WO2015045962A1 - 組織切片における生体物質の定量法 - Google Patents

組織切片における生体物質の定量法 Download PDF

Info

Publication number
WO2015045962A1
WO2015045962A1 PCT/JP2014/074420 JP2014074420W WO2015045962A1 WO 2015045962 A1 WO2015045962 A1 WO 2015045962A1 JP 2014074420 W JP2014074420 W JP 2014074420W WO 2015045962 A1 WO2015045962 A1 WO 2015045962A1
Authority
WO
WIPO (PCT)
Prior art keywords
immunostaining
fluorescent
biological material
antibody
tissue section
Prior art date
Application number
PCT/JP2014/074420
Other languages
English (en)
French (fr)
Inventor
文徳 岡田
拓司 相宮
幸祐 権田
憲明 大内
みか 渡邉
Original Assignee
コニカミノルタ株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社, 国立大学法人東北大学 filed Critical コニカミノルタ株式会社
Priority to EP14847697.1A priority Critical patent/EP3040724B1/en
Priority to US15/024,216 priority patent/US10352859B2/en
Priority to JP2015539129A priority patent/JP6424826B2/ja
Publication of WO2015045962A1 publication Critical patent/WO2015045962A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70596Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705

Definitions

  • the present invention relates to a method for quantifying a biological substance in a tissue section. Specifically, the present invention relates to a method for quantifying a biological substance in a tissue section using immunostaining.
  • Immunohistochemistry is widely known as a histology (histochemistry) technique for detecting an antigen in a tissue sample using an antibody.
  • This immunohistochemistry is sometimes referred to as “immunostaining” from the viewpoint of performing a color development operation in order to visualize an antigen-antibody reaction that is inherently invisible (hereinafter referred to as “immunohistochemistry” in this specification).
  • the term “immunohistochemical staining” is sometimes used.
  • immunohistochemistry Due to the feature of visualizing the location of antigen-antibody reaction, immunohistochemistry is widely used in the fields of medicine and biochemistry for the purpose of detecting the location of biological material in tissue samples.
  • a staining method capable of bright field observation is widely used as a method for visualizing the location of an antigen-antibody reaction. Specifically, a method using a substrate that is converted into a pigmentable substance by an enzyme is used. Commonly used. For example, in a clinical setting, an antibody bound to an antigen of interest in a tissue sample is stained with peroxidase (POD) and diaminobenzidine (DAB), visualized, and the visualized antibody It is widely performed to detect the expression level of a specific antigen through bright field observation.
  • POD peroxidase
  • DAB diaminobenzidine
  • immunohistochemistry as a method of evaluating the expression level of the target biological substance in the tissue section with high accuracy, immunostaining is performed using fluorescent substance-encapsulated nanoparticles, and the generated fluorescent bright spot dots are detected.
  • a method for evaluating the expression level of a biological substance is known (Patent Document 1).
  • the brightness distribution corresponding to the target biological material can be measured by using fluorescent substance-containing nanoparticles, but the positional relationship between a specific tissue / cell in the tissue section and the target biological material can be measured. It was difficult to specify, and it was difficult to measure a luminance distribution by selecting a target biological substance expressed on a specific tissue / cell.
  • Non-Patent Documents 1 and 2 a method of simultaneously staining the same tissue section with staining capable of bright field observation by enzyme antibody method (DAB staining using enzyme reaction) and fluorescent dye staining by fluorescent antibody method (staining using fluorescent dye).
  • DAB staining using enzyme reaction enzyme antibody method
  • fluorescent dye staining by fluorescent antibody method staining using fluorescent dye.
  • the target biological material is quantified using a fluorescent dye.
  • Ki-67 positive cells are stained by the enzyme antibody method and cytokeratin is fluorescently stained by the fluorescent antibody method
  • there are reports of cases in which it is difficult to observe cytokeratin fluorescence (non-patented). Reference 2).
  • the target protein to be quantified and the control protein are stained with antibodies labeled with different fluorescent dyes, the total fluorescence intensity of each protein is measured, and the target protein is determined from the ratio of the two.
  • Patent Document 2 proposes a method for quantifying.
  • An object of the present invention is to detect a specific tissue / cell in a collected tissue section and accurately specify both the expression position and the expression level of a target biological substance expressed on the specific tissue / cell. It is to provide a method.
  • the present inventors separately separate a biological material for identifying a specific tissue / cell (first biological material) and a target biological material for quantifying the expression level (second biological material) for the same tissue section.
  • the expression position of the target biological material (second biological material) can be accurately identified by staining with the method and comparing the positions of both stained images, and the target biological material (second biological material)
  • the present invention has been completed by discovering that the substance can be accurately quantified even when the expression level is small by staining the substance with fluorescent substance-containing nanoparticles.
  • the present invention is as follows.
  • a method for quantifying biological material in a tissue section (1) Performing an immunostaining (first immunostaining) capable of observing a bright field that specifically stains the first biological material in the tissue section, (2) Perform immunostaining (second immunostaining) with fluorescent substance-containing nanoparticles that specifically stain the second biological substance in the tissue section, (3) By identifying the position of the stained image of the first immunostaining and the position of the stained image of the second immunostaining, the expression position of the second biological material in the tissue section is identified, (4) Specifying the expression level of the second biological substance by measuring the fluorescence amount of the stained image of the second immunostaining, Quantitative method including that.
  • the amount of fluorescence of the stained image of the second immunostaining is measured at the overlapping position of the stained image of the first immunostaining and the stained image of the second immunostaining. Quantitative method.
  • a method for detecting a specific tissue / cell in a tissue section and accurately identifying both the expression position and the expression level of a target biological substance expressed on the specific tissue / cell. can do.
  • a specific tissue / cell is detected from a stained image of the first biological material that can be observed in the bright field, and the position of the stained image of the first biological material and the fluorescent stained image of the second biological material (the number of bright spots,
  • the second biological material (objective) expressed on a specific tissue or cell by measuring the bright spot and luminance distribution of the fluorescent staining image of the second biological material for the overlapping part of the position of the luminance distribution) can be selected and quantified. Since the second biological material is stained using the fluorescent substance-containing nanoparticles, high detection power (sensitivity) can be obtained even if the expression level of the second biological material is small.
  • Detection target substance, quantitative determination target substance The present invention detects a specific tissue / cell (hereinafter referred to as a detection target) in a collected tissue section and expresses a target biological substance expressed on the detection target (hereinafter referred to as a detection target substance). This is a method for accurately specifying both the expression position and expression level of a substance to be quantified).
  • a combination of a tissue section, a detection object, and a quantification object targeted in the present invention may be selected according to the purpose of the examination. For example, VEGFR-1 and VEGFR-2 expressed on vascular endothelial cells in a liver tissue section Quantification of VEGFR-3, etc., quantification of VEGFR-1, VEGFR-2, VEGFR-3, etc. expressed on lymphatic endothelial cells in esophageal tissue sections, quantification of Ki67 expressed on epithelial cells in breast tissue sections, etc. Can be mentioned.
  • tissue section in the present invention is not particularly limited as long as it is a section to which an immunostaining method can be applied, and a known method can be used as the preparation method.
  • a known method can be used as the preparation method.
  • paraffin-embedded sections widely used as pathological sections and others can be used as tissue sections.
  • first immunostaining for specifically staining the first biological material in the tissue section, and specifically staining the second biological material in the tissue section
  • second immunostaining Immunostaining with fluorescent substance-containing nanoparticles
  • immunostaining is performed using a “labeled probe in which an antibody that specifically binds to a first biological substance or a second biological substance (hereinafter referred to as a target substance) and a substance that can be visualized (hereinafter referred to as a labeled body) are bound.
  • the labeled probe is a product in which an antibody against a target substance and a label are bound.
  • the method for binding the antibody and the label is not particularly limited, and includes a case where the antibody is bound via a secondary antibody in addition to the case where the antibody is directly bound.
  • the labeled probe for performing the first immunostaining is referred to as a first labeled probe
  • the labeled probe for performing the second immunostaining is referred to as a second labeled probe.
  • the first labeled probe and the second labeled probe do not interfere with the antigen-antibody reaction with each target substance.
  • the first biological material is a target material for immunostaining (first immunostaining) in a detection target.
  • a substance serving as an antigen on a tissue / cell, which is a detection target, may be selected as the first biological substance so that the detection target is stained so that bright field observation can be performed to an extent according to the purpose of the examination.
  • CD31 and CD34 are used as the first biological material for immunostaining of vascular endothelial cells
  • podoplanin is used as the first biological material for immunostaining of lymphatic endothelial cells
  • cytokeratin is used for immunostaining of epithelial cells.
  • Etc. may be used as the first biological material.
  • (B) Antibody that binds to the first biological material The antibody that specifically binds to the first biological material can be obtained using a normal method.
  • the labeled body is for visualizing the labeled probe bound to the target substance on the tissue section, and the labeled body contained in the first labeled probe has a staining capable of bright field observation. It is a label for
  • staining that can be observed in bright field is directly visualized in a form that can be viewed with a normal optical microscope without being excited by receiving external energy (that is, visible light is reflected).
  • direct visualization in a visible form means that the location of a specific binding reaction between a target substance and a probe can be directly observed without secondary operations such as development.
  • Examples of the label contained in such a first labeled probe are as follows.
  • Pigmentation-inducing label examples include a substance that induces pigmentation (pigmentation-inducing label), that is, an enzyme that changes a substrate to generate a pigmented chemical species. It is done.
  • examples of such enzymes include peroxidases such as horseradish peroxidase (HRP), alkaline phosphatases (ALP), glucosidases and the like.
  • a substrate generally used as a chromogenic substrate in a conventionally known assay method based on a chromogenic substrate conversion method can be used.
  • examples of such substrates include oxidoreductase substrates such as horseradish peroxidase (HRP) substrates, phosphatase substrates such as alkaline phosphatase (ALP) substrates, and glycosidase substrates such as ⁇ -galactosidase substrates. Although it is mentioned, it is not limited to these.
  • substrates used in the enzymatic reaction by HRP include 3,3′-diaminobenzidine (DAB), 3-p-hydroxyphenylpropionic acid (HPPA), ECL plus (trademark), 4-chloro-1-naphthol / 4-chloronaphthalen-1-ol and the like.
  • DAB 3,3′-diaminobenzidine
  • HPPA 3-p-hydroxyphenylpropionic acid
  • ECL plus trademark
  • 4-chloro-1-naphthol / 4-chloronaphthalen-1-ol and the like.
  • DAB is widely used from the viewpoint of color difference from hematoxylin (blue) usually used for nuclear staining and storage stability, and is preferably used.
  • substrates used for the enzymatic reaction with alkaline phosphatase ALP
  • 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium salt BCIP / NBT
  • 4-methylumbelliferyl phosphate MUP
  • 6,8-difluoro-4-methylumbelliferyl phosphate DiFMUP
  • AttoPhos® 9H- (1,3-dichloro-9,9-dimethylacridin-2-one-7-yl
  • DDAOP phosphate
  • X-gal 5-bromo-4-chloro-3-indolyl- ⁇ -D-galactopyranoside
  • DDAOG 9H- (1,3-dichloro-9,9 -Dimethylacridin-2-one-7-yl) ⁇ -D-galactopyranoside
  • UMG 4-methylumbelliferyl- ⁇ -D-galactoside
  • the first labeled probe is obtained by binding the antibody that binds to the first biological substance and the labeled body.
  • the method for binding the antibody and the label is not particularly limited, and as described above, the case where the antibody is bound via a secondary antibody is included in addition to the case where the antibody is directly bound.
  • Such binding between the antibody and the label can be obtained by binding the label to the antibody according to a commonly used method.
  • Specific labeling methods include a method using an antibody (secondary antibody) having specific affinity for the antibody, a biotin-avidin method, a thiol group-maleimide group coupling reaction method, an existing chemistry
  • Examples include a method using a linker, a cross-linking reaction method using a cross-linking agent (such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC)), an ionic bond method, and the like (see Examples below) ).
  • Second labeled probe (a) Second biological substance
  • the second biological substance is a target substance for immunostaining (second immunostaining) in the quantitative target substance.
  • second immunostaining In order to perform quantification according to the purpose of the test, it is sufficient to select a substance that is an antigen on the substance to be quantified.
  • the substance to be quantified is a protein. It is a biological material.
  • the second biological material include vascular endothelial growth factor receptors (VEGFR-1, VEGFR-2, VEGFR-3), cell growth-related protein Ki-67, and the like.
  • (B) Antibody that binds to the second biological material The antibody that specifically binds to the second biological material can be obtained using a normal method.
  • the labeled body is for visualizing the labeled probe bound to the target substance on the tissue section, and the labeled body contained in the second labeled probe is a fluorescent substance-containing nanoparticle. .
