WO2015045821A1 - リング状部材の熱処理方法およびリング状部材の熱処理設備 - Google Patents

リング状部材の熱処理方法およびリング状部材の熱処理設備 Download PDF

Info

Publication number
WO2015045821A1
WO2015045821A1 PCT/JP2014/073614 JP2014073614W WO2015045821A1 WO 2015045821 A1 WO2015045821 A1 WO 2015045821A1 JP 2014073614 W JP2014073614 W JP 2014073614W WO 2015045821 A1 WO2015045821 A1 WO 2015045821A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
heating
output
shaped member
coil
Prior art date
Application number
PCT/JP2014/073614
Other languages
English (en)
French (fr)
Inventor
恒哲 平岡
恵理 平山
慎太郎 鈴木
Original Assignee
Ntn株式会社
恒哲 平岡
恵理 平山
慎太郎 鈴木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 恒哲 平岡, 恵理 平山, 慎太郎 鈴木 filed Critical Ntn株式会社
Priority to CN201480053749.0A priority Critical patent/CN105593384A/zh
Priority to US15/022,315 priority patent/US20160230243A1/en
Priority to EP14848102.1A priority patent/EP3054021A4/en
Publication of WO2015045821A1 publication Critical patent/WO2015045821A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0018Details, accessories not peculiar to any of the following furnaces for charging, discharging or manipulation of charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0056Furnaces through which the charge is moved in a horizontal straight path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/103Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a heat treatment method for a ring-shaped member and a heat treatment facility for the ring-shaped member.
  • a heat treatment quenching hardening process
  • the quench-hardening treatment aimed temperature a ring-shaped member (e.g., A 1 temperature range of not lower than transformation point) and heating step of heating, and the like cooling step of cooling the ring-shaped member which is heated to a mark temperatures Yes.
  • a heating process can be implemented using atmosphere heating furnaces, such as a mesh belt type continuous furnace, for example.
  • the atmosphere heating furnace has the advantage that a large number of workpieces can be heated simultaneously.
  • the atmosphere heating furnace needs to heat not only the workpiece but also the atmosphere, there is a problem of low energy efficiency. Therefore, in the heating process, the workpiece may be heated to a target temperature by induction heating (high frequency induction heating) (see, for example, Patent Document 1). If induction heating is used, the work can be directly heated, so that high energy efficiency can be achieved.
  • the workpiece to be heated is a ring-shaped member such as a race, a plurality of ring-shaped members are arranged in the axial direction and held in the opposing region of the heating coil as described in Patent Document 1. In this state, a method of energizing the heating coil can be adopted. In this way, since a plurality of ring-shaped members can be induction-heated at the same time, the heat treatment efficiency can be increased.
  • the continuous heating method of continuously heating each part in the longitudinal direction of the workpiece by moving the long workpiece (for example, billet) in the axial direction relative to the energized heating coil is efficient.
  • uniform heating can be performed well. Therefore, the inventors of the present application tried to induction-heat the ring-shaped member by the continuous heating method. That is, a plurality of ring-shaped members held coaxially and a heating coil that is longer than each ring-shaped member and energized to have a constant output are moved relative to each other in the axial direction. Attempts were made to inductively heat the ring-shaped members to the target temperature.
  • the overheated ring-shaped member has to be disposed of because it becomes difficult to secure a desired mechanical strength and the like, and thus causes a problem of a decrease in product yield.
  • the above-mentioned problem of overheating arises due to the following reasons.
  • the output of the heating coil in the continuous heating method is usually aimed at each ring-shaped member in a state where the ring-shaped member is present in the entire area opposite to the heating coil (the inner periphery of the heating coil is filled with the ring-shaped member). It is set to a constant value so that it can be heated. For this reason, in the stage immediately after the start and immediately before the end of the heating process in which the ring-shaped member is present only in a part of the opposed region of the heating coil, the amount of induced current generated in each ring-shaped member is increased and overheated. .
  • the present invention devised to achieve the above object is a method for heat-treating a ring-shaped member that includes a heating step of induction heating a steel ring-shaped member to a target temperature.
  • the plurality of ring-shaped members held in sequence are sequentially passed through opposing regions of the preheating coil with variable output and the constant heating main coil arranged coaxially on the outlet side thereof, thereby aiming at the plurality of ring-shaped members sequentially. It is characterized by induction heating to temperature.
  • the ring-shaped member can be preheated to an appropriate temperature when the plurality of ring-shaped members held coaxially are passed through the opposing region of the preheating coil with variable output. Therefore, it is possible to prevent the occurrence of an insufficiently heated ring-shaped member as much as possible.
  • the output of the heating coil can be reduced compared to the conventional method in which the ring-shaped member is induction-heated to a target temperature with a single heating coil. The amount of induced current generated in the ring-shaped member when the ring-shaped member passes can be reduced.
  • the heating step is performed by a so-called continuous heating method in which a plurality of ring-shaped members held side by side in the axial direction are moved relative to the heating coil (preheating coil and main heating coil) in the axial direction. Therefore, it is possible to effectively enjoy the operational effects that can be enjoyed by adopting the continuous heating method, specifically, that each ring-shaped member can be soaked and heated efficiently. it can. Therefore, according to the present invention, the quench hardening treatment for the steel ring-shaped member can be performed efficiently and appropriately without generating defective products as much as possible.
  • the heating process includes an output increasing step for gradually increasing the output of the preheating coil and an output decreasing step for gradually decreasing the output of the preheating coil. It is conceivable to provide it. In this case, it is preferable that the output increasing mode of the preheating coil in the output increasing step and the output decreasing mode of the preheating coil in the output decreasing step are different from each other. Since the electrical conductivity and magnetism of the workpiece to be heated change as the temperature rises, there is a temperature rise mode between the ring-shaped member disposed on the heating start side and the ring-shaped member disposed on the heating end side. Because there is a difference.
  • the output increasing mode of the preheating coil in the output increasing step and the output decreasing mode of the preheating coil in the output decreasing step are different from each other” means that either one of the output waveforms of the preheating coil in both steps is inverted. This means that the two output waveforms do not match when superimposed on the other (see, for example, FIG. 3).
  • the output of the preheating coil can be changed according to the relative position of the holding portion with respect to the main heating coil.
  • the output of the preheating coil at least in the output increasing step can be changed according to the number of ring-shaped members present in the opposed region of the heating coil.
  • the output of each coil can be easily set to an appropriate value, so versatility is enhanced.
  • the heat treatment method according to the present invention may further include a cooling step for cooling the ring-shaped member induction-heated to a target temperature.
  • a ring-shaped member can be hardened and hardened appropriately.
  • Examples of the ring-shaped member to which the heat treatment method according to the present invention is applied include a rolling bearing raceway ring (outer ring and inner ring) made of a steel material having a carbon content of 0.8% by mass or more.
  • the heat treatment with respect to the steel material containing 0.8% by mass or more of carbon is usually performed by dissolving about 0.6% by mass of carbon in austenite, and the rest is left as a carbide.
  • carbonized_material it contributes to suppression of the austenite crystal grain growth under heating, and the improvement in the abrasion resistance of a workpiece
  • the heat treatment method according to the present invention is suitable as a heat treatment method for a bearing ring of a rolling bearing made of a steel material containing 0.8% by mass or more of carbon.
  • the above object is a heat treatment facility for a ring-shaped member provided with a heating unit that induction-heats a steel ring-shaped member to a target temperature, and holds a plurality of ring-shaped members arranged in an axial direction.
