WO2015046879A1 - 편광판, 그 제조 방법 및 이를 포함하는 화상표시장치 - Google Patents

편광판, 그 제조 방법 및 이를 포함하는 화상표시장치 Download PDF

Info

Publication number
WO2015046879A1
WO2015046879A1 PCT/KR2014/008900 KR2014008900W WO2015046879A1 WO 2015046879 A1 WO2015046879 A1 WO 2015046879A1 KR 2014008900 W KR2014008900 W KR 2014008900W WO 2015046879 A1 WO2015046879 A1 WO 2015046879A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
curable composition
polarizing plate
polarizer
radical
Prior art date
Application number
PCT/KR2014/008900
Other languages
English (en)
French (fr)
Inventor
박광승
조해성
손현희
나균일
박준욱
허은수
이미린
전성현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140126745A external-priority patent/KR101630938B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480054116.1A priority Critical patent/CN105745560B/zh
Priority to US15/025,506 priority patent/US10132976B2/en
Publication of WO2015046879A1 publication Critical patent/WO2015046879A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a polarizing plate, a method for manufacturing the same, and an image display device including the same, and more particularly, a polarizing plate having two or more protective layers formed on at least one surface of a polarizer, a method for manufacturing the same, and an image display including the same. Relates to a device.
  • the polarizing plate has been commonly used in a structure in which a protective film is laminated on both sides of a polarizer made of a polyvinyl alcohol (hereinafter referred to as 'PVA')-based resin dyed with a dichroic dye or iodine.
  • 'PVA' polyvinyl alcohol
  • the triacetyl cellulose (TAC, triacetyl cellulose) -based film has been used a lot of films in terms of excellent optical transparency and moisture permeability.
  • the active energy ray curable composition proposed to date can be divided into a radical curable composition and a cationic curable composition according to the curing method.
  • the curing speed is high and the curing degree is excellent.
  • a polarizing plate having a transparent thin film layer having a two-layered transparent thin film layer was formed by forming a transparent thin film layer on the polarizer using a cation-curable composition, and again forming a transparent thin film layer using a radical curable composition on the formed transparent thin film layer.
  • the first layer is a cured product of the cation-curable composition
  • the polarizer since the polarizer is prevented by covalent bonds, the phenomenon that the polarizer is discolored in a moisture resistant environment can be prevented, but in general, the curing of the radically curable composition including a hydrophilic functional group
  • the second layer which is water, enters the outermost layer, and thus is vulnerable to humidity and the like, and thus easily peels off from the first layer.
  • a new polarizing plate capable of forming a protective layer at a desired thickness and at the same time ensuring excellent water resistance, significantly reducing curling incidence, and being thinner than a conventional polarizing plate having a transparent protective film is required. have.
  • the present invention can form a protective layer to a desired thickness and at the same time ensure excellent water resistance, can significantly reduce the incidence of curl, and can be manufactured thinner than a polarizing plate having a conventional transparent protective film, the production A method and an image display apparatus including the same are provided.
  • the present invention is a polarizer; A first protective layer formed on at least one surface of the polarizer; And a second protective layer formed on an opposite side of the surface adjacent to the polarizer of the first protective layer, wherein the first protective layer is a cured product of the radical curable composition, and the second protective layer is cured of the cation curable composition. It provides a polarizing plate which is water.
  • the radical curable composition is preferably an average functional group equivalent of 120g / eq to 350 g / eq.
  • the radical curable composition is preferably a shrinkage rate of 5% to 15% at 25 °C.
  • the radical curable composition comprises (A) a radical polymerizable compound comprising at least one hydroxy group in a molecule; (B) a radically polymerizable compound comprising at least one carboxyl group in a molecule; And (C) a radical polymerization initiator.
  • the radical curable composition is based on 100 parts by weight of the radical curable composition, 40 to 80 parts by weight of the (A) radically polymerizable compound; (B) 15 to 50 parts by weight of the radical polymerizable compound; And (C) 0.5 to 10 parts by weight of the radical polymerization initiator.
  • the cation-curable composition is (a) a cationically polymerizable compound containing at least one epoxy group in the molecule; And (b) a cationic polymerization initiator.
  • the cationically polymerizable compound is a first epoxy compound containing at least one epoxidized aliphatic ring in the molecule; And a second epoxy compound comprising at least one glycidyl ether group in the molecule.
  • the weight ratio of the first epoxy compound containing at least one epoxidized aliphatic ring in the molecule and the second epoxy compound containing at least one glycidyl ether group in the molecule is particularly preferably 1: 1 to 3: 1.
  • the cationically curable composition may further include a cationically polymerizable compound including at least one oxetane group in the molecule (c).
  • the first protective layer preferably has a thickness of 1 to 15 ⁇ m.
  • the modulus at 25 ° C. of the first protective layer is preferably 500 MPa to 5000 MPa.
  • the second protective layer preferably has a thickness of 0.1 to 10 ⁇ m.
  • the polarizing plate of the present invention may be further attached to the protective film via the adhesive layer on the opposite surface of the protective layer of the polarizer is formed.
  • the polarizing plate of the present invention may further include an adhesive layer on the second protective layer.
  • the present invention also provides an image display device including the polarizing plate.
  • the present invention comprises the steps of applying a radical curable composition to at least one side of the polarizer; Irradiating the applied radical curable composition with an active energy ray to cure by radical polymerization to form a first protective layer; Applying a cationic curable composition to a side opposite to a side adjacent to the polarizer of the first protective layer; And irradiating active energy rays to the first protective layer and the cationically curable composition applied thereon to cure both by simultaneous cationic polymerization to form a second protective layer.
  • the polarizing plate of the present invention uses a radical cured layer as the first protective layer, and the radical cured layer has almost no problem on curing unevenness of the film according to the thickness, and thus has the advantage of forming the protective layer to a desired thickness.
  • the generation rate of the bar curl to form a radical cured layer inside the protective layer can be significantly reduced.
  • the polarizing plate of the present invention has a merit of using a cation cured layer as the second protective layer, and thus protecting the radical cured layer with a cation cured layer to secure excellent water resistance.
  • the polarizing plate of the present invention has a thin protective layer compared to the polarizing plate having a conventional transparent protective film, there is an advantage that can be manufactured in a thin shape.
  • FIG. 1 is a cross-sectional view showing an example of a polarizing plate according to the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the polarizing plate according to the present invention.
  • FIG 3 is a cross-sectional view showing still another example of the polarizing plate according to the present invention.
  • the present inventors have conducted a study, when forming a cured product of the cation-curable composition with the first protective layer on the polarizer, and forming a cured product of the radical curable composition with the second protective layer on the first protective layer,
  • the present invention was completed by finding out that the protective layer can be formed to a desired thickness while at the same time ensuring excellent water resistance and significantly reducing the curling incidence rate.
  • the polarizing plate of the present invention is a polarizer; A first protective layer formed on at least one surface of the polarizer; And a second protective layer formed on an opposite side of the surface adjacent to the polarizer of the first protective layer, wherein the first protective layer is a cured product of the radical curable composition, and the second protective layer is formed of a cation curable composition. It is a cargo.
  • the polarizer of the present invention may use a polyvinyl alcohol (PVA) -based film in which the polarizer well known in the art, for example, iodine or dichroic dye, is adsorbed and oriented.
  • the manufacturing method of the polyvinyl alcohol-based film in which the iodine or the dichroic dye is adsorbed and oriented is not particularly limited.
  • stretching, dyeing, crosslinking, complementary color treatment, etc. of the polyvinyl alcohol-based film are well known in the art. Can be prepared.
  • the polarizer means a state not including a protective layer (or protective film), and the polarizing plate means a state including a polarizer and a protective layer (or protective film).
  • the polyvinyl alcohol-based film may be used without particular limitation as long as it contains a polyvinyl alcohol resin or a derivative thereof.
  • examples of the derivative of the polyvinyl alcohol resin include, but are not limited to, polyvinyl formal resin, polyvinyl acetal resin, and the like.
  • the polyvinyl alcohol-based film may be a commercially available polyvinyl alcohol-based film generally used in the manufacture of polarizers in the art, such as P30, PE30, PE60 from Kureray, M2000, M3000 M6000, etc. It may be.
  • the polyvinyl alcohol-based film is not limited to this, but the degree of polymerization is preferably about 1,000 to 10,000, preferably 1,500 to 5,000. This is because when the degree of polymerization satisfies the above range, the molecular motion is free and can be mixed flexibly with iodine or dichroic dye.
  • the first protective layer of the present invention is formed on at least one side of the polarizer in order to be able to form the entire thickness of the protective layer to the desired thickness
  • the first protective layer is a method well known in the art It can be formed by.
  • a radically curable composition is applied to at least one surface of the polarizer by a coating method well known in the art, such as spin coating, bar coating, roll coating, gravure coating, blade coating, and the like, to form a protective layer. It may be carried out by a method of curing through irradiation of active energy rays such as ultraviolet rays, visible rays, electron beams, X-rays and the like.
  • the irradiation method is not particularly limited, for example, it may be carried out by a method of irradiating ultraviolet light of about 10 to 2500mJ / cm 2 using an ultraviolet irradiation device (fusion lamp, D bulb).
  • the radical curable composition preferably comprises a radically polymerizable compound and a radical polymerization initiator containing at least one hydrophilic functional group in the molecule.
  • a radical polymerization initiator containing at least one hydrophilic functional group in the molecule.
  • the radically polymerizable compound including at least one hydrophilic functional group in the molecule included in the radical curable composition according to the present invention may have adhesiveness through hydrogen bonding by having at least one hydrophilic functional group in the molecule.
  • the radically polymerizable compound may be used without particular limitation as long as it is capable of radical polymerization by the presence of an unsaturated double bond between carbons in the molecule.
  • the hydrophilic functional group is not particularly limited as long as the hydrogen bond such as a hydroxy group, a carboxyl group, a urethane group, an amine group, an amide group, etc. is possible, but in particular, the hydroxy group or a carboxyl group is more preferable for achieving good adhesion with the polarizer. .
  • the radical curable composition includes (A) a radical polymerizable compound containing at least one hydroxyl group in a molecule; (B) a radically polymerizable compound comprising at least one carboxyl group in a molecule; And (C) a radical polymerization initiator.
  • the radical curable composition comprises 40 to 80 parts by weight of the (A) radically polymerizable compound, based on 100 parts by weight of the radical curable composition; (B) 15 to 50 parts by weight of the radical polymerizable compound; And (C) 0.5 to 10 parts by weight of the radical polymerization initiator.
  • the (A) radically polymerizable compound is a component for implementing excellent adhesion, but is not limited thereto, and in the present invention, as the (A) radically polymerizable compound, various compounds represented by the following [Formula I] Can be used.
  • R 1 is an ether group (-O-), an ester group (-COO-), an amide group (-CON-), or a thioate group (-COS-);
  • R 2 is a C 1-10 alkyl group, C 4-10 cycloalkyl group, or a combination thereof, wherein R 2 has one hydroxy substituent in the molecule;
  • R 3 is hydrogen or a substituted or unsubstituted C 1-10 alkyl group.
  • the alkyl group refers to a straight or branched chain hydrocarbon site of 1 to 10, or 1 to 8, or 1 to 4 carbon atoms, wherein the alkyl group is at least in the molecule It may also contain one unsaturated bond.
  • the alkyl group may be, but is not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decanyl, and the like.
  • the cycloalkyl group means 4 to 14, or 4 to 10, or 4 to 6 non-aromatic monocyclic, bicyclic or tricyclic hydrocarbon sites.
  • the cycloalkyl group may include at least one unsaturated bond in the molecule.
  • the cycloalkyl group is not limited thereto, and examples thereof include a cyclopentane ring, a cyclohexane ring, and the like.
  • the hydroxy group may be substituted at any position in the alkyl group or the cycloalkyl group.
  • the hydroxy group may be at the end of the alkyl group or may be in the middle of the alkyl group.
  • the remaining hydrogen atoms contained in the alkyl group or cycloalkyl group may be substituted with any substituent.
  • the alkyl group refers to a straight or branched chain hydrocarbon site of 1 to 10, or 1 to 8, or 1 to 4 carbon atoms, wherein the alkyl group is at least in the molecule It may also contain one unsaturated bond.
  • the alkyl group may be, but is not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decanyl, and the like.
  • One or more hydrogen atoms included in the alkyl group may be substituted with any substituent.
  • the (A) radically polymerizable compound is not limited thereto, but may be, for example, a compound represented by the following [Formula 1] to [Formula 13].
  • the (A) radically polymerizable compound may be about 40 to 80 parts by weight, 50 to 80 parts by weight, or about 50 to 70 parts by weight based on 100 parts by weight of the total radical curable composition. In this case, it is possible to secure stable adhesion even in a high humidity environment.
  • the (B) radically polymerizable compound is a component for further improving not only adhesion but also water resistance, heat resistance, viscosity characteristics, and the like, but is not limited thereto, and an acid value is 100 to 1000 mg ⁇ KOH / Various compounds on the order of g can be used.
  • the radically curable composition having excellent heat resistance can be obtained by increasing the glass transition temperature without particularly decreasing the adhesiveness.
  • the acid value (acid value) means the number of mg of KOH required to completely neutralize 1g of the sample, the measurement method is not particularly limited.
  • the acid value in a sample can be calculated through the following formula (1).
  • radical polymerizable compound (B) is not limited thereto, and examples thereof include compounds represented by the following [Formula 14] to [Formula 28].
  • R ' is or P is an integer from 1 to 5)
  • the (B) radically polymerizable compound may be about 15 to 50 parts by weight, 20 to 50 parts by weight, or about 20 to 40 parts by weight based on 100 parts by weight of the total radical curable composition.
  • the adhesiveness and heat resistance of the polarizer are both excellent.
  • the (C) radical polymerization initiator is to improve the curing rate by promoting radical polymerizability
  • radical polymerization initiators generally used in the art may be used as the radical polymerization initiator without limitation.
  • the radical polymerization initiator is, for example, 1-Hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl- 1-propanone (2-Hydroxy-2-methyl-1-phenyl-1-propanone), 2-hydroxy-1- [4- (2-hydroxyethoxy) phenyl] -2-methyl-1-propane On (2-Hydroxy-1- [4- (2-hydroxyethoxy) phenyl] -2-methyl-1-propanone), methylbenzoylformate, oxy-phenyl-acetic acid-2- [2-oxo-2 -Phenyl-acetoxy-ethoxy] -ethyl ester (oxy-phenyl-acetic acid-2- [2 oxo-2phenyl-acetoxy-ethoxy] -ethyl ester), oxy-phenyl-acetic acid-2- [2-hydroxy Oxy-phenyl-acetic acid-2- [2-hydroxy
  • the (C) radical polymerization initiator may be 0.5 to 10 parts by weight, 1 to 5 parts by weight, or 2 to 3 parts by weight based on 100 parts by weight of the total radical curable composition.
  • the radical curable composition may be smoothly cured.
  • the radical curable composition of the present invention may further include a (meth) acrylic compound further comprising (D) a ring structure of 7 to 20 carbon atoms, preferably 7 to 15 carbon atoms for viscosity control.
  • the (D) (meth) acrylic compound for example, isobornyl (meth) acrylate, norbornyl (meth) acrylate, dicyclo Dicyclopentanyl (meth) acrylate, Dicyclopentenyl (meth) acrylate and 1-adamantyl- (meth) acrylate (1-adamantyl- (meth) acrylate acrylate) may be one or more selected from the group consisting of, but is not limited thereto.
  • the (D) (meth) acrylic compound may be about 50 parts by weight or less, for example, about 1 to 50 parts by weight, or about 5 to 50 parts by weight based on 100 parts by weight of the total radical curable composition. In this case, both the viscosity of the radically curable composition and the glass transition temperature after curing are excellent.
  • the said radical curable composition of this invention is 40-80 weight part of (A) radical curable composition with respect to 100 weight part of all radical curable compositions; (B) 15 to 50 parts by weight of the radical curable composition; (C) 0.5 to 10 parts by weight of radical initiator; And (D) 1 to 50 parts by weight of the (meth) acrylic compound.
  • the radical curable composition of the present invention may additionally add a photosensitizer, antistatic agent, antioxidant, light stabilizer, ultraviolet absorber, leveling agent and the like as needed.
  • a photosensitizer, antistatic agent, antioxidant, light stabilizer, ultraviolet absorber, leveling agent and the like as needed.
  • the photosensitizer, the antistatic agent, the antioxidant, the light stabilizer, the ultraviolet absorber, the leveling agent and the like which can be used in the present invention are not particularly limited, and any known materials well known in the art may be used without limitation.
  • the radical curable composition is preferably an average functional group equivalent of 120g / eq to 350 g / eq, for example, may be about 150g / eq to 300g / eq or 160g / eq to 300 g / eq.
  • the average functional group equivalent of the radically curable composition for forming the first protective layer satisfies the above range, it has a low curing shrinkage ratio, even though the polarizing plate to be manufactured has two or more protective layers. Nevertheless, the curl characteristics were very good.
  • the average functional group equivalent exceeds the above range, for example, in order to increase the hardness of the film, when the polyfunctional (meth) acrylic compound such as pentaerythritol triacrylate or the like is added as a main component, the curing shrinkage ratio becomes large. Thus, when the protective layer is composed of two or more layers, there is a problem in that curl generation of the polarizing plate is severe.
  • the average functional group equivalent may be calculated by calculating a value obtained by multiplying the functional group equivalent of each component included in the radical curable composition by the percentage weight ratio of the component, and adding them.
  • the radical curable composition includes three components of A, B and C
  • the average functional group equivalent can be calculated through the following formula (2). In the following formula (2), the calculation method is shown in the case of optionally having three components, but it will be apparent that it may vary depending on the number of components included in the radical curable composition.
  • the radically curable composition preferably has a curing shrinkage of 5% to 15% at 25 ° C., for example, 5% to 10% or 10% to 15%.
  • the cure shrinkage rate refers to the rate of change of the volume after curing with respect to the volume before curing of the radical curable composition for forming the protective layer, it can be calculated through the following formula (3).
  • V i is the volume before curing of the composition
  • V f is the volume after curing of the composition
  • m is the mass of the composition
  • ⁇ i means the density before curing of the composition.
  • the radical curable composition preferably has an overall acid value of about 30 to 300 mg ⁇ KOH / g, for example, about 30 to 100 mg ⁇ KOH / g or about 100 to 300 mg ⁇ KOH / g.
  • the glass transition temperature of the composition may be improved while maintaining excellent adhesion of the polarizer, thereby improving heat resistance.
  • the radical curable composition may have a glass transition temperature of about 70 ° C. to 500 ° C. after curing, for example, about 80 ° C. to 300 ° C., or about 90 ° C. to 200 ° C.
  • the glass transition temperature in the numerical range as described above may have a good heat resistance and water resistance.
  • the radical curable composition preferably has a viscosity of about 10 to 300 cP, for example, may be about 20 to 100 cP.
  • the thickness of the protective layer may be thinly formed, and since the composition has a low viscosity, there is an excellent workability.
  • the modulus of the first protective layer should be large.
  • the modulus of the first protective layer varies depending on the thickness of the first protective layer.
  • the modulus of the first protective layer is increased so that the thermal shock of the polarizing plate is increased. There is an advantage that it is easy to secure the castle.
  • the modulus at room temperature (25 ° C.) of the first protective layer of the present invention is preferably 500 MPa to 5000 MPa, for example, may be about 1000 MPa to 4000 MPa.
  • the present invention including the polarizing plate may have an excellent thermal shock property.
  • the modulus is fixed to both ends of the sample prepared according to JIS-K6251-1 standard, and then applied a force in a direction perpendicular to the thickness direction to measure the stress per unit area according to the tensile rate (Strain)
  • strain tensile rate
  • Zwick / Roell Z010 UTM equipment can be used as the measuring device.
  • the second protective layer of the present invention is formed on the opposite side of the surface adjacent to the polarizer of the first protective layer in order to protect the first protective layer in a high humidity environment to secure excellent water resistance
  • the second protective layer may also be formed by methods well known in the art.
  • at least one surface of the first protective layer is coated with a cation-curable composition by a coating method well known in the art, such as spin coating, bar coating, roll coating, gravure coating, blade coating, or the like, to form a protective layer.
  • a coating method well known in the art, such as spin coating, bar coating, roll coating, gravure coating, blade coating, or the like, to form a protective layer.
  • it may be carried out by a method of curing through irradiation of active energy rays such as ultraviolet rays, visible rays, electron beams, X-rays and the like.
  • the irradiation method is not particularly limited, for example, it may be performed by a method of irradiating ultraviolet light of
  • the cationically curable composition preferably comprises (a) a cationically polymerizable compound containing at least one epoxy group in the molecule and (b) a cationic polymerization initiator.
  • the hydrophilic functional group and the epoxy group of the first protective layer react in the cation curing process to form a covalent bond by the ring opening reaction, thereby ensuring excellent adhesion between the first protective layer and the second protective layer and further excellent water resistance. This is because it can be secured.
  • the cationically polymerizable compound including at least one epoxy group in the molecule may be included in the cationically curable composition alone or two or more thereof.
  • the cationically polymerizable compound may be used without particular limitation as long as it has at least one epoxy group in the molecule to realize adhesion through the covalent bond with the first protective layer, and furthermore, the cationic polymerization is possible through the epoxy group. This is possible.
  • the cationically polymerizable compound including at least one epoxy group in the molecule it is more preferable to include at least two or more epoxy groups in the molecule for excellent adhesive hardness with the first protective layer.
  • the aromatic epoxy compound refers to an epoxy compound containing at least one aromatic hydrocarbon ring in the molecule, but is not limited thereto, for example, diglycidyl ether of bisphenol A, diglycile of bisphenol F Bisphenol-type epoxy resins such as dil ether and diglycidyl ether of bisphenol S; Glycidyl ether of tetrahydroxyphenyl methane, Glycidyl ether of tetrahydroxy benzophenone, Novolak-type epoxy resin, such as a phenol novolak epoxy resin, a cresol novolak epoxy resin, and a hydroxy benzaldehyde phenol novolak epoxy resin, And polyfunctional epoxy resins such as epoxidized polyvinylphenol.
  • diglycidyl ether of bisphenol A diglycile of bisphenol F
  • Bisphenol-type epoxy resins such as dil ether and diglycidyl ether of bisphenol S
  • the hydrogenated epoxy compound means an epoxy compound obtained by selectively hydrogenating the aromatic epoxy compound in the presence of a catalyst under pressure, but is not limited thereto, and particularly among the hydrogenated bisphenol A Preference is given to using diglycidyl ether.
  • the alicyclic epoxy compound means an epoxy compound in which an epoxy group is formed between two adjacent carbon atoms constituting an aliphatic hydrocarbon ring, but is not limited thereto.
  • the (a) cationically polymerizable compound is not limited thereto, but at least one glyce in the molecule and the first epoxy compound containing at least one epoxidized aliphatic ring group, that is, an alicyclic epoxy ring in the molecule Particular preference is given to using a combination of second epoxy compounds comprising a dilether group.
