリマーや、水素添加ポリブタジエンや水素添加ポリイソプレンなどのポリマーをブレンドすることができる。改質剤として、酸化防止剤、耐侯剤、難燃剤などを必要に応じて添加することができる。
 本発明におけるポリオレフィン系熱可塑性エラストマーは、比重が0.94g/cmを越えると、クッション材が硬くなりやすく好ましくない。より好ましくは0.935g/cm以下であり、さらには0.93g/cm以下が好ましい。下限は特に限定するものではないが、強度保持の観点から0.8g/cm以上が好ましく、0.85g/cm以上がより好ましい。
 本発明の繰返し圧縮耐久性に優れた網状構造体を構成するポリオレフィン系熱可塑性エラストマーからなる成分は、示差走査型熱量計にて測定した融解曲線において、融点以下に吸熱ピークを有することが好ましい。融点以下に吸熱ピークを有するものは、耐熱耐へたり性が吸熱ピークを有しないものより著しく向上する。例えば、本発明の好ましいポリオレフィン系熱可塑性エラストマーとして、メタロセン化合物を触媒として、ヘキサン、ヘキセン、エチレンを公知の方法で重合し、得られたエチレン・α-オレフィン共重合体の場合、主鎖の分岐数を少なくするとハードセグメントの結晶性が向上し、塑性変形しにくく、かつ、耐熱耐へたり性が向上するが、溶融熱接着後さらに融点より少なくとも10℃以上低い温度でアニーリング処理するとより耐熱耐へたり性が向上する。アニーリング処理は、融点より少なくとも10℃以上低い温度でサンプルを熱処理することができれば良いが、圧縮歪みを付与することでさらに耐熱耐へたり性が向上する。このような処理をしたクッション層を示差走査型熱量計で測定した融解曲線に室温以上融点以下の温度で吸熱ピークをより明確に発現する。なおアニーリングしない場合は融解曲線に室温以上融点以下に吸熱ピークを明確に発現しない。このことから類推すると、アニーリングによってハードセグメントが再配列された準安定中間相を形成し、耐熱耐へたり性が向上しているのではないかと考えられる。本発明における耐へたり性向上効果の活用方法としては、クッションや敷きマット等、比較的繰り返し圧縮される使用用途において、耐久性を向上させるために有用である。
 本発明のエチレン酢酸ビニル共重合体として、網状構造体を構成するポリマーは比重が0.91~0.965が好ましい。比重は、酢酸ビニル含有率によって変化し、酢酸ビニルの含有率は1~35%が好ましい。酢酸ビニル含有率が小さいとゴム弾性に乏しくなる恐れがあり、そういった観点から酢酸ビニル含有率は1%以上が好ましく、2%以上がより好ましく、3%以上がさらに好ましい。酢酸ビニル含有率が大きくなるとゴム弾性には優れるが、融点が低下し耐熱性に乏しくなる恐れがあるため、酢酸ビニル含有率は35%以下が好ましく、30%以下がより好ましく、26%以下がさらに好ましい。
 本発明のエチレン酢酸ビニル共重合体は、炭素数3以上のα-オレフィンを共重合することもできる。ここで、炭素数3以上のα-オレフィンとしては、例えばプロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチル-1-ペンテン、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、エイコセン-1などが挙げられ、好ましくはブテン-1、ペンテン-1、ヘキセン-1、4-メチル-1-ペンテン、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、エイコセン-1である。また、これら2種類以上を用いることもできる。 
 必要に応じて、上記方法によって重合された二種類以上のポリマーや、水素添加ポリブタジエンや水素添加ポリイソプレンなどのポリマー改質剤をブレンドすることができる。改質剤として、滑剤、酸化防止剤、耐侯剤、難燃剤などを必要に応じて添加することができる。
 本発明の繰返し圧縮耐久性に優れた網状構造体を構成するエチレン酢酸ビニル共重合体からなる成分は、示差走査型熱量計にて測定した融解曲線において、融点以下に吸熱ピークを有することが好ましい。融点以下に吸熱ピークを有するものは、耐熱耐へたり性が吸熱ピークを有しないものより著しく向上する。例えば、本発明の好ましいエチレン酢酸ビニル共重合体は、酢酸ビニル含有比率は35%以下が好ましく、30%以下がより好ましく、26%以下がさらに好ましい。酢酸ビニル含有比率を少なくするとハードセグメントの結晶性が向上し、塑性変形しにくく、かつ、耐熱耐へたり性が向上する。溶融熱接着後さらに融点より少なくとも10℃以上低い温度でアニーリング処理するとより耐熱耐へたり性が向上する。アニーリング処理は、融点より少なくとも10℃以上低い温度でサンプルを熱処理することができれば良いが、圧縮歪みを付与することでさらに耐熱耐へたり性が向上する。このような処理をしたクッション層を示差走査型熱量計で測定した融解曲線に室温以上融点以下の温度で吸熱ピークをより明確に発現する。なおアニーリングしない場合は融解曲線に室温以上融点以下に吸熱ピークを明確に発現しない。このことから類推すると、アニーリングによってハードセグメントが再配列された準安定中間相を形成し、耐熱耐へたり性が向上しているのではないかと考えられる。本発明における耐へたり性向上効果の活用方法としては、クッションや敷きマット等、比較的繰り返し圧縮される使用用途において、耐久性を向上させるために有用である。また、耐へたり性向上のためには、酢酸ビニル共重合体の分子量を上げることも効果的である。
 本発明の網状構造体を構成する連続線状体の繊維径は、繊維径が小さいとクッション材として使用する際に必要な硬度が保てなくなり、逆に繊維径が大きすぎると硬くなり過ぎてしまうため、適正な範囲に設定する必要がある。繊維径は0.1mm以上3.0mm以下であり、好ましくは0.2mm以上2.5mm以下である。繊維径が0.1mm未満だと細すぎてしまい、緻密性やソフトな触感は良好となるが網状構造体として必要な硬度を確保することが困難となる恐れがある。繊維径が3.0mmを超えると網状構造体の硬度は十分に確保できるが、網状構造が粗くなり、他のクッション性能が劣る場合がある。
 本発明の網状構造体はその表層部の繊維径が内層部の繊維径の1.05倍以上であり、好ましくは1.08倍以上であり、より好ましくは1.10倍以上である。表層部の繊維径が内層部の繊維径の1.05倍未満であると、必要とする表面剛性と表層接点強度を確保できず、クッション特性に必要な硬度保持率が安定的に達成できなくなる場合がある。表層部の繊維径の内層部の繊維経に対する比率の上限は特に規定しないが本発明においては1.25倍以下である。
 本発明の網状構造体の見かけ密度は、0.01g/cm~0.20g/cmであり、好ましくは0.02g/cm~0.15g/cm、より好ましくは0.025g/cm~0.12g/cmである。見かけ密度が0.01g/cmより小さいとクッション材として使用する際に必要な硬度が保てなくなり、逆に0.20g/cmを越えると硬くなり過ぎてしまいソフトな触感が得られるクッション材としては不適となる場合がある。
 本発明の網状構造体の750N定荷重繰返し圧縮残留歪みは、15%以下であり、好ましくは10%以下である。750N定荷重繰返し圧縮残留歪みが15%を超えると、長期間使用すると網状構造体の厚みが低下してしまい、クッション材として好ましくない。なお、750N定荷重繰返し圧縮残留歪みの下限値は特に規定しないが、本発明で得られる網状構造体においては、0.1%以上である。
 本発明の網状構造体の40%圧縮時硬度は、40N/φ200~1000N/φ200が好ましい。40%圧縮時硬度が40N/φ200未満では底付き感を感じる場合があり、1000N/φ200を超えると硬すぎてクッション性を損なう場合がある。
 本発明の網状構造体の750N定荷重繰返し圧縮後の40%圧縮時硬度保持率は、55%以上であり、好ましくは60%以上であり、より好ましくは65%以上、さらに好ましくは70%以上である。750N定荷重繰返し圧縮後の40%圧縮時硬度保持率が55%未満では、長時間使用により、クッション材の硬さが低下してしまい、硬さが著しく変化したと感じる場合がある。750N定荷重繰返し圧縮後の40%硬度保持率の上限値は特に規定しないが、本発明で得られる網状構造体においては、95%以下である。
 本発明の網状構造体の65%圧縮時硬度は、80N/φ200~2000N/φ200が好ましい。65%圧縮時硬度が80N/φ200未満では底付き感を感じる場合があり、2000N/φ200を超えると硬すぎてクッション性を損なう場合がある。
 本発明の網状構造体の750N定荷重繰返し圧縮後の65%圧縮時硬度保持率は、70%以上であり、好ましくは73%以上であり、より好ましくは75%以上であり、さらに好ましくは80%以上である。750N定荷重繰返し圧縮後の65%硬度保持率が70%未満では、長時間使用により、クッション材の硬さが低下してしまい、底付き感を感じる場合がある。750N定荷重繰返し圧縮後の65%圧縮時硬度保持率の上限値は特に規定しないが、本発明で得られる網状構造体においては、99%以下である。
 本発明の網状構造体の圧縮たわみ係数は、好ましくは2.5以上であり、より好ましくは2.8以上であり、さらに好ましくは3.0以上である。2.5未満では、クッション材としての座り心地や寝心地を損なう場合がある。圧縮たわみ係数の上限値は特に規定しないが、本発明で得られる網状構造体においては、8.0以下である。
 本発明の網状構造体の厚みは、好ましくは10mm以上であり、より好ましくは20mm以上である。厚みが10mm未満ではクッション材に使用すると薄すぎてしまい底付き感が出てしまう場合がある。厚みの上限は製造装置の関係から、好ましくは300mm以下であり、より好ましくは200mm以下、さらに好ましくは120mm以下である。
 本発明の網状構造体の25%圧縮時硬度は、10N/φ200~600N/φ200が好ましい。25%圧縮時硬度が10N/φ200未満では底付き感を感じる場合があり、600N/φ200を超えると硬すぎてクッション性を損なう場合がある。
 本発明の網状構造体がポリエステル系熱可塑性エラストマーからなる時は、70℃圧縮残留歪は35%以下であることが好ましい。70℃圧縮残留歪が35%を超えるものにあっては、目的とするクッション材に使用する網状構造体としての特性が満たされない。なお、70℃圧縮残留歪の下限値は特に規定しないが、本発明で得られる網状構造体においては、0.1%以上である。
 本発明の網状構造体は、750N定荷重繰返し圧縮後の40%圧縮時硬度保持率が55%以上、750N定荷重繰返し圧縮後の65%圧縮時硬度保持率が70%以上となる特性を有していることが好ましい。硬度保持率を上記範囲にすることで、長期間使用後の網状構造体の硬度変化が小さく、座り心地や寝心地の変化が少なく、長期間の快適な使用が可能な網状構造体がはじめて得られる。この750N定荷重繰返し圧縮試験は、これまで先行文献などで着目されていた50%定変位繰返し圧縮試験よりもさらに高い耐久性を評価する試験である。50%定変位繰返し圧縮試験は、圧縮量は処理開始から処理終了まで厚みの50%に固定されているが、750N定荷重繰返し圧縮耐久性試験の場合、例えば処理開始時点で荷重750Nが厚みの50%の変位に相当していたとしても、繰返し圧縮処理中硬度が低下していくので、処理終了時には圧縮量は厚みの50%を超えてしまい、試料が試験中に受ける変形量は50%定変位繰返し圧縮試験よりも大きくなるためである。