  • a driving means for moving the holding part relative to the heating part in the axial direction.
  • the heating part has a preheating coil whose output is variable and a constant heating main heating coil coaxially arranged on the outlet side thereof.
  • the driving means makes the holding part and the heating part relative to each other in the axial direction so that the plurality of ring-shaped members held side by side in the axial direction by the holding part sequentially pass through the opposing regions of the preheating coil and the main heating coil.
  • This can also be achieved by a heat treatment facility for the ring-shaped member, which is characterized by being moved.
  • the quench hardening treatment for the steel ring-shaped member can be performed efficiently and appropriately without generating defective products as much as possible. Thereby, the manufacturing cost of steel ring-shaped members including the bearing ring of a rolling bearing can be reduced.
  • FIG. 1 It is a schematic diagram which shows the initial state of the heat processing equipment used when implementing the heat processing method which concerns on this invention. It is a flowchart of the process included in quench hardening processing. It is a figure for demonstrating the output setting of this heating coil used in a heating process, and a preheating coil. It is a schematic diagram which shows the state in use of the heat processing equipment shown in FIG. It is a figure which shows the comparison verification result of the conventional method and the method which concerns on this invention.
  • FIG. 1 is a schematic diagram showing an initial state of heat treatment equipment used when carrying out the heat treatment method for a ring-shaped member according to the present invention.
  • the heat treatment equipment 1 shown in the figure is a heat treatment equipment for quenching and hardening the outer ring OR of a rolling bearing as a ring-shaped member, and the heating step S1, the conveying step S2 and the cooling shown in FIG. Step S3 is sequentially performed.
  • the heat treatment facility 1 includes a heating unit 2 and a holding unit 3 used in the heating step S1, a transport unit 5 used in the transport step S2, and a cooling unit 4 used in the cooling step S3. And the holding portion 3 are arranged coaxially.
  • the holding part 3 can hold a plurality of outer rings OR coaxially, and the holding part 3 of this embodiment holds the plurality of outer rings OR in a state where they are stacked in the vertical direction so that their central axes coincide with each other. .
  • the holding unit 3 (and the plurality of outer rings OR held coaxially therewith) is disposed vertically below the preheating coil 22 constituting the heating unit 2 by a predetermined dimension.
  • the holding unit 3 can be moved relative to the heating unit 2 in the axial direction.
  • the holding unit 3 is connected to driving means such as a hydraulic cylinder (not shown), and the holding unit 3 receives pitch output or continuous feed in response to the output of the driving means.
  • the heating unit 2 includes a main heating coil 21 and a preheating coil 22 that are coaxially arranged side by side, and both the coils 21 and 22 can surround the outer ring OR to be heat-treated from the outside in the radial direction. Yes.
  • the preheating coil 22 is disposed on the lower side, and the main heating coil 21 is disposed on the upper side (the outlet side of the preheating coil 22).
  • a coil longer than the axial dimension of the outer ring OR to be heated is used.
  • a coil having an axial dimension of L ⁇ n (where n ⁇ 2) is used.
  • L ⁇ 5 A coil having an axial dimension is used.
  • the preheating coil 22 a coil having an axial dimension substantially the same as the axial dimension L of the outer ring OR is used. Both coils 21 and 22 are electrically connected to high-frequency power sources 23 and 24, respectively. Thus, if the main heating coil 21 and the preheating coil 22 are electrically connected to separate high-frequency power sources, the outputs of both the coils 21 and 22 can be easily set arbitrarily, so that versatility is improved.
  • the output of the main heating coil 21 is constant during the heating step S ⁇ b> 1.
  • the output of the main heating coil 21 is set so that the outer ring OR heated to the highest temperature becomes the target temperature. Is set.
  • the outer ring OR that is heated to the highest temperature is usually the outer ring OR that is disposed at and near the ends of the heating start side (upper side) and the heating end side (lower side).
  • the output of the preheating coil 22 changes according to the progress of the heating step S1. Specifically, the output of the preheating coil 22 changes according to the axial relative position of the holding unit 3 with respect to the heating unit 2 (main heating coil 21).
  • an intermediate step S1b for maintaining the output of the preheating coil 22 at a constant value, and an output decreasing for gradually decreasing the output of the preheating coil 22 Step S1c is performed in order.
  • the output increasing step S ⁇ b> 1 a is started when the leading outer ring OR 1 among the plurality of outer rings OR held coaxially by the holding unit 3 is arranged in the opposed region of the main heating coil 21.
  • the heating unit 2 and the holding unit 3 are in a positional relationship such that the entire opposing region of the heating coil 21 is satisfied by the outer ring OR. It is carried out continuously for a predetermined time. Then, assuming that the output of the preheating coil 22 during the execution of the intermediate step S1b is 100%, in the output increasing step S1a, the output of the preheating coil 22 is 30% according to the relative axial position of the heating unit 2 and the holding unit 3. ⁇ Increased stepwise in the order of 60% ⁇ 90%, and in the output reduction step S1c, the output of the preheating coil 22 is 70% ⁇ 50% ⁇ 30 according to the relative axial position of the heating unit 2 and the holding unit 3. Decrease in steps of%.
  • the output change mode of the preheating coil 22 described above is merely an example, and can be changed as appropriate depending on the shape and size of the ring-shaped member to be heated.
  • at least the output of the preheating coil 22 in the output increasing step S1a is a step corresponding to the number of outer rings OR existing (arranged) in the opposed region of the main heating coil 21.
  • it may be changed as desired.
  • the output of the preheating coil 22 in the output increasing step S1a may be changed in four stages.
  • a mutual induction preventing means 25 is interposed in order to prevent mutual induction when the coils 21 and 22 are energized.
  • an air gap is employed as the mutual induction preventing means 25. That is, the main heating coil 21 and the preheating coil 22 are spaced apart from each other by a predetermined dimension so that mutual induction does not occur.
  • a shield member may be employed as the mutual induction preventing means 25.
  • the cooling unit 4 includes a cooling liquid tank 41 in which a cooling liquid (for example, quenching oil) 42 held at an appropriate temperature is stored.
  • the transport means 5 plays a role of transporting the outer ring OR, which is induction-heated to the target temperature in the heating step S ⁇ b> 1, to the cooling liquid tank 41.
  • a ring-shaped member manufacturing step Prior to performing the quench hardening process, a ring-shaped member manufacturing step is performed, and an outer ring OR as a ring-shaped member is manufactured. Specifically, a steel material having a carbon content of 0.8% by mass or more (for example, SUJ2 which is a kind of bearing steel defined in JIS G4805) is prepared, and plastic processing such as forging, turning, grinding, etc. As a result, the outer ring OR having a predetermined shape having a ring shape as a whole is produced.
  • SUJ2 which is a kind of bearing steel defined in JIS G4805
  • the quench hardening process includes a heating step S1 in which the outer ring OR manufactured in the ring-shaped member manufacturing process is induction-heated to a target temperature, and the outer ring OR heated to the target temperature is cooled by the cooling unit 4 (cooling). It includes a transport step S2 for transporting to the liquid tank 41) and a cooling step S3 for cooling and quenching the outer ring OR.
  • (A) Heating step S1 In the heating step S1, a plurality of outer ring OR that coaxially held by the holding unit 3 (here a temperature range exceeding the A 1 transformation point) sequentially mark temperatures heating to.
  • a plurality of outer rings OR are stacked in the vertical direction on the holding unit 3 so that the respective central axes coincide with each other.
  • the outer ring OR has a smaller axial dimension than the radial dimension. Therefore, when the outer ring OR is stacked in the vertical direction as in this embodiment, there is an advantage that the posture of the outer ring OR is stabilized during the heating step S1.
  • the operation of stacking the plurality of outer rings OR in the vertical direction can be performed automatically.
