WO2015046140A1 - Fe基ナノ結晶合金の製造方法及びFe基ナノ結晶合金磁心の製造方法 - Google Patents

Fe基ナノ結晶合金の製造方法及びFe基ナノ結晶合金磁心の製造方法 Download PDF

Info

Publication number
WO2015046140A1
WO2015046140A1 PCT/JP2014/075070 JP2014075070W WO2015046140A1 WO 2015046140 A1 WO2015046140 A1 WO 2015046140A1 JP 2014075070 W JP2014075070 W JP 2014075070W WO 2015046140 A1 WO2015046140 A1 WO 2015046140A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
magnetic field
heat treatment
magnetic
alloy ribbon
Prior art date
Application number
PCT/JP2014/075070
Other languages
English (en)
French (fr)
Inventor
啓喜 山本
森次 仲男
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2015539203A priority Critical patent/JP6024831B2/ja
Priority to EP14849656.5A priority patent/EP3050977B1/en
Priority to CN201480053096.6A priority patent/CN105593382B/zh
Publication of WO2015046140A1 publication Critical patent/WO2015046140A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Definitions

  • the present invention relates to an Fe-based nanocrystalline alloy and a method for manufacturing a magnetic core in which an Fe-based nanocrystalline alloy is wound or laminated.
  • Fe-based nanocrystalline alloys have excellent soft magnetic properties that can achieve both high saturation magnetic flux density and high relative magnetic permeability ⁇ , and are therefore used in magnetic cores such as common mode choke coils and high frequency transformers.
  • a typical Fe-based nanocrystalline alloy composition system is the Fe—Cu—Nb—Si—B system described in Patent Document 1.
  • An Fe-based nanocrystalline alloy is produced by microcrystalline (nanocrystallizing) an amorphous alloy obtained by rapid solidification of a liquid phase alloy heated to a temperature equal to or higher than the melting point. .
  • a method for rapid solidification from the liquid phase for example, a single roll method excellent in productivity is adopted.
  • the Fe-based nanocrystalline alloy has different magnetic properties such as relative permeability ⁇ and squareness ratio by applying a temperature profile during heat treatment and applying a magnetic field in a specific direction during heat treatment.
  • Patent Document 2 in order to obtain an Fe-based nanocrystalline alloy having an initial relative permeability of 70,000 or more and a squareness ratio of 30% or less, a magnetic field is applied in the ribbon width direction (magnetic core height direction). It has been proposed to heat-treat while. Although there are various patterns as specific examples of the heat treatment in Patent Document 2, it is roughly divided to hold while applying a magnetic field in the highest temperature range of the heat treatment, cooling process from the temperature rising process to the highest temperature range And holding while applying a magnetic field, and holding while applying a magnetic field from the highest temperature range to the cooling process.
  • Patent Document 2 The heat treatment method disclosed in Patent Document 2 is considered effective as a means for reducing the squareness ratio.
  • the frequency band used as a common mode choke or the like has become a high frequency band near 100 kHz, and there is an increasing demand for miniaturization of magnetic components in such a high frequency band. That is, a nanocrystalline alloy having a high relative permeability ⁇ in a high frequency range is desired.
  • the present inventor conducted various studies in order to obtain a high relative permeability ⁇ at a high frequency near 100 kHz. As a result, it has been recognized that it may be difficult to obtain a high relative permeability ⁇ in the high frequency region in the heat treatment patterns described in Patent Document 1 and Patent Document 2.
  • the present invention has been made in view of the above, and provides a method for producing an Fe-based nanocrystalline alloy and a method for producing an Fe-based nanocrystalline alloy magnetic core in which a high relative permeability ⁇ can be easily obtained in the vicinity of a frequency of 100 kHz. For the purpose.
  • a method for producing an Fe-based nanocrystalline alloy according to an embodiment of the present invention comprises heating a nanocrystallizable Fe-based amorphous alloy ribbon to a crystallization temperature region and cooling it. And includes at least part of a temperature range from a low crystallization start temperature of 50 ° C. to a high crystallization start temperature of 20 ° C. in the differential scanning calorimeter.
  • a magnetic field is selectively applied in the width direction of the alloy ribbon in a temperature range during a temperature rising period not exceeding 50 ° C. of the temperature, that is, in a temperature range during the temperature rising period.
  • a magnetic field having a magnetic field strength of 50 kA / m to 300 kA / m is applied in the width direction of the alloy ribbon.
  • the magnetic field is not applied when the maximum temperature in the heat treatment step is reached.
  • a method for producing an Fe-based nanocrystalline alloy ribbon includes a step of preparing a nano-crystallizable Fe-based amorphous alloy ribbon, and the Fe-based amorphous alloy ribbon in a crystallization temperature range.
  • a predetermined intensity for example, 50 kA / m
  • a predetermined intensity for example, 50 kA / m
  • a magnetic field of the predetermined strength or higher is not applied during a part of the temperature raising period.
  • a magnetic field of the predetermined strength or higher is not applied during a temperature rising period exceeding the crystallization start temperature of 50 ° C. or higher. Further, it is not necessary to apply a magnetic field having the predetermined strength or more even during a temperature rising period below the crystallization start temperature of 50 ° C.
  • the method for producing a magnetic core includes heating or laminating a nano-crystallizable Fe-based amorphous alloy ribbon to a crystallization temperature region.
  • a magnetic core comprising an Fe-based nanocrystalline alloy ribbon wound or laminated by a heat treatment step for cooling, wherein in the heat treatment step, a crystallization start temperature of a differential scanning calorimeter is measured.
  • the temperature range includes at least a part of the temperature range from a low temperature of 50 ° C. to a high temperature of 20 ° C. of the crystallization start temperature and does not exceed the high temperature of 50 ° C. of the crystallization start temperature.
  • a magnetic field is selectively applied in the height direction of the magnetic core in a temperature range during the warm period.
  • a magnetic field having a magnetic field strength of 50 kA / m or more and 300 kA / m or less is applied in the height direction of the magnetic core.
  • the Fe-based nanocrystalline alloy ribbon has a thickness of 15 ⁇ m or less and a width of 250 mm or less.
  • a high relative permeability ⁇ can be easily realized at a high frequency in the vicinity of a frequency of 100 kHz. Therefore, it is possible to provide an Fe-based nanocrystalline alloy or an Fe-based nanocrystalline alloy magnetic core that is suitably used for a common mode choke or the like in which high-frequency characteristics are important.
  • One of the features of the method for manufacturing an Fe-based nanocrystalline alloy and a magnetic core according to an embodiment of the present invention is that when an Fe-based nanocrystalline alloy is obtained by performing a heat treatment while applying a magnetic field to an amorphous alloy. Unlike the case, it is possible to selectively apply a magnetic field in a specific temperature range during the temperature rising period. The magnetic field is applied along the width direction of the ribbon and the height direction as the magnetic core.
  • At least a part of the temperature range from a low crystallization start temperature specified by using a differential scanning calorimeter to a high crystallization start temperature of 50 ° C. to a high crystallization start temperature of 20 ° C.
  • a magnetic field is selectively applied along the width direction of the alloy ribbon during the heat treatment in a temperature rising period that includes a period and does not exceed the 50 ° C. crystallization start temperature.
  • the magnetic field is applied in the period during the temperature rising period without applying the magnetic field in the vicinity of the highest temperature of the heat treatment or in the cooling process after the highest temperature is reached.
  • the present inventor confirmed that the relative permeability ⁇ at a frequency of 100 kHz does not substantially decrease even if the magnetic field is relatively weak (for example, less than 50 kA / m) even when applied near the maximum temperature of heat treatment. Has been. Therefore, in the embodiment of the present invention, a relatively weak magnetic field may be applied temporarily or continuously in any period of the heat treatment step.
  • application of a weak magnetic field of less than 50 kA / m may be regarded as not applying a magnetic field.
