WO2015049989A1 - 化学蒸着法によるSi基板上へのニッケル薄膜、及び、Si基板上へのNiシリサイド薄膜の製造方法 - Google Patents

化学蒸着法によるSi基板上へのニッケル薄膜、及び、Si基板上へのNiシリサイド薄膜の製造方法 Download PDF

Info

Publication number
WO2015049989A1
WO2015049989A1 PCT/JP2014/074628 JP2014074628W WO2015049989A1 WO 2015049989 A1 WO2015049989 A1 WO 2015049989A1 JP 2014074628 W JP2014074628 W JP 2014074628W WO 2015049989 A1 WO2015049989 A1 WO 2015049989A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
substrate
film
nickel
producing
Prior art date
Application number
PCT/JP2014/074628
Other languages
English (en)
French (fr)
Inventor
俊一 鍋谷
了輔 原田
鈴木 和治
孝之 曽根
道弘 横尾
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to EP14851079.5A priority Critical patent/EP3054031B1/en
Priority to KR1020187017838A priority patent/KR20180074803A/ko
Priority to KR1020167009860A priority patent/KR102066112B1/ko
Priority to US15/025,345 priority patent/US9805936B2/en
Publication of WO2015049989A1 publication Critical patent/WO2015049989A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Definitions

  • the present invention relates to a method for producing a high-quality nickel thin film directly on a Si substrate by chemical vapor deposition (chemical vapor deposition (CVD), atomic layer deposition (ALD)).
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the present invention also relates to a method for manufacturing a Ni silicide thin film by siliciding the nickel thin film.
  • NiSi nickel silicide films
  • the NiSi film is formed by forming a Ni thin film on a Si substrate and heat-treating it to diffuse Si from the Si substrate to form a silicide to form NiSi.
  • Patent Document 1 As a method for forming a Ni film on a Si substrate by chemical vapor deposition, for example, a method based on a method using nickel amidinate as a precursor (raw material compound) and NH 3 as a reaction gas is known.
  • Patent Document 1 a method based on a method using nickel amidinate as a precursor (raw material compound) and NH 3 as a reaction gas is known.
  • NiNx nickel nitride
  • Patent Document 1 N is removed by heat treatment after film formation.
  • Ni thin film formation and purification process can finally form a high-purity, low-resistance Ni thin film that does not contain an N component. Then, a NiSi film can be manufactured by forming a high-purity Ni thin film on the Si substrate.
  • the density of the film is reduced and the form (roughness) is changed with the removal of N, and there is a concern that N may remain. Therefore, there is a problem that the Ni thin film has a high resistance to bulk Ni. A suitable electrode cannot be formed even if the Ni thin film is silicided.
  • Ni thin film having no impurities remaining it is appropriate to exclude elements such as N that may remain in the Ni thin film as constituent elements of the precursor and the reaction gas. It can be said that it corresponds.
  • a hydrocarbon-based Ni complex as a precursor and to apply hydrogen as a reaction gas. This is because if the hydrocarbon-based Ni complex is used, the complex component is released in the form of hydrocarbon, and there is little concern that impurities remain in the thin film.
  • Ni thin film can be directly produced on Si using a hydrocarbon-based Ni complex.
  • oxide film SiO 2
  • a suitable Ni film can be formed.
  • NiSi When forming a Ni film on a Si substrate having an oxide film, it cannot be converted into NiSi by silicidation. This is because silicidation proceeds by diffusion of Si into the Ni film, and if there is an oxide film between the Ni film and the Si substrate, this acts as a barrier and inhibits diffusion of Si into the Ni film. . Therefore, in order to form a NiSi thin film, the formation of a Ni thin film on a Si base is an essential matter.
  • the present invention provides a method in which a Ni thin film can be directly formed on a Si substrate for forming a NiSi film, and no impurities remain in the formed Ni thin film.
  • a method for producing a NiSi film by appropriately silicidating the formed Ni thin film will also be described.
  • the present inventors examined conditions for directly forming a Ni film on a Si substrate while using a hydrocarbon-based Ni complex as a precursor.
  • a range type of Ni complex in which a hydrocarbon-based Ni complex can be directly deposited on Si was sought and various deposition conditions were examined.
  • impurities remain in the Ni thin film. That is, hydrocarbon-based Ni complexes are less likely to have impurities compared to nickel amidinate, but carbon (C) may be incorporated into the Ni film because of its constituent elements.
  • the present invention is a method for producing a nickel thin film on a Si substrate by chemical vapor deposition, wherein as a raw material compound, nickel represented by the following formula, cyclopentadienyl group (Cp) or a derivative thereof, and A nickel complex in which a chain or cyclic alkenyl group consisting of 3 to 9 carbon atoms or a derivative thereof is coordinated, using a hydrocarbon-based nickel complex that does not contain elements other than carbon and hydrogen in the structure;
  • hydrogen is used as a reaction gas