  • the first epoxy compound and the second epoxy compound is 1: 1 to 3: 1 It is preferable to be used by mixing in a weight ratio, More preferably, it may be used by mixing in a weight ratio of 1: 1 to 2: 1, most preferably the first epoxy compound and the second epoxy compound of 1: 1 It is mixed and used by weight ratio.
  • the weight ratio of the first epoxy compound and the second epoxy compound satisfies the above range, most preferable physical properties can be obtained in terms of glass transition temperature, adhesive strength and viscosity.
  • the first epoxy compound is, for example, 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexanecarboxylate, bis (3,4-epoxy cyclohexylmethyl) adipate dicyclopentadiene dioxide At least one selected from the group consisting of limonene dioxide and 4-vinylcyclohexene dioxide.
  • the first epoxy compound is to increase the glass transition temperature and to impart the strength (hardness) of the adhesive layer, and most preferably 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexanecarboxylate. have.
  • the second epoxy compound is not particularly limited as long as it contains at least one glycidyl ether group.
  • the second epoxy compound is to impart softness to improve adhesion, and more preferably include an aliphatic ring, and most preferably 1,4-cycl
  • the content of the cationic polymerization initiator (a) is about 5 to 90 parts by weight, and preferably about 10 to 90 parts by weight based on 100 parts by weight of the total cationically curable composition.
  • the cationic polymerization initiator (b) is a compound that produces a cationic species or Lewis acid by irradiation of active energy rays, and means a compound which acts on a cationic polymerizable group such as an epoxy group to initiate a cationic polymerization reaction.
  • cationic polymerization initiators generally used in the art may be used without limitation.
  • a sulfonium salt or an iodonium salt may be preferably used as the cationic polymerization initiator.
  • cationic polymerization initiator containing sulfonium salt or iodonium salt include, for example, diphenyl (4-phenylthio) phenylsulfonium hexafluoroantimonate (Diphenyl (4- phenylthio) phenylsulfonium hexafluoroantimonate), diphenyl (4-phenylthio) phenylsulfonium hexafluorophosphate (Diphenyl (4-phenylthio) phenylsulfonium hexafluorophosphate), (phenyl) [4- (2-methylpropyl) phenyl] -iodium hexa Fluorophosphate ((phenyl) [4- (2-methylpropyl) phenyl] -Iodonium hexafluorophosphate), (thiodi-4,1-phenylene) bis (diphenylsulf
  • the content of the cationic polymerization initiator (b) is about 0.5 to 20 parts by weight, preferably about 0.5 to 15 parts by weight, and more preferably about 0.5 to 10 parts by weight based on 100 parts by weight of the total cationic curable composition. to be.
  • the cationically curable composition of the present invention may further include a cationically polymerizable compound including at least one oxetane group in the molecule (c).
  • the viscosity of the cationic curable composition can be lowered, and the curing rate can be further improved.
  • the (c) cationically polymerizable compound may be used without particular limitation as long as it has a cationic polymerization by having at least one oxetane group in the molecule.
  • the (c) cationically polymerizable compound is, for example, 3-ethyl-3-[(3-ethyloxetan-3-yl) methoxymethyl] oxetane, 1,4-bis [(3 -Ethoxyoxetan-3-yl) methoxymethyl] benzene, 1,4-bis [(3-ethyloxetan-3-yl) methoxy] benzene, 1,3-bis [(3-ethyloxetane- 3-yl) methoxy] benzene, 1,2-bis [(3-ethyloxetan-3-yl) methoxy] benzene, 4,4'-bis [(3-ethyloxetan-3-yl) meth Methoxy] biphenyl, 2,2'-bis [(3-ethyloxetan-3-yl) methoxy] biphenyl, 3,3 ', 5,5'-tetramethyl-4,4'
  • the content of the (c) cationically polymerizable compound is about 5 to 90 parts by weight, preferably about 10 to 90 parts by weight based on 100 parts by weight of the total cationically curable composition.
  • the cation-curable composition of the present invention may further include a (d) vinyl-based compound, in this case has the advantage that it is advantageous to maintain low viscosity, glass transition temperature after curing There is an advantage that can be prevented from lowering.
  • the (d) vinyl compound may be used hydroxy C 1-6 alkyl vinyl ether and / or vinyl acetate, the hydroxy C 1-6 alkyl vinyl ether, hydroxyethyl vinyl ether, hydroxy It may be at least one selected from the group consisting of butyl vinyl ether, 1,4-cyclohexane dimethanol vinyl ether, 4- (hydroxymethyl) cyclohexylmethyl vinyl ether, ethylene glycol vinyl ether, diethylene glycol monovinyl ether. .
  • the (d) vinyl compound may include 0.1 parts by weight to 10 parts by weight, or 0.1 parts by weight to 5 parts by weight with respect to 100 parts by weight of the total cation-curable composition.
  • the cationic curable composition of the present invention may further comprise (e) a silane coupling agent together with the above components, in which case lowering the surface energy of the protective layer, wetting This improved effect can be obtained.
  • the (e) silane coupling agent contains a cationically polymerizable functional group such as an epoxy group, a vinyl group, and a radical group.
  • the cationic curable composition may include the silane compound in a ratio of 0.1 part by weight to 10 parts by weight, or 0.1 part by weight to 5 parts by weight, based on 100 parts by weight of the total composition. In this range, the protective layer may exhibit appropriate surface energy and adhesion.
  • the cationic curable composition of the present invention may further include (f) a radical polymerizable monomer, as necessary, together with the above components.
  • the radically polymerizable monomer may be used without limitation as long as it is a compound having a radical reactive functional group, for example, (meth) acrylates having one or more (meth) acryloyl groups in a molecule, (meth) acrylamides, Maleimide, (meth) acrylic acid, maleic acid, itaconic acid, (meth) acrylaldehyde, (meth) acryloyl morpholine, N-vinyl-2-pyrrolidone, triallyl isocyanurate, etc. can be used. .
  • the content of the (f) radically polymerizable monomer is about 0 to 40 parts by weight, preferably about 5 to 30 parts by weight, and more preferably about 5 to 25 parts by weight based on 100 parts by weight of the total composition. .
  • the cationically curable composition contains the (f) radically polymerizable monomer
  • the content of the radical polymerization initiator is about 0.5 to 20 parts by weight, preferably about 0.5 to 15 parts by weight, and more preferably about 0.5 to 10 parts by weight based on 100 parts by weight of the total composition.
  • the cation-curable composition of the present invention may be further added, if necessary, further photosensitizers, antistatic agents, antioxidants, light stabilizers, ultraviolet absorbers, leveling agents and the like.
  • the photosensitizer, the antistatic agent, the antioxidant, the light stabilizer, the ultraviolet absorber, the leveling agent and the like which can be used in the present invention are not particularly limited, and any known materials well known in the art may be used without limitation.
  • the cation-curable composition of the present invention may further add fine particles as necessary.
  • anti-glare property can be provided to a 2nd protective layer after hardening.
  • fine-particles which can be used are not specifically limited, For example, inorganic microparticles
  • the cation-curable composition is preferably a glass transition temperature of 80 °C or more after curing, for example, may be about 80 °C to 110 °C. In this case, it may have excellent heat resistance, so that the polarizer breakage may be prevented when evaluating heat resistance and thermal shock resistance at a high temperature.
  • the cation-curable composition is preferably a viscosity of about 15 to 200 cP, in this case, it is possible to form a thin thickness of the protective layer, it has the advantage of excellent workability because it has a low viscosity.
  • the cation-curable composition is preferably a polarizer decolorization is less than 10mm in the MD direction when the polarizing plate prepared using the same for 24 hours immersed in water of 60 °C temperature is excellent in water resistance.
  • the thickness of the said 2nd protective layer of this invention it is preferable that it is 0.1-10 micrometers, and, as for the thickness of the said 2nd protective layer of this invention, it is more preferable that it is 1-10 micrometers or 1-5 micrometers.
  • the thickness of the second protective layer satisfies the numerical range, there is an advantage in that curing uniformity and thickness uniformity are improved.
  • the polarizing plate of the present invention may further include a protective film on one surface of the polarizer as needed. More specifically, in the polarizing plate of the present invention, the first protective layer 20 and the second protective layer 30 may be formed on both surfaces of the polarizer 10 as shown in FIG. As shown in FIG. 2, the first passivation layer 20 and the second passivation layer 30 may be formed only on one surface of the polarizer 10. As shown in FIG. 3, the first passivation layer 20 may be formed. ) And the second protective layer 30 are formed on only one surface of the polarizer 10, a separate protective film 40 is attached to support and protect the polarizer on the opposite side of the surface on which the protective layers 20 and 30 are formed. can do.
  • the protective film is for supporting and protecting the polarizer
  • protective films of various materials generally known in the art for example, cellulose-based film, polyethylene terephthalate (PET) film, cyclo An olefin polymer (COP, cycloolefin polymer) film, acrylic film, or the like can be used without limitation.
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • acrylic film or the like
  • the method for attaching the protective film is not particularly limited and may be attached via a method generally used in the art, for example, a known adhesive layer.
  • the polarizing plate of the present invention may include a retardation film for compensating for the optical retardation generated in the liquid crystal cell as needed.
  • the retardation film may be attached to the second protective layer.
  • the retardation film usable in the present invention is not particularly limited, and a retardation film generally used in the art may be used according to various liquid crystal modes of the liquid crystal display device.
  • the method of attaching the retardation film is not particularly limited and may be attached by a method generally used in the art.
  • the polarizing plate of the present invention may include an adhesive layer on an upper portion of the protective layer, if necessary, for attachment to an optical film such as a display device panel.
  • the pressure-sensitive adhesive layer may be formed using various pressure-sensitive adhesives well known in the art, and the kind thereof is not particularly limited.
  • the pressure-sensitive adhesive layer may be a rubber pressure sensitive adhesive, an acrylic pressure sensitive adhesive, a silicone pressure sensitive adhesive, a urethane pressure sensitive adhesive, a polyvinyl alcohol pressure sensitive adhesive, a polyvinylpyrrolidone pressure sensitive adhesive, a polyacrylamide pressure sensitive adhesive, a cellulose pressure sensitive adhesive, a vinyl alkyl ether pressure sensitive adhesive, or the like. It can be formed using.
  • the pressure-sensitive adhesive layer may be formed by applying a pressure-sensitive adhesive on the protective layer, or may be formed by a method of attaching the pressure-sensitive adhesive sheet prepared by applying the pressure-sensitive adhesive on the release sheet and dried on the protective layer.
  • Method for producing a polarizing plate of the present invention comprises the steps of applying a radical curable composition to at least one side of the polarizer; Irradiating the applied radical curable composition with an active energy ray to cure by radical polymerization to form a first protective layer; Applying a cationic curable composition to a side opposite to a side adjacent to the polarizer of the first protective layer; And irradiating active energy rays to the first protective layer and the cationically curable composition applied thereon to simultaneously cure both by means of cationic polymerization to form a second protective layer.
  • a method of applying the radical curable composition to at least one surface of the polarizer is not particularly limited, and for example, at least one surface of the polarizer may be a coating method well known in the art, such as spin coating, bar coating, roll coating, and gravure. It may be carried out by applying a radical curable composition by a method such as coating or blade coating and then drying as necessary. Alternatively, the radically curable composition is applied onto the transparent base film such as polyethylene terephthalate film, polycarbonate film, triacetyl cellulose film, norbornene-based film, polyester-based film, polystyrene film and the like by the above coating method, if necessary. It may be performed by drying and bonding it to at least one surface of the polarizer so that the applied radical curable composition becomes a bonding surface. In this case, after irradiating an active energy ray, a base film is removed.
  • a coating method well known in the art, such as spin coating, bar coating, roll coating, and gravure. It
  • the active energy ray When the radical curable composition is applied to at least one surface of the polarizer, the active energy ray is irradiated and cured by radical polymerization to form a first protective layer.
  • the active energy rays include ultraviolet rays, electron beams, microwaves, infrared rays (IR), X-rays and gamma rays, as well as alpha-particle beams, proton beams, and neutron beams.
  • Particle beams such as neutron beams may be included, and typically ultraviolet rays or electron beams may be used.
  • the light amount of the active energy ray irradiated on the adhesive layer may be 500mJ / cm 2 to 3000mJ / cm 2
  • the irradiation time may be 0.1s to 20s.
  • the cationically curable composition is applied to the opposite side of the surface adjacent to the polarizer of the first coating layer.
  • the method of applying the cationically curable composition is also not particularly limited, and for example, a cation is well known in the art on the first coating layer, such as spin coating, bar coating, roll coating, gravure coating, blade coating, or the like. After applying the curable composition may be carried out by a method of drying if necessary.
  • the cationic curable composition is coated on the transparent base film such as polyethylene terephthalate film, polycarbonate film, triacetyl cellulose film, norbornene-based film, polyester-based film, polystyrene film and the like by the above-described coating method, if necessary. It may be carried out by a method of drying and bonding it to the first protective layer so that the applied cationic curable composition becomes a bonding surface. In this case, after irradiating an active energy ray, a base film is removed.
  • the transparent base film such as polyethylene terephthalate film, polycarbonate film, triacetyl cellulose film, norbornene-based film, polyester-based film, polystyrene film and the like by the above-described coating method, if necessary. It may be carried out by a method of drying and bonding it to the first protective layer so that the applied cationic curable composition becomes a bonding surface. In this case, after irradiating an active energy ray
  • the first protective layer and the cationically curable composition applied thereon are irradiated with active energy rays, and both are simultaneously cured by cationic polymerization. 2 form a protective layer.
  • the active energy ray is the same as described above in the first protective layer forming portion.
  • the radically curable composition preferably includes a radically polymerizable compound including at least one hydrophilic functional group in a molecule, and the cationically curable composition includes a cationic polymerization including at least one epoxy group in a molecule.
  • the hydrophilicity of the first protective layer reacts with the epoxy group of the cationically polymerizable compound including the epoxy group to form a covalent bond, so that the first protective layer and the second protective layer have excellent adhesion.
  • the polarizing plate of the present invention as described above can be usefully applied to an image display device.
  • the image display device may be, for example, a liquid crystal display device including a liquid crystal panel and polarizing plates provided on both surfaces of the liquid crystal panel, wherein at least one of the polarizing plates may be a polarizing plate according to the present invention.
  • the type of liquid crystal panel included in the liquid crystal display device is not particularly limited.
  • a panel of a passive matrix type such as, but not limited to, a twisted nematic (TN) type, a super twisted nematic (STN) type, a ferrolectic (F) type, or a polymer dispersed (PD) type; Active matrix panels such as two-terminal or three-terminal; All known panels, such as an In Plane Switching (IPS) panel and a Vertical Alignment (VA) panel, can be applied.
  • IPS In Plane Switching
  • VA Vertical Alignment
  • liquid crystal display device for example, types of upper and lower substrates (eg, color filter substrates or array substrates) are not particularly limited, and configurations known in the art may be employed without limitation. Can be.
  • the method of attaching the polarizing plate is not particularly limited, and may be attached by a method generally used in the art.
  • the raw material hopper is a resin composition obtained by uniformly mixing poly (N-cyclohexylmaleimide-co-methylmethacrylate), styrene-maleic anhydride copolymer resin and phenoxy resin in a weight ratio of 100: 2.5: 5. From the extruder to a nitrogen-substituted 24 ⁇ extruder and melted at 250 ° C. to prepare a raw material pellet.
  • the poly (N-cyclohexylmaleimide-co-methylmethacrylate) resin was used in which the content of N-cyclohexylmaleimide was 6.5% by weight as a result of NMR analysis.
  • the obtained raw material pellets were vacuum-dried and melted with an extruder at 260 degreeC, passed through the T-die of a coat hanger type, and the film of 150 micrometers in thickness was produced through the chrome plating casting roll, a drying roll, etc.
  • the film was stretched at a rate of 170% using a speed difference of the roll in the MD direction at 125 ° C. using a pilot stretching equipment to produce an acrylic film.
  • composition B for a protective film was prepared by stirring at 60 ° C. for 4 hours.
  • composition for the protective film C was prepared by stirring at 60 ° C. for 4 hours.
  • the average functional group equivalent of the said composition for protective films A-E was measured by the calculation method as mentioned above, and it shows in the following [Table 1].
  • the cure shrinkage rate of the protective film compositions A to E was measured and shown in the following [Table 1]. Specifically, the volume (V i ) of 1g of the protective film composition A to E at 25 ° C. was measured using an automatic gas pycnometer, and then each of the compositions was applied onto a release PET film and cured. After peeling from the PET film, the volume (V f ) of the peeled protective film was measured using a fully automatic gas specific gravity group, and then the cure shrinkage rate was calculated using the above-described formula (3).
  • compositions A to E for the protective film were measured at 25 ° C. using Viscometer TV-22 (TOKI SANGYO), and the results are shown in the following [Table 1].
  • the glass transition temperature after curing of the protective film compositions A to E was measured and shown in the following [Table 1]. Specifically, the protective composition A to E after curing the flakes were measured by Mettler Toledo's DCS (Differential Scanning Calorimetry). The measurement temperature range was -30 °C ⁇ 200 °C two scans (10 °C per minute) twice, the measured glass transition temperature is the glass transition temperature value at the second scan.
  • Radical curable composition A was applied to the primer layer of the acrylic film-based protective film prepared in Preparation Example 1 with a dropper, laminated on one surface of a polarizer (PVA device), and then passed through a laminator. Then, the surface of the acrylic film is laminated using a UV irradiation device (Metal halide lamp), by irradiating ultraviolet rays of 500 ⁇ 1000mJ / cm 2 , to prepare a polarizing plate having a protective film on one surface of the polarizer.
  • a UV irradiation device Metal halide lamp
  • the radical curable composition A was apply
  • a UV halo lamp metal halide lamp
  • the cation curable composition E was apply
  • a UV halo lamp metal halide lamp
  • Example 1 a polarizing plate was manufactured by the same method except that the radical curable composition B was used instead of the radical curable composition A.
  • Example 1 a polarizing plate was manufactured by the same method except that the radical curable composition C was used instead of the radical curable composition A.
  • Example 1 a polarizing plate was manufactured by the same method except that the radical curable composition D was used instead of the radical curable composition A.
  • Radical curable composition A was applied to the primer layer of the acrylic film-based protective film prepared in Preparation Example 1 with a dropper, laminated on one surface of a polarizer (PVA device), and then passed through a laminator. Then, the surface of the acrylic film is laminated using a UV irradiation device (Metal halide lamp), by irradiating ultraviolet rays of 500 ⁇ 1000mJ / cm 2 , to prepare a polarizing plate having a protective film on one surface of the polarizer.
  • a UV irradiation device Metal halide lamp
  • the radical curable composition A was apply
  • a UV halo lamp metal halide lamp
  • Radical curable composition A was applied to the primer layer of the acrylic film-based protective film prepared in Preparation Example 1 with a dropper, laminated on one surface of a polarizer (PVA device), and then passed through a laminator. Then, the surface of the acrylic film is laminated using a UV irradiation device (Metal halide lamp), by irradiating ultraviolet rays of 500 ⁇ 1000mJ / cm 2 , to prepare a polarizing plate having a protective film on one surface of the polarizer.
  • a UV irradiation device Metal halide lamp
  • the cation curable composition E was apply
  • a UV halo lamp metal halide lamp
  • Radical curable composition A was applied to the primer layer of the acrylic film-based protective film prepared in Preparation Example 1 with a dropper, laminated on one surface of a polarizer (PVA device), and then passed through a laminator. Then, the surface of the acrylic film is laminated using a UV irradiation device (metal halide lamp), by irradiating ultraviolet light of 1000mJ / cm 2 , to prepare a polarizing plate having a protective film on one surface of the polarizer.
  • a UV irradiation device metal halide lamp
  • the cation curable composition E was apply
  • a UV halo lamp metal halide lamp
  • the radical curable composition A was apply
  • the polarizing plate in which the radical hardening layer (2nd protective layer) was formed on was manufactured.
  • the thermal shock properties of the polarizing plates prepared in Examples and Comparative Examples were measured and shown in the following [Table 2]. Specifically, the lamination of the polarizing plates prepared in Examples and Comparative Examples on a glass substrate (glass lamination), it was left for 30 minutes at -40 °C, and then it was left again for 30 minutes at 80 °C repeated 100 times It was performed by. Then, visual evaluation of the deformation of the polarizing plate appearance. The case where the occurrence of cracks of 2 mm or less in the exterior of the polarizing plate alone was excellent, and the case where only linear cracks of 5 mm or more shorter than the end were identified was good, and the case where many cracks occurred on the entire surface of the polarizing plate was indicated as bad.
  • the water resistance of the polarizing plates prepared in Examples and Comparative Examples was measured and shown in the following [Table 2]. Specifically, after laminating the polarizing plates of the above Examples and Comparative Examples on a glass substrate (glass lamination), the polarizing plate was immersed in a 60 ° C thermostat, and after 8 hours, the water resistance was judged by the discoloration of the ends of the polarizing plate, and the case of no deformation was excellent. , The case where discoloration occurred was marked as bad.
  • Curling properties of the polarizing plates prepared in Examples and Comparative Examples were measured and shown in the following [Table 2]. Specifically, the polarizing plates of Examples and Comparative Examples were cut to 30cm * 30cm and placed on a flat surface plate to measure how high each of the four corners were rolled up onto the floor.
  • the adhesiveness of the 1st protective layer of the polarizing plates manufactured by the said Example and the comparative example was measured, and is shown in following [Table 2]. Specifically, the radical curable composition used in the above Examples and Comparative Examples was applied to the polarizer (PVA device) to 4 ⁇ 5 ⁇ m, laminated on the polarizer (PVA device) and passed through the laminator, and then UV irradiation device (Metal halide) UV) was irradiated at 500 to 1000 mJ / cm 2 using a lamp) to prepare a peel force sample consisting of a polarizer / protective layer / polarizer. The sample was left for 4 days at a temperature of 20 ° C.
  • peeling force was measured. At this time, when peeling force is 1.0N / 2cm or more, it is OK, and when it is less than 1.0N / 2cm, it expressed as NG.
  • the adhesiveness of the 2nd protective layer of the polarizing plate manufactured by the said Example and the comparative example was measured, and is shown in following [Table 2]. Specifically, after bonding the polarizing plates prepared in the above Examples and Comparative Examples to the glass using an adhesive, carved 100 gratings of 1mm each side with a cutter knife on the surface of the second protective layer, and then adhered to the cellophane tape A peeling test was performed to calculate the number of lattice left in 100 lattice without peeling. After the test, 100 of the 100 grids were OK if all 100 grids were fine, and NG was dropped if any were dropped.
  • the polarizing plates of Examples 1 to 4 can be manufactured in a thin form because the thickness of the protective layer is thin, and further it can be seen that the adhesiveness, heat shock properties, water resistance, curl properties are all excellent.
  • the polarizing plate of Comparative Example 1 having only a radical cured layer as a protective layer has problems in water resistance and curl characteristics
  • the polarizing plate of Comparative Example 2 having only a cation cured layer as a protective layer has problems in adhesion, heat shock properties and curl characteristics. It can be seen that.
  • the adhesive layer and the first protective layer are manufactured using the same radical curable composition for convenience, the polarizing plate is not necessarily limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