  • the plurality of outer rings OR held coaxially by the holding unit 3 are separated from the opposing region of the preheating coil 22 and the main heating coil. Enter the 21 opposing areas sequentially.
  • a high-frequency current flows through the main heating coil 21 by the power supplied from the high-frequency power source 23.
  • the power supply from the high-frequency power source 23 to the main heating coil 21 is continued until all the outer rings OR pass through the area facing the main heating coil 21 and are discharged to the upper side of the main heating coil 21.
  • the power supply from the high-frequency power source 23 to the main heating coil 21 is such that, of the plurality of outer rings OR held coaxially by the holding unit 3, the leading outer ring OR 1 enters the opposite region of the main heating coil 21. At the same time, or just before entering, it may be started. Further, the preheating coil 22 is supplied with electric power from a high frequency power supply 24 so that an output in a mode schematically shown in FIG. 3 is obtained.
  • Each outer ring OR is while passing through the region opposed to preheating coil 21 and the heating coil 22 is heated to a mark temperatures (temperature range over the A 1 transformation point) by induction heating.
  • Cooling step S3 In the cooling step S3, the outer ring OR, which is conveyed to the cooling liquid bath 41 by the conveyor 5, the temperature range of not lower than the A 1 transformation point by being immersed in the cooling liquid 42 pooled in the coolant bath 41 It is cooled to a temperature range below the Ms point and hardened by hardening.
  • the quench hardening treatment of the outer ring OR using the heat treatment equipment 1 is completed.
  • the outer ring OR that has been subjected to the quench hardening process is then subjected to a predetermined process such as a tempering process or a finishing process (for example, a polishing process for the raceway surface), whereby a finished product is obtained.
  • the plurality of outer rings OR held coaxially by the holding unit 3 are connected to the output preheating coil 22 and a constant output coaxially arranged on the outlet side thereof.
  • the plurality of outer rings OR are sequentially heated to a target temperature.
  • the outer ring OR can be preheated to an appropriate temperature when the plurality of outer rings OR are passed through the opposing region of the preheating coil 22 whose output is variable. Therefore, it is possible to prevent as much as possible the occurrence of an insufficiently heated outer ring OR.
  • the output of the main heating coil 21 can be reduced compared to the method in which the ring-shaped member is induction-heated from room temperature to the target temperature with a single heating coil.
  • the amount of induced current generated in the outer ring OR when the outer ring OR passes through the region can be reduced. Therefore, it is possible to prevent as much as possible one or a plurality of outer rings OR arranged on the heating start side and the end side among the plurality of outer rings OR held side by side in the axial direction as much as possible.
  • the output of the main heating coil 21 can be reduced, the deterioration rate of the main heating coil 21 can be reduced, so that there is an advantage that the maintenance cost can be reduced.
  • the output of the preheating coil 22 is increased stepwise after the heating step S1 is started until the entire opposing region of the main heating coil 21 is filled with the outer ring OR.
  • the output of 22 was decreased step by step. This effectively prevents overheating of one or more outer rings OR arranged on the heating start side and the heating end side among the plurality of outer rings OR held side by side in the axial direction. can do.
  • the output increasing mode and the output decreasing mode of the preheating coil 22 are different from each other. Thereby, all the outer rings OR held side by side in the axial direction can be heated to the target temperature.
  • the reason why the output increasing mode and the output decreasing mode of the preheating coil 22 are made different from each other is that the electrical conductivity and magnetism of the work to be induction-heated change as the temperature rises. This is because there is a difference in the temperature rise mode between the OR and the outer ring OR arranged on the heating end side.
  • the heating step S1 is performed by a so-called continuous heating method in which a plurality of outer rings OR held side by side in the axial direction are moved relative to the heating unit 2 (the preheating coil 22 and the main heating coil 21) in the axial direction.
  • the heat treatment for the steel material containing 0.8% by mass or more of carbon like SUJ2 is usually performed by dissolving about 0.6% by mass of carbon in austenite and the rest is left as a carbide. This is because even if carbon dissolves in an amount of 0.6% by mass or more, the change in hardness of martensite is small, and excessive carbon penetration causes residual austenite, that is, causes decrease in hardness and aging. is there. Moreover, it is because by making a carbide
  • the amount of carbon penetration into the steel material depends on the heating temperature and heating time of the workpiece, and the heating method employed in the present invention can adjust the heating temperature by the output of the preheating coil 22 and the main heating coil 21. Further, the heating time can be adjusted by the relative moving speed of the outer ring OR (holding unit 3) with respect to the coils 21 and 22. Therefore, the heat treatment method according to the present invention is particularly suitable as a heat treatment method for the outer ring OR made of SUJ2.
  • Embodiment of this invention is not limited to this.
  • the temperature of the outer ring OR induction-heated by the main heating coil 21 is provided on the outlet side of the main heating coil 22 after the preheating coil 22 and the rear heating coil arranged coaxially with the main heating coil 21. It is also possible to provide a radiation thermometer for measuring (monitoring) the outer ring OR, which is determined to be insufficiently heated by the radiation thermometer, to be further induction-heated by the post-heating coil. In this way, although the equipment configuration is somewhat complicated, it is possible to reliably prevent the occurrence of defective heating.
  • the plurality of outer rings OR are sequentially induction-heated to the target temperature, and the outer rings OR induction-heated to the target temperature are sequentially sent to the conveying step S2 and further to the cooling step S3.
  • the conveying step S2 and the cooling step S3 may be performed collectively on the plurality of outer rings OR that are induction-heated to the target temperature.
  • the relative moving direction of the heating part 2 (the main heating coil 21 and the preheating coil 22) and the holding
  • this invention is the heating part 2, the holding
  • the present invention can also be applied to the relative movement in the horizontal direction.
  • the method according to the present invention is applied when the outer ring OR of the rolling bearing is induction-heated to a target temperature.
  • the heat treatment method according to the present invention can be applied to other steel ring-shaped members (for example, rolling bearings).
  • the present invention can also be preferably applied to induction heating of an inner ring, a plain bearing, an outer joint member or an inner joint member constituting a constant velocity universal joint, a cage incorporated in a rolling bearing or a constant velocity universal joint) to a target temperature.
  • a plurality of ring-shaped members are induction-heated using the conventional method, and a plurality of ring-shaped members are induction-heated using the method according to the present invention. Whether or not a difference occurs in the heating mode of the ring-shaped member was compared and verified.
  • a plurality of ring-shaped members held coaxially and a single heating coil that is longer than the ring-shaped member and is supplied with a constant amount of power are axially relative to each other.
  • This is a method of inductively heating a plurality of ring-shaped members to a target temperature by moving them, and the method according to the present invention is a method implemented using the heat treatment equipment 1 shown in FIG.
  • a coil in the conventional method, a single heating coil is used to heat the 20 outer rings made of SUJ2 held coaxially to a temperature range of 850 to 900 ° C., and the method according to the present invention. Then, the outputs of the main heating coil and the preheating coil were set as appropriate.
  • the 20 outer rings held coaxially five outer ring temperatures arranged on the heating start side, five outer ring temperatures arranged near the center, and five outer ring temperatures arranged on the heating end side Were measured after completion of induction heating. The measurement results are shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rolling Contact Bearings (AREA)
  • General Induction Heating (AREA)