  • the Ni thin film is manufactured under the following film forming conditions: a film forming pressure of 1 to 150 torr and a film forming temperature of 80 to 250 ° C.
  • the basic process conforms to a normal chemical vapor deposition method.
  • the thin film manufacturing process by chemical vapor deposition vaporizes a metal complex to be a precursor, transports it to the substrate surface together with a reaction gas, and deposits the metal from the metal complex on the substrate surface.
  • the method for producing a Ni thin film according to the present invention also follows this step, but is characterized in that it is defined by the type of precursor to be applied and film formation conditions (film formation pressure and film formation temperature). In the following description, these characteristic portions will be described in detail.
  • the precursor for producing the Ni thin film is a hydrocarbon-based Ni complex that does not contain elements other than carbon and hydrogen in the structure. As described above, it is for suppressing the residue of impurities in the deposited Ni.
  • the hydrocarbon type Ni complex applied by this invention is an above-mentioned specific hydrocarbon type Ni complex. The reason why this Ni complex is applied among hydrocarbon-based Ni complexes is that it has moderate reactivity with hydrogen gas and excellent vaporization characteristics.
  • This hydrocarbon Ni complex is a Ni complex in which a cyclopentadienyl group or a derivative thereof and a chain or cyclic alkenyl group or a derivative thereof are coordinated.
  • a cyclic alkenyl group (cycloalkenyl group) is preferable, and any one of cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclononenyl, and derivatives thereof represented by the following formula is particularly preferable.
  • Ni complexes coordinated with these are suitable for chemical vapor deposition because they are stably vaporized in the vaporization stage and easily decomposed at a low temperature in the film formation stage.
  • cyclopentadienyl which is another ligand coordinated to Ni in this Ni complex, substitutes for an alkyl group in addition to all of the substituents (R 1 to R 5 ) being hydrogen atoms. It may be a derivative.
  • the cyclopentadienyl derivative a derivative in which one of the substituents (R 1 to R 5 ) is an alkyl group and the remaining four substituents are hydrogen atoms is preferable.
  • the substituent (R 1 to R 5 ) can have 0 to 6 carbon atoms, preferably 4 or less.
  • the above precursor is vaporized and supplied to the Si substrate. At this time, the vaporized precursor is transported onto the substrate together with the reaction gas. This reaction gas applies hydrogen. This is to prevent impurities from remaining in the Ni film.
  • the substrate is a Si substrate, which may be either single crystal Si or polycrystalline Si, and preferably has a high purity.
  • Si substrate one obtained by removing the oxide film before forming the Ni film is applied.
  • a continuous Ni film can be formed at a high speed when the surface of the Si substrate is doped with an appropriate amount of any of B, P, and As.
  • the dose amount of B, P, or As is 10 18 atms / cm 3 at the maximum. This is because there is no change in the film formation rate even if it exceeds 10 18 atms / cm 3 . More preferably, it is 10 13 to 10 16 atms / cm 3 .
  • the method for doping B, P, or As on the Si substrate is not particularly limited, and an ion implantation method, a thermal diffusion method, or the like can be applied.
  • the film formation pressure and the film formation temperature are specified. These film forming conditions are important conditions for forming Ni directly on Si.
  • the film formation pressure is specified for the amount of precursor supply required for film formation.
  • the film forming pressure exceeds 150 torr, the precursor is hardly vaporized and the supply becomes insufficient. Further, the supply amount is insufficient even when it is lower than 1 torr.
  • a preferable film forming pressure is 50 to 120 torr, and it is easy to obtain film continuity and smoothness.
  • the film forming temperature is set to 80 to 250 ° C. If it is less than 80 degreeC, a film-forming reaction will not advance easily and it will be difficult to obtain a required film thickness.
  • a preferred film forming temperature is 100 to 220 ° C. The film forming temperature means the heating temperature of the substrate.
  • NiSi Ni silicide
  • the purity is high and the formability is excellent immediately after the film formation. Since it is in direct contact with Si, it is easy to form a NiSi film by silicidation.
  • Silicidation can be achieved by heating the substrate at 300 to 600 ° C. by heating the substrate in an inert gas (preferably nitrogen or argon) or hydrogen atmosphere.
  • a Ni thin film can be manufactured in a state of being in direct contact with Si serving as a substrate.
  • the Ni thin film formed according to the present invention does not contain impurities such as C, N, and O, can be easily silicided by an appropriate heat treatment, and can form a NiSi film.
  • First Embodiment This embodiment was carried out in order to examine the formation of a Ni film on a Si substrate by a hydrocarbon-based Ni complex and the possibility of silicidation thereof.