본 발명은 편광자; 상기 편광자의 적어도 일면에 형성되는 제 1 보호층; 및 상기 제 1 보호층의 편광자에 인접한 면의 반대 면에 형성되는 제 2 보호층을 포함하며, 상기 제 1 보호층은 라디칼 경화형 조성물의 경화물이고, 상기 제 2 보호층은 양이온 경화형 조성물의 경화물인 편광판, 그 제조 방법 및 이를 포함하는 화상표시장치에 관한 것이다.

Description

편광판, 그 제조 방법 및 이를 포함하는 화상표시장치
본 발명은 편광판, 그 제조 방법 및 이를 포함하는 화상표시장치에 관한 것으로, 보다 구체적으로는, 편광자의 적어도 일면에 보호층이 두 층 이상으로 형성되어 있는 편광판, 그 제조 방법 및 이를 포함하는 화상표시장치에 관한 것이다.
편광판은 통상 이색성 염료 또는 요오드로 염색된 폴리비닐알코올(Polyvinyl alcohol, 이하 'PVA'라 함)계 수지로 이루어진 편광자의 양면에 보호 필름을 적층한 구조로 사용되어 왔다. 이때, 상기 보호 필름으로는 광학적 투명성이나 투습성이 우수하다는 점에서 트리아세틸셀룰로오스(TAC, triacetyl cellulose)계 필름이 필름이 많이 사용되고 있다.
한편, 최근 액정표시장치의 노트북형 개인용 컴퓨터, 휴대 전화, 카 내비게이션 등의 모바일 기기로의 전개에 따라, 액정표시장치를 구성하는 편광판에는 박형 경량화가 요구되게 되고 있다. 그러나, 상기와 같이 보호 필름으로 TAC 필름 등을 적층한 편광판에서는, 작업시의 취급성이나 내구 성능의 관점에서 보호 필름의 두께를 20 ㎛ 이하로 하는 것이 곤란하여, 박형 경량화에 한계가 있었다.
상기와 같은 문제점을 해결하기 위하여, 편광자의 적어도 일면에 활성 에너지선 경화성 조성물을 도공하여, 투명 박막층을 형성하는 기술이 제안되고 있다. 이때, 현재까지 제안된 상기 활성 에너지선 경화성 조성물로는 경화방식에 따라 라디칼 경화형 조성물과 양이온 경화형 조성물로 나눌 수 있다.
한편, 양이온 경화형 조성물을 이용하여 투명 박막층을 형성하는 경우 편광자와의 우수한 밀착성을 가지며, 내수성이 우수하는 장점이 있으나, 경화 속도가 느리고, 경화도가 좋지 못한 양이온 경화 방식의 한계에 의하여 두께 방향에 따라 균일한 경화도를 확보하는 것이 어려우며, 따라서 투명 보호층의 두께를 원하는 만큼 확보할 수 없다는 구조적인 문제점을 가진다.
이와 반대로, 라디칼 경화형 조성물을 이용하여 투명 박막층을 형성하는 경우 경화속도가 빠르고, 경화도가 우수한바, 약 100㎛ 두께까지는 경화도에 따른 막의 경화 불균일성에 대한 문제점이 없다는 장점이 있으나, 라디칼 경화형 조성물에 PVA소자와의 접착을 위해 일반적으로 포함되는 친수성 관능기가 투명 보호층의 최외면으로 들어남으로써, 내수성에 매우 취약하게 되며, 따라서 편광자의 탈색 현상 등이 발생할 수 있다는 문제점이 있다.
이를 해결하기 위하여 편광자 상에 양이온 경화형 조성물을 이용하여 투명 박막층을 형성하고, 상기 형성된 투명 박막층 상에 다시 라디칼 경화형 조성물을 이용하여 투명 박막층을 형성하여, 2 층 형태의 투명 박막층을 갖는 편광판이 제안되었다. 한편, 이 경우 제 1 층이 양이온 경화형 조성물의 경화물인바 편광자를 공유 결합으로 막고 있기 때문에 내습 환경에서 편광자가 탈색되는 현상을 방지할 수는 있으나, 일반적으로 친수성 관능기를 포함하는 라디칼 경화형 조성물의 경화물인 제 2 층이 최외층으로 외부에 들어나게 되는바, 습도 등에 취약하여 제 1 층과 쉽게 박리가 되는 문제점이 있다.
따라서, 보호층을 원하는 두께로 형성할 수 있으면서도 동시에 우수한 내수성을 확보할 수 있으며, 컬 발생률을 현저히 감소시킬 수 있고, 종래의 투명 보호 필름을 갖는 편광판에 비해 박형으로 제조가 가능한 새로운 편광판이 요구되고 있다.
본 발명은 보호층을 원하는 두께로 형성할 수 있으면서도 동시에 우수한 내수성을 확보할 수 있고, 컬 발생률을 현저히 감소시킬 수 있으며, 종래의 투명 보호 필름을 갖는 편광판에 비해 박형으로 제조가 가능한 편광판, 그 제조 방법 및 이를 포함하는 화상표시장치를 제공하고자 한다.
일 측면에서, 본 발명은 편광자; 상기 편광자의 적어도 일면에 형성되는 제 1 보호층; 및 상기 제 1 보호층의 편광자에 인접한 면의 반대 면에 형성되는 제 2 보호층을 포함하며, 상기 제 1 보호층은 라디칼 경화형 조성물의 경화물이고, 상기 제 2 보호층은 양이온 경화형 조성물의 경화물인 편광판을 제공한다.
한편, 상기 라디칼 경화형 조성물은 평균 관능기 당량이 120g/eq 내지 350 g/eq인 것이 바람직하다.
한편, 상기 라디칼 경화형 조성물은 25℃에서의 경화 수축률이 5% 내지 15%인 것이 바람직하다.
한편, 상기 라디칼 경화형 조성물은 (A) 분자 내에 적어도 하나의 히드록시기를 포함하는 라디칼 중합성 화합물; (B) 분자 내에 적어도 하나의 카르복시기를 포함하는 라디칼 중합성 화합물; 및 (C) 라디칼 중합 개시제를 포함하는 것이 바람직하다.
이때, 상기 라디칼 경화형 조성물은 라디칼 경화형 조성물 100 중량부에 대하여, 상기 (A) 라디칼 중합성 화합물 40 내지 80 중량부; (B) 라디칼 중합성 화합물 15 내지 50 중량부; 및 (C) 라디칼 중합 개시제 0.5 내지 10 중량부를 포함하는 것이 더욱 바람직하다.
한편, 상기 양이온 경화형 조성물은 (a) 분자 내에 적어도 하나의 에폭시기를 포함하는 양이온 중합성 화합물; 및 (b) 양이온 중합 개시제를 포함하는 것이 바람직하다.
이때, 상기 (a) 양이온 중합성 화합물은 분자 내에 적어도 하나의 에폭시화 지방족 고리를 포함하는 제 1 에폭시 화합물; 및 분자 내에 적어도 하나의 글리시딜에테르기를 포함하는 제 2 에폭시 화합물의 조합인 것이 더욱 바람직하다.
한편, 상기 분자 내에 적어도 하나의 에폭시화 지방족 고리를 포함하는 제 1 에폭시 화합물과 분자 내에 적어도 하나의 글리시딜에테르기를 포함하는 제 2 에폭시 화합물의 중량비는 1:1 내지 3:1인 것이 특히 바람직하다.
한편, 상기 양이온 경화형 조성물은 (c) 분자 내에 적어도 하나의 옥세탄기를 포함하는 양이온 중합성 화합물을 더 포함할 수 있다.
한편, 상기 제 1 보호층은 두께가 1 내지 15㎛인 것이 바람직하다.
또한, 상기 제 1 보호층의 25℃에서의 모듈러스는 500MPa 내지 5000MPa인 것이 바람직하다.
또한, 상기 제 2 보호층은 두께가 0.1 내지 10㎛인 것이 바람직하다.
한편, 본 발명의 상기 편광판은 상기 편광자의 보호층이 형성된 면의 반대면에 접착제층을 매개로 보호 필름이 더 부착될 수 있다.
또한, 본 발명의 상기 편광판은 상기 제 2 보호층 상부에 점착층을 더 포함할 수 있다.
한편, 본 발명은 상기 편광판을 포함하는 화상표시장치 역시 제공한다.
다른 측면에서, 본 발명은 편광자의 적어도 일면에 라디칼 경화형 조성물을 도포하는 단계; 상기 도포된 라디칼 경화형 조성물에 활성 에너지선을 조사하여 라디칼 중합으로 경화시켜 제 1 보호층을 형성하는 단계; 상기 제 1 보호층의 편광자에 인접한 면의 반대 면에 양이온 경화형 조성물을 도포하는 단계; 및 상기 제 1 보호층과 그 위에 도포된 양이온 경화형 조성물에 활성 에너지선을 조사하여 양자를 동시에 양이온 중합으로 경화시켜 제 2 보호층을 형성하는 단계를 포함하는 편광판의 제조 방법 역시 제공한다.
본 발명의 편광판은 제 1 보호층으로 라디칼 경화층을 사용하며, 상기 라디칼 경화층은 두께에 따른 막의 경화 불균일성에 대한 문제가 거의 없는바, 보호층을 원하는 두께로 형성할 수 있다는 장점이 있으며, 또한 이와 같이 보호층의 내측에 라디칼 경화층을 형성하는바 컬 발생률이 현저히 감소시킬 수 있다는 장점이 있다.
또한, 본 발명의 편광판은 제 2 보호층으로 양이온 경화층을 사용하며, 이와 같이 상기 라디칼 경화층을 양이온 경화층으로 보호하여 우수한 내수성을 확보할 수 있다는 장점이 있다.
또한, 본 발명의 편광판은 종래의 투명 보호 필름을 갖는 편광판에 비해 두께가 얇은 보호층을 갖는바, 박형으로 제조가 가능하다는 장점이 있다.
도 1은 본 발명에 따른 편광판의 일례를 나타내는 단면도이다.
도 2는 본 발명에 따른 편광판의 다른 일례를 나타내는 단면도이다.
도 3은 본 발명에 따른 편광판의 또 다른 일례를 나타내는 단면도이다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
1. 편광판
본 발명자들은 연구를 거듭한 결과, 편광자 상에 제 1 보호층으로 양이온 경화형 조성물의 경화물을 형성하고, 상기 제 1 보호층 상에 제 2 보호층으로 라디칼 경화형 조성물의 경화물을 형성하는 경우, 보호층을 원하는 두께로 형성할 수 있으면서도 동시에 우수한 내수성을 확보할 수 있으며, 컬 발생률을 현저히 감소시킬 수 있다는 것을 알아내고 본 발명을 완성하였다.
즉, 본 발명의 편광판은 편광자; 상기 편광자의 적어도 일면에 형성되는 제 1 보호층; 및 상기 제 1 보호층의 편광자에 인접한 면의 반대 면에 형성되는 제 2 보호층을 포함하며, 상기 제 1 보호층은 라디칼 경화형 조성물의 경화물이고, 상기 제 2 보호층은 양이온 경화형 조성물의 경화물이다.
1-1. 편광자
먼저, 본 발명의 상기 편광자는 당해 기술분야에 잘 알려진 편광자, 예를 들면 요오드 또는 이색성 염료가 흡착 배향되어 있는 폴리비닐알코올(PVA)계 필름을 사용할 수 있다. 이때, 상기 요오드 또는 이색성 염료가 흡착 배향되어 있는 폴리비닐알코올계 필름의 제조 방법은 특별히 한정되지 않으며, 예컨대 폴리비닐알코올계 필름을 당해 기술분야에 잘 알려진 연신, 염착, 가교, 보색 처리 등을 하여 제조할 수 있다. 한편, 본 명세서에 있어서 편광자는 보호층(또는 보호 필름)을 포함하지 않는 상태를 의미하며, 편광판은 편광자와 보호층(또는 보호 필름)을 포함하는 상태를 의미한다.
한편, 상기 폴리비닐알코올계 필름은 폴리비닐알코올 수지 또는 그 유도체를 포함하는 것이면 특별한 제한 없이 사용이 가능하다. 이때, 상기 폴리비닐알코올 수지의 유도체로는, 이에 한정되는 것은 아니나, 폴리비닐포르말 수지, 폴리비닐아세탈 수지 등을 들 수 있다. 또는, 상기 폴리비닐알코올계 필름은 당해 기술분야에 있어서 편광자 제조에 일반적으로 사용되는 시판되는 폴리비닐알코올계 필름, 예컨대, 구라레 사의 P30, PE30, PE60, 일본합성사의 M2000, M3000 M6000 등을 사용할 수도 있다.
한편, 상기 폴리비닐알코올계 필름은, 이로써 한정되는 것은 아니나, 중합도가 1,000 내지 10,000 정도, 바람직하게는 1,500 내지 5,000 정도인 것이 좋다. 중합도가 상기 범위를 만족할 때, 분자 움직임이 자유롭고, 요오드 또는 이색성 염료 등과 유연하게 혼합될 수 있기 때문이다.
1-2. 제 1 보호층
다음으로, 본 발명의 상기 제 1 보호층은 보호층의 전체 두께를 원하는 두께로 형성할 수 있도록 하기 위하여 편광자의 적어도 일면에 형성되는 것으로, 상기 제 1 보호층은 당해 기술 분야에 잘 알려진 방법에 의해 형성될 수 있다. 예를 들면, 편광자의 적어도 일면에 라디칼 경화형 조성물을 당해 기술 분야에 잘 알려진 코팅 법, 예컨대 스핀 코팅, 바 코팅, 롤 코팅, 그라비아 코팅, 블레이드 코팅 등의 방법으로 도포하여 보호층을 형성한 다음, 자외선, 가시광선, 전자선, X선 등의 활성 에너지선 조사를 통해 경화시키는 방법으로 수행될 수 있다. 이때, 조사 방법은 특별히 한정되지 않으며, 예를 들면, 자외선 조사장치(fusion lamp, D bulb)를 이용하여 10 내지 2500mJ/cm2 정도의 자외선을 조사하는 방법으로 수행할 수 있다.
한편, 상기 라디칼 경화형 조성물은 분자 내에 적어도 하나의 친수성 관능기를 포함하는 라디칼 중합성 화합물 및 라디칼 중합 개시제를 포함하는 것이 바람직하다. 이 경우 편광자의 친수성 관능기(일반적으로 히드록시기)와 경화 후 제 1 보호층의 친수성 관능기 간의 수소 결합을 통하여 편광자와 제 1 보호층 간의 우수한 밀착성이 확보될 수 있기 때문이다. 이때, 상기 분자 내에 적어도 하나의 친수성 관능기를 포함하는 라디칼 중합성 화합물은 단독으로 또는 2 이상이 혼합하여 상기 라디칼 경화형 조성물에 포함될 수 있다.
이때, 본 발명에 따른 라디칼 경화형 조성물에 포함되는 상기 분자 내에 적어도 하나의 친수성 관능기를 포함하는 라디칼 중합성 화합물은, 분자 내에 적어도 하나의 친수성 관능기를 가짐으로써 수소 결합을 통한 밀착성 구현이 가능하고, 또한 라디칼 중합성 화합물로 분자 내에 탄소간 불포화 이중 결합이 존재함으로써 라디칼 중합이 가능한 것이면 특별한 제한 없이 사용이 가능하다. 이때, 상기 친수성 관능기는 히드록시기, 카르복시기, 우레탄기, 아민기, 아마이드기 등 수소 결합이 가능한 것이면 특별히 제한 되는 것은 아니나, 그 중에서도 특히 히드록시기 또는 카르복시기인 것이 편광자와의 우수한 밀착성의 구현을 위하여 보다 바람직하다.
보다 구체적으로는, 상기 라디칼 경화형 조성물은 (A) 분자 내에 적어도 하나의 히드록시기를 포함하는 라디칼 중합성 화합물; (B) 분자 내에 적어도 하나의 카르복시기를 포함하는 라디칼 중합성 화합물; 및 (C) 라디칼 중합 개시제를 포함하는 것이 바람직하다.
더욱 바람직하게는, 상기 라디칼 경화형 조성물은 라디칼 경화형 조성물 100 중량부에 대하여, 상기 (A) 라디칼 중합성 화합물 40 내지 80 중량부; (B) 라디칼 중합성 화합물 15 내지 50 중량부; 및 (C) 라디칼 중합 개시제 0.5 내지 10 중량부를 포함하는 것일 수 있다.
이때, 상기 (A) 라디칼 중합성 화합물은 우수한 밀착성을 구현하기 위한 성분으로, 이에 한정되는 것은 아니나, 본 발명에서는 상기 (A) 라디칼 중합성 화합물로는 하기 [화학식 I]로 표시되는 다양한 화합물들이 사용될 수 있다.
[화학식 I]
Figure PCTKR2014008900-appb-I000001
상기 [화학식 I]에서, R1은 에테르기(-O-), 에스테르기(-COO-), 아마이드기(-CON-), 또는 싸이오에이트기(-COS-) 이고; R2는 C1~10 알킬기, C4~10 시클로알킬기, 또는 이들의 조합이고, 이때 R2는 분자 내에 하나의 히드록시 치환기를 가지며; R3는 수소, 또는 치환 또는 비치환된 C1~10 알킬기이다.
이때, 상기 R2에 있어서, 상기 알킬기는 1 내지 10개, 또는 1 내지 8개, 또는 1 내지 4개의 탄소 원자의 직쇄 또는 분지쇄의 탄화수소 부위를 의미하며, 본 명세서에서 상기 알킬기는 분자 내에 적어도 하나의 불포화 결합을 포함할 수도 있다. 한편, 상기 알킬기로는, 이에 한정되는 것은 아니나, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵틸, 옥틸, 노닐, 데카닐 등을 그 예로 들 수 있다.