  • application of a magnetic field having a magnitude typically 50 kA / m or more and 300 kA / m or less
  • the amorphous alloy before heat treatment has a Curie temperature lower than the crystallization start temperature.
  • the Curie temperature greatly exceeds the crystallization start temperature. In other words, if a magnetic field is applied during the crystallization period, the magnetic domain is fixed with the crystallization, and it is estimated that the same effect as that obtained by cooling from the Curie temperature or higher is obtained.
  • the magnetic field is applied during a temperature rising period that does not exceed 50 ° C., which is the crystallization start temperature.
  • the temperature range in which the magnetic field is applied includes at least a part of the temperature range from a low crystallization start temperature of 20 ° C. to a high crystallization start temperature of 10 ° C. in the differential scanning calorimeter.
  • the upper limit of the temperature at which the magnetic field is applied is 50 ° C. higher than the crystallization start temperature. More preferably, the upper limit of the temperature at which the magnetic field is applied is a temperature 40 ° C. higher than the crystallization start temperature.
  • an effective magnetic field of a predetermined intensity or higher (for example, 50 kA / m or higher) is performed during a part of the temperature rising period. It does not take place over the entire period. That is, there is a period during which no effective magnetic field is applied during the temperature raising period.
  • an effective magnetic field is selectively applied in a temperature range near the crystallization start temperature. For example, a temperature range of 50 ° C. and a temperature range higher than 50 ° C.
  • the “temperature increase period” means a period before the maximum temperature is reached, and before reaching the maximum temperature, the temperature is increased, the temperature is decreased, and a certain temperature is reached. It may be in a holding state.
  • the crystallization start temperature is determined by a differential scanning calorimeter. It is difficult to accurately measure the true crystallization start temperature, and identification by a differential scanning calorimeter (DSC) is effective.
  • the temperature at which an exothermic reaction due to the start of nanocrystallization was detected during the temperature rise was defined as the crystallization start temperature.
  • the measurement conditions of the differential scanning calorimeter in the present invention are set at a heating rate of 10 ° C./min.
  • the heat treatment temperature is controlled by taking into consideration the capacity of the heat treatment furnace and the amount of heat generated by the crystallization of the amorphous alloy ribbon to be heat treated while the actual temperature distribution in the heat treatment furnace is positive. It is preferable to control so that it may become minus 5 degrees C or less. By performing such control, the magnetic properties of the alloy after heat treatment can be stabilized.
  • the strength of the applied magnetic field is preferably 50 kA / m or more and 300 kA / m or less. If the applied magnetic field is too weak, it is difficult to impart induced magnetic anisotropy under actual working conditions. If it is too high, induced magnetic anisotropy tends to be imparted too much.
  • a more preferable range is 60 kA / m or more and 240 kA / m.
  • the time for applying the magnetic field is not particularly limited as long as it is in the first half temperature range, but about 1 to 180 minutes is practical.
  • the nano-crystallizable Fe-based amorphous alloy for example, the general formula: (Fe 1-a M a ) 100-xyz- ⁇ - ⁇ - ⁇ Cu x Si y B z M ' ⁇ M ′′ ⁇ X ⁇ (atomic%) (where M is Co and / or Ni, and M ′ is at least selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V, Cr, Mn and W)
  • M ′′ is at least one element selected from the group consisting of Al, platinum group elements, Sc, rare earth elements, Zn, Sn, Re, X is C, Ge, P, Ga, Sb, In , Be, As, and at least one element selected from the group consisting of a, x, y, z, ⁇ , ⁇ , and ⁇ is 0 ⁇ a ⁇ 0.5, 0.1 ⁇ x ⁇ 3, respectively.
  • a long amorphous alloy ribbon can be obtained by melting an alloy having the above composition to a melting point or higher and rapidly solidifying it by a single roll method.
  • the thickness of the amorphous alloy ribbon is preferably 10 to 30 ⁇ m. If it is less than 10 ⁇ m, the mechanical strength of the ribbon is insufficient and the ribbon is easily broken during handling. When it exceeds 30 ⁇ m, it is difficult to stably obtain an amorphous state.
  • the amorphous alloy ribbon is nanocrystallized and used as a magnetic core for high-frequency applications, an eddy current is generated in the ribbon, but the loss due to the eddy current increases as the ribbon becomes thicker. Therefore, a more preferable thickness is 10 to 20 ⁇ m.
  • the relative permeability ⁇ at a high frequency in the vicinity of 100 kHz can obtain a larger value as the thickness is thinner, and therefore a thickness of 15 ⁇ m or less is more preferable.
  • the width of the amorphous alloy ribbon is preferably 10 mm or more in consideration of a practical magnetic core shape. Since it is possible to reduce the cost by slitting a wide alloy ribbon, it is preferably wide at the stage after quenching, but is preferably 250 mm or less for stable production of the alloy ribbon. In order to manufacture more stably, 70 mm width or less is more preferable.
  • the heat treatment for nanocrystallization is preferably performed in an inert gas such as nitrogen, and the maximum temperature reached is preferably set to 550 to 600 ° C.
  • the temperature is less than 550 ° C. or exceeds 600 ° C., the magnetostriction is increased, which is not preferable. Even if the holding time at the highest temperature is not specifically set and is 0 minute (no holding time), nanocrystallization can be performed.
  • the alloy may be held at the maximum temperature for more than 0 minutes and not more than 3 hours.
  • the temperature profile in the heat treatment is, for example, that the temperature rises relatively rapidly at a temperature rise rate of 2 to 4 ° C./min from room temperature to around the temperature at which nanocrystallization starts, and the temperature at which nanocrystallization starts is 50 ° C. From the low temperature to the highest temperature, the temperature may be increased at a moderate temperature increase rate of 0.2 to 1 ° C./min on average. By doing in this way, nanocrystallization can be performed efficiently and stably. In the cooling process after nanocrystallization, it is preferable to cool at a cooling rate of 2 to 5 ° C./min in a temperature range from the highest temperature to 200 ° C. Usually, after cooling to below 100 ° C., the alloy can be taken out into the atmosphere.
  • a heat treatment step of heating and cooling to a crystallization temperature region may be performed after a nano-crystallizable Fe-based amorphous alloy ribbon is wound or laminated.
  • the magnetic field is applied as described above. By making the direction of the applied magnetic field the height direction of the magnetic core, a desired induced magnetic anisotropy can be imparted.
  • DSC differential scanning calorimeter
  • the produced magnetic core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG.
  • the magnetic field was continuously applied over a temperature range of 440 to 480 ° C. (temperature range from a low crystallization start temperature of 60 ° C. to a crystallization start temperature of 20 ° C.) during the temperature rising period.
  • the magnetic field application direction was the width direction of the alloy ribbon, that is, the height direction of the magnetic core.
  • the magnetic field strength was 120 kA / m.
  • the maximum temperature reached in the heat treatment is 580 ° C.
  • the relative magnetic permeability ⁇ at 100 kHz of the 10 magnetic cores (alloys) after the heat treatment was in the range of 27,000 to 30,000.
  • Measurement was performed under conditions of an oscillation level of 0.5 V and an average of 16 using HP4194A manufactured by Agilent Technologies.
  • the insulation coated conductor was passed through the center of the toroidal magnetic core and connected to an input / output terminal for measurement.
  • Example 1 Ten toroidal magnetic cores were similarly produced using an Fe-based amorphous alloy ribbon having the same composition and size as in Example 1. As shown in FIG. 5, the manufactured magnetic core was heat-treated according to the same profile as the temperature profile of Example 1 shown in FIG. 1 without applying a magnetic field (without a magnetic field).
  • the relative magnetic permeability ⁇ at 100 kHz of the 10 magnetic cores (alloys) after the heat treatment was in the range of 20,000 to 24,000.
  • Example 2 Using the same Fe-based amorphous alloy ribbon as in Example 1, ten toroidal magnetic cores were similarly produced.