  • a plurality of high-purity Si substrates were prepared, and a film formation test was performed for each.
  • As the Si substrate an Si substrate from which the oxide film was removed by pickling and an Si substrate in which the oxide film was left as it was without pickling were prepared. In pickling, the substrate was immersed in dilute hydrofluoric acid (0.5%) for 5 minutes to remove the oxide film on the surface.
  • ( ⁇ 3 -cyclohexenyl) ( ⁇ 5 -cyclopentadienyl) nickel (II) was used as a precursor. Then, a nickel thin film was formed by a CVD method using a cold wall type film forming apparatus. After the film formation test, SEM observation was performed on the substrate surface to evaluate the possibility of Ni film formation.
  • the film forming conditions are as follows.
  • Precursor heating temperature 90 ° C
  • Substrate heating temperature 200 ° C
  • Carrier gas Argon 60sccm
  • Reaction gas Hydrogen
  • 100 ccm Pressure 100 torr Deposition time: 20 minutes
  • the formed Ni thin film was heat-treated for silicidation.
  • the substrate temperature was set to 500 ° C., and the substrate was heated in an atmosphere of 10 sccm of hydrogen gas + 10 sccm of argon. All heating times were 10 minutes.
  • FIG. 1 is a SEM photograph of the Ni thin film and the heat-treated thin film on each substrate. From FIG. 1, it can be seen that Ni is directly formed on the Si substrate according to the precursor and film forming conditions applied in the present embodiment. And it can confirm that silicidation advances by heat-processing this, and the SiNi thin film was formed on the Si substrate. On the other hand, a Ni thin film is also formed on a Si substrate having an oxide film (SiO 2 ). However, no change is seen in the SiNi thin film even when this is heat-treated. This is presumably because the SiO 2 layer at the boundary between the Ni thin film and the Si substrate became a barrier layer and inhibited the diffusion of Si and was not silicided.
  • SiO 2 oxide film
  • Ni thin film was manufactured in a state where B was doped on the surface of the Si substrate.
  • the substrate was doped with B by 10 15 atms / cm 3 of B by annealing at 900 ° C. for 30 minutes after ion implantation, and pickled in the same manner as described above before film formation.
  • Ni film formation was performed using the same precursor (( ⁇ 3 -cyclohexenyl) ( ⁇ 5 -cyclopentadienyl) nickel (II)) as in the first embodiment. The speed was evaluated.
  • the film forming conditions were as follows, and the film thickness of the Ni thin film was measured at film forming times of 1, 2, 5, and 15 minutes.
  • Precursor heating temperature 90 ° C
  • Substrate heating temperature 175 ° C
  • Carrier gas Argon
  • Reaction gas Hydrogen
  • 100 ccm Pressure 100 torr Deposition time: 1 minute, 2 minutes, 5 minutes, 15 minutes
  • FIG. 2 shows the results of this film formation test. From FIG. 2, almost no incubation time is observed in the film formation process of the Ni thin film on the B-doped Si substrate, and the growth starts promptly from the start of film formation. Further, the film thickness increases linearly with the film formation time. In this embodiment, a relatively good deposition rate of 8.2 nm / min is shown.
  • the Ni thin film was silicided into the NiSi thin film by performing heat treatment on the substrate on which the Ni thin film was manufactured in 1 minute and 2 minutes in the present embodiment.
  • the substrate temperature was set to 500 ° C., and the substrate was heated in an atmosphere of 10 sccm of hydrogen gas + 10 sccm of argon. All heating times were 10 minutes.
  • FIG. 3 is SEM photographs before and after heat treatment of each Ni thin film.
  • Each Ni thin film has a NiSi thin film formed thereon by heat treatment. Even when the Ni thin film was thin (film formation time 1 minute), uniform silicidation was confirmed without unevenness.
  • FIG. 4 shows the results of XPS analysis of a NiSi thin film (Ni film formation time of 2 minutes).
  • NiSi thin film formed in this embodiment no impurities of C, N, and O were measured. Further, the composition ratio of Ni and Si is almost 1: 1, and it can be confirmed that a Ni silicide thin film having a good quality could be obtained.
  • the method according to the present invention can produce a Ni thin film directly on a Si substrate, and can obtain a high-quality Ni thin film free from residual impurities such as C, N, and O. Moreover, this Ni thin film can be made into a NiSi film as it is by heat treatment.
  • the method according to the present invention is based on a thin film manufacturing process having excellent step coverage called chemical vapor deposition and is suitable for manufacturing a three-dimensional electrode having a three-dimensional structure of various semiconductor devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、化学蒸着法によりニッケル薄膜をSi基板上に製造する方法であって、原料化合物として、次式で示される、ニッケルに、シクロペンタジエニル基(Cp)又はその誘導体、及び、3~9個の炭素原子から成る鎖状あるいは環状のアルケニル基又はその誘導体が配位するニッケル錯体であって、炭素と水素以外の元素を構造中に含まない炭化水素系ニッケル錯体を用い、反応ガスとして水素を用い、更に、成膜条件として、成膜圧力1~150torr、成膜温度80~250℃としてニッケル薄膜を製造する方法である。( 式中、Xは3~9個の炭素原子から成る鎖状あるいは環状のアルケニル基又はその誘導体である。シクロペンタジエニル基の置換基R~RはC2n+1であり、nは0~6の整数である。)