또한, 상기 R2에 있어서, 상기 시클로알킬기는 4 내지 14개, 또는 4 내지 10개, 또는 4 내지 6개의 고리 탄소의 비방향족 모노시클릭, 바이시클릭 또는 트리시클릭 탄화수소 부위를 의미하며, 본 명세서에서 상기 시클로알킬기는 분자 내에 적어도 하나의 불포화 결합을 포함할 수도 있다. 한편, 상기 시클로알킬기로는, 이에 한정되는 것은 아니나, 시클로펜탄 고리, 시클로헥산 고리 등을 그 예로 들 수 있다.
한편, 상기 히드록시기는 알킬기 또는 시클로알킬기 내의 임의의 위치에 치환될 수 있다. 예를 들면, 상기 히드록시기는 알킬기의 말단에 올 수도 있고, 알킬기의 중간에 올 수도 있다. 한편, 상기 알킬기 또는 시클로알킬기에 포함되어 있는 나머지 수소 원자는 임의의 치환기로 치환될 수 있다.
또한, 상기 R3에 있어서, 상기 알킬기는 1 내지 10개, 또는 1 내지 8개, 또는 1 내지 4개의 탄소 원자의 직쇄 또는 분지쇄의 탄화수소 부위를 의미하며, 본 명세서에서 상기 알킬기는 분자 내에 적어도 하나의 불포화 결합을 포함할 수도 있다. 한편, 상기 알킬기로는, 이에 한정되는 것은 아니나, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵틸, 옥틸, 노닐, 데카닐 등을 그 예로 들 수 있다. 상기 알킬기에 포함되어 있는 하나 이상의 수소 원자는 임의의 치환기로 치환될 수 있다.
보다 구체적으로, 상기 (A) 라디칼 중합성 화합물은, 이에 한정되는 것은 아니나, 예를 들면 하기 [화학식 1] 내지 [화학식 13]로 표시되는 화합물일 수 있다.
[화학식 1]
Figure PCTKR2014008900-appb-I000002
[화학식 2]
Figure PCTKR2014008900-appb-I000003
[화학식 3]
Figure PCTKR2014008900-appb-I000004
[화학식 4]
Figure PCTKR2014008900-appb-I000005
[화학식 5]
Figure PCTKR2014008900-appb-I000006
[화학식 6]
Figure PCTKR2014008900-appb-I000007
[화학식 7]
Figure PCTKR2014008900-appb-I000008
[화학식 8]
Figure PCTKR2014008900-appb-I000009
[화학식 9]
Figure PCTKR2014008900-appb-I000010
[화학식 10]
Figure PCTKR2014008900-appb-I000011
[화학식 11]
Figure PCTKR2014008900-appb-I000012
[화학식 12]
Figure PCTKR2014008900-appb-I000013
[화학식 13]
Figure PCTKR2014008900-appb-I000014
한편, 상기 (A) 라디칼 중합성 화합물은 전체 라디칼 경화형 조성물 100 중량부에 대하여, 40 내지 80 중량부, 50 내지 80 중량부, 또는 50 내지 70 중량부 정도일 수 있다. 이 경우 고습 환경에서도 안정적인 밀착성 확보가 가능하다는 장점이 있다.
다음으로, 상기 (B) 라디칼 중합성 화합물은 밀착성뿐 아니라, 내수성 및 내열성, 점도 특성 등을 더욱 향상시키기 위한 성분으로, 이에 한정되는 것은 아니나, 산가(acid value)가 100 내지 1000 mg·KOH/g 정도인 다양한 화합물이 사용될 수 있다. 이 경우 특히 밀착성이 저하되지 않으면서도 유리전이온도를 상승시켜 내열성이 우수한 라디칼 경화형 조성물을 얻을 수 있다. 한편, 상기 산가(acid value)은 시료 1g을 완전 중화하는데 필요한 KOH의 mg수를 의미하며, 측정 방법은 특별히 한정되지 않는다. 예를 들면, 하기 식 (1)을 통하여 샘플 내의 산가(acid value)을 계산할 수 있다.
식 (1): (KOH 분자량 x 샘플 내의 -COOH의 개수 x 1000) / 샘플의 분자량
보다 구체적으로, 상기 (B) 라디칼 중합성 화합물로는, 이에 한정되는 것은 아니나, 예를 들면 하기 [화학식 14] 내지 [화학식 28]로 표시되는 화합물을 들 수 있다.
[화학식 14]
Figure PCTKR2014008900-appb-I000015
[화학식 15]
Figure PCTKR2014008900-appb-I000016
[화학식 16]
Figure PCTKR2014008900-appb-I000017
(여기서, 상기 R'은
Figure PCTKR2014008900-appb-I000018
또는
Figure PCTKR2014008900-appb-I000019
이고, p는 1 내지 5의 정수임)
[화학식 17]
Figure PCTKR2014008900-appb-I000020
[화학식 18]
Figure PCTKR2014008900-appb-I000021
[화학식 19]
Figure PCTKR2014008900-appb-I000022
[화학식 20]
Figure PCTKR2014008900-appb-I000023
[화학식 21]
Figure PCTKR2014008900-appb-I000024
[화학식 22]
Figure PCTKR2014008900-appb-I000025
[화학식 23]
Figure PCTKR2014008900-appb-I000026
[화학식 24]
Figure PCTKR2014008900-appb-I000027
[화학식 25]
Figure PCTKR2014008900-appb-I000028
[화학식 26]
Figure PCTKR2014008900-appb-I000029
[화학식 27]
Figure PCTKR2014008900-appb-I000030
[화학식 28]
Figure PCTKR2014008900-appb-I000031
한편, 상기 (B) 라디칼 중합성 화합물은 전체 라디칼 경화형 조성물 100 중량부에 대하여, 15 내지 50 중량부, 20 내지 50 중량부, 또는 20 내지 40 중량부 정도일 수 있다. 이 경우 특히 편광자의 밀착성 및 내열성이 모두 우수하다는 장점이 있다.
다음으로, 상기 (C) 라디칼 중합 개시제는, 라디칼 중합성을 촉진하여 경화 속도를 향상시키기 위한 것으로, 상기 라디칼 중합 개시제로는 당해 기술 분야에서 일반적으로 사용되는 라디칼 중합 개시제들이 제한 없이 사용될 수 있다.
보다 구체적으로, 상기 라디칼 중합 개시제는, 예를 들면, 1-하이드록시-시클로헥실-펜닐-케톤(1-Hydroxy-cyclohexyl-phenyl-ketone), 2-하이드록시-2-메틸-1-페닐-1-프로판온(2-Hydroxy-2-methyl-1-phenyl-1-propanone), 2-히드록시-1-[4-(2-하이드록시에톡시)페닐]-2-메틸-1-프로판온(2-Hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone), 메틸벤조일포르메이트(Methylbenzoylformate), 옥시-페닐-아세트산-2-[2-옥소-2-페닐-아세톡시-에톡시]-에틸 에스테르(oxy-phenyl-acetic acid -2-[2 oxo-2phenyl-acetoxy-ethoxy]-ethyl ester), 옥시-페닐-아세트산-2-[2-하이드록시-에톡시]-에틸 에스테르(oxy-phenyl-acetic acid-2-[2-hydroxy-ethoxy]-ethyl ester), 알파-디메톡시-알파-페닐아세토페논(alpha-dimethoxy-alpha-phenylacetophenone), 2-벤질-2-(디메틸아미노)1-[4-(4-모르폴리닐) 페닐]-1-부타논(2-Benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl) phenyl]-1-butanone), 2-메틸-1-[4-(메틸티오)페닐]-2-(4-모르폴리닐)-1-프로판온(2-Methyl-1-[4-(methylthio)phenyl] -2-(4-morpholinyl)-1-propanone), 디페닐 (2,4,6-트리메틸벤조일)-포스핀 옥사이드(Diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide), 포스핀 옥사이드(Phosphine oxide), 페닐비스(2,4,6-트리메틸벤조일)-포스핀옥사이드(phenylbis(2,4,6-trimethylbenzoyl)-phosphineoxide)로 이루어진 그룹으로부터 선택된 1종 이상일 수 있다. 특히, 본 발명에 있어서, 페닐비스(2,4,6-트리메틸벤조일)-포스핀옥사이드(phenylbis(2,4,6-trimethylbenzoyl)-phosphineoxide)가 바람직하게 사용될 수 있다.
한편, 상기 (C) 라디칼 중합 개시제는 전체 라디칼 경화형 조성물 100 중량부에 대하여, 0.5 내지 10 중량부, 1 내지 5 중량부, 또는 2 내지 3 중량부 정도일 수 있다. 이 경우 특히 라디칼 경화형 조성물의 경화가 원활하게 이루어질 수 있다.
한편, 본 발명의 상기 라디칼 경화형 조성물은 점도 조절을 위하여 추가로 (D) 탄소수 7 내지 20개, 바람직하게는 탄소수 7 내지 15개의 고리 구조를 포함하는 (메트)아크릴계 화합물을 더 포함할 수 있다.
보다 구체적으로, 상기 (D) (메트)아크릴계 화합물은, 예를 들면 이소보닐 (메트)아크릴레이트(Isobornyl (meth)acrylate), 노보닐 (메트)아크릴레이트(Norbornyl (meth)acrylate), 디시클로펜타닐 (메트)아크릴레이트(Dicyclopentanyl (meth)acrylate), 디시클로펜테닐 (메트)아크릴레이트(Dicyclopentenyl (meth)acrylate) 및 1-아다만틸-(메트)아크릴레이트(1-adamantyl-(meth)acrylate)로 이루어진 그룹으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 (D) (메트)아크릴계 화합물은 전체 라디칼 경화형 조성물 100 중량부에 대하여, 50 중량부 이하, 예를 들면 1 내지 50 중량부, 또는 5 내지 50 중량부 정도일 수 있다. 이 경우 특히 라디칼 경화형 조성물의 점도 및 경화 후 유리전이온도가 모두 우수하다.
보다 구체적으로는, 본 발명의 상기 라디칼 경화형 조성물은, 전체 라디칼 경화형 조성물 100 중량부에 대하여, (A) 라디칼 경화형 조성물 40 내지 80 중량부; (B) 라디칼 경화형 조성물 15 내지 50 중량부; (C) 라디칼 개시제 0.5 내지 10 중량부; 및 (D) (메트)아크릴계 화합물 1 내지 50 중량부를 포함하는 것이 바람직하다.
한편, 본 발명의 상기 라디칼 경화형 조성물은 필요에 따라 추가적으로 광 증감제, 대전 방지제, 산화 방지제, 광 안정제, 자외선 흡수제, 레벨링제 등을 추가로 첨가할 수 있다. 이때, 본 발명에서 사용 가능한 광 증감제, 대전 방지제, 산화 방지제, 광 안정제, 자외선 흡수제, 레벨링제 등은 특별히 한정되지 않으며, 당해 기술분야에 있어서 잘 알려진 공지의 물질을 제한 없이 사용할 수 있다.
한편, 상기 라디칼 경화형 조성물은 평균 관능기 당량이 120g/eq 내지 350 g/eq인 것이 바람직하며, 예를 들면, 150g/eq 내지 300g/eq 또는 160g/eq 내지 300 g/eq 정도일 수 있다. 본 발명의 발명자들의 연구에 의하면 제 1 보호층을 형성하기 위한 라디칼 경화형 조성물의 평균 관능기 당량이 상기 범위를 만족하는 경우, 낮은 경화 수축률을 가지는바, 제조되는 편광판이 두 층 이상의 보호층을 가짐에도 불구하고 컬 특성이 매우 우수하다는 장점이 있었다. 이와 달리, 평균 관능기 당량이 상기 범위를 초과하는 경우, 예를 들면 막의 경도를 높이기 위하여 펜타에리트리톨트리아크릴레이트 등과 같은 다관능성 (메트)아크릴계 화합물 등을 주 성분으로 첨가하는 경우에는 경화 수축률이 커지기 때문에, 두 층 이상의 보호층으로 구성시 편광판의 컬 발생이 심하다는 문제점이 있었다. 한편, 상기 평균 관능기 당량은 라디칼 경화형 조성물에 포함되는 각 성분의 관능기 당량에 그 성분의 백분율 중량비를 곱한 값을 각각 계산하여, 이들을 합하는 방법으로 계산될 수 있다. 예컨대 라디칼 경화형 조성물이 A, B, C의 3가지 성분을 포함하는 경우, 하기 식 (2)를 통하여 평균 관능기 당량이 계산될 수 있다. 하기 식 (2)에서는 임의로 성분 3가지를 가지는 경우로 계산 방법을 나타내었으나, 라디칼 경화형 조성물의 포함되는 성분 수에 따라 달라질 수 있음은 자명할 것이다.
식 (2): 평균 관능기 당량 = [(성분 A 분자량 / 성분 A 몰당 관능기 수) * 성분 A 백분율 중량비] + [(성분 B 분자량 / 성분 B 몰당 관능기 수) * 성분 B 백분율 중량비] + [(성분 C 분자량 / 성분 C 몰당 관능기 수) * 성분 C 백분율 중량비]
또한, 상기 라디칼 경화형 조성물은 25℃에서의 경화 수축률이 5% 내지 15%인 것이 바람직하며, 예를 들면, 5% 내지 10% 또는 10% 내지 15% 정도일 수 있다. 본 발명의 발명자들의 연구에 의하면, 제 1 보호층을 형성하기 위한 라디칼 경화형 조성물의 경화 수축율이 상기 범위를 만족하는 경우, 제조되는 편광판이 특히 우수한 컬 특성을 가지는 장점이 있었다. 이때, 상기 경화 수축률은 보호층 형성을 위한 라디칼 경화형 조성물의 경화 전 부피 대비 경화 후 부피의 변화율을 의미하는 것으로, 하기 식 (3)을 통하여 계산될 수 있다.
식 (3): 경화 수축률(%) = {(Vi-Vf)/Vi}·100 = {((m/ρi )- Vf)/ (m/ρi )}·100
상기 식 (3)에서, Vi는 조성물의 경화전 부피, Vf는 조성물의 경화 후 부피, m은 조성물의 질량, ρi은 조성물의 경화 전 밀도를 의미한다.
또한, 상기 라디칼 경화형 조성물은 전체 산가가 30 내지 300 mg·KOH/g 정도인 것이 바람직하며, 예를 들면, 30 내지 100 mg·KOH/g 또는 100 내지 300 mg·KOH/g 정도일 수 있다. 이 경우 편광자의 우수한 밀착성을 유지시키면서 동시에 조성물의 유리전이온도를 향상시켜 내열성을 향상시킬 수 있다.
또한, 상기 라디칼 경화형 조성물은 경화 후 유리전이온도가 70℃ 내지 500℃ 정도인 것이 바람직하며, 예를 들면 80℃ 내지 300℃, 또는 90℃ 내지 200℃ 정도일 수 있다. 상기와 같은 수치 범위의 유리전이온도를 갖는 경우 보호층이 우수한 내열성 및 내수성을 가질 수 있다.
또한, 상기 라디칼 경화형 조성물은 점도가 10 내지 300cP 정도인 것이 바람직하며, 예를 들면 20 내지 100cP 정도일 수 있다. 조성물의 점도가 상기 수치범위를 만족하는 경우 보호층의 두께를 얇게 형성할 수 있고, 저점도를 갖기 때문에 작업성이 우수한 장점이 있다.