  • the produced magnetic core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG. Only the temperature range of the magnetic field application is different from that of the first embodiment (FIG. 1), and other conditions are the same as those of the first embodiment.
  • the application of the magnetic field is in a temperature range of 480 to 520 ° C. (temperature range from a low crystallization start temperature of 20 ° C. to a high crystallization start temperature of 20 ° C.).
  • the relative permeability ⁇ at 100 kHz of the 10 magnetic cores (alloys) after the heat treatment was in the range of 31,000-32,000.
  • Example 2 a higher relative magnetic permeability ⁇ can be obtained at 100 kHz than in Example 1. This indicates that if a magnetic field is applied in a temperature range including the crystallization start temperature by DSC, the relative permeability ⁇ at 100 kHz can be further improved even when the magnetic field is applied at the same magnetic field strength. ing.
  • Example 3 Using the same Fe-based amorphous alloy ribbon as in Example 1, ten toroidal magnetic cores were similarly produced.
  • the manufactured magnetic core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG. Only the magnetic field strength of the applied magnetic field is different from that of the second embodiment (FIG. 2), and other conditions are the same as those of the second embodiment.
  • a magnetic field strength of 60 kA / m was applied as the magnetic field was raised.
  • the relative permeability ⁇ at 100 kHz of the 10 magnetic cores (alloys) after the heat treatment was in the range of 28,000 to 30,000.
  • Example 4 Using the same Fe-based amorphous alloy as in Example 1, ten toroidal magnetic cores were similarly produced. The produced magnetic core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG. Only the magnetic field strength of the applied magnetic field is different from that of the second embodiment (FIG. 2), and other conditions are the same as those of the second embodiment. A magnetic field was applied at a magnetic field strength of 240 kA / m when the temperature was raised.
  • the relative permeability ⁇ at 100 kHz of the 10 magnetic cores (alloys) after the heat treatment was in the range of 27,000 to 29,000.
  • Comparative Example 2 Using the same Fe-based amorphous alloy ribbon as in Example 1, ten toroidal magnetic cores were similarly produced. The produced magnetic core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG. In Comparative Example 2, the magnetic field strength and the application time in the magnetic field application are the same as in Examples 1 and 2 (FIGS. 1 and 2), but the temperature range of the magnetic field application is from 560 ° C. to the highest equivalent temperature 580 ° C. This leads to cooling. In this temperature range, the magnetic field application start temperature is 60 ° C. higher than the crystallization start temperature.
  • the relative permeability ⁇ at 100 kHz of the 10 magnetic cores (alloys) after the heat treatment was in the range of 24,000 to 25,000.
  • Comparative Example 2 the relative permeability ⁇ at 100 kHz is only 4000 higher than in Comparative Example 1 where no magnetic field is applied.
  • the relative permeability ⁇ at a frequency of 10 kHz was evaluated in Comparative Example 1 and Comparative Example 2, it was about 80,000 in Comparative Example 1 and about 35,000 in Comparative Example 2.
  • a high relative permeability ⁇ This is because, when a magnetic field is applied in a high temperature region that is higher by 50 ° C. than the crystallization start temperature, the magnetic anisotropy imparted to the magnetic core becomes too large, and the relative permeability ⁇ at 100 kHz decreases. It is estimated that this occurred.
  • Example 3 Using the same Fe-based amorphous alloy ribbon as in Example 1, ten toroidal magnetic cores were similarly produced. A magnetic field was applied to the manufactured magnetic core for the entire period of the heat treatment step with the temperature and magnetic field application profiles shown in FIG. The applied magnetic field strength was 290 kA / m.
  • the relative permeability ⁇ at 100 kHz of the 10 magnetic cores (alloys) after the heat treatment was in the range of 14,000 to 15,000.
  • Example 5 At 1%, Cu: 1%, Nb: 2.5%, Si: 13.5%, B: 7.2%, the molten alloy consisting of the balance Fe and inevitable impurities is rapidly cooled by a single roll method. A Fe-based amorphous alloy ribbon having a thickness of 60 mm and a thickness of 18 ⁇ m was obtained. After slitting this Fe-based amorphous alloy ribbon to a width of 3 mm, it was wound to an outer diameter of 20 mm and an inner diameter of 10 mm to produce 10 toroidal magnetic cores. The crystallization start temperature of this alloy was measured and found to be 480 ° C.
  • the produced magnetic core was heat-treated with the heat treatment profile shown in FIG.
  • the holding temperature was 580 ° C.
  • the magnetic field was applied in the temperature range of 480 to 520 ° C. (temperature range from the crystallization start temperature to the crystallization start temperature 40 ° C.) during the temperature increase.
  • the magnetic field application direction was the width direction of the alloy ribbon, that is, the height direction of the magnetic core.
  • the magnetic field strength was 120 kA / m.
  • the relative permeability ⁇ at 100 kHz was in the range of 19,000 to 22,000.
  • Example 4 Using the same Fe-based amorphous alloy ribbon as in Example 5, ten toroidal magnetic cores were similarly produced.
  • the manufactured magnetic core was heat-treated without applying a magnetic field (with no magnetic field) using the temperature and magnetic field application profiles shown in FIG.
  • the relative magnetic permeability ⁇ at 100 kHz of the 10 magnetic cores (alloys) after the heat treatment was in the range of 17,000 to 18,000.
  • Example 5 When Example 5 is compared with Comparative Example 4 in which no magnetic field is applied, it is confirmed that the relative permeability ⁇ at 100 kHz is clearly improved by applying the magnetic field in the temperature range near the crystallization start temperature. it can.
  • the produced magnetic core was heat-treated with the heat treatment profile shown in FIG.
  • the holding temperature was 580 ° C.
  • the magnetic field was applied in the temperature range of 480 to 520 ° C. (temperature range from the crystallization start temperature to the crystallization start temperature 40 ° C.) during the temperature increase.
  • the magnetic field application direction was the width direction of the alloy ribbon, that is, the height direction of the magnetic core.
  • the magnetic field strength was 120 kA / m.
  • the relative permeability ⁇ at 100 kHz was in the range of 15,000 to 17,000.
  • Example 5 Using the same Fe-based amorphous alloy as in Example 6, ten toroidal magnetic cores were similarly produced. The manufactured magnetic core was heat-treated without applying a magnetic field (with no magnetic field) using the temperature and magnetic field application profiles shown in FIG.
  • the relative permeability ⁇ at 100 kHz of the 10 magnetic cores (alloys) after the heat treatment was in the range of 9,000 to 12,000.
  • Example 6 When Example 6 is compared with Comparative Example 5 in which no magnetic field is applied, the relative permeability ⁇ at 100 kHz can be clearly increased by applying a magnetic field in the temperature range near the crystallization start temperature. I can confirm.
  • Example 7 A molten alloy having the same alloy composition as that of Example 1 (crystallization start temperature: 500 ° C.) was rapidly cooled by a single roll method to obtain a Fe-based amorphous alloy ribbon having a width of 50 mm and a thickness of 18 ⁇ m. After slitting this Fe-based amorphous alloy ribbon to a width of 15 mm, it was wound to an outer diameter of 31 mm and an inner diameter of 21 mm to produce four toroidal magnetic cores.
  • the manufactured magnetic core was heat-treated with the heat treatment profile shown in FIG.
  • the magnetic field was applied in the temperature range of 480 to 520 ° C. when the temperature was raised.
  • the magnetic field application direction was the width direction of the alloy ribbon, that is, the height direction of the magnetic core.
  • the magnetic field strength was 120 kA / m.
  • the relative permeability ⁇ at 100 kHz was in the range of 28,000 to 29,000.
  • Example 2 in which the thickness of the Fe-based amorphous alloy ribbon is 15 ⁇ m or less is more than Example 7 in which the thickness exceeds 15 ⁇ m. Also, it was confirmed that the relative permeability ⁇ at 100 kHz was slightly increased.
  • the method for producing an Fe-based nanocrystalline alloy according to an embodiment of the present invention can be applied to the production of a magnetic core such as a common mode choke coil or a high-frequency transformer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 Fe基ナノ結晶合金リボンの製造方法は、ナノ結晶化可能なFe基非晶質合金リボンを、結晶化温度領域に加熱し、冷却する熱処理工程を含み、熱処理工程において、示差走査熱量計での結晶化開始温度の50℃低温から結晶化開始温度の20℃高温までの温度範囲の少なくとも一部を含み、且つ結晶化開始温度の50℃高温を超えない昇温期間中の温度範囲で、合金リボンの幅方向に磁場を印加する。