Description

化学蒸着法によるSi基板上へのニッケル薄膜、及び、Si基板上へのNiシリサイド薄膜の製造方法
 本発明は、化学蒸着法(化学気相蒸着法(CVD法)、原子層蒸着法(ALD法))により、Si基板に直接、高品位のニッケル薄膜を製造するための方法に関する。また、このニッケル薄膜をシリサイド化してNiシリサイド薄膜を製造する方法に関する。
 近年、MOSFET等の半導体デバイスにおける電極材料の低抵抗化を図るため、ニッケル薄膜をシリサイド化したニッケルシリサイド膜(NiSi)の適用が検討されている。このNiSi膜の形成方法としては、Si基板上にNi薄膜を形成し、これを熱処理することでSi基板からSiを拡散させてシリサイド化してNiSiを生成するのが一般的である。
 上記のように、Si基板にNiSi薄膜を製造するためのNi薄膜の製造方法としては、スパッタリング法等の物理蒸着法(PVD)の適用例がこれまで多かったが、化学気相蒸着法(CVD法)や原子層蒸着法(ALD法)等の化学蒸着法の適用が着目されるようになっている。近年、半導体デバイスの3次元集積化が進んでおり、そこで用いられる電極も立体構造となってきている。そして、PVD法では立体構造の薄膜形成は困難であることから、段差被覆能に優れる化学蒸着法の適用が好ましいとされている。
 化学蒸着によりSi基板上にNi膜を形成する方法としては、例えば、プリカーサ(原料化合物)としてニッケルアミジネートを用い、反応ガスとしてNHを適用する方法を基本としたものが知られている(特許文献1)。但し、ニッケルアミジネートを適用して生成されるNi膜は、原料物質由来の窒素(N)や反応ガスであるNH由来のNが膜中に取り込まれるため、膜中で窒化ニッケル(NiNx)が生成する。このような不純物は電極の低抵抗化の阻害要因となるが、特許文献1においては成膜後に熱処理を行いNを除去することとしている。以上のNi薄膜の成膜及び高純度化プロセスは、最終的にはN成分のない高純度で低抵抗のNi薄膜を形成することができる。そして、Si基板上に係る高純度のNi薄膜を形成することでNiSi膜の製造も可能となる。
 しかし、このようなNiNx膜の形成を経由する方法では、N除去に伴い膜の密度低下や形態(ラフネス)の変化が生じ、更に、Nの残留も懸念される。そのためバルクのNiに対して抵抗が高いNi薄膜となっているという問題がある。そして、かかるNi薄膜をシリサイド化しても好適な電極を形成することはできない。
 ここで、不純物残留のない高品位のNi薄膜を成膜するためには、プリカーサ及び反応ガスの構成元素として、Ni薄膜中に残留する可能性のあるN等の元素を排除することが適切な対応といえる。この観点から考えられる好適条件としては、プリカーサとして炭化水素系のNi錯体を用い、反応ガスとして水素を適用するのが好ましい。炭化水素系Ni錯体であれば、錯体成分が炭化水素の形態で放出されることになり、薄膜中に不純物を残留させる懸念は少ないからである。
WO2011/040385国際公開パンフレット
 しかしながら、炭化水素系Ni錯体を用いてSiに直接Ni薄膜を製造することができるとの検討例はこれまでない。本発明者等によれば、これまでの炭化水素系Ni錯体を用いたNi薄膜の成膜例としては、酸化皮膜(SiO)が形成されたSi基板に対するものの報告例がいくつかあり、それらで好適なNi皮膜を形成できるとされている。しかし、酸化皮膜のないSi素地面については連続的なNi薄膜を形成するのは困難であるとされており、この現象は本発明者等の実証試験でも確認されている。
 そして、酸化皮膜を有するSi基板にNi皮膜を形成する場合、これをシリサイド化してNiSiとすることはできない。シリサイド化はNi皮膜へSiが拡散することで進行するものであり、Ni皮膜とSi基板との間に酸化皮膜があると、これが障壁となりSiのNi膜への拡散が阻害されるからである。従って、NiSi薄膜形成のためには、Si素地面のNi薄膜の形成は必須の事項である。
 そこで本発明は、NiSi皮膜の形成のために、Si基板に直接Ni薄膜を形成することができ、且つ、形成されるNi薄膜について不純物を残留させることのない方法を提供する。また、形成したNi薄膜についてこれを的確にシリサイド化しNiSi皮膜を製造する方法についても言及する。
 本発明者等は、上記課題を解決すべくプリカーサとして炭化水素系Ni錯体を用いつつもSi基板へ直接Niを成膜するための条件について検討した。この検討においては、まず炭化水素系Ni錯体においてSiへの直接成膜が可能となる範囲(Ni錯体の種類)を模索するとともに、各種成膜条件について検討を行った。また、この検討において留意したのは、炭化水素系Ni錯体といえどもNi薄膜中に不純物残留が常に生じないとはいえない点である。即ち、炭化水素系Ni錯体は、ニッケルアミジネートに比べると不純物残留の懸念は低いものの、その構成元素故に炭素(C)がNi膜中に取り込まれる可能性がある。本発明者等の検討でも、成膜条件の設定によっては、Ni膜(基板とNi膜との境界部)に炭素の残留が懸念されている。そして、本発明者等は、鋭意検討の結果、Si基板への好適なNi薄膜の成膜条件を見出し、本発明に想到した。