Abstract

 鋼で作製された外輪ORを狙い温度に誘導加熱する加熱工程S1において、保持部3により同軸的に保持した複数の外輪ORを、出力可変の予熱コイル22、およびその出口側に同軸配置された一定出力の本加熱コイル21の対向領域を順次通過させることにより、複数の外輪ORを順次狙い温度に誘導加熱する。

Description

リング状部材の熱処理方法およびリング状部材の熱処理設備
 本発明は、リング状部材の熱処理方法およびリング状部材の熱処理設備に関する。
 周知のように、鋼製のリング状部材(例えば、転がり軸受の軌道輪)の製造過程においては、リング状部材に必要とされる機械的強度等を付与するために熱処理(焼入硬化処理)が施される。この焼入硬化処理は、リング状部材を狙い温度(例えば、A変態点以上の温度域)に加熱する加熱工程や、狙い温度に加熱されたリング状部材を冷却する冷却工程などを含んでいる。加熱工程は、例えば、メッシュベルト型連続炉などの雰囲気加熱炉を用いて実施することができる。
 雰囲気加熱炉は、多数のワークを同時に加熱することができるという利点がある。しかしながら、雰囲気加熱炉は、ワークだけでなく雰囲気をも加熱する必要があるため、エネルギー効率が低いという問題がある。そこで、加熱工程では、誘導加熱(高周波誘導加熱)によりワークを狙い温度に加熱する場合がある(例えば、特許文献1を参照)。誘導加熱であれば、ワークを直接加熱することができるため、高いエネルギー効率を達成することができる。また、加熱対象のワークが軌道輪のようなリング状部材である場合には、特許文献1に記載されているように、加熱コイルの対向領域に複数のリング状部材を軸方向に並べて保持し、その状態で加熱コイルに通電する方法を採ることができる。このようにすれば、複数のリング状部材を同時に誘導加熱することができるので、熱処理効率を高めることができる。
特開2006-200019号公報
 ところで、長寸のワーク(例えばビレット)を通電状態の加熱コイルに対して軸方向に相対移動させることにより、ワークの長手方向各部を連続的に加熱する連続加熱法は、長寸のワークを効率良く均熱加熱することができるという利点がある。そこで、本願発明者らは、リング状部材を上記の連続加熱法で誘導加熱することを試みた。すなわち、同軸的に保持した複数のリング状部材と、個々のリング状部材よりも長寸で、かつ一定出力となるように通電された加熱コイルとを軸方向に相対移動させることにより、複数のリング状部材を順次狙い温度に誘導加熱することを試みた。
 しかしながら、このようにすると、複数のリング状部材のうち、特に加熱処理の開始側および終了側の端部(およびその近傍)に配置された一又は複数のリング状部材が過加熱されてしまった。過加熱されたリング状部材は、所望の機械的強度等を確保することが難しくなるために廃棄処分せざるを得ず、従って、製品歩留の低下問題を招来する。なお、上述の過加熱の問題は、次のような理由に起因して生じるものと考えられる。連続加熱法における加熱コイルの出力は、通常、加熱コイルの対向領域全域にリング状部材が存在する状態(加熱コイルの内周がリング状部材で充足された状態)において各リング状部材を狙い温度に加熱できるような一定値に設定される。このため、加熱コイルの対向領域の一部にしかリング状部材が存在しない加熱工程の開始直後および終了直前の段階においては、個々のリング状部材に生じる誘導電流量が増加し、過加熱される。
 上述の過加熱の問題は、加熱コイルの出力を下げることによって可及的に回避し得るが、この場合、軸方向に並べた複数のリング状部材の全てを狙い温度に誘導加熱することが難しくなる。
 このような実情に鑑み、本発明は、鋼製のリング状部材に対する焼入硬化処理を効率的に、しかも不良品を極力発生させることなく適切に実施可能とすることを目的とする。
 上記の目的を達成するために創案された本発明は、鋼製のリング状部材を狙い温度に誘導加熱する加熱工程を含むリング状部材の熱処理方法であって、加熱工程では、保持部により同軸的に保持した複数のリング状部材を、出力可変の予熱コイル、およびその出口側に同軸配置された一定出力の本加熱コイルの対向領域を順次通過させることにより、複数のリング状部材を順次狙い温度に誘導加熱することを特徴とする。
 このようにすれば、同軸的に保持した複数のリング状部材を、出力可変の予熱コイルの対向領域を通過させる際に、リング状部材を適温に予加熱することができる。そのため、加熱不足のリング状部材が生じるのを可及的に防止することができる。また、上記方法を採用すれば、単一の加熱コイルでリング状部材を狙い温度にまで誘導加熱する従来方法に比べ、本加熱コイルの出力を下げることができるので、本加熱コイルの対向領域をリング状部材が通過する際にリング状部材に生じる誘導電流量を減じることができる。そのため、軸方向に並べた複数のリング状部材のうち、特に加熱工程の開始側および終了側に配置された一又は複数のリング状部材が過加熱されるのを可及的に防止することができる。また、本加熱コイルの出力を下げることができれば、本加熱コイルの劣化速度を減じることができるので、メンテナンスコストを低減することができるという利点もある。
 その一方、加熱工程は、軸方向に並べて保持した複数のリング状部材を、加熱コイル(予熱コイルおよび本加熱コイル)に対して軸方向に相対移動させる、いわゆる連続加熱法により実施される。そのため、連続加熱法を採用することによって享受し得る作用効果、具体的には、各リング状部材を均熱加熱することができる、加熱処理を効率良く行い得る、などといった作用効果を有効に享受できる。従って、本発明によれば、鋼製のリング状部材に対する焼入硬化処理を効率的に、しかも不良品を極力発生させることなく適切に実施することができる。
 上記の作用効果を有効に享受するための具体的手段として、加熱工程に、予熱コイルの出力を段階的に増加させる出力増加ステップと、予熱コイルの出力を段階的に減少させる出力減少ステップとを設けることが考えられる。この場合、出力増加ステップにおける予熱コイルの出力増加態様と、出力減少ステップにおける予熱コイルの出力減少態様とは互いに異ならせるのが好ましい。加熱すべきワークの電気伝導率や磁性は温度上昇に伴って変化するので、加熱開始側に配置されたリング状部材と加熱終了側に配置されたリング状部材との間には、温度上昇態様に違いがあるからである。なお、「出力増加ステップにおける予熱コイルの出力増加態様と、出力減少ステップにおける予熱コイルの出力減少態様とを互いに異ならせる」とは、両ステップにおける予熱コイルの出力波形の何れか一方を反転させて他方に重ね合わせたときに、2つの出力波形が一致しないことを意味する(例えば図3を参照)。
 上記構成において、予熱コイルの出力は、本加熱コイルに対する保持部の相対位置に応じて変化させることができる。特に、出力増加ステップおよび出力減少ステップのうち、少なくとも出力増加ステップにおける予熱コイルの出力は、本加熱コイルの対向領域に存在するリング状部材の個数に応じて変化させることができる。
 以上の構成において、予熱コイルと本加熱コイルとを別個の高周波電源に接続しておけば、各コイルの出力を適切な値に設定し易くなるので、汎用性が高まる。
 本発明に係る熱処理方法は、狙い温度に誘導加熱されたリング状部材を冷却する冷却工程をさらに有するものとすることができる。これにより、リング状部材を適切に焼入硬化させることができる。
 本発明に係る熱処理方法の適用対象であるリング状部材としては、例えば、炭素含有量が0.8質量%以上の鋼材からなる転がり軸受の軌道輪(外輪および内輪)を挙げることができる。
 なお、炭素を0.8質量%以上含む鋼材に対する加熱処理は、通常、オーステナイト中に0.6質量%程度の炭素を溶かし込み、残りは炭化物として残留させるようにして行う。これは、0.6質量%以上炭素が溶け込んでもマルテンサイトの硬度の変化が小さいことに加え、過剰な炭素の溶け込みは、残留オーステナイトの原因、すなわち硬度低下や経年劣化を引き起こす原因となるからである。また、炭化物を残留させることにより、加熱中のオーステナイト結晶粒成長の抑制や、ワークの耐摩耗性向上に寄与するからである。そして、鋼材中への炭素の溶け込み量は加熱温度および加熱時間によって左右され、本発明で採用する加熱法は、加熱温度をコイル(予熱コイルおよび本加熱コイル)の出力で調整することができ、また、加熱時間をコイルに対する相対移動速度で調整することができる。従って、本発明に係る熱処理方法は、炭素を0.8質量%以上含む鋼材からなる転がり軸受の軌道輪に対する熱処理方法として好適である。
