WO2015045745A1 - ピストンリング - Google Patents

ピストンリング Download PDF

Info

Publication number
WO2015045745A1
WO2015045745A1 PCT/JP2014/072881 JP2014072881W WO2015045745A1 WO 2015045745 A1 WO2015045745 A1 WO 2015045745A1 JP 2014072881 W JP2014072881 W JP 2014072881W WO 2015045745 A1 WO2015045745 A1 WO 2015045745A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard carbon
carbon film
piston ring
film
atomic
Prior art date
Application number
PCT/JP2014/072881
Other languages
English (en)
French (fr)
Inventor
啓二 本多
勝啓 辻
正樹 諸貫
琢磨 関矢
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to US15/025,756 priority Critical patent/US10100929B2/en
Priority to JP2015539043A priority patent/JP6109325B2/ja
Priority to CN201480053721.7A priority patent/CN105593503B/zh
Priority to EP14847271.5A priority patent/EP3054137A4/en
Publication of WO2015045745A1 publication Critical patent/WO2015045745A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • F16J10/04Running faces; Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown

Definitions

  • the present invention relates to a piston ring used for a reciprocating internal combustion engine.
  • the present invention relates to a piston ring that slides on an aluminum alloy cylinder (or cylinder liner).
  • AC4B JIS-H5202
  • ADC12 JIS-H5302
  • A390 material etc.
  • A390 material is a hypereutectic aluminum alloy, and after casting the cylinder block, only the aluminum matrix on the sliding surface of the inner diameter of the cylinder is selectively etched to expose the hard Si particles to the surface, thereby improving wear resistance. It is improving.
  • cast iron cylinder liners were often fitted in aluminum cylinders, but in recent years, an engine employing an aluminum alloy cylinder liner in which hard Si particles are precipitated in a matrix has been increasing. .
  • the friction loss generated when the piston ring and the cylinder liner slide is about 20 to 30% of the friction loss of the entire internal combustion engine.
  • the friction loss it is necessary to suppress the wear of the piston ring and to maintain the sliding surface shape, so that the sliding surface of the cylinder liner and the piston ring always slide at a constant surface pressure.
  • the combustion energy of the combustion gas can be sufficiently transmitted to the crankshaft.
  • a hard film such as a nitride layer, a Cr plating layer, or a metal nitride layer by an ion plating method has been often formed.
  • a nitrided layer is formed on the sliding surface of a piston ring made of an iron-based material containing about 18 wt% Cr, and this piston ring is applied to an aluminum alloy cylinder liner, the cylinder liner tends to wear significantly.
  • the material applicable to the piston ring is limited.
  • the DLC film described in Patent Document 1 increases the amount of wear when the counterpart material is an aluminum alloy, and also has a friction coefficient as compared with a general DLC film (mainly composed of carbon or carbon and hydrogen). Turned out to be large. Further, since the DLC film described in Patent Document 2 is a film that does not contain hydrogen (ta-C), the amount of wear of the aluminum alloy cylinder liner as a sliding counterpart increases due to the droplets contained in the film. There is a risk. Further, it has been found that the DLC film described in Patent Document 3 may have a large amount of wear. Moreover, although the DLC film described in Patent Document 3 is defined by the Vickers hardness, the Vickers hardness is merely measured by an indentation of the film. When the film becomes hard, it is affected by the base material. At the same time, there is a problem that the wear of the film due to the scratching force applied to the film on the side surface of the piston ring is not reproduced.
  • This invention solves the said problem, and it aims at providing the piston ring which is excellent in the abrasion resistance with respect to the cylinder or cylinder liner made from an aluminum alloy which is a counterpart, and can also reduce the wear of a counterpart.
  • Another object of the present invention is to provide a piston ring that is excellent in wear resistance against an aluminum alloy piston that is a counterpart material and that suppresses aluminum adhesion.
  • a piston ring is a piston ring in which a hard carbon film is formed on an outer peripheral surface, wherein the hard carbon film has a W content of 0.5 atomic% or more and 5 atomic%. It is characterized by containing less than.
  • the wear resistance of the hard carbon coating is improved by setting the W content to 0.5 atomic% or more and less than 5 atomic%.
  • the content of W in the hard carbon film is less than 0.5 atomic%, the film is easily peeled off from the substrate and the peel resistance is poor.
  • the wear resistance is inferior when the counterpart material is a soft aluminum alloy.
  • the piston ring according to the second aspect of the present invention is a piston ring in which a hard carbon film is formed on at least one of both side surfaces, and the hard carbon film has a W content of 0.5 atomic% to 5 atomic%. It is characterized by containing less than. According to this piston ring, by setting the W content to 0.5 atomic% or more and less than 5 atomic%, it is possible to suppress aluminum adhesion while improving the wear resistance of the hard carbon film. When the content of W in the hard carbon film is less than 0.5 atomic%, the film is easily peeled off from the substrate and the peel resistance is poor. When the W content is 5 atomic% or more, the wear resistance is inferior when the counterpart material is a soft aluminum alloy.
  • the friction coefficient of the hard carbon film is preferably 0.10 or less. It is preferable that W contained in the hard carbon film is in the form of both carbide and metal.
  • the hard carbon film preferably contains 10 to 40 atomic% of hydrogen.
  • the thickness of the hard carbon film is preferably 0.5 to 20 ⁇ m.
  • the hard carbon film preferably has a Martens hardness of 5.5 to 15 GPa.
  • the hard carbon film preferably has a Martens hardness of 3.5 to 10 GPa.
  • the hard carbon film is also formed on the outer peripheral surface of the piston ring, and the Martens hardness of the hard carbon film formed on the side surface is formed on M1 and the outer peripheral surface.
  • M1 / M2 is preferably 0.3 to 0.8.
  • the first aspect of the present invention it is possible to obtain a piston ring that is excellent in wear resistance with respect to an aluminum alloy cylinder or cylinder liner that is a counterpart material and that can also reduce wear of the counterpart material.
  • the second aspect of the present invention there can be obtained a piston ring which is excellent in wear resistance with respect to an aluminum alloy piston which is a counterpart material and which suppresses aluminum adhesion.
  • FIG. 1 It is sectional drawing of the piston ring which concerns on one embodiment of this invention. It is a cross-sectional perspective view of a piston ring. It is a figure which shows the XPS analysis chart of W of a hard carbon film. It is a figure which shows the XPS analysis chart of C1s of a hard carbon film. It is a figure which shows the method of a reciprocating sliding test. It is a figure which shows the calculation method of the abrasion loss of a hard carbon film. It is a figure which shows an aluminum adhesion tester.
  • the outer peripheral surface 10a is a surface adjacent to and intersecting the side surfaces 10b and 10c.
  • the outer peripheral surface 10a is preferably a curved surface (barrel shape), but is not limited to this shape, and may be any shape as long as it is a shape applicable to the outer peripheral surface of the piston ring.
  • the part which does not want to form the hard carbon film 14 masks the base material 2, or overlaps the side surfaces (front and back surfaces of the base material 2) of the base material 2 that do not form the hard carbon film. Formation can be prevented. Further, unnecessary hard carbon film 14 may be removed by carrying out polishing or the like after forming hard carbon film 14.
  • the hard carbon film 14 when the W content in the hard carbon film 14 is less than 0.5 atomic%, the hard carbon film 14 further has a DLC film containing only hydrogen (aC: H ), When the ring surface on the combustion chamber side of the piston ring is exposed to a high temperature atmosphere, the hard carbon film 14 is graphitized and disappears, and as a result, aluminum adhesion occurs.
  • aC hydrogen
  • the wear resistance is poor when the counterpart material is an aluminum alloy (in the case of the second aspect, an aluminum alloy piston).
  • the counterpart material is an aluminum alloy (in the case of the second aspect, an aluminum alloy piston).
  • the W content is 5 atomic% or more
  • the friction coefficient of the hard carbon film 14 increases, and when the counterpart material is a soft aluminum alloy compared to cast iron or the like, the hard carbon is added to the aluminum alloy. It is conceivable that the film 14 is easily adhered.
  • the W content is 5 atomic% or more, the content ratio of W, which is a metal element, in the hard carbon film 14 increases, so the particle size of W carbide or metal tends to increase.
  • the wear resistance of the hard carbon film 14 is improved by setting the W content to be 0.5 atomic% or more and less than 5 atomic%. In the case of the second aspect, aluminum adhesion is further reduced.
  • the friction coefficient of the hard carbon film 14 is 0.10 or less because the wear resistance is improved.
  • the measurement of the friction coefficient is based on the reciprocating wear test shown in FIG. 5, and a detailed measuring method will be described later. Further, the lower limit of the friction coefficient is not limited, but in the case of the test method of FIG.
  • FIG. 3 shows an XPS analysis chart of W of the hard carbon film of the piston ring according to the embodiment of the first aspect and the second aspect of the present invention.
  • the peak of the XPS analysis chart can be considered as a composite of the spectrum indicating the binding energy attributed to W (or WC) analyzed as described above, the peak of the XPS analysis chart is best reproduced. Waveform separation is performed assuming that the spectrum is included in the chart.
  • the XPS analysis chart is composed of three spectra indicating the W binding energy and two spectra indicating the WC binding energy.
  • W is a form of both carbide and metal
  • the hard carbon film 14 preferably contains 10 to 40 atomic% of hydrogen. If the hydrogen content in the film is less than 10 atomic%, the film formation rate tends to be low and the productivity tends to decrease. On the other hand, if the hydrogen content exceeds 40 atomic%, the film hardness may decrease and sufficient wear resistance may not be obtained. Further, in the case of the second aspect, if the hydrogen content exceeds 40 atomic%, the film hardness is lowered and sufficient wear resistance cannot be obtained, and aluminum adhesion may occur.
  • the thickness of the hard carbon film 14 is preferably 0.5 to 20 ⁇ m. If the thickness of the hard carbon film 14 is less than 0.5 ⁇ m, the hard carbon film 14 is worn away during use of the piston ring, and if the thickness exceeds 20 ⁇ m, the peel resistance may be lowered.
  • the Martens hardness of the hard carbon film 14 is 5.5 to 15 GPa. When the Martens hardness is less than 5.5 GPa, the abrasion resistance of the film is lowered, and when it exceeds 15 GPa, the peel resistance may be lowered.
  • the Martens hardness of the hard carbon film 14 is preferably 3.5 to 10 GPa.
  • the Martens hardness When the Martens hardness is less than 3.5 GPa, the wear resistance of the film is lowered, and when it exceeds 10 GPa, the peel resistance is lowered, or the film is too hard and aluminum adhesion may occur.
  • the Martens hardness indicates the hardness with a load to scratch the object to be measured with an indenter and form a recess with a certain depth. The film wear due to the scratching force on the side film can be reproduced well.
  • the sp2 bond has a graphite structure
  • the sp3 bond has a diamond structure. If the sp2 bond ratio is less than 40%, the diamond structure ratio becomes too high, the hard carbon film 14 becomes too hard, the wear of the mating material becomes remarkable, and the hard carbon film 14 may be easily peeled off. is there.
  • the hard carbon film 14 may also be formed on the outer peripheral surface 10a of the piston ring.
  • M1 / M2 is 0. It is preferably 2 to 0.8.
  • M1 / M2 is defined in this way, the toughness of the hard carbon film 14 on the side surface 10b (or 10c) hit by the upper and lower surfaces of the piston groove when the piston moves up and down is made higher than the toughness of the outer peripheral surface 10a. Occurrence of film defects such as chipping and peeling can be prevented.
  • M1 / M2 is less than 0.2, the hard carbon film 14 on the side surface 10b (or 10c) may become too soft, and the wear resistance of the film may decrease.
  • M1 / M2 exceeds 0.8, the toughness of the hard carbon film 14 on the side surface 10b (or 10c) becomes equivalent to the toughness of the outer peripheral surface, and the above-described effects cannot be obtained.
  • M1 / M2 is defined for each side surface.
  • M1 / M2 can be controlled by adjusting the interval between the side surfaces of each piston ring.
  • the sp2 bond has a graphite structure
  • the sp3 bond has a diamond structure.
  • the ratio of sp2 bonds and sp3 bonds in the hard carbon film 14 can be determined by XPS (X-ray photoelectron spectroscopy) analysis.