 即ち、本発明は、化学蒸着法によりニッケル薄膜をSi基板上に製造する方法であって、原料化合物として、次式で示される、ニッケルに、シクロペンタジエニル基(Cp)又はその誘導体、及び、3~9個の炭素原子から成る鎖状あるいは環状のアルケニル基又はその誘導体が配位するニッケル錯体であって、炭素と水素以外の元素を構造中に含まない炭化水素系ニッケル錯体を用い、反応ガスとして水素を用い、更に、成膜条件として、成膜圧力1~150torr、成膜温度80~250℃としてNi薄膜を製造する方法である。
Figure JPOXMLDOC01-appb-C000002
 以下、本発明についてより詳細に説明する。本発明に係るNi薄膜の製造方法は、基本的な工程は通常の化学蒸着法に準じる。化学蒸着法による薄膜製造工程は、プリカーサとなる金属錯体を気化し、これを反応ガスと共に基板表面に輸送し、基板表面で金属錯体から金属を析出させる。本発明に係るNi薄膜の製造方法もこの工程に沿うものであるが、適用するプリカーサの種類と成膜条件(成膜圧力、成膜温度)において規定することを特徴とする。以下の説明ではこれらの特徴部分について詳説する。
 本発明においてNi薄膜製造のためのプリカーサは、炭素と水素以外の元素を構造中に含まない炭化水素系のNi錯体である。上述の通り、成膜されたNiへの不純物の残留を抑制するためである。そして、本発明で適用される炭化水素系Ni錯体は、上記した特定の炭化水素系Ni錯体である。炭化水素系Ni錯体の中でこのNi錯体を適用するのは、水素ガスとの適度な反応性と優れた気化特性を有するからである。
 この炭化水素系Ni錯体は、シクロペンタジエニル基又はその誘導体と、鎖状あるいは環状のアルケニル基又はその誘導体が配位するNi錯体である。アルケニル基の炭素数を3~9とするのは、Ni錯体の気化・分解特性を考慮したものである。好ましいのは環状のアルケニル基(シクロアルケニル基)であり、次式で示される、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、シクロオクテニル、シクロノネニル、又はこれらの誘導体のうち、いずれか1種が特に好ましい。これらが配位するNi錯体は、気化段階では安定的に気化しつつ、成膜段階では低温で分解しやすく、化学蒸着用原料として好適である。
Figure JPOXMLDOC01-appb-C000003
 また、このNi錯体でNiに配位するもう一つの配位子であるシクロペンタジエニル(Cp)は、置換基(R~R)が全て水素原子であるものの他、アルキル基を置換した誘導体であっても良い。シクロペンタジエニル誘導体としては、置換基(R~R)のうち、1つがアルキル基、残り4つの置換基が水素原子である誘導体が好ましい。また、置換基(R~R)として、とりうる炭素数は0~6であるが、好ましくは4以下である。シクロペンタジエニルの置換基が長すぎると、有機ニッケル化合物の融点上昇、分子量増加に伴う蒸気圧の低下、蒸発しにくくなり成膜の際に膜中に不純物が混入する、等の傾向があり、化学蒸着用原料として好適な特性を維持しにくい。
 化学蒸着法によるNi成膜に当たっては、上記のプリカーサを気化してSi基板に供給する。このとき、気化したプリカーサは反応ガスと共に基板上に輸送される。この反応ガスは水素を適用する。Ni膜中に不純物を残留させないためである。
 基板は、Si基板が適用されるが、これは単結晶Si、多結晶Siのいずれでも良く、高純度のものが好ましい。Si基板に対しては、Ni成膜前に酸化皮膜の除去がなされたものが適用される。
 また、本発明者等によれば、Si基板の表面について、B、P、Asのいずれかを適当量ドープしたものを適用した場合、連続的なNi皮膜を高速で形成することができる。B、PあるいはAsのドープによりNiの成膜速度が向上する理由については明確ではないが、本発明者等は基板表面状態の変化がNi化合物の吸着と分解を促進したと考察している。B、PあるいはAsのドーズ量は、最大で1018atms/cmとする。1018atms/cmを超えても成膜速度に変化がないからである。より好ましくは、1013~1016atms/cmとする。Si基板に対するB、PあるいはAsのドープの方法は特に限定されることはなく、イオン注入法、熱拡散法等を適用することができる。
 本発明における炭化水素系Ni錯体によるNi成膜の条件について、規定されるのは、成膜圧力、成膜温度である。これらの成膜条件は、Siへ直接Niを成膜する上で重要な条件となる。
 成膜圧力は、成膜に必要なプリカーサの供給量のために規定される。成膜圧力が150torrを超えるとプリカーサが気化されにくく供給不足となる。また、1torrよりも低い場合も供給量が不足する。好ましい成膜圧力は50~120torrであり、膜の連続性と平滑性が得られやすい。
 また、本発明者等によれば、炭化水素系Ni錯体によるNi薄膜は、不純物残留の可能性は低いものの、成膜温度が高温となることによって炭素の残留が懸念されることが確認されている。そして、成膜温度が250℃を超えることで炭素残留量が増大する。そのため、本発明においては成膜温度を80~250℃とする。80℃未満では、成膜反応が進行し難く必要な膜厚が得られ難い。好ましい成膜温度は100~220℃である。尚、成膜温度とは、基板の加熱温度の意義である。