 また、上記の目的は、鋼製のリング状部材を狙い温度に誘導加熱する加熱部を備えたリング状部材の熱処理設備であって、リング状部材を軸方向に複数並べた状態で保持する保持部と、保持部を加熱部に対して軸方向に相対移動させる駆動手段とを備え、加熱部は、出力可変の予熱コイル、およびその出口側に同軸配置された一定出力の本加熱コイルを有し、駆動手段は、保持部により軸方向に並べて保持された複数のリング状部材を、予熱コイルおよび本加熱コイルの対向領域を順次通過させるように、保持部と加熱部とを軸方向に相対移動させることを特徴とするリング状部材の熱処理設備、によっても達成できる。
 以上から、本発明によれば、鋼製のリング状部材に対する焼入硬化処理を効率的に、しかも不良品を極力発生させることなく適切に実施することができる。これにより、転がり軸受の軌道輪をはじめとする鋼製のリング状部材の製造コストを低減することができる。
本発明に係る熱処理方法を実施する際に使用する熱処理設備の初期状態を示す概要図である。 焼入硬化処理に含まれる工程のフロー図である。 加熱工程で使用する本加熱コイルおよび予熱コイルの出力設定を説明するための図である。 図1に示す熱処理設備の使用中の状態を示す概要図である。 従来方法と本発明に係る方法との比較検証結果を示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は、本発明に係るリング状部材の熱処理方法を実施する際に使用する熱処理設備の初期状態を示す概要図である。同図に示す熱処理設備1は、リング状部材としての転がり軸受の外輪ORを焼入硬化するための熱処理設備であって、外輪ORに対し、図2に示す加熱工程S1、搬送工程S2および冷却工程S3を順次施す。熱処理設備1は、加熱工程S1で使用される加熱部2および保持部3と、搬送工程S2で使用される搬送手段5と、冷却工程S3で使用される冷却部4とを備え、加熱部2と保持部3とは同軸配置されている。
 保持部3は、複数の外輪ORを同軸的に保持可能であり、本実施形態の保持部3は、複数の外輪ORをそれぞれの中心軸が一致するように鉛直方向に積み重ねた状態で保持する。図1に示す熱処理設備1の初期状態において、保持部3(およびこれに同軸的に保持された複数の外輪OR)は、加熱部2を構成する予熱コイル22よりも所定寸法だけ鉛直下方に配置されている。保持部3は加熱部2に対して軸方向に相対移動可能とされる。本実施形態では、保持部3が図示しない油圧シリンダ等の駆動手段に接続されており、保持部3は駆動手段の出力を受けてピッチ送りあるいは連続送りされる。
 加熱部2は、上下に並べて同軸配置された本加熱コイル21および予熱コイル22を有し、両コイル21,22は、熱処理すべき外輪ORをその径方向外側から取り囲むことができるようになっている。予熱コイル22は相対的に下側に配置され、本加熱コイル21は相対的に上側(予熱コイル22の出口側)に配置されている。本加熱コイル21としては、加熱すべき外輪ORの軸方向寸法よりも長寸のコイルが使用される。具体的にいうと、加熱すべき外輪ORの軸方向寸法をLとしたとき、L×n(但し、n≧2)の軸方向寸法を有するコイルが使用され、本実施形態ではL×5の軸方向寸法を有するコイルを使用している。一方、予熱コイル22としては、外輪ORの軸方向寸法Lと略同寸の軸方向寸法を有するコイルが使用される。両コイル21,22は、それぞれ、高周波電源23,24に電気的に接続されている。このように、本加熱コイル21および予熱コイル22を別個の高周波電源に電気的に接続しておけば、両コイル21,22の出力を任意に設定し易くなるので汎用性が向上する。
 図3に示すように、本加熱コイル21の出力は、加熱工程S1の実施中一定とされ、ここでは、最も高温に加熱される外輪ORが狙い温度となるように本加熱コイル21の出力が設定される。なお、最も高温に加熱される外輪ORは、通常は、加熱開始側(上側)および加熱終了側(下側)の端部およびその近傍に配置される外輪ORである。
 一方、予熱コイル22の出力は、加熱工程S1の進行度合いに応じて変化する。具体的には、加熱部2(本加熱コイル21)に対する保持部3の軸方向相対位置に応じて予熱コイル22の出力が変化する。加熱工程S1では、予熱コイル22の出力を段階的に増加させる出力増加ステップS1a、予熱コイル22の出力を一定値に維持する中間ステップS1b、および予熱コイル22の出力を段階的に減少させる出力減少ステップS1cが順に実施される。出力増加ステップS1aは、保持部3により同軸的に保持された複数の外輪ORのうち、先頭の外輪ORが本加熱コイル21の対向領域に配置されたときに開始され、る。また、中間ステップS1bは、図3に模式的に示すように、加熱部2と保持部3とが、本加熱コイル21の対向領域全域が外輪ORで充足されるような位置関係になった状態から所定時間継続して実施される。そして、中間ステップS1bの実施中における予熱コイル22の出力を100%とすると、出力増加ステップS1aでは、加熱部2と保持部3の軸方向相対位置に応じて、予熱コイル22の出力が30%→60%→90%の順で段階的に高められ、出力減少ステップS1cでは、加熱部2と保持部3の軸方向相対位置に応じて、予熱コイル22の出力が70%→50%→30%の順で段階的に減じられる。
 なお、上述の予熱コイル22の出力変化態様はあくまでも例示であり、加熱すべきリング状部材の形状や大きさなどによって適宜変更可能である。例えば、出力増加ステップS1aおよび出力減少ステップS1cのうち、少なくとも出力増加ステップS1aにおける予熱コイル22の出力は、本加熱コイル21の対向領域に存在する(配置される)外輪ORの個数に応じて段階的に変化させるようにしても構わない。要するに、L×5の軸方向寸法を有する本加熱コイル21を使用する本実施形態の場合、出力増加ステップS1aにおける予熱コイル22の出力は、4段階に分けて変化させるようにしても良い。
 本加熱コイル21と予熱コイル22の間には、両コイル21,22に通電したときに相互誘導が生じるのを防止するために、相互誘導防止手段25が介設されている。本実施形態では、相互誘導防止手段25としてエアギャップを採用している。すなわち、本加熱コイル21と予熱コイル22とは、相互誘導が生じない程度に所定寸法離間して配置されている。なお、相互誘導防止手段25としては、シールド部材を採用しても良い。
 冷却部4は、適温に保持された冷却液(例えば、焼入油)42が貯留された冷却液漕41で構成されている。搬送手段5は、加熱工程S1で狙い温度に誘導加熱された外輪ORを冷却液漕41へと搬送する役割を担う。
 以下、以上で説明した熱処理設備1を用いて実施される外輪ORの焼入硬化処理の手順について説明する。
 焼入硬化処理の実施に先立って、リング状部材作製工程が実施され、リング状部材としての外輪ORが作製される。具体的には、炭素含有量0.8質量%以上の鋼材(例えば、JIS G4805に規定された軸受鋼の一種であるSUJ2)を準備し、この鋼材に鍛造等の塑性加工や旋削、研削等の機械加工を施すことにより、全体としてリング状をなした所定形状の外輪ORを作製する。炭素含有量0.8質量%以上の鋼としては、SUJ2以外にも、SUJ3に代表されるその他の軸受鋼や、JIS G4404に規定された工具鋼(例えば、SKD11、SKD12、SKD3、SKD31)を挙げることができる。
 次に、上記の熱処理設備1を用いて焼入硬化処理が実施される。焼入硬化処理は、図2に示すように、リング状部材作製工程で作製された外輪ORを狙い温度に誘導加熱する加熱工程S1と、狙い温度に加熱された外輪ORを冷却部4(冷却液漕41)へと搬送する搬送工程S2と、外輪ORを冷却して焼入硬化させる冷却工程S3とを有する。
 (A)加熱工程S1
 この加熱工程S1では、保持部3により同軸的に保持した複数の外輪ORを、順次狙い温度(ここではA変態点を超える温度域)に加熱する。この加熱工程S1では、まず、保持部3上に、それぞれの中心軸を一致させるようにして複数の外輪ORが鉛直方向に積み重ねられる。外輪ORは、径方向寸法に対して軸方向寸法が小さい。そのため、本実施形態のように、外輪ORを鉛直方向に積み重ねると、加熱工程S1の実施中における外輪ORの姿勢が安定するという利点がある。詳細な図示は省略するが、複数の外輪ORを鉛直方向に積み重ねる作業は、自動で実施することができる。