  • Fluorescent substance-containing nanoparticles are nano-sized particles having a structure in which two or more fluorescent substances (two or more molecules) are included in particles (matrix) made of organic or inorganic substances.
  • the fluorescent substance is a fluorescent dye or a fluorescent nanoparticle, and includes a fluorescent dye-containing nanoparticle and a fluorescent nanoparticle-containing nanoparticle.
  • the fluorescent substance-containing nanoparticles (fluorescent dye-containing nanoparticles, fluorescent nanoparticle-containing nanoparticles) used in the present invention include fluorescent dyes or fluorescent nanoparticles as fluorescent substances, and organic or inorganic substances that form the particles, depending on the purpose. It selects as a raw material and can produce by a well-known method.
  • organic or inorganic substances that form particles include polystyrene, polyamide, polylactic acid, polyacrylonitrile, polyglycidyl methacrylate, polymelamine, polyurea, polybenzoguanamine, polyfuran, polyxylene, phenolic resin, polysaccharides, silica, and the like.
  • the thing which can enclose a fluorescent substance is mentioned. By encapsulating a fluorescent substance in such particles, deterioration due to irradiation with excitation light is less likely to occur than fluorescent dyes alone (high light resistance), and a plurality of fluorescent substances are encapsulated in one particle. Thereby, the fluorescence intensity (luminance) emitted from one particle can be increased.
  • the fluorescent dye-encapsulated nanoparticles are obtained by encapsulating two or more molecules of the fluorescent dye in one particle.
  • the fluorescent dye to be included is not particularly limited, and may be selected according to the target excitation light, the wavelength of fluorescence, and the like.
  • fluorescent dyes to be included are selected from rhodamine dye molecules, squarylium dye molecules, cyanine dye molecules, aromatic ring dye molecules, oxazine dye molecules, carbopyronine dye molecules, pyromesene dye molecules, etc. can do.
  • Alexa Fluor registered trademark, manufactured by Invitrogen
  • BODIPY registered trademark, manufactured by Invitrogen
  • Cy registered trademark, manufactured by GE Healthcare
  • Dy registered trademark, manufactured by GE Healthcare
  • HiLyte registered trademark, manufactured by Anaspec
  • dye molecule DyLight (registered trademark, manufactured by Thermo Scientific)
  • ATTO registered trademark, manufactured by ATTO-TEC
  • MFP registered trademark, manufactured by Mobitec
  • the generic names of such dye molecules are named based on the main structure (skeleton) in the compound or the registered trademark, and the range of fluorescent dyes belonging to each is appropriate for those skilled in the art without undue trial and error. Can be grasped.
  • rhodamine dye molecules include 5-carboxy-rhodamine, Texas red, sulforhodamine 101, and others.
  • squarylium dye molecule include SRfluorSR680-Carboxylate and others.
  • cyanine dye molecules include 1-Butyl-2- [5- (1-butyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene) -penta-1,3. -Dienyl] -3,3-dimethyl-3 eiti-indolium hexafluorophosphate and others.
  • aromatic ring dye molecule examples include N, NN-Bis- (2,6-diisopropylphenyl) -1,6,7,12- (4-tert-butylphenoxy) -perylene-3,4,9,10. -Tetracarbonacid diimide, etc.
  • aromatic ring dye molecule examples include N, NN-Bis- (2,6-diisopropylphenyl) -1,6,7,12- (4-tert-butylphenoxy) -perylene-3,4,9,10. -Tetracarbonacid diimide, etc.
  • oxazine-based dye molecule examples include Cresyl violet and others.
  • carbopyronine dye molecule examples include CARBOPPYRONIN 149 and others.
  • pyromesene dye molecule examples include PYRROMETHENE650 and others.
  • Alexa Fluor dye molecules include Alexa Fluor 555 (Invitrogen) and others.
  • BODIPY dye molecule include BODIPY FL (manufactured by Invitrogen) and others.
  • Cy-based dye molecule include Cy3.5 (manufactured by GE Healthcare) and others.
  • DY dye molecule include DY-590 (manufactured by DYOMICICS) and others.
  • HiLyte dye molecule include HiLyte 594 (manufactured by Anaspec) and others.
  • DyLight-based dye molecule include DyLight 594 (manufactured by Thermo Scientific) and others.
  • ATTO dye molecules include ATTO590 (manufactured by ATTO-TEC) and others.
  • MFP dye molecules include MFP590 (manufactured by Mobitec) and others.
  • the dye examples include C-Phycocyanin, Phycocyanin, APC (Allophycocyanin), APC-XL, and NorthernLights 637 (manufactured by R & D Systems).
  • the method for producing the fluorescent dye-encapsulated nanoparticles is not particularly limited, and is produced by a commonly used method. For example, a method of synthesizing particles by binding fluorescent dye molecules to resin monomers that are particle raw materials, a method of introducing fluorescent dyes by adsorbing or binding them to the polymerized resin particles, resin monomers and fluorescent dyes And the like, and the polymerization and the binding of the fluorescent dye are simultaneously performed.
  • the fluorescent dye-encapsulated nanoparticles produced by these methods usually contain a plurality of fluorescent dye molecules in one particle.
  • the average particle diameter of the fluorescent dye-containing nanoparticles is not particularly limited, but is usually 10 to 500 nm, preferably 50 to 200 nm. Further, the coefficient of variation indicating the variation in particle diameter is not particularly limited, but is usually 20% or less, and preferably 5 to 15%.
  • the particle size of the fluorescent dye-encapsulated nanoparticles is obtained by taking an electron micrograph using a scanning electron microscope (SEM), measuring the cross-sectional area of the fluorescent dye-encapsulated nanoparticles, and calculating the measured value as the area of the corresponding circle Can be measured as the diameter (area circle equivalent diameter).
  • the average (average particle size) and coefficient of variation of the particle size of a population of fluorescent dye-containing nanoparticles are measured as described above for a sufficient number (for example, 1000) of fluorescent dye-containing nanoparticles. After that, the average particle diameter is calculated as its arithmetic average, and the coefficient of variation is calculated by the formula: 100 ⁇ standard deviation of particle diameter / average particle diameter.
  • the fluorescent nanoparticle-encapsulating particles are obtained by encapsulating two or more fluorescent nanoparticles in one particle.
  • the fluorescent nanoparticles to be encapsulated are not particularly limited, and may be selected according to the target excitation light, the wavelength of fluorescence, and the like.
  • the fluorescent nanoparticles to be encapsulated have a particle size of 1 to 500 nm, preferably 10 to 200 nm.
  • This fluorescent nanoparticle is comprised from a semiconductor or fluorescent substance.
  • the semiconductor for example, a group II-VI semiconductor such as ZnSe, ZnTe, CdSe, CdTe, PbS, PbSe, PbTe or the like, or a group III-V semiconductor such as AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb or the like is used. From the viewpoint of toxicity, GaP and InP can be preferably used.
  • the phosphor for example, Y 2 O 3 , YVO 4 , ZnO, ZnS, or the like can be used for the base material, and Eu, Nd, or the like can be used for the emission center.
  • the excitation wavelength is suitable for observation.
  • the method for producing the fluorescent nanoparticle-containing nanoparticles by encapsulating the fluorescent nanoparticles in the above-described particles is not particularly limited, and is produced by a commonly used method.
  • a method in which fluorescent nanoparticles are bonded to a resin monomer, which is a raw material for the particles, and then polymerized to synthesize the particles a method in which fluorescent nanoparticles are adsorbed or bonded to the polymerized resin particles and introduced, a resin monomer and fluorescence
  • the fluorescent nanoparticle-encapsulating nanoparticles produced by these methods usually contain a plurality of fluorescent nanoparticles in one particle.
  • the excitation wavelength suitable for observation is adjusted by adjusting the particle size, matrix composition, and impurity content of the fluorescent nanoparticles to be included.
  • the size of the fluorescent nanoparticle-containing particles is usually 10 to 500 nm, preferably 50 to 200 nm.
  • the measurement of the particle size of the fluorescent nanoparticle-containing nanoparticles can be performed in the same manner as the measurement of the particle size of the fluorescent dye-encapsulated nanoparticles.
  • the second labeled probe is obtained by binding the antibody that binds to the second biological substance and the labeled body.
  • the method for binding the antibody and the label is not particularly limited, and as described above, the case where the antibody is bound via a secondary antibody is included in addition to the case where the antibody is directly bound.
  • Such binding between the antibody and the label can be obtained by binding the label to the antibody according to a commonly used method.
  • Specific labeling methods include a method using an antibody (secondary antibody) having specific affinity for the antibody, a biotin-avidin method, a thiol group-maleimide group coupling reaction method, an existing chemistry
  • Examples include a method using a linker, a cross-linking reaction method using a cross-linking agent (such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC)), an ionic bond method, and the like (see Examples below) ).
  • the first immunostaining and the second immunostaining are performed on a tissue section. Both immunostainings in this case are preferably performed on the same tissue section in order to identify the expression position of the quantitative target substance expressed on the detection target by comparing the positional relationship of the respective stained images, It is also possible to perform respective immunostaining on adjacent tissue sections in cutting out sections.
  • the immunostaining method a commonly used method may be used.
  • the expression position of the second biological material in the tissue section is identified by comparing the position of the stained image of the first immunostaining and the position of the stained image of the second immunostaining.
  • the stained image of the first immunostaining is a stained image capable of bright field observation
  • the stained image of the second immunostaining is a stained image of fluorescent staining as described above. Therefore, the stained image of the first immunostaining is observed with an optical microscope, and the stained image of the second immunostaining is observed with a fluorescence microscope.
  • the comparison of the positions of both stained images is not particularly limited as long as it is a method that can determine which position of the bright spot and luminance distribution of the second immunostaining corresponds to the stained image of the first immunostaining.
  • the image of the stained image of the first immunostaining and the image of the stained image of the second immunostaining are imported into a computer and the positional relationship between the two images is compared. And the positional relationship between the stained image of the first immunostaining can be determined.
  • analysis software include commercially available image analysis software Image J.
  • the detection target on the tissue section is specified by the first immunostaining, if the positional relationship between both can be determined by comparing the positions of the two stained images, the detection target is expressed on the detection target on the tissue section. It is possible to specify the bright spot and luminance distribution of immunostaining of the substance to be quantified (second biological substance).
  • the quantification target substance expressed on the detection target (the bright spot and brightness distribution of the second immunostaining at the position where the stained image of the first immunostaining and the stained image of the second immunostaining overlap) It is a bright spot and luminance distribution of the second biological substance).
  • the expression level of the quantitative target substance (second biological substance) expressed on the detection target is specified by staining the second immunostaining specified above. This is done by measuring the amount of fluorescence in the image. The measurement of the amount of fluorescence in this case is to measure the number of bright spots or the fluorescence brightness for the specified bright spots and luminance distribution.
  • the number of bright spots and fluorescence brightness may be measured by a commonly used method.
  • the number of bright spots or fluorescence brightness can be obtained by capturing the image of the stained image of the second immunostaining in a computer and performing image processing by the calculation means using analysis software for the bright spot and brightness distribution specified above. Measured.
  • analysis software include “ImageJ”, which is a commercially available image analysis software, and “G-Count”, an all-bright spot automatic measurement software manufactured by Zeonstrom.
  • the expression level of the quantitative target substance expressed on the detection target on the collected tissue section can be specified. it can.
  • Example 1 Immunostaining of the first biological substance that enables bright field observation (first immunostaining)
  • a liver tissue slide (Biomax T032a) was immersed in xylene to remove paraffin, and then autoclaved in citrate buffer (pH 6.0) for 15 minutes. After washing with PBS, 10% rabbit serum (manufactured by Nichirei) was added and left at room temperature for 1 hour.
  • anti-CD31 antibody mouse antibody manufactured by Abcam
  • dextran polymer peroxidase-labeled anti-mouse antibody manufactured by Nichirei
  • DAB substrate kit manufactured by Nichirei
  • the obtained particles (0.1 mg) were dispersed in EtOH (1.5 mL), aminopropyltrimethoxysilane LS-3150 (manufactured by Shin-Etsu Chemical Co., Ltd.) (2 ⁇ L) was added, and the mixture was reacted for 8 hours for surface amination treatment.
  • the obtained dye-encapsulated nanoparticles were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of EDTA (ethylenediaminetetraacetic acid), and SM (PEG) was added to this solution to a final concentration of 10 mM. ) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleidopropionamid) -dodecaethyleneglycol] ester) was mixed and allowed to react for 1 hour. The mixture was centrifuged at 10,000 G for 20 minutes, the supernatant was removed, PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. By performing washing by the same procedure three times, fluorescent dye-containing particles having a maleimide group at the end were obtained.
  • streptavidin manufactured by Wako Pure Chemical Industries, Ltd.
  • SATA N-succinimidyl S-acetylthioacetate
  • the above fluorescent nanoparticles and streptavidin were mixed in PBS containing 2 mM of EDTA and reacted for 1 hour. 10 mM mercaptoethanol was added to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification, and streptavidin-bound SulfoRhodamine 101 dye-encapsulated melamine nanoparticles were obtained.