한편, 본 발명의 상기 제 1 보호층의 두께는 1 내지 15 ㎛인 것이 바람직하고, 1 내지 10㎛ 또는 1 내지 5㎛인 것이 보다 바람직하다. 본 발명에 따른 편광판의 열충격성을 확보하기 위해서는, 상기 제 1 보호층의 모듈러스가 크게 설계되어 한다. 이때, 제1보호층의 모듈러스는 상기 제 1 보호층의 두께에 따라 달라지는데, 상기 제 1 보호층의 두께가 상기 수치범위를 만족하는 경우, 제 1 보호층의 모듈러스의 크기를 크게하여 편광판의 열충격성을 확보하기가 용이한 장점이 있다.
또한, 본 발명의 상기 제 1 보호층의 상온(25℃)에서의 모듈러스(Modulus)는 500MPa 내지 5000MPa인 것이 바람직하며, 예를 들면, 1000MPa 내지 4000MPa 정도일 수 있다. 제 1 보호층의 모듈러스가 상기 범위를 만족하는 경우, 이를 포함하는 본 발며으이 편광판이 보다 우수한 열충격성을 확보할 수 있다는 장점이 있다. 이때, 상기 모듈러스는 JIS-K6251-1 규격에 따라 준비한 샘플의 양 끝 단을 고정시킨 후, 두께 방향에 수직한 방향으로 힘을 가하여 인장율(Strain)에 따른 단위 면적당의 응력(Stress)을 측정하여 얻어진 값을 말하며, 이때 측정 기기로는, 예컨대, Zwick/Roell社 Z010 UTM 장비 등을 사용할 수 있다.
1-3. 제 2 보호층
다음으로, 본 발명의 상기 제 2 보호층은 고습 환경에서 상기 제 1 보호층을 보호하여 우수한 내수성을 확보하기 위하여 제 1 보호층의 편광자와 인접한 면의 반대 면에 형성되는 것으로, 상기 제 2 보호층 역시 당해 기술 분야에 잘 알려진 방법에 의해 형성될 수 있다. 예를 들면, 제 1 보호층의 적어도 일면에 양이온 경화형 조성물을 당해 기술 분야에 잘 알려진 코팅 법, 예컨대 스핀 코팅, 바 코팅, 롤 코팅, 그라비아 코팅, 블레이드 코팅 등의 방법으로 도포하여 보호층을 형성한 다음, 자외선, 가시광선, 전자선, X선 등의 활성 에너지선 조사를 통해 경화시키는 방법으로 수행될 수 있다. 이때, 조사 방법 역시 특별히 한정되지 않으며, 예를 들면, 자외선 조사장치(fusion lamp, D bulb)를 이용하여 10 내지 2500mJ/cm2 정도의 자외선을 조사하는 방법으로 수행할 수 있다.
한편, 상기 양이온 경화형 조성물은 (a) 분자 내에 적어도 하나의 에폭시기를 포함하는 양이온 중합성 화합물 및 (b) 양이온 중합 개시제를 포함하는 것이 바람직하다. 이 경우 양이온 경화 과정에서 제 1 보호층의 친수성 관능기와 에폭시기가 반응하여 고리 열림 반응에 의하여 공유 결합이 형성됨으로써, 제 1 보호층과 제 2 보호층 간의 우수한 밀착성을 확보할 수 있고, 나아가 우수한 내수성을 확보할 수 있기 때문이다. 이때, 상기 분자 내에 적어도 하나의 에폭시기를 포함하는 양이온 중합성 화합물은 단독으로 또는 2 이상이 혼합하여 상기 양이온 경화형 조성물에 포함될 수 있다.
이때, (a) 상기 양이온 중합성 화합물은, 분자 내에 적어도 하나의 에폭시기를 가짐으로써 제 1 보호층과 공유 결합을 통한 밀착성 구현이 가능하고, 나아가 상기 에폭시기를 통하여 양이온 중합이 가능한 것이면 특별한 제한 없이 사용이 가능하다. 다만, 상기 분자 내에 적어도 하나의 에폭시기를 포함하는 양이온 중합성 화합물은, 분자 내에 적어도 2 이상의 에폭시기를 포함하는 것이 제 1 보호층과의 우수한 밀착성 경도 구현을 위하여 보다 바람직하다.
예를 들어, 본 발명에 있어서, 상기 (a) 양이온 중합성 화합물로는, 이에 한정되는 것은 아니나, 방향족 에폭시계 화합물, 수소화 에폭시계 화합물, 지환식 에폭시계 화합물, 지방족 에폭시계 화합물 등을 들 수 있다.
이때, 상기 방향족 에폭시계 화합물은, 분자 내에 적어도 하나 방향족 탄화수소 고리를 포함하는 에폭시계 화합물을 의미하며, 이에 한정되는 것은 아니나, 예를 들면 비스페놀 A의 디글리시딜에테르, 비스페놀 F의 디글리시딜에테르, 비스페놀 S의 디글리시딜에테르와 같은 비스페놀형 에폭시 수지; 페놀노볼락 에폭시 수지, 크레졸노볼락 에폭시 수지, 히드록시벤즈알데히드페놀노볼락 에폭시 수지와 같은 노볼락형의 에폭시 수지 테트라히드록시페닐 메탄의 글리시딜에테르, 테트라히드록시벤조페논의 글리시딜에테르, 에폭시화폴리비닐페놀과 같은 다관능형의 에폭시 수지 등을 들 수 있다.
또한, 상기 수소화 에폭시계 화합물은, 상기 방향족 에폭시계 화합물을 촉매의 존재하에 가압하에서 선택적으로 수소화 반응을 행함으로써 얻어지는 에폭시계 화합물을 의미하며, 이에 한정되는 것은 아니나, 그 중에서도 특히 수소화한 비스페놀 A의 디글리시딜에테르를 사용하는 것이 바람직하다.
또한, 상기 지환식 에폭시계 화합물은, 에폭시기가 지방족 탄화수소 고리를 구성하는 인접하는 2개의 탄소 원자 사이에 형성되어 있는 에폭시계 화합물을 의미하며, 이에 한정되는 것은 아니나, 예를 들면 2-(3,4-에폭시)시클로헥실-5,5-스피로-(3,4-에폭시)시클로헥산-m-다이옥산, 3,4-에폭시시클로헥실메틸-3,4-에폭시시클로헥산카르복실레이트, 3,4-에폭시-6-메틸시클로헥실메틸-3,4-에폭시-6-메틸시클로헥산카르복실레이트, 비닐시클로헥산디옥시드, 비스(3,4-에폭시시클로헥실메틸)아디페이트, 비스(3,4-에폭시-6-메틸시클로헥실메틸)아디페이트, 엑소-엑소비스(2,3-에폭시시클로펜틸)에테르, 엔도-엑소비스(2,3-에폭시시클로펜틸)에테르, 2,2-비스[4-(2,3-에폭시프로폭시)시클로헥실]프로판, 2,6-비스(2,3-에폭시프로폭시시클로헥실-p-다이옥산), 2,6-비스(2,3-에폭시프로폭시)노르보르넨, 리모넨디옥시드, 2,2-비스(3,4-에폭시시클로헥실)프로판, 디시클로펜타디엔디옥시드, 1,2-에폭시-6-(2,3-에폭시프로폭시)헥사히드로-4,7-메타노인단, p-(2,3-에폭시)시클로펜틸페닐-2,3-에폭시프로필에테르, 1-(2,3-에폭시프로폭시)페닐-5,6-에폭시헥사히드로-4,7-메타노인단, o-(2,3-에폭시)시클로펜틸페닐-2,3-에폭시프로필에테르), 1,2-비스[5-(1,2-에폭시)-4,7-헥사히드로메타노인다노키실]에탄시클로펜테닐페닐글리시딜에테르, 메틸렌비스(3,4-에폭시시클로헥산)에틸렌글리콜디(3,4-에폭시시클로헥실메틸) 에테르, 에틸렌비스(3,4-에폭시시클로헥산카르복실레이트), 3,4-에폭시시클로헥산 메탄올의 ε-카프로락톤(1~10몰) 부가물과 다원자가(3~20값) 알코올(GR, TMP, PE, DPE, 헥사펜타에리트리톨)의 에스테르화 화합물 등을 들 수 있다. 그 중에서도 반응성의 관점에서 특히 3,4-에폭시시클로헥실메틸-3,4-에폭시시클로헥산카르복실레이트를 사용하는 것이 바람직하다.
한편, 상기 (a) 양이온 중합성 화합물은, 이에 한정되는 것은 아니나, 분자 내에 적어도 하나의 에폭시화 지방족 고리기, 즉, 지환식 에폭시 고리를 포함하는 제 1 에폭시 화합물 및 분자 내에 적어도 하나의 글리시딜에테르기를 포함하는 제 2 에폭시 화합물의 조합을 사용하는 것이 특히 바람직하다.
상기와 같은 제 1 에폭시 화합물과 제 2 에폭시 화합물의 조합을 사용하는 경우 열 충격 물성이 향상된 보호층 형성이 가능하며, 이때 상기 제 1 에폭시 화합물과 제 2 에폭시 화합물은 1:1 내지 3:1의 중량비로 혼합하여 사용되는 것이 바람직하며, 보다 바람직하게는, 1:1 내지 2:1의 중량비로 혼합하여 사용될 수 있으며, 가장 바람직하게는 상기 제1에폭시 화합물과 제2에폭시 화합물이 1:1의 중량비로 혼합되어 사용된다. 제 1 에폭시 화합물과 제 2 에폭시 화합물의 중량비율이 상기 범위를 만족할 때, 유리전이온도, 접착력 및 점도 면에서 가장 바람직한 물성을 얻을 수 있다.
상기 제 1 에폭시 화합물은, 예를 들면, 3,4-에폭시시클로헥실메틸-3,4'-에폭시시클로헥산카복실레이트, 비스(3,4-에폭시 시클로 헥실메틸)아디페이트 디시클로펜타디엔 디옥시드, 리모넨디옥시드 및 4-비닐시클로헥센 디옥시드로 이루어진 그룹으로부터 선택된 적어도 하나일 수 있다. 상기 제 1 에폭시 화합물은 유리전이온도를 높여주고, 접착층의 강도(hardness)를 부여하기 위한 것으로, 가장 바람직하게는 3,4-에폭시시클로헥실메틸-3,4'-에폭시시클로헥산카복실레이트일 수 있다.
상기 제 2 에폭시 화합물은 글리시딜에테르기를 하나 이상 포함하는 것이면 특히 제한되지 않으며, 예를 들면, 1,4-시클로헥산디메탄올 디글리시딜 에테르, 노볼락 에폭시, 비스페놀 A 계 에폭시, 비스페놀 F 계 에폭시, 브롬화 비스페놀계 에폭시, 1,6-헥산디올디글리시딜에테르, 트리메틸올프로판트리글리시딜에테르, n-부틸 글리시딜 에테르, 알리파틱 글리시딜 에테르(C12-C14), 2-에틸헥실 글리시딜 에테르, 페닐 글리시딜 에테르, o-크레실(Cresyl) 글리시딜 에테르, 및 노닐 페닐 글리시딜 에테르로 이루어진 그룹으로부터 선택된 1종 이상일 수 있다. 상기 제 2 에폭시 화합물은 연성(softness)을 부여하여 접착력을 향상시키기 위한 것으로, 지방족 고리를 포함하는 것이 보다 바람직하며, 가장 바람직하게는 1,4-시클로헥산디메탄올 디글리시딜 에테르일 수 있다.
한편, 상기 (a) 양이온 중합 개시제의 함량은 전체 양이온 경화형 조성물 100 중량부에 대하여, 5 내지 90 중량부 정도이며, 바람직하게는 10 내지 90 중량부 정도이다.
다음으로, 상기 (b) 양이온 중합 개시제는 활성 에너지 선의 조사에 의해 양이온 종이나 루이스산을 만들어내는 화합물로서, 에폭시기와 같은 양이온 중합성기에 작용하여 양이온 중합 반응을 개시시키는 화합물을 의미한다. 이때, 상기 양이온 중합 개시제로는 당해 기술 분야에서 일반적으로 사용되는 양이온 중합 개시제들이 제한 없이 사용될 수 있다. 예를 들면, 상기 양이온 중합 개시제로는 설포늄 염(Sulfonium salt) 또는 요오드늄 염(Iodonium salt)이 포함된 것이 바람직하게 사용될 수 있다.
설포늄 염(Sulfonium salt) 또는 요오드늄 염(Iodonium salt)이 포함된 양이온 중합 개시제의 구체적인 예로는, 예를 들면 디페닐(4-페닐티오)페닐설포늄 헥사플루오로안티몬네이트(Diphenyl(4-phenylthio)phenylsulfonium hexafluoroantimonate), 디페닐(4-페닐티오)페닐설포늄 헥사플루오로포스페이트(Diphenyl(4-phenylthio)phenylsulfonium hexafluorophosphate), (페닐)[4-(2-메틸프로필) 페닐]-요오드늄 헥사플루오로포스페이트((phenyl)[4-(2-methylpropyl) phenyl]-Iodonium hexafluorophosphate), (티오디-4,1-페닐렌)비스(디페닐설포늄) 디헥사플루오로안티몬네이트((Thiodi-4,1-phenylene)bis(diphenylsulfonium) dihexafluoroantimonate) 및 (티오디-4,1-페닐렌)비스(디페닐설포늄) 디헥사플루오로포스페이트((Thiodi-4,1-phenylene)bis(diphenylsulfonium) dihexafluorophosphate)로 이루어진 그룹으로부터 선택된 1종 이상을 들 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 (b) 양이온 중합 개시제의 함량은 전체 양이온 경화형 조성물 100 중량부에 대하여, 0.5 내지 20 중량부 정도이며, 바람직하게는 0.5 내지 15 중량부 정도, 더 바람직하게는 0.5 내지 10 중량부 정도이다.
한편, 본 발명의 상기 양이온 경화형 조성물은 (c) 분자 내에 적어도 하나의 옥세탄기를 포함하는 양이온 중합성 화합물을 더 포함할 수 있다. 이 경우 양이온 경화형 조성물의 점도를 낮출 수 있으며, 경화 속도를 보다 향상시킬 수 있다. 이때, 상기 (c) 양이온 중합성 화합물은, 분자 내에 적어도 하나의 옥세탄기를 가짐으로써 양이온 중합이 가능한 것이면 특별한 제한 없이 사용이 가능하다.
보다 구체적으로, 상기 (c) 양이온 중합성 화합물은, 예를 들면 3-에틸-3-[(3-에틸옥세탄-3-일)메톡시메틸]옥세탄, 1,4-비스[(3-에틸옥세탄-3-일)메톡시메틸]벤젠, 1,4-비스[(3-에틸옥세탄-3-일)메톡시]벤젠, 1,3-비스[(3-에틸옥세탄-3-일)메톡시]벤젠, 1,2-비스[(3-에틸옥세탄-3-일)메톡시]벤젠, 4,4'-비스[(3-에틸옥세탄-3-일)메톡시]비페닐, 2,2'-비스[(3-에틸옥세탄-3-일)메톡시]비페닐, 3,3',5,5'-테트라메틸-4,4'-비스[(3-에틸옥세탄-3-일)메톡시]비페닐, 2,7-비스[(3-에틸옥세탄-3-일)메톡시]나프탈렌, 비스{4-[(3-에틸옥세탄-3-일)메톡시]페닐}메탄, 비스{2-[(3-에틸옥세탄-3-일)메톡시]페닐}메탄, 2,2-비스{4-[(3-에틸옥세탄-3-일)메톡시]페닐}프로판, 노볼락형페놀-포름알데히드 수지의 3-클로로메틸-3-에틸옥세탄에 의한 에테르화 변성물, 3(4),8(9)-비스[(3-에틸옥세탄-3-일)메톡시메틸]-트리시클로[5.2.1.0 2,6]데칸, 2,3-비스[(3-에틸옥세탄-3-일)메톡시메틸]노르보르난, 1,1,1-트리스[(3-에틸옥세탄-3-일)메톡시메틸]프로판, 1-부톡시-2,2-비스[(3-에틸옥세탄-3-일)메톡시메틸]부탄, 1,2-비스{[2-(3-에틸옥세탄-3-일)메톡시]에틸티오}에탄, 비스{[4-(3-에틸옥세탄-3-일)메틸티오]페닐}술피드, 1,6-비스[(3-에틸옥세탄-3-일)메톡시]-2,2,3,3,4,4,5,5-옥타플루오로헥산 등을 들 수 있다.
한편, 상기 (c) 양이온 중합성 화합물의 함량은 전체 양이온 경화형 조성물 100 중량부에 대하여, 5 내지 90 중량부 정도이며, 바람직하게는 10 내지 90 중량부 정도이다.
한편, 본 발명의 상기 양이온 경화형 조성물은, 상기 성분들과 함께, 필요에 따라서 (d) 비닐계 화합물을 더 포함할 수 있으며, 이 경우 저점도 유지에 유리하다는 장점이 있고, 경화 후 유리전이온도가 낮아지는 현상을 방지할 수 있다는 장점이 있다. 이때, 상기 (d) 비닐계 화합물로는 히드록시 C1-6 알킬비닐에테르 및/또는 비닐아세테이트가 사용될 수 있으며, 상기 히드록시 C1-6 알킬비닐에테르는, 히드록시에틸비닐에테르, 히드록시부틸비닐에테르, 1,4-사이클로헥산디메탄올 비닐에테르, 4-(히드록시메틸)사이클로헥실메틸 비닐에테르, 에틸렌글리콜비닐에테르, 디에틸렌글리콜 모노비닐에테르로 이루어진 그룹으로부터 선택되는 적어도 1종일 수 있다. 한편, 상기 (d) 비닐계 화합물은 전체 양이온 경화형 조성물 100 중량부 대하여, 0.1 중량부 내지 10 중량부, 또는 0.1 중량부 내지 5중량부의 비율로 포함할 수 있다.