 750N定荷重繰返し圧縮試験で硬度を保持する網状構造体を得るためには、外からかかる荷重(750N)を網状構造体の表層部で受け止め、表層面で荷重を分散し内層への負担を軽減すること、その表層面での荷重分散効果を定荷重繰返し圧縮試験中も持続させることが必要であることを本発明者らは見出した。前者は表層部と内層部で構造差を付与することで、後者は表層部に存在する連続線状体同士の接点強力を強くすることで、初めて解決できるものである。すなわち、これまで知られていた50%定変位繰返し圧縮歪の小さい網状構造体と本発明の網状構造体との違いは、本発明の網状構造体では、網状構造体を構成する連続線状体同士の融着をさらに強固なものとすることで、連続線状体同士の接点強度を強くすると同時に、網状構造体の表層部の繊維径を内層部の繊維径よりも高くし、表層部と内層部の構造差を付与し、連続線状の接点面積を大きくして網状構造体の表層部の接点強力を内層部よりも高め、繰返し圧縮処理中に発生する接点の破壊をより一層抑制し、繰返し圧縮中に受ける荷重(750N)を表層部で面分散する効果を持続させた点である。網状構造体を構成する連続線状体同士の接点強度を強くするだけでは安定的に750N定荷重繰返し圧縮後の40%硬度保持率を55%以上とすることは困難であるため、表層の繊維径を選択的に太くすることで表面剛性を上げ、表層線状同士の接点強力を高めに設計し、内層と表層の構造差をつけることで安定的に達成することができたものである。
 本発明の網状構造体を得るためには、上述の通り、表層部と内層部とで構造差を付与することと、表層部の連続線状同士の接点強度を強くすることが必要となるが、それは表層部の繊維径を内層部の繊維経の1.05倍以上とすることによって得られる。表層部の繊維径が内層部の繊維径の1.05倍未満の場合、表層部と内層部の構造差が小さく、必要とする面剛性が得られない。そのため、繰返し圧縮中に受ける荷重を表層部で面分散する効果が小さくなり十分な硬度保持率を得ることが出来ない。特許文献3に記載の網状構造体は、表面に繊維径が細いソフト層と、基本層に耐久性を担う繊維径が太い内層を設けることによってクッション性と耐久性を改善させているが、本特許では表層の繊維径を太くして表面剛性を上げて、硬度保持率を向上させており、本質的な設計思想が異なる。また、特許文献3の製法においては、従来の50%定変位の繰返し圧縮性においては優れたものであったが、本特許の目標とするさらに厳しい750N定荷重繰返し圧縮耐久性には、必ずしも優れておらず、本特許の範囲を達成することは困難であった。
 本発明の網状構造体は、圧縮たわみ係数が2.5以上となる特性を有していることが好ましい。圧縮たわみ係数を上記範囲にすることで、座り心地や寝心地の良い網状構造体が得られる。特に、比較的硬度が高くなると圧縮たわみ係数を上記の範囲にすることで座り心地や寝心地が良くなることを見出した。圧縮たわみ係数は、25%圧縮時硬度と65%圧縮時硬度の比で示され、25%圧縮時硬度を下げるか、65%圧縮時硬度を上げるかの、どちらかにより係数を大きく出来る。本発明の範囲において、圧縮たわみ係数が改善されるメカニズムについては十分に解明されていないが、恐らく本網状構造体が先述した表層部の繊維径が大きく表面剛性が高く、65%圧縮時硬度が大きくなっているためであると推定する。この効果によって、安定的に圧縮たわみ係数を高めることができているものと考える。
 本発明の網状構造体は、例えば次のようにして得られる。網状構造体は特開平7-68061号公報等に記載された公知の方法に基づき得られる。例えば、複数のオリフィスを持つ多列ノズルよりポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマーおよびエチレン酢酸ビニル共重合体からなる群から選ばれる少なくとも1種の熱可塑性エラストマーをノズルオリフィスに分配し、該ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマーおよびエチレン酢酸ビニル共重合体からなる群から選ばれる少なくとも1種の熱可塑性エラストマーの融点より20℃以上120℃未満高い紡糸温度で、該ノズルより下方に向け吐出させ、溶融状態で互いに連続線状体を接触させて融着させ3次元構造を形成しつつ、引取りコンベアネットで挟み込み、冷却槽中の冷却水で冷却せしめた後、引出し、水切り後または乾燥して、両面または片面が平滑化した網状構造体を得る。片面のみを平滑化させる場合は、傾斜を持つ引取ネット上に吐出させて、溶融状態で互いに接触させて融着させ3次元構造を形成しつつ引取ネット面のみ形態を緩和させつつ冷却すると良い。得られた網状構造体をアニーリング処理することもできる。なお、網状構造体の乾燥処理をアニーリング処理としても良い。
 本発明の網状構造体を得るためには、得られる網状構造体の連続線状体同士の融着を強固なものとし、連続線状体同士の接点強度を強くすることが必要である。網状構造体を構成する連続線状体同士の接点強度を強くすることにより、結果として、網状構造体の繰返し圧縮耐久性を向上することができる。
 接点強度を強くした網状構造体を得る手段の1つとしては、例えばポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマーおよびエチレン酢酸ビニル共重合体からなる群から選ばれる少なくとも1種の熱可塑性エラストマーの紡糸温度を高くすることが好ましい。紡糸温度は、樹脂の特性によって異なるが、本発明においては融点の少なくとも30℃以上150℃以下が好ましく、40℃以上140℃以下がより好ましく、50℃以上130℃以下がさらに好ましい。
 本発明の網状構造体において、表層部と内層部で繊維径の差を付与する方法としては、網状構造体の表面の繊維のみ冷却を早くさせて表層部のみ繊維径を高くする方法が好適な方法の一つとして挙げられる。特許文献3で挙げられるようなノズルの孔径を表層部と内層部で変化させて表層部のみ繊維径を高くするといったノズル構成によって繊維径の差を付与する方法では、表層部のループ形状が歪や疎密差が明瞭になり品位上の問題点や、表層部と内層部の吐出バランスが崩れ易く生産安定性や均一な製品作りが困難となる生産上の問題点や、また本特許の狙いである750N定荷重の繰返し圧縮耐久性も優れたものを得ることが困難であった。
 網状構造体の表面の繊維のみ冷却する方策としては、雰囲気温度を低く設定する方法や冷却風を表面に選択的に吹き付ける方法がある。本特許で雰囲気温度とは、紡糸機と同一空間に存在し、紡糸機から1m以上1.5m未満の距離に位置し、吐出面から水面までの高さに位置する温度計で計測した温度を指す。この雰囲気温度で表層の繊維を冷却する場合は、雰囲気温度は50℃以下が好ましく、40℃以下であることがより好ましく、35℃以下であることがさらに好ましい。接点強度が著しく低下することを防ぐ観点から雰囲気温度は-10℃以上が好ましい。冷却風を表面に選択的に吹きつける場合は、冷却風の温度は樹脂の融点以下が好ましく、雰囲気温度以上が好ましい。また、冷却風は表面の同伴流によって下方に流される、もしくは内層まで貫通したとしても内層の接点強度を落とさないように表面繊維と温度交換されて温度が上がった風が貫通するように設計することが好ましい。そうした観点から繊維方向に対して冷却を積極的に行わないことが好ましい。冷却風の風速は0.3m/秒以下であることが好ましく、0.2m/秒以下がより好ましい。上記に示した方法を単一もしくは二種類以上組み合わせることで、表層部の繊維径を内層部の繊維径に比べて大きくすることが出来る。
 冷却風を吹き付ける装置は、網状構造体の厚み方向に向かって幅方向全体をカバーし、両面から吹き付ける構造が好ましい。得たい網状構造体に応じて、冷却風を吹き付ける装置は適宜選択することが出来る。冷却風を吹き付ける装置の高さ方向の設置場所は、ノズル面と冷却水の間であればどの場所でも良く、必要に応じて高さを変更してもよい。高さは幅方向で全て同じにする必要は無く、部分によって変更してもよい。表面形成をより強固とする箇所のみに吹き付けてもよく、用途に応じては片面のみを吹きつけたり、網状構造体の厚み方向に向かって全面から冷却風を吹き付けたりしてもよい。冷却風は、出来るだけ風速を均一とするため、金網等の整流部を少なくとも1箇所は備えることが好ましい。冷却風の温度を上げる場合は、熱風発生装置を用いることが好ましく、ノズル周辺の排熱を使用することもできる。
 本発明の網状構造体を構成する連続線状体は、本発明の目的を損なわない範囲で、他の熱可塑性樹脂と組み合わせた複合線状としても良い。複合形態としては、線状体自身を複合化した場合として、シース・コア型、サイドバイサイド型、偏芯シース・コア型等の複合線状体が挙げられる。
 本発明の網状構造体は、本発明の目的を損なわない範囲で、多層構造化しても良い。多層構造化の方法としては、網状構造体同士を積み重ねて側地等で固定する方法、加熱により溶融固着する方法、接着剤で接着させる方法、縫製やバンド等で拘束する方法等が挙げられる。
 本発明の網状構造体を構成する連続線状体の断面形状は特に限定されないが、中空断面および/または異型断面とすることで好ましい抗圧縮性やタッチを付与することができる。
 本発明の網状構造体は、性能を低下させない範囲で樹脂製造過程から成形体に加工し、製品化する任意の段階で防臭抗菌、消臭、防黴、着色、芳香、難燃、吸放湿等の機能付与を薬剤添加等の処理加工ができる。
 かくして得られた本発明の網状構造体は、繰返し圧縮残留歪みが小さく、硬度保持率が高い、優れた繰返し圧縮耐久性を有するものである。
 以下に、実施例を例示し、本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。なお、実施例中における特性値の測定及び評価は下記のようにおこなった。
(1)繊維径
 試料を20cm×20cmの大きさに切断し、網状構造体の表層部と内層部のそれぞれ10箇所から線状体を長さ約5mmで採集する。表層部繊維は、網状構造体の厚み方向の最表層、つまりその繊維より外側に繊維が存在しない箇所から採取し、内層部繊維は、網状構造体の厚み方向の中心部を基準に厚みの30%の範囲内から採取する。それぞれ10か所から採集した線状体の繊維径は、光学顕微鏡を適当な倍率で繊維径測定箇所にピントを合わせて測定する。表層部繊維から得られた繊維径は表層部の繊維径、内層部繊維から得られた繊維径は内層部の繊維径とする(単位:mm)。
(2)試料厚みおよび見掛け密度
 試料を40cm×40cmの大きさに切断し、無荷重で24時間放置した後、高分子計器製FD-80N型測厚器にて4か所の高さを測定して平均値を試料厚みとする。試料重さは、上記試料を電子天秤に載せて計測する。また試料厚みから体積を求め、試料の重さを体積で除した値で示す。(それぞれn=4の平均値)
(3)融点(Tm)
 TAインスツルメント社製 示差走査熱量計Q200を使用し、昇温速度20℃/分で測定した吸発熱曲線から吸熱ピーク(融解ピーク)温度を求めた。
(4)70℃圧縮残留歪み