  • Example 2 In Example 1, except that the second immunostaining was performed on the same liver tissue slide as the first immunostaining, an evaluation slide was prepared by performing the same method as in Example 1, and the obtained first immunity The stained image of the staining and the fluorescent staining image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 3 In Example 1, except that the first immunostaining was performed using an anti-CD34 antibody (mouse antibody manufactured by Nichirei Co., Ltd.), an evaluation slide was prepared and obtained by performing the same method as in Example 1. The stained image of the immunostaining and the fluorescent stained image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 4 In Example 3, except that the second immunostaining was performed on the same liver tissue slide as the first immunostaining, an evaluation slide was prepared by performing the same method as in Example 3, and the obtained first immunity The stained image of the staining and the fluorescent staining image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 5 In Example 1, except that the second immunostaining was performed using an anti-VEGFR-1 antibody (abcam antibody rabbit antibody), an evaluation slide was prepared and obtained by performing the same method as in Example 1. A stained image of the first immunostaining and a fluorescent stained image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 6 In Example 5, except that the second immunostaining was performed on the same liver tissue slide as the first immunostaining, an evaluation slide was prepared by carrying out the same method as in Example 5, and the obtained first immunity The stained image of the staining and the fluorescent staining image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 7 In Example 3, except that the second immunostaining was performed using an anti-VEGFR-1 antibody (abcam antibody rabbit antibody), an evaluation slide was prepared and obtained by performing the same method as in Example 3. A stained image of the first immunostaining and a fluorescent stained image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 8 In Example 7, except that the second immunostaining was performed on the same liver tissue slide as the first immunostaining, an evaluation slide was prepared by performing the same method as in Example 7, and the obtained first immunity was obtained. The stained image of the staining and the fluorescent staining image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 9 In Example 1, the first immunostaining was performed using an anti-podoplanin antibody (mouse antibody manufactured by Medical Biology Institute), and the second immunostaining was performed using an anti-VEGFR-1 antibody (abcam antibody rabbit antibody). An evaluation slide was prepared by carrying out the same method as in Example 1 except that it was used, and the obtained stained images of the first immunostaining and the fluorescent staining images of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 10 In Example 9, except that the second immunostaining was performed on the same liver tissue slide as the first immunostaining, an evaluation slide was prepared by performing the same method as in Example 9, and the obtained first immunity was obtained. The stained image of the staining and the fluorescent staining image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 11 In Example 1, the first immunostaining was performed using an anti-Cytokeratin AE1 / AE3 antibody (Dako mouse antibody), and the second immunostaining was performed using an anti-Ki67 antibody (Nichirei rabbit antibody). Except for the above, an evaluation slide was prepared by performing the same method as in Example 1, and the obtained stained image of the first immunostaining and the fluorescent stained image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 12 In Example 11, except that the second immunostaining was performed on the same liver tissue slide as the first immunostaining, an evaluation slide was prepared by performing the same method as in Example 11, and the obtained first immunity The stained image of the staining and the fluorescent staining image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 13 In Example 11, except that the second immunostaining was performed using an anti-ER antibody (rabbit antibody manufactured by Nichirei Co., Ltd.), an evaluation slide was prepared and obtained by performing the same method as in Example 11. The stained image of the immunostaining and the fluorescent stained image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 14 In Example 13, except that the second immunostaining was performed on the same liver tissue slide as the first immunostaining, an evaluation slide was prepared by performing the same method as in Example 13, and the obtained first immunity The stained image of the staining and the fluorescent staining image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 15 In Example 11, except that the second immunostaining was performed using an anti-PgR antibody (Rabbit antibody manufactured by Ventana), an evaluation slide was prepared and obtained by performing the same method as in Example 11. The stained image of the immunostaining and the fluorescent stained image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 16 In Example 15, except that the second immunostaining was performed on the same liver tissue slide as the first immunostaining, an evaluation slide was prepared by performing the same method as in Example 13, and the obtained first immunity was obtained. The stained image of the staining and the fluorescent staining image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 17 In Example 1, except that the first immunostaining was performed using an anti-CK7 antibody (mouse antibody manufactured by Acris Antibodies), an evaluation slide was prepared and obtained by performing the same method as in Example 1. A stained image of the first immunostaining and a fluorescent stained image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 18 In Example 17, except that the second immunostaining was performed on the same liver tissue slide as that of the first immunostaining, an evaluation slide was prepared by performing the same method as in Example 17, and the obtained first immunity was obtained. The stained image of the staining and the fluorescent staining image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 19 In Example 17, except that the second immunostaining was performed using an anti-VEGFR-1 antibody (abcam antibody rabbit antibody), an evaluation slide was prepared and obtained by performing the same method as in Example 17. A stained image of the first immunostaining and a fluorescent stained image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 20 In Example 19, except that the second immunostaining was performed on the same liver tissue slide as the first immunostaining, an evaluation slide was prepared by performing the same method as in Example 19, and the obtained first immunity The stained image of the staining and the fluorescent staining image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 21 In Example 17, except that the second immunostaining was performed using an anti-VEGFR-3 antibody (abcam antibody rabbit antibody), an evaluation slide was prepared and obtained by performing the same method as in Example 17. A stained image of the first immunostaining and a fluorescent stained image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 22 In Example 21, except that the second immunostaining was performed on the same liver tissue slide as the first immunostaining, an evaluation slide was prepared by performing the same method as in Example 21, and the obtained first immunity The stained image of the staining and the fluorescent staining image of the second immunostaining were evaluated. The results are shown in Table 1-1.
  • Example 1 In Example 1, the first immunostaining was not performed, only the second immunostaining was performed, and the slide was evaluated. The evaluation results of the acquired stained images are shown in Table 1-2.
  • Example 2 In Example 2, except that the second immunostaining was carried out using Streptavidin, Alexa Fluor (registered trademark) 594 conjugate (manufactured by Invitrogen) instead of streptavidin-conjugated SulfoRhodamine 101 dye-encapsulated melamine nanoparticles. A similar method was performed to produce an evaluation slide. The second immunostaining method using Streptavidin, Alexa Fluor 594 conjugate (manufactured by Invitrogen) followed the method described in the product manual of Invitrogen. The resulting evaluation slide was evaluated. The evaluation results are shown in Table 1-2.
  • Example 3 In Example 3, the first immunostaining was not performed, only the second immunostaining was performed, and the slide was evaluated. The evaluation results of the acquired stained images are shown in Table 1-2.
  • Example 4 In Example 4, the same method as in Example 4 was used, except that the second immunostaining was performed using Streptavidin, Alexa Fluor 594 conjugate (manufactured by Invitrogen) instead of streptavidin-conjugated SulfoRhodamine 101 dye-encapsulated melamine nanoparticles.
  • An evaluation slide was prepared by performing. The second immunostaining method using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) is as described in Comparative Example 2. The resulting evaluation slide was evaluated. The evaluation results are shown in Table 1-2.
  • Example 5 In Example 5, the first immunostaining was not performed, only the second immunostaining was performed, and the slide was evaluated. The evaluation results of the acquired stained images are shown in Table 1-2.
  • Example 6 the second immunostaining was performed using Streptavidin, Alexa Fluor 594 conjugate (manufactured by Invitrogen) instead of streptavidin-conjugated SulfoRhodamine 101 dye-encapsulated melamine nanoparticles.
  • An evaluation slide was prepared by performing. The second immunostaining method using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) is as described in Comparative Example 2. The resulting evaluation slide was evaluated. The evaluation results are shown in Table 1-2.
  • Example 7 In Example 7, the first immunostaining was not performed, only the second immunostaining was performed, and the slide was evaluated. The evaluation results of the acquired stained images are shown in Table 1-2.
  • Example 8 In Example 8, the same method as in Example 6 was used, except that the second immunostaining was performed using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) instead of streptavidin-conjugated SulfoRhodamine 101 dye-encapsulated melamine nanoparticles. An evaluation slide was prepared by performing. The second immunostaining method using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) is as described in Comparative Example 2. The resulting evaluation slide was evaluated. The evaluation results are shown in Table 1-2.
  • Example 9 In Example 9, the first immunostaining was not performed, only the second immunostaining was performed, and the slide was evaluated. The evaluation results of the acquired stained images are shown in Table 1-2.
  • Example 10 In Example 10, the same method as in Example 10 was used, except that the second immunostaining was performed using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) instead of streptavidin-conjugated SulfoRhodamine 101 dye-encapsulated melamine nanoparticles.
  • An evaluation slide was prepared by performing. The second immunostaining method using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) is as described in Comparative Example 2. The resulting evaluation slide was evaluated. The evaluation results are shown in Table 1-2.
  • Example 11 In Example 11, the first immunostaining was not performed, only the second immunostaining was performed, and the slide was evaluated. The evaluation results of the acquired stained images are shown in Table 1-2.
  • Example 12 In Example 12, the same method as in Example 10 was performed, except that the second immunostaining was performed using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) instead of streptavidin-conjugated SulfoRhodamine 101 dye-encapsulated melamine nanoparticles.
  • An evaluation slide was prepared by performing. The second immunostaining method using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) is as described in Comparative Example 2. The resulting evaluation slide was evaluated. The evaluation results are shown in Table 1-2.
  • Example 13 In Example 13, the first immunostaining was not performed, only the second immunostaining was performed, and the slide was evaluated. The evaluation results of the acquired stained images are shown in Table 1-2.
  • Example 14 In Example 14, the same method as in Example 10 was carried out except that the second immunostaining was performed using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) instead of streptavidin-conjugated SulfoRhodamine 101 dye-encapsulated melamine nanoparticles.
  • An evaluation slide was prepared by performing. The second immunostaining method using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) is as described in Comparative Example 2. The resulting evaluation slide was evaluated. The evaluation results are shown in Table 1-2.
  • Example 15 In Example 15, the first immunostaining was not performed, only the second immunostaining was performed, and the slide was evaluated. The evaluation results of the acquired stained images are shown in Table 1-2.
  • Example 16 a second immunostaining was performed using Streptavidin, Alexa Fluor 594 conjugate (manufactured by Invitrogen) instead of streptavidin-conjugated SulfoRhodamine 101 dye-encapsulated melamine nanoparticles.
  • An evaluation slide was prepared by performing. The second immunostaining method using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) is as described in Comparative Example 2. The resulting evaluation slide was evaluated. The evaluation results are shown in Table 1-2.
  • Example 17 In Example 17, the first immunostaining was not performed, only the second immunostaining was performed, and the slide was evaluated. The evaluation results of the acquired stained images are shown in Table 1-2.
  • Example 18 In Example 18, the same method as in Example 18 was used, except that the second immunostaining was performed using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) instead of streptavidin-conjugated SulfoRhodamine 101 dye-encapsulated melamine nanoparticles.
  • An evaluation slide was prepared by performing. The second immunostaining method using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) is as described in Comparative Example 2. The resulting evaluation slide was evaluated. The evaluation results are shown in Table 1-2.
  • Example 19 In Example 19, the first immunostaining was not performed, only the second immunostaining was performed, and the slide was evaluated. The evaluation results of the acquired stained images are shown in Table 1-2.
  • Example 20 In Example 20, the same method as in Example 20 was performed except that the second immunostaining was performed using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) instead of streptavidin-conjugated SulfoRhodamine 101 dye-encapsulated melamine nanoparticles.
  • An evaluation slide was prepared by performing. The second immunostaining method using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) is as described in Comparative Example 2. The resulting evaluation slide was evaluated. The evaluation results are shown in Table 1-2.
  • Example 21 In Example 21, the first immunostaining was not performed, only the second immunostaining was performed, and the slide was evaluated. The evaluation results of the acquired stained images are shown in Table 1-2.
  • Example 22 In Example 22, the same method as in Example 22 was performed except that the second immunostaining was performed using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) instead of streptavidin-conjugated SulfoRhodamine 101 dye-encapsulated melamine nanoparticles.
  • An evaluation slide was prepared by performing. The second immunostaining method using Streptavidin, Alexa Fluor 594 conjugate (Invitrogen) is as described in Comparative Example 2. The resulting evaluation slide was evaluated. The evaluation results are shown in Table 1-2.
  • Vascular endothelial cell 2 ... VEGFR2