Description

Fe基ナノ結晶合金の製造方法及びFe基ナノ結晶合金磁心の製造方法
 本発明は、Fe基ナノ結晶合金及びFe基ナノ結晶合金を巻回または積層した磁心の製造方法に関する。
 Fe基ナノ結晶合金は、高い飽和磁束密度と高い比透磁率μとを両立できる優れた軟磁気特性を備えているため、コモンモードチョークコイル、高周波トランス等の磁心に使用されている。
 Fe基ナノ結晶合金の組成系としては、特許文献1に記載されているFe-Cu-Nb-Si-B系が代表的である。
 Fe基ナノ結晶合金は、融点以上の温度に熱せられた液相の合金を急冷凝固することによって得られた非晶質合金を、熱処理によって微結晶化(ナノ結晶化)させることで作製される。液相から急冷凝固する方法としては、例えば、生産性に優れる単ロール法が採用される。
 Fe基ナノ結晶合金は、熱処理時の温度プロファイルや、熱処理時に磁場を特定の方向に印加することによって、比透磁率μや角形比等の磁気特性が異なってくる。
 例えば、特許文献2には、初比透磁率70,000以上、角形比が30%以下のFe基ナノ結晶合金を得るために、リボンの幅方向(磁心の高さ方向)に磁場を印加しながら熱処理することが提案されている。特許文献2における熱処理の具体的な例としては種々のパターンがあるが、大別して、熱処理の最高到達温度域において磁場を印加しながら保持するもの、昇温過程から最高到達温度域を経て冷却過程にかけて磁場を印加しながら保持するもの、最高到達温度域から冷却過程にかけて磁場を印加しながら保持するものがある。
特公平4-4393号公報 特開平7-278764号公報
 前述の特許文献2に開示されている熱処理方法は、角形比を低下させる手段として有効であると考えられる。
 ところで、近年、コモンモードチョーク等として使用される周波数帯域が100kHz近傍の高周波帯域となってきており、このような高周波帯域において磁性部品の小型化の要求が強くなっている。つまり、高周波域での高い比透磁率μを有するナノ結晶合金が望まれている。
 本発明者は、周波数100kHz近傍の高周波において高い比透磁率μを得るために、種々の検討を行った。その結果、特許文献1や特許文献2に記載の熱処理パターンでは、高周波領域における高い比透磁率μを得るのが難しい場合があることを認識した。
 本発明は、上記を鑑みてなされたものであり、周波数100kHz近傍において、高い比透磁率μが容易に得られるFe基ナノ結晶合金の製造方法及びFe基ナノ結晶合金磁心の製造方法を提供することを目的とする。
 本発明者は、Fe基非晶質合金を熱処理により微結晶化(ナノ結晶化)させる際、その昇温期間の特定温度領域において磁場を印加することにより、例えば周波数100kHzの高周波帯域における高い比透磁率μが得られることを見出した。
 <1>Fe基ナノ結晶合金の製造方法
 本発明の実施形態によるFe基ナノ結晶合金の製造方法は、ナノ結晶化可能なFe基非晶質合金リボンを、結晶化温度領域に加熱し、冷却する熱処理工程を含み、前記熱処理工程において、示差走査熱量計での結晶化開始温度の50℃低温から結晶化開始温度の20℃高温までの温度範囲の少なくとも一部を含み、且つ前記結晶化開始温度の50℃高温を超えない昇温期間中の温度範囲で、すなわち、前記の昇温期間中の温度範囲において選択的に、前記合金リボンの幅方向に磁場を印加する。
 ある実施形態において、前記合金リボンの幅方向に、磁場強度50kA/m以上300kA/m以下の磁場を印加する。
 ある実施形態において、前記熱処理工程における最高温度到達時に前記磁場を印加しない。
 また、ある実施形態において、Fe基ナノ結晶合金リボンの製造方法は、ナノ結晶化可能なFe基非晶質合金リボンを用意する工程と、前記Fe基非晶質合金リボンを結晶化温度領域に加熱し、冷却する熱処理工程と、前記熱処理工程中に、前記Fe基非晶質合金リボンに対して磁場を印加する工程とを包含し、前記磁場を印加する工程は、前記熱処理工程の昇温期間中における、示差走査熱量計が示す結晶化開始温度の50℃低温から結晶化開始温度の20℃高温までの温度範囲内の少なくとも一部の期間において所定の強度(例えば、50kA/m)以上の磁場を前記合金リボンの幅方向に沿って印加し、かつ、前記昇温期間中の一部の期間において前記所定の強度以上の磁場を印加しない。典型的には、前記結晶化開始温度の50℃高温を超える昇温期間中には前記所定の強度以上の磁場を印加しない。また、前記結晶化開始温度の50℃低温を下回る昇温期間中にも前記所定の強度以上の磁場を印加しなくてよい。
 <2>Fe基ナノ結晶合金磁心の製造方法
 本発明の実施形態による磁心の製造方法は、ナノ結晶化可能なFe基非晶質合金リボンを巻回または積層した後、結晶化温度領域に加熱し、冷却する熱処理工程を含み、これによって巻回または積層されたFe基ナノ結晶合金リボンを備える磁心を製造する方法であって、前記熱処理工程において、示差走査熱量計での結晶化開始温度の50℃低温から結晶化開始温度の20℃高温までの温度範囲を少なくとも一部を含み、且つ前記結晶化開始温度の50℃高温を超えない昇温期間中の温度範囲で、すなわち、前記の昇温期間中の温度範囲において選択的に、前記磁心の高さ方向に磁場を印加する。
 ある実施形態において、前記磁心の高さ方向に、磁場強度50kA/m以上300kA/m以下の磁場を印加する。
 ある実施形態において、前記Fe基ナノ結晶合金リボンは、厚さが15μm以下であり、幅が250mm以下である。
 本発明の実施形態に係るFe基ナノ結晶合金の製造方法あるいはFe基ナノ結晶合金磁心の製造方法によれば、例えば周波数100kHz近傍の高周波で高い比透磁率μを容易に実現できる。そのため、高周波特性が重要となるコモンモードチョーク等に好適に用いられるFe基ナノ結晶合金またはFe基ナノ結晶合金磁心を提供することができる。
本発明実施例1の熱処理と磁場の印加のプロファイルを説明する図である。 本発明実施例2の熱処理と磁場の印加のプロファイルを説明する図である。 本発明実施例3の熱処理と磁場の印加のプロファイルを説明する図である。 本発明実施例4の熱処理と磁場の印加のプロファイルを説明する図である。 比較例1の熱処理と磁場の印加(無磁場)のプロファイルを説明する図である。 比較例2の熱処理と磁場の印加のプロファイルを説明する図である。 比較例3の熱処理と磁場の印加のプロファイルを説明する図である。
 以下、本発明の実施形態について詳しく説明する。
 本発明の実施形態によるFe基ナノ結晶合金および磁心の製造方法における特徴の一つとして、非晶質合金に対し磁場を印加しながら熱処理を行うことによってFe基ナノ結晶合金を得る際に、従来とは異なり、昇温期間中の特定温度範囲において磁場を選択的に印加することがあげられる。磁場は、リボンの幅方向、磁心としては高さ方向に沿って印加される。
 具体的には、熱処理工程の昇温期間において、示差走査熱量計を用いて特定される結晶化開始温度の50℃低温から結晶化開始温度の20℃高温までの温度範囲内の少なくとも一部の期間を含み、結晶化開始温度の50℃高温を超えない昇温期間において選択的に、熱処理中の合金リボンの幅方向に沿って磁場を印加する。
 このように、本発明の実施形態では、例えば、熱処理の最高到達温度近傍や、最高到達温度を経ての冷却過程においては磁場を印加せずに、昇温期間中の前記期間において磁場を印加する。ただし、比較的弱い磁場(例えば50kA/m未満)であれば、熱処理の最高到達温度近傍で印加したとしても、周波数100kHzにおける比透磁率μは実質的に低下しないことが、本発明者によって確認されている。したがって、本発明の実施形態において、比較的弱い磁場であれば、熱処理工程の任意の期間において一時的または連続的に印加されていてもよい。なお、本発明の実施形態において、50kA/m未満の弱い磁場の印加は、磁場を印加していないものと見なしてよい。以下では、特に断りがない限り、ナノ結晶合金の磁気特性に影響を与え得る大きさ(典型的には50kA/m以上300kA/m以下)を有する磁場の印加について説明している。
 本発明者の検討によれば、実験の結果、典型的には示差走査熱量計が示す結晶化開始温度より50℃を超える最高到達温度において磁場を印加すると、大きな誘導磁気異方性が付与される。そのため、低周波領域から高周波領域にかけての比透磁率μが全体的に下がってしまい、目的の周波数100kHzにおける比透磁率μは低くなってしまう。
 一方、示差走査熱量計において確認される結晶化開始温度近傍での磁場の印加では、弱い誘導磁気異方性が付与され、要求される周波数100kHzにおける透磁率は、低下せず改善される傾向が確認される。また、この結晶化開始温度近傍での磁場の印加においては、印加する磁場の強さや、磁場を印加する温度領域の変動に対して、比透磁率μの変動の程度は小さく、要求される周波数100kHzにおける比透磁率μの調整がしやすいことがわかった。