 試料を30cm×30cmの大きさに切断し、(2)に記載の方法で処理前の厚み(a)を測定する。厚みを測定したサンプルを50%圧縮状態に保持できる冶具に挟み、70℃に設定した乾燥機に入れ、22時間放置する。その後サンプルを取り出し、冷却して圧縮歪みを除き1日放置後の厚み(b)を求め、処理前の厚み(a)とから、式{(a)-(b)}/(a)×100より算出する:単位%(n=3の平均値)。
(5)25%、40%、65%圧縮時硬度
 試料を40cm×40cmの大きさに切断し、23℃±2℃の環境下に無荷重で24時間放置した後、23℃±2℃の環境下にある島津製作所製オートグラフ AG-X plusを用いて、ISO2439(2008)E法に準拠して計測する。φ200mmの加圧板をサンプル中心になるようにサンプルを配置させ、荷重が5Nになる時の厚みを計測し、初期硬度計厚みとする。この時の加圧板の位置をゼロ点として、速度100mm/minで初期硬度計厚みの75%まで予備圧縮を1回行い、同じ速度で加圧板をゼロ点まで戻した後、そのままの状態で4分間放置し、所定時間経過後即座に、速度100mm/minで初期硬度計厚みの25%、40%、65%まで圧縮を行い、その際の荷重を測定し、各々25%圧縮時硬度、40%圧縮時硬度、65%圧縮時硬度とした:単位N/φ200(n=3の平均値)。
(6)750N定荷重繰返し圧縮後の残留歪み
 試料を40cm×40cmの大きさに切断し、(5)に記載の方法で初期硬度計厚み(c)を測定する。その後、厚みを測定したサンプルを、ASKER STM-536を用いて、JIS K6400-4(2004)A法(定荷重法)に準拠して750N定荷重繰返し圧縮を行う。加圧子は、底面のエッジ部に曲率半径25±1mmをもつ、直径250±1mmの円形で下面が平らなものを用い、荷重750N±20N、圧縮頻度は毎分70±5回、圧縮回数は8万回、最大の750±20Nに加圧している時間は、繰返し圧縮に要する時間の25%以下とする。繰返し圧縮終了後、試験片を力のかからない状態で10±0.5分間放置し、島津製作所製オートグラフ AG-X plusを用いて、φ200mmの加圧板をサンプル中心になるようにサンプルを配置させ、荷重が5Nになる時の厚みを計測し、繰返し圧縮後硬度計厚み(d)とする。初期硬度計厚み(c)と繰返し圧縮後硬度計厚み(d)を用いて、式{(c)-(d)}/(c)×100より算出する:単位%(n=3の平均値)。
(7)750N定荷重繰返し圧縮後の40%圧縮時硬度保持率
 試料を40cm×40cmの大きさに切断し、(5)に記載の方法で初期硬度計厚みと40%圧縮時硬度(e)を測定する。その後、測定したサンプルを、ASKER STM-536を用いて、JIS K6400-4(2004)A法(定荷重法)に準拠して750N定荷重繰返し圧縮を行う。加圧子は、底面のエッジ部に曲率半径25±1mmをもつ、直径250±1mmの円形で下面が平らなものを用い、荷重750N±20N、圧縮頻度は毎分70±5回、圧縮回数は8万回、最大の750±20Nに加圧している時間は、繰返し圧縮に要する時間の25%以下とする。繰返し圧縮終了後、試験片を力のかからない状態で10±0.5分間放置し、島津製作所製オートグラフ AG-X plusを用いて、φ200mmの加圧板をサンプル中心になるようにサンプルを配置させ、サンプル厚みは750N定荷重繰返し圧縮前の初期硬度計厚みをゼロ点として、速度100mm/minで初期硬度計厚みの75%まで予備圧縮を1回行い、同じ速度で加圧板をゼロ点まで戻した後、そのままの状態で4分間放置し、所定時間経過後即座に、速度100mm/minで初期硬度計厚みの40%まで圧縮を行い、その際の荷重を750N定荷重繰返し圧縮後の40%圧縮時硬度(f)とする。式(f)/(e)×100より750N定荷重繰返し圧縮後の40%圧縮時硬度保持率を算出する:単位%(n=3の平均値)。
(8)750N定荷重繰返し圧縮後の65%圧縮時硬度保持率
 試料を40cm×40cmの大きさに切断し、(5)に記載の方法で初期硬度計厚みと65%圧縮時硬度(g)を測定する。その後、測定したサンプルを、ASKER STM-536を用いて、JIS K6400-4(2004)A法(定荷重法)に準拠して750N定荷重繰返し圧縮を行う。加圧子は、底面のエッジ部に曲率半径25±1mmをもつ、直径250±1mmの円形で下面が平らなものを用い、荷重750N±20N、圧縮頻度は毎分70±5回、圧縮回数は8万回、最大の750±20Nに加圧している時間は、繰返し圧縮に要する時間の25%以下とする。繰返し圧縮終了後、試験片を力のかからない状態で10±0.5分間放置し、島津製作所製オートグラフ AG-X plusを用いて、φ200mmの加圧板をサンプル中心になるようにサンプルを配置させ、サンプル厚みは750N定荷重繰返し圧縮前の初期硬度計厚みをゼロ点として、速度100mm/minで初期硬度計厚みの75%まで予備圧縮を1回行い、同じ速度で加圧板をゼロ点まで戻した後、そのままの状態で4分間放置し、所定時間経過後即座に、速度100mm/minで初期硬度計厚みの40%まで圧縮を行い、その際の荷重を750N定荷重繰返し圧縮後の65%圧縮時硬度(h)とする。式(h)/(g)×100より750N定荷重繰返し圧縮後の65%圧縮時硬度保持率を算出する:単位%(n=3の平均値)。
(9)圧縮たわみ係数
 試料を40cm×40cmの大きさに切断し、23℃±2℃の環境下に無荷重で24時間放置した後、23℃±2℃の環境下にある島津製作所製オートグラフ AG-X plusを用いて、ISO2439(2008)E法に準拠して計測する。φ200mmの加圧板をサンプル中心になるようにサンプルを配置させ、荷重が5Nになる時の厚みを計測し、初期硬度計厚みとする。この時の加圧板の位置をゼロ点として、速度100mm/minで初期硬度計厚みの75%まで予備圧縮を1回行い、同じ速度で加圧板をゼロ点まで戻した後、そのままの状態で4分間放置し、所定時間経過後即座に、速度100mm/minで初期硬度計厚みの25%ないし65%まで圧縮を行い、その際の荷重を測定し、各々25%圧縮時硬度(i)、65%圧縮時硬度(j)とする。式(j)/(i)より圧縮たわみ係数を算出する(n=3の平均値)。
[ポリエステル系熱可塑性エラストマーの製造]
 ポリエステル系熱可塑性エラストマーとして、ジメチルテレフタレート(DMT)と1,4-ブタンジオール(1,4BD)を少量の触媒と仕込み、常法によりエステル交換後、ポリテトラメチレングリコール(PTMG)を添加して昇温減圧しつつ重縮合せしめポリエーテルエステルブロック共重合エラストマーを生成させ、次いで酸化防止剤2%を添加混合練込み後ペレット化し、50℃48時間真空乾燥して得られた熱可塑性弾性樹脂原料の処方を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例1-1]
 幅方向1050mm、厚み方向の幅50mmのノズル有効面に孔径1.0mmのオリフィスを孔間ピッチ5mmの千鳥配列としたノズルに、得られた熱可塑性弾性樹脂A-1を紡糸温度260℃にて、単孔吐出量0.85g/minの速度でノズル下方に吐出させ、雰囲気温度30℃の冷却空間を経て、冷却風は吹かさず、ノズル面23cm下に冷却水を配し、幅150cmのステンレス製エンドレスネットを平行に開口幅45mm間隔で一対の引取りコンベアを水面上に一部出るように配して、該溶融状態の吐出線状を曲がりくねらせループを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状構造体の両面を引取りコンベアで挟み込みつつ毎分0.8mの速度で冷却水中へ引込み固化させ両面をフラット化した後、所定の大きさに切断し、110℃熱風にて15分間乾燥熱処理して、網状構造体を得た。得られた熱可塑性弾性樹脂からなる網状構造体の特性を表2に示す。
 得られた網状構造体は、表層部の繊維径が0.53mm、内層部の繊維径が0.48mmの線条で形成されており、見かけ密度は0.055g/cm、表面は平坦化された厚み45mm、70℃圧縮残留歪みが9.7%、25%圧縮時硬度が204N/φ200mm、40%圧縮時硬度が260N/φ200mm、65%圧縮時硬度が548N/φ200mm、750N繰返し圧縮残留歪みが7.4%、750N繰返し圧縮後の40%圧縮時硬度保持率が62.3%、750N繰返し圧縮後の65%圧縮時硬度保持率が78.8%、圧縮たわみ係数が2.7である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[実施例1-2]
 外径2.0mm、内径1.6mmでトリプルブリッジの中空形成性断面としたオリフィスを孔間ピッチ5mmの千鳥配列としたノズルを用いて、紡糸温度260℃、単孔吐出量1.8/min、雰囲気温度40℃、冷却風温度100℃、冷却風速度毎秒0.2m、引き取り速度を1.5m/min、ノズル面-冷却水距離28cmとした以外、実施例1と同様にして網状構造体を得た。得られた熱可塑性弾性樹脂からなる網状構造体の特性を表2に示す。
 得られた網状構造体は、表層部の繊維径が0.57mm、内層部の繊維径が0.50mmの線条で形成されており、見かけ密度が0.059g/cm、表面が平坦化された厚みが45mm、70℃圧縮残留歪みが13.1%、25%圧縮時硬度が310N/φ200mm、40%圧縮時硬度が399N/φ200mm、65%圧縮時硬度が924N/φ200mm、750N繰返し圧縮残留歪みが7.7%、750N繰返し圧縮後の40%硬度保持率が73.4%、750N繰返し圧縮後の65%硬度保持率が82.0%、圧縮たわみ係数が3.0である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[実施例1-3]
 熱可塑性弾性樹脂をA-2、紡糸温度240℃、冷却風温度80℃、冷却風速度毎秒0.1m、引き取り速度を1.6m/min、ノズル面-冷却水距離25cmとした以外、実施例2と同様にして網状構造体を得た。得られた熱可塑性弾性樹脂からなる網状構造体の特性を表2に示す。
 得られた網状構造体は、表層部の繊維径が0.65mm、内層部の繊維径が0.57mmの線条で形成されており、見かけ密度が0.055g/cm、表面が平坦化された厚みが45mm、70℃圧縮残留歪みが10.8%、25%圧縮時硬度が105N/φ200mm、40%圧縮時硬度が177N/φ200mm、65%圧縮時硬度が399N/φ200mm、750N繰返し圧縮残留歪みが6.9%、750N繰返し圧縮後の40%硬度保持率が71.0%、750N繰返し圧縮後の65%硬度保持率が87.7%、圧縮たわみ係数が3.8である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[実施例1-4]
 熱可塑性弾性樹脂をA-3、紡糸温度240℃、雰囲気温度20℃、冷却風温度80℃、冷却風速度毎秒0.1m、引き取り速度を1.2m/min、ノズル面-冷却水距離30cm、コンベアネットの開口幅を40mmとした以外、実施例2と同様にして網状構造体を得た。得られた熱可塑性弾性樹脂からなる網状構造体の特性を表2に示す。