 次に、本発明に係るNiシリサイド(NiSi)薄膜の製造方法について説明する。上記のNi薄膜の製造工程で、成膜直後の段階で純度が高く形態性にも優れる。そして、Siに直接接触していることから、シリサイド化によりNiSi膜を形成することも容易である。シリサイド化は、不活性ガス(窒素、アルゴンが好ましい)又は水素雰囲気で、基板を加熱してNi膜を300~600℃で加熱することで可能となる。
 本発明によれば、基板となるSiに直接接触した状態でNi薄膜を製造することができる。本発明により形成されるNi薄膜は、C、N、O等の不純物を含有することもなく、適宜の熱処理によりシリサイド化が容易でありNiSi膜を形成することが可能である。
Si基板の酸化皮膜の有無によるNi成膜及びシリサイド化の可否(第1実施形態)の結果を示す写真。 BをドープしたSi基板へのNiの成膜速度の測定結果(第2実施形態)を示す図。 第2実施形態で成膜したNi薄膜について熱処理によるシリサイド化を確認する写真。 シリサイド化後の薄膜断面のXPS分析結果を示す図。
 以下、本発明における最良の実施形態について説明する。
第1実施形態:この実施形態は、炭化水素系Ni錯体によるSi基板へのNi成膜の形成及びそのシリサイド化の可否を検討するために行ったものである。ここでは、複数の高純度Si基板を用意してそれぞれについて成膜試験を行った。Si基板は、酸洗により酸化皮膜を除去したSi基板、酸洗を行わずに酸化皮膜をそのままにしたSi基板を用意した。酸洗は、希フッ酸(0.5%)に基板を5分間浸漬し、表面の酸化皮膜を除去した。
 成膜試験は、プリカーサとして、(η-シクロヘキセニル)(η-シクロペンタジエニル)ニッケル(II)を用いた。そして、コールドウォール式の成膜装置を用い、CVD法によりニッケル薄膜を形成させた。成膜試験後、基板表面についてSEM観察を行い、Ni成膜の可否を評価した。成膜条件は、次の通りである。
プリカーサ加熱温度:90℃
基板加熱温度:200℃
キャリアガス:アルゴン60sccm
反応ガス:水素、100ccm
圧力:100torr
成膜時間:20分
 次に、成膜したNi薄膜について、シリサイド化の熱処理を行った。熱処理条件は、基板温度を500℃とし、10sccmの水素ガス+10sccmのアルゴンの雰囲気中で基板を加熱した。加熱時間はいずれも10分間とした。
 図1は、各基板におけるNi薄膜及び熱処理後の薄膜のSEM写真である。図1から、本実施形態で適用したプリカーサ及び成膜条件によってSi基板上に直接Niが成膜していることがわかる。そして、これを熱処理したことでシリサイド化が進行し、Si基板上にSiNi薄膜が形成されたのが確認できる。一方、酸化皮膜(SiO)を有するSi基板でもNi薄膜は形成される。しかし、これを熱処理してもSiNi薄膜に変化は見られない。これは、Ni薄膜とSi基板との境界のSiO層がバリア層となってSiの拡散を阻害しシリサイド化されなかったことによると考えられる。
第2実施形態:ここでは、Si基板表面についてBをドープした状態でNi薄膜を製造した。基板へのBドープは、イオン注入後900℃で30分間のアニール処理により、Bを1015atms/cmドープし、成膜前に上記と同様に酸洗した。本実施形態の成膜試験では、第1実施形態と同様のプリカーサ((η3-シクロヘキセニル)(η5-シクロペンタジエニル)ニッケル(II))を用いてNi成膜を行い、成膜速度を評価した。成膜条件は下記の通りとし、成膜時間1分、2分、5分、15分におけるNi薄膜の膜厚を測定した。
プリカーサ加熱温度:90℃
基板加熱温度:175℃
キャリアガス:アルゴン100sccm
反応ガス:水素、100ccm
圧力:100torr
成膜時間:1分、2分、5分、15分
 図2は、この成膜試験の結果を示す。図2から、BドープSi基板におけるNi薄膜の成膜過程ではインキュベーションタイムもほとんど見られず、成膜開始から速やかに成長を開始する。また、成膜時間に対してリニアに膜厚は増大する。本実施形態では、8.2nm/minの比較的良好な成膜速度を示す。
 また、本実施形態の成膜時間1分、2分でNi薄膜を製造した基板について、熱処理を行いNi薄膜をNiSi薄膜にシリサイド化した。熱処理条件は、基板温度を500℃とし、10sccmの水素ガス+10sccmのアルゴンの雰囲気中で基板を加熱した。加熱時間はいずれも10分間とした。
 図3は、各Ni薄膜の熱処理前後のSEM写真である。いずれのNi薄膜も熱処理によりその上部にNiSi薄膜が形成されている。Ni薄膜が薄い場合(成膜時間1分)のものであっても、ムラ無く均一なシリサイド化が確認できた。
 また、図4には、NiSi薄膜(Niの成膜時間2分)のXPS分析の結果を示す。本実施形態で成膜したNiSi薄膜には、C、N、Oのいずれの不純物も計測されなかった。また、NiとSiの組成比もほぼ1:1であり、良好な品質のNiシリサイド薄膜を得ることができたことが確認できる。
 本発明に係る方法は、Si基板に直接Ni薄膜を製造することができるものあり、C、N、O等の不純物の残留のない高品位のNi薄膜を得ることができる。また、このNi薄膜は、熱処理によりそのままNiSi膜とすることができる。本発明に係る方法は、化学蒸着法という段差被覆能に優れた薄膜製造プロセスを基本とし、各種半導体デバイスの3次元構造を有する立体電極の製造に好適である。