 このように昇温期間に磁場を印加することによって特に高周波帯域での比透磁率μが調整しやすくなる理由については、正確ではないが以下のように推定される。
 熱処理前の非晶質組織の合金は、そのキュリー温度が結晶化開始温度よりも低い。一方、ナノ結晶化すると、キュリー温度は結晶化開始温度を大きく超えるものとなる。つまり、結晶化の期間中において磁場を印加しておくと、結晶化に伴い磁区が固定され、あたかもキュリー温度以上から冷却するのと同様な効果が得られたのではないかと推定される。
 但し、組織が変化し続けている昇温期間中においては、キュリー温度近傍から冷却するときほどの強い誘導磁気異方性は付与されない。これによって、誘導磁気異方性の程度を制御しやすいものとなっていると推定される。
 上述したように、本発明の実施形態における熱処理工程では、示差走査熱量計での結晶化開始温度の50℃低温から結晶化開始温度の20℃高温までの温度範囲内の少なくとも一部の昇温期間において磁場を印加する。また、本実施形態においては、結晶化開始温度の50℃高温を超えない昇温期間中において磁場を印加する。
 結晶化開始温度の50℃低温の温度よりもさらに低い温度域のみの磁場の印加では、実質的な結晶化が生じておらず、キュリー温度が低い非晶質状態を保ったままでの磁場の印加であるため、上記のような効果が得られない。一方、結晶化開始温度の20℃高温の温度よりもさらに高い温度域のみの磁場の印加では、今度は、ナノ結晶合金のキュリー温度に近づくため、誘導磁気異方性が付与されすぎて、比透磁率μの調整が難しくなる。
 磁場を印加する温度範囲は、より好ましくは、示差走査熱量計での結晶化開始温度の20℃低温から結晶化開始温度の10℃高温までの温度範囲を少なくとも一部を含むものとする。
 また、昇温期間において低い温度域から著しく高い温度域にまで磁場を印加し続けると、誘導磁気異方性が付与されすぎて、この場合も比透磁率μの調整が難しくなる。そのため、本発明の実施形態においては、磁場を印加する温度の上限を、結晶化開始温度から50℃高温としている。より好ましくは、磁場を印加する温度の上限は、結晶化開始温度から40℃高い温度である。
 以上の説明からわかるように、本発明の実施形態において、所定強度以上(例えば、50kA/m以上)の実効的な磁場の印加は、昇温期間中の一部の期間において行われ、昇温期間全体にわたって行われることはない。すなわち、昇温期間中において実効的な磁場の印加が行われない期間が設けられている。このようにして、結晶化開始温度の近傍の温度範囲において選択的に実効的な磁場の印加を行い、例えば結晶化開始温度よりも50℃超低温側の温度域と50℃超高温側の温度域(最高到達温度近傍)とにおいて実効的な磁場の印加を行わない方法を採用することによって、適度な誘導磁気異方性が付与されたナノ結晶合金を効率よく得ることができる。
 なお、本明細書において、「昇温期間」とは、最高到達温度に達するよりも前の期間を意味するものであり、最高到達温度に達する前であれば、昇温、降温、一定の温度保持の状態であっても良い。
 また、本発明の実施形態においては、示差走査熱量計により結晶化開始温度を定めている。真の結晶化開始温度を正確に測定するのは困難であり、示差走査熱量計(DSC:Differential Scanning Calorimetry)による同定が有効である。昇温時、ナノ結晶化の開始による発熱反応が検出される温度を結晶化開始温度とした。本発明における示差走査熱量計の測定条件は昇温速度10℃/分で行っている。
 本発明の実施形態において、熱処理温度の制御は、熱処理炉の容量や、熱処理される非晶質合金リボンが結晶化することによる発熱量を考慮しながら、実際の熱処理炉内の温度分布がプラスマイナス5℃以下になるように制御することが好ましい。このような制御を行うことによって、熱処理後の合金の磁気特性を安定させることができる。
 本発明の実施形態において、印加する磁場の強度は、50kA/m以上300kA/m以下とすることが好ましい。印加する磁場が弱すぎると、実作業条件での誘導磁気異方性の付与が難しくなり、また、高すぎると誘導磁気異方性が付与されすぎる傾向になる。
 より好ましい範囲は、60kA/m以上240kA/mである。
 また、磁場を印加する時間は、上期の温度範囲であれば、特に制限はないが、1~180分程度が実用的である。
 本発明の実施形態において、ナノ結晶化可能なFe基非晶質合金としては、例えば、一般式:(Fe1-aa100-x-y-z-α-β-γCuxSiyzM’αM”βXγ(原子%)(ただし、MはCo及び/又はNiであり、M’はNb,Mo,Ta,Ti,Zr,Hf,V,Cr,Mn及びWからなる群から選ばれた少なくとも1種の元素、M”はAl,白金族元素,Sc,希土類元素,Zn,Sn,Reからなる群から選ばれた少なくとも1種の元素、XはC,Ge,P,Ga,Sb,In,Be,Asからなる群から選ばれた少なくとも1種の元素であり、a,x,y,z,α,β及びγはそれぞれ0≦a≦0.5,0.1≦x≦3,0≦y≦30,0≦z≦25,5≦y+z≦30、0≦α≦20,0≦β≦20及び0≦γ≦20を満たす。)により表される組成の合金を使用することができる。
 前記組成の合金を、融点以上に溶融し、単ロール法により急冷凝固することで、長尺状の非晶質合金リボン(薄帯)を得ることができる。
 非晶質合金リボンの厚さは、10~30μmであることが好ましい。10μm未満では、リボンの機械的強度が不十分でハンドリングの際に破断しやすい。30μmを超えると、非晶質状態を安定に得られにくくなる。また、非晶質合金リボンをナノ結晶化後、磁心として高周波用途に使用する場合、リボンには渦電流が発生するが、渦電流による損失は、リボンが厚いほど大きくなる。そのため、より好ましい厚さは、10~20μmである。
 更に、100kHz近傍の高周波での比透磁率μは、厚さが薄いほど大きな値を得ることができるため、15μm以下の厚さがより好ましい。
 非晶質合金リボンの幅は、実用的な磁心の形状を考慮すると、10mm以上であることが好ましい。広幅の合金リボンをスリットすることにより低コスト化が可能となるので、急冷後の段階で広幅であることが好ましいが、合金リボンの安定した製造には250mm幅以下が好ましい。より安定に製造するためには70mm幅以下がより好ましい。
 ナノ結晶化のための熱処理は、窒素などの不活性ガス中で行うのが好ましく、最高到達温度は550~600℃に設定されることが好ましい。550℃未満、または600℃を超える場合は、磁歪が大きくなるため好ましくない。最高到達温度での保持時間は、特に設定せず0分(保持時間無し)であってもナノ結晶化させることができる。熱処理する合金全体量の熱容量と特性の安定性を考慮して、0分超3時間以下の時間、最高到達温度で保持してもよい。
 熱処理における温度プロファイルは、例えば、室温からナノ結晶化が開始する温度近傍までは、2~4℃/分の昇温速度で比較的急速に昇温し、ナノ結晶化が開始する温度の50℃低温から最高到達温度までは、平均0.2~1℃/分の緩やかな昇温速度で昇温するものであってよい。このようにすることで、効率よく且つ安定してナノ結晶化を行うことができる。なお、ナノ結晶化後の冷却過程において、最高到達温度からの200℃までの温度域では、2~5℃/分の冷却速度で冷却することが好ましい。通常100℃以下まで冷却した後、合金を大気中に取り出すことができる。
 本発明の実施形態において磁心を製造する場合、ナノ結晶化可能なFe基非晶質合金リボンを巻回または積層した後に、結晶化温度領域に加熱し冷却する熱処理工程を行えばよい。結晶化温度領域に加熱する過程(昇温期間)において、上記のようにして磁場が印加される。この印加する磁場の方向を磁心の高さ方向とすることによって、所望の誘導磁気異方性を付与することができる。
 (実施例1)
 原子%で、Cu:1%、Nb:3%、Si:15.5%、B:6.5%、残部Fe及び不可避不純物からなる合金溶湯を単ロ-ル法により急冷し、幅50mm、厚さ13μmのFe基非晶質合金リボンを得た。このFe基非晶質合金リボンを、幅3mmにスリットした後、外径20mm、内径10mmに巻回し、トロイダル磁心を10ヶ作製した。示差走査熱量計(DSC)で測定したところ、この合金の結晶化開始温度は500℃であった。
 作製した磁心に対して、図1に示す温度及び磁場印加のプロファイルで熱処理及び磁場印加を行った。磁場の印加は、昇温期間における440~480℃の温度範囲(結晶化開始温度の60℃低温から結晶化開始温度の20℃低温までの温度範囲)にわたって継続的に行った。磁場印加方向は合金リボンの幅方向すなわち磁心の高さ方向とした。磁場強度は、120kA/mとした。尚、熱処理における最高到達温度は580℃である。
 熱処理後の磁心(合金)10ヶの100kHzでの比透磁率μは、27,000~30,000の範囲であった。