또한, 본 발명의 상기 양이온성 경화형 조성물은, 상기 성분들과 함께, 필요에 따라, (e) 실란 커플링제를 더 포함할 수 있으며, 이 경우 보호층의 표면 에너지를 낮춰주어 웨팅성(wetting)이 향상되는 효과를 얻을 수 있다. 이때 상기 (e) 실란 커플링제는 에폭시기, 비닐기, 라디칼기와 같은 양이온 중합성 관능기를 포함하는 것이 보다 바람직하다. 본 발명자들은 상기 양이온 중합성 관능기를 포함하는 실란 커플링제를 사용할 경우, 계면 활성제나 양이온 중합성 관능기가 포함되지 않은 실란 커플링제를 사용하는 경우와 달리 접착제의 유리전이온도를 저하시키지 않으면서 웨팅성을 개선할 수 있음을 알아내었다. 이는 실란 커플링제의 양이온 중합성 관능기가 접착제 조성물의 실란기와 반응하면서 가교 형태를 이루면서 경화 후 접착체층의 유리전이온도가 낮아지는 현상을 감소시키기 때문인 것으로 사료된다. 한편, 상기 양이온성 경화형 조성물은, 실란 화합물을 전체 조성물 100 중량부 대하여, 0.1 중량부 내지 10 중량부, 또는 0.1 중량부 내지 5중량부의 비율로 포함할 수 있다. 상기 범위에서 보호층이 적절한 표면 에너지 및 밀착성을 나타낼 수 있다.
또한, 본 발명의 상기 양이온성 경화형 조성물은, 상기 성분들과 함께, 필요에 따라, (f) 라디칼 중합성 모노머를 추가로 포함할 수 있다. 상기 라디칼 중합성 모노머는 라디칼 반응성 작용기를 갖는 화합물들이면 제한 없이 사용될 수 있으며, 예를 들면, 분자 내에 1개 이상의 (메타)아크릴로일기를 갖는 (메타)아크릴레이트류, (메타)아크릴아미드류, 말레이미드류, (메타)아크릴산, 말레인산, 이타콘산, (메타)아크릴알데히드, (메타)아크릴로일모르폴린, N-비닐-2-피롤리돈, 트리알릴이소시아누레이트 등을 사용할 수 있다. 한편, 상기 (f) 라디칼 중합성 모노머의 함량은 전체 조성물 100 중량부에 대하여, 0 내지 40 중량부 정도이며, 바람직하게는 5 내지 30중량부 정도, 더 바람직하게는 5 내지 25중량부 정도이다.
한편, 상기와 같이 양이온 경화형 조성물이 (f) 라디칼 중합성 모노머를 포함하는 경우에는 그 라디칼 중합성을 촉진하여 경화속도를 향상시키기 위해 라디칼 중합 개시제를 함께 배합하는 것이 바람직하며, 라디칼 중합 개시제는 상기한 바와 동일하다. 상기 라디칼 중합 개시제의 함량은 전체 조성물 100 중량부에 대하여, 0.5 내지 20중량부 정도이며, 바람직하게는 0.5 내지 15중량부 정도, 더 바람직하게는 0.5 내지 10중량부 정도이다.
한편, 본 발명의 상기 양이온 경화형 조성물 역시 필요에 따라 추가적으로 광 증감제, 대전 방지제, 산화 방지제, 광 안정제, 자외선 흡수제, 레벨링제 등을 추가로 첨가할 수 있다. 이때, 본 발명에서 사용 가능한 광 증감제, 대전 방지제, 산화 방지제, 광 안정제, 자외선 흡수제, 레벨링제 등은 특별히 한정되지 않으며, 당해 기술분야에 있어서 잘 알려진 공지의 물질을 제한 없이 사용할 수 있다.
또한, 본 발명의 상기 양이온 경화형 조성물은 필요에 따라 추가적으로 미립자를 첨가할 수도 있다. 이 경우 경화 후 제 2 보호층에 방현성을 부여할 수 있다. 이때, 사용 가능한 미립자는 특별히 한정되지 않으며, 예를 들면 실리카, 티타니아, 알루미나 등의 무기 미립자 또는 실리콘계 수지, 불소계 수지, (메트)아크릴계 수지 등의 유기 미립자를 사용할 수 있다.
한편, 상기 양이온 경화형 조성물은 경화 후 유리전이온도가 80℃ 이상인 것이 바람직하며, 예를 들면, 80℃ 내지 110℃ 정도일 수 있다. 이 경우 우수한 내열성을 가질 수 있는바, 고온에서 내열 내구성 및 열 충격성을 평가할 때, 편광자 깨짐을 방지할 수 있다.
또한, 상기 양이온 경화형 조성물은 점도가 15 내지 200cP 정도인 것이 바람직하며, 이 경우 보호층의 두께를 얇게 형성할 수 있고, 저점도를 갖기 때문에 작업성이 우수한 장점이 있다.
또한, 상기 양이온 경화형 조성물은 이를 이용하여 제조된 편광판이 60℃ 온도의 물에 24시간 침지시켰을 때, 편광자 탈색이 MD방향으로 10mm 미만으로 내수성이 우수한 것이 바람직하다.
한편, 본 발명의 상기 제 2 보호층의 두께는 0.1 내지 10㎛인 것이 바람직하고, 1 내지 10㎛ 또는 1 내지 5㎛인 것이 보다 바람직하다. 제2보호층의 두께가 상기 수치범위를 만족하는 경우 경화 균일도 및 두께 균일도가 향상되는 장점이 있다.
1-4. 기타 구성
한편, 본 발명의 상기 편광판은 필요에 따라서 편광자의 일면에 보호 필름을 더 구비할 수 있다. 보다 구체적으로, 본 발명의 상기 편광판은 하기 도 1에 도시한 바와 같이 편광자(10)의 양면에 제 1 보호층(20) 및 제 2 보호층(30)이 형성되어 있을 수도 있고, 또는 하기 도 2에 도시한 바와 같이 편광자(10)의 일면에만 제 1 보호층(20) 및 제 2 보호층(30)이 형성되어 있을 수도 있으며, 하기 도 3에 도시한 바와 같이 상기 제 1 보호층(20) 및 제 2 보호층(30)이 편광자(10)의 일면에만 형성된 경우에는 보호층(20, 30)이 형성된 면의 반대면에 편광자를 지지 및 보호하기 위하여 별도의 보호 필름(40)을 부착할 수 있다.
이때, 상기 보호 필름은 편광자를 지지 및 보호하기 위한 것으로, 당해 기술 분야에 일반적으로 알려져 있는 다양한 재질의 보호 필름들, 예를 들면, 셀룰로오스계 필름, 폴리에틸렌테레프탈레이트(PET, polyethylene terephthalate) 필름, 싸이클로올레핀 폴리머(COP, cycloolefin polymer) 필름, 아크릴계 필름 등이 제한없이 사용될 수 있다. 이 중에서도 광학 특성, 내구성, 경제성 등을 고려할 때, 아크릴계 필름을 사용하는 것이 특히 바람직하다. 상기 보호 필름의 부착 방법은 특별히 한정되지 않으며, 당해 기술분야에서 일반적으로 이용되는 방법, 예컨대 공지의 접착제층을 매개로 부착이 가능하다.
한편, 본 발명의 상기 편광판은 필요에 따라 액정 셀에서 발생하는 광학 위상차를 보상시켜 주기 위한 위상차 필름이 포함될 수도 있다. 이 경우 상기 위상차 필름은 제 2 보호층 상에 부착되어 포함될 수 있다. 이때, 본 발명에 사용 가능한 위상차 필름은 특별히 제한되지 않으며, 액정표시장치의 다양한 액정 모드에 따라 당해 기술분야에서 일반적으로 사용되고 있는 위상차 필름이 사용될 수 있다. 상기 위상차 필름의 부착 방법은 특별히 한정되지 않으며, 당해 기술분야에서 일반적으로 이용되는 방법으로 부착이 가능하다.
한편, 본 발명의 편광판은, 표시장치 패널과 같은 광학 필름과의 부착을 위해, 필요에 따라, 상기 보호층의 상부에 점착층을 포함할 수 있다. 이때, 상기 점착층은 당해 기술 분야에 잘 알려져 있는 다양한 점착제들을 사용하여 형성될 수 있으며, 그 종류가 특별히 제한되는 것은 아니다. 예를 들면, 상기 점착층은 고무계 점착제, 아크릴계 점착제, 실리콘계 점착제, 우레탄계 점착제, 폴리비닐알코올계 점착제, 폴리비닐피롤리돈계 점착제, 폴리아크릴아미드계 점착제, 셀룰로오스계 점착제, 비닐알킬에테르계 점착제 등을 이용하여 형성될 수 있다. 이 중에서도 투명성 및 내열성 등을 고려할 때, 아크릴계 점착제를 사용하는 것이 특히 바람직하다. 한편, 상기 점착층은 보호층 상부에 점착제를 도포하는 방법으로 형성될 수도 있고, 이형 시트 상에 점착제를 도포한 후 건조시켜 제조되는 점착 시트를 보호층 상부에 부착하는 방법으로 형성될 수도 있다.
2. 편광판의 제조 방법
다음으로, 상기와 같은 본 발명의 편광판의 제조 방법에 대하여 보다 구체적으로 설명한다.
본 발명의 편광판의 제조 방법은 편광자의 적어도 일면에 라디칼 경화형 조성물을 도포하는 단계; 상기 도포된 라디칼 경화형 조성물에 활성 에너지선을 조사하여 라디칼 중합으로 경화시켜 제 1 보호층을 형성하는 단계; 상기 제 1 보호층의 편광자에 인접한 면의 반대 면에 양이온 경화형 조성물을 도포하는 단계; 및 상기 제 1 보호층과 그 위에 도포된 양이온 경화형 조성물에 활성 에너지선을 조사하여 양자를 동시에 양이온 중합으로 경화시켜 제 2 보호층을 형성하는 단계를 포함하는 것을 특징으로 한다.
2-1. 라디칼 경화형 조성물 도포 단계
먼저, 상기 편광자의 적어도 일면에 라디칼 경화형 조성물을 도포하는 방법은 특별히 한정되지 않으며, 예를 들면, 편광자의 적어도 일면에 당해 기술 분야에 잘 알려진 코팅 법, 예컨대 스핀 코팅, 바 코팅, 롤 코팅, 그라비아 코팅, 블레이드 코팅 등의 방법으로 라디칼 경화형 조성물을 도포한 후 필요에 따라 건조를 하는 방법으로 수행될 수 있다. 또는, 상기 라디칼 경화형 조성물을 폴리에틸렌테레프탈레이트 필름, 폴리카보네이트 필름, 트리아세틸셀룰로오스 필름, 노르보르넨계 필름, 폴리에스테르계 필름, 폴리스티렌 필름 등과 같은 투명 기재 필름 위에 상기한 코팅 방법으로 도포한 후 필요에 따라 건조를 하고, 도포된 라디칼 경화형 조성물이 접합면이 되도록 이를 편광자의 적어도 일면에 접합하는 방법으로 수행될 수도 있다. 이 경우 활성 에너지선을 조사한 후에는 기재 필름을 제거한다.
2-2. 제 1 보호층 형성 단계
편광자의 적어도 일면에 라디칼 경화형 조성물이 도포가 되면, 활성 에너지선을 조사하여 라디칼 중합으로 경화시켜 제 1 보호층을 형성한다. 이때, 상기 활성 에너지선으로는 자외선, 전자빔, 마이크로파(microwaves), 적외선(IR), X선 및 감마선은 물론, 알파-입자선(alpha-particle beam), 프로톤빔(proton beam), 뉴트론빔(neutron beam)과 같은 입자빔이 포함될 수 있고, 통상적으로는 자외선 또는 전자선 등이 사용될 수 있다.
이때, 상기 접착제층 상에 조사되는 상기 활성 에너지선의 광량은 500mJ/cm2 내지 3000mJ/cm2일 수 있고, 조사 시간은 0.1s 내지 20s일 수 있다. 활성 에너지선의 광량 및 조사 시간이 상기 수치범위를 만족하는 경우, 접착제의 경화 속도가 빠르고, 필름의 외관 특성 및 광학 특성을 저하시키지 않아, 생산성이 우수하다.
2-3. 양이온 경화형 조성물 도포 단계
제 1 보호층이 형성이 되면, 제 1 코팅층의 편광자에 인접한 면의 반대 면에 양이온 경화형 조성물을 도포한다. 양이온 경화형 조성물의 도포 방법 역시 특별히 한정되지 않으며, 예를 들면, 제 1 코팅층 상에 당해 기술 분야에 잘 알려진 코팅 법, 예컨대 스핀 코팅, 바 코팅, 롤 코팅, 그라비아 코팅, 블레이드 코팅 등의 방법으로 양이온 경화형 조성물을 도포한 후 필요에 따라 건조를 하는 방법으로 수행될 수 있다. 또는, 상기 양이온 경화형 조성물을 폴리에틸렌테레프탈레이트 필름, 폴리카보네이트 필름, 트리아세틸셀룰로오스 필름, 노르보르넨계 필름, 폴리에스테르계 필름, 폴리스티렌 필름 등과 같은 투명 기재 필름 위에 상기한 코팅 방법으로 도포한 후 필요에 따라 건조를 하고, 도포된 양이온 경화형 조성물이 접합면이 되도록 이를 제 1 보호층에 접합하는 방법으로 수행될 수도 있다. 이 경우 활성 에너지선을 조사한 후에는 기재 필름을 제거한다.
2-4. 제 2 보호층 형성 단계
제 1 보호층의 편광자에 인접한 면의 반대 면에 양이온 경화형 조성물이 도포가 되면, 상기 제 1 보호층과 그 위에 도포된 양이온 경화형 조성물에 활성 에너지선을 조사하여 양자를 동시에 양이온 중합으로 경화시켜 제 2 보호층을 형성한다. 이때, 상기 활성 에너지선에 대해서는 상기 제1보호층 형성부분에서 전술한 것과 동일하다.
본 발명의 경우 상기한 바와 같이 상기 라디칼 경화형 조성물은 분자 내에 적어도 하나의 친수성 관능기를 포함하는 라디칼 중합성 화합물을 포함하는 것이 바람직하고, 상기 양이온 경화형 조성물은 분자 내에 적어도 하나의 에폭시기를 포함하는 양이온 중합성 화합물을 포함하는 것이 바람직하며, 이 경우 상기한 바와 같이 제 1 보호층과 그 위에 도포된 양이온 경화형 조성물에 활성 에너지선을 조사하여 양자를 동시에 양이온 중합으로 경화시키면, 상기 제 1 보호층의 친수성 관능기가 상기 에폭시기를 포함하는 양이온 중합성 화합물의 에폭시기와 반응하여 공유 결합을 형성하게 되며, 따라서 제 1 보호층과 제 2 보호층이 우수한 밀착성을 가지게 된다.
3. 화상표시장치
상기와 같은 본 발명의 편광판은 화상표시장치에 유용하게 적용될 수 있다. 상기 화상표시장치는 예를 들면, 액정 패널 및 이 액정 패널의 양면에 각각 구비된 편광판들을 포함하는 액정표시장치일 수 있으며, 이때, 상기 편광판 중 적어도 하나가 본 발명에 따른 편광판일 수 있다.
이때, 상기 액정표시장치에 포함되는 액정 패널의 종류는 특별히 한정되지 않는다. 예를 들면, 그 종류에 제한되지 않고, TN(twisted nematic)형, STN(super twisted nematic)형, F(ferroelectic)형 또는 PD(polymer dispersed)형과 같은 수동 행렬 방식의 패널; 2단자형(two terminal) 또는 3단자형(three terminal)과 같은 능동행렬 방식의 패널; 횡전계형(IPS; In Plane Switching) 패널 및 수직배향형(VA; Vertical Alignment) 패널 등의 공지의 패널이 모두 적용될 수 있다. 또한, 액정표시장치를 구성하는 기타 구성, 예를 들면, 상부 및 하부 기판(ex. 컬러 필터 기판 또는 어레이 기판) 등의 종류 역시 특별히 제한되지 않고, 이 분야에 공지되어 있는 구성이 제한 없이 채용될 수 있다. 한편, 상기 편광판의 부착 방법은 특별히 한정되지 않으며, 당해 기술분야에서 일반적으로 이용되는 방법으로 부착이 가능하다.
이하에서는 구체적인 실시예를 통해 본 발명을 보다 자세히 설명하기로 한다.
제조예 1 - 아크릴계 보호 필름의 제조
폴리(N-시클로헥실말레이미드-co-메틸메타크릴레이트), 스티렌-무수말레산 공중합체 수지 및 페녹시계 수지를 100:2.5:5의 중량비로 균일하게 혼합한 수지 조성물을 원료 호퍼(hopper)로부터 압출기까지를 질소 치환한 24φ의 압출기에 공급하여 250℃에서 용융하여 원료 펠렛(pellet)을 제조하였다.
페녹시계 수지는 InChemRez사의 PKFE(Mw=60,000, Mn=16,000, Tg=95℃)을 사용하였고, 스티렌-무수말레산 공중합체 수지는 스티렌 85 중량%, 무수말레익안하이드라이드 15 중량%인 Dylaeck 332를 사용하였으며, 폴리(N-시클로헥실말레이미드-co-메틸메타크릴레이트) 수지는 NMR 분석 결과 N-시클로헥실말레이미드의 함량이 6.5 중량%인 것을 사용하였다.
얻어진 원료 펠렛을 진공 건조하고 260℃에서 압출기로 용융, 코트 행거 타입의 티-다이(T-die)에 통과시키고, 크롬 도금 캐스팅 롤 및 건조 롤 등을 거쳐 두께 150 ㎛의 필름을 제조하였다. 이 필름을 파일로트 연신 장비를 사용하여 125℃에서 MD 방향으로 롤의 속도 차를 이용하여 170% 비율로 연신하여 아크릴 필름을 제조하였다.
상기와 같은 과정을 통해 제조된 아크릴 필름을 코로나 처리한 후, 상기 아크릴 필름의 일면에 CK-PUD-F(조광 우레탄 분산액)을 순수로 희석하여 제조된 고형분 함량 10중량%의 프라이머 조성물에 옥사졸린 가교제 (일본촉매사, WS700) 20중량부를 첨가한 프라이머 조성물을 #7 바(bar)로 코팅한 후 TD 방향으로 130℃에서 텐더를 이용하여 190% 연신하여 최종적으로 프라이머층 두께가 400nm인 아크릴계 보호 필름을 제조하였다.