  • FIG. 4 shows an XPS analysis chart of C1s (1s orbit) of the hard carbon film of the piston ring according to the embodiment of the first aspect and the second aspect of the present invention. The spectrum of C1s is measured. On the other hand, the peak positions of the bond energy of graphite and diamond constituting the spectrum of C1s are known in the database. Since the peak of the XPS analysis chart can be considered as a composite of the above-mentioned spectra showing the binding energies of C1s Scan A, B, C, and D, the peak of the XPS analysis chart is best reproduced.
  • Waveform separation is performed assuming that the spectrum is included in the chart.
  • the C1s Scan A spectrum obtained from waveform separation corresponds to the sp2 bond because the peak position corresponds to the bond energy of graphite
  • the C1s Scan B spectrum corresponds to the sp3 bond because the peak position corresponds to the bond energy of diamond. To do. Therefore, the area ratio of each spectrum is calculated as the ratio of sp2 bond and sp3 bond.
  • the hard carbon film 14 can be formed, for example, by a PACVD method (plasma assisted chemical vapor deposition) such as a reactive ion plating method or a reactive sputtering method.
  • a PACVD method plasma assisted chemical vapor deposition
  • the base material of the piston ring is disposed in the vacuum device, and the base material is cleaned by ion bombardment or the like as necessary.
  • a hydrocarbon gas such as methane, which is a carbon supply source, is introduced into a vacuum apparatus to keep the vicinity of the substrate in a plasma state, and at the same time, PACVD is performed using W and C targets (or WC targets). Good.
  • W and C as separate targets or using WC targets and adjusting the ratio of W and C in these targets, W in both forms of carbide and metal can be included in the film. it can.
  • the ratio of the V carbide can be adjusted by adjusting the partial pressure of the hydrocarbon gas.
  • the kind and flow rate of hydrocarbon gas can be adjusted as a method for controlling the hydrogen content in the hard carbon film 14 to 10 to 40 atomic%.
  • the method of defining the ratio of sp2 bonds and sp3 bonds in the hard carbon film 14 within the above range includes (i) increasing the W content in the hard carbon film 14 to increase the ratio of sp2 bonds, (ii) PACVD
  • the ratio of sp2 bonds can be reduced by increasing the bias voltage when performing the method, and (iii) the ratio of sp2 bonds can be increased by increasing the process gas pressure when forming the hard carbon film 14.
  • a base layer (Cr metal layer) 5 and an intermediate layer (compound layer mainly composed of WC) 7 are formed between the base material 2 and the hard carbon film 14 in this order from the base material 2 side.
  • the underlayer 5 and the intermediate layer 7 can improve the adhesion between the base material 2 and the hard carbon film 14 and obtain good adhesion that can withstand the load during engine operation.
  • the underlayer 5 can be composed of, for example, one or more selected from the group of chromium, titanium, tungsten, silicon carbide, and tungsten carbide.
  • the thickness of the underlayer 5 can be set to 0.1 to 1.0 ⁇ m, for example.
  • the intermediate layer 7 is a compound layer containing WC as a main component (50% by mass or more).
  • the intermediate layer 7 may contain one or more selected from the group consisting of Co and Ni in a total of 5 atomic% or less to improve the film strength and heat resistance.
  • the thickness of the intermediate layer 7 can be set to 1 to 5 ⁇ m, for example.
  • the piston ring base material 2 (denitrated stainless steel SUS420J2 equivalent material, nominal diameter: ⁇ 73 mm, thickness (h 1 ): 1.2 mm, width (a 1 ): 3.2 mm) was fitted.
  • the film was stacked on a film-forming jig provided with a metal rod filling the gap in the mouth, and placed on a rotating mechanism in the film-forming apparatus.
  • the side surfaces of the adjacent base materials 2 are stacked so as to be in contact with each other, and in the case of the second aspect, a state in which there is a certain gap between the side surfaces of each piston ring. Stuck.
  • the inside of the film forming apparatus was evacuated until a pressure of 5 ⁇ 10 ⁇ 3 Pa or less was reached, ion bombarding treatment was performed on the base material 2 using a Cr target to clean the film forming surface. Then, in the case of the 1st viewpoint, the base layer 5 which consists of metal Cr whose film thickness is about 0.6 micrometer was formed in the outer peripheral surface of the base material 2.
  • the above-mentioned base layer 5 was formed in one side 10b and the outer peripheral surface 10a of the base material 2.
  • a WC (tungsten carbide) film having a film thickness of about 1.5 ⁇ m is used as a main component by using a cemented carbide (WC-Co-based) commercial target.
  • the intermediate layer 7 made of the compound layer to be formed was formed on the base layer 5 by sputtering.
  • the intermediate layer 7 contained 5 atomic% or less of Co.
  • methane as a carbon supply source is introduced into the film forming apparatus, and the intermediate layer 7 is formed on the intermediate layer 7 by a reactive sputtering method using the cemented carbide target and the pure carbon target in a mixed atmosphere of methane and Ar.
  • a hard carbon film 14 is formed on the piston ring of Examples 1 to 5 and Comparative Examples 4 and 5 according to the first aspect, and the pistons of Examples 11 to 15 and Comparative Examples 14 and 15 according to the second aspect.
  • a ring was manufactured.
  • the bias voltage at the time of forming the hard carbon film and the mixture of methane and Ar were changed.
  • Example 2 changes the bias voltage
  • Examples 3, 4 and Comparative Example 4 increase the mixing ratio of methane and change the bias voltage.
  • the bias voltage was changed while lowering the mixing ratio of methane.
  • Example 12 changes the bias voltage
  • Examples 13 and 14 and Comparative Example 14 increase the mixing ratio of methane and change the bias voltage. No. 15 changed the bias voltage while lowering the mixing ratio of methane.
  • Comparative Examples 1 and 6 according to the first aspect the bias voltage at the time of forming the hard carbon film was made higher than that in Example 1, and W was contained by 5 atomic% or more.
  • Comparative Example 2 according to the first aspect after forming the base layer 5 in the same manner as in Example 1, Ar gas was introduced into the film forming apparatus without forming the intermediate layer 7 to create an Ar atmosphere. A hard carbon film was formed using only a carbon target. This hard carbon film was a hydrogen-free film containing no W and almost no hydrogen.
  • Comparative Example 3 according to the first aspect after forming the underlayer 5 in the same manner as in Example 1, C 2 H 2 (acetylene) and Ar gas were introduced into the film forming apparatus without forming the intermediate layer 7. While being introduced, a hard carbon film was formed by plasma CVD.
  • Comparative Examples 11 and 16 according to the second aspect the bias voltage at the time of forming the hard carbon film was made higher than that in Example 11, and W was contained by 5 atomic% or more.
  • Comparative Example 12 according to the second aspect after forming the base layer 5 in the same manner as in Example 11, Ar gas was introduced into the film forming apparatus without forming the intermediate layer 7 to create an Ar atmosphere. A hard carbon film was formed using only a carbon target. This hard carbon film was a hydrogen-free film containing no W and almost no hydrogen.
  • Comparative Example 13 according to the second aspect after forming the underlayer 5 in the same manner as in Example 11, C 2 H 2 (acetylene) and Ar gas were introduced into the film forming apparatus without forming the intermediate layer 7.
  • a hard carbon film was formed by plasma CVD.
  • the M1 / M2 is controlled while controlling the base.
  • a hard carbon film was simultaneously formed on the side surface and the outer peripheral surface of the material 2.
  • the hydrogen content of the hard carbon film was determined by RBS / HFS and SIMS as described above. Since the hard carbon film formed on the outer peripheral surface of the piston ring is not flat, RBS / HFS measurement cannot be performed as it is. Therefore, as a reference sample, a mirror-polished flat test piece (quenched SKH51 material disk, ⁇ 24 ⁇ thickness 4 (mm)) was formed in the same manner as each substrate 2 to form a hard carbon film. did. And the composition (hydrogen (at%)) of the hard carbon film of this reference sample was evaluated by RBS / HFS. Next, the secondary ion intensity (count / sec) of hydrogen of the hard carbon film formed on the reference sample was determined by SIMS.
  • W content Using SEM-EDAX (energy dispersive X-ray analyzer attached to an electron microscope (SEM)), W was quantitatively analyzed from the surface of the hard carbon film at an acceleration voltage of 15 eV.
  • Film thickness A thin piece containing a hard carbon film was produced by focused ion beam (FIB) processing, and obtained from a transmission electron microscope image (TEM image) of a cross section in the thickness direction of the hard carbon film.
  • Martens hardness Martens hardness in ISO14577-1 (instrumented indentation hardness test) was measured using a hardness tester.
  • a hardness tester an ultra micro hardness tester (model number: DUH-211) manufactured by Shimadzu Corporation was used.
  • Indenter Berkovich indenter, test mode: load-unloading test, test force: 19.6 [mN ], Load unloading speed: 0.4877 [mN / sec], load, unloading holding time: 5 [sec], with Cf-Ap correction.
  • the Martens hardness was measured 14 times, and the average value was obtained by subtracting a total of four values, the largest value and the next largest value, and the smallest value and the next smallest value from the obtained values. Was calculated.
  • the surface of the hard carbon film was spherically polished using a steel ball having a diameter of 30 mm or more coated with a diamond paste having an average particle diameter of 0.25 ⁇ m, and the polished portion was It used for the measurement. At this time, the maximum depth of the polished part was set to 1/10 or less of the film thickness of the hard carbon film.
  • Form of W As described above, it was determined by XPS (X-ray photoelectron spectroscopy) analysis whether W contained in the hard carbon film was in the form of both carbide and metal. (Bonding ratio of carbon crystal structure) As described above, the bond ratio (sp2 bond: sp3 bond) of the carbon crystal structure of the hard carbon film was determined by XPS (X-ray photoelectron spectroscopy) analysis.
  • Table 1 (corresponding to the first aspect) and Table 2 show the contents of W and hydrogen, film thickness, Martens hardness, and W content (bonding ratio) in the hard carbon films of the examples and comparative examples, respectively. (Corresponding to the second viewpoint).
  • the 10-point average roughness R zjis is measured 10 times or more using a stylus roughness measuring instrument (Tokyo Seimitsu Co., Ltd., SURFCOM 1400D) while changing the measurement location and the moving direction of the stylus and adopts the average value. did. Measurement conditions were based on JISB0633: 2001.
  • the piston ring of each example and comparative example is cut to a length of about 30 mm to produce a piston ring piece 80, which is attached to a fixing jig (not shown) of a reciprocating sliding tester.
  • the test was conducted by reciprocatingly sliding the piston ring piece 80 in the thickness direction with a reciprocating width of 50 mm and a sliding speed of 1.0 m / s.
  • Lubricating oil O commercial engine oil; 5W-30SM
  • 5W-30SM commercial engine oil
  • the wear amount of the hard carbon film on the outer peripheral surface was calculated.
  • the shape of the outer periphery including the sliding portion 80a of the piston ring piece 80 after the test was measured in the circumferential direction using the stylus type roughness measuring instrument.
  • the outer edge 80f of the piston ring piece 80 before the test is calculated from the curvature radius (known) of the outer periphery of the piston ring piece 80 before the test, and the maximum value of the dimensional difference between the outer edge 80f and the sliding portion 80a in the radial direction is calculated.
  • the amount of wear Note that, as shown in FIG.
  • a piston ring holding member 101 is disposed immediately below the disk 200, and the piston ring 10 having an outer diameter of 75 mm is attached to the annular groove of the piston ring holding member 101.
  • the disc 200 repeatedly reciprocates up and down by a reciprocating mechanism (not shown), hits the side surface 10b (14 of the hard carbon film) of the piston ring 10 protruding from the upper surface of the piston ring holding member 101, and the piston ring 10
  • the disk 200 and the piston ring 10 slide because they rotate together with the piston ring holding member 101 in a horizontal plane at a constant rotational speed.
  • Comparative Example 5 In the case of Comparative Example 5 in which the hydrogen content in the hard carbon film was less than 10 atomic%, the wear amount of the hard carbon film and the counterpart material increased compared to the Example, and the wear resistance deteriorated. Similarly, in the case of Comparative Example 15 in which the hydrogen content in the hard carbon film is less than 10 atomic%, the amount of wear of the hard carbon film is larger than in the Examples, the wear resistance is deteriorated, and the aluminum coagulation is further reduced. Arrived. In the case of Comparative Examples 5 and 15, the friction coefficient is higher than 0.1, and it is considered that the counterpart material was shaved and self-abrasion progressed with the wear powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Physical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