 得られた網状構造体は、表層部の繊維径が0.80mm、内層部の繊維径が0.75mmの線条で形成されており、見かけ密度が0.054g/cm、表面が平坦化された厚みが40mm、70℃圧縮残留歪みが12.2%、25%圧縮時硬度が80N/φ200mm、40%圧縮時硬度が134N/φ200mm、65%圧縮時硬度が296N/φ200mm、750N繰返し圧縮残留歪みが8.8%、750N繰返し圧縮後の40%硬度保持率が65.5%、750N繰返し圧縮後の65%硬度保持率が73.3%、圧縮たわみ係数が3.7である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[比較例1-1]
 熱可塑性弾性樹脂をA-1、紡糸温度230℃、単孔吐出量を1.1g/min、雰囲気温度を50℃、冷却風を吹かさず、引き取り速度を1.2m/min、ノズル面-冷却水距離26cm、コンベアネットの開口幅を40mmとした以外、実施例2と同様にして網状構造体を得た。得られた熱可塑性弾性樹脂からなる網状構造体の特性を表2に示す。
 得られた網状構造体は、表層部の繊維径が1.00mm、内層部の繊維径が0.96mmの線条で形成されており、見かけ密度が0.041g/cm、表面が平坦化された厚みが40mm、70℃圧縮残留歪みが12.8%、25%圧縮時硬度が190N/φ200mm、40%圧縮時硬度が250N/φ200mm、65%圧縮時硬度が445N/φ200mm、750N繰返し圧縮残留歪みが9.1%、750N繰返し圧縮後の40%硬度保持率が54.0%、750N繰返し圧縮後の65%硬度保持率が68.2%、圧縮たわみ係数が2.3である網状構造体であった。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性に劣る網状構造体であった。
[比較例1-2]
 熱可塑性弾性樹脂をA-2、紡糸温度210℃、単孔吐出量を0.8g/min、雰囲気温度を40℃、冷却風を吹かさず、引き取り速度を0.8m/min、ノズル面-冷却水距離25cm、コンベアネットの開口幅を40mmとした以外、実施例1と同様にして網状構造体を得た。得られた熱可塑性弾性樹脂からなる網状構造体の特性を表2に示す。
 得られた網状構造体は、表層部の繊維径が0.44mm、内層部の繊維径が0.43mmの線条で形成されており、見かけ密度が0.055g/cm、表面が平坦化された厚みが40mm、70℃圧縮残留歪みが18.6%、25%圧縮時硬度が174N/φ200mm、40%圧縮時硬度が224N/φ200mm、65%圧縮時硬度が424N/φ200mm、750N繰返し圧縮残留歪みが4.1%、750N繰返し圧縮後の40%硬度保持率が53.3%、750N繰返し圧縮後の65%硬度保持率が63.1%、圧縮たわみ係数が2.4である網状構造体であった。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性に劣る網状構造体であった。
[比較例1-3]
 幅方向500mm、厚み方向の幅50mmのノズル有効面に厚み方向について1列から8列目までをオリフィス孔径を1.0mmとして、厚み方向の孔間ピッチ5mm、幅方向の孔間ピッチ10mmとして、9列目から11列目までをオリフィス孔径を0.7mmとして、厚み方向の孔間ピッチ5mm、幅方向の孔間ピッチ2.5mmのノズルを用い、熱可塑性弾性樹脂をA-3、紡糸温度210℃、単孔吐出量を1.0g/min、雰囲気温度を40℃、冷却風を吹かさず、引き取り速度を1.0m/min、ノズル面-冷却水距離20cm、コンベアネットの開口幅を40mmとした以外、実施例2と同様にして網状構造体を得た。得られた熱可塑性弾性樹脂からなる網状構造体の特性を表2に示す。
 得られた網状構造体は、表層部の繊維径が1.04mm、内層部の繊維径が0.51mmの線条で形成されており、見かけ密度が0.050g/cm、表面が平坦化された厚みが40mm、70℃圧縮残留歪みが10.4%、25%圧縮時硬度が65N/φ200mm、40%圧縮時硬度が127N/φ200mm、65%圧縮時硬度が190N/φ200mm、750N繰返し圧縮残留歪みが7.0%、750N繰返し圧縮後の40%硬度保持率が53.9%、750N繰返し圧縮後の65%硬度保持率が64.8%、圧縮たわみ係数が2.9である網状構造体であった。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性に劣る網状構造体であった。
Figure JPOXMLDOC01-appb-T000002
[ポリオレフィン系熱可塑性エラストマーの製造]
 ヘキサンを溶媒として用い、メタロセン化合物を触媒として用いてエチレンとヘキセン-1を公知の方法で重合することでエチレン・α-オレフィン共重合体とし、次いで酸化防止剤2%を添加混合練込み後ペレット化してポリオレフィン系熱可塑性エラストマー(B-1)を得た。得られたポリオレフィン系熱可塑性エラストマー(B-1)は、比重が0.919g/cmで、融点が110℃であった。
 ヘキサンを溶媒として用い、メタロセン化合物を触媒として用いてエチレンとプロピレンを公知の方法で重合することでエチレン・α-オレフィン共重合体とし、次いで酸化防止剤2%を添加混合練込み後ペレット化してポリオレフィン系熱可塑性エラストマー(B-2)を得た。得られたポリオレフィン系熱可塑性エラストマー(B-2)は、比重が0.887g/cmで、融点が155℃であった。
[実施例2-1]
 幅方向1050mm、厚み方向の幅60mmのノズル有効面に孔径0.8mmのオリフィスを孔間ピッチ5mmの千鳥配列としたノズルに、得られたポリオレフィン系熱可塑性エラストマー(B-1)を紡糸温度200℃にて、単孔吐出量1.0g/minの速度でノズル下方に吐出させ、雰囲気温度20℃の冷却空間を経て、冷却風は吹かさずに、ノズル面22cm下に冷却水を配し、幅150cmのステンレス製エンドレスネットを平行に開口幅45mm間隔で一対の引取りコンベアを水面上に一部出るように配して、該溶融状態の吐出線状を曲がりくねらせル-プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状構造体の両面を引取りコンベアで挟み込みつつ毎分0.9mの速度で冷却水中へ引込み固化させ両面をフラット化した後、所定の大きさに切断して70℃熱風にて15分間乾燥熱処理して、網状構造体を得た。得られたポリオレフィン系熱可塑性エラストマー(B-1)からなる網状構造体の特性を表3に示す。
 得られた網状構造体は、表層部の繊維径が0.52mm、内層部の繊維径が0.48mmの中実断面形状の線状で形成されており、見かけ密度は0.061g/cm、表面は平坦化された厚み46mm、25%圧縮時硬度が155N/φ200mm、40%圧縮時硬度が225N/φ200mm、65%圧縮時硬度が470N/φ200mm、750N繰返し圧縮残留歪みが8.0%、750N繰返し圧縮後の40%硬度保持率が61.2%、750N繰返し圧縮後の65%硬度保持率が74.2%、圧縮たわみ係数が3.0である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[実施例2-2]
 幅方向1050mm、厚み方向の幅60mmのノズル有効面にオリフィスの形状は外径2mm、内径1.6mmでトリプルブリッジの中空形成性断面としたオリフィスを孔間ピッチ5mmの千鳥配列としたノズルに、ポリオレフィン系熱可塑性エラストマー(B-1)を紡糸温度210℃にて、単孔吐出量1.5g/minの速度でノズル下方に吐出させ、雰囲気温度20℃の冷却空間を経て、冷却風温度50℃、冷却風速度毎秒0.2mで冷却風を吹き付け、ノズル面30cm下に冷却水を配し、幅150cmのステンレス製エンドレスネットを平行に開口幅45mm間隔で一対の引取りコンベアを水面上に一部出るように配して、該溶融状態の吐出線状を曲がりくねらせル-プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状構造体の両面を引取りコンベア-で挟み込みつつ毎分1.6mの速度で冷却水中へ引込み固化させ両面をフラット化した後、所定の大きさに切断して70℃熱風にて15分間乾燥熱処理して、網状構造体を得た。得られたポリオレフィン系熱可塑性エラストマー(B-1)からなる網状構造体の特性を表3に示す。
 得られた網状構造体は、断面形状が中空断面形状で中空率が25%で、表層部の繊維径が0.71mm、内層部の繊維径0.65mmの線条で形成されており、見かけ密度は0.053g/cm、表面は平坦化された厚みが46mm、25%圧縮時硬度が185N/φ200mm、40%圧縮時硬度が242N/φ200mm、65%圧縮時硬度が573N/φ200mm、750N繰り返し圧縮残留歪みが8.0%、750N繰り返し圧縮後の40%硬度保持率が66.4%、750N繰り返し圧縮後の65%硬度保持率が79.1%、圧縮たわみ係数が3.1である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[実施例2-3]
 冷却空間の雰囲気温度を15℃とし、エンドレスネットの開口幅を40mm間隔としたこと以外は実施例2-2と同様の方法で処理して、網状構造体を得た。得られたポリオレフィン系熱可塑性エラストマー(B-1)からなる網状構造体の特性を表3に示す。
 得られた網状構造体は、断面形状が中空断面形状で中空率が25%で、表層部の繊維径が0.76mm、内層部の繊維径0.68mmの線条で形成されており、見かけ密度は0.060g/cm、表面は平坦化された厚みが41mm、25%圧縮時硬度が208N/φ200mm、40%圧縮時硬度が279N/φ200mm、65%圧縮時硬度が629N/φ200mm、750N繰り返し圧縮残留歪みが7.9%、750N繰り返し圧縮後の40%硬度保持率が70.2%、750N繰り返し圧縮後の65%硬度保持率が80.1%、圧縮たわみ係数が3.0である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[実施例2-4]
 ポリオレフィン系熱可塑性エラストマー(B-2)を使用し、紡糸温度を230℃としたこと以外は実施例2-3と同様の方法で処理して、網状構造体を得た。得られたポリオレフィン系熱可塑性エラストマー(B-2)からなる網状構造体の特性を表3に示す。
 得られた網状構造体は、断面形状が中空断面形状で中空率が22%で、表層部の繊維径が0.69mm、内層部の繊維径0.60mmの線条で形成されており、見かけ密度は0.060g/cm、表面は平坦化された厚みが41mm、25%圧縮時硬度が215N/φ200mm、40%圧縮時硬度が281N/φ200mm、65%圧縮時硬度が645N/φ200mm、750N繰り返し圧縮残留歪みが8.1%、750N繰り返し圧縮後の40%硬度保持率が72.1%、750N繰り返し圧縮後の65%硬度保持率が81.4%、圧縮たわみ係数が3.0である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[比較例2-1]
 紡糸温度を190℃とし、冷却空間を設けず、ステンレス製エンドレスネットの開口幅を50mmとした以外、実施例2-1と同様にして網状構造体を得た。得られたポリオレフィン系熱可塑性エラストマーからなる網状構造体の特性を表3に示す。