 図示しない駆動手段が作動し、保持部3に鉛直方向上向きの送り力が付与されると、保持部3により同軸的に保持された複数の外輪ORは、予熱コイル22の対向領域および本加熱コイル21の対向領域に順次進入する。図3に模式的に示したように、加熱工程S1の開始後、本加熱コイル21には、高周波電源23から供給された電力により高周波電流が流れる。高周波電源23から本加熱コイル21への電力供給は、その後、全ての外輪ORが本加熱コイル21の対向領域を通過して本加熱コイル21の上側に排出されるまでの間、継続される。なお、高周波電源23から本加熱コイル21への電力供給は、保持部3により同軸的に保持された複数の外輪ORのうち、先頭の外輪ORが本加熱コイル21の対向領域に進入するのと同時に、あるいは進入する直前に開始するようにしても構わない。また、予熱コイル22には、図3に模式的に示す態様での出力が得られるように、高周波電源24から電力が供給される。そして、各外輪ORは、予熱コイル21および本加熱コイル22の対向領域を通過する間に、誘導加熱によって狙い温度(A変態点を超える温度域)に加熱される。
 (B)搬送工程S2
 この搬送工程S2では、図4に示すように、狙い温度に加熱された外輪ORが、搬送手段5により冷却部4(冷却液漕41)へと順次搬送される。
 (C)冷却工程S3
 この冷却工程S3では、搬送コンベア5によって冷却液漕41へと搬送された外輪ORが、冷却液漕41内に貯留された冷却液42に浸漬されることによってA変態点以上の温度域からMs点以下の温度域にまで冷却され、焼入硬化される。
 以上の手順により、熱処理設備1を用いた外輪ORの焼入硬化処理が完了する。焼入硬化処理が完了した外輪ORには、その後、焼き戻し処理や仕上げ処理(例えば、軌道面の研磨処理)などの所定の処理が実施されることにより、完成品となる。
 以上で説明したように、本発明では、加熱工程S1において、保持部3により同軸的に保持した複数の外輪ORを、出力可変の予熱コイル22、およびその出口側に同軸配置された一定出力の本加熱コイル21の対向領域を通過させることにより、複数の外輪ORを順次狙い温度に加熱するようにした。このようにすれば、複数の外輪ORを出力可変の予熱コイル22の対向領域を通過させる際に、外輪ORを適温に予加熱することができる。そのため、加熱不足の外輪ORが生じるのを可及的に防止することができる。また、上記方法を採用すれば、単一の加熱コイルでリング状部材を常温から狙い温度に誘導加熱する方法に比べ、本加熱コイル21の出力を下げることができるので、本加熱コイル21の対向領域を外輪ORが通過する際に外輪ORに生じる誘導電流量を減じることができる。そのため、軸方向に並べて保持した複数の外輪ORのうち、特に加熱開始側および終了側に配置された一又は複数の外輪ORが過加熱されるのを可及的に防止することができる。また、本加熱コイル21の出力を下げることができれば、本加熱コイル21の劣化速度を減じることができるので、メンテナンスコストを低減することができるという利点もある。
 特に本実施形態では、加熱工程S1の開始後、本加熱コイル21の対向領域全域が外輪ORで充足されるに至るまでの間、予熱コイル22の出力を段階的に増加させ、その後、予熱コイル22の出力を段階的に減少させるようにした。このようにすれば、軸方向に並べて保持された複数の外輪ORのうち、特に、加熱開始側および加熱終了側に配置された一又は複数の外輪ORが過加熱されるのを効果的に防止することができる。さらに、予熱コイル22の出力増加態様および出力減少態様を互いに異ならせた。これにより軸方向に並べて保持した外輪ORの全てを狙い温度に加熱することができる。なお、予熱コイル22の出力増加態様および出力減少態様を互いに異ならせたのは、誘導加熱すべきワークの電気伝導率や磁性は温度上昇に伴って変化するので、加熱開始側に配置された外輪ORと加熱終了側に配置された外輪ORとの間には、温度上昇態様に違いがあるからである。
 その一方、加熱工程S1は、軸方向に並べて保持した複数の外輪ORを、加熱部2(予熱コイル22および本加熱コイル21)に対して軸方向に相対移動させる、いわゆる連続加熱法により実施される。そのため、連続加熱法を採用することによって享受し得る作用効果、具体的には、各外輪ORを均熱加熱することができる、加熱工程S1を効率良く行い得る、などといった作用効果を有効に享受できる。従って、本発明によれば、鋼製の外輪ORに対する焼入硬化処理を効率的に、しかも不良品を極力発生させることなく適切に実施することができる。
 ここで、SUJ2のように炭素を0.8質量%以上含む鋼材に対する加熱処理は、通常、オーステナイト中に0.6質量%程度の炭素を溶かし込み、残りは炭化物として残留させるようにして行う。これは、0.6質量%以上炭素が溶け込んでもマルテンサイトの硬度の変化が小さいことに加え、過剰な炭素の溶け込みは、残留オーステナイトの原因、すなわち硬度低下や経年劣化を引き起こす原因となるからである。また、炭化物を残留させることにより、加熱中のオーステナイト結晶粒成長の抑制や、ワークの耐摩耗性向上に寄与するからである。そして、鋼材中への炭素の溶け込み量はワークの加熱温度および加熱時間によって左右され、本発明で採用する加熱法は、加熱温度を予熱コイル22および本加熱コイル21の出力で調整することができ、また、加熱時間をコイル21,22に対する外輪OR(保持部3)の相対移動速度で調整することができる。従って、本発明に係る熱処理方法は、SUJ2で作製された外輪ORに対する熱処理方法として特に好適である。
 以上、本発明の一実施形態について説明を行ったが、本発明の実施の形態はこれに限定されるものではない。
 例えば、図示は省略するが、本加熱コイル22の出口側に、予熱コイル22および本加熱コイル21と同軸配置された後加熱コイルを設けると共に、本加熱コイル21により誘導加熱された外輪ORの温度を測定(監視)する放射温度計を設け、放射温度計により加熱不足と判定された外輪ORを後加熱コイルでさらに誘導加熱するようにすることもできる。このようにすれば、設備構成は多少複雑化するものの、加熱不良品の発生を確実に防止することができる。
 また、以上で説明した実施形態では、複数の外輪ORを順次狙い温度に誘導加熱すると共に、狙い温度に誘導加熱された外輪ORを、順次搬送工程S2、さらには冷却工程S3に送り込むようにしたが、搬送工程S2および冷却工程S3は、狙い温度に誘導加熱された複数の外輪ORに対してまとめて実施するようにしても良い。
 また、以上で説明した実施形態では、加熱部2(本加熱コイル21および予熱コイル22)と保持部3の相対移動方向を鉛直方向としたが、本発明は、加熱部2と保持部3とを水平方向に相対移動させる際にも適用することができる。
 また、以上では、転がり軸受の外輪ORを狙い温度に誘導加熱するに際して本発明に係る方法を適用したが、本発明に係る熱処理方法は、その他の鋼製のリング状部材(例えば、転がり軸受の内輪、すべり軸受、等速自在継手を構成する外側継手部材や内側継手部材、転がり軸受や等速自在継手に組み込まれる保持器)を狙い温度に誘導加熱する際にも好ましく適用することができる。
 本発明の有用性を実証するため、従来方法を用いて複数のリング状部材を誘導加熱した場合と、本発明に係る方法を用いて複数のリング状部材を誘導加熱した場合とで、複数のリング状部材の加熱態様に差異が生じるか否かを比較検証した。ここで、従来方法とは、同軸的に保持した複数のリング状部材と、リング状部材よりも長寸で、かつ一定量の電力が供給されている単一の加熱コイルとを軸方向に相対移動させることにより複数のリング状部材を順次狙い温度に誘導加熱する方法であり、本発明に係る方法とは、図1等に示す熱処理設備1を用いて実施した方法である。なお、この比較試験では、同軸的に保持した20個のSUJ2製の外輪を850~900℃の温度範囲に加熱すべく、コイル(従来方法では単一の加熱コイルであり、本発明に係る方法では本加熱コイルおよび予熱コイルである)の出力を適宜設定した。そして、同軸的に保持した20個の外輪のうち、加熱開始側に配置した5個の外輪温度、中央部付近に配置した5個の外輪温度、および加熱終了側に配置した5個の外輪温度を、誘導加熱完了後にそれぞれ測定した。測定結果を図5に示す。
 図5から明らかなように、従来方法(比較例)では、中央部付近に配置した外輪のみしか狙い温度に加熱されず、加熱開始側に配置した外輪および加熱終了側に配置した外輪については、狙い温度を超えて加熱されていた。これに対し、本発明に係る方法(実施例)では、加熱開始側、中央部付近および加熱終了側に配置した外輪が、何れも、狙い温度に加熱されていた。従って、本発明の有用性が実証される。
1   熱処理設備
2   加熱部
3   保持部
4   冷却部
21  本加熱コイル
22  予熱コイル
23  高周波電源
24  高周波電源
OR  外輪(鋼製のリング状部材)
S1  加熱工程
S1a 出力増加ステップ
S1b 中間ステップ
S1c 出力減少ステップ
S3 冷却工程