Claims (3)

  1.  化学蒸着法によりニッケル薄膜をSi基板上に製造する方法であって、
     原料化合物として、次式で示される、ニッケルに、シクロペンタジエニル基(Cp)又はその誘導体、及び、3~9個の炭素原子から成る鎖状あるいは環状のアルケニル基又はその誘導体が配位するニッケル錯体であって、炭素と水素以外の元素を構造中に含まない炭化水素系ニッケル錯体を用い、
    反応ガスとして水素を用い、
     更に、成膜条件として、成膜圧力1~150torr、成膜温度80~250℃としてニッケル薄膜を製造する方法。
    Figure JPOXMLDOC01-appb-C000001
  2.  Si基板として、表面に1013~1018atms/cmのB、P、AsのいずれかをドープしたSi基板を用いる請求項1記載のニッケル薄膜の製造方法。
  3.  請求項1又は請求項2記載の方法によりニッケル薄膜を製造後、基板を不活性ガス又は水素雰囲気で300~600℃で加熱することにより、ニッケル薄膜をシリサイド化するNiシリサイド薄膜の製造方法。
PCT/JP2014/074628 2013-10-02 2014-09-18 化学蒸着法によるSi基板上へのニッケル薄膜、及び、Si基板上へのNiシリサイド薄膜の製造方法 WO2015049989A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14851079.5A EP3054031B1 (en) 2013-10-02 2014-09-18 METHOD FOR PRODUCING NICKEL THIN FILM ON Si SUBSTRATE BY CHEMICAL VAPOR DEPOSITION METHOD, AND METHOD FOR PRODUCING Ni SILICIDE THIN FILM ON Si SUBSTRATE
KR1020187017838A KR20180074803A (ko) 2013-10-02 2014-09-18 화학 증착법에 의한 Si 기판 상에의 니켈 박막, 및 Si 기판 상에의 Ni 실리사이드 박막의 제조 방법
KR1020167009860A KR102066112B1 (ko) 2013-10-02 2014-09-18 화학 증착법에 의한 Si 기판 상에의 니켈 박막, 및 Si 기판 상에의 Ni 실리사이드 박막의 제조 방법
US15/025,345 US9805936B2 (en) 2013-10-02 2014-09-18 Method for producing nickel thin film on a Si substrate by chemical vapor deposition method, and method for producing Ni silicide thin film on Si substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-207669 2013-10-02
JP2013207669A JP5770806B2 (ja) 2013-10-02 2013-10-02 化学蒸着法によるSi基板上へのニッケル薄膜、及び、Si基板上へのNiシリサイド薄膜の製造方法

Publications (1)

Publication Number Publication Date
WO2015049989A1 true WO2015049989A1 (ja) 2015-04-09

Family

ID=52778583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074628 WO2015049989A1 (ja) 2013-10-02 2014-09-18 化学蒸着法によるSi基板上へのニッケル薄膜、及び、Si基板上へのNiシリサイド薄膜の製造方法

Country Status (6)

Country Link
US (1) US9805936B2 (ja)
EP (1) EP3054031B1 (ja)
JP (1) JP5770806B2 (ja)
KR (2) KR102066112B1 (ja)
TW (2) TWI582260B (ja)
WO (1) WO2015049989A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168174B1 (ko) * 2014-03-19 2020-10-20 삼성전자주식회사 니켈 화합물 및 이를 이용한 박막 형성 방법
EP3532651A1 (en) 2016-10-25 2019-09-04 Basf Se Process for the generation of thin silicon-containing films
CN114008238B (zh) * 2019-06-17 2024-07-02 田中贵金属工业株式会社 由有机锰化合物构成的化学蒸镀用原料和使用该化学蒸镀用原料的化学蒸镀法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093732A (ja) * 2003-09-17 2005-04-07 Tri Chemical Laboratory Inc 膜形成材料、膜形成方法、膜および素子
JP2005109504A (ja) * 2003-09-30 2005-04-21 Samsung Electronics Co Ltd シリサイド薄膜を有する半導体素子およびその製造方法
WO2011040385A1 (ja) 2009-09-29 2011-04-07 東京エレクトロン株式会社 Ni膜の成膜方法
JP2013149829A (ja) * 2012-01-20 2013-08-01 Toshiba Corp 半導体装置の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507401A (en) * 1983-04-01 1985-03-26 At&T Bell Laboratories Intermetallic catalyst preparation
US6608212B1 (en) * 2002-06-04 2003-08-19 Pfizer, Inc. Process for preparing vinylaromatic compounds
JP4009719B2 (ja) * 2003-02-20 2007-11-21 国立大学法人名古屋大学 ニッケルシリサイド膜の作製方法
JP2006124743A (ja) * 2004-10-27 2006-05-18 Mitsubishi Materials Corp 有機金属化学蒸着用有機ニッケル化合物及び該化合物を用いたニッケル含有膜の製造方法
US7220671B2 (en) * 2005-03-31 2007-05-22 Intel Corporation Organometallic precursors for the chemical phase deposition of metal films in interconnect applications
GB0517137D0 (en) * 2005-08-22 2005-09-28 Viacatt N V Multicoordinated metal complexes for use in metalthesis reactions
KR100891779B1 (ko) * 2005-11-28 2009-04-07 허니웰 인터내셔날 인코포레이티드 증착 공정용의 유기금속 전구체 및 관련된 중간체, 이들의제조 방법, 및 이들의 사용 방법
US7968463B2 (en) * 2006-05-25 2011-06-28 Renesas Electronics Corporation Formation method of metallic compound layer, manufacturing method of semiconductor device, and formation apparatus for metallic compound layer
US7704858B2 (en) 2007-03-29 2010-04-27 Intel Corporation Methods of forming nickel silicide layers with low carbon content
US20080248648A1 (en) * 2007-04-06 2008-10-09 Thompson David M Deposition precursors for semiconductor applications
KR100906616B1 (ko) * 2007-07-14 2009-07-09 경북대학교 산학협력단 니켈 실리사이드막상의 탄소 함량 제어방법
US9498845B2 (en) * 2007-11-08 2016-11-22 Applied Materials, Inc. Pulse train annealing method and apparatus
WO2009095898A1 (en) * 2008-02-01 2009-08-06 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude New metal precursors containing beta-diketiminato ligands
JPWO2010032673A1 (ja) 2008-09-22 2012-02-09 昭和電工株式会社 ニッケル含有膜形成材料およびニッケル含有膜の製造方法
JP5410227B2 (ja) 2009-09-30 2014-02-05 株式会社Nttドコモ 制御装置及び制御方法
JP5725454B2 (ja) 2011-03-25 2015-05-27 株式会社アルバック NiSi膜の形成方法、シリサイド膜の形成方法、シリサイドアニール用金属膜の形成方法、真空処理装置、及び成膜装置
US8871617B2 (en) * 2011-04-22 2014-10-28 Asm Ip Holding B.V. Deposition and reduction of mixed metal oxide thin films
KR20140085461A (ko) * 2011-09-27 2014-07-07 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 니켈 비스 디아자부타디엔 전구체, 그들의 합성, 및 니켈 함유 필름 침착을 위한 그들의 용도
US20130168614A1 (en) * 2011-12-29 2013-07-04 L'Air Liquide Société Anonyme pour ''Etude et l'Exploitation des Procédés Georges Claude Nickel allyl amidinate precursors for deposition of nickel-containing films
US20140206190A1 (en) * 2013-01-23 2014-07-24 International Business Machines Corporation Silicide Formation in High-Aspect Ratio Structures
JP5352024B1 (ja) * 2013-05-22 2013-11-27 田中貴金属工業株式会社 有機ニッケル化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093732A (ja) * 2003-09-17 2005-04-07 Tri Chemical Laboratory Inc 膜形成材料、膜形成方法、膜および素子
JP2005109504A (ja) * 2003-09-30 2005-04-21 Samsung Electronics Co Ltd シリサイド薄膜を有する半導体素子およびその製造方法
WO2011040385A1 (ja) 2009-09-29 2011-04-07 東京エレクトロン株式会社 Ni膜の成膜方法
JP2013149829A (ja) * 2012-01-20 2013-08-01 Toshiba Corp 半導体装置の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEHMKUHL, H. ET AL.: "eta3-Cycloalkenyl)(eta5- cyclopentadienyl)nickel-Komplexe", CHEM. BER., vol. 117, January 1984 (1984-01-01), pages 376 - 382, XP055281882 *
SCHNEIDER, J. J. ET AL.: "Crystal and Molecular Structure of (Tri-tert-butyl-eta5- cyclopentadienyl)-(1,2,4-tri-tert-butyl-eta3- cyclopentenyl)nickel", CHEM. BER., vol. 125, no. 4, April 1992 (1992-04-01), pages 843 - 845, XP055281923 *