 得られた網状構造体は、表層部の繊維径が0.51mm、内層部の繊維径0.49mmの中実断面形状の線条で形成されており、見かけ密度が0.056g/cm、表面が平坦化された厚みが50mm、25%圧縮時硬度が162N/φ200mm、40%圧縮時硬度が216N/φ200mm、65%圧縮時硬度が469N/φ200mm、750N繰り返し圧縮残留歪みが8.9%、750N繰り返し圧縮後の40%硬度保持率が51.6%、750N繰り返し圧縮後の65%硬度保持率が67.6%、圧縮たわみ係数が2.9である網状構造体であった。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性にやや劣る網状構造体であった。
[比較例2-2]
 紡糸温度を190℃とし、冷却空間を設けず、冷却風を吹き付けず、ステンレス製エンドレスネットの開口幅を50mmとした以外、実施例2-2と同様にして網状構造体を得た。得られたポリオレフィン系熱可塑性エラストマーからなる網状構造体の特性を表3に示す。
 得られた網状構造体は、断面形状が中空断面形状で中空率が24%で、表層部の繊維径が0.70mm、内層部の繊維径0.68mmの線条で形成されており、見かけ密度が0.048g/cm、表面が平坦化された厚みが50mm、25%圧縮時硬度が152N/φ200mm、40%圧縮時硬度が219N/φ200mm、65%圧縮時硬度が490N/φ200mm、750N繰り返し圧縮残留歪みが11.3%、750N繰り返し圧縮後の40%硬度保持率が53.1%、750N繰り返し圧縮後の65%硬度保持率が68.9%、圧縮たわみ係数が2.4である劣る網状構造体であった。得られたクッションは、本発明の要件を満たさず、繰り返し圧縮耐久性にやや劣る網状構造体であった。
[比較例2-3]
 ポリオレフィン系熱可塑性エラストマー(B-2)を使用したこと以外は比較例2-2と同様の方法で処理して、網状構造体を得た。得られたポリオレフィン系熱可塑性エラストマー(B-2)からなる網状構造体の特性を表3に示す。
 得られた網状構造体は、断面形状が中空断面形状で中空率が23%で、表層部の繊維径が0.71mm、内層部の繊維径0.70mmの線条で形成されており、見かけ密度は0.048g/cm、表面は平坦化された厚みが50mm、25%圧縮時硬度が148N/φ200mm、40%圧縮時硬度が213N/φ200mm、65%圧縮時硬度が452N/φ200mm、750N繰り返し圧縮残留歪みが12.1%、750N繰り返し圧縮後の40%硬度保持率が52.3%、750N繰り返し圧縮後の65%硬度保持率が68.2%、圧縮たわみ係数が3.1である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
Figure JPOXMLDOC01-appb-T000003
[エチレン酢酸ビニル共重合体の製造]
 エチレン酢酸ビニル共重合体は、エチレンと酢酸ビニルを公知の方法でラジカル共重合し、エチレン酢酸ビニル共重合体とし、次いで酸化防止剤2%を添加混合練込み後ペレット化して得た。重合時の酢酸ビニルの比率を変更し、酢酸ビニル含有率10%のエチレン酢酸ビニル共重合体C-1と、酢酸ビニル含有率20%のエチレン酢酸ビニル共重合体C-2を得た。エチレン酢酸ビニル共重合体C-1は、酢酸ビニルの含有率が10%、比重0.929、融点95℃であり、エチレン酢酸ビニル共重合体C-2は、酢酸ビニルの含有率が20%、比重0.941、融点85℃であった。得られたポリマーの特性を表4に示す。
Figure JPOXMLDOC01-appb-T000004
[実施例3-1]
 幅方向1050mm、厚み方向の幅60mmのノズル有効面に孔径0.8mmのオリフィスを孔間ピッチ5mmの千鳥配列としたノズルに、得られたエチレン酢酸ビニル共重合体C-1を紡糸温度190℃にて、単孔吐出量1.0g/minの速度でノズル下方に吐出させ、雰囲気温度20℃の冷却空間を経て、ノズル面22cm下に冷却水を配し、幅150cmのステンレス製エンドレスネットを平行に開口幅45mm間隔で一対の引取りコンベアを水面上に一部出るように配して、該溶融状態の吐出線状を曲がりくねらせル-プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状構造体の両面を引取りコンベア-で挟み込みつつ毎分0.8mの速度で冷却水中へ引込み固化させ両面をフラット化した後、所定の大きさに切断して70℃熱風にて15分間乾燥熱処理して、網状構造体を得た。得られたエチレン酢酸ビニル共重合体からなる網状構造体の特性を表5に示す。
 得られた網状構造体は、表層部の繊維径が0.51mm、内層部の繊維径が0.47mmの中実断面形状の線条で形成されており、見かけ密度は0.068g/cm、表面は平坦化された厚み46mm、25%圧縮時硬度が175N/φ200mm、40%硬度が240N/φ200mm、65%圧縮時硬度が550N/φ200mm、750N繰返し圧縮残留歪みが8.2%、750N繰返し圧縮後の40%硬度保持率が56.1%、750N繰返し圧縮後の65%硬度保持率が72.1%、圧縮たわみ係数が3.1である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[実施例3-2]
 エチレン酢酸ビニル共重合体C-2を用いたこと以外は実施例3-1と同様の方法で処理して、網状構造体を得た。得られたエチレン酢酸ビニル共重合体C-2からなる網状構造体の特性を表2に示す。
 得られた網状構造体は、表層部の繊維径が0.50mm、内層部の繊維径が0.47mmの中実断面形状の線条で形成されており、見かけ密度は0.068g/cm、表面は平坦化された厚み46mm、25%圧縮時硬度が165N/φ200mm、40%硬度が232N/φ200mm、65%圧縮時硬度が530N/φ200mm、750N繰返し圧縮残留歪みが8.3%、750N繰返し圧縮後の40%硬度保持率が61.1%、750N繰返し圧縮後の65%硬度保持率が74.5%、圧縮たわみ係数が3.2である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[実施例3-3]
 幅方向1050mm、厚み方向の幅60mmのノズル有効面にオリフィスの形状は外径2mm、内径1.6mmでトリプルブリッジの中空形成性断面としたオリフィスを孔間ピッチ5mmの千鳥配列としたノズルに、得られたエチレン酢酸ビニル共重合体C-1を紡糸温度200℃にて、単孔吐出量1.6g/minの速度でノズル下方に吐出させ、雰囲気温度20℃の冷却空間を経て、冷却風温度40℃、冷却風速度毎秒0.2mで冷却風を吹き付け、ノズル面30cm下に冷却水を配し、幅150cmのステンレス製エンドレスネットを平行に開口幅45mm間隔で一対の引取りコンベアを水面上に一部出るように配して、該溶融状態の吐出線状を曲がりくねらせル-プを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状構造体の両面を引取りコンベア-で挟み込みつつ毎分1.6mの速度で冷却水中へ引込み固化させ両面をフラット化した後、所定の大きさに切断して70℃熱風にて15分間乾燥熱処理して、網状構造体を得た。得られたエチレン酢酸ビニル共重合体C-1からなる網状構造体の特性を表5に示す。
 得られた網状構造体は、断面形状が中空断面形状で中空率が26%で、表層部の繊維径が0.72mm、内層部の繊維径が0.66mmの線条で形成されており、見かけ密度は0.057g/cm、表面は平坦化された厚み46mm、25%圧縮時硬度が170N/φ200mm、40%硬度が225N/φ200mm、65%圧縮時硬度が523N/φ200mm、750N繰返し圧縮残留歪みが8.1%、750N繰返し圧縮後の40%硬度保持率が65.0%、750N繰り返し圧縮後の65%硬度保持率が75.5%、圧縮たわみ係数が3.1である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[実施例3-4]
 冷却空間の雰囲気温度を15℃とし、エンドレスネットの開口幅を40mm間隔としたこと以外は実施例3-3と同様の方法で処理して、網状構造体を得た。得られたエチレン酢酸ビニル共重合体C-1からなる網状構造体の特性を表5に示す。
 得られた網状構造体は、断面形状が中空断面形状で中空率が26%で、表層部の繊維径が0.75mm、内層部の繊維径が0.67mmの線条で形成されており、見かけ密度は0.064g/cm、表面は平坦化された厚み41mm、25%圧縮時硬度が215N/φ200mm、40%硬度が278N/φ200mm、65%圧縮時硬度が640N/φ200mm、750N繰返し圧縮残留歪みが8.1%、750N繰返し圧縮後の40%硬度保持率が70.1%、750N繰返し圧縮後の65%硬度保持率が80.2%、圧縮たわみ係数が3.0である網状構造体であった。得られた網状構造体は、本発明の要件を満たし、繰返し圧縮耐久性に優れた網状構造体であった。
[比較例3-1]
 紡糸温度を180℃とし、冷却空間を設けず、ステンレス製エンドレスネットの開口幅50mmにしたこと以外は実施例3-1と同様にして網状構造体を得た。得られたエチレン酢酸ビニル共重合体C-1からなる網状構造体の特性を表5に示す。
 得られた網状構造体は、表層部の繊維径が0.50mm、内層部の繊維径が0.49mmの中実断面形状の線条で形成されており、見かけ密度は0.062g/cm、表面は平坦化された厚み50mm、25%圧縮時硬度が143N/φ200mm、40%硬度が205N/φ200mm、65%圧縮時硬度が430N/φ200mm、750N繰返し圧縮残留歪みが9.0%、750N繰返し圧縮後の40%硬度保持率が47.1%、750N繰返し圧縮後の65%硬度保持率が59.3%、圧縮たわみ係数が3.0である網状構造体であった。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性にやや劣る網状構造体であった。
[比較例3-2]
 紡糸温度を190℃とし、冷却空間を設けず、冷却風を吹きつけず、ステンレス製エンドレスネットの開口幅50mmにしたこと以外は実施例3-3と同様にして網状構造体を得た。得られたエチレン酢酸ビニル共重合体C-1からなる網状構造体の特性を表5に示す。
 得られた網状構造体は、断面形状が中空断面形状で中空率が25%で、表層部の繊維径が0.70mm、内層部の繊維径が0.68mmの線条で形成されており、見かけ密度は0.052g/cm、表面は平坦化された厚み50mm、25%圧縮時硬度が170N/φ200mm、40%硬度が211N/φ200mm、65%圧縮時硬度が410N/φ200mm、750N繰返し圧縮残留歪みが13.4%、750N繰返し圧縮後の40%硬度保持率が42.0%、750N繰返し圧縮後の65%硬度保持率が55.1%、圧縮たわみ係数が2.4である網状構造体であった。得られた網状構造体は、本発明の要件を満たさず、繰返し圧縮耐久性にやや劣る網状構造体であった。
Figure JPOXMLDOC01-appb-T000005
 本発明の網状構造体は、網状構造体が従来から有する快適な座り心地や通気性を損なわずに、従来品の課題であった750N定荷重繰返し圧縮後の耐久性を改良したものであり、長期間使用後の厚み低下が少なく、硬度の低下が少ないため、オフィスチェア、家具、ソファー、ベッド等寝具、電車・自動車・二輪車、チャイルドシート、ベビーカー等の車両用座席等に用いられるクッション、フロアーマットや衝突や挟まれ防止部材などの緩衝吸収用マット等に好適な網状構造体を提供できるため、産業界に寄与すること大である。
 