제조예 2 - 보호막용 조성물의 제조
(1) 라디칼 경화형 조성물 A
2-히드록시에틸아크릴레이트(화학식 1) 67중량부, 카르복실레이티드 BPA 타입 디메타크릴레이트(화학식 15) 20중량부, 이타콘산(화학식 27) 10중량부와 이가큐어 819(라디칼 개시제) 3중량부를 혼합한 후, 60℃에서 4시간 동안 교반하여 보호막용 조성물 A를 제조하였다.
(2) 라디칼 경화형 조성물 B
4-히드록시 부틸아크릴레이트(화학식 5) 67중량부, 카르복실레이티드 BPA 타입 디메타크릴레이트(화학식 15) 20중량부, 이타콘산(화학식 27) 10중량부, 이가큐어 819(라디칼 개시제) 3중량부를 혼합한 후, 60℃에서 4시간 동안 교반하여 보호막용 조성물 B를 제조하였다.
(3) 라디칼 경화형 조성물 C
히드록시이소프로필아크릴레이트(화학식 2) 67중량부, 카르복실레이티드 BPA 타입 디메타크릴레이트(화학식 15) 20중량부, 이타콘산(화학식 27) 10중량부, 이가큐어 819(라디칼 개시제) 3중량부를 혼합한 후, 60℃에서 4시간 동안 교반하여 보호막용 조성물 C를 제조하였다.
(4) 라디칼 경화형 조성물 D
4-히드록시메틸사이클로헥실 메타크릴레이트(화학식 14) 67중량부, 카르복실레이티드 BPA 타입 디메타크릴레이트(화학식 15) 20중량부, 이타콘산(화학식 27) 10중량부, 이가큐어 819(라디칼 개시제) 3중량부를 혼합한 후, 60℃에서 4시간 동안 교반하여 보호막용 조성물 D를 제조하였다.
(5) 양이온 경화형 조성물 E
3,4-에폭시시클로헥산메틸-3,4-에폭시시클로헥실카르복실레이트 (Daicel社 Celoxide 2021P, cas no. 2386-87-0) 25중량부, 시클로헥산디메탄올디 글리시딜에테르 (cas no. 14228-73-0) 25중량부, 3-에틸-3-{[(3-에틸옥세탄-3-일)메톡시]메틸}옥세탄 (Toagosei社 oxt-221, cas no. 18934-00-4) 45중량부, 트리아릴설포늄 헥사플루오로포스페이트 (Dow chemical社 UVI-6992) 5중량부를 혼합한 후, 60℃로 가열하여 보호막용 조성물 E를 제조하였다.
실험예 1 - 평균 관능기 당량 측정
상기 보호막용 조성물 A ~ E의 평균 관능기 당량을 상기한 바와 같은 계산 방법으로 측정하여, 하기 [표 1]에 나타내었다.
실험예 2 - 경화 수축률 측정
상기 보호막용 조성물 A ~ E의 경화 수축률을 측정하여 하기 [표 1]에 나타내었다. 구체적으로, 25℃에서 상기 보호막용 조성물 A ~ E의 1g의 부피(Vi)를 전자동 기체 비중계(Automatic gas pycnometer)를 이용하여 측정한 다음, 상기 조성물들을 각각 이형 PET 필름 상에 도포한 후 경화시키고, PET 필름으로부터 박리하여, 박리된 보호막의 부피(Vf)를 전자동 기체 비중기를 이용하여 측정한 다음 상술한 식 (3)을 이용하여 경화 수축률을 계산하였다.
실험예 3 - 조성물의 점도 측정
상기 보호막용 조성물 A ~ E의 점도를 25℃에서 Viscometer TV-22(TOKI SANGYO)를 사용하여 측정하여, 하기 [표 1]에 나타내었다.
실험예 4 - 유리전이온도 측정
상기 보호막용 조성물 A ~ E의 경화 후 유리전이온도를 측정하여 하기 [표 1]에 나타내었다. 구체적으로, 상기 보호막용 조성물 A ~ E를 경화시킨 후 박편을 취해 Mettler Toledo 社 의 DCS(Differential Scanning Calorimetry)로 측정하였다. 측정 온도 범위는 -30℃~200℃를 분당 10℃씩 두 차례 스캔(scan) 하였으며, 측정된 유리전이 온도는 두 번째 스캔 시의 유리전이온도 값이다.
표 1
조성물 평균 관능기당량 [g/eq] 경화 수축률 [%] 유리전이온도 [℃] 점도 [cP]
A 169 13.5 91 38
B 187 14.2 82 42
C 178 12.9 96 39
D 225 11.8 93 44
E 92 8.7 104 24
실시예 1
제조예 1에 의해 제조된 아크릴 필름계 보호 필름의 프라이머 층에 스포이드로 라디칼 경화형 조성물 A를 도포하고, 편광자(PVA 소자)의 일면에 적층 한 다음, 라미네이터를 통과시켰다. 그런 다음, 상기 아크릴 필름이 적층된 면에 UV 조사장치(Metal halide lamp)를 이용하여, 500~1000mJ/cm2의 자외선을 조사하여, 편광자의 일면에 보호 필름을 구비하는 편광판을 제조 하였다.
다음으로, 상기 제조한 편광판의 편광자의 보호 필름이 적층된 면의 타면에 라디칼 경화형 조성물 A를 도포하고, 이형력이 있는 PET 필름을 적층한 다음, 라미네이터를 통과시켰다. 그런 다음, 이형 PET가 적층된 면에 자외선 조사장치(Metal halide lamp)를 이용하여, 500~1000mJ/cm2의 자외선을 조사하고, PET 필름을 제거하여, 편광자의 일면에는 보호 필름을 구비하고, 타면에는 라디칼 경화층을 구비하는 편광판을 제조하였다.
다음으로, 상기 제조한 편광판의 라디칼 경화층의 편광자와 대면하는 면의 타면에 양이온 경화형 조성물 E를 도포하고, 이형력 있는 PET 필름을 적층한 다음, 라미네이터를 통과시켰다. 그런 다음, 이형 PET가 적층된 면에 자외선 조사장치(Metal halide lamp)를 이용하여, 500~1000mJ/cm2의 자외선을 조사하고, PET 필름을 제거하여, 상기 라디칼 경화층(제 1 보호층) 상에 양이온 경화층(제 2 보호층)이 형성된 편광판을 제조하였다.
실시예 2
상기 실시예 1에 있어서, 라디칼 경화형 조성물 A 대신 라디칼 경화형 조성물 B를 사용한 것을 제외하고는 동일한 방법으로 편광판을 제조하였다.
실시예 3
상기 실시예 1에 있어서, 라디칼 경화형 조성물 A 대신 라디칼 경화형 조성물 C를 사용한 것을 제외하고는 동일한 방법으로 편광판을 제조하였다.
실시예 4
상기 실시예 1에 있어서, 라디칼 경화형 조성물 A 대신 라디칼 경화형 조성물 D를 사용한 것을 제외하고는 동일한 방법으로 편광판을 제조하였다.
비교예 1
제조예 1에 의해 제조된 아크릴 필름계 보호 필름의 프라이머 층에 스포이드로 라디칼 경화형 조성물 A를 도포하고, 편광자(PVA 소자)의 일면에 적층 한 다음, 라미네이터를 통과시켰다. 그런 다음, 상기 아크릴 필름이 적층된 면에 UV 조사장치(Metal halide lamp)를 이용하여, 500~1000mJ/cm2의 자외선을 조사하여, 편광자의 일면에 보호 필름을 구비하는 편광판을 제조 하였다.
다음으로, 상기 제조한 편광판의 편광자의 보호 필름이 적층된 면의 타면에 라디칼 경화형 조성물 A를 도포하고, 이형력이 있는 PET 필름을 적층한 다음, 라미네이터를 통과시켰다. 그런 다음, 이형 PET가 적층된 면에 자외선 조사장치(Metal halide lamp)를 이용하여, 500~1000mJ/cm2의 자외선을 조사하고, PET 필름을 제거하여, 편광자의 일면에는 보호 필름을 구비하고, 타면에는 라디칼 경화층을 구비하는 편광판을 제조하였다.
비교예 2
제조예 1에 의해 제조된 아크릴 필름계 보호 필름의 프라이머 층에 스포이드로 라디칼 경화형 조성물 A를 도포하고, 편광자(PVA 소자)의 일면에 적층 한 다음, 라미네이터를 통과시켰다. 그런 다음, 상기 아크릴 필름이 적층된 면에 UV 조사장치(Metal halide lamp)를 이용하여, 500~1000mJ/cm2의 자외선을 조사하여, 편광자의 일면에 보호 필름을 구비하는 편광판을 제조 하였다.
다음으로, 상기 제조한 편광판의 편광자의 보호 필름이 적층된 면의 타면에 양이온 경화형 조성물 E를 도포하고, 이형력이 있는 PET 필름을 적층한 다음, 라미네이터를 통과시켰다. 그런 다음, 이형 PET가 적층된 면에 자외선 조사장치(Metal halide lamp)를 이용하여, 500~1000mJ/cm2의 자외선을 조사하고, PET 필름을 제거하여, 편광자의 일면에는 보호 필름을 구비하고, 타면에는 양이온 경화층을 구비하는 편광판을 제조하였다.
비교예 3
제조예 1에 의해 제조된 아크릴 필름계 보호 필름의 프라이머 층에 스포이드로 라디칼 경화형 조성물 A를 도포하고, 편광자(PVA 소자)의 일면에 적층 한 다음, 라미네이터를 통과시켰다. 그런 다음, 상기 아크릴 필름이 적층된 면에 UV 조사장치(Metal halide lamp)를 이용하여, 1000mJ/cm2의 자외선을 조사하여, 편광자의 일면에 보호 필름을 구비하는 편광판을 제조 하였다.
다음으로, 상기 제조한 편광판의 편광자의 보호 필름이 적층된 면의 타면에 양이온 경화형 조성물 E를 도포하고, 이형력이 있는 PET 필름을 적층한 다음, 라미네이터를 통과시켰다. 그런 다음, 이형 PET가 적층된 면에 자외선 조사장치(Metal halide lamp)를 이용하여, 500~1000mJ/cm2의 자외선을 조사하고, PET 필름을 제거하여, 편광자의 일면에는 보호 필름을 구비하고, 타면에는 양이온 경화층을 구비하는 편광판을 제조하였다.
다음으로, 상기 제조한 편광판의 제 1 보호층의 편광자와 대면하는 면의 타면에 라디칼 경화형 조성물 A를 도포하고, 이형력 있는 PET 필름을 적층한 다음, 라미네이터를 통과시켰다. 그런 다음, 이형 PET가 적층된 면에 자외선 조사장치(Metal halide lamp)를 이용하여, 500~1000mJ/cm2의 자외선을 조사하고, PET 필름을 제거하여, 상기 양이온 경화층(제 1 보호층) 상에 라디칼 경화층(제 2 보호층)이 형성된 편광판을 제조하였다.
실험예 5 - 열 충격물성 평가
상기 실시예 및 비교예에서 제조한 편광판의 열 충격물성을 측정하여 하기 [표 2]에 나타내었다. 구체적으로, 상기 실시예 및 비교예에서 제조한 편광판을 유리 기판에 라미네이션(glass lamination)하고, 이를 -40℃에서 30분 동안 방치한 후, 이를 다시 80℃에서 30분 동안 방치하는 것을 100회 반복하여 수행하였다. 그런 다음, 편광판 외관에 변형 여부를 육안으로 평가하였다. 편광판 외관에 단부에만 2mm이하의 크랙 발생이 있는 경우를 우수로, 단부 이외의 5mm이상 짧은 선상의 크랙 만 확인되는 경우를 양호로, 편광판 전면에 다수의 크랙이 발생한 경우를 나쁨으로 표시하였다.
실험예 6 - 내수성 평가
상기 실시예 및 비교예에서 제조된 편광판의 내수성을 측정하여 하기 [표 2]에 나타내었다. 구체적으로, 상기 실시예 및 비교예의 편광판을 유리 기판에 라미네이션(glass lamination)한 후에 60℃ 항온조에 침지시키고, 8 시간 경과 후 편광판 단부의 탈색여부로 내수성을 판단하였으며, 변형이 없는 경우를 우수로, 탈색이 일어난 경우를 나쁨으로 표시하였다.
실험예 7 - 컬 특성 평가
상기 실시예 및 비교예에서 제조된 편광판의 컬 특성을 측정하여 하기 [표 2]에 나타내었다. 구체적으로, 상기 실시예 및 비교예의 편광판을 30cm*30cm로 재단한 후 평평한 정반 위에 놓고 각각의 네 모서리가 바닥위로 얼마나 높이 말려올라갔는지를 측정하였다.
실험예 8 - 제 1 보호층의 밀착성 평가
상기 실시예 및 비교예에서 제조한 편광판의 제 1 보호층의 밀착성을 측정하여 하기 [표 2]에 나타내었다. 구체적으로, 편광자(PVA 소자) 위에 상기 실시예 및 비교예에서 사용한 라디칼 경화형 조성물을 4~5㎛으로 도포하고 그 위에 편광자(PVA 소자)를 적층하여 라미네이터를 통과시킨 다음, 자외선 조사장치(Metal halide lamp)를 이용하여 500~1000mJ/cm2로 UV를 조사하여, 편광자/보호층/편광자로 이루어진 박리력 샘플을 제조하였다. 제조된 샘풀을 온도 20℃, 습도 70% 조건에서 4 일간 방치한 후, 폭 20mm, 길이 100mm로 재단하고, Texture Analyzer장비(Stable Micro Systems사 TA-XT Plus)로, 속도 300m/min, 90도로 박리력을 측정하였다. 이때, 박리력이 1.0N/2cm 이상이면 OK, 1.0N/2cm 미만이면 NG로 표시하였다.
실험예 9 - 제 2 보호층의 밀착성 평가
상기 실시예 및 비교예에서 제조한 편광판의 제 2 보호층의 밀착성을 측정하여 하기 [표 2]에 나타내었다. 구체적으로, 상기 실시예 및 비교예에서 제조한 편광판을 점착제를 이용하여 유리에 접합한 후, 제 2 보호층 표면에 커터 나이프로 각변 1mm의 격자를 100개 새기고, 여기에 셀로판 테이프를 접착한 후 박리하는 시험을 수행하여, 100개의 격자 중 박리되지 않고 남는 격자의 수를 계산하였다. 테스트후 100개의 격자중에 100개의 격자가 모두 괜찮으면 OK, 하나라도 떨어지면 NG로 표시하였다.
표 2
구분 보호층 두께 밀착성 열 충격 물성 내수성 컬 특성
실시예1 제 1 보호층(조성 A) 6㎛ OK OK OK <5mm
제 2 보호층(조성 E) 6㎛ OK
실시예2 제 1 보호층(조성 B) 6㎛ OK OK OK <5mm
제 2 보호층(조성 E) 6㎛ OK
실시예3 제 1 보호층(조성 C) 6㎛ OK OK OK <5mm
제 2 보호층(조성 E) 6㎛ OK
실시예4 제 1 보호층(조성 D) 6㎛ OK OK OK <5mm
제 2 보호층(조성 E) 6㎛ OK
비교예1 제 1 보호층(조성 A) 12㎛ OK OK NG 13mm
제 2 보호층(없음) - -
비교예2 제 1 보호층(조성 E) 12㎛ NG NG OK 7mm
제 2 보호층(없음) - -
비교예3 제 1 보호층(조성 E) 6㎛ OK OK NG(2층 박리) <5mm
제 2 보호층(조성 A) 6㎛ OK
상기 표 2에서 볼 수 있듯이, 실시예 1 내지 4의 편광판은 보호층의 두께가 얇아 박형으로 제조가 가능하며, 나아가 밀착성, 열 충격 물성, 내수성, 컬 특성이 모두 우수한 것을 알 수 있다.
반면, 라디칼 경화층만을 보호층으로 가지는 비교예 1의 편광판은 내수성 및 컬 특성에 문제가 있으며, 양이온 경화층만을 보호층으로 가지는 비교예 2의 편광판은 밀착성, 열 충격 물성 및 컬 특성에 문제가 있음을 알 수 있다.
또한, 실시예 1 내지 4와는 반대로 제 1 보호층으로 양이온 경화층을 가지고, 제 2 보호층으로 라디칼 경화층을 가지는 경우, 내수성 테스트 결과 제 2 층이 박리가 되는 문제가 있음을 알 수 있다.
한편, 상기 편광판 제조 시 접착제층과 제 1 보호층을 편의상 동일한 라디칼 경화형 조성물을 사용하여 제조하였으나, 반드시 이에 구속되는 것은 아니다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당해 기술분야에 통상의 지식을 가진 자에게는 자명할 것이다.
[부호의 설명]
10: 편광자
20: 제 1 보호층
30: 제 2 보호층
40: 보호 필름