Also Published As

Publication number Publication date
EP3054031A1 (en) 2016-08-10
JP5770806B2 (ja) 2015-08-26
KR20180074803A (ko) 2018-07-03
TW201518533A (zh) 2015-05-16
TW201623670A (zh) 2016-07-01
EP3054031A4 (en) 2017-06-07
TWI582260B (zh) 2017-05-11
JP2015071805A (ja) 2015-04-16
US20160233098A1 (en) 2016-08-11
TWI555870B (zh) 2016-11-01
KR102066112B1 (ko) 2020-01-14
US9805936B2 (en) 2017-10-31
EP3054031B1 (en) 2019-01-30
KR20160057445A (ko) 2016-05-23

Similar Documents

Publication Publication Date Title
TWI731074B (zh) 相對於基板的第二表面選擇性沈積在基板的第一表面上的製程與方法
US10074541B2 (en) Deposition of smooth metal nitride films
KR102472965B1 (ko) 불소-함유 도전성 막들
TWI661080B (zh) 金屬矽化物的選擇性形成
TW201812070A (zh) 使用MoOC14之CVD Mo沈積
JP5725454B2 (ja) NiSi膜の形成方法、シリサイド膜の形成方法、シリサイドアニール用金属膜の形成方法、真空処理装置、及び成膜装置
TW201142946A (en) NMOS metal gate materials, manufacturing methods, and equipment using CVD and ALD processes with metal based precursors
JP2015021175A (ja) 金属薄膜の製膜方法
WO2011156705A2 (en) Selective formation of metallic films on metallic surfaces
Kogut et al. Magnesium silicide thin film formation by reactive diffusion
JP5770806B2 (ja) 化学蒸着法によるSi基板上へのニッケル薄膜、及び、Si基板上へのNiシリサイド薄膜の製造方法
TW201201278A (en) Chemical vapor deposition of ruthenium films containing oxygen or carbon
TW201828340A (zh) 形成矽化物的方法
TWI671422B (zh) 薄膜之形成方法
JP6091023B2 (ja) 化学蒸着法によるSi基板上へのニッケル薄膜、及び、Si基板上へのNiシリサイド薄膜の製造方法
JP2001110750A5 (ja)
Choi et al. Properties of plasma-enhanced atomic layer deposited TiCx films as a diffusion barrier for Cu metallization
JP6797068B2 (ja) 原子層堆積法による炭化チタン含有薄膜の製造方法
JP7425744B2 (ja) ホウ素核形成層を利用した低温モリブデン膜堆積
TWI791586B (zh) 含Ge之Co膜形成材料、含Ge之Co膜及其成膜方法
You et al. WNx Film Prepared by Atomic Layer Deposition using F-Free BTBMW and NH3 Plasma Radical for ULSI Applications
Jung et al. Thermal stability of N2–H2 plasma-treated metal-organic-vapor-deposition TiN in a W/TiN/Ti/Si system
KR20070097188A (ko) 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851079

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014851079

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014851079

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15025345

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009860

Country of ref document: KR

Kind code of ref document: A