Claims (8)

  1.  鋼製のリング状部材を狙い温度に誘導加熱する加熱工程を含むリング状部材の熱処理方法であって、
     加熱工程では、保持部により同軸的に保持した複数のリング状部材を、出力可変の予熱コイル、およびその出口側に同軸配置された一定出力の本加熱コイルの対向領域を順次通過させることにより、前記複数のリング状部材を順次狙い温度に誘導加熱することを特徴とするリング状部材の熱処理方法。
  2.  加熱工程に、予熱コイルの出力を段階的に増加させる出力増加ステップと、予熱コイルの出力を段階的に減少させる出力減少ステップとを設け、出力増加ステップにおける予熱コイルの出力増加態様と出力減少ステップにおける予熱コイルの出力減少態様とを互いに異ならせた請求項1に記載のリング状部材の熱処理方法。
  3.  予熱コイルの出力を、本加熱コイルに対する保持部の相対位置に応じて変化させる請求項1又は2に記載のリング状部材の熱処理方法。
  4.  出力増加ステップおよび出力減少ステップのうち、少なくとも出力増加ステップにおける予熱コイルの出力を、本加熱コイルの対向領域に存在するリング状部材の個数に応じて変化させる請求項2に記載のリング状部材の熱処理方法。
  5.  本加熱コイルと予熱コイルとを別個の高周波電源に電気的に接続した請求項1~4の何れか一項に記載のリング状部材の熱処理方法。
  6.  狙い温度に誘導加熱されたリング状部材を冷却する冷却工程をさらに有する請求項1~5の何れか一項に記載のリング状部材の熱処理方法。
  7.  リング状部材が、炭素含有量0.8質量%以上の鋼材からなる転がり軸受の軌道輪である請求項1~6の何れか一項に記載のリング状部材の熱処理方法。
  8.  鋼製のリング状部材を狙い温度に誘導加熱する加熱部を備えたリング状部材の熱処理設備であって、
     リング状部材を軸方向に複数並べた状態で保持する保持部と、保持部を加熱部に対して軸方向に相対移動させる駆動手段とを備え、
     加熱部は、出力可変の予熱コイル、およびその出口側に同軸配置された一定出力の本加熱コイルを有し、
     駆動手段は、保持部により軸方向に並べて保持された複数のリング状部材を、予熱コイルおよび本加熱コイルの対向領域を順次通過させるように、保持部と加熱部とを軸方向に相対移動させることを特徴とするリング状部材の熱処理設備。
PCT/JP2014/073614 2013-09-30 2014-09-08 リング状部材の熱処理方法およびリング状部材の熱処理設備 WO2015045821A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480053749.0A CN105593384A (zh) 2013-09-30 2014-09-08 环状构件的热处理方法以及环状构件的热处理设备
US15/022,315 US20160230243A1 (en) 2013-09-30 2014-09-08 Heat treatment method for ring-shaped member and heat treatment equipment for ring-shaped member
EP14848102.1A EP3054021A4 (en) 2013-09-30 2014-09-08 Heat treatment method for ring-shaped member and heat treatment equipment for ring-shaped member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013204256A JP6211364B2 (ja) 2013-09-30 2013-09-30 リング状部材の熱処理方法およびリング状部材の熱処理設備
JP2013-204256 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015045821A1 true WO2015045821A1 (ja) 2015-04-02