Claims (17)

  1. 편광자;
    상기 편광자의 적어도 일면에 형성되는 제 1 보호층; 및
    상기 제 1 보호층의 편광자에 인접한 면의 반대 면에 형성되는 제 2 보호층;
    을 포함하며, 상기 제 1 보호층은 라디칼 경화형 조성물의 경화물이고, 상기 제 2 보호층은 양이온 경화형 조성물의 경화물인 편광판.
  2. 제 1 항에 있어서,
    상기 라디칼 경화형 조성물은 평균 관능기 당량이 120g/eq 내지 350g/eq인 편광판.
  3. 제 1 항에 있어서,
    상기 라디칼 경화형 조성물은 25℃에서의 경화 수축률이 5% 내지 15%인 편광판.
  4. 제 1 항에 있어서,
    상기 라디칼 경화형 조성물은 (A) 분자 내에 적어도 하나의 히드록시기를 포함하는 라디칼 중합성 화합물; (B) 분자 내에 적어도 하나의 카르복시기를 포함하는 라디칼 중합성 화합물; 및 (C) 라디칼 중합 개시제를 포함하는 것인 편광판.
  5. 제 4 항에 있어서,
    상기 라디칼 경화형 조성물은 상기 라디칼 경화형 조성물은 라디칼 경화형 조성물 100 중량부에 대하여, (A) 라디칼 중합성 화합물 40 내지 80 중량부; (B) 라디칼 중합성 화합물 15 내지 50 중량부; 및 (C) 라디칼 중합 개시제 0.5 내지 10 중량부를 포함하는 것인 편광판.
  6. 제 1 항에 있어서,
    상기 양이온 경화형 조성물은 (a) 분자 내에 적어도 하나의 에폭시기를 포함하는 양이온 중합성 화합물; 및 (b) 양이온 중합 개시제를 포함하는 것인 편광판.
  7. 제 6 항에 있어서,
    상기 (a) 양이온 중합성 화합물은 분자 내에 적어도 하나의 에폭시화 지방족 고리를 포함하는 제 1 에폭시 화합물; 및 분자 내에 적어도 하나의 글리시딜에테르기를 포함하는 제 2 에폭시 화합물의 조합인 편광판.
  8. 제 7 항에 있어서,
    상기 분자 내에 적어도 하나의 에폭시화 지방족 고리를 포함하는 제 1 에폭시 화합물과 분자 내에 적어도 하나의 글리시딜에테르기를 포함하는 제 2 에폭시 화합물의 중량비는 1:1 내지 3:1인 편광판.
  9. 제 6 항에 있어서,
    상기 양이온 경화형 조성물은 (c) 분자 내에 적어도 하나의 옥세탄기를 포함하는 양이온 중합성 화합물을 더 포함하는 것인 편광판.
  10. 제 1 항에 있어서
    상기 제 1 보호층의 두께는 1㎛ 내지 15㎛인 편광판.
  11. 제 1 항에 있어서
    상기 제 1 보호층의 25℃에서의 모듈러스는 500MPa 내지 5000MPa인 편광판.
  12. 제 1 항에 있어서
    상기 제 2 보호층의 두께는 0.1㎛ 내지 10㎛인 편광판.
  13. 제 1 항에 있어서,
    상기 편광자의 보호층이 형성된 면의 반대면에 접착제층을 매개로 보호 필름이 더 부착된 편광판.
  14. 제 1 항에 있어서,
    상기 제 2 보호층 상부에 점착층을 더 포함하는 편광판.
  15. 제 1 항에 있어서,
    상기 편광자는 요오드 또는 이색성 염료가 흡착 배향되어 있는 폴리비닐알코올계 필름인 편광판.
  16. 제 1 항 내지 제 15 항 중 어느 한 항의 편광판을 포함하는 화상표시장치.
  17. 편광자의 적어도 일면에 제 1 보호층 및 제 2 보호층을 이 순서대로 형성하여 편광판을 제조하는 편광판 제조 방법이며,
    편광자의 적어도 일면에 라디칼 경화형 조성물을 도포하는 단계;
    상기 도포된 라디칼 경화형 조성물에 활성 에너지선을 조사하여 라디칼 중합으로 경화시켜 제 1 보호층을 형성하는 단계;
    상기 제 1 보호층의 편광자에 인접한 면의 반대 면에 양이온 경화형 조성물을 도포하는 단계; 및
    상기 제 1 보호층과 그 위에 도포된 양이온 경화형 조성물에 활성 에너지선을 조사하여 양자를 동시에 양이온 중합으로 경화시켜 제 2 보호층을 형성하는 단계를 포함하는 편광판 제조 방법.
PCT/KR2014/008900 2013-09-30 2014-09-24 편광판, 그 제조 방법 및 이를 포함하는 화상표시장치 WO2015046879A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480054116.1A CN105745560B (zh) 2013-09-30 2014-09-24 偏光板、制造该偏光板的方法、和包含该偏光板的图像显示装置
US15/025,506 US10132976B2 (en) 2013-09-30 2014-09-24 Polarizing plate, method for manufacturing same, and image display device comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130117073 2013-09-30
KR10-2013-0117073 2013-09-30
KR1020140126745A KR101630938B1 (ko) 2013-09-30 2014-09-23 편광판, 그 제조 방법 및 이를 포함하는 화상표시장치
KR10-2014-0126745 2014-09-23

Publications (1)

Publication Number Publication Date
WO2015046879A1 true WO2015046879A1 (ko) 2015-04-02

Family

ID=52743916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008900 WO2015046879A1 (ko) 2013-09-30 2014-09-24 편광판, 그 제조 방법 및 이를 포함하는 화상표시장치

Country Status (1)

Country Link
WO (1) WO2015046879A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080113119A1 (en) * 2004-11-18 2008-05-15 Nitto Denko Corporation Polarizing Plate And Image Display Apparatus Using The Same
KR20100030586A (ko) * 2008-09-10 2010-03-18 스미또모 가가꾸 가부시키가이샤 편광판 및 그의 제조 방법
JP2010286737A (ja) * 2009-06-12 2010-12-24 Toyo Ink Mfg Co Ltd 偏光板及びその製造方法
KR20120015780A (ko) * 2010-08-13 2012-02-22 주식회사 엘지화학 편광판 및 이를 포함하는 액정 표시 장치
JP2013035968A (ja) * 2011-08-09 2013-02-21 Toyo Ink Sc Holdings Co Ltd 偏光板形成用光硬化性接着剤および偏光板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080113119A1 (en) * 2004-11-18 2008-05-15 Nitto Denko Corporation Polarizing Plate And Image Display Apparatus Using The Same
KR20100030586A (ko) * 2008-09-10 2010-03-18 스미또모 가가꾸 가부시키가이샤 편광판 및 그의 제조 방법
JP2010286737A (ja) * 2009-06-12 2010-12-24 Toyo Ink Mfg Co Ltd 偏光板及びその製造方法
KR20120015780A (ko) * 2010-08-13 2012-02-22 주식회사 엘지화학 편광판 및 이를 포함하는 액정 표시 장치
JP2013035968A (ja) * 2011-08-09 2013-02-21 Toyo Ink Sc Holdings Co Ltd 偏光板形成用光硬化性接着剤および偏光板

Similar Documents

Publication Publication Date Title
WO2012039581A2 (ko) 편광판용 접착제 및 이를 포함하는 편광판
WO2016052951A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2010074519A2 (ko) 점착제 조성물 및 이것을 이용한 광학부재
WO2021118250A1 (ko) 점착제층
WO2019117676A2 (ko) 편광판, 편광판-캐리어 필름 적층체, 편광판-캐리어 필름 적층체의 제조방법, 편광판의 제조방법 및 활성 에너지선 경화형 조성물
WO2017119761A1 (ko) 필름 터치 센서 및 이의 제조 방법
WO2015016456A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2013069870A1 (ko) 광경화형 점착제 조성물, 이를 포함하는 광학 점착제 필름, 이를 포함하는 디스플레이 장치 및 이를 이용한 모듈 조립 방법
WO2020153803A1 (ko) 편광판의 제조 방법 및 편광판용 접착제 조성물
WO2013055158A2 (ko) 편광판용 접착제 및 이를 포함하는 편광판
WO2019059692A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2015046713A1 (ko) 편광판
WO2017119764A1 (ko) 필름 터치 센서 및 이의 제조 방법
WO2013055015A1 (ko) 점착제 조성물, 점착필름, 그 제조방법 및 이를 이용한 디스플레이 부재
WO2013055154A2 (ko) 양면형 편광판 및 이를 포함하는 광학 장치
WO2014157976A1 (ko) 양면형 편광판의 제조방법 및 이로부터 제조된 양면형 편광판
WO2020153655A1 (ko) 필름 터치 센서 및 이의 제조방법
WO2021060876A1 (ko) 아크릴계 점착제 조성물, 편광판 및 디스플레이 장치
WO2015046879A1 (ko) 편광판, 그 제조 방법 및 이를 포함하는 화상표시장치
WO2013027981A2 (ko) 편광판
WO2019059691A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2014204142A1 (ko) 라디칼 경화형 접착제 조성물 및 이를 포함하는 편광판
WO2013027979A2 (ko) 편광판
WO2013027980A2 (ko) 편광판
WO2015046816A1 (ko) 편광판 및 이를 포함하는 화상표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15025506

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849047

Country of ref document: EP

Kind code of ref document: A1