 測定は、アジレレントテクノロジー社製HP4194Aを用いて、オシレーションレベル0.5V、アベレージ16の条件で行った。絶縁被覆導線を、トロイダル磁心の中央部に貫通させて、入出力端子に接続して測定した。
 (比較例1)
 実施例1と同様の組成およびサイズを有するFe基非晶質合金リボンを用いて、同様にトロイダル磁心を10ヶ作製した。作製した磁心に対して、図5に示すように、磁場印加をすることなく(無磁場で)、図1に示した実施例1の温度プロファイルと同じプロファイルに従って熱処理を行った。
 熱処理後の磁心(合金)10ヶの100kHzでの比透磁率μは、20,000~24,000の範囲であった。
 磁場を印加しない比較例1と実施例1とを比較すると、DSCによる結晶化開始温度より低温の温度範囲であっても、本発明で規定する温度範囲で磁場を印加した場合は、100kHzでの比透磁率μが明確に上昇していることが確認できる。
 (実施例2)
 実施例1と同様のFe基非晶質合金リボンを用いて、同様にトロイダル磁心を10ヶ作製した。作製した磁心に対して、図2に示す温度及び磁場印加のプロファイルで熱処理及び磁場印加を行った。磁場印加の温度範囲のみが実施例1(図1)と異なっており、他の条件は実施例1と同様である。磁場の印加は、480~520℃の温度範囲(結晶化開始温度の20℃低温から結晶化開始温度の20℃高温の温度範囲)である。
 熱処理後の磁心(合金)10ヶの100kHzでの比透磁率μは、31,000~32,000の範囲であった。
 実施例2では、実施例1に比べて100kHzで、より高い比透磁率μを得ることができている。このことは、DSCによる結晶化開始温度を含む温度範囲にて磁場の印加を行えば、同じ磁場強度での磁場印加であっても、100kHzでの比透磁率μがさらに向上し得ることを示している。
 (実施例3)
 実施例1と同様のFe基非晶質合金リボンを用いて、同様にトロイダル磁心を10ヶ作製した。作製した磁心に対して、図3に示す温度及び磁場印加のプロファイルでの熱処理及び磁場印加を行った。磁場印加の磁場強度のみが実施例2(図2)と異なっており、他の条件は実施例2と同様である。磁場は昇温時、磁場強度60kA/mを印加した。
 熱処理後の磁心(合金)10ヶの100kHzでの比透磁率μは、28,000~30,000の範囲であった。
 (実施例4)
 実施例1と同様のFe基非晶質合金を用いて、同様にトロイダル磁心を10ヶ作製した。作製した磁心に対して、図4に示す温度及び磁場印加のプロファイルでの熱処理及び磁場印加を行った。磁場印加の磁場強度のみが実施例2(図2)と異なっており、他の条件は実施例2と同様である。磁場は昇温時、磁場強度240kA/mで印加した。
 熱処理後の磁心(合金)10ヶの100kHzでの比透磁率μは、27,000~29,000の範囲であった。
 上記、実施例2~4では、印加磁場の磁場強度のみが大きく異なっているが、磁場を印加していない比較例1と対比すると、実施例2~4の何れの場合も、比較例1に比べて100kHzでの比透磁率μが大きく上昇していることが確認できる。
 (比較例2)
 実施例1と同様のFe基非晶質合金リボンを用いて、同様にトロイダル磁心を10ヶ作製した。作製した磁心に対して、図6に示す温度及び磁場印加のプロファイルで熱処理及び磁場印加を行った。比較例2では、磁場印加における磁場強度及び印加時間は、実施例1及び2(図1及び図2)と同様であるが、磁場印加の温度範囲が、560℃から、最高等到達温度580℃を経て冷却に至るものである。この温度範囲は、磁場印加開始温度が、結晶化開始温度の60℃高温である。
 熱処理後の磁心(合金)10ヶの100kHzでの比透磁率μは、24,000~25,000の範囲であった。
 上記比較例2では、磁場を印加していない比較例1に比べて100kHzでの比透磁率μは、4000高くなっているのみである。ところで、周波数10kHzでの比透磁率μについて、比較例1と比較例2で評価したところ、比較例1では約80,000で、比較例2では約35,000であり、比較例1の方が高い比透磁率μであった。このことは、結晶化開始温度よりも50℃超高い高温域での磁場印加では、磁心に付与される磁気異方性が大きくなり過ぎ、100kHzでの比透磁率μの低下が起こっているために生じたことであると推定される。
 (比較例3)
 実施例1と同様のFe基非晶質合金リボンを用いて、同様にトロイダル磁心を10ヶ作製した。作製した磁心に対して、図7に示す温度及び磁場印加のプロファイルで、熱処理工程の全期間に対して磁場を印加をした。印加した磁場強度は290kA/mとした。
 熱処理後の磁心(合金)10ヶの100kHzでの比透磁率μは、14,000~15,000の範囲であった。
 (実施例5)
 原子%で、Cu:1%、Nb:2.5%、Si:13.5%、B:7.2%、残部Fe及び不可避不純物からなる合金溶湯を単ロ-ル法により急冷し、幅60mm、厚さ18μmのFe基非晶質合金リボンを得た。このFe基非晶質合金リボンを、幅3mmにスリットした後、外径20mm、内径10mmに巻回し、トロイダル磁心を10ヶ作製した。この合金の結晶化開始温度を測定したところ480℃であった。
 作製した磁心に対して、図2に示す熱処理プロファイルで熱処理を行った。保持温度は580℃とした。磁場は昇温時、480~520℃の温度範囲(結晶化開始温度から結晶化開始温度の40℃高温の温度範囲)で印加した。磁場印加方向は合金リボンの幅方向すなわち磁心の高さ方向とした。磁場強度は、120kA/mとした。
 熱処理後の磁心(合金)10ヶを評価した結果、100kHzでの比透磁率μは、19,000~22,000の範囲であった。
 (比較例4)
 実施例5と同様のFe基非晶質合金リボンを用いて、同様にトロイダル磁心を10ヶ作製した。作製した磁心に対して、図6に示す温度及び磁場印加のプロファイルで、磁場印加をすることなく(無磁場で)熱処理を行った。
 熱処理後の磁心(合金)10ヶの100kHzでの比透磁率μは、17,000~18,000の範囲であった。
 実施例5と、磁場を印加していない比較例4とを対比すると、結晶化開始温度近傍の温度範囲において磁場を印加することによって、100kHzでの比透磁率μが明確に向上することが確認できる。
 (実施例6)
 原子%でNi:5%、Cu:0.8%、Nb:2.8%、Si:11%、B:9.8%、残部Fe及び不可避不純物からなる合金溶湯を単ロ-ル法により急冷し、幅50mm、厚さ13μmのFe基非晶質合金リボンを得た。このFe基非晶質合金リボンを、幅3mmにスリットした後、外径20mm、内径10mmに巻回し、トロイダル磁心を10ヶ作製した。この合金の結晶化開始温度を測定したところ480℃であった。
 作製した磁心に対して、図2に示す熱処理プロファイルで熱処理を行った。保持温度は580℃とした。磁場は昇温時、480~520℃の温度範囲(結晶化開始温度から結晶化開始温度の40℃高温の温度範囲)で印加した。磁場印加方向は合金リボンの幅方向すなわち磁心の高さ方向とした。磁場強度は、120kA/mとした。
 熱処理後の磁心(合金)10ヶを評価した結果、100kHzでの比透磁率μは、15,000~17,000の範囲であった。
 (比較例5)
 実施例6と同様のFe基非晶質合金を用いて、同様にトロイダル磁心を10ヶ作製した。作製した磁心に対して、図6に示す温度及び磁場印加のプロファイルで、磁場印加をすることなく(無磁場で)熱処理を行った。
 熱処理後の磁心(合金)10ヶの100kHzでの比透磁率μは、9,000~12,000の範囲であった。
 実施例6と、磁場を印加していない比較例5を対比すると、結晶化開始温度近傍の温度範囲において磁場を印加することによって、100kHzでの比透磁率μが明確に上昇できていることを確認できる。
 (実施例7)
 実施例1と同様の合金組成(結晶化開始温度:500℃)の合金溶湯を単ロ-ル法により急冷し、幅50mm、厚さ18μmのFe基非晶質合金リボンを得た。このFe基非晶質合金リボンを、幅15mmにスリットした後、外径31mm、内径21mmに巻回し、トロイダル磁心を4ヶ作製した。
 作製した磁心に対して、実施例2と同様に、図2に示す熱処理プロファイルで熱処理を行った。磁場は昇温時、480~520℃の温度範囲で印加した。磁場印加方向は合金リボンの幅方向すなわち磁心の高さ方向とした。磁場強度は、120kA/mとした。
 熱処理後の磁心(合金)4ヶを評価した結果、100kHzでの比透磁率μは、28,000~29,000の範囲であった。
 実施例2と実施例7とを比較してわかるように、Fe基非晶質合金リボンの厚さが15μm以下である実施例2の方が、厚さが15μmを超える実施例7の場合よりも、100kHzでの比透磁率μが若干高くなることが確認された。
 本発明の実施形態によるFe基ナノ結晶合金の製造方法は、コモンモードチョークコイルや高周波トランス等の磁心の作製に適用できる。