Family

ID=52742968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073614 WO2015045821A1 (ja) 2013-09-30 2014-09-08 リング状部材の熱処理方法およびリング状部材の熱処理設備

Country Status (5)

Country Link
US (1) US20160230243A1 (ja)
EP (1) EP3054021A4 (ja)
JP (1) JP6211364B2 (ja)
CN (1) CN105593384A (ja)
WO (1) WO2015045821A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522502A (zh) * 2020-11-11 2021-03-19 宁波江丰电子材料股份有限公司 一种延长环件寿命的处理方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6211366B2 (ja) * 2013-09-30 2017-10-11 Ntn株式会社 リング状部材の熱処理方法およびリング状部材の熱処理設備
JP6211365B2 (ja) * 2013-09-30 2017-10-11 Ntn株式会社 リング状部材の熱処理方法
JP2017226873A (ja) * 2016-06-22 2017-12-28 Ntn株式会社 軸受部品の製造方法
JP2018006327A (ja) * 2016-06-24 2018-01-11 Ntn株式会社 誘導加熱装置及び誘導加熱方法
JP6263231B2 (ja) * 2016-06-24 2018-01-17 Ntn株式会社 熱処理設備および熱処理方法
JP7048201B2 (ja) 2016-06-24 2022-04-05 Ntn株式会社 棒状ワークの熱処理方法および熱処理設備
CN108544183A (zh) * 2018-05-24 2018-09-18 滨州渤海活塞有限公司 钢活塞预热装置和方法
CN113046524B (zh) * 2021-03-05 2024-02-27 苏州奥轩精密科技有限公司 一种牵引环热处理工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123320A (en) * 1977-04-02 1978-10-27 Aeg Elotherm Gmbh Continuous heating process for long and narrow metal products
JPS549034A (en) * 1977-06-22 1979-01-23 Nippon Kokan Kk <Nkk> Induction heater
JP2006200019A (ja) 2005-01-21 2006-08-03 Ntn Corp スラスト軸受の軌道盤の製造方法およびスラスト軸受の製造方法
JP2013216959A (ja) * 2012-04-11 2013-10-24 Ntn Corp リング状部材の熱処理設備

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2280552A (en) * 1939-03-23 1942-04-21 Budd Induction Heating Inc Method and apparatus for manufacturing piston rings
US2417610A (en) * 1944-05-11 1947-03-18 Hastings Mfg Co Method of manufacturing piston rings
JPS5316939A (en) * 1976-07-30 1978-02-16 Nippon Steel Corp Inducton heating method
US4093839A (en) * 1976-04-02 1978-06-06 Ajax Magnethermic Corporation Apparatus and method for inductively heating metallic tubing having an upset portion
JPH01182668A (ja) * 1988-01-15 1989-07-20 Riken Corp ピストンリング
CN201089778Y (zh) * 2007-09-19 2008-07-23 南平华闽汽车配件工业有限公司 衬环高频处理装置
CN202009508U (zh) * 2011-03-01 2011-10-12 宝山钢铁股份有限公司 圆棒坯料感应加热复合线圈
JP6211366B2 (ja) * 2013-09-30 2017-10-11 Ntn株式会社 リング状部材の熱処理方法およびリング状部材の熱処理設備

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123320A (en) * 1977-04-02 1978-10-27 Aeg Elotherm Gmbh Continuous heating process for long and narrow metal products
JPS549034A (en) * 1977-06-22 1979-01-23 Nippon Kokan Kk <Nkk> Induction heater
JP2006200019A (ja) 2005-01-21 2006-08-03 Ntn Corp スラスト軸受の軌道盤の製造方法およびスラスト軸受の製造方法
JP2013216959A (ja) * 2012-04-11 2013-10-24 Ntn Corp リング状部材の熱処理設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3054021A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522502A (zh) * 2020-11-11 2021-03-19 宁波江丰电子材料股份有限公司 一种延长环件寿命的处理方法

Also Published As

Publication number Publication date
EP3054021A1 (en) 2016-08-10
US20160230243A1 (en) 2016-08-11
CN105593384A (zh) 2016-05-18
JP2015067880A (ja) 2015-04-13
EP3054021A4 (en) 2017-06-07
JP6211364B2 (ja) 2017-10-11

Similar Documents

Publication Publication Date Title
JP6211364B2 (ja) リング状部材の熱処理方法およびリング状部材の熱処理設備
JP6211366B2 (ja) リング状部材の熱処理方法およびリング状部材の熱処理設備
JP6211365B2 (ja) リング状部材の熱処理方法
JP2009203498A (ja) 高周波誘導加熱方法、加熱装置、及び軸受
JP2009197312A (ja) 環状部材の変形矯正方法
EP2695954B1 (en) Annular workpiece quenching method and quenching apparatus used in the method
WO2017221963A1 (ja) 軸受部品の製造方法
JP2004043909A (ja) 被加熱物の加熱方法および加熱設備
JP2013216959A (ja) リング状部材の熱処理設備
JP6767144B2 (ja) 熱処理装置および熱処理方法
KR102284887B1 (ko) 가이드 레일의 최종 형상 근접 열간 압연
CN111334656B (zh) 用于利用渐变温度特征图进行热处理的方法
JP7266426B2 (ja) ワークの焼き戻し方法、及びこの方法で得られた機械部品
JP2016089183A (ja) ワークの熱処理方法
JP2009203525A (ja) 転がり軸受の製造ライン
JP2019185882A (ja) 誘導加熱装置および誘導加熱方法
Yücel et al. Flywheel starter ring gear failures and hardness variation reduction in surface hardening process
JP2005133214A (ja) 熱処理システム
JP2007239039A (ja) 高周波焼入方法、高周波焼入設備および高周波焼入品
JP2005133215A (ja) 熱処理システム
WO2019194035A1 (ja) 誘導加熱装置および誘導加熱方法
JP2017157435A (ja) 熱処理装置および熱処理方法
JP2004277863A (ja) 高周波熱処理装置
CN108150545A (zh) 采用特殊热处理工艺制造的滚动轴承
JP2005133213A (ja) 熱処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848102

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15022315

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014848102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014848102

Country of ref document: EP