Claims (7)

  1.  ポリエステル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマーおよびエチレン酢酸ビニル共重合体からなる群から選ばれる少なくとも1種の熱可塑性エラストマーからなる連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめた三次元ランダムループ接合構造からなる網状構造体であって、連続線状体の繊維径が0.1mm以上3.0mm以下、網状構造体の表層部の繊維径が内層部の繊維経の1.05倍以上、見かけ密度が0.01g/cm以上0.20g/cm以下、750N定荷重繰返し圧縮残留歪みが15%以下、750N定荷重繰返し圧縮後の40%圧縮時硬度保持率が55%以上である網状構造体。
  2.  750N定荷重繰返し圧縮後の65%圧縮時硬度保持率が70%以上である請求項1に記載の網状構造体。
  3.  圧縮たわみ係数が2.5以上である請求項1または2に記載の網状構造体。
  4.  網状構造体の厚みが10mm以上300mm以下である請求項1~3のいずれかに記載の網状構造体。
  5.  750N定荷重繰返し圧縮後の40%圧縮時硬度保持率が60%以上である請求項1~4のいずれかに記載の網状構造体。
  6.  750N定荷重繰返し圧縮後の40%圧縮時硬度保持率が65%以上である請求項1~5のいずれかに記載の網状構造体。
  7.  750N定荷重繰返し圧縮後の65%圧縮時硬度保持率が73%以上である請求項1~6のいずれかに記載の網状構造体。
     