Claims (7)

  1.  ナノ結晶化可能なFe基非晶質合金リボンを、結晶化温度領域に加熱し、冷却する熱処理工程を含むFe基ナノ結晶合金の製造方法であって、
     前記熱処理工程において、
     示差走査熱量計での結晶化開始温度の50℃低温から結晶化開始温度の20℃高温までの温度範囲の少なくとも一部を含み、且つ前記結晶化開始温度の50℃高温を超えない昇温期間中の温度範囲で、前記合金リボンの幅方向に磁場を印加する、Fe基ナノ結晶合金の製造方法。
  2.  前記合金リボンの幅方向に、磁場強度50kA/m以上300kA/m以下の磁場を印加する、請求項1に記載の製造方法。
  3.  前記熱処理工程における最高温度到達時に前記磁場を印加しない、請求項1または2に記載の製造方法。
  4.  ナノ結晶化可能なFe基非晶質合金リボンを巻回または積層した後、結晶化温度領域に加熱し、冷却する熱処理工程を含む、Fe基ナノ結晶合金リボンを巻回または積層した磁心の製造方法であって、
     前記熱処理工程において、
     示差走査熱量計での結晶化開始温度の50℃低温から結晶化開始温度の20℃高温までの温度範囲を少なくとも一部を含み、且つ前記結晶化開始温度の50℃高温を超えない昇温期間中の温度範囲で、前記磁心の高さ方向に磁場を印加する、Fe基ナノ結晶合金磁心の製造方法。
  5.  前記磁心の高さ方向に、磁場強度50kA/m以上300kA/m以下の磁場を印加する、請求項4に記載の製造方法。
  6.  前記Fe基ナノ結晶合金リボンは、
     厚さが15μm以下であり、幅が250mm以下である、請求項4または5に記載の製造方法。
  7.  前記熱処理工程における最高温度到達時に前記磁場を印加しない、請求項4から6のいずれかに記載の製造方法。
PCT/JP2014/075070 2013-09-27 2014-09-22 Fe基ナノ結晶合金の製造方法及びFe基ナノ結晶合金磁心の製造方法 WO2015046140A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015539203A JP6024831B2 (ja) 2013-09-27 2014-09-22 Fe基ナノ結晶合金の製造方法及びFe基ナノ結晶合金磁心の製造方法
EP14849656.5A EP3050977B1 (en) 2013-09-27 2014-09-22 Method for producing fe-based nano-crystal alloy, and method for producing fe-based nano-crystal alloy magnetic core
CN201480053096.6A CN105593382B (zh) 2013-09-27 2014-09-22 Fe基纳米晶合金的制造方法和Fe基纳米晶合金磁心的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-201030 2013-09-27
JP2013201030 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046140A1 true WO2015046140A1 (ja) 2015-04-02