相手材であるアルミニウム合金製のシリンダ又はシリンダライナに対する耐摩耗性に優れ、かつ相手材の摩耗も低減できるピストンリングを提供する。外周面(10a)に硬質炭素皮膜(14)が形成されたピストンリング(10)において、硬質炭素皮膜がWを0.5原子%以上5原子%未満含有している。

Description

ピストンリング
 本発明は、往復動内燃機関に使用されるピストンリングに関する。特に、アルミニウム合金製のシリンダ(又はシリンダライナ)に対して摺動するピストンリングに関する。
 燃費の向上や小型軽量化などへの対応から、自動車用エンジンの高出力化及びアルミニウム化が進んでいる。例えば、アルミニウム合金製のシリンダブロックには、AC4B(JIS-H5202)相当材やADC12(JIS-H5302)相当材、A390材などが用いられている。A390材は過共晶アルミニウム合金であり、シリンダブロックを鋳造後に、シリンダ内径部の摺動面のアルミニウムマトリクスのみを選択的にエッチングし、硬質なSi粒子を表面に露出させることで耐摩耗性を向上させている。また、従来はアルミニウム製シリンダに鋳鉄製シリンダライナを内嵌することが多かったが、近年では、硬質Si粒子をマトリクス中に析出させたアルミニウム合金製のシリンダライナを採用するエンジンが増加してきている。
 ところで、自動車用エンジンなどの内燃機関において、ピストンリングとシリンダライナの摺動時に生じる摩擦損失は、内燃機関全体の摩擦損失の2~3割程度を占めると考えられており、この摩擦損失の低減が内燃機関の性能に大きく影響する。摩擦損失の低減には、ピストンリングの摩耗を抑制して摺動面形状を保持することが必要であり、これにより、シリンダライナとピストンリングの摺動面が常時一定の面圧で摺動して燃焼ガスの燃焼エネルギーを十分にクランクシャフトに伝達することができる。又、摺動面の摩擦係数を低減させることも必要になってくる。
 ピストンリング外周の摺動面の耐摩耗性を向上させるために、窒化層、Crめっき層、イオンプレーティング法による金属窒化物層などの硬質皮膜を形成することが多く行われてきた。ところが、Crを18wt%程度含有する鉄系材料からなるピストンリングの摺動面に窒化層を形成し、このピストンリングをアルミニウム合金製シリンダライナに適用すると、シリンダライナが大幅に摩耗する傾向があり、ピストンリングに適用できる材料が制約されるという問題があった。一方、Crめっき層やイオンプレーティング法などにより金属窒化物の硬質皮膜をピストンリング表面に形成した場合、シリンダライナの摩耗量が増大したり、硬質なSi粒子が脱落して摺動面に傷が発生し、更なる摩耗やスカッフが発生するという問題があった。
 このため、近年では硬質炭素(DLC)皮膜が用いられるようになってきている。例えば、Si、Ti、W、Cr、Mo、Nb、Vから選ばれた1又は2以上の元素を5~40原子%含有し、これらの炭化物が分散しているダイヤモンドライクカーボン(DLC)硬質皮膜を、ピストンリング外周面に形成して耐スカッフ性と耐摩耗性を向上させた技術が開発されている(特許文献1)。また、中間層を介して水素を含有しない非晶質硬質炭素(DLC)皮膜をAIP法により被覆したピストンリングが開発されている(特許文献2)。
 一方、エンジンの燃費向上等のために燃焼温度が上昇する傾向にあり、燃焼条件が厳しくなってピストンリングが過酷な使用環境に晒されるようになってきている。特に、スチール製ピストンと比較して低温で軟化するアルミニウム合金製ピストンの場合、燃焼温度が高くなると、ピストンリングとの摺動部にアルミニウム凝着が発生しやすくなる。そして、ピストンリングの側面(上下面)にアルミニウムが凝着すると、この凝着部を基点としてピストンのリング溝の摩耗が増大し、アルミニウム凝着をさらに増大させる。そこで、ピストンリングの側面の少なくとも一方に、固体潤滑材を含有する樹脂皮膜を形成することが行われているが、樹脂皮膜は耐摩耗性が低く、初期のアルミニウム凝着を防止できるものの、長期に渡ってアルミニウム凝着を防止することは困難であった。
 このようなことから、ピストンリングの少なくとも一方の側面に硬質炭素(DLC)皮膜を形成し、アルミニウム凝着を抑制した技術が開発されている(特許文献3)。また、中間層を介して水素を含有しない非晶質硬質炭素(DLC)皮膜をAIP法により被覆したピストンリングが開発されている(特許文献2)。
特開平11-172413号公報 特開2006-57674号公報 特開平11-166625号公報
 しかしながら、特許文献1に記載されたDLC皮膜は、相手材をアルミニウム合金としたときに摩耗量が増大すると共に、一般的なDLC皮膜(主に炭素又は炭素と水素からなる)に比べて摩擦係数が大きくなることが判明した。又、特許文献2に記載されたDLC皮膜は、水素を含有しない皮膜(ta-C)であるため、皮膜中に含まれるドロップレットにより摺動相手材のアルミニウム合金製シリンダライナの摩耗量が増大するおそれがある。
 又、特許文献3に記載されたDLC皮膜は、摩耗量が多くなる場合があることが判明した。又、特許文献3に記載されたDLC皮膜は、ビッカース硬さで規定されているが、ビッカース硬さは単に皮膜の圧痕を測定しているだけであり、皮膜が硬くなると基材の影響を受けると共に、ピストンリングの側面の皮膜に掛かる引っかき力による皮膜の摩耗を再現していないという問題がある。
 本発明は、上記問題を解決するものであり、相手材であるアルミニウム合金製のシリンダ又はシリンダライナに対する耐摩耗性に優れ、かつ相手材の摩耗も低減できるピストンリングを提供することを目的とする。
 又、本発明は、相手材であるアルミニウム合金製のピストンに対する耐摩耗性に優れ、かつアルミニウム凝着を抑制したピストンリングを提供することを目的とする。
 上記課題を解決するため、本発明の第1の観点に係るピストンリングは、外周面に硬質炭素皮膜が形成されたピストンリングにおいて、前記硬質炭素皮膜がWを0.5原子%以上5原子%未満含有していることを特徴とする。
 このピストンリングによれば、Wの含有量を0.5原子%以上5原子%未満とすることで、硬質炭素皮膜の耐摩耗性が向上する。硬質炭素皮膜中のWの含有量が0.5原子%未満の場合、皮膜が基材から剥離し易くなって耐剥離性が劣る。Wの含有量が5原子%以上になると、相手材を柔らかいアルミニウム合金としたときに耐摩耗性が劣る。
 又、本発明の第2の観点に係るピストンリングは、両方の側面のうち少なくとも一方に硬質炭素皮膜が形成されたピストンリングにおいて、前記硬質炭素皮膜がWを0.5原子%以上5原子%未満含有していることを特徴とする。
 このピストンリングによれば、Wの含有量を0.5原子%以上5原子%未満とすることで、硬質炭素皮膜の耐摩耗性が向上しつつアルミニウム凝着を抑制することができる。硬質炭素皮膜中のWの含有量が0.5原子%未満の場合、皮膜が基材から剥離し易くなって耐剥離性が劣る。Wの含有量が5原子%以上になると、相手材を柔らかいアルミニウム合金としたときに耐摩耗性が劣る。
 第1の観点に係るピストンリングにおいて、前記硬質炭素皮膜の摩擦係数が0.10以下であることが好ましい。
 前記硬質炭素皮膜に含まれるWが、炭化物および金属の両方の形態であることが好ましい。
 前記硬質炭素皮膜は水素を10~40原子%含有することが好ましい。
 前記硬質炭素皮膜の厚さが0.5~20μmであることが好ましい。
 第1の観点に係るピストンリングにおいて、前記硬質炭素皮膜のマルテンス硬さが5.5~15GPaであることが好ましい。
 第2の観点に係るピストンリングにおいて、前記硬質炭素皮膜のマルテンス硬さが3.5~10GPaであることが好ましい。
 第1の観点に係るピストンリングにおいて、前記硬質炭素皮膜の炭素の結晶構造の結合比率が、sp2結合:sp3結合=4:6~8:2であることが好ましい。
 第2の観点に係るピストンリングにおいて、前記硬質炭素皮膜が前記ピストンリングの外周面にも形成され、前記側面に形成された前記硬質炭素皮膜のマルテンス硬さをM1、前記外周面に形成された前記硬質炭素皮膜のマルテンス硬さをM2としたとき、M1/M2が0.3~0.8であることが好ましい。
 第2の観点に係るピストンリングにおいて、前記外周面に形成された前記硬質炭素皮膜の炭素の結晶構造の結合比率が、sp2結合:sp3結合=4:6~8:2であり、前記側面に形成された前記硬質炭素皮膜の炭素の結晶構造の結合比率が、sp2結合:sp3結合=5:5~9:1であることが好ましい。
 本発明の第1の観点によれば、相手材であるアルミニウム合金製のシリンダ又はシリンダライナに対する耐摩耗性に優れ、かつ相手材の摩耗も低減できるピストンリングが得られる。又、本発明の第2の観点によれば、相手材であるアルミニウム合金製のピストンに対する耐摩耗性に優れ、かつアルミニウム凝着を抑制したピストンリングが得られる。
本発明の一実施の形態に係るピストンリングの断面図である。 ピストンリングの断面斜視図である。 硬質炭素皮膜のWのXPS分析チャートを示す図である。 硬質炭素皮膜のC1sのXPS分析チャートを示す図である。 往復動摺動試験の方法を示す図である。 硬質炭素皮膜の摩耗量の算出方法を示す図である。 アルミニウム凝着試験機を示す図である。
 以下、本発明の実施形態について説明する。
 本発明の第1の観点の実施形態に係るピストンリングは、アルミニウム合金製のシリンダ又はシリンダライナに適用されてこのシリンダ(シリンダライナ)と摺動するものである。又、本発明の第2の観点の実施形態に係るピストンリングは、アルミニウム合金製のピストンのリング溝に組み付けられて用いられるものである。
 図1は、本発明の第1の観点及び第2の観点の実施形態に係るピストンリング10の断面図を示す。ピストンリング10は、基材2の外周面に硬質炭素皮膜14を形成してなる。ここで、図2に示すように、ピストンリング10の上下の板面を側面10b、10cとすると、外周面10aは側面10b、10cと隣接して該側面に交差する面である。又、外周面10aは曲面(バレル形状)を好ましく用いることができるがこの形状に限定されず、ピストンリングの外周面に適用される形状であればいずれの形状であってもよい。
 又、硬質炭素皮膜14を形成したくない部分は、基材2にマスキングを施したり、基材2のうち硬質炭素皮膜を形成しない側面(基材2の表裏面)同士を重ねたりすることによって形成を防止できる。また、硬質炭素皮膜14を形成した後に研磨加工等を実施することにより、不要な硬質炭素皮膜14を除去しても良い。
 基材2は例えばステンレス鋼、鉄鋼、鋳鉄、鋳鋼等からなる。
 硬質炭素皮膜(ダイヤモンドライクカーボン)14は、Wを0.5原子%以上5原子%未満含有する。硬質炭素皮膜14中のWの含有量が0.5原子%未満の場合、皮膜が基材2から剥離し易くなって耐剥離性が劣るとともに、0.5原子%未満のWを含有させるのは製造上困難である。又、第2の観点のピストンリングにおいて、硬質炭素皮膜14中のWの含有量が0.5原子%未満であると、さらに、硬質炭素皮膜14は水素のみを含有するDLC皮膜(a-C:H)に近い組成となるため、ピストンリングのうち燃焼室側のリング面が高温雰囲気に曝された場合に、硬質炭素皮膜14が黒鉛化して消失し、その結果としてアルミニウム凝着が生じる。
 Wの含有量が5原子%以上になると、相手材をアルミニウム合金(第2の観点の場合はアルミニウム合金ピストン)としたときに耐摩耗性が劣る。この原因は明確ではないが、Wの含有量が5原子%以上になると硬質炭素皮膜14の摩擦係数が大きくなり、相手材が鋳鉄等に比べて柔らかいアルミニウム合金の場合、このアルミニウム合金に硬質炭素皮膜14が凝着しやすくすることが考えられる。又、Wの含有量が5原子%以上になると、硬質炭素皮膜14中に金属元素であるWの含有割合が多くなることから、Wの炭化物又は金属の粒径が大きくなる傾向にある。そして、アルミニウム合金の相手材と摺動した際、大きな粒子が硬質炭素皮膜14から脱落して皮膜が粗面化し、皮膜自体の摩耗が進行し易くなると共に、脱落した粒子が研磨材となって硬質炭素皮膜14及び相手材を摩耗させると考えられる。更に、硬質炭素皮膜14の表面にWが多く存在すると、エンジンオイル中の金属微粉あるいは摺動相手材のアルミニウムと金属結合し、これによっても耐摩耗性が低下すると考えられる。
 このように、Wの含有量を0.5原子%以上5原子%未満とすることで、硬質炭素皮膜14の耐摩耗性が向上する。第2の観点の場合は、さらにアルミニウム凝着が低減される。
 なお、硬質炭素皮膜14の摩擦係数が0.10以下であると、耐摩耗性が向上するので好ましい。摩擦係数の測定は、図5に示す往復動摩耗試験によるものであり、詳細な測定方法は後述する。又、摩擦係数の下限は限定されないが、図5の試験法の場合、例えば0.05程度である。
 硬質炭素皮膜14に含まれるWが、炭化物および金属の両方の形態であると、摩擦係数の低減効果が大きい。又、皮膜中に高融点の金属タングステンが含まれるので、熱分解されやすい硬質炭素皮膜14に耐熱性が付与され、さらに皮膜中に高硬度な炭化タングステンも存在することで、耐摩耗性が向上すると考えられる。
 なお、硬質炭素皮膜14に含まれるWが、炭化物および金属の両方の形態である場合には、硬質炭素皮膜14中のWの含有量が少なくなるほど、皮膜が硬くなる傾向にあることがわかった。この理由は明確ではないが、Wが、炭化物および金属の両方の形態である場合には、Wの含有量が少なくなるほどDLCの硬さが反映され易くなるものと考えられる。
 硬質炭素皮膜14に含まれるWを炭化物および金属の両方の形態とする方法は後述する。
 硬質炭素皮膜14に含まれるWが炭化物および金属の両方の形態であることは、XPS(X線光電子分光)分析によって判定することができる。図3は、本発明の第1の観点及び第2の観点の実施の形態に係るピストンリングの硬質炭素皮膜のWのXPS分析チャートを示す。
 XPS分析チャートであるWのスペクトルにおいて、図3の例では電子軌道が4f7/2、4f5/2、5p3/2の3カ所に明確なピークが見られる。一方、W及びWCの結合エネルギーのピーク位置(複数)はデータベース化されていて既知である。そこで、XPS分析チャートのWのスペクトルの3カ所のピークと、上述のW及びWCの概知のピーク位置(複数)とを照合し、両者のピーク位置が2カ所一致(所定の近似値以内)すれば、そのW(又はWC)の結合エネルギー(図3のW及びWCの引出し線で表したスペクトル)がXPS分析チャートに含まれるとみなす。
 そして、XPS分析チャートのピークは、上述のように解析したW(又はWC)に帰属する結合エネルギーを示すスペクトルを複合したものと考えることができるので、XPS分析チャートのピークを最も良く再現するようなスペクトルが該チャートに含まれるものとして波形分離を行う。図3の例では、XPS分析チャートは、Wの結合エネルギーを示す3つのスペクトルと、WCの結合エネルギーを示す2つのスペクトルで構成されていることになる。
 従って、「Wが炭化物および金属の両方の形態」である場合とは、XPS分析チャートを波形分離した各スペクトルのすべてがW(又はWC)に帰属する場合を除く、つまり、波形分離した複数のスペクトルのうち、それぞれW,WCに帰属する(結合エネルギーを示す)ものが少なくとも1つずつある場合をいう。
 硬質炭素皮膜14が水素を10~40原子%含有することが好ましい。皮膜中の水素の含有量が10原子%未満であると、成膜速度が遅くなって生産性が低下する傾向にある。一方、水素の含有量が40原子%を超えると、皮膜硬度が低下して十分な耐摩耗性が得られないことがある。さらに第2の観点の場合は、水素の含有量が40原子%を超えると、皮膜硬度が低下して十分な耐摩耗性が得られず、アルミニウム凝着が生じることがある。
 硬質炭素皮膜14の水素の含有量は、RBS(Rutherford Backscattering Spectrometry)/HFS(Hydrogen Forward Scattering Spectrometry)及びSIMS(Secondary Ion Mass Spectrometry)によって評価する。詳細な測定方法は後述する。
 硬質炭素皮膜14の厚さが0.5~20μmであることが好ましい。硬質炭素皮膜14の厚さが0.5μm未満であると、ピストンリングの使用中に硬質炭素皮膜14が摩滅してしまい、厚さが20μmを超えると耐剥離性が低下する場合がある。
 第1の観点においては、硬質炭素皮膜14のマルテンス硬さが5.5~15GPaであることが好ましい。マルテンス硬さが5.5GPa未満であると皮膜の耐摩耗性が低下し、15GPaを超えると耐剥離性が低下する場合がある。
 又、第2の観点においては、硬質炭素皮膜14のマルテンス硬さが3.5~10GPaであることが好ましい。マルテンス硬さが3.5GPa未満であると皮膜の耐摩耗性が低下し、10GPaを超えると耐剥離性が低下したり、皮膜が硬すぎてアルミニウム凝着が生じる場合がある。
 なお、マルテンス硬さは、測定対象を圧子で引っ掻き、一定深さの凹部を形成するための荷重で硬さを表しており、皮膜が硬くなっても基材の影響を受け難いと共に、ピストンリングの側面の皮膜に掛かる引っかき力による皮膜の摩耗を良く再現できる。
 第1の観点においては、硬質炭素皮膜14の炭素の結晶構造の結合比率が、sp2結合:sp3結合=4:6~8:2であると、耐摩耗性に優れるため好ましい。ここで、sp2結合はグラファイト構造であり、sp3結合はダイヤモンド構造である。sp2結合の比率が40%未満になると、ダイヤモンド構造の割合が多くなり過ぎ、硬質炭素皮膜14が硬くなり過ぎて相手材の摩耗が顕著になるとともに、硬質炭素皮膜14が剥離し易くなることがある。一方、sp2結合の比率が80%を超えるものは、グラファイトの割合が多くなり過ぎてそもそもDLCではなく、皮膜硬度が低下して十分な耐摩耗性が得られない。
 硬質炭素皮膜14中のsp2結合とsp3結合の比率を上記範囲に規定する方法は後述する。
 又、第2の観点において、硬質炭素皮膜14をピストンリングの外周面10aにも形成してもよい。この場合、側面10b(又は10c)に形成された硬質炭素皮膜14のマルテンス硬さをM1、外周面10aに形成された硬質炭素皮膜14のマルテンス硬さをM2としたとき、M1/M2が0.2~0.8であることが好ましい。
 M1/M2をこのように規定すると、ピストンが上下に動作する時にピストン溝の上下面に叩かれる側面10b(又は10c)の硬質炭素皮膜14の靭性を、外周面10aの靭性よりも高くし、欠けや剥離などの皮膜欠陥の発生を防止することができる。その結果、アルミニウム凝着をさらに抑制し、ピストンリングの耐久性をより一層向上させることが可能となる。
 M1/M2が0.2未満の場合、側面10b(又は10c)の硬質炭素皮膜14が柔らかくなり過ぎて皮膜の耐摩耗性が低下することがある。M1/M2が0.8を超える場合、側面10b(又は10c)の硬質炭素皮膜14の靭性が外周面の靭性と同等となってしまい、上記した効果が得られない。
 なお、硬質炭素皮膜14を両側面10b及び10cに成膜した場合には、各側面のそれぞれについてM1/M2を規定することとする。
 又、硬質炭素皮膜14を側面10b(又は10c)及び外周面10aに同時に成膜する場合であっても、成膜装置内の成膜冶具に多数のピストンリングを同軸に重ねて配置する際、各ピストンリングの側面同士の間隔を調整することで、M1/M2を制御することができる。
 第2の観点において、側面に形成された硬質炭素皮膜14の炭素の結晶構造の結合比率が、sp2結合:sp3結合=5:5~9:1であると、耐摩耗性に優れるため好ましい。ここで、sp2結合はグラファイト構造であり、sp3結合はダイヤモンド構造である。
 又、第2の観点において、外周面に形成された硬質炭素皮膜14の炭素の結晶構造の結合比率が、sp2結合:sp3結合=4:6~8:2であると、耐摩耗性に優れるため好ましい。
 硬質炭素皮膜14中のsp2結合とsp3結合の比率は、XPS(X線光電子分光)分析によって求めることができる。図4は、本発明の第1の観点及び第2の観点の実施の形態に係るピストンリングの硬質炭素皮膜のC1s(1s軌道)のXPS分析チャートを示す。C1sのスペクトルを測定する。一方、C1sのスペクトルを構成する、グラファイト、ダイヤモンドの結合エネルギーのピーク位置はデータベース化されていて既知である。そして、XPS分析チャートのピークは、上述のC1s Scan A,B,C,Dの各結合エネルギーを示すスペクトルを複合したものと考えることができるので、XPS分析チャートのピークを最も良く再現するようなスペクトルが該チャートに含まれるものとして波形分離を行う。
 波形分離から得られたC1s Scan Aスペクトルは、ピーク位置がグラファイトの結合エネルギーに相当するのでsp2結合に対応し、C1s Scan Bスペクトルは、ピーク位置がダイヤモンドの結合エネルギーに相当するのでsp3結合に対応する。そこで、各スペクトルの面積比率をsp2結合とsp3結合の比率として計算する。
 硬質炭素皮膜14は、例えば、反応性イオンプレーティング法、又は反応性スパッタリング法などのPACVD法(プラズマアシスト化学蒸着)によって形成することができる。具体的には、真空装置内にピストンリングの基材を配置し、必要に応じてイオンボンバードメント等によって基材を清浄化する。次いで、炭素の供給源であるメタン等の炭化水素ガスを真空装置に導入し、基材近傍をプラズマ状態に保つと同時に、WとCの各ターゲット(またはWCターゲット)を用いてPACVDを行えばよい。
 そして、WとCとを別個のターゲットとし、またはWCターゲットを用い、これらターゲット中のWとCの割合を調整することで、炭化物および金属の両方の形態のWを皮膜中に含有させることができる。又、炭化水素ガスの分圧を調整することによって、Vの炭化物の割合を調整することができる。
 又、硬質炭素皮膜14中の水素含有量を10~40原子%に制御する方法としては、炭化水素ガスの種類、流量を調整することがあげられる。
 硬質炭素皮膜14中のsp2結合とsp3結合の比率を上記範囲に規定する方法としては、(i) 硬質炭素皮膜14中のW含有量を高くしてsp2結合の割合を増やす、(ii) PACVD法を行う際のバイアス電圧を高くしてsp2結合の割合を低減する、(iii) 硬質炭素皮膜14成膜時のプロセスガス圧力を高くしてsp2結合の割合を増やす、等があげられる。
 なお、本実施形態では、基材2と硬質炭素皮膜14との間に、基材2側から順に下地層(Cr金属層)5、中間層(WCを主成分とする化合物層)7が形成されている。これら下地層5及び中間層7は、基材2と硬質炭素皮膜14との間の密着性を向上させ、エンジン運転時の負荷に耐えうる良好な密着性を得ることができる。
 下地層5は、例えば、クロム,チタン,タングステン,炭化ケイ素及びタングステンカーバイドの群から選ばれる1種又は2種以上で構成することができる。下地層5の厚さは、例えば0.1~1.0μmとすることができる。
 中間層7は、WCを主成分(50質量%以上)とする化合物層である。中間層7にCo及びNiの群から選ばれる1種以上を合計5原子%以下含有させて皮膜強度及び耐熱性を向上させてもよい。中間層7の厚さは、例えば1~5μmとすることができる。
 脱脂洗浄を行ったピストンリングの基材2(窒化処理したステンレス鋼SUS420J2相当材、呼称径:φ73mm,厚さ(h):1.2mm,幅(a):3.2mm)を、合い口隙間を埋める金属棒を備える成膜冶具にスタックし、成膜装置内の回転機構に設置した。なお、第1の観点の場合は、隣接する基材2の側面同士が接するよう重ねてスタックし、第2の観点の場合は、各ピストンリングの側面同士の間に一定の隙間を有した状態でスタックした。
 成膜装置内を5×10-3Pa以下の圧力に到達するまで真空排気した後、Crターゲットを用いて基材2にイオンボンバード処理を実施して皮膜形成面を清浄化した。その後、第1の観点の場合は、膜厚が約0.6μmの金属Crからなる下地層5を基材2の外周面に形成した。一方、第2の観点の場合は、上記した下地層5を基材2の一方の側面10b及び外周面10aに形成した。
 その後、成膜装置内にArガスを導入してAr雰囲気とし、超硬合金(WC-Co系)の市販ターゲットを用いて膜厚が約1.5μmのWC(タングステンカーバイト)を主成分とする化合物層からなる中間層7を、下地層5上にスパッタリングにより形成した。中間層7にはCoが5原子%以下含有されていた。
 次に、成膜装置内に炭素の供給源となるメタンを導入し、メタンとArの混合雰囲気中で、上記超硬合金ターゲットおよび純カーボンターゲットを用いて、反応性スパッタリング法により中間層7上に硬質炭素皮膜14を形成し、第1の観点に係る実施例1~5、比較例4,5のピストンリング、及び第2の観点に係る実施例11~15、比較例14,15のピストンリングを製造した。
 実施例1~5、比較例4,5、及び実施例11~15、比較例14,15は、それぞれ硬質炭素皮膜形成時のバイアス電圧、メタンとArの混合を変えた。具体的には、実施例1の成膜条件を基準としたとき、実施例2はバイアス電圧を変え、実施例3、4および比較例4はメタンの混合割合を高くすると共にバイアス電圧も変え、実施例5はメタンの混合割合を下げつつバイアス電圧も変えた。
 同様に、実施例11の成膜条件を基準としたとき、実施例12はバイアス電圧を変え、実施例13、14および比較例14はメタンの混合割合を高くすると共にバイアス電圧も変え、実施例15はメタンの混合割合を下げつつバイアス電圧も変えた。
 第1の観点に係る比較例1、6は、硬質炭素皮膜形成時のバイアス電圧を実施例1より高くし、Wを5原子%以上含有させた。
 第1の観点に係る比較例2は、実施例1と同様にして下地層5を形成した後、中間層7を形成せずに成膜装置内にArガスを導入してAr雰囲気とし、純カーボンターゲットのみを用いて硬質炭素皮膜を形成した。この硬質炭素皮膜はWを含有せず、水素も殆ど含まない水素フリーの皮膜であった。
 第1の観点に係る比較例3は、実施例1と同様にして下地層5を形成した後、中間層7を形成せずに成膜装置内にC(アセチレン)とArガスを導入しながら、プラズマCVD法によって硬質炭素皮膜を形成した。
 同様に、第2の観点に係る比較例11、16は、硬質炭素皮膜形成時のバイアス電圧を実施例11より高くし、Wを5原子%以上含有させた。
 第2の観点に係る比較例12は、実施例11と同様にして下地層5を形成した後、中間層7を形成せずに成膜装置内にArガスを導入してAr雰囲気とし、純カーボンターゲットのみを用いて硬質炭素皮膜を形成した。この硬質炭素皮膜はWを含有せず、水素も殆ど含まない水素フリーの皮膜であった。
 第2の観点に係る比較例13は、実施例11と同様にして下地層5を形成した後、中間層7を形成せずに成膜装置内にC(アセチレン)とArガスを導入しながら、プラズマCVD法によって硬質炭素皮膜を形成した。
 なお、第2の観点に係る実施例11~15、比較例11~16において、成膜冶具にスタックする各ピストンリングの側面同士の間隔を調整することで、M1/M2を制御しつつ、基材2の側面及び外周面に硬質炭素皮膜を同時に成膜した。
(硬質炭素皮膜の特性)
 各実施例及び比較例の硬質炭素皮膜につき、以下の特性を測定した。
(水素の含有量)
 硬質炭素皮膜の水素の含有量は、上述のとおりにRBS/HFS及びSIMSにより求めた。ピストンリングの外周面に形成された硬質炭素皮膜は平坦でないので、そのままではRBS/HFS測定はできない。そこで、基準試料として、鏡面研磨した平坦な試験片(焼入処理したSKH51材ディスク、φ24×厚さ4(mm))を各基材2と同時に同様にして成膜し、硬質炭素皮膜を形成した。
 そして、この基準試料の硬質炭素皮膜の組成(水素(at%))をRBS/HFSによって評価した。
 次にSIMSにより、基準試料に形成された硬質炭素皮膜の水素の二次イオン強度(count/sec)を求めた。そして、上記したRBS/HFSで評価した水素(at%)の値と、SIMSで評価した水素の値との間の関係式(検量線)を、最小二乗法により二次回帰曲線で求めた。
 そして、実施例と比較例の試料につき、SIMSで硬質炭素皮膜の水素の値を測定し、上記検量線によりRBS/HFSに相当する原子%に換算した。
(Wの含有量)
 SEM-EDAX(電子顕微鏡(SEM)付属のエネルギー分散型X線分析装置)を用い、加速電圧15eVで硬質炭素皮膜の表面からWの定量分析を行った。
(膜厚)
 集束イオンビーム(FIB)加工によって硬質炭素皮膜を含む薄片を製作し、硬質炭素皮膜の厚さ方向断面の透過型電子顕微鏡像(TEM像)から求めた。
(マルテンス硬さ)
 硬さ試験機を用い、ISO14577-1(計装化押し込み硬さ試験)におけるマルテンス硬さを測定した。硬さ試験機としては、島津製作所製の超微小硬さ試験機(型番:DUH-211)を用い、圧子:Berkovich圧子、試験モード:負荷-除荷試験、試験力:19.6[mN]、負荷除荷速度:0.4877[mN/sec]、負荷,除荷保持時間:5[sec]、Cf-Ap補正あり、の条件で測定する。
 なお、マルテンス硬さの測定は、14回実施し、得られた値から最も大きな値とその次に大きな値、及び最も小さな値とその次に小さな値の合計4つを除いた値から平均値を算出した。又、試験への表面粗さの影響を小さくするため、平均粒径0.25μmダイヤモンドペーストを塗布した直径30mm以上の鋼球を用いて、硬質炭素皮膜の表面近傍を球面研磨し、研磨部分を測定に供した。このとき、研磨部の最大深さを、硬質炭素皮膜の膜厚に対して1/10以下にした。
(Wの形態)
 上述の通り、XPS(X線光電子分光)分析によって、硬質炭素皮膜に含まれるWが炭化物および金属の両方の形態であるか否かを判定した。
(炭素の結晶構造の結合比率)
 上述の通り、XPS(X線光電子分光)分析によって、硬質炭素皮膜の炭素の結晶構造の結合比率(sp2結合:sp3結合)を求めた。
 各実施例及び比較例の硬質炭素皮膜中のW及び水素の含有量、膜厚、マルテンス硬さ、Wの含有形態(結合比率)をそれぞれ表1(第1の観点に対応)、及び表2(第2の観点に対応)に示す。
(外周面の硬質炭素皮膜の評価)
 各実施例及び比較例の各ピストンリングを用い、往復動摺動試験機にて、図5に示すようにして往復動摺動試験を行い、耐摩耗性の評価及び摩擦係数の測定を行った。まず、アルミニウム合金(A390材)製のシリンダライナ(第1の観点の場合)又はシリンダ(第2の観点)から試験片(平板)50を切り出し、その表面50aの粗さを十点平均粗さRzjis:0.9~1.3μmに調整した。なお、十点平均粗さRzjisは、触針式粗さ測定器(株式会社東京精密製,SURFCOM1400D)を用い、測定場所や触針の移動方向を変えながら10回以上測定し平均値を採用した。測定条件はJISB0633:2001に準拠した。
 次に、各実施例及び比較例のピストンリングを長さ約30mmになるよう切断してピストンリング片80を作製し、往復動摺動試験機の固定治具(図示せず)に取り付け、ピストンリング片80の外周面に形成された硬質炭素皮膜を、試験片の表面50aに垂直荷重W=40Nで押し付けた。
 この状態で、ピストンリング片80を厚さ方向に往復幅50mm、摺動速度平均1.0m/sで往復摺動させて、試験を行った。なお、試験片の表面50aには潤滑油O(市販エンジン油;5W-30SM)を0.1ml/minの割合で滴下し、試験時の試験片50の温度を120℃とし、試験時間を10分とした。
 試験後、硬質炭素皮膜が摩耗した場合には楕円形の摺動痕が観察された。
(外周面の硬質炭素皮膜の摩耗量)
 図6(a)に示すようにして、外周面の硬質炭素皮膜の摩耗量を算出した。まず、試験後のピストンリング片80の摺動部80aを含む外周の形状を、上記触針式粗さ測定器を用いて周方向に測定した。そして、試験前のピストンリング片80の外周の曲率半径(既知)から、試験前のピストンリング片80の外縁80fを算出し、外縁80fと摺動部80aとの径方向の寸法差の最大値を摩耗量とした。
 なお、図6(b)に示すように、ピストンリング片80の軸方向に沿って摺動部80aの中央付近の位置Lで、形状測定を行った。
(試験片(シリンダライナ又はシリンダ相当)の摩耗量)
 試験片50の摩耗量は、触針式粗さ計を用い、測定長さの両端に未摺動部が入るようにして摺動方向に粗さ測定した。このとき、未摺動部と摺動部の差の最大値を摩耗量とした。
 なお、表1に示す硬質炭素皮膜及び試験片の摩耗量は、比較例1の摩耗量を1としたときの相対値で表した。同様に、表2に示す硬質炭素皮膜及び試験片の摩耗量は、比較例11の摩耗量を1としたときの相対値で表した。
(硬質炭素皮膜の摩擦係数)
 図5に示す往復動摩耗試験機により、上記摩耗試験を行い、試験片50に取り付けた図示しないロードセルによりピストンリング片80の押し付け荷重と摩擦力を計測した。ピストンリング片の1回の往復動における最大摩擦力を押し付け荷重で除した数値を摩擦係数aとし、試験終了前1分間(試験開始後9~10分)の摩擦係数aの平均値を最終的な摩擦係数として採用した。通常、1回の往復動における最大摩擦力はピストンリング片の折り返し時となるため、本方法で測定した摩擦係数は、静摩擦係数とみなして良い。
(側面の硬質炭素皮膜の評価)
(アルミニウム凝着及び摩耗試験)
 図7に示すアルミニウム凝着試験機を用いて、第2の観点に対応する各実施例及び比較例のアルミニウム凝着及び摩耗試験を実施した。ピストンを模したものとして、直径100mm,厚さ8mmのアルミニウム合金(JIS AC8A(T6))製円盤200を用意した。円盤200内に熱電対105を挿入すると共に、円盤200の上方にヒータ103を設置し、ヒータ103の出力を温度コントローラ107で制御して円盤200の温度を240℃に保持した。一方、円盤200の直下にピストンリング保持部材101が配置されており、ピストンリング保持部材101の環状溝に、外径75mmのピストンリング10を装着した。
 円盤200は図示しない往復動機構によって上下に往復運動を繰り返し行ない、ピストンリング保持部材101の上面よりも突出したピストンリング10の側面10b(の硬質炭素皮膜を14)を叩くとともに、ピストンリング10がピストンリング保持部材101と共に一定回転速度で水平面内で回転運動するので、円盤200とピストンリング10が摺動する。
 ピストンリング保持部材101の回転周速度をピストンリング10外周において3.3mm/sec、円盤200押しつけ時の面圧を1MPa、往復動機構の上下動(叩き速度)を3.3Hzとし、潤滑油は使用しなかった。また、叩き回数は最大100万回とし、途中でアルミニウム凝着が発生した場合は「×」、叩き回数100万回までアルミニウム凝着が発生しなかった場合は「○」とした。アルミニウム凝着の発生の有無は、ピストンリング保持部材101の回転機構に設けられた図示しない回転トルク検出機構により検出した回転トルクが、アルミニウム凝着が発生していない初期状態と比較して5倍以上に増加したときをアルミニウム凝着が発生したものと判定した。
 また、叩き試験終了後の摺動面(ピストンリング10の側面)を観察して皮膜の耐摩耗性(皮膜残存度)を評価した。EDAX(エネルギー分散型X線分析)により、摺動面の成分分析(5~10カ所)を行って硬質炭素皮膜が残存しているか否かを判定した。試験終了後の摺動面に硬質炭素皮膜が残存している場合は「○」、硬質炭素皮膜の一部が欠けや剥離により脱落してその部分で基材が露出した場合は「△」、硬質炭素皮膜の残存が認められない(硬質炭素皮膜が完全に摩耗して消失した)場合は「×」とした。
 得られた結果を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、Wを0.5原子%以上5原子%未満含有する硬質炭素皮膜が形成された各実施例の場合、相手材であるアルミニウム合金製のシリンダライナに対する耐摩耗性に優れ、かつ相手材の摩耗も低減することができた。
 同様に、表2から明らかなように、Wを0.5原子%以上5原子%未満含有する硬質炭素皮膜が形成された各実施例の場合、相手材であるアルミニウム合金製のピストンに対する耐摩耗性に優れ、さらにアルミニウム凝着が発生しなかった。なお、各実施例の場合、外周面に摩擦係数が0.1以下の硬質炭素皮膜を形成したので、相手材であるシリンダの摩耗も低減することができた。
 一方、硬質炭素皮膜中のWの含有量が5原子%以上である比較例1、6の場合、実施例に比べて硬質炭素皮膜の摩耗量が多くなり、耐摩耗性が劣化した。なお、比較例1、6の場合、Wが炭化物のみからなり、硬質炭素皮膜の摩擦係数が0.1を超えた。
 同様に、硬質炭素皮膜中のWの含有量が5原子%以上である比較例11、16の場合、硬質炭素皮膜のマルテンス硬さが3.5GPa未満に柔らかくなって、実施例に比べて硬質炭素皮膜の摩耗量が多くなり、耐摩耗性(皮膜残存度)が劣化した。なお、比較例11、16の場合、外周面に摩擦係数が0.1を超える硬質炭素皮膜を形成したので、相手材であるシリンダの摩耗量が増大した。
 硬質炭素皮膜中のWの含有量が0.5原子%未満である比較例2、3の場合、実施例に比べて相手材の摩耗量が多くなり、耐摩耗性が劣化した。これは、比較例2,3の硬質炭素皮膜のマルテンス硬さが15GPaを超えて硬くなったためと考えられる。
 同様に、硬質炭素皮膜中のWの含有量が0.5原子%未満である比較例12、13の場合、実施例に比べて耐摩耗性が劣化し、さらにアルミニウム凝着が発生した。なお、比較例12の場合、側面の硬質炭素皮膜のマルテンス硬さが10GPaを超えて硬くなり、M1/M2が0.8を超えたため、硬質炭素皮膜に欠けや剥離などが見られた。比較例13の場合、側面の硬質炭素皮膜のマルテンス硬さが低下し、M1/M2が0.3未満となったため、耐摩耗性(皮膜残存度)も劣化した。又、アルミニウム凝着が発生したのは、硬質炭素皮膜が水素のみを含有するDLC皮膜(a-C:H)に近い組成となったため、アルミニウム凝着試験中に硬質炭素皮膜の一部が黒鉛化して消失したためと考えられる。なお、比較例12、13の場合、外周面の硬質炭素皮膜のマルテンス硬さが15GPaを超えて硬くなったために、相手材であるシリンダの摩耗量が増大したと考えられる。
 硬質炭素皮膜中の水素の含有量が40原子%を超えた比較例4の場合、硬質炭素皮膜のマルテンス硬さが5.5GPa未満に柔らかくなって耐摩耗性が劣化した。
 同様に、硬質炭素皮膜中の水素の含有量が40原子%を超えた比較例14の場合、硬質炭素皮膜のマルテンス硬さが3.5GPa未満に柔らかくなって耐摩耗性が劣化し、さらにアルミニウム凝着が発生した。
 硬質炭素皮膜中の水素の含有量が10原子%未満である比較例5の場合、実施例に比べて硬質炭素皮膜及び相手材の摩耗量が多くなり、耐摩耗性が劣化した。同様に、硬質炭素皮膜中の水素の含有量が10原子%未満である比較例15の場合、実施例に比べて硬質炭素皮膜の摩耗量が多くなり、耐摩耗性が劣化し、さらにアルミニウム凝着が発生した。なお、比較例5、15の場合、摩擦係数が0.1を超えて高く、相手材を削ると共に、その摩耗粉にて自己摩耗も進んだと考えられる。
 2    (ピストンリングの)基材
 5    下地層
 7    中間層
 10    ピストンリング
 10a   ピストンリングの外周面
 10b、10c   ピストンリングの側面
 14    硬質炭素皮膜

Claims (11)

  1.  外周面に硬質炭素皮膜が形成されたピストンリングにおいて、前記硬質炭素皮膜がWを0.5原子%以上5原子%未満含有していることを特徴とするピストンリング。
  2.  両方の側面のうち少なくとも一方に硬質炭素皮膜が形成されたピストンリングにおいて、前記硬質炭素皮膜がWを0.5原子%以上5原子%未満含有していることを特徴とするピストンリング。
  3.  前記硬質炭素皮膜の摩擦係数が0.10以下である請求項1又は2に記載のピストンリング。
  4.  前記硬質炭素皮膜に含まれるWが、炭化物および金属の両方の形態である請求項1~3のいずれかに記載のピストンリング。
  5.  前記硬質炭素皮膜は水素を10~40原子%含有する請求項1~4のいずれかに記載のピストンリング。
  6.  前記硬質炭素皮膜の厚さが0.5~20μmである請求項1~5のいずれかに記載のピストンリング。
  7.  前記硬質炭素皮膜のマルテンス硬さが5.5~15GPaである請求項1に記載のピストンリング。
  8.  前記硬質炭素皮膜のマルテンス硬さが3.5~10GPaである請求項2に記載のピストンリング。
  9.  前記硬質炭素皮膜の炭素の結晶構造の結合比率が、sp2結合:sp3結合=4:6~8:2である請求項1に記載のピストンリング。
  10.  前記硬質炭素皮膜が前記ピストンリングの外周面にも形成され、前記側面に形成された前記硬質炭素皮膜のマルテンス硬さをM1、前記外周面に形成された前記硬質炭素皮膜のマルテンス硬さをM2としたとき、M1/M2が0.3~0.8である請求項2に記載のピストンリング。
  11.  前記外周面に形成された前記硬質炭素皮膜の炭素の結晶構造の結合比率が、sp2結合:sp3結合=4:6~8:2であり、
     前記側面に形成された前記硬質炭素皮膜の炭素の結晶構造の結合比率が、sp2結合:sp3結合=5:5~9:1である請求項10に記載のピストンリング。
PCT/JP2014/072881 2013-09-30 2014-09-01 ピストンリング WO2015045745A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/025,756 US10100929B2 (en) 2013-09-30 2014-09-01 Piston ring
JP2015539043A JP6109325B2 (ja) 2013-09-30 2014-09-01 アルミニウム合金製の相手材とピストンリングとの組み合わせ
CN201480053721.7A CN105593503B (zh) 2013-09-30 2014-09-01 活塞环
EP14847271.5A EP3054137A4 (en) 2013-09-30 2014-09-01 Piston ring

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013204986 2013-09-30
JP2013-204986 2013-09-30
JP2013204987 2013-09-30
JP2013-204987 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015045745A1 true WO2015045745A1 (ja) 2015-04-02

Family

ID=52742894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072881 WO2015045745A1 (ja) 2013-09-30 2014-09-01 ピストンリング

Country Status (5)

Country Link
US (1) US10100929B2 (ja)
EP (1) EP3054137A4 (ja)
JP (1) JP6109325B2 (ja)
CN (1) CN105593503B (ja)
WO (1) WO2015045745A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125832A1 (ja) * 2014-02-19 2015-08-27 株式会社リケン ピストンリング
WO2017026043A1 (ja) * 2015-08-10 2017-02-16 日本アイ・ティ・エフ株式会社 ピストンリングおよびその製造方法
JP2020132466A (ja) * 2019-02-18 2020-08-31 国立大学法人豊橋技術科学大学 水素含有カーボン膜
JP2021063443A (ja) * 2019-10-10 2021-04-22 Tpr株式会社 内燃機関用ピストンとピストンリングとの組み合わせ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604867B1 (en) 2017-03-31 2024-07-31 Kabushiki Kaisha Riken Sliding member, piston ring and method of manufacturing a sliding member
US10823288B2 (en) 2017-03-31 2020-11-03 Kabushiki Kaisha Riken Sliding member and piston ring
DE102017210559A1 (de) * 2017-06-22 2018-12-27 Mahle International Gmbh Kolbenring für einen Kolben einer Brennkraftmaschine
JP6533818B2 (ja) * 2017-10-20 2019-06-19 株式会社リケン 摺動部材およびピストンリング
MX2020013741A (es) 2018-06-29 2021-03-29 Tpr Co Ltd Anillo de piston.
US11156033B1 (en) 2018-09-20 2021-10-26 National Technology & Engineering Solutions Of Sandia, Llc Multilayer solid lubricant architecture for use in drilling tool applications

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301149A (ja) * 1994-05-06 1995-11-14 Toyota Motor Corp ピストン/ピストンリングアッセンブリ
JPH11166625A (ja) 1997-09-30 1999-06-22 Teikoku Piston Ring Co Ltd ピストンリング
JPH11172413A (ja) 1997-09-30 1999-06-29 Teikoku Piston Ring Co Ltd ピストンリング
JP2003113941A (ja) * 2001-03-30 2003-04-18 Nippon Piston Ring Co Ltd ピストンリング及びピストンリングとピストンのリング溝との組み合わせ構造
JP2006057674A (ja) 2004-08-18 2006-03-02 Riken Corp 摺動部材及びピストンリング
JP2010249306A (ja) * 2008-07-02 2010-11-04 Kobe Steel Ltd 摺動部材および摺動方法
JP2011519394A (ja) * 2008-04-02 2011-07-07 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング ピストンリング
JP2012149302A (ja) * 2011-01-19 2012-08-09 Nippon Itf Kk Dlc被膜とその製造方法、摺動部材および前記摺動部材が用いられている製品
WO2013137060A1 (ja) * 2012-03-14 2013-09-19 株式会社リケン シリンダとピストンリングとの組合せ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020175476A1 (en) 2001-03-30 2002-11-28 Nippon Piston Ring Co., Ltd. Piston ring, and combined structure of piston ring and ring groove of piston
JP5077293B2 (ja) * 2001-12-17 2012-11-21 住友電気工業株式会社 非晶質炭素被膜の製造方法及び非晶質炭素被覆摺動部品
JP4954644B2 (ja) * 2006-08-31 2012-06-20 日本ピストンリング株式会社 シリンダライナとピストンリングの組み合わせ
KR100887851B1 (ko) * 2008-07-18 2009-03-09 현대자동차주식회사 밸브리프터 및 그 표면처리방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301149A (ja) * 1994-05-06 1995-11-14 Toyota Motor Corp ピストン/ピストンリングアッセンブリ
JPH11166625A (ja) 1997-09-30 1999-06-22 Teikoku Piston Ring Co Ltd ピストンリング
JPH11172413A (ja) 1997-09-30 1999-06-29 Teikoku Piston Ring Co Ltd ピストンリング
JP2003113941A (ja) * 2001-03-30 2003-04-18 Nippon Piston Ring Co Ltd ピストンリング及びピストンリングとピストンのリング溝との組み合わせ構造
JP2006057674A (ja) 2004-08-18 2006-03-02 Riken Corp 摺動部材及びピストンリング
JP2011519394A (ja) * 2008-04-02 2011-07-07 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング ピストンリング
JP2010249306A (ja) * 2008-07-02 2010-11-04 Kobe Steel Ltd 摺動部材および摺動方法
JP2012149302A (ja) * 2011-01-19 2012-08-09 Nippon Itf Kk Dlc被膜とその製造方法、摺動部材および前記摺動部材が用いられている製品
WO2013137060A1 (ja) * 2012-03-14 2013-09-19 株式会社リケン シリンダとピストンリングとの組合せ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3054137A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125832A1 (ja) * 2014-02-19 2015-08-27 株式会社リケン ピストンリング
WO2017026043A1 (ja) * 2015-08-10 2017-02-16 日本アイ・ティ・エフ株式会社 ピストンリングおよびその製造方法
JPWO2017026043A1 (ja) * 2015-08-10 2018-06-14 日本アイ・ティ・エフ株式会社 ピストンリングおよびその製造方法
US10458548B2 (en) 2015-08-10 2019-10-29 Nippon Itf, Inc. Piston ring and method for manufacturing same
JP2020132466A (ja) * 2019-02-18 2020-08-31 国立大学法人豊橋技術科学大学 水素含有カーボン膜
JP7349082B2 (ja) 2019-02-18 2023-09-22 国立大学法人豊橋技術科学大学 水素含有カーボン膜
JP2021063443A (ja) * 2019-10-10 2021-04-22 Tpr株式会社 内燃機関用ピストンとピストンリングとの組み合わせ

Also Published As

Publication number Publication date
US20160245407A1 (en) 2016-08-25
JPWO2015045745A1 (ja) 2017-03-09
EP3054137A1 (en) 2016-08-10
JP6109325B2 (ja) 2017-04-05
CN105593503A (zh) 2016-05-18
CN105593503B (zh) 2019-04-26
EP3054137A4 (en) 2017-09-20
US10100929B2 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP6109325B2 (ja) アルミニウム合金製の相手材とピストンリングとの組み合わせ
JP5575989B2 (ja) シリンダとピストンリングとの組合せ
EP2940350B1 (en) Combination of cylinder and piston ring
JP2000120869A (ja) 摺動部材及びその製造方法
JP6718452B2 (ja) ピストンリング及びその製造方法
US10578214B2 (en) Piston ring and manufacturing method therefor
JP5627148B1 (ja) ピストンリング及びその製造方法
WO2017130587A1 (ja) 摺動部材及びその製造方法
WO2015052761A1 (ja) ピストンリングおよびターボチャージャー用シールリング
JP7115849B2 (ja) 摺動部材
JP6756641B2 (ja) ピストンリング
JP2019082241A (ja) ピストンリング
JP6339812B2 (ja) ピストンリング
JP6938807B1 (ja) 摺動部材及びピストンリング
WO2022176113A1 (ja) 摺動被膜及び摺動部材
WO2015052762A1 (ja) ピストンリングおよびターボチャージャー用シールリング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539043

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15025756

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014847271

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847271

Country of ref document: EP