PCT/JP2014/078562 2013-10-29 2014-10-28 圧縮耐久性に優れた網状構造体 WO2015064557A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14858976.5A EP3064628B1 (en) 2013-10-29 2014-10-28 Fibrous network structure having excellent compression durability
KR1020167010920A KR102148214B1 (ko) 2013-10-29 2014-10-28 압축 내구성이 우수한 망상 구조체
US15/032,924 US9938649B2 (en) 2013-10-29 2014-10-28 Fibrous network structure having excellent compression durability
CN201480059994.2A CN105683434B (zh) 2013-10-29 2014-10-28 压缩耐久性优异的网状结构体

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-224009 2013-10-29
JP2013224009 2013-10-29
JP2014011072A JP6318643B2 (ja) 2013-10-29 2014-01-24 圧縮耐久性に優れた網状構造体
JP2014-011072 2014-01-24
JP2014025091A JP6311918B2 (ja) 2014-02-13 2014-02-13 圧縮耐久性に優れた網状構造体
JP2014-025092 2014-02-13
JP2014025092A JP6311919B2 (ja) 2014-02-13 2014-02-13 圧縮耐久性に優れた網状構造体
JP2014-025091 2014-02-13

Publications (1)

Publication Number Publication Date
WO2015064557A1 true WO2015064557A1 (ja) 2015-05-07