Family

ID=52743276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075070 WO2015046140A1 (ja) 2013-09-27 2014-09-22 Fe基ナノ結晶合金の製造方法及びFe基ナノ結晶合金磁心の製造方法

Country Status (4)

Country Link
EP (1) EP3050977B1 (ja)
JP (1) JP6024831B2 (ja)
CN (1) CN105593382B (ja)
WO (1) WO2015046140A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190528A1 (ja) * 2014-06-10 2015-12-17 日立金属株式会社 Fe基ナノ結晶合金コア、及びFe基ナノ結晶合金コアの製造方法
WO2017150441A1 (ja) 2016-02-29 2017-09-08 日立金属株式会社 積層ブロックコア、積層ブロック、及び積層ブロックの製造方法
JPWO2020235642A1 (ja) * 2019-05-21 2020-11-26

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107245673B (zh) * 2017-06-15 2018-12-07 河北工业大学 铁基非晶纳米晶薄带磁体及其制备方法和应用方法
CN107256794B (zh) * 2017-06-22 2019-06-18 东莞市大忠电子有限公司 一种高频逆变纳米晶磁芯及其制备方法
JP7088057B2 (ja) * 2019-02-06 2022-06-21 トヨタ自動車株式会社 合金薄帯の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479342A (en) * 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
JPH0277105A (ja) * 1987-07-14 1990-03-16 Hitachi Metals Ltd 磁心部品
JPH044393A (ja) 1990-04-20 1992-01-08 Hitachi Ltd 配管の制振要素,制振要素を備えた配管及び制振要素を備えた圧力伝達機器
JPH04275411A (ja) * 1991-03-04 1992-10-01 Mitsui Petrochem Ind Ltd 磁心の熱処理方法
JPH05202452A (ja) * 1992-01-28 1993-08-10 Sumitomo Metal Ind Ltd 鉄基磁性合金の熱処理方法
JPH07278764A (ja) 1994-04-15 1995-10-24 Hitachi Metals Ltd ナノ結晶合金およびその製造方法ならびにそれを用いた磁心
JP2001220656A (ja) * 2000-01-07 2001-08-14 Korea Electrotechnology Research Inst 鉄−ジルコニウム−ホウ素−銀系軟磁性材料及び薄膜の製造方法
JP2005187917A (ja) * 2003-12-26 2005-07-14 Hitachi Metals Ltd 軟磁性合金並びに磁性部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881989A (en) * 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
JP3883642B2 (ja) * 1997-04-28 2007-02-21 アルプス電気株式会社 軟磁性合金の製造方法
JP4830972B2 (ja) * 2006-08-25 2011-12-07 日立金属株式会社 等方性鉄基希土類合金磁石の製造方法
CN100510114C (zh) * 2007-12-06 2009-07-08 上海大学 一种Fe基大块非晶合金晶化的热处理工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479342A (en) * 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
JPH0277105A (ja) * 1987-07-14 1990-03-16 Hitachi Metals Ltd 磁心部品
JPH044393A (ja) 1990-04-20 1992-01-08 Hitachi Ltd 配管の制振要素,制振要素を備えた配管及び制振要素を備えた圧力伝達機器
JPH04275411A (ja) * 1991-03-04 1992-10-01 Mitsui Petrochem Ind Ltd 磁心の熱処理方法
JPH05202452A (ja) * 1992-01-28 1993-08-10 Sumitomo Metal Ind Ltd 鉄基磁性合金の熱処理方法
JPH07278764A (ja) 1994-04-15 1995-10-24 Hitachi Metals Ltd ナノ結晶合金およびその製造方法ならびにそれを用いた磁心
JP2001220656A (ja) * 2000-01-07 2001-08-14 Korea Electrotechnology Research Inst 鉄−ジルコニウム−ホウ素−銀系軟磁性材料及び薄膜の製造方法
JP2005187917A (ja) * 2003-12-26 2005-07-14 Hitachi Metals Ltd 軟磁性合金並びに磁性部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3050977A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190528A1 (ja) * 2014-06-10 2015-12-17 日立金属株式会社 Fe基ナノ結晶合金コア、及びFe基ナノ結晶合金コアの製造方法
JPWO2015190528A1 (ja) * 2014-06-10 2017-04-20 日立金属株式会社 Fe基ナノ結晶合金コア、及びFe基ナノ結晶合金コアの製造方法
WO2017150441A1 (ja) 2016-02-29 2017-09-08 日立金属株式会社 積層ブロックコア、積層ブロック、及び積層ブロックの製造方法
KR20180119614A (ko) 2016-02-29 2018-11-02 히타치 긴조쿠 가부시키가이샤 적층 블록 코어, 적층 블록, 및 적층 블록의 제조 방법
US11322281B2 (en) 2016-02-29 2022-05-03 Hitachi Metals, Ltd. Multilayer block core, multilayer block, and method for producing multilayer block
JPWO2020235642A1 (ja) * 2019-05-21 2020-11-26
WO2020235642A1 (ja) * 2019-05-21 2020-11-26 日立金属株式会社 合金薄帯積層体の製造方法及び合金薄帯積層体の製造装置
JP7409376B2 (ja) 2019-05-21 2024-01-09 株式会社プロテリアル 合金薄帯積層体の製造方法及び合金薄帯積層体の製造装置

Also Published As

Publication number Publication date
EP3050977A1 (en) 2016-08-03
CN105593382A (zh) 2016-05-18
JPWO2015046140A1 (ja) 2017-03-09
EP3050977B1 (en) 2018-11-21
EP3050977A4 (en) 2017-05-31
CN105593382B (zh) 2017-08-18
JP6024831B2 (ja) 2016-11-16

Similar Documents

Publication Publication Date Title
JP7028290B2 (ja) ナノ結晶合金磁心の製造方法
JP6024831B2 (ja) Fe基ナノ結晶合金の製造方法及びFe基ナノ結晶合金磁心の製造方法
JP5664934B2 (ja) 軟磁性合金およびこれを用いた磁性部品
JP5316920B2 (ja) 軟磁性合金、アモルファス相を主相とする合金薄帯、および磁性部品
JP5455041B2 (ja) 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯
JP5455040B2 (ja) 軟磁性合金、その製造方法、および磁性部品
JP5445890B2 (ja) 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
JP6137408B2 (ja) Fe基ナノ結晶合金コア、及びFe基ナノ結晶合金コアの製造方法
WO2016104000A1 (ja) Fe基軟磁性合金薄帯およびそれを用いた磁心
JP2008231463A (ja) Fe基軟磁性合金、アモルファス合金薄帯、および磁性部品
JP5445891B2 (ja) 軟磁性薄帯、磁心、および磁性部品
KR20140014188A (ko) 합금, 자심 및 합금으로부터 테이프를 제조하는 방법
JP4636365B2 (ja) Fe基非晶質合金薄帯および磁心体
JPH0617204A (ja) 軟磁性合金およびその製造方法ならびに磁心
JP5445924B2 (ja) 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
WO2023032913A1 (ja) Fe系非晶質合金薄帯の製造方法およびFe系ナノ結晶合金薄帯の製造方法
JP7452335B2 (ja) Fe基ナノ結晶合金磁心の製造方法
JP2008150637A (ja) 磁性合金、アモルファス合金薄帯、および磁性部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014849656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849656

Country of ref document: EP