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 本発明の課題は、採取した組織切片において、特定の組織・細胞を検出し、その特定の組織・細胞上に発現している目的の生体物質の発現位置と発現量の両者を正確に特定する方法を提供することにある。本発明の組織切片における生体物質の定量法は、(1)前記組織切片における第一の生体物質を特異的に染色する明視野観察可能な免疫染色(第一の免疫染色)を行い、(2)前記組織切片における第二の生体物質を特異的に染色する蛍光物質内包ナノ粒子による免疫染色(第二の免疫染色)を行い、(3)第一の免疫染色の染色像の位置と第二の免疫染色の染色像の位置を比較することによって、前記組織切片における第二の生体物質の発現位置を特定し、(4)第二の免疫染色の染色像の蛍光量を測定することによって、第二の生体物質の発現量を特定する、ことを含む。

Description

組織切片における生体物質の定量法
 本発明は、組織切片における生体物質の定量法に関する。詳しくは、本発明は、免疫染色を用いた組織切片における生体物質の定量法に関する。
 病理診断の分野においては、採取した組織切片の標本から特定の細胞や組織を検出し、その特定の細胞や組織上に病変と関連性を有する物質がどの程度発現しているかを定量することは有用であり、このために免疫組織化学を用いた方法が検討されている。
 免疫組織化学(Immunohistochemistry; IHC)は、抗体を用いて組織サンプル中の抗原を検出する組織学(組織化学)的手法として広く知られている。この免疫組織化学は、本来不可視である抗原抗体反応を可視化するために発色操作を行う観点から、「免疫染色」などと呼ばれることがある(以下、本明細書においては、この免疫組織化学に対して「免疫組織化学染色」という語を用いることもある。)。抗原抗体反応の所在を可視化するという特徴により、免疫組織化学は、組織サンプル中の生体物質の所在を検出する目的で、医学及び生命化学の分野において広く用いられている。
 IHC法では、抗原抗体反応の所在を可視化する方法として、明視野観察可能な染色方法が広く用いられており、具体的には、酵素によって色素沈着性の物質に変換される基質を用いる手法が一般的に用いられている。例えば、臨床現場においては、組織サンプル中の対象とする抗原に結合した抗体を、ペルオキシダーゼ(Peroxidase;POD)とジアミノベンジジン(Diaminobenzidine;DAB)を用いて染色して、可視化し、この可視化された抗体を通じて特定の抗原の発現量を、明視野観察により検出することが広く行われている。この明視野観察によれば、後述の発光物質を用いる方法に比べ、その染色の色味等のアナログ的に得られる情報を総合的に判断することにより、標的とする分子についてより詳細な情報が得られるという利点がある。この免疫染色方法を用いて細胞腫の判別や標本における細胞腫の位置を特定する方法として、細胞に特異的に発現するマーカーを標的にした免疫染色が汎用技術となっている。
 免疫組織化学を用いて、組織切片における目的の生体物質の発現レベルを高精度に評価する方法として、蛍光物質内包ナノ粒子を用いて免疫染色し、発生する蛍光の輝点ドットを検出して、生体物質の発現レベルを評価する方法が知られている(特許文献1)。この方法では、蛍光物質内包ナノ粒子を用いることで目的の生体物質に対応する輝度分布を計測することができるが、組織切片の中の特定の組織・細胞と目的の生体物質との位置関係を特定することは難しく、特定の組織・細胞上に発現した目的の生体物質を選択して輝度分布を計測することは困難であった。
 また、同一組織切片について、酵素抗体法(酵素反応を用いたDAB染色)による明視野観察可能な染色と蛍光抗体法(蛍光色素を用いた染色)による蛍光色素染色の同時染色を行う方法も報告されている(非特許文献1及び2)。この方法では、蛍光色素を用いて目的の生体物質を定量しているが、生体物質の発現量が少ない箇所においては、十分な蛍光強度を得ることができないため、目的の生体物質を定量することが難しい場合がある。例えば、酵素抗体法でKi-67陽性細胞を染色し、蛍光抗体法でサイトケラチンを蛍光染色した例では、蛍光量が不足しサイトケラチンの蛍光観察が困難な例が報告されている(非特許文献2)。
 なお、蛍光多重染色によるタンパク質定量法として、定量の目的蛋白質と対照蛋白質をそれぞれ異なる蛍光色素で標識した抗体を用いて染色し、それぞれの蛋白質の総蛍光強度を測定し、両者の比から目的蛋白質を定量する方法も提案されている(特許文献2)。
 以上の通り、採取した組織切片の中の特定の組織や細胞を検出し、その特定の組織・細胞上に発現している目的の生体物質を定量する方法については、発現位置と発現量の両者を更に正確に特定する方法が望まれている。
特開2013-088296号公報 特開2008-268167号公報
Tuominen, V.; Ruotoisteumaki, S.; Viitanen, A.; Jumppanen, M. and Isola, J; Breast Cancer Research 2010, 12:R56, "ImmunoRatio-F: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67" 「URL: http://mitel.dimi.uniud.it/tp2012/presentations/A8-Isola.pdf」 Vilppu Tuominen, Sofia Heinonen, Jorma Isola, "ImmunoRatio-F: image analysis of Ki-67 using cytokeratin immunofluoreccence correction"
 本発明の課題は、採取した組織切片において、特定の組織・細胞を検出し、その特定の組織・細胞上に発現している目的の生体物質の発現位置と発現量の両者を正確に特定する方法を提供することにある。
 本発明者らは、同じ組織切片について、特定の組織・細胞を特定するための生体物質(第一の生体物質)と発現量を定量する目的の生体物質(第二の生体物質)を別々の方法で染色し、両者の染色像の位置を比較することによって目的の生体物質(第二の生体物質)の発現位置を正確に特定することができ、また、目的の生体物質(第二の生体物質)を蛍光物質内包ナノ粒子で染色することによって発現量が少ない場合でも正確に定量できることを見出し、本発明を完成させた。
 すなわち、本発明は以下の項の通りである。
 [1]
 組織切片における生体物質の定量法であって、
(1)前記組織切片における第一の生体物質を特異的に染色する明視野観察可能な免疫染色(第一の免疫染色)を行い、
(2)前記組織切片における第二の生体物質を特異的に染色する蛍光物質内包ナノ粒子による免疫染色(第二の免疫染色)を行い、
(3)第一の免疫染色の染色像の位置と第二の免疫染色の染色像の位置を比較することによって、前記組織切片における第二の生体物質の発現位置を特定し、
(4)第二の免疫染色の染色像の蛍光量を測定することによって、第二の生体物質の発現量を特定する、
ことを含む定量法。
 [2]
 前記の第一の免疫染色の染色像と前記の第二の免疫染色の染色像の重なった位置について、前記の第二の免疫染色の染色像の蛍光量を測定する、[1]に記載の定量法。
 [3]
 前記の第一の免疫染色と前記の第二の免疫染色を同一の組織切片について行う、[1]又は[2]に記載の定量法。
 本発明によれば、組織切片の特定の組織・細胞を検出し、その特定の組織・細胞上に発現している目的の生体物質の発現位置と発現量の両者を正確に特定する方法を提供することができる。
 すなわち、第一の生体物質の明視野観察可能な染色像によって、特定の組織・細胞を検出し、第一の生体物質の染色像の位置と第二の生体物質の蛍光染色像(輝点数、輝度分布)の位置の重なった部分について、第二の生体物質の蛍光染色像の輝点、輝度分布を測定することによって、特定の組織・細胞上に発現している第二の生体物質(目的の生体物質)を選択して定量することができる。そして、第二の生体物質の染色は、蛍光物質内包ナノ粒子を用いて染色していることから、第二の生体物質の発現量が少なくても、高い検出力(感度)が得られる。
本発明の実施例2の明視野観察可能な免疫染色の染色画像である(組織切片:ヒト肝臓組織、免疫染色:CD31抗体、色素:DAB)。 本発明の実施例2の蛍光物質内包ナノ粒子による免疫染色の染色画像である(組織切片:上記の図1と同じヒト肝臓組織、免疫染色:VEGFR2抗体、色素:SulfoRhodamine101内包ナノ粒子)。
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
 1.検出対象物質、定量対象物質
 本発明は、採取した組織切片において、特定の組織・細胞(以下、検出対象物という)を検出し、検出対象物上に発現している目的の生体物質(以下、定量対象物質という)の発現位置と発現量の両者を正確に特定する方法である。本発明で対象とする組織切片、検出対象物、定量対象物の組合せは、検査の目的に応じて選べばよく、例えば、肝臓組織切片における血管内皮細胞上に発現したVEGFR-1、VEGFR-2、VEGFR-3等の定量、食道組織切片におけるリンパ管内皮細胞上に発現したVEGFR-1、VEGFR-2、VEGFR-3等の定量、乳房組織切片における上皮細胞上に発現したKi67の定量等が挙げられる。
 2.組織切片
 本発明における組織切片は、免疫染色方法が適用できる切片であれば特に限定されず、その作製方法は、公知の方法を用いることができる。例えば、病理切片として汎用されているパラフィン包埋切片、その他を組織切片として用いることができる。
 3.免疫染色
 本発明では、組織切片における第一の生体物質を特異的に染色する明視野観察可能な免疫染色(第一の免疫染色)と、組織切片における第二の生体物質を特異的に染色する蛍光物質内包ナノ粒子による免疫染色(第二の免疫染色)とを行う。すなわち、検出対象物は、第一の免疫染色の染色像によって検出し、定量対象物質は、第二の免疫染色の蛍光染色像の輝点、輝度分布によって定量する。
 この場合、免疫染色は、第一の生体物質又は第二の生体物質(以下、標的物質という)に特異的に結合する抗体と可視化できる物質(以下、標識体という)が結合した「標識化プローブ」によって実施する。すなわち、標識化プローブは標的物質に対する抗体と標識体が結合したものである。この場合の抗体と標識体の結合方法には特に制限はなく、直接結合している場合の外に、2次抗体を介して結合している場合等も含まれる。
 以下、第一の免疫染色を行うための標識化プローブを第一の標識化プローブといい、第二の免疫染色を行うための標識化プローブを第二の標識化プローブという。
 なお、本発明において、第一の標識化プローブと第二の標識化プローブは、互いに、それぞれの標的物質との抗原抗体反応を妨げないものであることが必要である。
 (1)第一の標識化プローブ
 (a)第一の生体物質
 第一の生体物質は、検出対象物における免疫染色(第一の免疫染色)の標的物質である。検査の目的に応じた程度に検出対象物に明視野観察可能な染色がされるように、検出対象物である組織・細胞上の抗原となる物質を第一の生体物質として選べばよい。例えば、血管内皮細胞の免疫染色にはCD31やCD34等を第一の生体物質とし、リンパ管内皮細胞の免疫染色にはポドプラニン等を第一の生体物質とし、上皮細胞の免疫染色にはサイトケラチン等を第一の生体物質とすればよい。
 (b)第一の生体物質と結合する抗体
 第一の生体物質と特異的に結合する抗体は、通常の方法を用いて取得することができる。
 (c)標識体
 標識体は、組織切片上で標的物質に結合した標識化プローブを可視化するためのものであり、第一の標識化プローブに含まれる標識体は、明視野観察可能な染色をするための標識体である。
 本発明において、「明視野観察可能な染色」とは、外部からのエネルギーを受けて励起させることなく、通常の光学顕微鏡により目視可能な形で直接可視化されている(つまり可視光を反射する)染色をいう。「目視可能な形で直接可視化」とは、現像等の二次的な操作なしに、標的物質とプローブの間の特異的結合反応の所在を直接観察することができる状態にすることをいう。
 このような第一の標識化プローブに含まれる標識体の例は次の通りである。
 (色素沈着誘導標識体)
 本発明の明視野観察を可能とする標識体の例としては、色素沈着を誘導する物質(色素沈着誘導標識体)、すなわち、基質を変化させて色素沈着性の化学種を生じさせる酵素が挙げられる。このような酵素として、西洋ワサビペルオキシダーゼ(HRP)等のペルオキシダーゼ、アルカリホスファターゼ(ALP)、グルコシダーゼ等の酵素を挙げることができる。
 (色素沈着に用いられる基質)
 上記酵素により色素沈着性の物質に変換される基質として、色原性基質変換法に基づく従来公知のアッセイ法において、色原性基質として一般的に用いられる基質を用いることができる。このような基質の例として、西洋ワサビペルオキシダーゼ(HRP)用基質などの酸化還元酵素用基質、アルカリホスファターゼ(ALP)用基質などのフォスファターゼ用基質、および、β-ガラクトシダーゼ用基質などのグリコシダーゼ用基質が挙げられるが、これらに限定されるものではない。
 HRPによる酵素反応に用いられる基質の具体例として、3,3'-ジアミノベンジジン(DAB)、3-p-ヒドロキシフェニルプロピオン酸(HPPA)、ECL plus(商標)、4-クロロ-1-ナフトール/4-クロロナフタレン-1-オールなどが挙げられる。この中では、通常核染色に用いられるヘマトキシリン(青)との色味の違いや保存安定性の観点からDABが汎用されており、好ましく用いられる。
 また、アルカリフォスファターゼ(ALP)による酵素反応に用いられる基質として、5-ブロモ-4-クロロ-3-インドリルホスフェート/ニトロブルーテトラゾリウム塩(BCIP/NBT)、4-メチルウンベリフェリルフォスフェート(MUP)、6,8-ジフルオロ-4-メチルウンベリフェリルフォスフェート(DiFMUP)、AttoPhos(登録商標)、9H-(1,3-ジクロロ-9,9-ジメチルアクリジン-2-オン-7-イル)フォスフェート(DDAOP)などが挙げられる。
 β-ガラクトシダーゼによる酵素反応に用いられる基質として、5-ブロモ-4-クロロ-3-インドリル-β-D-ガラクトピラノシド(X-gal)、9H-(1,3-ジクロロ-9,9-ジメチルアクリジン-2-オン-7-イル)β-D-ガラクトピラノシド(DDAOG)、4-メチルウンベリフェリル-β-D-ガラクトシド(MUG)などが挙げられる。
 (d)第一の標識化プローブ
 第一の標識化プローブは、前記の第一の生体物質と結合する抗体と前記の標識体とを結合させることにより得られる。この場合の抗体と標識体の結合方法に特に制限はなく、直接結合している場合の外に、2次抗体を介して結合している場合等も含まれることは前記の通りである。
 このような抗体と標識体の結合は、通常用いられている方法に従って、抗体に標識体を結合させることにより得ることができる。具体的な標識化方法としては、前記抗体に対して特異的な親和性を有する抗体(二次抗体)を介する方法、ビオチン-アビジン法、チオール基-マレイミド基のカップリング反応法、既存の化学リンカーを用いる方法、架橋剤(1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)等)を用いた架橋反応法、イオン結合法等を挙げることができる(後記の実施例を参照)。
 (2)第二の標識化プローブ
 (a)第二の生体物質
 第二の生体物質は、定量対象物質における免疫染色(第二の免疫染色)の標的物質である。検査の目的に応じた定量が行われるように、定量対象物質上の抗原となる物質を選べばよいが、一般的には定量対象物質は蛋白質であり、その場合は定量対象物質自体が第二の生体物質である。第二の生体物質の例としては、血管内皮細胞増殖因子受容体(VEGFR-1、VEGFR-2、VEGFR-3)、細胞増殖関連蛋白Ki-67等が挙げられる。
 (b)第二の生体物質と結合する抗体
 第二の生体物質と特異的に結合する抗体は、通常の方法を用いて取得することができる。
 (c)標識体
 標識体は、組織切片上で標的物質に結合した標識化プローブを可視化するためのものであり、第二の標識化プローブに含まれる標識体は、蛍光物質内包ナノ粒子である。
 蛍光物質内包ナノ粒子とは、有機物または無機物でできた粒子(母体)中に蛍光物質が2個以上(2分子以上)内包された構造を有するナノサイズの粒子をいう。本発明では、蛍光物質は蛍光色素又は蛍光ナノ粒子であり、蛍光色素内包ナノ粒子と蛍光ナノ粒子内包ナノ粒子がある。本発明で用いる蛍光物質内包ナノ粒子(蛍光色素内包ナノ粒子、蛍光ナノ粒子内包ナノ粒子)は、目的に応じて、蛍光物質としての蛍光色素又は蛍光ナノ粒子、及び粒子を形成する有機物又は無機物を原料として選択し、公知の方法により作製することができる。
 粒子を形成する有機物または無機物としては、例えば、ポリスチレン、ポリアミド、ポリ乳酸、ポリアクリロニトリル、ポリグリシジルメタクリレート、ポリメラミン、ポリウレア、ポリベンゾグアナミン、ポリフラン、ポリキシレン、フェノール樹脂、多糖、シリカ等、安定的に蛍光物質を内包できるものが挙げられる。蛍光物質をこのような粒子中に内包させることにより、蛍光色素単独よりも励起光の照射による劣化が起こりにくく(耐光性が強い)、また、1粒子中に複数個の蛍光物質が内包されることにより、1個の粒子から発光する蛍光強度(輝度)を高めることができる。
 (蛍光色素内包ナノ粒子)
 蛍光色素内包ナノ粒子は、前記の粒子1個に蛍光色素を2分子以上内包させたものである。内包させる蛍光色素には特に制限がなく、目的とする励起光、蛍光の波長その他に応じて選べばよい。
 内包させる蛍光色素の例としては、ローダミン系色素分子、スクアリリウム系色素分子、シアニン系色素分子、芳香環系色素分子、オキサジン系色素分子、カルボピロニン系色素分子、ピロメセン系色素分子、等の中から選択することができる。あるいはAlexa Fluor(登録商標、インビトロジェン社製)系色素分子、BODIPY(登録商標、インビトロジェン社製)系色素分子、Cy(登録商標、GEヘルスケア社製)系色素分子、DY系色素分子(登録商標、DYOMICS社製)、HiLyte(登録商標、アナスペック社製)系色素分子、DyLight(登録商標、サーモサイエンティフィック社製)系色素分子、ATTO(登録商標、ATTO-TEC社製)系色素分子、MFP(登録商標、Mobitec社製)系色素分子等の中から選択することができる。このような色素分子の総称は、化合物中の主要な構造(骨格)または登録商標に基づき命名されており、それぞれに属する蛍光色素の範囲は当業者であれば過度の試行錯誤を要することなく適切に把握できるものである。
 ローダミン系色素分子の具体例としては、5-カルボキシ-ローダミン、テキサスレッド、スルホローダミン101、その他が挙げられる。スクアリリウム系色素分子の具体例としては、SRfluor 680-Carboxylate、その他が挙げられる。シアニン系色素分子の具体例としては、1-Butyl-2-[5-(1-butyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-penta-1,3-dienyl]-3,3-dimethyl-3eiti-indolium hexafluorophosphate、その他が挙げられる。芳香環系色素分子の具体例としては、N, N-Bis-(2,6-diisopropylphenyl)-1,6,7,12-(4-tert-butylphenoxy)-perylen-3,4,9,10-tetracarbonacid diimide、その他が挙げられる。オキサジン系色素分子の具体例としては、Cresyl violet、その他が挙げられる。カルボピロニン系色素分子の具体例としては、CARBOPYRONIN 149、その他が挙げられる。ピロメセン系色素分子の具体例としては、PYRROMETHENE650、その他が挙げられる。
 また、Alexa Fluor系色素分子の具体例としては、Alexa Fluor 555(インビトロジェン社製)、その他が挙げられる。BODIPY系色素分子の具体例としては、BODIPY FL(インビトロジェン社製)、その他が挙げられる。Cy系色素分子の具体例としては、Cy3.5(GEヘルスケア社製)、その他が挙げられる。DY系色素分子の具体例としては、DY-590(DYOMICS社製)、その他が挙げられる。HiLyte系色素分子の具体例としては、HiLyte594(アナスペック社製)、その他が挙げられる。DyLight系色素分子の具体例としては、DyLight 594(サーモサイエンティフィック社製)、その他が挙げられる。ATTO系色素分子の具体例としては、ATTO590(ATTO-TEC社製)、その他が挙げられる。MFP系色素分子の具体例としては、MFP590(Mobitec社製)、その他が挙げられる。
 その他色素としては、C-Phycocyanin、Phycocyanin、APC(Allophycocyanin)、APC-XL、NorthernLights637(R&D Systems社製)、等が挙げられる。
 また、これらの誘導体(蛍光色素として機能しうるもの、例えば、公知の誘導体)も蛍光色素の具体例として挙げることができる。
 蛍光色素内包ナノ粒子の製造方法は特に限定されるものではなく、通常用いられている方法で製造される。例えば、粒子原料である樹脂のモノマーに蛍光色素分子を結合させた後に重合し粒子を合成する方法、重合した樹脂の粒子に蛍光色素を吸着又は結合させて導入する方法、樹脂のモノマーと蛍光色素とを混合して重合と蛍光色素の結合を同時に行う方法等がある。これらの方法で製造した蛍光色素内包ナノ粒子は、通常、1粒子中に複数個の蛍光色素分子が内包される。
 蛍光色素内包ナノ粒子の平均粒径は特に限定されないが、通常10~500nmであり、好ましくは50~200nmである。また、粒径のばらつきを示す変動係数も特に限定されないが、通常は20%以下であり、好ましくは5~15%である。
 なお、蛍光色素内包ナノ粒子の粒径は、走査型電子顕微鏡(SEM)を用いて電子顕微鏡写真を撮影し、蛍光色素内包ナノ粒子の断面積を計測し、その計測値を相当する円の面積としたときの直径(面積円相当径)として測定することができる。蛍光色素内包ナノ粒子の集団の粒子サイズの平均(平均粒径)および変動係数は、十分な数(たとえば1000個)の蛍光色素内包ナノ粒子について上記のようにして粒子サイズ(粒径)を測定した後、平均粒径はその算術平均として算出され、変動係数は式:100×粒径の標準偏差/平均粒径、により算出される。
 (蛍光ナノ粒子内包粒子)
 蛍光ナノ粒子内包粒子は、前記の粒子1個に蛍光ナノ粒子を2個以上内包させたものである。内包させる蛍光ナノ粒子には特に制限がなく、目的とする励起光、蛍光の波長その他に応じて選べばよい。
 内包させる蛍光ナノ粒子は、粒子サイズが1~500nmのものであり、好ましくは10~200nmである。この蛍光ナノ粒子は、半導体または蛍光体から構成される。半導体は例えばII-VI族半導体であるZnSe、ZnTe、CdSe、CdTe、PbS、PbSe、PbTe等やIII-V族半導体であるAlAs、AlSb、GaP、GaAs、GaSb、InP、InAs、InSb等を用いることができ、毒性の観点から、GaPやInPを好適に用いることができる。蛍光体は、例えば母体にY23やYVO4、ZnO、ZnS等を用い、発光中心にEuやNd等を用いることができる。蛍光ナノ粒子の粒子サイズ、母体組成、不純物量を調整することで観察に適した励起波長とする。
 このような蛍光ナノ粒子を前記の粒子に内包させて蛍光ナノ粒子内包ナノ粒子を製造する方法は、特に限定されるものではなく、通常用いられている方法で製造される。例えば、粒子原料である樹脂のモノマーに蛍光ナノ粒子を結合させた後に重合し粒子を合成する方法、重合した樹脂の粒子に蛍光ナノ粒子を吸着又は結合させて導入する方法、樹脂のモノマーと蛍光ナノ粒子とを混合して重合と蛍光ナノ粒子の結合を同時に行う方法等がある。これらの方法で製造した蛍光ナノ粒子内包ナノ粒子は、通常、1粒子中に複数個の蛍光ナノ粒子が内包される。内包される蛍光ナノ粒子の粒子サイズ、母体組成、不純物量を調整することで観察に適した励起波長とする。蛍光ナノ粒子内包粒子のサイズは、通常10~500nmであり、好ましくは50~200nmである。
 なお、蛍光ナノ粒子内包ナノ粒子の粒径の測定は、前記の蛍光色素内包ナノ粒子の粒径の測定と同様に実施することができる。
 (d)第二の標識化プローブ
 第二の標識化プローブは、前記の第二の生体物質と結合する抗体と前記の標識体とを結合させることにより得られる。この場合の抗体と標識体の結合方法に特に制限はなく、直接結合している場合の外に、2次抗体を介して結合している場合等も含まれることは前記の通りである。
 このような抗体と標識体の結合は、通常用いられている方法に従って、抗体に標識体を結合させることにより得ることができる。具体的な標識化方法としては、前記抗体に対して特異的な親和性を有する抗体(二次抗体)を介する方法、ビオチン-アビジン法、チオール基-マレイミド基のカップリング反応法、既存の化学リンカーを用いる方法、架橋剤(1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)等)を用いた架橋反応法、イオン結合法等を挙げることができる(後記の実施例を参照)。
 (3)免疫染色
 本発明では、組織切片について、前記の第一の免疫染色及び前記の第二の免疫染色を実施する。この場合の両免疫染色は、それぞれの染色像の位置関係を比較して検出対象物上に発現している定量対象物質の発現位置を特定するために、同一組織切片について行うことが好ましいが、切片の切り出しにおいて隣接する組織切片についてそれぞれの免疫染色を実施することも可能である。
 免疫染色の方法は、通常用いられている方法を実施すればよい。
 4.染色像の位置の比較
 本発明では、第一の免疫染色の染色像の位置と第二の免疫染色の染色像の位置を比較することによって、組織切片における第二の生体物質の発現位置を特定する。ここで、第一の免疫染色の染色像は明視野観察可能な染色像であり、第二の免疫染色の染色像は蛍光染色の染色像であることは前記の通りである。従って、第一の免疫染色の染色像は光学顕微鏡によって観察し、第二の免疫染色の染色像は蛍光顕微鏡によって観察する。両染色像の位置の比較は、第二の免疫染色の輝点、輝度分布が第一の免疫染色の染色像のどの位置に該当するかが判断できる方法であれば特に制限はない。例えば、第一の免疫染色の染色像の画像と第二の免疫染色の染色像の画像をコンピューターに取り込み、両画像の位置関係を比較することによって、第二の免疫染色の輝点、輝度分布と第一の免疫染色の染色像との位置関係を判断することができる。このような解析ソフトとしては、例えば、市販画像解析ソフトImage Jが挙げられる。
 第一の免疫染色によって組織切片上の検出対象物が特定されるので、前記の両染色像の位置の比較により両者の位置関係が判断できれば、組織切片上の検出対象物上に発現している定量対象物質(第二の生体物質)の免疫染色の輝点、輝度分布を特定することができる。すなわち、第一の免疫染色の染色像と第二の免疫染色の染色像の重なった位置における第二の免疫染色の輝点、輝度分布が、検出対象物上に発現している定量対象物質(第二の生体物質)の輝点、輝度分布である。
 5.定量対象物質(第二の生体物質)の発現量の特定
 検出対象物上に発現した定量対象物質(第二の生体物質)の発現量の特定は、前記で特定した第二の免疫染色の染色像の蛍光量を測定することによって行われる。この場合の蛍光量の測定とは、特定した輝点、輝度分布について、輝点数又は蛍光輝度を測定することである。
 輝点数、蛍光輝度の測定は、通常用いられている方法で測定すればよい。例えば、コンピューターに第二の免疫染色の染色像の画像を取り込んで、前記で特定した輝点、輝度分布について、解析ソフトを用いた演算手段による画像処理を行うことによって、輝点数又は蛍光輝度が測定される。このような解析ソフトの例として、市販画像解析ソフトである「ImageJ」や(株)ジーオングストローム社製の全輝点自動計測ソフト「G-Count」等がある。
 測定された輝点数又は蛍光輝度を、検体間で、あるいは標準検体と、比較することによって、採取した組織切片上の検出対象物上に発現している定量対象物質の発現量を特定することができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 [実施例1]
 (1)第一の生体物質に対する明視野観察可能な免疫染色(第一の免疫染色)
 肝臓組織スライド(Biomax社製T032a)をキシレンに浸漬し、パラフィンを除去後、クエン酸緩衝液(pH6.0)中15分間、オートクレーブ処理した。PBSを用いて洗浄後、10%ウサギ血清(ニチレイ社製)を添加し、室温下1時間放置した。
 PBSで洗浄後、抗CD31抗体(アブカム社製マウス抗体)を添加し、室温下30分間放置した。PBSで洗浄後、デキストランポリマーペルオキシダーゼ標識抗マウス抗体(ニチレイ社製)を添加し、室温下で30分間放置した。DAB基質キット(ニチレイ社製)を用いて、ジアミノベンジジン(DAB)を発色基質とする酵素を用いた免疫染色を行い、PBSを用いて洗浄した。
 エタノール、キシレンの順にスライドを浸漬させ、次いで封入剤(メルク社エンテランニュー)を添加した後、カバーガラスを載せ、評価スライドとした。
 (2)第二の生体物質に対する蛍光色素内包ナノ粒子を用いた免疫染色(第二の免疫染色)
 (a)抗体結合蛍光メラミン樹脂粒子(平均粒径150nm)の調製
 SulfoRhodamine101(シグマアルドリッチ社製)14.4mgを水22mLに加えて溶解した後、エマルゲン430(花王社製)の5%水溶液を2mL加えた。ホットスターラー上で撹拌しながら70℃に加熱した後、メラミン樹脂原料ニカラックMX-035(日本カーバイド工業社製)0.65gを加えた。ドデシルベンゼンスルホン酸(関東化学社製)の10%水溶液を680μL加え、70℃、50分間加熱撹拌した。その後、90℃に昇温して20分間加熱撹拌した。得られた粒子液から余剰の樹脂原料や色素等の不純物を取り除くため、純水による洗浄を行なった。遠心分離機(クボタ社製マイクロ冷却遠心機3740)にて20000Gで15分遠心分離し、上澄み除去後、超純水を加えて超音波照射し再分散した。遠心分離機、上澄み除去、超純水への再分散を5回繰り返した。
 得られた粒子0.1mgをEtOH1.5mL中に分散し、アミノプロピルトリメトキシシランLS-3150(信越化学工業社製)2μLを加えて8時間反応させて表面アミノ化処理を行なった。
 得られた色素内包ナノ粒子を、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl-[(N-maleomidopropionamid)-dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで末端にマレイミド基が付いた蛍光色素内包粒子を得た。
 一方、ストレプトアビジン(和光純薬工業社製)をN-succinimidyl S-acetylthioacetate(SATA)を用いてチオール基付加処理を行ったのち、ゲルろ過カラムによるろ過を行い、色素内包ナノ粒子に結合可能なストレプトアビジン溶液を得た。
 上記の蛍光ナノ粒子とストレプトアビジンとを、EDTAを2mM含有したPBS中で混合し、1時間反応させた。10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応ストレプトアビジン等を除去し、ストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子を得た。
 (b)病理染色液の調製
 前記のストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子(平均粒径150nm)をPBSにより0.06nMに調製し、病理染色液とした。
 (c)免疫染色
 前記(1)の肝臓組織スライドの組織切片と隣接する組織切片の肝臓組織スライドをキシレンに浸漬し、パラフィンを除去後、クエン酸緩衝液(pH6.0)中15分間、オートクレーブ処理した。PBSで洗浄後、10%ヤギ血清(ニチレイ社製)を添加し、室温下1時間放置した。PBSで洗浄後、抗VEGFR-2抗体(アブカム社製ウサギ抗体)を添加し、室温下30分間放置した。PBSで洗浄後、ビオチン標識抗ウサギ抗体(ニチレイ社製)を添加し、室温下で30分間放置した。これに、上記で調製した希釈後の病理染色液を添加し、室温下2時間反応させた後、PBSで洗浄を行った。
 エタノール、キシレンの順にスライドを浸漬させ、次いで封入剤(メルク社エンテランニュー)を添加した後、カバーガラスを載せ、評価スライドとした。
 (3)染色像の評価
 上記で作製した評価スライドについて、光学顕微鏡(カールツァイス社製)を用いて第一の免疫染色の染色画像を取得し、蛍光顕微鏡(カールツァイス社製)を用いて第二の免疫染色の蛍光染色画像を取得した。蛍光染色画像取得における励起波長は575~600nm、蛍光波長は612~682nmとした。
 取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例2]
 実施例1において、第二の免疫染色を第一の免疫染色と同じ肝臓組織スライドについて行った以外は、実施例1と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例3]
 実施例1において、第一の免疫染色を抗CD34抗体(ニチレイ社製マウス抗体)を用いて実施した以外は、実施例1と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例4]
 実施例3において、第二の免疫染色を第一の免疫染色と同じ肝臓組織スライドについて行った以外は、実施例3と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例5]
 実施例1において、第二の免疫染色を抗VEGFR-1抗体(アブカム社製ウサギ抗体)を用いて実施した以外は、実施例1と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例6]
 実施例5において、第二の免疫染色を第一の免疫染色と同じ肝臓組織スライドについて行った以外は、実施例5と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例7]
 実施例3において、第二の免疫染色を抗VEGFR-1抗体(アブカム社製ウサギ抗体)を用いて実施した以外は、実施例3と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例8]
 実施例7において、第二の免疫染色を第一の免疫染色と同じ肝臓組織スライドについて行った以外は、実施例7と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例9]
 実施例1において、第一の免疫染色を抗ポドプラニン抗体(医学生物学研究所社製マウス抗体)を用いて実施し、第二の免疫染色を抗VEGFR-1抗体(アブカム社製ウサギ抗体)を用いて実施した以外は、実施例1と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例10]
 実施例9において、第二の免疫染色を第一の免疫染色と同じ肝臓組織スライドについて行った以外は、実施例9と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例11]
 実施例1において、第一の免疫染色を抗Cytokeratin AE1/AE3抗体(ダコ社製マウス抗体)を用いて実施し、第二の免疫染色を抗Ki67抗体(ニチレイ製ウサギ抗体)を用いて実施した以外は、実施例1と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例12]
 実施例11において、第二の免疫染色を第一の免疫染色と同じ肝臓組織スライドについて行った以外は、実施例11と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例13]
 実施例11において、第二の免疫染色を抗ER抗体(ニチレイ社製ウサギ抗体)を用いて実施した以外は、実施例11と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例14]
 実施例13において、第二の免疫染色を第一の免疫染色と同じ肝臓組織スライドについて行った以外は、実施例13と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例15]
 実施例11において、第二の免疫染色を抗PgR抗体(ベンタナ社製ウサギ抗体)を用いて実施した以外は、実施例11と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例16]
 実施例15において、第二の免疫染色を第一の免疫染色と同じ肝臓組織スライドについて行った以外は、実施例13と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例17]
 実施例1において、第一の免疫染色を抗CK7抗体(アクリスアンチボディーズ社製マウス抗体)を用いて実施した以外は、実施例1と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例18]
 実施例17において、第二の免疫染色を第一の免疫染色と同じ肝臓組織スライドについて行った以外は、実施例17と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例19]
 実施例17において、第二の免疫染色を抗VEGFR-1抗体(アブカム社製ウサギ抗体)を用いて実施した以外は、実施例17と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例20]
 実施例19において、第二の免疫染色を第一の免疫染色と同じ肝臓組織スライドについて行った以外は、実施例19と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例21]
 実施例17において、第二の免疫染色を抗VEGFR-3抗体(アブカム社製ウサギ抗体)を用いて実施した以外は、実施例17と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [実施例22]
 実施例21において、第二の免疫染色を第一の免疫染色と同じ肝臓組織スライドについて行った以外は、実施例21と同様な方法を実施して評価スライドを作成し、取得した第一の免疫染色の染色画像及び第二の免疫染色の蛍光染色画像を評価した。結果を表1-1に示す。
 [比較例1]
 実施例1において、第一の免疫染色は実施せず、第二の免疫染色のみ実施し、評価スライドした。取得した染色画像の評価結果を表1-2に示す。
 [比較例2]
 実施例2において、第二の免疫染色をストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子の代わりにStreptavidin, Alexa Fluor(登録商標) 594 conjugate (インビトロジェン社製)を用いて実施した以外は、実施例2と同様な方法を実施して評価スライドを作製した。Streptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いた第二の免疫染色の実施方法は、インビトロジェン社の製品説明書の実施方法に従った。得られた評価スライドを評価した。評価結果を表1-2に示す。
 [比較例3]
 実施例3において、第一の免疫染色は実施せず、第二の免疫染色のみ実施し、評価スライドした。取得した染色画像の評価結果を表1-2に示す。
 [比較例4]
 実施例4において、第二の免疫染色をストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子の代わりにStreptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いて実施した以外は、実施例4と同様な方法を実施して評価スライドを作製した。Streptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いた第二の免疫染色の実施方法は比較例2に記載した通りである。得られた評価スライドを評価した。評価結果を表1-2に示す。
 [比較例5]
 実施例5において、第一の免疫染色は実施せず、第二の免疫染色のみ実施し、評価スライドした。取得した染色画像の評価結果を表1-2に示す。
 [比較例6]
 実施例6において、第二の免疫染色をストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子の代わりにStreptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いて実施した以外は、実施例6と同様な方法を実施して評価スライドを作製した。Streptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いた第二の免疫染色の実施方法は比較例2に記載した通りである。得られた評価スライドを評価した。評価結果を表1-2に示す。
 [比較例7]
 実施例7において、第一の免疫染色は実施せず、第二の免疫染色のみ実施し、評価スライドした。取得した染色画像の評価結果を表1-2に示す。
 [比較例8]
 実施例8において、第二の免疫染色をストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子の代わりにStreptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いて実施した以外は、実施例6と同様な方法を実施して評価スライドを作製した。Streptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いた第二の免疫染色の実施方法は比較例2に記載した通りである。得られた評価スライドを評価した。評価結果を表1-2に示す。
 [比較例9]
 実施例9において、第一の免疫染色は実施せず、第二の免疫染色のみ実施し、評価スライドした。取得した染色画像の評価結果を表1-2に示す。
 [比較例10]
 実施例10において、第二の免疫染色をストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子の代わりにStreptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いて実施した以外は、実施例10と同様な方法を実施して評価スライドを作製した。Streptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いた第二の免疫染色の実施方法は比較例2に記載した通りである。得られた評価スライドを評価した。評価結果を表1-2に示す。
 [比較例11]
 実施例11において、第一の免疫染色は実施せず、第二の免疫染色のみ実施し、評価スライドした。取得した染色画像の評価結果を表1-2に示す。
 [比較例12]
 実施例12において、第二の免疫染色をストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子の代わりにStreptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いて実施した以外は、実施例10と同様な方法を実施して評価スライドを作製した。Streptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いた第二の免疫染色の実施方法は比較例2に記載した通りである。得られた評価スライドを評価した。評価結果を表1-2に示す。
 [比較例13]
 実施例13において、第一の免疫染色は実施せず、第二の免疫染色のみ実施し、評価スライドした。取得した染色画像の評価結果を表1-2に示す。
 [比較例14]
 実施例14において、第二の免疫染色をストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子の代わりにStreptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いて実施した以外は、実施例10と同様な方法を実施して評価スライドを作製した。Streptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いた第二の免疫染色の実施方法は比較例2に記載した通りである。得られた評価スライドを評価した。評価結果を表1-2に示す。
 [比較例15]
 実施例15において、第一の免疫染色は実施せず、第二の免疫染色のみ実施し、評価スライドした。取得した染色画像の評価結果を表1-2に示す。
 [比較例16]
 実施例16において、第二の免疫染色をストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子の代わりにStreptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いて実施した以外は、実施例16と同様な方法を実施して評価スライドを作製した。Streptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いた第二の免疫染色の実施方法は比較例2に記載した通りである。得られた評価スライドを評価した。評価結果を表1-2に示す。
 [比較例17]
 実施例17において、第一の免疫染色は実施せず、第二の免疫染色のみ実施し、評価スライドした。取得した染色画像の評価結果を表1-2に示す。
 [比較例18]
 実施例18において、第二の免疫染色をストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子の代わりにStreptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いて実施した以外は、実施例18と同様な方法を実施して評価スライドを作製した。Streptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いた第二の免疫染色の実施方法は比較例2に記載した通りである。得られた評価スライドを評価した。評価結果を表1-2に示す。
 [比較例19]
 実施例19において、第一の免疫染色は実施せず、第二の免疫染色のみ実施し、評価スライドした。取得した染色画像の評価結果を表1-2に示す。
 [比較例20]
 実施例20において、第二の免疫染色をストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子の代わりにStreptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いて実施した以外は、実施例20と同様な方法を実施して評価スライドを作製した。Streptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いた第二の免疫染色の実施方法は比較例2に記載した通りである。得られた評価スライドを評価した。評価結果を表1-2に示す。
 [比較例21]
 実施例21において、第一の免疫染色は実施せず、第二の免疫染色のみ実施し、評価スライドした。取得した染色画像の評価結果を表1-2に示す。
 [比較例22]
 実施例22において、第二の免疫染色をストレプトアビジン結合SulfoRhodamine101色素内包メラミンナノ粒子の代わりにStreptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いて実施した以外は、実施例22と同様な方法を実施して評価スライドを作製した。Streptavidin, Alexa Fluor 594 conjugate (インビトロジェン社製)を用いた第二の免疫染色の実施方法は比較例2に記載した通りである。得られた評価スライドを評価した。評価結果を表1-2に示す。
 [評価スライドの評価結果]
 表1に示すように、隣接する別の組織切片の評価スライドを使用した場合であっても、第一の免疫染色の染色像と第二の組織切片の染色像を比較することにより、特定の組織、細胞上の第二の生体物質の発現位置(第二の免疫染色の蛍光染色画像の輝点、輝度分布の位置)を特定することができた(実施例)。また、同一の組織切片の評価スライドを使用した場合には、スライドを変えることなく、第二の生体物質の発現位置を容易かつ正確に特定することができた(実施例)。なお、第一の免疫染色を行わない場合は、特定の組織、細胞に対する第二の生体物質の発現位置を特定することは困難であった(比較例)。
 また、第二の生体物質の発現量(第二の免疫染色の蛍光染色画像の輝点、輝度分布の算出)については、第二の免疫染色に蛍光色素を用いた場合は蛍光量が少なく、蛍光輝度分布の算出は困難であったが(比較例)、蛍光色素内包ナノ粒子を用いた場合は十分な蛍光量が得られ、蛍光輝度分布の算出に問題は無かった(実施例)。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(注1)第一の免疫染色の染色像と第二の組織切片の染色像を比較することによる、特定の組織、細胞上の第二の生体物質の発現位置(第二の免疫染色の蛍光染色画像の輝点、輝度分布の位置):◎正確かつ容易に特定可能、○特定可能、×特定不可能
(注2)第二の生体物質の発現量(第二の免疫染色の蛍光染色画像の輝点、輝度分布の算出):◎輝度分布の算出が可能であり、かつその位置も特定可能、○輝度分布の算出は可能であるが、その位置の特定は不可能、×輝度分布の算出は不可能
1・・・血管内皮細胞
2・・・VEGFR2

Claims (3)

  1.  組織切片における生体物質の定量法であって、
    (1)前記組織切片における第一の生体物質を特異的に染色する明視野観察可能な免疫染色(第一の免疫染色)を行い、
    (2)前記組織切片における第二の生体物質を特異的に染色する蛍光物質内包ナノ粒子による免疫染色(第二の免疫染色)を行い、
    (3)第一の免疫染色の染色像の位置と第二の免疫染色の染色像の位置を比較することによって、前記組織切片における第二の生体物質の発現位置を特定し、
    (4)第二の免疫染色の染色像の蛍光量を測定することによって、第二の生体物質の発現量を特定する、
    ことを含む定量法。
  2.  前記の第一の免疫染色の染色像と前記の第二の免疫染色の染色像の重なった位置について、前記の第二の免疫染色の染色像の蛍光量を測定する、請求項1に記載の定量法。
  3.  前記の第一の免疫染色と前記の第二の免疫染色を同一の組織切片について行う、請求項1又は2に記載の定量法。
PCT/JP2014/074420 2013-09-26 2014-09-16 組織切片における生体物質の定量法 WO2015045962A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14847697.1A EP3040724B1 (en) 2013-09-26 2014-09-16 Method for determining quantity of biological material in tissue section
US15/024,216 US10352859B2 (en) 2013-09-26 2014-09-16 Method for determining quantity of biological material in tissue section
JP2015539129A JP6424826B2 (ja) 2013-09-26 2014-09-16 組織切片における生体物質の定量法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013199782 2013-09-26
JP2013-199782 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015045962A1 true WO2015045962A1 (ja) 2015-04-02

Family

ID=52743103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074420 WO2015045962A1 (ja) 2013-09-26 2014-09-16 組織切片における生体物質の定量法

Country Status (4)

Country Link
US (1) US10352859B2 (ja)
EP (1) EP3040724B1 (ja)
JP (1) JP6424826B2 (ja)
WO (1) WO2015045962A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146896A1 (ja) * 2014-03-24 2015-10-01 コニカミノルタ株式会社 多重免疫染色法に基づく生体物質の定量方法
WO2016117466A1 (ja) * 2015-01-22 2016-07-28 コニカミノルタ株式会社 生体物質定量方法、病理診断支援システム及びプログラム
JP2017015550A (ja) * 2015-07-01 2017-01-19 公益財団法人ヒューマンサイエンス振興財団 2重染色キット
WO2019188647A1 (ja) * 2018-03-30 2019-10-03 コニカミノルタ株式会社 画像処理方法、画像処理装置及びプログラム
WO2022024881A1 (ja) * 2020-07-31 2022-02-03 コニカミノルタ株式会社 情報生成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110427880B (zh) * 2019-08-01 2023-05-02 齐鲁工业大学 一种基于图像处理的线虫脂肪酸定量方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268167A (ja) 2007-03-29 2008-11-06 Saga Univ 蛍光多重染色による蛋白定量法
WO2012029752A1 (ja) * 2010-08-31 2012-03-08 コニカミノルタエムジー株式会社 生体物質検出方法
JP2013088296A (ja) 2011-10-19 2013-05-13 Konica Minolta Medical & Graphic Inc 組織評価方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4004385B2 (ja) * 2002-11-07 2007-11-07 独立行政法人科学技術振興機構 二重染色法によるガン検出方法
WO2007016501A2 (en) 2005-08-01 2007-02-08 The University Of Chicago Compositions and method for brain specific targeted delivery of therapeutic agents
JP4599568B2 (ja) * 2007-01-31 2010-12-15 国立大学法人 新潟大学 腎障害の検出方法
PL2449379T3 (pl) * 2009-07-02 2017-12-29 Sloan-Kettering Institute For Cancer Research Fluorescencyjne nanocząstki na bazie krzemionki
HUE054517T2 (hu) * 2010-07-23 2021-09-28 Astellas Inst For Regenerative Medicine Eljárások sejtek ritka alpopulációinak detektálására és nagymértékben tisztított sejtkészítmények
US8639013B2 (en) * 2011-08-17 2014-01-28 General Electric Company System and methods for generating a brightfield image using fluorescent images
US20140220598A1 (en) * 2011-09-09 2014-08-07 Tohoku University Biological substance detection method
JP5906623B2 (ja) * 2011-09-09 2016-04-20 コニカミノルタ株式会社 生体物質発現レベル評価システム
US9483684B2 (en) 2012-03-30 2016-11-01 Konica Minolta, Inc. Medical image processor and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268167A (ja) 2007-03-29 2008-11-06 Saga Univ 蛍光多重染色による蛋白定量法
WO2012029752A1 (ja) * 2010-08-31 2012-03-08 コニカミノルタエムジー株式会社 生体物質検出方法
JP2013088296A (ja) 2011-10-19 2013-05-13 Konica Minolta Medical & Graphic Inc 組織評価方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TUOMINEN, V.; RUOTOISTEUMAKI, S.; VIITANEN, A.; JUMPPANEN, M.; ISOLA, J: "ImmunoRatio-F: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67", BREAST CANCER RESEARCH, vol. 12, 2010, pages R56, XP021085368, DOI: doi:10.1186/bcr2615
VILPPU J TUOMINEN ET AL.: "ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor(PR), and Ki-67", BREAST CANCER RESEARCH, vol. 12, 2010, pages R56, XP021085368 *
VILPPU TUOMINEN ET AL.: "ImmunoRatio-F: image analysis of Ki-67 using cytokeratin immunofluorescence correction", 11TH EUROPEAN CONGRESS ON TELEPATHOLOGY AND 5TH INTERNATIONAL CONGRESS ON VIRTUAL MICROSCOPY, XP009182621, Retrieved from the Internet <URL:http://mitel.dimi.uniud.it/tp2012/presentations/A8-Isola.pdf> *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146896A1 (ja) * 2014-03-24 2015-10-01 コニカミノルタ株式会社 多重免疫染色法に基づく生体物質の定量方法
JP5843054B1 (ja) * 2014-03-24 2016-01-13 コニカミノルタ株式会社 多重免疫染色法に基づく生体物質の定量方法
WO2016117466A1 (ja) * 2015-01-22 2016-07-28 コニカミノルタ株式会社 生体物質定量方法、病理診断支援システム及びプログラム
US10746740B2 (en) 2015-01-22 2020-08-18 Konica Minolta, Inc. Biological substance quantitation method, pathological diagnosis support system, and recording medium storing computer readable program
JP2017015550A (ja) * 2015-07-01 2017-01-19 公益財団法人ヒューマンサイエンス振興財団 2重染色キット
WO2019188647A1 (ja) * 2018-03-30 2019-10-03 コニカミノルタ株式会社 画像処理方法、画像処理装置及びプログラム
JPWO2019188647A1 (ja) * 2018-03-30 2021-05-13 コニカミノルタ株式会社 画像処理方法、画像処理装置及びプログラム
JP7259844B2 (ja) 2018-03-30 2023-04-18 コニカミノルタ株式会社 画像処理方法、画像処理装置及びプログラム
WO2022024881A1 (ja) * 2020-07-31 2022-02-03 コニカミノルタ株式会社 情報生成方法

Also Published As

Publication number Publication date
US20160216209A1 (en) 2016-07-28
JP6424826B2 (ja) 2018-11-21
EP3040724A4 (en) 2017-05-03
EP3040724B1 (en) 2018-08-29
JPWO2015045962A1 (ja) 2017-03-09
US10352859B2 (en) 2019-07-16
EP3040724A1 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
US11041856B2 (en) Use of fluorescence for the quick and easy determination of S-adenosylmethionine, S-adenosylhomocysteine and homocysteine
JP6112169B2 (ja) 生体物質検出用の蛍光標識体
WO2015045962A1 (ja) 組織切片における生体物質の定量法
JP5974892B2 (ja) 生体物質検出方法
JP5906623B2 (ja) 生体物質発現レベル評価システム
JP6127972B2 (ja) 組織染色方法
JP6236881B2 (ja) 免疫染色方法、蛍光免疫染色用前処理液および免疫染色用キット
JP6168047B2 (ja) 組織染色方法
JP6241239B2 (ja) 蛍光色素内包ナノ粒子、蛍光色素内包ナノ粒子の製造方法、蛍光標識剤、及び蛍光免疫染色方法
JP6107244B2 (ja) 蛍光色素標識用樹脂粒子及びその製造方法並びに該粒子を含む組織免疫染色用キット
WO2016152244A1 (ja) 目的生体物質の検出方法および検出システム
JP6237194B2 (ja) 染色方法
JP5863057B2 (ja) 組織評価方法
EP3308167A1 (en) Use of fluorescence for the quick and easy determination of s-adenosylmethionine, s-adenosylhomocysteine and homocysteine
JP6583011B2 (ja) 酸性水溶液を用いた免疫染色スライドの洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539129

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15024216

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014847697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847697

Country of ref document: EP