Family

ID=53004159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078562 WO2015064557A1 (ja) 2013-10-29 2014-10-28 圧縮耐久性に優れた網状構造体

Country Status (1)

Country Link
WO (1) WO2015064557A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293813A (ja) 1993-02-12 1994-10-21 Tosoh Corp エチレン・α−オレフィン共重合体およびフィルム
JPH0768061A (ja) 1993-02-26 1995-03-14 Toyobo Co Ltd クッション用網状構造体及び製法
JPH07189105A (ja) 1993-12-24 1995-07-25 Toyobo Co Ltd 異繊度網状構造体及びその製法
JP2002061059A (ja) * 2000-08-16 2002-02-28 Ain Kosan Kk スプリング構造樹脂成形品及びその製造方法
JP2002266223A (ja) * 2001-03-15 2002-09-18 Toyobo Co Ltd 立体網状構造体
JP2004244740A (ja) 2003-02-12 2004-09-02 Toyobo Co Ltd 敷マット
JP5454733B1 (ja) * 2013-10-01 2014-03-26 東洋紡株式会社 圧縮耐久性に優れた網状構造体
JP5454734B1 (ja) * 2013-10-01 2014-03-26 東洋紡株式会社 圧縮耐久性に優れた網状構造体
WO2014132484A1 (ja) * 2013-02-27 2014-09-04 東洋紡株式会社 圧縮耐久性に優れた網状構造体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293813A (ja) 1993-02-12 1994-10-21 Tosoh Corp エチレン・α−オレフィン共重合体およびフィルム
JPH0768061A (ja) 1993-02-26 1995-03-14 Toyobo Co Ltd クッション用網状構造体及び製法
JPH07189105A (ja) 1993-12-24 1995-07-25 Toyobo Co Ltd 異繊度網状構造体及びその製法
JP2002061059A (ja) * 2000-08-16 2002-02-28 Ain Kosan Kk スプリング構造樹脂成形品及びその製造方法
JP2002266223A (ja) * 2001-03-15 2002-09-18 Toyobo Co Ltd 立体網状構造体
JP2004244740A (ja) 2003-02-12 2004-09-02 Toyobo Co Ltd 敷マット
WO2014132484A1 (ja) * 2013-02-27 2014-09-04 東洋紡株式会社 圧縮耐久性に優れた網状構造体
JP5454733B1 (ja) * 2013-10-01 2014-03-26 東洋紡株式会社 圧縮耐久性に優れた網状構造体
JP5454734B1 (ja) * 2013-10-01 2014-03-26 東洋紡株式会社 圧縮耐久性に優れた網状構造体

Similar Documents

Publication Publication Date Title
EP2772576B1 (en) Fibrous Network Structure Having Excellent Compression Durability
KR102148214B1 (ko) 압축 내구성이 우수한 망상 구조체
US9970140B2 (en) Network structure having excellent compression durability
JP5454733B1 (ja) 圧縮耐久性に優れた網状構造体
JP5454734B1 (ja) 圧縮耐久性に優れた網状構造体
JP5459436B1 (ja) 熱寸法安定性に優れた網状構造体
JP6318643B2 (ja) 圧縮耐久性に優れた網状構造体
WO2016175293A9 (ja) 網状構造体
WO2015064557A1 (ja) 圧縮耐久性に優れた網状構造体
JP6428868B2 (ja) 網状構造体の製造方法
JP5532179B1 (ja) 圧縮耐久性に優れた網状構造体
JP6311919B2 (ja) 圧縮耐久性に優れた網状構造体
JP6311918B2 (ja) 圧縮耐久性に優れた網状構造体
US11970802B2 (en) Fibrous network structure having excellent compression durability
JP5532178B1 (ja) 圧縮耐久性に優れた網状構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167010920

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014858976

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15032924

Country of ref document: US

Ref document number: 2014858976

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE