WO2015045389A1 - アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ - Google Patents

アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ Download PDF

Info

Publication number
WO2015045389A1
WO2015045389A1 PCT/JP2014/004913 JP2014004913W WO2015045389A1 WO 2015045389 A1 WO2015045389 A1 WO 2015045389A1 JP 2014004913 W JP2014004913 W JP 2014004913W WO 2015045389 A1 WO2015045389 A1 WO 2015045389A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituent
substituted
group
electrolytic solution
unsaturated
Prior art date
Application number
PCT/JP2014/004913
Other languages
English (en)
French (fr)
Inventor
山田 淳夫
裕貴 山田
智之 河合
雄紀 長谷川
佳浩 中垣
浩平 間瀬
三好 学
淳一 丹羽
合田 信弘
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014186296A external-priority patent/JP5816999B2/ja
Priority claimed from JP2014186298A external-priority patent/JP5828493B2/ja
Priority claimed from JP2014186297A external-priority patent/JP5817000B2/ja
Priority claimed from JP2014186295A external-priority patent/JP5816998B2/ja
Priority claimed from JP2014186294A external-priority patent/JP5816997B2/ja
Priority to BR112016006399A priority Critical patent/BR112016006399A2/pt
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to CA2925379A priority patent/CA2925379C/en
Priority to EP14848198.9A priority patent/EP3051620A4/en
Priority to US15/024,436 priority patent/US20160218394A1/en
Priority to KR1020187026219A priority patent/KR101940151B1/ko
Priority to KR1020167010619A priority patent/KR20160060719A/ko
Priority to CN201480053185.0A priority patent/CN105580190B/zh
Priority to RU2016115736A priority patent/RU2645104C2/ru
Publication of WO2015045389A1 publication Critical patent/WO2015045389A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrolytic solution for a power storage device such as a battery or a capacitor, a salt containing an alkali metal, alkaline earth metal or aluminum as a cation and an organic solvent having a hetero element, a method for producing the same, and the electrolytic solution. It is related with the capacitor which comprises.
  • a battery includes a positive electrode, a negative electrode, and an electrolytic solution as main components.
  • An appropriate electrolyte is added to the electrolytic solution in an appropriate concentration range.
  • a lithium salt such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , CF 3 SO 3 Li, or (CF 3 SO 2 ) 2 NLi is added as an electrolyte to the electrolyte solution of a lithium ion secondary battery.
  • the concentration of the lithium salt in the electrolytic solution is generally about 1 mol / L.
  • Patent Document 1 discloses a lithium ion secondary battery using an electrolytic solution containing LiPF 6 at a concentration of 1 mol / L.
  • Patent Document 2 discloses a lithium ion secondary battery using an electrolytic solution containing (CF 3 SO 2 ) 2 NLi at a concentration of 1 mol / L.
  • the viscosity of the electrolyte solution described in Patent Documents 1 and 2 is approximately 5 mPa ⁇ s or less.
  • Patent Document 3 describes an electrolytic solution in which a small amount of a specific additive is added to an electrolytic solution containing LiPF 6 at a concentration of 1 mol / L, and a lithium ion secondary battery using this electrolytic solution.
  • Patent Document 4 also describes an electrolytic solution in which a small amount of phenylglycidyl ether is added to an electrolytic solution containing LiPF 6 at a concentration of 1 mol / L.
  • a lithium ion secondary battery using this electrolytic solution is disclosed. It is disclosed.
  • the viscosity of the electrolyte solution described in Patent Documents 3 and 4 is also approximately 5 mPa ⁇ s or less.
  • a capacitor means a capacitor that stores electric charge or discharges electric charge by electrostatic capacity.
  • the mechanism of charge and discharge of electricity in the capacitor is based on the adsorption and desorption of charges to and from the electrode. Since this mechanism of action does not involve an electrochemical reaction, the stability of the capacitor is high and the charge transfer in the capacitor is fast.
  • Some capacitors include an electrolytic solution, and an electric double layer capacitor is known as such a capacitor.
  • an electric double layer capacitor when a potential difference occurs between the electrodes, the anion of the electrolyte is aligned in a layered manner at the interface between the positive electrode and the electrolyte if it is the positive electrode; Liquid cations align in layers. These layer states have a capacitance, and this state is a charged state of the electric double layer capacitor.
  • a lithium ion capacitor having an improved operating voltage is known as a capacitor having an electrolytic solution.
  • the positive electrode is the same electrode as the electric double layer capacitor
  • the negative electrode is an electrode made of the same material as the negative electrode of the lithium ion secondary battery
  • the electrolyte is for a general lithium ion secondary battery. It means a capacitor that is an electrolytic solution.
  • the negative electrode of the lithium ion capacitor has a high electric capacity because the potential of the negative electrode is lowered by pre-doping in which lithium ions are previously doped.
  • the electric capacity (J) that can be used in the capacitor is determined by (electrode capacity) ⁇ (voltage) ⁇ (voltage) / 2.
  • electrode capacity ⁇ (voltage) ⁇ (voltage) / 2.
  • means for using a material having a large specific surface area for the electrode means for using an organic solvent-containing electrolyte as the electrolyte, and the like have been studied.
  • capacitors using an ionic liquid as the electrolytic solution are disclosed in Patent Documents 5 to 9.
  • the electrolytes of conventional capacitors and lithium ion capacitors include LiPF 6 and (C 2 H 5 ) at a concentration of about 1 mol / L in a solvent such as propylene carbonate. 4 A solution in which NBF 4 was dissolved was generally used.
  • Patent Documents 1 to 4 it has been common technical knowledge that an electrolyte used in a lithium ion secondary battery conventionally contains a lithium salt at a concentration of approximately 1 mol / L. As described in Patent Documents 3 to 4, the improvement of the electrolytic solution is generally performed by paying attention to an additive separate from the lithium salt.
  • one aspect of the present invention focuses on the relationship between a metal salt and a solvent in the electrolytic solution, and the electrolytic solution in which the metal salt and the solvent are present in a new state and a method for producing the same The purpose is to provide.
  • one embodiment of the present invention focuses on the relationship between the density and concentration of the electrolytic solution, and aims to provide a suitable group of electrolytic solutions.
  • One aspect of the present invention focuses on the viscosity of the electrolytic solution itself, and an object thereof is to provide an electrolytic solution having a viscosity range that has not been conventionally employed.
  • the ionic liquid is composed of a cation having a large ionic radius and an anion having a large ionic radius, and is in a liquid state at room temperature. Since the electrolyte solution made of an ionic liquid consists only of ions, the ionic concentration of the electrolyte solution made of an ionic liquid is high when compared with an electrolyte solution of the same capacity. For this reason, the capacitance of the capacitor including the electrolytic solution made of the ionic liquid is high because the ionic concentration of the electrolytic solution is high despite the large ionic radius of the ionic liquid. In comparison, there is no fading.
  • One embodiment of the present invention has been made in view of such circumstances, and an object thereof is to provide a capacitor including an electrolytic solution in which a metal salt and a solvent are present in a new state.
  • the present inventor has intensively studied through many trials and errors. And this inventor discovered that the electrolyte solution which added lithium salt as electrolyte more than usual maintains a solution state contrary to technical common sense. And this inventor discovered that such electrolyte solution acted suitably as electrolyte solution of a battery. Furthermore, when the present inventor has analyzed the above electrolytic solution, it has been found that an electrolytic solution showing a specific relationship in a peak observed in an IR spectrum or a Raman spectrum is particularly advantageous as an electrolytic solution for a battery. One aspect of the invention has been completed.
  • An electrolytic solution of one embodiment of the present invention is an electrolytic solution containing a salt having alkali metal, alkaline earth metal, or aluminum as a cation and an organic solvent having a hetero element, and the organic solvent in the vibrational spectrum of the electrolytic solution With respect to the derived peak intensity, if the intensity of the original peak of the organic solvent is Io and the intensity of the peak shifted from the original peak of the organic solvent is Is, Is> Io.
  • an organic solvent having a hetero element and a salt having alkali metal, alkaline earth metal, or aluminum as a cation are mixed, the salt is dissolved, and the first electrolysis is performed.
  • a third dissolution step of adding the salt to the second electrolyte solution under stirring and / or heating conditions to dissolve the salt to prepare a third electrolyte solution are examples of a third electrolyte solution.
  • the present inventor conducted intensive studies through many trials and errors without being bound by conventional common general knowledge. As a result, the present inventor has found many suitable ones among electrolytes composed of metal salts and organic solvents, particularly those suitable as electrolytes for lithium ion secondary batteries.
  • the present inventor does not depend on the type of the metal salt and the type of the organic solvent for the relationship between the suitable electrolytic solution and the conventional electrolytic solution, and finds a unique law that depends on the concentration of the metal salt. The attempt was unsuccessful. That is, no linearity regarding the metal salt concentration independent of the type of metal salt and the type of organic solvent was found.
  • the present inventor has conducted further studies, and surprisingly, a group of electrolytes having a specific relationship between density and concentration works favorably as a battery electrolyte compared to conventional electrolytes. As a result, one embodiment of the present invention has been completed.
  • An electrolytic solution of one embodiment of the present invention is an electrolytic solution including a salt having an alkali metal, an alkaline earth metal, or aluminum as a cation and an organic solvent having a hetero element, and the density d (g / cm of the electrolytic solution) 3 ) d / c obtained by dividing the electrolyte concentration by the salt concentration c (mol / L) is 0.15 ⁇ d / c ⁇ 0.71.
  • the present inventor has discovered that an electrolytic solution to which a specific lithium salt is added more than usual maintains a solution state. And this inventor discovered that such electrolyte solution was high viscosity compared with the conventional electrolyte solution, and showed ion conductivity. Furthermore, when the present inventor has analyzed the above electrolytic solution, it has been found that an electrolytic solution exhibiting a specific relationship in viscosity and ionic conductivity is particularly advantageous as an electrolytic solution for a battery. It came to be completed.
  • An electrolytic solution of one embodiment of the present invention is an electrolytic solution including a salt having an alkali metal, an alkaline earth metal, or aluminum as a cation, and an organic solvent having a hetero element, and the viscosity of the electrolytic solution ⁇ (mPa ⁇ s ) Is 10 ⁇ ⁇ 500, and the ionic conductivity ⁇ (mS / cm) of the electrolytic solution is 1 ⁇ ⁇ .
  • an electrolytic solution in which a lithium salt as an electrolyte is added more than usual maintains a solution state against technical common sense. And this inventor discovered that such electrolyte solution acted suitably as electrolyte solution of a capacitor. Furthermore, when the present inventor analyzed the above electrolytic solution, it was found that an electrolytic solution exhibiting a specific relationship in a peak observed in an IR spectrum or a Raman spectrum is particularly advantageous as an electrolytic solution of a capacitor.
  • One aspect of the invention has been completed.
  • the capacitor of the present invention is a capacitor comprising an electrolytic solution containing a salt having alkali metal, alkaline earth metal or aluminum as a cation, and an organic solvent having a hetero element, wherein the electrolytic solution has a vibration spectroscopy spectrum.
  • the peak intensity derived from the organic solvent if the intensity of the original peak of the organic solvent is Io and the intensity of the peak shifted from the peak is Is, Is> Io.
  • novel electrolytic solution of each aspect of the present invention can improve various battery characteristics. Moreover, the novel capacitor of the present invention exhibits a suitable capacitance.
  • 4 is an IR spectrum of the electrolytic solution of Example 4.
  • 4 is an IR spectrum of the electrolytic solution of Example 3. It is IR spectrum of the electrolyte solution of Example 14. It is IR spectrum of the electrolyte solution of Example 13.
  • 4 is an IR spectrum of the electrolytic solution of Example 11.
  • 7 is an IR spectrum of an electrolytic solution of Comparative Example 7. It is IR spectrum of the electrolyte solution of the comparative example 14. It is IR spectrum of acetonitrile. It is an IR spectrum of (CF 3 SO 2 ) 2 NLi. It is an IR spectrum of (FSO 2 ) 2 NLi (2100 to 2400 cm ⁇ 1 ). It is IR spectrum of the electrolyte solution of Example 15.
  • IR spectrum of the electrolyte solution of Example 16 It is IR spectrum of the electrolyte solution of Example 17. It is IR spectrum of the electrolyte solution of Example 18. 14 is an IR spectrum of the electrolytic solution of Example 19. 14 is an IR spectrum of an electrolytic solution of Comparative Example 15. It is IR spectrum of dimethyl carbonate. It is IR spectrum of the electrolyte solution of Example 20. 2 is an IR spectrum of the electrolytic solution of Example 21. It is IR spectrum of the electrolyte solution of Example 22. 14 is an IR spectrum of an electrolytic solution of Comparative Example 16. It is IR spectrum of ethyl methyl carbonate. It is IR spectrum of the electrolyte solution of Example 23.
  • 10 is a graph showing the relationship between the potential (3.1 to 4.6 V) and the response current with respect to the half cell of Comparative Example F.
  • 6 is a graph showing a relationship between a potential (3.0 to 4.5 V) and a response current with respect to the half cell of Example J.
  • 10 is a graph showing a relationship between a potential (3.0 to 5.0 V) and a response current with respect to the half cell of Example J.
  • 6 is a graph showing the relationship between the potential (3.0 to 4.5 V) and the response current with respect to the half cell of Example K.
  • 6 is a graph showing a relationship between a potential (3.0 to 5.0 V) and a response current with respect to the half cell of Example K.
  • 10 is a graph showing a relationship between a potential (3.0 to 4.5 V) and a response current with respect to the half cell of Comparative Example G.
  • 10 is a graph showing a relationship between a potential (3.0 to 5.0 V) and a response current with respect to the half cell of Comparative Example G. It is a graph which shows the voltage curve of the lithium ion secondary battery of Example N in each current rate. It is a graph which shows the voltage curve of the lithium ion secondary battery of the comparative example H in each current rate.
  • It is a complex impedance plane plot of the battery in the evaluation example 18. It is a charging / discharging curve of the capacitor of Example R and Comparative Example J.
  • 6 is a charge / discharge curve of a capacitor of Example S at a cut-off voltage of 0 to 2V.
  • 6 is a charge / discharge curve of the capacitor of Example S at a cut-off voltage of 0 to 2.5V.
  • 6 is a charge / discharge curve of the capacitor of Example S at a cut-off voltage of 0 to 3V. It is a discharge curve of the capacitor of Example S at each cut-off voltage. It is a charging / discharging curve of the lithium ion capacitor of Example T.
  • the numerical range “a to b” described in this specification includes the lower limit “a” and the upper limit “b”.
  • the numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.
  • numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.
  • An electrolytic solution of one embodiment of the present invention is an electrolytic solution containing a salt having alkali metal, alkaline earth metal, or aluminum as a cation and an organic solvent having a hetero element, and the organic solvent in the vibrational spectrum of the electrolytic solution
  • the derived peak intensity if the peak intensity at the peak wave number inherent to the organic solvent is Io, and the peak intensity where the peak inherent to the organic solvent is shifted is Is, Is> Io.
  • An electrolytic solution of one embodiment of the present invention is an electrolytic solution including a salt having an alkali metal, an alkaline earth metal, or aluminum as a cation and an organic solvent having a hetero element, and the density d (g / cm of the electrolytic solution) 3 ) d / c obtained by dividing the electrolyte concentration by the salt concentration c (mol / L) is 0.15 ⁇ d / c ⁇ 0.71.
  • An electrolytic solution of one embodiment of the present invention is an electrolytic solution including a salt having an alkali metal, an alkaline earth metal, or aluminum as a cation, and an organic solvent having a hetero element, and the viscosity of the electrolytic solution ⁇ (mPa ⁇ s ) Is 10 ⁇ ⁇ 500, and the ionic conductivity ⁇ (mS / cm) of the electrolytic solution is 1 ⁇ ⁇ .
  • the capacitor of the present invention is a capacitor comprising an electrolytic solution containing a salt having alkali metal, alkaline earth metal or aluminum as a cation, and an organic solvent having a hetero element, wherein the electrolytic solution has a vibration spectroscopy spectrum.
  • the peak intensity derived from the organic solvent if the peak intensity at the original peak wave number of the organic solvent is Io, and the peak intensity at which the peak is wave number shifted is Is, Is> Io.
  • a salt having an alkali metal, an alkaline earth metal or aluminum as a cation may be referred to as a “metal salt” or simply “salt”, and the electrolytic solution of each aspect of the present invention is collectively referred to as “the electrolytic solution of the present invention”. There are times.
  • the metal salt may be a compound that is used as an electrolyte, such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiAlCl 4 or the like, which is usually contained in the electrolyte solution of a battery or capacitor.
  • the cation of the metal salt include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium, and aluminum.
  • the cation of the metal salt is preferably the same metal ion as the charge carrier of the battery using the electrolytic solution.
  • the metal salt cation is preferably lithium.
  • the chemical structure of the anion of the salt may include at least one element selected from halogen, boron, nitrogen, oxygen, sulfur or carbon.
  • Specific examples of the chemical structure of an anion containing halogen or boron include ClO 4 , PF 6 , AsF 6 , SbF 6 , TaF 6 , BF 4 , SiF 6 , B (C 6 H 5 ) 4 , and B (oxalate). 2 , Cl, Br, and I.
  • the chemical structure of the salt anion is preferably a chemical structure represented by the following general formula (1), general formula (2), or general formula (3).
  • R 1 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
  • R 2 represents hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • the R 1 and R 2 may be bonded to each other to form a ring.
  • X 2 is, SO 2
  • R a , R b , R c , and R d are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a substituent.
  • R a , R b , R c , and R d may be bonded to R 1 or R 2 to form a ring.
  • R 3 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
  • R e and R f are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a group that may be substituted with a substituent.
  • R e and R f may combine with R 3 to form a ring.
  • Y is selected from O and S.
  • R 4 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
  • R 5 represents hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • the R 6 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • any two or three of R 4 , R 5 and R 6 may be bonded to form a ring.
  • R g , R h , R i , R j , R k , and R l are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, or a cycloalkyl that may be substituted with a substituent.
  • an unsaturated alkyl group that may be substituted with a substituent an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, or a substituent that is substituted with a substituent
  • R g , R h , R i , R j , R k , and R l may combine with R 4 , R 5, or R 6 to form a ring.
  • substituents in the phrase “may be substituted with a substituent” include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an unsaturated cycloalkyl group, an aromatic group, a heterocyclic group, a halogen, and OH.
  • the chemical structure of the salt anion is more preferably a chemical structure represented by the following general formula (4), general formula (5), or general formula (6).
  • R 7 and R 8 are each independently C n H a F b Cl c Br d I e (CN) f (SCN) g (OCN) h .
  • R m , R n , R o , and R p are each independently substituted with hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a substituent.
  • R m , R n , R o , and R p may combine with R 7 or R 8 to form a ring.
  • R q and R r are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a group that may be substituted with a substituent.
  • R q and R r may combine with R 9 to form a ring.
  • Y is selected from O and S.
  • R 10 X 10 (R 11 X 11 ) (R 12 X 12 )
  • R 10 , R 11 , and R 12 are each independently C n H a F b Cl c Br d I e (CN) f (SCN) g (OCN) h .
  • R s , R t , R u , R v , R w , and R x are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, or a cycloalkyl that may be substituted with a substituent.
  • an unsaturated alkyl group that may be substituted with a substituent an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, or a substituent that is substituted with a substituent
  • R s , R t , R u , R v , R w , and R x may combine with R 10 , R 11, or R 12 to form a ring.
  • n is preferably an integer of 0 to 6, more preferably an integer of 0 to 4, and particularly preferably an integer of 0 to 2.
  • n is preferably an integer of 1 to 8, more preferably an integer of 1 to 7, and particularly preferably an integer of 1 to 3.
  • the chemical structure of the salt anion is more preferably represented by the following general formula (7), general formula (8) or general formula (9).
  • R 13 SO 2 (R 14 SO 2 ) N
  • R 13 and R 14 are each independently C n H a F b Cl c Br d I e .
  • R 16 SO 2 (R 17 SO 2 ) (R 18 SO 2 ) C General formula (9)
  • R 16 , R 17 , and R 18 are each independently C n H a F b Cl c Br d I e .
  • n is preferably an integer of 0 to 6, more preferably an integer of 0 to 4, and particularly preferably an integer of 0 to 2.
  • n is preferably an integer of 1 to 8, more preferably an integer of 1 to 7, and particularly preferably an integer of 1 to 3.
  • the metal salt is (CF 3 SO 2 ) 2 NLi (hereinafter sometimes referred to as “LiTFSA”), (FSO 2 ) 2 NLi (hereinafter sometimes referred to as “LiFSA”), (C 2 F 5 SO 2 ) 2 NLi, FSO 2 (CF 3 SO 2 ) NLi, (SO 2 CF 2 CF 2 SO 2 ) NLi, (SO 2 CF 2 CF 2 SO 2 ) NLi, FSO 2 (CH 3 SO 2 ) NLi FSO 2 (C 2 F 5 SO 2 ) NLi or FSO 2 (C 2 H 5 SO 2 ) NLi is particularly preferred.
  • the metal salt of the present invention may be a combination of an appropriate number of cations and anions described above.
  • One kind of metal salt in the electrolytic solution of the present invention may be used, or a plurality of kinds may be used in combination.
  • organic solvent having a hetero element an organic solvent in which the hetero element is at least one selected from nitrogen, oxygen, sulfur and halogen is preferable, and an organic solvent in which the hetero element is at least one selected from nitrogen or oxygen Is more preferable.
  • organic solvent having a hetero element an aprotic solvent having no proton donating group such as NH group, NH 2 group, OH group, and SH group is preferable.
  • organic solvent having a hetero element examples include nitriles such as acetonitrile, propionitrile, acrylonitrile, malononitrile, 1,2-dimethoxyethane, 1, 2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 2,2-dimethyl-1,3-dioxolane, 2-methyltetrahydropyran, 2-methyltetrahydrofuran, crown Ethers such as ether, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolide Amides such as isopropyl isocyanate, n-propyl isocyanate, chloromethyl
  • Esters glycidyl methyl ether, epoxy butane, epoxy such as 2-ethyloxirane, oxazole, 2-ethyloxazole, oxazoline, oxazole such as 2-methyl-2-oxazoline, ketone such as acetone, methyl ethyl ketone, methyl isobutyl ketone Acid anhydrides such as acetic anhydride and propionic anhydride, sulfones such as dimethyl sulfone and sulfolane, sulfoxides such as dimethyl sulfoxide, 1-nitropropane and 2-nitrate Nitros such as propane, furans such as furan and furfural, cyclic esters such as ⁇ -butyrolactone, ⁇ -valerolactone and ⁇ -valerolactone, aromatic heterocycles such as thiophene and pyridine, tetrahydro-4-pyrone, Examples thereof include heterocyclic rings such as 1-methylpyr
  • organic solvent examples include chain carbonates represented by the following general formula (10).
  • n is preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2.
  • m is preferably an integer of 3 to 8, more preferably an integer of 4 to 7, and particularly preferably an integer of 5 to 6.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl Carbonate
  • organic solvent a solvent having a relative dielectric constant of 20 or more or a donor ether oxygen is preferable.
  • organic solvent examples include nitriles such as acetonitrile, propionitrile, acrylonitrile, and malononitrile, and 1,2-dimethoxyethane.
  • 1,2-diethoxyethane tetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 2,2-dimethyl-1,3-dioxolane, 2-methyltetrahydropyran, 2-methyl Mention may be made of ethers such as tetrahydrofuran and crown ether, N, N-dimethylformamide, acetone, dimethyl sulfoxide and sulfolane, and in particular acetonitrile (hereinafter sometimes referred to as “AN”), 1,2-dimethoxyethane. (Hereafter referred to as “DME”. .) It is preferred.
  • organic solvents may be used alone or in combination as an electrolyte.
  • the density (g / cm 3 ) of the organic solvent having a hetero element is listed in Table 1.
  • the peak intensity derived from the organic solvent contained in the electrolyte solution is denoted by Io, and the peak of the organic solvent inherent peak is shifted (hereinafter, “ If the intensity of “shift peak” is sometimes referred to as “Is”, Is> Io. That is, in the vibrational spectral spectrum chart obtained by subjecting the electrolytic solution of the present invention to vibrational spectral measurement, the relationship between the two peak intensities is Is> Io.
  • the original peak of the organic solvent means a peak observed at the peak position (wave number) when vibration spectroscopy measurement is performed only on the organic solvent.
  • the value of the peak intensity Io inherent in the organic solvent and the value of the shift peak intensity Is are the height or area from the baseline of each peak in the vibrational spectrum.
  • the relationship when there are a plurality of peaks in which the original peak of the organic solvent is shifted, the relationship may be determined based on the peak from which the relationship between Is and Io is most easily determined.
  • an organic solvent that can determine the relationship between Is and Io most easily is selected, an organic solvent that can determine the relationship between Is and Io most easily (the difference between Is and Io is most pronounced) is selected, The relationship between Is and Io may be determined based on the peak intensity. If the peak shift amount is small and the peaks before and after the shift appear to be a gentle mountain, peak separation may be performed using known means to determine the relationship between Is and Io.
  • the peak of an organic solvent that is most easily coordinated with a cation (hereinafter sometimes referred to as “preferred coordination solvent”) is another. Shift in preference to.
  • the mass% of the preferential coordination solvent with respect to the entire organic solvent having a hetero element is preferably 40% or more, more preferably 50% or more, and further preferably 60% or more. 80% or more is particularly preferable.
  • the volume% of the preferential coordination solvent with respect to the entire organic solvent having a hetero element is preferably 40% or more, more preferably 50% or more, and 60% or more. Is more preferable, and 80% or more is particularly preferable.
  • the relationship between the two peak intensities in the vibrational spectrum of the electrolytic solution of the present invention preferably satisfies the condition of Is> 2 ⁇ Io, more preferably satisfies the condition of Is> 3 ⁇ Io, and Is> 5 ⁇ It is more preferable that the condition of Io is satisfied, and it is particularly preferable that the condition of Is> 7 ⁇ Io is satisfied.
  • Most preferred is an electrolytic solution in which the intensity Io of the peak inherent in the organic solvent is not observed and the intensity Is of the shift peak is observed in the vibrational spectrum of the electrolytic solution of the present invention. In the electrolytic solution, it means that all the molecules of the organic solvent contained in the electrolytic solution are completely solvated with the metal salt.
  • the metal salt and the organic solvent (or preferential coordination solvent) having a hetero element have an interaction.
  • a metal salt and a hetero element of an organic solvent (or preferential coordination solvent) having a hetero element form a coordination bond
  • the organic salt (or preferential coordinating solvent) having a metal salt and a hetero element ) Is estimated to form a stable cluster. From the results of Examples described later, this cluster is presumed to be formed by coordination of two molecules of an organic solvent (or preferential coordination solvent) having a hetero element with one molecule of a metal salt.
  • the molar range of the organic solvent having a hetero element (or preferential coordination solvent) with respect to 1 mol of the metal salt in the electrolytic solution of the present invention is preferably 1.4 mol or more and less than 3.5 mol. More preferably, it is 0.5 mol or more and 3.1 mol or less, and 1.6 mol or more and 3 mol or less are still more preferable.
  • the capacitor electrolyte has a higher capacity when the salt concentration is higher.
  • the molar range of the organic solvent (or preferential coordination solvent) having a hetero element with respect to 1 mol of the metal salt in the electrolytic solution of the present invention is preferably less than 3.5 mol, and 3.1 mol or less. Is more preferable, and 3 mol or less is still more preferable.
  • the electrolytic solution of the capacitor has a higher salt concentration.
  • the lower limit of the molar range of the organic solvent (or preferential coordination solvent) having a hetero element with respect to 1 mol of the metal salt in the electrolytic solution of the present invention is intentionally set. For example, 1.1 mol or more, 1.4 mol or more, 1.5 mol or more, 1.6 mol or more can be mentioned.
  • the electrolytic solution of the present invention it is presumed that clusters are generally formed by coordination of two molecules of an organic solvent (or preferential coordination solvent) having a hetero element to one molecule of a metal salt.
  • concentration (mol / L) of the electrolytic solution of the invention depends on the molecular weight of each of the metal salt and the organic solvent and the density when the solution is used. Therefore, it is not appropriate to prescribe the concentration of the electrolytic solution of the present invention.
  • the concentration (mol / L) of the electrolytic solution of the present invention is individually exemplified in Table 2.
  • the organic solvent that forms the cluster and the organic solvent that is not involved in the formation of the cluster have different environments. Therefore, in vibrational spectroscopy measurement, the peak derived from the organic solvent forming the cluster is higher than the observed wave number of the peak derived from the organic solvent not involved in the cluster formation (original peak of the organic solvent). Or it is observed shifted to the low wavenumber side. That is, the shift peak corresponds to the peak of the organic solvent forming the cluster.
  • vibrational spectrum examples include an IR spectrum and a Raman spectrum.
  • measurement method for IR measurement examples include transmission measurement methods such as Nujol method and liquid film method, and reflection measurement methods such as ATR method.
  • transmission measurement methods such as Nujol method and liquid film method
  • reflection measurement methods such as ATR method.
  • IR measurement may be performed under low humidity or no humidity conditions such as a dry room or a glove box, or Raman measurement may be performed with the electrolyte solution in a sealed container.
  • LiTFSA is dissolved in an acetonitrile solvent at a concentration of 1 mol / L to obtain an electrolytic solution according to conventional technical common sense. Since 1 L of acetonitrile corresponds to about 19 mol, 1 L of conventional electrolyte includes 1 mol of LiTFSA and 19 mol of acetonitrile. Then, in the conventional electrolyte, there are many acetonitriles that are not solvated with LiTFSA (not coordinated with Li) simultaneously with acetonitrile that is solvated with LiTFSA (coordinated with Li). .
  • the acetonitrile molecule is different between the LiTFSA solvated acetonitrile molecule and the LiTFSA non-solvated acetonitrile molecule, in the IR spectrum, the acetonitrile peaks of both are distinguished and observed. Is done. More specifically, the peak of acetonitrile that is not solvated with LiTFSA is observed at the same position (wave number) as in the case of IR measurement of only acetonitrile, but the peak of acetonitrile that is solvated with LiTFSA. Is observed with the peak position (wave number) shifted to the high wave number side.
  • the electrolytic solution of the present invention has a higher LiTFSA concentration than the conventional electrolytic solution, and the number of acetonitrile molecules solvated with LiTFSA (forming clusters) in the electrolytic solution is different from that of LiTFSA. More than the number of unsolvated acetonitrile molecules. Then, the relation between the intensity Io of the original peak of the acetonitrile and the intensity Is of the peak obtained by shifting the original peak of acetonitrile in the vibrational spectrum of the electrolytic solution of the present invention is Is> Io.
  • Table 3 exemplifies the wave numbers of organic solvents that are considered useful for the calculation of Io and Is and their attribution in the vibrational spectrum of the electrolytic solution of the present invention. It should be added that the wave number of the observed peak may be different from the following wave numbers depending on the measurement apparatus, measurement environment, and measurement conditions of the vibrational spectrum.
  • the density d (g / cm 3 ) in the electrolytic solution of the present invention means a density at 20 ° C.
  • the density d (g / cm 3 ) is preferably d ⁇ 1.2 or d ⁇ 2.2, more preferably in the range of 1.2 ⁇ d ⁇ 2.2, and 1.24 ⁇ d ⁇ 2.0. Is more preferable, the range of 1.26 ⁇ d ⁇ 1.8 is more preferable, and the range of 1.27 ⁇ d ⁇ 1.6 is particularly preferable.
  • d / c is 0.15 ⁇ d / c ⁇ 0.71, preferably 0.15 ⁇ d / c ⁇ 0.56, and 0.25 ⁇ d / c ⁇ 0. Within the range of .56, more preferably within the range of 0.26 ⁇ d / c ⁇ 0.50, and particularly preferably within the range of 0.27 ⁇ d / c ⁇ 0.47.
  • D / c in the electrolytic solution of the present invention can be defined even when a metal salt and an organic solvent are specified.
  • d / c is preferably within the range of 0.42 ⁇ d / c ⁇ 0.56, and 0.44 ⁇ d / c ⁇ 0.52 The range of is more preferable.
  • d / c is preferably in the range of 0.35 ⁇ d / c ⁇ 0.41, and 0.36 ⁇ d / c ⁇ 0.39. The inside is more preferable.
  • d / c is preferably in the range of 0.32 ⁇ d / c ⁇ 0.46, and in the range of 0.34 ⁇ d / c ⁇ 0.42. The inside is more preferable.
  • d / c is preferably in the range of 0.25 ⁇ d / c ⁇ 0.31, and in the range of 0.26 ⁇ d / c ⁇ 0.29. The inside is more preferable.
  • d / c is preferably in the range of 0.32 ⁇ d / c ⁇ 0.48, and in the range of 0.32 ⁇ d / c ⁇ 0.46. The inside is more preferable, and the inside of the range of 0.34 ⁇ d / c ⁇ 0.42 is further preferable.
  • d / c is preferably in the range of 0.34 ⁇ d / c ⁇ 0.50, and in the range of 0.37 ⁇ d / c ⁇ 0.45. The inside is more preferable.
  • d / c is preferably in the range of 0.36 ⁇ d / c ⁇ 0.54, and in the range of 0.39 ⁇ d / c ⁇ 0.48.
  • the inside is more preferable.
  • the electrolytic solution of the present invention is different from the conventional electrolytic solution in that the presence environment of the metal salt and the organic solvent is different and the concentration or density of the metal salt is high.
  • the metal is lithium, the lithium transport number is improved), the reaction rate between the electrode and the electrolyte is improved, the uneven distribution of the salt concentration of the electrolyte that occurs during high-rate charge / discharge of the battery, and the electric double layer capacity is increased. I can expect.
  • most of the organic solvent having a hetero element forms a cluster with a metal salt or has a high density, so the vapor pressure of the organic solvent contained in the electrolytic solution is low. As a result, volatilization of the organic solvent from the electrolytic solution of the present invention can be reduced.
  • Capacitors have a lower volumetric energy density than batteries.
  • the adsorption site of the capacitor electrode is increased to increase the absolute amount of ions.
  • the volume of the battery increases and the battery itself becomes large.
  • the electrolytic solution of the present invention has a higher metal salt concentration than the conventional electrolytic solution. Therefore, the capacitor of the present invention including the electrolytic solution of the present invention has a larger absolute amount of ions that can be aligned at the interface between the electrode and the electrolytic solution than the capacitor including the conventional electrolytic solution. Then, the electric capacity of the capacitor of the present invention is improved as compared with the electric capacity of the capacitor including the conventional electrolyte.
  • the electrolytic solution of the present invention a cluster in which the presence environment of the metal salt and the organic solvent is unique is formed.
  • the radius of the cluster of the electrolyte solution of the present invention is smaller than that of a cation and anion having a large ionic radius constituting a general ionic liquid.
  • the capacitance of the capacitor of the present invention is the capacitance of the conventional electrolyte or a capacitor equipped with an electrolyte made of an ionic liquid. Compared with.
  • the negative electrode of the capacitor of the present invention can be obtained by using a material such as carbon that can perform an oxidation-reduction reaction by inserting and desorbing metal ions into the negative electrode of the capacitor.
  • an electrolytic solution made of a salt using lithium as a cation it becomes an electric double layer capacitor or a lithium ion capacitor by changing the electrode configuration.
  • a lithium ion capacitor has a merit in terms of voltage, and is one direction responsible for higher energy of the capacitor.
  • a lithium ion capacitor it is necessary for a lithium ion capacitor to include an electrolytic solution containing lithium, but an electrolytic solution used for a normal electric double layer capacitor cannot be used because it does not contain lithium. Therefore, an electrolytic solution for a lithium ion secondary battery is used as the electrolytic solution for the lithium ion capacitor.
  • the electrolytic solution of the present invention in which the cation is lithium contains lithium, it can be applied not only to an electric double layer capacitor but also to a lithium ion capacitor. In the case of using a lithium ion capacitor, a process of doping lithium ions into the electrode in advance is required in order to exhibit more performance.
  • metal lithium may be attached to the electrode, and metal lithium may be doped by immersing and dissolving in an electrolytic solution, or an open collector may be used as disclosed in Japanese Patent No. 4732072. Doping may be performed by placing metallic lithium on the outer peripheral portion and the central portion of the wound type lithium ion capacitor and performing a charging operation. Also, as disclosed in J. Electrochem. Soc. 2012, Volume 159, Issue 8, and Pages A1329-A1334, a transition metal oxide containing excess lithium is added to the positive electrode in advance, and charging is performed. Doping may be performed. Since the transition metal oxide containing excess lithium has a large proportion of lithium in the structure, when the transition metal oxide finishes almost releasing lithium, the particle shape of the transition metal oxide is pulverized.
  • the pulverized particle-shaped transition metal oxide exhibits a lithium adsorption capacity although it has a lower lithium adsorption amount than activated carbon. Therefore, by conducting a conductive treatment on the transition metal oxide containing excess lithium added to the positive electrode of the lithium ion capacitor, the transition metal oxide after lithium release can be used as the adsorption site of the positive electrode. Lithium-excess transition metal oxide has a smaller surface area than carbon used for a general electrode, but has a high density, and therefore may have an advantage in volume energy.
  • the viscosity of the electrolytic solution of the present invention is higher than the viscosity of the conventional electrolytic solution. For this reason, if it is a battery or a capacitor using the electrolyte solution of this invention, even if a battery or a capacitor is damaged, electrolyte solution leakage will be suppressed. Moreover, the capacity
  • the metal concentration of the electrolytic solution of the present invention is higher than that of the conventional electrolytic solution.
  • the preferable Li concentration of the electrolytic solution of the present invention is about 2 to 5 times the Li concentration of a general electrolytic solution.
  • the electrolytic solution of the present invention containing Li at a high concentration it is considered that the uneven distribution of Li is reduced, and as a result, the capacity reduction during the high-speed charge / discharge cycle is suppressed.
  • the reason for the suppression of the capacity decrease is that the uneven distribution of Li concentration in the electrolytic solution could be suppressed due to the physical properties of the electrolytic solution of the present invention such as high viscosity, high ionic conduction, and high cation transport.
  • the electrolytic solution of the present invention has a high viscosity, the liquid retaining property of the electrolytic solution at the electrode interface is improved, and the state where the electrolytic solution is insufficient at the electrode interface (so-called liquid withdrawn state) can be suppressed. This is considered to be one of the reasons that the capacity decrease during the charge / discharge cycle is suppressed.
  • a range of 10 ⁇ ⁇ 500 is preferable, a range of 12 ⁇ ⁇ 400 is more preferable, a range of 15 ⁇ ⁇ 300 is further preferable, and 18 A range of ⁇ ⁇ 150 is particularly preferable, and a range of 20 ⁇ ⁇ 140 is most preferable.
  • the ion conductivity ⁇ (mS / cm) of the electrolytic solution of the present invention is preferably 1 ⁇ ⁇ .
  • a suitable range including the upper limit is shown, a range of 2 ⁇ ⁇ 200 is preferable, and a range of 3 ⁇ ⁇ 100 is more preferable.
  • the range of 4 ⁇ ⁇ 50 is more preferable, and the range of 5 ⁇ ⁇ 35 is particularly preferable.
  • the electrolytic solution of the present invention exhibits a suitable cation transport number (when the metal of the electrolytic solution of the present invention is lithium, the lithium transport number).
  • a suitable cation transport number when showing a preferable cation transport number, 0.4 or more is preferable and 0.45 or more is more preferable.
  • the electrolytic solution of the present invention contains a metal salt cation in a high concentration.
  • the distance between adjacent cations is extremely short.
  • a cation such as lithium ion moves between the positive electrode and the negative electrode during charge / discharge of the secondary battery
  • the cation closest to the destination electrode is first supplied to the electrode.
  • the other cation adjacent to the said cation moves to the place with the said supplied cation.
  • the method for producing the electrolytic solution of the present invention will be described. Since the electrolytic solution of the present invention has a higher metal salt content or higher density value than the conventional electrolytic solution, aggregates are obtained by the production method of adding an organic solvent to a solid (powder) metal salt. Therefore, it is difficult to produce a solution electrolyte. Therefore, in the manufacturing method of the electrolyte solution of this invention, it is preferable to manufacture, adding a metal salt gradually with respect to an organic solvent, and maintaining the solution state of electrolyte solution.
  • the electrolytic solution of the present invention includes a liquid in which the metal salt is dissolved in the organic solvent beyond the conventionally considered saturation solubility.
  • a method for producing an electrolytic solution of the present invention includes a first dissolution step of preparing a first electrolytic solution by mixing an organic solvent having a hetero element and a metal salt, dissolving the metal salt, stirring and / or Alternatively, under heating conditions, the metal salt is added to the first electrolyte solution, the metal salt is dissolved to prepare a second electrolyte solution in a supersaturated state, and stirring and / or heating conditions, A third dissolving step of adding the metal salt to the second electrolytic solution, dissolving the metal salt, and preparing a third electrolytic solution;
  • the “supersaturated state” means a state in which metal salt crystals are precipitated from the electrolyte when the stirring and / or heating conditions are canceled or when crystal nucleation energy such as vibration is applied. Means.
  • the second electrolytic solution is “supersaturated”, and the first electrolytic solution and the third electrolytic solution are not “supersaturated”.
  • the above-described method for producing the electrolytic solution of the present invention is a thermodynamically stable liquid state, and passes through the first electrolytic solution containing the conventional metal salt concentration, and then the thermodynamically unstable liquid state.
  • the second electrolytic solution passes through the two electrolytic solutions and becomes a thermodynamically stable new electrolytic third solution, that is, the electrolytic solution of the present invention.
  • the third electrolyte solution is composed of, for example, two molecules of an organic solvent for one lithium salt molecule, and a strong distribution between these molecules. It is presumed that the cluster stabilized by the coordinate bond inhibits the crystallization of the lithium salt.
  • the first dissolution step is a step of preparing a first electrolytic solution by mixing an organic solvent having a hetero atom and a metal salt to dissolve the metal salt.
  • the first dissolution step is preferably performed under stirring and / or heating conditions.
  • a stirrer with a stirrer such as a mixer
  • the stirring condition may be achieved, or the first dissolution step may be performed using a stirrer and a device (stirrer) that operates the stirrer.
  • the stirring condition may be used. What is necessary is just to set suitably about stirring speed.
  • thermostats such as a water bath or an oil bath. Since heat of dissolution is generated when the metal salt is dissolved, it is preferable to strictly control the temperature condition so that the solution temperature does not reach the decomposition temperature of the metal salt when using a heat unstable metal salt.
  • the organic solvent cooled beforehand may be used and a 1st melt
  • the metal salt may be added to the organic solvent having a hetero atom, or the organic solvent having a hetero atom may be added to the metal salt.
  • a method of gradually adding the metal salt to the organic solvent having a hetero atom is preferable.
  • the first dissolution step and the second dissolution step may be performed continuously, or the first electrolytic solution obtained in the first dissolution step is temporarily stored (standing), and after a certain time has passed, You may implement a melt
  • the second dissolution step is a step of preparing a supersaturated second electrolyte solution by adding a metal salt to the first electrolyte solution under stirring and / or heating conditions to dissolve the metal salt.
  • the stirring condition may be achieved, or the second dissolution step is performed using a stirrer and a device (stirrer) that operates the stirrer.
  • the stirring condition may be used.
  • Heating conditions it is preferable to control suitably with thermostats, such as a water bath or an oil bath.
  • thermostats such as a water bath or an oil bath.
  • the warming said by the manufacturing method of the electrolyte solution of this invention points out warming a target object to the temperature more than normal temperature (25 degreeC).
  • the heating temperature is more preferably 30 ° C. or higher, and further preferably 35 ° C. or higher. Further, the heating temperature is preferably lower than the boiling point of the organic solvent.
  • the second dissolution step if the added metal salt is not sufficiently dissolved, increase the stirring speed and / or further heating. Moreover, when the added metal salt is not sufficiently dissolved, a small amount of an organic solvent having a hetero atom may be added to the electrolytic solution in the second dissolution step to promote dissolution of the metal salt. Furthermore, the second dissolving step may be performed under pressure.
  • the second dissolution step and the third dissolution step are preferably carried out continuously.
  • the third dissolution step is a step of preparing a third electrolyte solution by adding a metal salt to the second electrolyte solution under stirring and / or heating conditions to dissolve the metal salt.
  • it is necessary to add a metal salt to the supersaturated second electrolytic solution and dissolve it. Therefore, it is essential to perform the stirring and / or heating conditions as in the second dissolution step. Specific stirring and / or heating conditions are the same as those in the second dissolution step. Similar to the second dissolution step, if the added metal salt does not dissolve sufficiently, an increase in stirring speed and / or further heating is performed.
  • a small amount of an organic solvent having a hetero atom may be added to the electrolytic solution to promote dissolution of the metal salt.
  • the third dissolving step may be performed under pressure.
  • the third electrolytic solution (the electrolytic solution of the present invention) can be manufactured. finish.
  • the production of the third electrolytic solution (the electrolytic solution of the present invention) may be terminated. Even when the stirring and / or heating conditions are canceled, the metal salt crystals are not precipitated from the electrolytic solution of the present invention.
  • the electrolytic solution of the present invention is composed of, for example, two molecules of an organic solvent for one molecule of a lithium salt, and is presumed to form a cluster stabilized by a strong coordinate bond between these molecules. Is done.
  • the first to third dissolving steps can be performed even if the supersaturated state is not passed at the treatment temperature in each dissolving step.
  • the electrolytic solution of the present invention can be appropriately produced using the specific dissolution means described in 1.
  • the original organic solvent derived from the organic solvent contained in the first electrolyte solution is obtained in the vibration spectrum. Both peaks and shift peaks are observed. In the vibrational spectrum of the first electrolyte solution, the original peak intensity of the organic solvent is larger than the shift peak intensity.
  • the relationship between the original peak intensity of the organic solvent and the shift peak intensity changes.
  • the shift peak intensity is changed. Becomes larger than the original peak intensity of the organic solvent.
  • the method for producing an electrolytic solution of the present invention preferably includes a vibrational spectroscopic measurement step of performing vibrational spectroscopic measurement of the electrolytic solution being manufactured.
  • a vibrational spectroscopic measurement step By including a vibrational spectroscopic measurement step in the method for producing an electrolytic solution of the present invention, the degree of coordination (ratio) between the metal salt and the organic solvent in the electrolytic solution or the relationship between Is and Io can be confirmed during the production.
  • the electrolytic solution in the middle of production has reached the electrolytic solution of one embodiment of the present invention, and when the electrolytic solution in the middle of production has not reached the electrolytic solution of one embodiment of the present invention It is possible to grasp how much metal salt is added to the electrolyte solution of one embodiment of the present invention.
  • a specific vibration spectroscopic measurement step for example, a method of sampling a part of each electrolytic solution in the middle of production and using it for vibration spectroscopic measurement, or a method of performing spectroscopic spectroscopic measurement of each electrolytic solution in situ (situ) But it ’s okay.
  • a method for in-vitro vibrational spectroscopic measurement of an electrolytic solution a method of introducing an electrolytic solution in the middle of production into a transparent flow cell and performing vibrational spectroscopic measurement, or a method of performing Raman measurement from outside the container using a transparent production vessel can be mentioned.
  • the vibrational spectroscopic measurement is preferably performed under conditions that can reduce or ignore the influence of moisture in the atmosphere.
  • IR measurement may be performed under low humidity or no humidity conditions such as a dry room or a glove box, or Raman measurement may be performed with the electrolyte solution in a sealed container.
  • a density concentration measuring step for measuring values of density and concentration of the electrolytic solution being produced.
  • a specific measurement process for example, a method of sampling a part of each electrolytic solution in the middle of production and using it for density and concentration measurement may be used, or the density and concentration of each electrolytic solution may be measured in situ. The method is fine.
  • the density and concentration of the electrolytic solution can be confirmed during the production by including the density concentration measuring step in the method for producing the electrolytic solution of the present invention. It is possible to determine whether or not the amount of the metal salt has reached the amount of the metal salt in the case where the electrolytic solution in the middle of the production does not reach the amount of the electrolytic solution of the present invention. If it adds, it can be grasped
  • a viscosity measuring step for measuring the viscosity of the electrolytic solution during production.
  • a specific viscosity measuring step for example, a method of sampling a part of each electrolytic solution in the middle of production and using it for viscosity measurement may be used, or each electrolytic solution may be combined in situ by combining an electrolytic solution manufacturing apparatus and a viscosity measuring apparatus. Alternatively, the viscosity may be measured on the spot.
  • the viscosity in the electrolytic solution can be confirmed during the production, so whether or not the electrolytic solution in the middle of production has reached the electrolytic solution of one embodiment of the present invention.
  • the electrolyte of one embodiment of the present invention is reached. Can be grasped.
  • an ionic conductivity measurement step for measuring the ionic conductivity of the electrolytic solution during production.
  • a specific ion conductivity measurement step for example, a method of sampling a part of each electrolytic solution in the middle of production and using it for ion conductivity measurement may be used, or a combination of an electrolytic solution manufacturing apparatus and an ion conductivity measuring apparatus may be used.
  • a method of measuring the ionic conductivity of each electrolytic solution in situ may be used.
  • the ionic conductivity in the electrolytic solution can be confirmed during the production, so that the electrolytic solution in the middle of the production has reached the electrolytic solution of one embodiment of the present invention. It is possible to determine whether or not the amount of metal salt added in the case where the electrolyte in the middle of production does not reach the electrolyte of one embodiment of the present invention. It is possible to grasp whether the electrolyte solution is reached.
  • the solvent in addition to the organic solvent having a hetero element, the solvent has a low polarity (low dielectric constant) or a low donor number and does not exhibit a special interaction with a metal salt, that is, the present invention.
  • a solvent that does not affect the formation and maintenance of the clusters in the electrolyte can be added.
  • an effect of lowering the viscosity of the electrolytic solution can be expected while maintaining the formation of the cluster of the electrolytic solution of the present invention.
  • the electrolyte solution of one embodiment of the present invention can be positioned as an electrolyte solution in an intermediate manufacturing state.
  • the solvent that does not exhibit a special interaction with the metal salt include benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene, 1-methylnaphthalene, hexane, heptane, and cyclohexane. it can.
  • a step of adding a solvent that does not exhibit a special interaction with the metal salt can be added. This step may be added before or after the first to third dissolution steps, or may be performed during the first to third dissolution steps.
  • a flame retardant solvent can be added to the electrolytic solution of the present invention.
  • a flame retardant solvent include halogen solvents such as carbon tetrachloride, tetrachloroethane, and hydrofluoroether, and phosphoric acid derivatives such as trimethyl phosphate and triethyl phosphate.
  • a step of adding the flame retardant solvent can be added. This step may be added before or after the first to third dissolution steps, or may be performed during the first to third dissolution steps.
  • the electrolytic solution of the present invention when the electrolytic solution of the present invention is mixed with a polymer or an inorganic filler to form a mixture, the mixture contains the electrolytic solution and becomes a pseudo solid electrolyte.
  • the pseudo solid electrolyte as the battery electrolyte, leakage of the electrolyte in the battery or capacitor can be suppressed.
  • a polymer used for a battery such as a lithium ion secondary battery or a general chemically crosslinked polymer can be employed.
  • a polymer that can absorb an electrolyte such as polyvinylidene fluoride and polyhexafluoropropylene and gel can be used, and a polymer such as polyethylene oxide in which an ion conductive group is introduced.
  • polymers include polymethyl acrylate, polymethyl methacrylate, polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyethylene glycol dimethacrylate, polyethylene glycol acrylate, polyglycidol, polytetrafluoroethylene, polyhexafluoropropylene, Polycarboxylic acid such as polysiloxane, polyvinyl acetate, polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polyitaconic acid, polyfumaric acid, polycrotonic acid, polyangelic acid, carboxymethylcellulose, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene , Polycarbonate, unsaturated polyester copolymerized with maleic anhydride and glycols, Polyethylene oxide derivative having a group, a copolymer of vinylidene fluoride and hexafluoropropylene can be exempl
  • Polysaccharides are also suitable as the polymer.
  • Specific examples of the polysaccharide include glycogen, cellulose, chitin, agarose, carrageenan, heparin, hyaluronic acid, pectin, amylopectin, xyloglucan, and amylose.
  • adopt the material containing these polysaccharides as said polymer The agar containing polysaccharides, such as agarose, can be illustrated as the said material.
  • the inorganic filler is preferably an inorganic ceramic such as oxide or nitride.
  • Inorganic ceramics have hydrophilic and hydrophobic functional groups on the surface. Therefore, when the functional group attracts the electrolytic solution, a conductive path can be formed in the inorganic ceramic. Furthermore, the inorganic ceramics dispersed in the electrolytic solution can form a network between the inorganic ceramics by the functional groups and serve to contain the electrolytic solution. With such a function of the inorganic ceramics, it is possible to more suitably suppress the leakage of the electrolytic solution in the battery. In order to suitably exhibit the above functions of the inorganic ceramics, the inorganic ceramics preferably have a particle shape, and particularly preferably have a particle size of nano level.
  • the inorganic ceramics include general alumina, silica, titania, zirconia, and lithium phosphate. Further, the inorganic ceramic itself may be lithium conductive, and specifically, Li 3 N, LiI, LiI—Li 3 N—LiOH, LiI—Li 2 S—P 2 O 5 , LiI—Li 2 S —P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 2 O—B 2 S 3 , Li 2 O—V 2 O 3 —SiO 2 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—B 2 O 3 —ZnO, Li 2 O—Al 2 O 3 —TiO 2 —SiO 2 —P 2 O 5 , LiTi 2 (PO 4 ) 3 , Li— ⁇ Al 2 O 3 , LiTaO 3 Can be illustrated.
  • Li 3 N LiI, LiI—Li 3 N—LiOH, LiI—Li 2 S—
  • Glass ceramics may be employed as the inorganic filler. Since glass ceramics can contain an ionic liquid, the same effect can be expected for the electrolytic solution of the present invention. Glass ceramics include a compound represented by xLi 2 S- (1-x) P 2 S 5 , a compound obtained by substituting a part of S of the compound with another element, and a P of the compound. An example in which the part is replaced with germanium can be exemplified.
  • a step of mixing the third electrolytic solution with the polymer and / or the inorganic filler can be added.
  • the electrolytic solution of the present invention described above exhibits excellent ionic conductivity, it is suitably used as an electrolytic solution for power storage devices such as batteries and capacitors.
  • the electrolytic solution of the present invention is particularly preferably used as an electrolytic solution for a secondary battery, and particularly preferably used as an electrolytic solution for a lithium ion secondary battery.
  • the electrolyte solution of this invention is used as an electrolyte solution of an electric double layer capacitor or a lithium ion capacitor.
  • the lithium ion secondary battery of the present invention employs a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, and a lithium salt as a metal salt.
  • the electrolytic solution of the present invention is provided.
  • the negative electrode active material a material capable of inserting and extracting lithium ions can be used. Accordingly, there is no particular limitation as long as it is a simple substance, alloy, or compound that can occlude and release lithium ions.
  • a negative electrode active material Li, group 14 elements such as carbon, silicon, germanium and tin, group 13 elements such as aluminum and indium, group 12 elements such as zinc and cadmium, group 15 elements such as antimony and bismuth, magnesium , Alkaline earth metals such as calcium, and group 11 elements such as silver and gold may be employed alone.
  • silicon or the like is used for the negative electrode active material, a silicon atom reacts with a plurality of lithiums, so that it becomes a high-capacity active material.
  • an alloy or compound in which another element such as a transition metal is combined with a simple substance such as silicon as the negative electrode active material.
  • the alloy or compound include tin-based materials such as Ag—Sn alloy, Cu—Sn alloy and Co—Sn alloy, carbon-based materials such as various graphites, SiO x (disproportionated into silicon simple substance and silicon dioxide). Examples thereof include silicon-based materials such as 0.3 ⁇ x ⁇ 1.6), silicon alone, or composites obtained by combining silicon-based materials and carbon-based materials.
  • the negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector.
  • a current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery.
  • the current collector at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel, etc. Metal materials can be exemplified.
  • the current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.
  • the current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the negative electrode active material layer contains a negative electrode active material and, if necessary, a binder and / or a conductive aid.
  • the binder plays a role of connecting the active material and the conductive auxiliary agent to the surface of the current collector.
  • binder examples include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. be able to.
  • fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber
  • thermoplastic resins such as polypropylene and polyethylene
  • imide resins such as polyimide and polyamideimide
  • alkoxysilyl group-containing resins alkoxysilyl group-containing resins.
  • a polymer having a hydrophilic group may be employed as the binder.
  • the hydrophilic group of the polymer having a hydrophilic group include a phosphate group such as a carboxyl group, a sulfo group, a silanol group, an amino group, a hydroxyl group, and a phosphate group.
  • a polymer containing a carboxyl group in the molecule such as polyacrylic acid (PAA), carboxymethyl cellulose (CMC) and polymethacrylic acid, or a polymer containing a sulfo group such as poly (p-styrenesulfonic acid) is preferable.
  • Polymers containing a large amount of carboxyl groups and / or sulfo groups such as polyacrylic acid or a copolymer of acrylic acid and vinyl sulfonic acid, are water-soluble. Therefore, the polymer having a hydrophilic group is preferably a water-soluble polymer, and a polymer containing a plurality of carboxyl groups and / or sulfo groups in one molecule is preferable.
  • the polymer containing a carboxyl group in the molecule can be produced by, for example, a method of polymerizing an acid monomer or adding a carboxyl group to the polymer.
  • Acid monomers include acrylic acid, methacrylic acid, vinyl benzoic acid, crotonic acid, pentenoic acid, angelic acid, tiglic acid, etc., acid monomers having one carboxyl group in the molecule, itaconic acid, mesaconic acid, citraconic acid, fumaric acid
  • Examples include maleic acid, 2-pentenedioic acid, methylene succinic acid, allyl malonic acid, isopropylidene succinic acid, 2,4-hexadiene diacid, acetylenedicarboxylic acid, and other acid monomers having two or more carboxyl groups in the molecule. Is done. A copolymer obtained by polymerizing two or more kinds of monomers selected from these may be used.
  • a polymer composed of a copolymer of acrylic acid and itaconic acid as described in JP-A-2013-065493, and containing an acid anhydride group formed by condensation of carboxyl groups in the molecule It is also preferable to use as a binder.
  • the structure derived from a highly acidic monomer having two or more carboxyl groups in one molecule is considered to facilitate trapping of lithium ions and the like before the electrolytic solution decomposition reaction occurs during charging.
  • the acidity is not excessively increased because there are more carboxyl groups and the acidity is higher than polyacrylic acid and polymethacrylic acid, and a predetermined amount of the carboxyl groups are changed to acid anhydride groups. Therefore, a secondary battery having a negative electrode formed using this binder has improved initial efficiency and improved input / output characteristics.
  • Conductive aid is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent.
  • the conductive auxiliary agent may be any chemically inert electronic high conductor, such as carbon black, graphite, acetylene black, ketjen black (registered trademark), or vapor grown carbon fiber (Vapor Grown Carbon). Fiber: VGCF) and various metal particles are exemplified. These conductive assistants can be added to the active material layer alone or in combination of two or more.
  • the positive electrode used for the lithium ion secondary battery has a positive electrode active material capable of inserting and extracting lithium ions.
  • the positive electrode has a current collector and a positive electrode active material layer bound to the surface of the current collector.
  • the positive electrode active material layer includes a positive electrode active material and, if necessary, a binder and / or a conductive aid.
  • the positive electrode current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used. For example, silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin , Indium, titanium, ruthenium, tantalum, chromium, molybdenum, and metal materials such as stainless steel.
  • the potential of the positive electrode is 4 V or higher with respect to lithium, it is preferable to use aluminum as the current collector.
  • the positive electrode current collector is preferably made of aluminum or an aluminum alloy.
  • aluminum refers to pure aluminum, and aluminum having a purity of 99.0% or more is referred to as pure aluminum.
  • An alloy obtained by adding various elements to pure aluminum is referred to as an aluminum alloy. Examples of the aluminum alloy include Al—Cu, Al—Mn, Al—Fe, Al—Si, Al—Mg, AL—Mg—Si, and Al—Zn—Mg.
  • aluminum or aluminum alloy examples include, for example, A1000 series alloys (pure aluminum series) such as JIS A1085 and A1N30, A3000 series alloys (Al-Mn series) such as JIS A3003 and A3004, JIS A8079, A8021, etc. A8000-based alloy (Al-Fe-based).
  • the current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.
  • the current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the binder for the positive electrode and the conductive additive are the same as those described for the negative electrode.
  • a positive electrode active material a solid solution composed of a spinel such as LiMn 2 O 4 and a mixture of a spinel and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (wherein M is Co, Ni, Mn, And a polyanionic compound represented by (selected from at least one of Fe).
  • tavorite compound the M a transition metal
  • LiMPO 4 F such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal
  • Limbo 3 such LiFeBO 3 (M is a transition metal
  • M is a transition metal
  • any metal oxide used as the positive electrode active material may have the above composition formula as a basic composition, and a metal element contained in the basic composition may be substituted with another metal element.
  • a charge carrier for example, lithium ion which contributes to charging / discharging.
  • sulfur alone (S) a compound in which sulfur and carbon are compounded
  • a metal sulfide such as TiS 2
  • an oxide such as V 2 O 5 and MnO 2
  • conjugated materials such as conjugated diacetate-based organic substances and other known materials can also be used.
  • a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material.
  • a positive electrode active material that does not contain a charge carrier such as lithium it is necessary to add a charge carrier to the positive electrode and / or the negative electrode in advance by a known method.
  • the charge carrier may be added in an ionic state or in a non-ionic state such as a metal.
  • the charge carrier when the charge carrier is lithium, it may be integrated by attaching a lithium foil to the positive electrode and / or the negative electrode.
  • a current collecting method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method can be used.
  • An active material may be applied to the surface of the body.
  • an active material layer-forming composition containing an active material and, if necessary, a binder and a conductive aid is prepared, and an appropriate solvent is added to the composition to make a paste, and then the collection is performed. After applying to the surface of the electric body, it is dried.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water.
  • the dried product may be compressed.
  • a separator is used for a lithium ion secondary battery as required.
  • the separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit of current due to contact between the two electrodes.
  • natural resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polymer), polyester, polyacrylonitrile, etc., polysaccharides such as cellulose, amylose, fibroin, keratin, lignin, suberin, etc. Examples thereof include porous bodies, nonwoven fabrics, and woven fabrics using one or more electrically insulating materials such as polymers and ceramics.
  • the separator may have a multilayer structure.
  • the electrolytic solution of the present invention has a slightly high viscosity and a high polarity
  • a membrane in which a polar solvent such as water can easily penetrate is preferable.
  • a film in which a polar solvent such as water soaks into 90% or more of the existing voids is more preferable.
  • a separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body.
  • the electrode body may be either a stacked type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are sandwiched.
  • the electrolyte solution of the present invention is added to the electrode body to form lithium ions.
  • a secondary battery may be used.
  • the lithium ion secondary battery of this invention should just be charged / discharged in the voltage range suitable for the kind of active material contained in an electrode.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.
  • the lithium ion secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or a part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle.
  • a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery.
  • devices equipped with lithium ion secondary batteries include various home appliances driven by batteries such as personal computers and portable communication devices, office devices, and industrial devices in addition to vehicles.
  • the lithium ion secondary battery of the present invention includes wind power generation, solar power generation, hydroelectric power generation and other power system power storage devices and power smoothing devices, power supplies for ships and / or auxiliary power supply sources, aircraft, Power supply for spacecraft and / or auxiliary equipment, auxiliary power supply for vehicles that do not use electricity as a power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charging station for electric vehicles.
  • the electric double layer capacitor and the lithium ion capacitor of the present invention include the electrolytic solution of the present invention, a pair of electrodes, and a separator.
  • the electrode is composed of a current collector and a carbon-containing layer formed on the current collector and containing a carbon material.
  • a current collector refers to a chemically inert electronic high conductor that keeps current flowing through an electrode during discharge or charging of electricity.
  • the current collector may be any one used for ordinary electric double layer capacitors or lithium ion capacitors. Silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium , At least one selected from ruthenium, tantalum, chromium and molybdenum, and metal materials such as stainless steel.
  • the current collector may be covered with a known protective film.
  • the current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the carbon-containing layer contains a carbon material and, if necessary, a binder (dispersant) and a conductive aid.
  • a carbon material what is necessary is just to be used for a normal electric double layer capacitor, and activated carbon manufactured from various raw materials can be mentioned.
  • the activated carbon preferably has a large specific surface area.
  • it is a material used in redox capacitors whose capacity increases due to adsorption / desorption of anions such as conductive polymers such as polyacene and 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO). May be.
  • the carbon material of the carbon-containing layer of the negative electrode of the lithium ion capacitor needs to be a material that can occlude and release lithium ions, it becomes a graphite-containing material such as natural graphite or artificial graphite.
  • the binder plays a role of binding the carbon material and the conductive additive to the surface of the current collector.
  • the binder is not particularly limited as long as it is used for ordinary electric double layer capacitors or lithium ion capacitors, and includes fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, and thermoplastic resins such as polypropylene and polyethylene. Examples thereof include imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins.
  • Conductive aid is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent.
  • the conductive auxiliary agent any material may be used as long as it is used for a normal electric double layer capacitor or a lithium ion capacitor, and carbon black, natural graphite, artificial graphite, acetylene black, ketjen black (registered trademark), which are carbonaceous fine particles, Examples include vapor grown carbon fiber (Vapor Grown Carbon Fiber: VGCF) and various metal particles.
  • These conductive assistants can be added to the carbon-containing layer singly or in combination of two or more.
  • the carbon-containing layer of the positive electrode of the lithium ion capacitor may contain lithium oxide, a mixture of lithium oxide and activated carbon, or carbon-coated lithium oxide.
  • the lithium oxide include Li a MO 4 (5 ⁇ a ⁇ 6, where M is one or more transition metals). Specifically, Li 5 FeO 4 , Li 6 MnO 4 , A lithium oxide having an inverted fluorite structure such as Li 6 CoO 4 can be given. These lithium oxides correspond to the “transition metal oxides containing excess lithium” described above. The transition metal oxide containing excess lithium is preferably uniformly dispersed in the carbon-containing layer of the positive electrode.
  • a current collecting method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method can be used.
  • a carbon material or the like may be applied to the surface of the body. Specifically, a carbon material and, if necessary, a binder, a conductive additive, a solid solution of lithium oxide and activated carbon, and a composition for forming a carbon-containing layer containing carbon-coated lithium oxide are prepared. An appropriate solvent is added to the product to form a paste, which is applied to the surface of the current collector and then dried.
  • the solvent examples include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water.
  • an appropriate solvent is added to a mixture of a carbon material such as activated carbon and a transition metal oxide containing excess lithium.
  • a method of forming a paste and then applying it to the surface of the positive electrode current collector and then drying it can be mentioned.
  • the separator is for separating a pair of electrodes from each other and preventing a short circuit of current due to contact between both electrodes.
  • the separator may be any material used for ordinary electric double layer capacitors or lithium ion capacitors, and synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polyamide), polyester, polyacrylonitrile, and the like.
  • Polysaccharides such as cellulose and amylose, natural polymers such as fibroin, keratin, lignin, and suberin, porous materials using one or more electrical insulating materials such as glass fibers and ceramics, non-woven fabrics, woven fabrics, etc. Can do.
  • the separator may have a multilayer structure.
  • the electrolytic solution of the present invention has a slightly high viscosity and a high polarity
  • a membrane in which a polar solvent such as water can easily penetrate is preferable.
  • a film in which a polar solvent such as water soaks into 90% or more of the existing voids is more preferable.
  • the thickness of the separator is preferably 5 to 100 ⁇ m, more preferably 10 to 80 ⁇ m, and particularly preferably 20 to 60 ⁇ m.
  • the electric double layer capacitor or lithium ion capacitor of the present invention may be manufactured according to a normal method for manufacturing an electric double layer capacitor or lithium ion capacitor.
  • metal lithium may be used in the same manner as the pre-doping of a general lithium ion capacitor.
  • the carbon-containing layer of the positive electrode of the lithium ion capacitor of the present invention contains lithium oxide or carbon-covered lithium oxide, lithium ion pre-doping is performed using these lithium oxides. Can do. And what desorbed lithium ion from lithium oxide or carbon covering lithium oxide can function as an active material of a positive electrode.
  • the shape of the capacitor of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be employed.
  • the capacitor of the present invention may be mounted on a vehicle.
  • the vehicle may be a vehicle that uses electric energy generated by a capacitor for all or a part of its power source.
  • the vehicle may be an electric vehicle or a hybrid vehicle.
  • the device on which the capacitor is mounted includes various home appliances, office devices, industrial devices, and the like that are driven by a power storage device, such as personal computers and portable communication devices.
  • the capacitor of the present invention is a power generation device for wind power generation, solar power generation, hydroelectric power generation, and other power systems, power smoothing device, power supply for ships and / or auxiliary equipment, aircraft, spacecraft, etc.
  • Example 1 The electrolytic solution of the present invention was produced as follows.
  • the electrolytic solution that exceeds the concentration at the time when the dissolution of (CF 3 SO 2 ) 2 NLi stagnated corresponds to the supersaturated second electrolytic solution.
  • the obtained electrolytic solution had a volume of 20 mL, and (CF 3 SO 2 ) 2 NLi contained in this electrolytic solution was 18.38 g.
  • the concentration of (CF 3 SO 2 ) 2 NLi in the electrolytic solution of Example 1 was 3.2 mol / L, and the density was 1.39 g / cm 3 . The density was measured at 20 ° C.
  • 1.6 molecules of 1,2-dimethoxyethane are contained per 1 molecule of (CF 3 SO 2 ) 2 NLi.
  • the above production was carried out in a glove box under an inert gas atmosphere.
  • Example 2 Using 16.08 g of (CF 3 SO 2 ) 2 NLi, the concentration of (CF 3 SO 2 ) 2 NLi was 2.8 mol / L and the density was 1.36 g / cm in the same manner as in Example 1. 3 was produced. In the electrolytic solution of Example 2, 2.1 molecules of 1,2-dimethoxyethane are contained per 1 molecule of (CF 3 SO 2 ) 2 NLi.
  • Example 3 About 5 mL of acetonitrile, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (CF 3 SO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in acetonitrile in the flask. When 24.11 g of (CF 3 SO 2 ) 2 NLi was added in total, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and acetonitrile was added until the volume was 20 mL. This was used as the electrolytic solution of Example 3. The production was performed in a glove box under an inert gas atmosphere.
  • the concentration of (CF 3 SO 2 ) 2 NLi in the electrolytic solution of Example 3 was 4.2 mol / L, and the density was 1.52 g / cm 3 .
  • 1.9 molecules of acetonitrile are contained with respect to (CF 3 SO 2 ) 2 NLi1 molecules.
  • Example 4 Using 19.52 g of (CF 3 SO 2 ) 2 NLi, the electrolytic solution of Example 4 in which the concentration of (CF 3 SO 2 ) 2 NLi is 3.4 mol / L is produced in the same manner as in Example 3. did. In the electrolyte solution of Example 4, 3 molecules of acetonitrile are contained with respect to 1 molecule of (CF 3 SO 2 ) 2 NLi.
  • Example 5 In the same manner as in Example 3, an electrolytic solution of Example 5 in which the concentration of (CF 3 SO 2 ) 2 NLi was 3.0 mol / L and the density was 1.31 g / cm 3 was produced.
  • Example 6 The same procedure as in Example 3 except that sulfolane was used as the organic solvent, the concentration of (CF 3 SO 2 ) 2 NLi was 3.0 mol / L, and the density was 1.57 g / cm 3 The electrolyte solution of Example 6 was produced.
  • Example 7 The concentration of (CF 3 SO 2 ) 2 NLi is 3.2 mol / L and the density is 1.49 g / cm 3 in the same manner as in Example 3 except that dimethyl sulfoxide is used as the organic solvent. The electrolyte solution of Example 7 was manufactured.
  • Example 8 The concentration of (FSO 2 ) 2 NLi was 4 in the same manner as in Example 3 except that 14.97 g of (FSO 2 ) 2 NLi was used as the lithium salt and 1,2-dimethoxyethane was used as the organic solvent.
  • 1.5 molecules of 1,2-dimethoxyethane are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Example 9 Implementation using 13.47 g of (FSO 2 ) 2 NLi in the same manner as in Example 8 with a concentration of (FSO 2 ) 2 NLi of 3.6 mol / L and a density of 1.29 g / cm 3
  • the electrolyte solution of Example 9 was produced.
  • 1.9 molecules of 1,2-dimethoxyethane are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Example 10 In the same manner as in Example 8, the electrolyte solution of Example 10 in which the concentration of (FSO 2 ) 2 NLi was 2.4 mol / L and the density was 1.18 g / cm 3 was produced.
  • Example 11 The electrolyte solution of Example 11 in which the concentration of (FSO 2 ) 2 NLi is 5.4 mol / L in the same manner as in Example 3 except that 20.21 g of (FSO 2 ) 2 NLi was used as the lithium salt. Manufactured. In the electrolyte solution of Example 11, 2 molecules of acetonitrile are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Example 12 Implementation wherein 18.71 g of (FSO 2 ) 2 NLi was used and the concentration of (FSO 2 ) 2 NLi was 5.0 mol / L and the density was 1.40 g / cm 3 in the same manner as in Example 11.
  • the electrolyte solution of Example 12 was produced.
  • 2.1 molecules of acetonitrile are contained with respect to (FSO 2 ) 2 NLi1 molecule.
  • Example 13 (Example 13) Implementation using 16.83 g of (FSO 2 ) 2 NLi in the same manner as in Example 11, with a concentration of (FSO 2 ) 2 NLi of 4.5 mol / L and a density of 1.34 g / cm 3
  • the electrolyte solution of Example 13 was produced.
  • 2.4 molecules of acetonitrile are contained per (FSO 2 ) 2 NLi1 molecule.
  • Example 14 Using 15.72 g of (FSO 2 ) 2 NLi, an electrolytic solution of Example 14 having a concentration of (FSO 2 ) 2 NLi of 4.2 mol / L was produced in the same manner as in Example 11. In the electrolyte solution of Example 14, 3 molecules of acetonitrile are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Example 15 About 5 mL of dimethyl carbonate, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to dimethyl carbonate in the flask and dissolved. When (FSO 2 ) 2 NLi was added in a total amount of 14.64 g, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and dimethyl carbonate was added until the volume was 20 mL. This was used as the electrolytic solution of Example 15. The production was performed in a glove box under an inert gas atmosphere.
  • the concentration of (FSO 2 ) 2 NLi in the electrolytic solution of Example 15 was 3.9 mol / L, and the density was 1.44 g / cm 3 .
  • two molecules of dimethyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
  • Example 16 Dimethyl carbonate was added to the electrolyte solution of Example 15 for dilution to obtain an electrolyte solution of Example 16 having a (FSO 2 ) 2 NLi concentration of 3.4 mol / L. In the electrolyte solution of Example 16, 2.5 molecules of dimethyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecules.
  • Example 17 Dimethyl carbonate was added to the electrolyte solution of Example 15 for dilution to obtain an electrolyte solution of Example 17 having a (FSO 2 ) 2 NLi concentration of 2.9 mol / L. In the electrolyte solution of Example 17, 3 molecules of dimethyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi. The density of the electrolytic solution of Example 17 was 1.36 g / cm 3 .
  • Example 18 Dimethyl carbonate was added to the electrolyte solution of Example 15 for dilution to obtain an electrolyte solution of Example 18 having a (FSO 2 ) 2 NLi concentration of 2.6 mol / L. In the electrolytic solution of Example 18, 3.5 molecules of dimethyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Example 19 Dimethyl carbonate was added to the electrolyte solution of Example 15 and diluted to obtain an electrolyte solution of Example 19 having a (FSO 2 ) 2 NLi concentration of 2.0 mol / L. In the electrolytic solution of Example 19, 5 molecules of dimethyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Example 20 About 5 mL of ethyl methyl carbonate, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in ethyl methyl carbonate in the flask. When 12.81 g of (FSO 2 ) 2 NLi was added in total, the mixture was stirred overnight. The obtained electrolytic solution was transferred to a 20 mL volumetric flask, and ethyl methyl carbonate was added until the volume became 20 mL. This was used as the electrolytic solution of Example 20. The production was performed in a glove box under an inert gas atmosphere.
  • the concentration of (FSO 2 ) 2 NLi in the electrolytic solution of Example 20 was 3.4 mol / L, and the density was 1.35 g / cm 3 .
  • two molecules of ethyl methyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
  • Example 21 The electrolyte solution of Example 20 was diluted by adding ethyl methyl carbonate to obtain the electrolyte solution of Example 21 having a concentration of (FSO 2 ) 2 NLi of 2.9 mol / L. In the electrolytic solution of Example 21, 2.5 molecules of ethyl methyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Example 22 The electrolyte solution of Example 20 was diluted by adding ethyl methyl carbonate to obtain the electrolyte solution of Example 22 having a (FSO 2 ) 2 NLi concentration of 2.2 mol / L. In the electrolyte solution of Example 22, 3.5 molecules of ethyl methyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Example 23 About 5 mL of diethyl carbonate, which is an organic solvent, was placed in a flask equipped with a stirring bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in diethyl carbonate in the flask. When 11.37 g of the total amount of (FSO 2 ) 2 NLi was added, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and diethyl carbonate was added until the volume was 20 mL. This was used as the electrolytic solution of Example 23. The production was performed in a glove box under an inert gas atmosphere.
  • the concentration of (FSO 2 ) 2 NLi in the electrolytic solution of Example 23 was 3.0 mol / L, and the density was 1.29 g / cm 3 .
  • two molecules of diethyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
  • Example 24 Diethyl carbonate was added to the electrolytic solution of Example 23 for dilution to obtain an electrolytic solution of Example 24 having a (FSO 2 ) 2 NLi concentration of 2.6 mol / L. In the electrolytic solution of Example 24, 2.5 molecules of diethyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Example 25 Diethyl carbonate was added to the electrolyte solution of Example 23 for dilution to obtain an electrolyte solution of Example 25 having a (FSO 2 ) 2 NLi concentration of 2.0 mol / L. In the electrolytic solution of Example 25, 3.5 molecules of diethyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Example 26 An electrolytic solution of Example 26 having a LiBF 4 concentration of 4.9 mol / L was produced in the same manner as in Example 15, except that 9.23 g of LiBF 4 was used as the lithium salt. In the electrolyte solution of Example 26, two molecules of dimethyl carbonate are contained with respect to one molecule of LiBF 4 . The density of the electrolyte solution of Example 26 was 1.30 g / cm 3 .
  • Example 27 An electrolytic solution of Example 27 in which the concentration of LiPF 6 was 4.4 mol / L was produced in the same manner as in Example 15 except that 13.37 g of LiPF 6 was used as the lithium salt. In the electrolytic solution of Example 27, two molecules of dimethyl carbonate are contained with respect to one molecule of LiPF 6 . The density of the electrolyte solution of Example 27 was 1.46 g / cm 3 .
  • Comparative Example 1 Using 1,2-dimethoxyethane as the organic solvent, the concentration of (CF 3 SO 2 ) 2 NLi is 1.6 mol / L and the density is 1.18 g / cm 3 in the same manner as in Example 3. The electrolytic solution of Comparative Example 1 was produced.
  • Comparative Example 2 In the same manner as in Comparative Example 1, an electrolytic solution of Comparative Example 2 having a (CF 3 SO 2 ) 2 NLi concentration of 1.2 mol / L and a density of 1.09 g / cm 3 was produced.
  • Comparative Example 3 In the same manner as in Comparative Example 1, an electrolytic solution of Comparative Example 3 having a (CF 3 SO 2 ) 2 NLi concentration of 1.0 mol / L and a density of 1.06 g / cm 3 was produced. In the electrolytic solution of Comparative Example 3, 8.3 molecules of 1,2-dimethoxyethane are contained per 1 molecule of (CF 3 SO 2 ) 2 NLi.
  • Comparative Example 4 In the same manner as in Comparative Example 1, an electrolytic solution of Comparative Example 4 having a (CF 3 SO 2 ) 2 NLi concentration of 0.5 mol / L and a density of 0.96 g / cm 3 was produced.
  • Comparative Example 5 In the same manner as in Comparative Example 1, an electrolytic solution of Comparative Example 5 having a (CF 3 SO 2 ) 2 NLi concentration of 0.2 mol / L and a density of 0.91 g / cm 3 was produced.
  • Comparative Example 6 In the same manner as in Comparative Example 1, an electrolytic solution of Comparative Example 6 having a (CF 3 SO 2 ) 2 NLi concentration of 0.1 mol / L and a density of 0.89 g / cm 3 was produced.
  • Comparative Example 7 In the same manner as in Example 3, an electrolytic solution of Comparative Example 7 having a (CF 3 SO 2 ) 2 NLi concentration of 1.0 mol / L and a density of 0.96 g / cm 3 was produced. In the electrolytic solution of Comparative Example 7, 16 molecules of acetonitrile are contained per 1 molecule of (CF 3 SO 2 ) 2 NLi.
  • Comparative Example 8 In the same manner as in Example 6, an electrolytic solution of Comparative Example 8 having a (CF 3 SO 2 ) 2 NLi concentration of 1.0 mol / L and a density of 1.38 g / cm 3 was produced.
  • Comparative Example 9 In the same manner as in Example 7, an electrolytic solution of Comparative Example 9 having a (CF 3 SO 2 ) 2 NLi concentration of 1.0 mol / L and a density of 1.22 g / cm 3 was produced.
  • Comparative Example 10 In the same manner as in Example 8, an electrolytic solution of Comparative Example 10 in which the concentration of (FSO 2 ) 2 NLi was 2.0 mol / L and the density was 1.13 g / cm 3 was produced.
  • Comparative Example 11 In the same manner as in Example 8, an electrolytic solution of Comparative Example 11 having a (FSO 2 ) 2 NLi concentration of 1.0 mol / L and a density of 1.01 g / cm 3 was produced. In the electrolyte solution of Comparative Example 11, 8.8 molecules of 1,2-dimethoxyethane are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Comparative Example 12 In the same manner as in Example 8, an electrolytic solution of Comparative Example 12 having a concentration of (FSO 2 ) 2 NLi of 0.5 mol / L and a density of 0.94 g / cm 3 was produced.
  • Comparative Example 13 In the same manner as in Example 8, an electrolytic solution of Comparative Example 13 having a (FSO 2 ) 2 NLi concentration of 0.1 mol / L and a density of 0.88 g / cm 3 was produced.
  • Comparative Example 14 In the same manner as in Example 12, an electrolytic solution of Comparative Example 14 having a concentration of (FSO 2 ) 2 NLi of 1.0 mol / L and a density of 0.91 g / cm 3 was produced. In the electrolytic solution of Comparative Example 14, 17 molecules of acetonitrile are contained with respect to 1 molecule of (FSO 2 ) 2 NLi.
  • Comparative Example 16 The electrolytic solution of Comparative Example 16 was diluted by adding ethyl methyl carbonate to the electrolytic solution of Example 20, and the concentration of (FSO 2 ) 2 NLi was 1.1 mol / L and the density was 1.12 g / cm 3. Manufactured. In the electrolytic solution of Comparative Example 16, 8 molecules of ethyl methyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Comparative Example 17 The electrolyte solution of Comparative Example 17 was diluted by adding diethyl carbonate to the electrolyte solution of Example 23, and the concentration of (FSO 2 ) 2 NLi was 1.1 mol / L and the density was 1.08 g / cm 3. Manufactured. In the electrolytic solution of Comparative Example 17, 7 molecules of diethyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Comparative Example 18 A mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 3: 7) (hereinafter sometimes referred to as “EC / DEC”) was used as the organic solvent, and 3.04 g of LiPF 6 was used as the lithium salt. In the same manner as in Example 3, an electrolytic solution of Comparative Example 18 having a LiPF 6 concentration of 1.0 mol / L was produced.
  • Tables 4 and 5 show a list of electrolyte solutions of Examples and Comparative Examples. A blank in the table means uncalculated.
  • Tables 6 and 7 show a list of density and d / c of the electrolyte solutions of Examples and Comparative Examples.
  • a blank in the table means unmeasured or uncalculated.
  • IR measurement was performed on the electrolytic solutions of Examples 15 to 25 and Comparative Examples 15 to 17, and dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate under the following conditions.
  • IR spectra in the range of 1900 to 1600 cm ⁇ 1 are shown in FIGS. 11 to 27, respectively.
  • FIG. 28 shows an IR spectrum in the range of 1900 to 1600 cm ⁇ 1 for (FSO 2 ) 2 NLi.
  • the horizontal axis in the figure is the wave number (cm ⁇ 1 ), and the vertical axis is the absorbance (reflection absorbance).
  • IR measurement was performed on the electrolytic solutions of Example 26 and Example 27 under the following conditions.
  • IR spectra in the range of 1900 to 1600 cm ⁇ 1 are shown in FIGS. 29 to 30, respectively.
  • the horizontal axis in the figure is the wave number (cm ⁇ 1 ), and the vertical axis is the absorbance (reflection absorbance).
  • IR measurement conditions Device FT-IR (Bruker Optics) Measurement conditions: ATR method (using diamond) Measurement atmosphere: Inert gas atmosphere
  • the relationship between the peak intensities of Is and Io was Is> Io.
  • Ionic conductivity measurement conditions In an Ar atmosphere, an electrolytic solution was sealed in a glass cell with a platinum constant and a known cell constant, and impedance at 30 ° C. and 1 kHz was measured. The ion conductivity was calculated from the impedance measurement result.
  • Solartron 147055BEC Solartron
  • electrolyte solutions of Examples 1 to 3, 8, 9, 12, 13, 15, 17, 20, 23, 26, and 27 all exhibited ion conductivity. Therefore, it can be understood that any of the electrolyte solutions of the present invention can function as various electrolyte solutions.
  • Viscosity measurement conditions Using a falling ball viscometer (Lovis 2000M manufactured by Anton Paar GmbH (Anton Paar)), an electrolytic solution was sealed in a test cell under an Ar atmosphere, and the viscosity was measured at 30 ° C.
  • the viscosity of the electrolyte solution of each example was significantly higher than the viscosity of the electrolyte solution of each comparative example. Therefore, if the battery uses the electrolytic solution of the present invention, leakage of the electrolytic solution is suppressed even if the battery is damaged. Moreover, if the capacitor uses the electrolytic solution of the present invention, even if the capacitor is damaged, electrolytic solution leakage is suppressed.
  • the maximum volatilization rate of the electrolytes of Examples 2, 3, 13, 15, and 17 was significantly smaller than the maximum volatilization rate of Comparative Examples 3, 7, 14, and 15. Therefore, even if the battery using the electrolytic solution of the present invention is damaged, the volatilization rate of the electrolytic solution is small, so that rapid volatilization of the organic solvent to the outside of the battery is suppressed. In addition, even if the capacitor using the electrolytic solution of the present invention is damaged, the volatilization rate of the electrolytic solution is low, so that rapid volatilization of the organic solvent to the outside of the capacitor is suppressed.
  • the electrolyte solution of Example 3 did not ignite even after indirect flame for 15 seconds. On the other hand, the electrolyte solution of Comparative Example 7 burned out in about 5 seconds.
  • the Li transport number of the electrolyte solutions of Examples 2 and 13 was significantly higher than the Li transport number of the electrolyte solutions of Comparative Examples 14 and 18.
  • the Li ion conductivity of the electrolytic solution can be calculated by multiplying the ionic conductivity (total ionic conductivity) contained in the electrolytic solution by the Li transport number. If it does so, it can be said that the electrolyte solution of this invention has the high transport rate of lithium ion (cation) compared with the conventional electrolyte solution which shows comparable ionic conductivity.
  • FIGS. 31 to 37 show Raman spectra in which peaks derived from the anion portion of the metal salt of each electrolytic solution were observed.
  • the horizontal axis represents the wave number (cm ⁇ 1 )
  • the vertical axis represents the scattering intensity.
  • the Raman spectra of the electrolytes of Examples 12, 13 and Comparative Example 14 shown in FIGS. 31 to 33 have a characteristic spectrum derived from (FSO 2 ) 2 N of LiFSA dissolved in acetonitrile at 700 to 800 cm ⁇ 1. A strong peak was observed. Here, it can be seen from FIGS. 31 to 33 that the peak shifts to the higher wavenumber side as the LiFSA concentration increases. As the electrolyte concentration increases, (FSO 2 ) 2 N corresponding to the anion of the salt interacts with Li. In other words, when the concentration is low, Li and the anion become SSIP (Solvent-separated ion pairs).
  • FSO 2 N dimethyl carbonate
  • FIGS. 34 to 37 it can be seen from FIGS. 34 to 37 that the peak shifts to the higher wavenumber side as the LiFSA concentration increases.
  • This phenomenon is similar to that discussed in the preceding paragraph, in accordance with the electrolytic solution is highly concentrated, corresponds to the anion of the salt (FSO 2) 2 N is ready to interact with Li, and, in this state It can be considered that the change was observed as a peak shift of the Raman spectrum.
  • Example A A half cell using the electrolytic solution of Example 13 was produced as follows.
  • the counter electrode was metal Li.
  • a half cell is constructed by storing Whatman glass fiber filter paper having a thickness of 400 ⁇ m as a separator sandwiched between a working electrode, a counter electrode, and both, and an electrolyte of Example 13 in a battery case (CR2032 type coin cell case manufactured by Hosen Co., Ltd.). did. This was designated as the half cell of Example A.
  • Comparative Example A A half cell of Comparative Example A was produced in the same manner as in Example A except that the electrolytic solution of Comparative Example 18 was used as the electrolytic solution.
  • the half cell is charged at a rate of 0.1 C, 0.2 C, 0.5 C, 1 C, and 2 C (1 C means a current value required to fully charge or discharge the battery in one hour at a constant current).
  • discharge was performed, and the capacity (discharge capacity) of the working electrode at each speed was measured.
  • the counter electrode is regarded as a negative electrode and the working electrode is regarded as a positive electrode.
  • the ratio (rate characteristic) of the capacity at other rates to the capacity of the working electrode at the 0.1 C rate was calculated. The results are shown in Table 13.
  • the half cell of Example A shows excellent rate characteristics because the decrease in capacity is suppressed compared to the half cell of Comparative Example A at any rate of 0.2C, 0.5C, 1C, and 2C. It was. It was confirmed that the secondary battery using the electrolytic solution of the present invention exhibits excellent rate characteristics.
  • the half cell of Comparative Example A has a tendency to increase the polarization when a current is passed at a rate of 1 C as charging and discharging are repeated, and the capacity obtained before reaching 2 V to 0.01 V rapidly decreases. On the other hand, even if charging and discharging were repeated, the half cell of Example A maintained the capacity suitably with almost no increase or decrease in polarization as can be confirmed from the overlapping of the three curves in FIG.
  • the reason why the polarization increased in Comparative Example A is that the electrolyte solution cannot supply a sufficient amount of Li to the reaction interface with the electrode due to the uneven Li concentration generated in the electrolyte solution when charging and discharging are rapidly repeated. That is, uneven distribution of the Li concentration of the electrolytic solution can be considered.
  • Example A it is considered that the uneven distribution of Li concentration in the electrolyte solution could be suppressed by using the electrolyte solution of the present invention having a high Li concentration. It was confirmed that the secondary battery using the electrolytic solution of the present invention exhibits excellent responsiveness to rapid charge / discharge. Moreover, it can be said that the graphite-containing electrode exhibits excellent responsiveness to rapid charge / discharge in the presence of the electrolytic solution of the present invention.
  • the lithium ion capacitor involves an electrochemical reaction (battery reaction) between the negative electrode and the electrolytic solution that is equal to that of the lithium ion secondary battery during charging and discharging, the electrochemical generated between the negative electrode and the electrolytic solution.
  • the reaction requires reversibility and speed.
  • the reversibility and speed of the electrochemical reaction (battery reaction) that occurs between the negative electrode and the electrolyte solution required for the lithium ion capacitor can be evaluated in the evaluation examples for the half cell described above or below. From the results in Table 13, it can be said that the graphite-containing electrode of the lithium ion capacitor exhibits excellent rate characteristics and reversibility in the presence of the electrolytic solution of the present invention.
  • Example B A lithium ion secondary battery using the electrolytic solution of Example 13 was produced as follows.
  • a lithium-containing metal oxide having a layered rock salt structure represented by LiNi 5/10 Co 2/10 Mn 3/10 O 2 as a positive electrode active material, 3 parts by mass of acetylene black as a conductive auxiliary agent, and a binder 3 parts by mass of polyvinylidene fluoride as an agent was mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry. An aluminum foil having a thickness of 20 ⁇ m was prepared as a positive electrode current collector. The slurry was applied to the surface of the aluminum foil using a doctor blade so as to form a film. The aluminum foil coated with the slurry was dried at 80 ° C.
  • experimental filter paper As a separator, experimental filter paper (Toyo Filter Paper Co., Ltd., cellulose, thickness 260 ⁇ m) was prepared.
  • a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group.
  • the electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then the electrolyte solution of Example 13 was injected into the bag-like laminated film. Thereafter, the remaining one side was sealed to obtain a lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed.
  • This battery was referred to as a lithium ion secondary battery of Example B.
  • Comparative Example B A lithium ion secondary battery of Comparative Example B was produced in the same manner as in Example B, except that the electrolytic solution of Comparative Example 18 was used as the electrolytic solution.
  • FIG. 39 is a DSC chart of the lithium ion secondary battery of Example B in which the charged positive electrode and the electrolyte solution coexist.
  • FIG. 39 shows the charged state positive electrode of the lithium ion secondary battery in Comparative Example B and the electrolyte solution.
  • FIG. 40 shows DSC charts in the case of the above.
  • the DSC curve in the case where the charged positive electrode and the electrolyte solution coexist in the lithium ion secondary battery of Example B showed almost no endothermic peak.
  • an exothermic peak was observed around 300 ° C. in the DSC curve when the positive electrode in the charged state of the lithium ion secondary battery of Comparative Example B and the electrolyte were present. This exothermic peak is presumed to have occurred as a result of the reaction between the positive electrode active material and the electrolytic solution.
  • the lithium ion secondary battery using the electrolytic solution of the present invention has a lower reactivity between the positive electrode active material and the electrolytic solution than the lithium ion secondary battery using the conventional electrolytic solution, It turns out that it is excellent in thermal stability.
  • Example C A lithium ion secondary battery of Example C using the electrolytic solution of Example 13 was produced as follows.
  • the positive electrode was produced in the same manner as the positive electrode of the lithium ion secondary battery of Example B.
  • a cellulose nonwoven fabric having a thickness of 20 ⁇ m was prepared as a separator.
  • a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group.
  • the electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then the electrolyte solution of Example 13 was injected into the bag-like laminated film. Thereafter, the remaining one side was sealed to obtain a lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed.
  • This battery was referred to as a lithium ion secondary battery of Example C.
  • Example D A lithium ion secondary battery of Example D using the electrolytic solution of Example 13 was produced as follows.
  • the positive electrode was produced in the same manner as the positive electrode of the lithium ion secondary battery of Example B.
  • a cellulose nonwoven fabric having a thickness of 20 ⁇ m was prepared as a separator.
  • a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group.
  • the electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then the electrolyte solution of Example 13 was injected into the bag-like laminated film. Thereafter, the remaining one side was sealed to obtain a lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed.
  • This battery was referred to as a lithium ion secondary battery of Example D.
  • Comparative Example C A lithium ion secondary battery of Comparative Example C was produced in the same manner as Example C except that the electrolytic solution of Comparative Example 18 was used.
  • Comparative Example D A lithium ion secondary battery of Comparative Example D was produced in the same manner as Example D except that the electrolytic solution of Comparative Example 18 was used.
  • Evaluation Example 12 Input / output characteristics of a lithium ion secondary battery
  • the output characteristics of the lithium ion secondary batteries of Examples C and D and Comparative Examples C and D were evaluated under the following conditions.
  • the battery output density (W / L) at 25 ° C. for 2 seconds was calculated.
  • Table 14 shows the evaluation results of the input characteristics. “2-second input” in Table 14 means an input after 2 seconds from the start of charging, and “5-second input” means an input after 5 seconds from the start of charging.
  • the input of the battery of Example C was significantly higher than the input of the battery of Comparative Example C regardless of the temperature difference.
  • the input of the battery of Example D was significantly higher than the input of the battery of Comparative Example D.
  • the battery input density of the battery of Example C was significantly higher than the battery input density of the battery of Comparative Example C.
  • the battery input density of the battery of Example D was significantly higher than the battery input density of the battery of Comparative Example D.
  • Evaluation of output characteristics at 0 ° C. or 25 ° C. and SOC 20% Evaluation conditions were a state of charge (SOC) 20%, 0 ° C. or 25 ° C., operating voltage range 3V-4.2V, and capacity 13.5 mAh.
  • SOC 20%, 0 ° C. is a region where output characteristics are difficult to be obtained, for example, when used in a refrigerator room.
  • the output characteristics were evaluated three times for each battery for the 2-second output and 5-second output.
  • the battery output density (W / L) at 25 ° C. for 2 seconds output was calculated.
  • Table 14 shows the evaluation results of the output characteristics.
  • “2 seconds output” means an output 2 seconds after the start of discharge
  • “5 seconds output” means an output 5 seconds after the start of discharge.
  • the output of the battery of Example C was significantly higher than the output of the battery of Comparative Example C, regardless of the difference in temperature.
  • the output of the battery of Example D was significantly higher than the output of the battery of Comparative Example D.
  • the battery output density of the battery of Example C was significantly higher than the battery output density of the battery of Comparative Example C.
  • the battery output density of the battery of Example D was significantly higher than the battery output density of the battery of Comparative Example D.
  • Example E A half cell using the electrolytic solution of Example 13 was produced as follows.
  • the working electrode was 0.68 mg.
  • the density of graphite and polyvinylidene fluoride before pressing was 0.68 g / cm 3
  • the density of the active material layer after pressing was 1.025 g / cm 3 .
  • the counter electrode was metal Li.
  • Example E A working case, a counter electrode, 400 ⁇ m-thick mWhatman glass fiber filter paper sandwiched between them, and the electrolyte solution of Example 13 were used in a battery case with a diameter of 13.82 mm (CR2032-type coin cell case manufactured by Hosen Co., Ltd.). And a half cell was constructed. This was designated as the half cell of Example E.
  • Example F A half cell of Example F was produced in the same manner as in Example E except that the electrolytic solution of Example 15 was used as the electrolytic solution.
  • Example G A half cell of Example G was produced in the same manner as in Example E, except that the electrolytic solution of Example 20 was used as the electrolytic solution.
  • Example H A half cell of Example H was produced in the same manner as in Example E except that the electrolytic solution of Example 23 was used as the electrolytic solution.
  • Comparative Example E A half cell of Comparative Example E was produced in the same manner as in Example E, except that the electrolytic solution of Comparative Example 18 was used as the electrolytic solution.
  • Each half cell is charged with a 2.0V-0.01V charge / discharge cycle in which CC charging (constant current charging) is performed to 25 ° C. and voltage 2.0V, and CC discharging (constant current discharging) is performed to voltage 0.01V. Perform 3 cycles at a discharge rate of 0.1C, then charge and discharge 3 cycles at each charge / discharge rate in the order of 0.2C, 0.5C, 1C, 2C, 5C, 10C, and finally 3 at 0.1C. Cycle charge / discharge was performed. The capacity retention rate (%) of each half cell was determined by the following formula.
  • Capacity maintenance rate (%) B / A ⁇ 100
  • A Discharge capacity of the second working electrode in the first 0.1 C charge / discharge cycle
  • B Discharge capacity of the second working electrode in the last 0.1 C charge / discharge cycle
  • Table 16 shows the results.
  • the counter electrode is regarded as a negative electrode and the working electrode is regarded as a positive electrode.
  • Example I A half cell using the electrolytic solution of Example 13 was produced as follows. An aluminum foil (JIS A1000 series) having a diameter of 13.82 mm, an area of 1.5 cm 2 and a thickness of 20 ⁇ m was used as a working electrode, and the counter electrode was metal Li. As the separator, Whatman glass filter nonwoven fabric having a thickness of 400 ⁇ m: product number 1825-055 was used. The working electrode, the counter electrode, the separator, and the electrolyte solution of Example 13 were accommodated in a battery case (CR2032-type coin cell case manufactured by Hosen Co., Ltd.) to form a half cell. This was designated as the half cell of Example I.
  • a battery case CR2032-type coin cell case manufactured by Hosen Co., Ltd.
  • Example J A half cell of Example J was produced in the same manner as the half cell of Example I except that the electrolyte solution of Example 15 was used.
  • Example K A half cell of Example K was produced in the same manner as the half cell of Example I except that the electrolyte solution of Example 17 was used.
  • Example L A half cell of Example L was produced in the same manner as the half cell of Example I except that the electrolytic solution of Example 20 was used.
  • Example M A half cell of Example M was produced in the same manner as the half cell of Example I except that the electrolyte solution of Example 23 was used.
  • Comparative Example F A half cell of Comparative Example F was produced in the same manner as the half cell of Example I except that the electrolytic solution of Comparative Example 18 was used.
  • Comparative Example G A half cell of Comparative Example G was produced in the same manner as the half cell of Example I except that the electrolytic solution of Comparative Example 15 was used.
  • FIG. 54 shows that in the half cell of Comparative Example F, a current flows from 3.1 V to 4.6 V after the second cycle, and the current increases as the potential increases. Also, from FIGS. 59 and 60, in the half cell of Comparative Example G as well, the current flows from 3.0 V to 4.5 V after the second cycle, and the current increases as the potential increases. This current is presumed to be the oxidation current of Al due to the corrosion of the working electrode aluminum.
  • each electrolyte solution of Example 13, Example 15, Example 17, Example 20 and Example 23 is low even under high potential conditions exceeding 5V. That is, it can be said that each electrolyte solution of Example 13, Example 15, Example 17, Example 20 and Example 23 is a preferable electrolyte solution for batteries and capacitors using aluminum as a current collector or the like.
  • Example N A lithium ion secondary battery of Example N was obtained in the same manner as in Example A except that the electrolytic solution of Example 12 was used as the electrolytic solution.
  • Comparative Example H A lithium ion secondary battery of Comparative Example H was obtained in the same manner as in Example N except that the electrolytic solution of Comparative Example 18 was used as the electrolytic solution.
  • the voltage curve of the lithium ion secondary battery of Example N at each current rate shows a higher voltage than the voltage curve of the lithium ion secondary battery of Comparative Example H. Recognize.
  • the graphite-containing electrode exhibits excellent rate characteristics even in a low temperature environment. That is, it was confirmed that the lithium ion secondary battery and the lithium ion capacitor using the electrolytic solution of the present invention exhibit excellent rate characteristics even in a low temperature environment.
  • Example O A lithium ion secondary battery of Example O using the electrolytic solution of Example 13 was produced as follows.
  • a lithium-containing metal oxide having a layered rock salt structure represented by LiNi 5/10 Co 2/10 Mn 3/10 O 2 as a positive electrode active material, 8 parts by mass of acetylene black as a conductive auxiliary agent, and a binder 2 parts by mass of polyvinylidene fluoride as an agent was mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry. An aluminum foil having a thickness of 20 ⁇ m was prepared as a positive electrode current collector. The slurry was applied to the surface of the aluminum foil using a doctor blade so as to form a film. The aluminum foil coated with the slurry was dried at 80 ° C.
  • a cellulose nonwoven fabric having a thickness of 20 ⁇ m was prepared as a separator.
  • a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group.
  • the electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then the electrolyte solution of Example 13 was injected into the bag-like laminated film. Thereafter, the remaining one side was sealed to obtain a lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed.
  • This battery was referred to as the lithium ion secondary battery of Example O.
  • Example P A lithium ion secondary battery of Example P was obtained in the same manner as in Example O except that the electrolytic solution of Example 15 was used as the electrolytic solution.
  • Example Q A lithium ion secondary battery of Example Q was obtained in the same manner as in Example O except that the electrolytic solution of Example 17 was used as the electrolytic solution.
  • Comparative Example I A lithium ion secondary battery of Comparative Example I was obtained in the same manner as in Example O except that the electrolytic solution of Comparative Example 18 was used as the electrolytic solution.
  • the arc on the left side of the figure (that is, the side where the real part of the complex impedance is small) is called the first arc.
  • the arc on the right side in the figure is called the second arc.
  • the reaction resistance of the negative electrode was analyzed based on the size of the first arc
  • the reaction resistance of the positive electrode was analyzed based on the size of the second arc.
  • the resistance of the electrolytic solution was analyzed based on the leftmost plot in FIG. 63 continuous with the first arc.
  • Table 17 shows the resistance (so-called solution resistance) of the electrolytic solution after the first charge / discharge, the reaction resistance of the negative electrode, and the reaction resistance of the positive electrode
  • Table 18 shows each resistance after 100 cycles.
  • the negative electrode reaction resistance and the positive electrode reaction resistance after 100 cycles tend to be lower than the respective resistances after the first charge / discharge.
  • the negative electrode reaction resistance and the positive electrode reaction resistance of the lithium ion secondary batteries of Examples O to Q were the negative electrode reaction resistance and the positive electrode reaction resistance of the lithium ion secondary battery of Comparative Example I. Low compared to
  • the solution resistance of the electrolyte solution in the lithium ion secondary batteries of Examples O and Q and Comparative Example I is substantially the same, and the solution resistance of the electrolyte solution in the lithium ion secondary battery of Example P is the same as that of Example O, Higher than Q and Comparative Example I.
  • the solution resistance of each electrolyte solution in each lithium ion secondary battery is the same after the first charge / discharge and after 100 cycles. For this reason, it is considered that the durability deterioration of each electrolytic solution does not occur, and the difference between the negative electrode reaction resistance and the positive electrode reaction resistance generated in the comparative examples and examples described above is not related to the durability deterioration of the electrolyte solution but the electrode. It is thought to have occurred in itself.
  • the internal resistance of the lithium ion secondary battery can be comprehensively determined from the solution resistance of the electrolytic solution, the reaction resistance of the negative electrode, and the reaction resistance of the positive electrode. Based on the results of Table 17 and Table 18, from the viewpoint of suppressing the increase in internal resistance of the lithium ion secondary battery, the lithium ion secondary batteries of Examples P and Q are the most durable, and then Example O It can be said that the lithium ion secondary battery is excellent in durability.
  • the lithium ion secondary batteries of Examples O to Q were 100 equivalent to the lithium ion secondary battery of Comparative Example I containing EC, although it did not contain EC as a material for SEI.
  • the capacity retention rate during the cycle was shown. This is presumably because the positive electrode and negative electrode in the lithium ion secondary batteries of Examples O to Q have films derived from the electrolytic solution of the present invention.
  • capacitance maintenance factor was shown also after 500 cycles progress, and it was excellent in especially durability. From this result, it can be said that when DMC is selected as the organic solvent of the electrolytic solution, durability is further improved as compared with the case where AN is selected.
  • Example R The capacitor of the present invention was manufactured as follows.
  • MDLC-105N2 manufactured by Hosen Co., Ltd. was used as the positive and negative electrodes of the capacitor of the present invention.
  • a coin-type cell was created with the electrolyte solution of Example 11 soaked in a glass filter and the positive electrode and the negative electrode. This cell was used as the capacitor of Example R.
  • the positive electrode and the negative electrode were vacuum-dried at 120 ° C. for 24 hours before cell preparation, and the cell preparation was performed in an inert gas atmosphere in a glove box adjusted to a dew point of ⁇ 70 ° C. or less.
  • Comparative Example J A capacitor of Comparative Example J was produced in the same manner as in Example R, except that 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) amide was used as the electrolytic solution.
  • Example 20 The capacitors of Example R and Comparative Example J were tested as follows. Each capacitor was charged and discharged 10 times at a current density of 100 mA / g and a cut-off voltage of 0 to 1 V, and this was used as conditioning.
  • FIG. 64 shows the final charge / discharge curve of conditioning in each capacitor. From FIG. 64, it can be seen that the capacitor of Example R has a larger capacity than the capacitor of Comparative Example J.
  • the capacitors of Example R and Comparative Example J that had been charged and discharged were charged and discharged at a current density of 100, 500, 1000, and 2000 mA / g at a cut-off voltage of 0 to 2 V.
  • Table 20 The results are shown in Table 20.
  • the capacitor of Example R exhibited a capacity equal to or greater than that of Comparative Example J. In particular, the capacitor of Example R showed sufficient capacity even at high rate charge / discharge.
  • Example S MDLC-105N2 manufactured by Hosen Co., Ltd. was prepared as the positive and negative electrodes of the capacitor.
  • a coin-type cell was prepared using the electrolytic solution of Example 26, a cellulose nonwoven fabric having a thickness of 20 ⁇ m, the positive electrode, and the negative electrode. This cell was used as the capacitor of Example S.
  • the positive electrode and the negative electrode were vacuum-dried at 120 ° C. for 24 hours before cell preparation, and the cell preparation was performed in an inert gas atmosphere in a glove box adjusted to a dew point of ⁇ 70 ° C. or less.
  • Comparative Example K A capacitor of Comparative Example K was produced in the same manner as Example S, except that 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide was used as the electrolyte.
  • Example 21 The following tests were conducted on the capacitors of Example S and Comparative Example K. Each capacitor was charged and discharged 10 times at a current density of 100 mA / g and a cut-off voltage of 0 to 1 V. Each capacitor subjected to the charge / discharge was charged / discharged at a cut-off voltage of 0 to 2.5 V and a current density of 100 mA / g. The results are shown in FIG. The charge / discharge efficiency is the ratio of the discharge capacity to the charge capacity.
  • Example S was charged and discharged at a current density of 100 mA / g at a cut-off voltage of 0 to 2 V, 0 to 2.5 V, 0 to 3 V, and 0 to 4 V.
  • Charge-discharge curves of cut-off voltages 0 to 2 V, 0 to 2.5 V, and 0 to 3 V are shown in FIGS. 66 to 68, each discharge curve is shown in FIG. 69, and each discharge capacity is shown in Table 22.
  • the charging curve of the capacitor of Comparative Example K deviates from a straight line during charging.
  • the slope of the charging curve particularly when the voltage exceeds 2 V is small, and the voltage is difficult to increase. This phenomenon is presumed to be because the applied current is used for unwanted irreversible reactions such as decomposition of the electrolyte.
  • the charge / discharge efficiency of the capacitor of Comparative Example K is inferior.
  • the charging curve of the capacitor of Example S is a straight line and the charge / discharge efficiency is 100%, in the capacitor of Example S, the applied current is used for irreversible reactions such as decomposition of the electrolyte. Therefore, it can be considered that the capacitor works as a capacitor capacity, and it can be said that the capacitor of Example S operates stably.
  • the capacitor of Example S operated suitably at each potential.
  • the capacitor of Example S was suitably operated even at the charging potential of 4V. From the results of Table 22, it can be seen that the discharge capacity of the capacitor of Example S suitably increases as the charging potential increases.
  • Example T The lithium ion capacitor of the present invention was manufactured as follows.
  • the negative electrode was manufactured as follows.
  • Natural graphite, polyvinylidene fluoride, and N-methyl-2-pyrrolidone were added and mixed to prepare a slurry-like negative electrode mixture.
  • This slurry-like negative electrode mixture was applied to the surface of an electrolytic copper foil (current collector) having a thickness of 20 ⁇ m using a doctor blade, thereby forming a negative electrode active material layer on the copper foil. Then, it dried at 80 degreeC for 20 minute (s), and the organic solvent was volatilized and removed from the negative electrode active material layer. After drying, the current collector and the negative electrode active material layer were firmly and closely joined with a roll press. This was vacuum-dried at 120 ° C. for 6 hours to form a negative electrode having a negative electrode active material layer weight per unit area of 0.9 mg / cm 2 and a density of 0.5 g / cm 3 .
  • a cell was produced with the negative electrode, the electrolyte solution of Example 15, a cellulose nonwoven fabric having a thickness of 20 ⁇ m, and the same positive electrode as the positive electrode of the capacitor of Example R, and this cell was designated as the lithium ion capacitor of Example T. .
  • Example 22 The lithium ion capacitor of Example T was tested as follows. The capacitor was charged and discharged at a current density of 20 mA / g and a cut-off voltage of 0 to 1 V until the charge / discharge curve was stabilized. The capacitor charged and discharged is charged to 4.5 V at a current density of 20 mA / g, held for 2 hours at a voltage of 4.5 V, and then discharged to 2.5 V at a current density of 20 mA / g. Charging / discharging was performed several times until the charging / discharging curve of the capacitor was stabilized. The last charge / discharge curve is shown in FIG.
  • the lithium ion capacitor of Example T uses graphite for the negative electrode and uses the electrolytic solution of the present invention containing a lithium salt at a high concentration.
  • a lithium ion capacitor using graphite as a negative electrode is required to be previously doped with lithium ions in order to lower the negative electrode potential.
  • the lithium ion capacitor of Example T using the electrolytic solution of the present invention stably operated as a lithium ion capacitor at a high potential, even though the negative graphite was not pre-doped with lithium ions.
  • the lithium ion capacitor is operated at a high potential in an environment using the electrolytic solution of the present invention in which lithium ions are present in a large excess in comparison with the conventional electrolytic solution. It can be said that the graphite of the negative electrode is gradually doped. That is, the lithium ion capacitor of the present invention has the advantage that lithium pre-doping from outside the system is unnecessary. In addition, as shown in the following Example U, the lithium ion capacitor of the present invention can be manufactured even by performing lithium pre-doping performed in a normal lithium ion capacitor.
  • the lithium ions in the electrolytic solution of the present invention can be converted into graphite by charge / discharge without pre-doping the graphite with lithium ions. It was proved that the negative electrode potential of the capacitor was lowered to become a lithium ion capacitor.
  • graphite can insert and desorb cations and anions contained in an electrolyte depending on potential. Therefore, it is possible to provide a capacitor of the type in which anions are inserted and removed from the positive electrode, that is, a capacitor using graphite as the positive electrode.
  • the lithium ion capacitor of the present invention when lithium pre-doping is performed in a normal lithium ion capacitor can be manufactured as follows.
  • This slurry-like negative electrode mixture is applied to the surface of an electrolytic copper foil (current collector) having a thickness of 20 ⁇ m by using a doctor blade to form a negative electrode active material layer on the copper foil. Thereafter, drying is performed at 80 ° C. for 20 minutes, and the organic solvent is volatilized and removed from the negative electrode active material layer. After drying, the current collector and the negative electrode active material layer are tightly bonded tightly with a roll press. This is vacuum-dried at 120 ° C. for 6 hours to form a negative electrode having a negative electrode active material layer weight per unit area of 0.9 mg / cm 2 and a density of 0.5 g / cm 3 .
  • Metal lithium is pressure-bonded to the negative electrode active material layer of the negative electrode, and a cell is prepared with this, the electrolytic solution of Comparative Example 18, and a known carbon electrode, and a cell for lithium pre-doping is obtained.
  • the lithium pre-doping cell is charged and discharged several cycles, the cell is disassembled in a discharged state (a state where lithium is doped into the negative electrode active material), and the lithium pre-doped negative electrode is taken out.
  • a cell was prepared with a lithium pre-doped negative electrode, an electrolyte solution of Example 15 immersed in a glass filter, and the same positive electrode as the positive electrode of the capacitor of Example R above. An ion capacitor is used.

Abstract

 金属塩及び溶媒が新たな状態で存在する電解液を提供する。 本発明の電解液は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであることを特徴とする。

Description

アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ
 本発明は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタに関する。
 一般に、電池は、主な構成要素として、正極、負極及び電解液を備える。そして、電解液には、適切な電解質が適切な濃度範囲で添加されている。例えば、リチウムイオン二次電池の電解液には、LiClO、LiAsF、LiPF、LiBF、CFSOLi、(CFSONLi等のリチウム塩が電解質として添加されるのが一般的であり、そして、電解液におけるリチウム塩の濃度は、概ね1mol/Lとされるのが一般的である。
 実際に、特許文献1には、LiPFを1mol/Lの濃度で含む電解液を用いたリチウムイオン二次電池が開示されている。また、特許文献2には、(CFSONLiを1mol/Lの濃度で含む電解液を用いたリチウムイオン二次電池が開示されている。ここで、特許文献1及び2に記載されている電解液の粘度は概ね5mPa・s以下である。
 また、電池の性能を向上させる目的で、リチウム塩を含む電解液に種々の添加剤を加える研究が盛んに行われている。
 例えば、特許文献3には、LiPFを1mol/Lの濃度で含む電解液に対し、特定の添加剤を少量加えた電解液が記載されており、この電解液を用いたリチウムイオン二次電池が開示されている。また、特許文献4にも、LiPFを1mol/Lの濃度で含む電解液に対し、フェニルグリシジルエーテルを少量加えた電解液が記載されており、この電解液を用いたリチウムイオン二次電池が開示されている。ここで、特許文献3及び4に記載されている電解液の粘度も概ね5mPa・s以下である。
 また、一般に、キャパシタは静電容量により電荷を蓄え又は電荷を放出する蓄電器を意味する。キャパシタにおける、電気の充放電の作用機序は、電極への電荷の吸脱着による。この作用機序は電気化学反応を伴わないため、キャパシタの安定性は高く、また、キャパシタにおける電荷移動は早い。
 キャパシタの中には、電解液を具備するものがあり、そのようなものとして、電気二重層キャパシタが知られている。電気二重層キャパシタにおいては、電極間に電位差が生じると、正極であれば正極と電解液との界面に電解液のアニオンが層状に整列し、負極であれば負極と電解液との界面に電解液のカチオンが層状に整列する。これらの層状態は静電容量を有しており、当該状態が電気二重層キャパシタの充電状態である。
 また、電解液を具備するキャパシタとして、電気二重層キャパシタのほかに作動電圧を向上させたリチウムイオンキャパシタが知られている。リチウムイオンキャパシタは、正極が上記電気二重層キャパシタと同様の電極であり、負極がリチウムイオン二次電池の負極と同様の材料でできた電極であり、電解液が一般のリチウムイオン二次電池用電解液であるキャパシタのことを意味する。リチウムイオンキャパシタの負極は、あらかじめリチウムイオンがドープされるプレドープにより、負極の電位が低下するため、リチウムイオンキャパシタは高い電気容量を示す。
 なお、リチウムイオンキャパシタの充放電時は、負極にプレドープされたリチウムイオンの一部が可逆的に負極に対しドープ及び脱ドープ、すなわち挿入及び脱離する。つまり、リチウムイオンキャパシタの負極と電解液の間にはリチウムイオン二次電池のそれと等しい電気化学反応(電池反応)が起こっているともいえる。一方、正極と電解液の間はキャパシタ特有の電荷の吸脱着が起こっている。
 キャパシタにて使用し得る電気容量(J)は、(電極の容量)×(電圧)×(電圧)/2で決定される。上記電気容量を増大させる目的で、電極に比表面積の大きい材料を用いる手段、電解液として有機溶媒含有電解液を用いる手段などが検討されている。
 上記手段の具体例として、電極に用いる炭素材料の比表面積を増加させ、電荷の吸着サイトを増加させることにより、電極の容量を増加させようとする試みがさかんに行われている。
 また、電解液に着目した具体的な手段として、イオン液体を電解液として用いたキャパシタが特許文献5~9に開示されている。なお、特許文献10、11に開示されているように、従来のキャパシタおよびリチウムイオンキャパシタの電解液としては、プロピレンカーボネート等の溶媒に1mol/L程度の濃度でLiPFや(CNBFを溶解させた溶液が用いられるのが一般的であった。
特開2013-149477号公報 特開2013-134922号公報 特開2013-145724号公報 特開2013-137873号公報 特開2004-111294号公報 特開2008-10613号公報 国際公開第2004/019356号 国際公開第2004/027789号 国際公開第2005/076299号 特開平11-31637号公報 特開平10-27733号公報
 特許文献1~4に記載のとおり、従来、リチウムイオン二次電池に用いられる電解液においては、リチウム塩を概ね1mol/Lの濃度で含むことが技術常識となっていた。そして、特許文献3~4に記載のとおり、電解液の改善検討においては、リチウム塩とは別個の添加剤に着目して行われるのが一般的であった。
 かかる従来の技術常識に反し、本発明の一態様は、電解液中の金属塩と溶媒との関係に着目したものであり、金属塩及び溶媒が新たな状態で存在する電解液及びその製造方法を提供することを目的とする。
 従来の当業者の着目点とは異なり、本発明の一態様は電解液の密度及び濃度の関係に着目したものであり、好適な電解液群を提供することを目的とする。
 本発明の一態様は電解液自体の粘度に着目したものであり、従来採用されることの無かった粘度範囲の電解液を提供することを目的とする。
 また、イオン液体とは、イオン半径の大きなカチオンとイオン半径の大きなアニオンからなり、常温で液体状態のものである。イオン液体からなる電解液は、その構成がイオンのみとなるため、同容量の電解液と比較した場合、イオン液体からなる電解液のイオン濃度は高い。そのため、イオン液体からなる電解液を具備したキャパシタの電気容量は、イオン液体のイオン半径が大きいにも関わらず、電解液のイオン濃度が高いため、従来の電解液を具備したキャパシタの電気容量と比較して、遜色がない。
 しかしながら、イオン液体からなる電解液を具備したキャパシタの電気容量にも限界があった。そこで、キャパシタの電気容量を向上させ得る新しい手段について模索されていた。
 本発明の一態様は、かかる事情に鑑みてなされたものであり、金属塩及び溶媒が新たな状態で存在する電解液を具備するキャパシタを提供することを目的とする。
 本発明者は数多くの試行錯誤を重ねながら鋭意検討を行った。そして、本発明者は、電解質としてのリチウム塩を通常以上添加した電解液が技術常識に反して溶液状態を維持することを発見した。そして、本発明者は、そのような電解液が電池の電解液として好適に作用することを知見した。さらに、本発明者が上記電解液の分析を行ったところ、IRスペクトル又はラマンスペクトルで観察されるピークにおいて特定の関係を示す電解液が、電池の電解液として特に有利であることを見出し、本発明の一態様を完成するに至った。
 本発明の一態様の電解液は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、電解液の振動分光スペクトルにおける有機溶媒由来のピーク強度につき、有機溶媒本来のピークの強度をIoとし、有機溶媒本来のピークがシフトしたピークの強度をIsとした場合、Is>Ioであることを特徴とする。
 本発明の一態様の電解液の製造方法は、ヘテロ元素を有する有機溶媒と、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩とを混合し、当該塩を溶解して、第1電解液を調製する第1溶解工程と、撹拌及び/又は加温条件下、前記第1電解液に前記塩を加え、前記塩を溶解し、過飽和状態の第2電解液を調製する第2溶解工程と、撹拌及び/又は加温条件下、前記第2電解液に前記塩を加え、前記塩を溶解し、第3電解液を調製する第3溶解工程を含むことを特徴とする。
 本発明者は、従来の技術常識にとらわれることなく、数多くの試行錯誤を重ねながら鋭意検討を行った。その結果、本発明者は、金属塩と有機溶媒からなる電解液のうち好適なもの、特にリチウムイオン二次電池の電解液として好適なものを多数見出した。ここで、本発明者は、好適な電解液と従来の電解液との関係について、金属塩の種類及び有機溶媒の種類に依存せず、金属塩濃度に依存する一義的な法則を見出そうと試みたが、この試みは失敗に終わった。すなわち、金属塩の種類及び有機溶媒の種類に依存しない金属塩濃度に関する線形性は見いだせなかった。そこで、本発明者はさらなる検討を重ねたところ、意外にも、密度と濃度に特定の関係がある電解液の群が、従来の電解液と比較して、電池の電解液として好適に作用することを見出し、本発明の一態様を完成するに至った。
 本発明の一態様の電解液は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、電解液の密度d(g/cm)を電解液の塩濃度c(mol/L)で除したd/cが0.15≦d/c≦0.71であることを特徴とする。
 上述のとおり、本発明者は、特定のリチウム塩を通常以上添加した電解液が溶液状態を維持することを発見した。そして、本発明者は、そのような電解液が従来の電解液と比較して高粘度であり、かつイオン伝導性を示すことを知見した。さらに、本発明者が上記電解液の分析を行ったところ、粘度とイオン伝導度において特定の関係を示す電解液が、電池の電解液として特に有利であることを見出し、本発明の一態様を完成するに至った。
 本発明の一態様の電解液は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、電解液の粘度η(mPa・s)が10<η<500であり、かつ、電解液のイオン伝導度σ(mS/cm)が1≦σであることを特徴とする。
 上述のとおり、本発明者は、電解質としてのリチウム塩を通常以上添加した電解液が技術常識に反して溶液状態を維持することを発見した。そして、本発明者は、そのような電解液がキャパシタの電解液として好適に作用することを知見した。さらに、本発明者が上記電解液の分析を行ったところ、IRスペクトル又はラマンスペクトルで観察されるピークにおいて特定の関係を示す電解液が、キャパシタの電解液として特に有利であることを見出し、本発明の一態様を完成するに至った。
 本発明のキャパシタは、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液を具備するキャパシタであって、前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであることを特徴とする。
 本発明の各態様の新規な電解液は、種々の電池特性を向上できる。また、本発明の新規なキャパシタは、好適な電気容量を示す。
実施例4の電解液のIRスペクトルである。 実施例3の電解液のIRスペクトルである。 実施例14の電解液のIRスペクトルである。 実施例13の電解液のIRスペクトルである。 実施例11の電解液のIRスペクトルである。 比較例7の電解液のIRスペクトルである。 比較例14の電解液のIRスペクトルである。 アセトニトリルのIRスペクトルである。 (CFSONLiのIRスペクトルである。 (FSONLiのIRスペクトルである(2100~2400cm-1)。 実施例15の電解液のIRスペクトルである。 実施例16の電解液のIRスペクトルである。 実施例17の電解液のIRスペクトルである。 実施例18の電解液のIRスペクトルである。 実施例19の電解液のIRスペクトルである。 比較例15の電解液のIRスペクトルである。 ジメチルカーボネートのIRスペクトルである。 実施例20の電解液のIRスペクトルである。 実施例21の電解液のIRスペクトルである。 実施例22の電解液のIRスペクトルである。 比較例16の電解液のIRスペクトルである。 エチルメチルカーボネートのIRスペクトルである。 実施例23の電解液のIRスペクトルである。 実施例24の電解液のIRスペクトルである。 実施例25の電解液のIRスペクトルである。 比較例17の電解液のIRスペクトルである。 ジエチルカーボネートのIRスペクトルである。 (FSONLiのIRスペクトルである(1900~1600cm-1)。 実施例26の電解液のIRスペクトルである。 実施例27の電解液のIRスペクトルである。 実施例12の電解液のラマンスペクトルである。 実施例13の電解液のラマンスペクトルである。 比較例14の電解液のラマンスペクトルである。 実施例15の電解液のラマンスペクトルである。 実施例17の電解液のラマンスペクトルである。 実施例19の電解液のラマンスペクトルである。 比較例15の電解液のラマンスペクトルである。 評価例10の急速充放電の繰り返しに対する応答性の結果である。 評価例11における実施例Bのリチウムイオン二次電池の充電状態の正極と電解液を共存させた場合のDSCチャートである。 評価例11における比較例Bのリチウムイオン二次電池の充電状態の正極と電解液を共存させた場合のDSCチャートである。 実施例Eのハーフセルの充放電曲線である。 実施例Fのハーフセルの充放電曲線である。 実施例Gのハーフセルの充放電曲線である。 実施例Hのハーフセルの充放電曲線である。 比較例Eのハーフセルの充放電曲線である。 実施例Iのハーフセルに対する電位(3.1~4.6V)と応答電流との関係を示すグラフである。 実施例Iのハーフセルに対する電位(3.1~5.1V)と応答電流との関係を示すグラフである。 実施例Jのハーフセルに対する電位(3.1~4.6V)と応答電流との関係を示すグラフである。 実施例Jのハーフセルに対する電位(3.1~5.1V)と応答電流との関係を示すグラフである。 実施例Lのハーフセルに対する電位(3.1~4.6V)と応答電流との関係を示すグラフである。 実施例Lのハーフセルに対する電位(3.1~5.1V)と応答電流との関係を示すグラフである。 実施例Mのハーフセルに対する電位(3.1~4.6V)と応答電流との関係を示すグラフである。 実施例Mのハーフセルに対する電位(3.1~5.1V)と応答電流との関係を示すグラフである。 比較例Fのハーフセルに対する電位(3.1~4.6V)と応答電流との関係を示すグラフである。 実施例Jのハーフセルに対する電位(3.0~4.5V)と応答電流との関係を示すグラフである。 実施例Jのハーフセルに対する電位(3.0~5.0V)と応答電流との関係を示すグラフである。 実施例Kのハーフセルに対する電位(3.0~4.5V)と応答電流との関係を示すグラフである。 実施例Kのハーフセルに対する電位(3.0~5.0V)と応答電流との関係を示すグラフである。 比較例Gのハーフセルに対する電位(3.0~4.5V)と応答電流との関係を示すグラフである。 比較例Gのハーフセルに対する電位(3.0~5.0V)と応答電流との関係を示すグラフである。 各電流レートにおける、実施例Nのリチウムイオン二次電池の電圧カーブを示すグラフである。 各電流レートにおける、比較例Hのリチウムイオン二次電池の電圧カーブを示すグラフである。 評価例18における、電池の複素インピーダンス平面プロットである。 実施例R及び比較例Jのキャパシタの充放電曲線である。 実施例S及び比較例Kのキャパシタの充放電曲線である。 Cut-off電圧0~2Vでの実施例Sのキャパシタの充放電曲線である。 Cut-off電圧0~2.5Vでの実施例Sのキャパシタの充放電曲線である。 Cut-off電圧0~3Vでの実施例Sのキャパシタの充放電曲線である。 各Cut-off電圧での実施例Sのキャパシタの放電曲線である。 実施例Tのリチウムイオンキャパシタの充放電曲線である。
 以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。
 本発明の一態様の電解液は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、電解液の振動分光スペクトルにおける有機溶媒由来のピーク強度につき、有機溶媒本来のピーク波数におけるピークの強度をIoとし、有機溶媒本来のピークが波数シフトしたピークの強度をIsとした場合、Is>Ioであることを特徴とする。
 なお、従来の電解液は、IsとIoとの関係がIs<Ioである。
 本発明の一態様の電解液は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、電解液の密度d(g/cm)を電解液の塩濃度c(mol/L)で除したd/cが0.15≦d/c≦0.71であることを特徴とする。
 なお、従来の一般的な電解液は、上記の各関係を満足しない。
 本発明の一態様の電解液は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、電解液の粘度η(mPa・s)が10<η<500であり、かつ、電解液のイオン伝導度σ(mS/cm)が1≦σであることを特徴とする。
 本発明のキャパシタは、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液を具備するキャパシタであって、前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピーク波数におけるピークの強度をIoとし、前記ピークが波数シフトしたピークの強度をIsとした場合、Is>Ioであることを特徴とする。
 以下、「アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩」を「金属塩」又は単に「塩」ということがあり、本発明の各態様の電解液をまとめて「本発明の電解液」ということがある。
 金属塩は、通常、電池やキャパシタの電解液に含まれるLiClO、LiAsF、LiPF、LiBF、LiAlCl、などの電解質として用いられる化合物であれば良い。金属塩のカチオンとしては、リチウム、ナトリウム、カリウムなどのアルカリ金属、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属、及びアルミニウムを挙げることができる。金属塩のカチオンは、電解液を使用する電池の電荷担体と同一の金属イオンであるのが好ましい。例えば、本発明の電解液をリチウムイオン二次電池用の電解液として使用するのであれば、金属塩のカチオンはリチウムが好ましい。
 塩のアニオンの化学構造は、ハロゲン、ホウ素、窒素、酸素、硫黄又は炭素から選択される少なくとも1つの元素を含むと良い。ハロゲン又はホウ素を含むアニオンの化学構造を具体的に例示すると、ClO、PF、AsF、SbF、TaF、BF、SiF、B(C、B(oxalate)、Cl、Br、Iを挙げることができる。
 窒素、酸素、硫黄又は炭素を含むアニオンの化学構造について、以下、具体的に説明する。
 塩のアニオンの化学構造は、下記一般式(1)、一般式(2)又は一般式(3)で表される化学構造が好ましい。
 (R)(R)N            一般式(1)
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 また、RとRは、互いに結合して環を形成しても良い。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、R、R、Rは、R又はRと結合して環を形成しても良い。)
Y            一般式(2)
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、Rは、Rと結合して環を形成しても良い。
 Yは、O、Sから選択される。)
(R)(R)(R)C            一般式(3)
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 また、R、R、Rのうち、いずれか2つ又は3つが結合して環を形成しても良い。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、R、R、R、R、Rは、R、R又はRと結合して環を形成しても良い。)
 上記一般式(1)~(3)で表される化学構造における、「置換基で置換されていても良い」との文言について説明する。例えば「置換基で置換されていても良いアルキル基」であれば、アルキル基の水素の一つ若しくは複数が置換基で置換されているアルキル基、又は、特段の置換基を有さないアルキル基を意味する。
 「置換基で置換されていても良い」との文言における置換基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、不飽和シクロアルキル基、芳香族基、複素環基、ハロゲン、OH、SH、CN、SCN、OCN、ニトロ基、アルコキシ基、不飽和アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アリールオキシカルボニル基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、スルホ基、カルボキシル基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、シリル基等が挙げられる。これらの置換基はさらに置換されてもよい。また置換基が2つ以上ある場合、置換基は同一でも異なっていてもよい。
 塩のアニオンの化学構造は、下記一般式(4)、一般式(5)又は一般式(6)で表される化学構造がより好ましい。
(R)(R)N            一般式(4)
(R、Rは、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
 n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
 また、RとRは、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+e+f+g+hを満たす。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、R、R、Rは、R又はRと結合して環を形成しても良い。)
Y            一般式(5)
(Rは、CClBr(CN)(SCN)(OCN)である。
 n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、Rは、Rと結合して環を形成しても良い。
 Yは、O、Sから選択される。)
(R1010)(R1111)(R1212)C       一般式(6)
(R10、R11、R12は、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
 n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
 R10、R11、R12のうちいずれか2つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+e+f+g+hを満たす。また、R10、R11、R12の3つが結合して環を形成しても良く、その場合、3つのうち2つの基が2n=a+b+c+d+e+f+g+hを満たし、1つの基が2n-1=a+b+c+d+e+f+g+hを満たす。
 X10は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 X11は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 X12は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、R、R、R、R、Rは、R10、R11又はR12と結合して環を形成しても良い。)
 上記一般式(4)~(6)で表される化学構造における、「置換基で置換されていても良い」との文言の意味は、上記一般式(1)~(3)で説明したのと同義である。
 上記一般式(4)~(6)で表される化学構造において、nは0~6の整数が好ましく、0~4の整数がより好ましく、0~2の整数が特に好ましい。なお、上記一般式(4)~(6)で表される化学構造の、RとRが結合、又は、R10、R11、R12が結合して環を形成している場合には、nは1~8の整数が好ましく、1~7の整数がより好ましく、1~3の整数が特に好ましい。
 塩のアニオンの化学構造は、下記一般式(7)、一般式(8)又は一般式(9)で表されるものがさらに好ましい。
(R13SO)(R14SO)N         一般式(7)
(R13、R14は、それぞれ独立に、CClBrである。
 n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
 また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。)
15SO            一般式(8)
(R15は、CClBrである。
 n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。)
(R16SO)(R17SO)(R18SO)C      一般式(9)
(R16、R17、R18は、それぞれ独立に、CClBrである。
 n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
 R16、R17、R18のうちいずれか2つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+eを満たす。また、R16、R17、R18の3つが結合して環を形成しても良く、その場合、3つのうち2つの基が2n=a+b+c+d+eを満たし、1つの基が2n-1=a+b+c+d+eを満たす。)
 上記一般式(7)~(9)で表される化学構造において、nは0~6の整数が好ましく、0~4の整数がより好ましく、0~2の整数が特に好ましい。なお、上記一般式(7)~(9)で表される化学構造の、R13とR14が結合、又は、R16、R17、R18が結合して環を形成している場合には、nは1~8の整数が好ましく、1~7の整数がより好ましく、1~3の整数が特に好ましい。
 また、上記一般式(7)~(9)で表される化学構造において、a、c、d、eが0のものが好ましい。
 金属塩は、(CFSONLi(以下、「LiTFSA」ということがある。)、(FSONLi(以下、「LiFSA」ということがある。)、(CSONLi、FSO(CFSO)NLi、(SOCFCFSO)NLi、(SOCFCFCFSO)NLi、FSO(CHSO)NLi、FSO(CSO)NLi、又はFSO(CSO)NLiが特に好ましい。
 本発明の金属塩は、以上で説明したカチオンとアニオンをそれぞれ適切な数で組み合わせたものを採用すれば良い。本発明の電解液における金属塩は1種類を採用しても良いし、複数種を併用しても良い。
 ヘテロ元素を有する有機溶媒としては、ヘテロ元素が窒素、酸素、硫黄、ハロゲンから選択される少なくとも1つである有機溶媒が好ましく、ヘテロ元素が窒素又は酸素から選択される少なくとも1つである有機溶媒がより好ましい。また、ヘテロ元素を有する有機溶媒としては、NH基、NH基、OH基、SH基などのプロトン供与基を有さない、非プロトン性溶媒が好ましい。
 ヘテロ元素を有する有機溶媒(以下、単に「有機溶媒」ということがある。)を具体的に例示すると、アセトニトリル、プロピオニトリル、アクリロニトリル、マロノニトリル等のニトリル類、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,2-ジオキサン、1,3-ジオキサン、1,4-ジオキサン、2,2-ジメチル-1,3-ジオキソラン、2-メチルテトラヒドロピラン、2-メチルテトラヒドロフラン、クラウンエーテル等のエーテル類、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート類、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、イソプロピルイソシアネート、n-プロピルイソシアネート、クロロメチルイソシアネート等のイソシアネート類、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、蟻酸メチル、蟻酸エチル、酢酸ビニル、メチルアクリレート、メチルメタクリレート等のエステル類、グリシジルメチルエーテル、エポキシブタン、2-エチルオキシラン等のエポキシ類、オキサゾール、2-エチルオキサゾール、オキサゾリン、2-メチル-2-オキサゾリン等のオキサゾール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、無水酢酸、無水プロピオン酸等の酸無水物、ジメチルスルホン、スルホラン等のスルホン類、ジメチルスルホキシド等のスルホキシド類、1-ニトロプロパン、2-ニトロプロパン等のニトロ類、フラン、フルフラール等のフラン類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等の環状エステル類、チオフェン、ピリジン等の芳香族複素環類、テトラヒドロ-4-ピロン、1-メチルピロリジン、N-メチルモルフォリン等の複素環類、リン酸トリメチル、リン酸トリエチル等のリン酸エステル類を挙げることができる。
 有機溶媒として、下記一般式(10)で示される鎖状カーボネートを挙げることができる。
19OCOOR20               一般式(10)
(R19、R20は、それぞれ独立に、鎖状アルキルであるCClBr、又は、環状アルキルを化学構造に含むCClBrのいずれかから選択される。n、a、b、c、d、e、m、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
 上記一般式(10)で表される鎖状カーボネートにおいて、nは1~6の整数が好ましく、1~4の整数がより好ましく、1~2の整数が特に好ましい。mは3~8の整数が好ましく、4~7の整数がより好ましく、5~6の整数が特に好ましい。また、上記一般式(10)で表される鎖状カーボネートのうち、ジメチルカーボネート(以下、「DMC」ということがある。)、ジエチルカーボネート(以下、「DEC」ということがある。)、エチルメチルカーボネート(以下、「EMC」ということがある。)が特に好ましい。
 有機溶媒としては、比誘電率が20以上又はドナー性のエーテル酸素を有する溶媒が好ましく、そのような有機溶媒として、アセトニトリル、プロピオニトリル、アクリロニトリル、マロノニトリル等のニトリル類、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,2-ジオキサン、1,3-ジオキサン、1,4-ジオキサン、2,2-ジメチル-1,3-ジオキソラン、2-メチルテトラヒドロピラン、2-メチルテトラヒドロフラン、クラウンエーテル等のエーテル類、N,N-ジメチルホルムアミド、アセトン、ジメチルスルホキシド、スルホランを挙げることができ、特に、アセトニトリル(以下、「AN」ということがある。)、1,2-ジメトキシエタン(以下、「DME」ということがある。)が好ましい。
 これらの有機溶媒は単独で電解液に用いても良いし、複数を併用しても良い。
 参考までに、ヘテロ元素を有する有機溶媒の密度(g/cm)を表1に列挙する。
Figure JPOXMLDOC01-appb-T000001
 本発明の電解液は、その振動分光スペクトルにおいて、電解液に含まれる有機溶媒由来のピーク強度につき、有機溶媒本来のピークの強度をIoとし、有機溶媒本来のピークがシフトしたピーク(以下、「シフトピーク」ということがある。)の強度をIsとした場合、Is>Ioであることを特徴とする。すなわち、本発明の電解液を振動分光測定に供し得られる振動分光スペクトルチャートにおいて、上記2つのピーク強度の関係はIs>Ioとなる。
 ここで、「有機溶媒本来のピーク」とは、有機溶媒のみを振動分光測定した場合のピーク位置(波数)に、観察されるピークを意味する。有機溶媒本来のピークの強度Ioの値と、シフトピークの強度Isの値は、振動分光スペクトルにおける各ピークのベースラインからの高さ又は面積である。
 本発明の電解液の振動分光スペクトルにおいて、有機溶媒本来のピークがシフトしたピークが複数存在する場合には、最もIsとIoの関係を判断しやすいピークに基づいて当該関係を判断すればよい。また、本発明の電解液にヘテロ元素を有する有機溶媒を複数種用いた場合には、最もIsとIoの関係を判断しやすい(最もIsとIoの差が顕著な)有機溶媒を選択し、そのピーク強度に基づいてIsとIoの関係を判断すればよい。また、ピークのシフト量が小さく、シフト前後のピークが重なってなだらかな山のように見える場合は、既知の手段を用いてピーク分離を行い、IsとIoの関係を判断してもよい。
 なお、ヘテロ元素を有する有機溶媒を複数種用いた電解液の振動分光スペクトルにおいては、カチオンと最も配位し易い有機溶媒(以下、「優先配位溶媒」ということがある。)のピークが他に優先してシフトする。ヘテロ元素を有する有機溶媒を複数種用いた電解液において、ヘテロ元素を有する有機溶媒全体に対する優先配位溶媒の質量%は、40%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。また、ヘテロ元素を有する有機溶媒を複数種用いた電解液において、ヘテロ元素を有する有機溶媒全体に対する優先配位溶媒の体積%は、40%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。
 本発明の電解液の振動分光スペクトルにおける上記2つのピーク強度の関係は、Is>2×Ioの条件を満たすことが好ましく、Is>3×Ioの条件を満たすことがより好ましく、Is>5×Ioの条件を満たすことがさらに好ましく、Is>7×Ioの条件を満たすことが特に好ましい。最も好ましいのは、本発明の電解液の振動分光スペクトルにおいて、有機溶媒本来のピークの強度Ioが観察されず、シフトピークの強度Isが観察される電解液である。当該電解液においては、電解液に含まれる有機溶媒の分子すべてが金属塩と完全に溶媒和していることを意味する。本発明の電解液は、電解液に含まれる有機溶媒の分子すべてが金属塩と完全に溶媒和している状態(Io=0の状態)が最も好ましい。
 本発明の電解液においては、金属塩と、ヘテロ元素を有する有機溶媒(又は優先配位溶媒)が、相互作用を及ぼしていると推定される。具体的には、金属塩と、ヘテロ元素を有する有機溶媒(又は優先配位溶媒)のヘテロ元素とが、配位結合を形成し、金属塩とヘテロ元素を有する有機溶媒(又は優先配位溶媒)からなる安定なクラスターを形成していると推定される。このクラスターは、後述する実施例の結果からみて、概ね、金属塩1分子に対し、ヘテロ元素を有する有機溶媒(又は優先配位溶媒)2分子が配位することにより形成されていると推定される。この点を考慮すると、本発明の電解液における、金属塩1モルに対するヘテロ元素を有する有機溶媒(又は優先配位溶媒)のモル範囲は、1.4モル以上3.5モル未満が好ましく、1.5モル以上3.1モル以下がより好ましく、1.6モル以上3モル以下がさらに好ましい。
 また、キャパシタの電解液は、理論上、塩濃度が高いほうが高容量となる。これらの点を考慮すると、本発明の電解液における、金属塩1モルに対するヘテロ元素を有する有機溶媒(又は優先配位溶媒)のモル範囲は、3.5モル未満が好ましく、3.1モル以下がより好ましく、3モル以下がさらに好ましい。 キャパシタの電解液は塩濃度が高いほうが好ましいことは上述したとおりだが、本発明の電解液における、金属塩1モルに対するヘテロ元素を有する有機溶媒(又は優先配位溶媒)のモル範囲の下限を敢えて述べると、例えば1.1モル以上、1.4モル以上、1.5モル以上、1.6モル以上を挙げることができる。
 本発明の電解液においては、概ね、金属塩1分子に対し、ヘテロ元素を有する有機溶媒(又は優先配位溶媒)2分子が配位することによりクラスター形成されていると推定されるため、本発明の電解液の濃度(mol/L)は、金属塩及び有機溶媒それぞれの分子量と、溶液にした場合の密度に依存する。そのため、本発明の電解液の濃度を一概に規定することは適当でない。
 本発明の電解液の濃度(mol/L)を表2に個別に例示する。
Figure JPOXMLDOC01-appb-T000002
 クラスターを形成している有機溶媒と、クラスターの形成に関与していない有機溶媒とは、それぞれの存在環境が異なる。そのため、振動分光測定において、クラスターを形成している有機溶媒由来のピークは、クラスターの形成に関与していない有機溶媒由来のピーク(有機溶媒本来のピーク)の観察される波数から、高波数側又は低波数側にシフトして観察される。すなわち、シフトピークは、クラスターを形成している有機溶媒のピークに相当する。
 振動分光スペクトルとしては、IRスペクトル又はラマンスペクトルを挙げることができる。IR測定の測定方法としては、ヌジョール法、液膜法などの透過測定方法、ATR法などの反射測定方法を挙げることができる。IRスペクトル又はラマンスペクトルのいずれを選択するかについては、本発明の電解液の振動分光スペクトルにおいて、IsとIoの関係を判断しやすいスペクトルの方を選択すれば良い。なお、振動分光測定は、大気中の水分の影響を軽減又は無視できる条件で行うのがよい。例えば、ドライルーム、グローブボックスなどの低湿度又は無湿度条件下でIR測定を行うこと、又は、電解液を密閉容器に入れたままの状態でラマン測定を行うのがよい。
 ここで、金属塩としてLiTFSA、有機溶媒としてアセトニトリルを含む本発明の電解液におけるピークにつき、具体的に説明する。
 アセトニトリルのみをIR測定した場合、C及びN間の三重結合の伸縮振動に由来するピークが通常2100~2400cm-1付近に観察される。
 ここで、従来の技術常識に従い、アセトニトリル溶媒に対しLiTFSAを1mol/Lの濃度で溶解して電解液とした場合を想定する。アセトニトリル1Lは約19molに該当するので、従来の電解液1Lには、1molのLiTFSAと19molのアセトニトリルが存在する。そうすると、従来の電解液においては、LiTFSAと溶媒和している(Liに配位している)アセトニトリルと同時に、LiTFSAと溶媒和していない(Liに配位していない)アセトニトリルが多数存在する。さて、LiTFSAと溶媒和しているアセトニトリル分子と、LiTFSAと溶媒和していないアセトニトリル分子とは、アセトニトリル分子の置かれている環境が異なるので、IRスペクトルにおいては、両者のアセトニトリルピークが区別して観察される。より具体的には、LiTFSAと溶媒和していないアセトニトリルのピークは、アセトニトリルのみをIR測定した場合と同様の位置(波数)に観察されるが、他方、LiTFSAと溶媒和しているアセトニトリルのピークは、ピーク位置(波数)が高波数側にシフトして観察される。
 そして、従来の電解液の濃度においては、LiTFSAと溶媒和していないアセトニトリルが多数存在するのであるから、従来の電解液の振動分光スペクトルにおいて、アセトニトリル本来のピークの強度Ioと、アセトニトリル本来のピークがシフトしたピークの強度Isとの関係は、Is<Ioとなる。
 他方、本発明の電解液は従来の電解液と比較してLiTFSAの濃度が高く、かつ、電解液においてLiTFSAと溶媒和している(クラスターを形成している)アセトニトリル分子の数が、LiTFSAと溶媒和していないアセトニトリル分子の数よりも多い。そうすると、本発明の電解液の振動分光スペクトルにおける、アセトニトリル本来のピークの強度Ioと、アセトニトリル本来のピークがシフトしたピークの強度Isとの関係は、Is>Ioとなる。
 表3に、本発明の電解液の振動分光スペクトルにおいて、Io及びIsの算出に有用と考えられる有機溶媒の波数と、その帰属を例示する。なお、振動分光スペクトルの測定装置、測定環境、測定条件に因って、観察されるピークの波数が以下の波数と異なる場合があることを付け加えておく。
Figure JPOXMLDOC01-appb-T000003
 有機溶媒の波数とその帰属につき、公知のデータを参考としてもよい。参考文献として、日本分光学会測定法シリーズ17 ラマン分光法、濱口宏夫、平川暁子、学会出版センター、231~249頁を挙げる。また、コンピュータを用いた計算でも、Io及びIsの算出に有用と考えられる有機溶媒の波数と、有機溶媒と金属塩が配位した場合の波数シフトを予測することができる。例えば、Gaussian09(登録商標、ガウシアン社)を用い、密度汎関数をB3LYP、基底関数を6-311G++(d,p)として計算すればよい。当業者は、表3の記載、公知のデータ、コンピュータでの計算結果を参考にして、有機溶媒のピークを選定し、Io及びIsを算出することができる。
 本発明の電解液における密度d(g/cm)は、20℃での密度を意味する。密度d(g/cm)は好ましくはd≧1.2又はd≦2.2であり、1.2≦d≦2.2の範囲内がより好ましく、1.24≦d≦2.0の範囲内がより好ましく、1.26≦d≦1.8の範囲内がさらに好ましく、1.27≦d≦1.6の範囲内が特に好ましい。
 本発明の電解液におけるd/cは0.15≦d/c≦0.71であり、0.15≦d/c≦0.56の範囲内が好ましく、0.25≦d/c≦0.56の範囲内がより好ましく、0.26≦d/c≦0.50の範囲内がさらに好ましく、0.27≦d/c≦0.47の範囲内が特に好ましい。
 本発明の電解液におけるd/cは、金属塩と有機溶媒を特定した場合でも規定することができる。例えば、金属塩としてLiTFSA、有機溶媒としてDMEを選択した場合には、d/cは0.42≦d/c≦0.56の範囲内が好ましく、0.44≦d/c≦0.52の範囲内がより好ましい。金属塩としてLiTFSA、有機溶媒としてANを選択した場合には、d/cは0.35≦d/c≦0.41の範囲内が好ましく、0.36≦d/c≦0.39の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてDMEを選択した場合には、d/cは0.32≦d/c≦0.46の範囲内が好ましく、0.34≦d/c≦0.42の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてANを選択した場合には、d/cは0.25≦d/c≦0.31の範囲内が好ましく、0.26≦d/c≦0.29の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてDMCを選択した場合には、d/cは0.32≦d/c≦0.48の範囲内が好ましく、0.32≦d/c≦0.46の範囲内がより好ましく、0.34≦d/c≦0.42の範囲内がさらに好ましい。金属塩としてLiFSA、有機溶媒としてEMCを選択した場合には、d/cは0.34≦d/c≦0.50の範囲内が好ましく、0.37≦d/c≦0.45の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてDECを選択した場合には、d/cは0.36≦d/c≦0.54の範囲内が好ましく、0.39≦d/c≦0.48の範囲内がより好ましい。
 本発明の電解液は、従来の電解液と比較して、金属塩と有機溶媒の存在環境が異なり、かつ、金属塩濃度又は密度が高いため、電解液中の金属イオン輸送速度の向上(特に、金属がリチウムの場合、リチウム輸率の向上)、電極と電解液界面の反応速度の向上、電池のハイレート充放電時に起こる電解液の塩濃度の偏在の緩和、電気二重層容量の増大などが期待できる。さらに、本発明の電解液においては、ヘテロ元素を有する有機溶媒の大半が金属塩とクラスターを形成していること又は密度が高いことから、電解液に含まれる有機溶媒の蒸気圧が低くなる。その結果として、本発明の電解液からの有機溶媒の揮発が低減できる。
 キャパシタは電池に比べ体積エネルギー密度が小さい。一般的に、キャパシタの電気容量を増加するには、キャパシタの電極の吸着部位を増やし、イオンの絶対量を増加することが行われる。しかし、電極の吸着部位及び電解液を増加させると、電池の体積が増加し、電池自身が大きくなってしまう。
 上述のように、本発明の電解液は、従来の電解液と比較して金属塩濃度が高い。よって、本発明の電解液を具備する本発明のキャパシタは、従来の電解液を具備するキャパシタと比較して、電極と電解液との界面に整列できるイオンの絶対量が多い。そうすると、本発明のキャパシタの電気容量は、従来の電解液を具備したキャパシタの電気容量と比較して向上する。
 本発明の電解液においては、金属塩と有機溶媒の存在環境が特異的なクラスターが形成されている。ここで、一般的なイオン液体を構成するイオン半径の大きなカチオン及びアニオンと比較して、本発明の電解液のクラスターの半径は小さいと推定される。そうすると、電極と電解液との界面に整列できるイオンの絶対量が増加するため、本発明のキャパシタの電気容量は、従来の電解液、又は、イオン液体からなる電解液を具備したキャパシタの電気容量と比較して向上する。
 また、本発明の電解液は陽イオンが金属イオンであるので、本発明のキャパシタの負極に金属イオンを挿入脱離して酸化還元反応を行うことができる炭素などの材料を使用する事で、負極はイオンを挿入した状態の電位となりえるので、キャパシタの電圧を向上させることが出来る。たとえば、陽イオンとしてリチウムを用いた塩からなる電解液を用いると、電極構成を変更する事で電気二重層キャパシタにもなり、リチウムイオンキャパシタにもなる。特に、リチウムイオンキャパシタは電圧的なメリットを有しており、キャパシタの高エネルギー化を担う一方向となっている。一般に、リチウムイオンキャパシタはリチウムを含む電解液を備える事が必要であるが、通常の電気二重層キャパシタに用いられる電解液はリチウムを含んでいないため使用できない。そのため、リチウムイオンキャパシタの電解液として、リチウムイオン二次電池用電解液を使用している。しかし、カチオンがリチウムである本発明の電解液は、リチウムを含んでいる為、電気二重層キャパシタだけでなくリチウムイオンキャパシタにも適用が出来る。なお、リチウムイオンキャパシタとする場合には、より性能を発揮する為に、あらかじめリチウムイオンを電極にドープする行程を必要とする。ドープ工程としては、電極に金属リチウムを貼り付け、金属リチウムを電解液に浸漬し溶解することでドープしても良いし、特許第4732072号に開示されるように、開口した集電体を用いた捲回型リチウムイオンキャパシタの外周部と中心部に金属リチウムを配置して、充電作業を行うことによりドープしても良い。またJ. Electrochem. Soc. 2012, Volume 159, Issue 8, Pages A1329-A1334.に開示されるように、過剰リチウムを含む遷移金属酸化物を正極中にあらかじめ添加し、充電を行う事でリチウムのドープを行っても良い。過剰リチウムを含む遷移金属酸化物は構造内にリチウムの占める割合が大きいため、当該遷移金属酸化物がリチウムをほぼ放出し終わると、遷移金属酸化物の粒子形状は微粉化される。当該微粉化された粒子形状の遷移金属酸化物は、活性炭に比べてリチウム吸着量は低いものの、リチウム吸着容量を示す。そのため、リチウムイオンキャパシタの正極に添加した過剰リチウムを含む遷移金属酸化物に導電処理を行うことで、リチウム放出後の遷移金属酸化物を正極の吸着サイトとする事が出来る。リチウム過剰の遷移金属酸化物は、一般の電極に用いられる炭素に比べて表面積は小さいが密度は高い為、体積エネルギー的に有利に働く可能性がある。
 また、本発明の電解液の粘度は、従来の電解液の粘度と比較して高い。このため、本発明の電解液を用いた電池又はキャパシタであれば、仮に電池又はキャパシタが破損したとしても、電解液漏れが抑制される。また、従来の電解液を用いたリチウムイオン二次電池は、高速充放電サイクル時に容量減少が顕著であった。その理由の一つとして、急速に充放電を繰り返した際の電解液中に生じたLi濃度ムラに因り、電極との反応界面に十分な量のLiを電解液が供給できなくなったこと、つまり、電解液のLi濃度の偏在が考えられる。しかしながら、本発明の電解液の金属濃度は、従来の電解液に対して高い。例えば本発明の電解液の好ましいLi濃度は、一般的な電解液のLi濃度の2~5倍程度である。このようにLiを高濃度で含む本発明の電解液においては、Liの偏在が軽減されると考えられ、その結果、高速充放電サイクル時の容量低下が抑制されると考えられる。さらに、本発明の電解液の高粘度、高イオン伝導、高カチオン輸送との物性により、電解液のLi濃度の偏在を抑制できたことが、上記容量低下抑制の理由と考えられる。また、本発明の電解液が高粘度であることにより、電極界面における電解液の保液性が向上し、電極界面で電解液が不足する状態(いわゆる液枯れ状態)を抑制することも、高速充放電サイクル時の容量低下が抑制された一因と考えられる。
 本発明の電解液の粘度η(mPa・s)について述べると、10<η<500の範囲が好ましく、12<η<400の範囲がより好ましく、15<η<300の範囲がさらに好ましく、18<η<150の範囲が特に好ましく、20<η<140の範囲が最も好ましい。
 また、電解液のイオン伝導度σ(mS/cm)は高ければ高いほど、電解液中でイオンが移動し易い。このため、このような電解液は優れた電池の電解液となり得る。本発明の電解液のイオン伝導度σ(mS/cm)について述べると、1≦σであるのが好ましい。本発明の電解液のイオン伝導度σ(mS/cm)につき、あえて、上限を含めた好適な範囲を示すと、2<σ<200の範囲が好ましく、3<σ<100の範囲がより好ましく、4<σ<50の範囲がさらに好ましく、5<σ<35の範囲が特に好ましい。
 また、本発明の電解液は、好適なカチオン輸率(本発明の電解液の金属がリチウムの場合、リチウム輸率)を示す。好ましいカチオン輸率を示すと、0.4以上が好ましく、0.45以上がより好ましい。
 ところで、本発明の電解液は金属塩のカチオンを高濃度で含有する。このため、本発明の電解液中において、隣り合うカチオン間の距離は極めて近い。そして、二次電池の充放電時にリチウムイオン等のカチオンが正極と負極との間を移動する際には、移動先の電極に直近のカチオンが先ず当該電極に供給される。そして、供給された当該カチオンがあった場所には、当該カチオンに隣り合う他のカチオンが移動する。つまり、本発明の電解液中においては、隣り合うカチオンが供給対象となる電極に向けて順番に一つずつ位置を変えるという、ドミノ倒し様の現象が生じていると予想される。このため、充放電時のカチオンの移動距離は短く、その分だけカチオンの移動速度が高いと考えられる。そして、このことに起因して、本発明の電解液を有する二次電池の反応速度は高いと考えられる。
 本発明の電解液の製造方法を説明する。本発明の電解液は従来の電解液と比較して金属塩の含有量が多い又は密度の値が高いため、固体(粉体)の金属塩に有機溶媒を加える製造方法では凝集体が得られてしまい、溶液状態の電解液を製造するのが困難である。よって、本発明の電解液の製造方法においては、有機溶媒に対し金属塩を徐々に加え、かつ、電解液の溶液状態を維持しながら製造することが好ましい。
 金属塩と有機溶媒の種類に因り、本発明の電解液は、従来考えられてきた飽和溶解度を超えて金属塩が有機溶媒に溶解している液体を包含する。そのような本発明の電解液の製造方法は、ヘテロ元素を有する有機溶媒と金属塩とを混合し、金属塩を溶解して、第1電解液を調製する第1溶解工程と、撹拌及び/又は加温条件下、前記第1電解液に前記金属塩を加え、前記金属塩を溶解し、過飽和状態の第2電解液を調製する第2溶解工程と、撹拌及び/又は加温条件下、前記第2電解液に前記金属塩を加え、前記金属塩を溶解し、第3電解液を調製する第3溶解工程を含む。
 ここで、上記「過飽和状態」とは、撹拌及び/又は加温条件を解除した場合、又は、振動等の結晶核生成エネルギーを与えた場合に、電解液から金属塩結晶が析出する状態のことを意味する。第2電解液は「過飽和状態」であり、第1電解液及び第3電解液は「過飽和状態」でない。
 換言すると、本発明の電解液の上記製造方法は、熱力学的に安定な液体状態であり従来の金属塩濃度を包含する第1電解液を経て、熱力学的に不安定な液体状態の第2電解液を経由し、そして、熱力学的に安定な新たな液体状態の第3電解液、すなわち本発明の電解液となる。
 安定な液体状態の第3電解液は通常の条件で液体状態を保つことから、第3電解液においては、例えば、リチウム塩1分子に対し有機溶媒2分子で構成されこれらの分子間の強い配位結合によって安定化されたクラスターがリチウム塩の結晶化を阻害していると推定される。
 第1溶解工程は、ヘテロ原子を有する有機溶媒と金属塩とを混合し、金属塩を溶解して、第1電解液を調製する工程である。
 第1溶解工程は、撹拌及び/又は加温条件下で行われるのが好ましい。ミキサー等の撹拌器を伴った撹拌装置で第1溶解工程を行うことにより、撹拌条件下としても良いし、撹拌子と撹拌子を動作させる装置(スターラー)を用いて第1溶解工程を行うことにより、撹拌条件下としても良い。撹拌速度については適宜設定すればよい。加温条件については、ウォーターバス又はオイルバスなどの恒温槽で適宜制御するのが好ましい。金属塩の溶解時には溶解熱が発生するので、熱に不安定な金属塩を用いる場合には、溶液温度が金属塩の分解温度に達しないように温度条件を厳密に制御することが好ましい。また、あらかじめ、冷却しておいた有機溶媒を使用しても良いし、第1溶解工程を冷却条件下で行ってもよい。ヘテロ原子を有する有機溶媒と金属塩とを混合するためには、ヘテロ原子を有する有機溶媒に対し金属塩を加えても良いし、金属塩に対しヘテロ原子を有する有機溶媒を加えても良い。金属塩の溶解熱の発生を考慮すると、熱に不安定な金属塩を用いる場合には、ヘテロ原子を有する有機溶媒に対し金属塩を徐々に加える方法が好ましい。
 第1溶解工程と第2溶解工程は連続して実施しても良いし、第1溶解工程で得た第1電解液を一旦保管(静置)しておき、一定時間経過した後に、第2溶解工程を実施しても良い。
 第2溶解工程は、撹拌及び/又は加温条件下、第1電解液に金属塩を加え、金属塩を溶解し、過飽和状態の第2電解液を調製する工程である。
 第2溶解工程は、熱力学的に不安定な過飽和状態の第2電解液を調製するため、撹拌及び/又は加温条件下で行うことが必須である。ミキサー等の撹拌器を伴った撹拌装置で第2溶解工程を行うことにより、撹拌条件下としても良いし、撹拌子と撹拌子を動作させる装置(スターラー)を用いて第2溶解工程を行うことにより、撹拌条件下としても良い。加温条件については、ウォーターバス又はオイルバスなどの恒温槽で適宜制御するのが好ましい。もちろん、撹拌機能と加温機能を併せ持つ装置又はシステムを用いて第2溶解工程を行うことが特に好ましい。なお、本発明の電解液の製造方法でいう加温とは、対象物を常温(25℃)以上の温度に温めることを指す。加温温度は30℃以上であるのがより好ましく、35℃以上であるのがさらに好ましい。また、加温温度は、有機溶媒の沸点よりも低い温度であるのが良い。
 第2溶解工程において、加えた金属塩が十分に溶解しない場合には、撹拌速度の増加及び/又はさらなる加温を実施する。また、加えた金属塩が十分に溶解しない場合には、第2溶解工程の電解液にヘテロ原子を有する有機溶媒を少量加えて、金属塩の溶解を促してもよい。さらに、第2溶解工程を加圧条件下としても良い。
 第2溶解工程で得た第2電解液を一旦静置すると金属塩の結晶が析出してしまうので、第2溶解工程と第3溶解工程は連続して実施するのが好ましい。
 第3溶解工程は、撹拌及び/又は加温条件下、第2電解液に金属塩を加え、金属塩を溶解し、第3電解液を調製する工程である。第3溶解工程では、過飽和状態の第2電解液に金属塩を加え、溶解する必要があるので、第2溶解工程と同様に撹拌及び/又は加温条件下で行うことが必須である。具体的な撹拌及び/又は加温条件は、第2溶解工程の条件と同様である。第2溶解工程と同様に、加えた金属塩が十分に溶解しない場合には、撹拌速度の増加及び/又はさらなる加温を実施する。また、加えた金属塩が十分に溶解しない場合には、電解液にヘテロ原子を有する有機溶媒を少量加えて、金属塩の溶解を促してもよい。さらに、第3溶解工程を加圧条件下としても良い。
 第1溶解工程、第2溶解工程及び第3溶解工程を通じて加えた有機溶媒と金属塩とのモル比が概ね2:1程度となれば、第3電解液(本発明の電解液)の製造が終了する。第3溶解工程の電解液のd/cの値が、所望の範囲となった時点で、第3電解液(本発明の電解液)の製造を終了してもよい。撹拌及び/又は加温条件を解除しても、本発明の電解液から金属塩結晶は析出しない。これらの事情からみて、本発明の電解液は、例えば、リチウム塩1分子に対し有機溶媒2分子からなり、これらの分子間の強い配位結合によって安定化されたクラスターを形成していると推定される。
 なお、本発明の電解液を製造するにあたり、金属塩と有機溶媒の種類に因り、各溶解工程での処理温度において、上記過飽和状態を経由しない場合であっても、上記第1~3溶解工程で述べた具体的な溶解手段を用いて本発明の電解液を適宜製造することができる。
 ここで、第1溶解工程の第1電解液につきIR測定またはラマン測定などの振動分光測定を行うと、その振動分光スペクトルにおいて、第1電解液に含まれる有機溶媒に由来する、有機溶媒本来のピークとシフトピークの両ピークが観察される。そして、第1電解液の振動分光スペクトルにおいては、有機溶媒本来のピーク強度がシフトピーク強度よりも大きい。
 そして、第1溶解工程~第3溶解工程と進行するに伴い、有機溶媒本来のピーク強度とシフトピーク強度との関係は変化していき、第3電解液の振動分光スペクトルにおいては、シフトピーク強度が有機溶媒本来のピーク強度よりも大きくなる。
 この現象を利用して、本発明の電解液の製造方法においては、製造途中の電解液を振動分光測定する振動分光測定工程を有するのが好ましい。本発明の電解液の製造方法に振動分光測定工程を含めることにより、電解液における金属塩と有機溶媒との配位の程度(割合)、又はIsとIoとの関係を製造途中で確認できるため、製造途中の電解液が本発明の一態様の電解液に達したのか否かを判断することができるし、また、製造途中の電解液が本発明の一態様の電解液に達していない場合にどの程度の量の金属塩を追加すれば本発明の一態様の電解液に達するのかを把握することができる。具体的な振動分光測定工程としては、例えば、製造途中の各電解液を一部サンプリングして振動分光測定に供する方法でも良いし、各電解液をin situ(その場)で振動分光測定する方法でも良い。電解液をin situで振動分光測定する方法としては、透明なフローセルに製造途中の電解液を導入して振動分光測定する方法、又は、透明な製造容器を用いて該容器外からラマン測定する方法を挙げることができる。なお、振動分光測定は、大気中の水分の影響を軽減又は無視できる条件で行うのがよい。例えば、ドライルーム、グローブボックスなどの低湿度又は無湿度条件下でIR測定を行うこと、又は、電解液を密閉容器に入れたままの状態でラマン測定を行うのがよい。
 また、本発明の電解液の製造方法においては、製造途中の電解液の密度及び濃度の値を測定する密度濃度測定工程を有するのが好ましい。具体的な測定工程としては、例えば、製造途中の各電解液を一部サンプリングして密度及び濃度測定に供する方法でも良いし、各電解液の密度及び濃度をin situ(その場)で測定する方法でも良い。
 上述の振動分光測定工程と同様に、本発明の電解液の製造方法に密度濃度測定工程を含めることにより、電解液の密度及び濃度を製造途中で確認できるため、製造途中の電解液が本発明の一態様の電解液に達したのか否かを判断することができるし、また、製造途中の電解液が本発明の一態様の電解液に達していない場合にどの程度の量の金属塩を追加すれば本発明の一態様の電解液に達するのかを把握することができる。
 また、本発明の電解液の製造方法においては、製造途中の電解液の粘度を測定する粘度測定工程を有するのが好ましい。具体的な粘度測定工程としては、例えば、製造途中の各電解液を一部サンプリングして粘度測定に供する方法でも良いし、電解液の製造装置と粘度測定装置を組み合わせて各電解液をin situ(その場)で粘度測定する方法でも良い。本発明の電解液の製造方法に粘度測定工程を含めることにより、電解液における粘度を製造途中で確認できるため、製造途中の電解液が本発明の一態様の電解液に達したのか否かを判断することができるし、また、製造途中の電解液が本発明の一態様の電解液に達していない場合にどの程度の量の金属塩を追加すれば本発明の一態様の電解液に達するのかを把握することができる。
 さらに、本発明の電解液の製造方法においては、製造途中の電解液のイオン伝導度を測定するイオン伝導度測定工程を有するのが好ましい。具体的なイオン伝導度測定工程としては、例えば、製造途中の各電解液を一部サンプリングしてイオン伝導度測定に供する方法でも良いし、電解液の製造装置とイオン伝導度測定装置を組み合わせて各電解液をin situでイオン伝導度測定する方法でも良い。本発明の電解液の製造方法にイオン伝導度測定工程を含めることにより、電解液におけるイオン伝導度を製造途中で確認できるため、製造途中の電解液が本発明の一態様の電解液に達したのか否かを判断することができるし、また、製造途中の電解液が本発明の一態様の電解液に達していない場合にどの程度の量の金属塩を追加すれば本発明の一態様の電解液に達するのかを把握することができる。
 本発明の電解液には、上記ヘテロ元素を有する有機溶媒以外に、低極性(低誘電率)または低ドナー数であって、金属塩と特段の相互作用を示さない溶媒、すなわち、本発明の電解液における上記クラスターの形成及び維持に影響を与えない溶媒を加えることができる。このような溶媒を本発明の電解液に加えることにより、本発明の電解液の上記クラスターの形成を保持したままで、電解液の粘度を低くする効果が期待できる。なお、この場合を含め、最終的に得られる電解液のd/cが変化する場合には、本発明の一態様の電解液を製造中間状態の電解液として位置付けることができる。
 金属塩と特段の相互作用を示さない溶媒としては、具体的にベンゼン、トルエン、エチルベンゼン、o-キシレン、m-キシレン、p-キシレン、1-メチルナフタレン、ヘキサン、ヘプタン、シクロヘキサンを例示することができる。
 本発明の電解液の製造方法には、上記金属塩と特段の相互作用を示さない溶媒を加える工程を追加することができる。当該工程は、第1~第3溶解工程の前後に追加しても良いし、第1~第3溶解工程の途中で行っても良い。
 また、本発明の電解液には、上記ヘテロ元素を有する有機溶媒以外に、難燃性の溶媒を加えることができる。難燃性の溶媒を本発明の電解液に加えることにより、本発明の電解液の安全度をさらに高めることができる。難燃性の溶媒としては、四塩化炭素、テトラクロロエタン、ハイドロフルオロエーテルなどのハロゲン系溶媒、リン酸トリメチル、リン酸トリエチルなどのリン酸誘導体を例示することができる。
 本発明の電解液の製造方法には、上記難燃性の溶媒を加える工程を追加することができる。当該工程は、第1~第3溶解工程の前後に追加しても良いし、第1~第3溶解工程の途中で行っても良い。
 さらに、本発明の電解液をポリマーや無機フィラーと混合し混合物とすると、当該混合物が電解液を封じ込め、擬似固体電解質となる。擬似固体電解質を電池の電解液として用いることで、電池又はキャパシタにおける電解液の液漏れを抑制することができる。
 上記ポリマーとしては、リチウムイオン二次電池などの電池に使用されるポリマーや一般的な化学架橋したポリマーを採用することができる。特に、ポリフッ化ビニリデンやポリヘキサフルオロプロピレンなど電解液を吸収しゲル化し得るポリマーや、ポリエチレンオキシドなどのポリマーにイオン導電性基を導入したものが好適である。
 具体的なポリマーとしては、ポリメチルアクリレート、ポリメチルメタクリレート、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリエチレングリコールジメタクリレート、ポリエチレングリコールアクリレート、ポリグリシドール、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリフマル酸、ポリクロトン酸、ポリアンゲリカ酸、カルボキシメチルセルロースなどのポリカルボン酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレン、ポリカーボネート、無水マレイン酸とグリコール類を共重合した不飽和ポリエステル、置換基を有するポリエチレンオキシド誘導体、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体を例示できる。また、上記ポリマーとして、上記具体的なポリマーを構成する二種類以上のモノマーを共重合させた共重合体を選択しても良い。
 上記ポリマーとして、多糖類も好適である。具体的な多糖類として、グリコーゲン、セルロース、キチン、アガロース、カラギーナン、ヘパリン、ヒアルロン酸、ペクチン、アミロペクチン、キシログルカン、アミロースを例示できる。また、これら多糖類を含む材料を上記ポリマーとして採用してもよく、当該材料として、アガロースなどの多糖類を含む寒天を例示することができる。
 上記無機フィラーとしては、酸化物や窒化物などの無機セラミックスが好ましい。
 無機セラミックスはその表面に親水性及び疎水性の官能基を有している。そのため、当該官能基が電解液を引き付けることにより、無機セラミックス内に導電性通路が形成され得る。さらに、電解液で分散した無機セラミックスは前記官能基により無機セラミックス同士のネットワークを形成し、電解液を封じ込める役割を果たし得る。無機セラミックスのこのような機能により、電池における電解液の液漏れをさらに好適に抑制することができる。無機セラミックスの上記機能を好適に発揮するために、無機セラミックスは粒子形状のものが好ましく、特にその粒子径がナノ水準のものが好ましい。
 無機セラミックスの種類としては、一般的なアルミナ、シリカ、チタニア、ジルコニア、リチウムリン酸塩などを挙げることができる。また、無機セラミックス自体にリチウム伝導性があるものでも良く、具体的には、LiN、LiI、LiI-LiN-LiOH、LiI-LiS-P、LiI-LiS-P、LiI-LiS-B、LiO-B、LiO-V-SiO、LiO-B-P、LiO-B-ZnO、LiO-Al-TiO-SiO-P、LiTi(PO、Li-βAl、LiTaOを例示することができる。
 無機フィラーとしてガラスセラミックスを採用してもよい。ガラスセラミックスはイオン性液体を封じ込めることができるので、本発明の電解液に対しても同様の効果を期待できる。ガラスセラミックスとしては、xLiS-(1-x)Pで表される化合物、並びに、当該化合物のSの一部を他の元素で置換したもの、及び、当該化合物のPの一部をゲルマニウムに置換したものを例示できる。
 本発明の電解液の製造方法には、第3電解液と、上記ポリマー及び/又は上記無機フィラーとの混合工程を追加することができる。
 以上説明した本発明の電解液は、優れたイオン伝導度を示すので、電池やキャパシタなどの蓄電装置の電解液として好適に使用される。本発明の電解液は、特に、二次電池の電解液として使用されるのが好ましく、中でもリチウムイオン二次電池の電解液として使用されるのが好ましい。また、本発明の電解液は、電気二重層キャパシタ又はリチウムイオンキャパシタの電解液として使用されるのが好ましい。
 以下に、上記本発明の電解液を用いたリチウムイオン二次電池を説明する。
 本発明のリチウムイオン二次電池は、リチウムイオンを吸蔵及び放出し得る負極活物質を有する負極と、リチウムイオンを吸蔵及び放出し得る正極活物質を有する正極と、金属塩としてリチウム塩を採用した本発明の電解液を備える。
 負極活物質としては、リチウムイオンを吸蔵及び放出し得る材料が使用可能である。したがって、リチウムイオンを吸蔵及び放出可能である単体、合金または化合物であれば特に限定はない。たとえば、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。ケイ素などを負極活物質に採用すると、ケイ素1原子が複数のリチウムと反応するため、高容量の活物質となるが、リチウムの吸蔵及び放出に伴う体積の膨張及び収縮が顕著となるとの問題が生じる恐れがあるため、当該恐れの軽減のために、ケイ素などの単体に遷移金属などの他の元素を組み合わせた合金又は化合物を負極活物質として採用するのも好適である。合金又は化合物の具体例としては、Ag-Sn合金、Cu-Sn合金、Co-Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質して、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3-xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。
 負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。
 集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。
 負極活物質層は負極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。
 結着剤は活物質及び導電助剤を集電体の表面に繋ぎ止める役割を果たすものである。
 結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を例示することができる。
 また、結着剤として、親水基を有するポリマーを採用してもよい。親水基を有するポリマーの親水基としては、カルボキシル基、スルホ基、シラノール基、アミノ基、水酸基、リン酸基などリン酸系の基などが例示される。中でも、ポリアクリル酸(PAA)、カルボキシメチルセルロース(CMC)、ポリメタクリル酸など、分子中にカルボキシル基を含むポリマー、又は、ポリ(p-スチレンスルホン酸)などのスルホ基を含むポリマーが好ましい。
 ポリアクリル酸、あるいはアクリル酸とビニルスルホン酸との共重合体など、カルボキシル基及び/又はスルホ基を多く含むポリマーは水溶性となる。したがって親水基を有するポリマーは、水溶性ポリマーであることが好ましく、一分子中に複数のカルボキシル基及び/又はスルホ基を含むポリマーが好ましい。
 分子中にカルボキシル基を含むポリマーは、例えば、酸モノマーを重合する、あるいはポリマーにカルボキシル基を付与する、などの方法で製造することができる。酸モノマーとしては、アクリル酸、メタクリル酸、ビニル安息香酸、クロトン酸、ペンテン酸、アンジェリカ酸、チグリン酸など分子中に一つのカルボキシル基をもつ酸モノマー、イタコン酸、メサコン酸、シトラコン酸、フマル酸、マレイン酸、2-ペンテン二酸、メチレンコハク酸、アリルマロン酸、イソプロピリデンコハク酸、2,4-ヘキサジエン二酸、アセチレンジカルボン酸など分子内に二つ以上のカルボキシル基をもつ酸モノマーなどが例示される。これらから選ばれる二種以上のモノマーを重合してなる共重合ポリマーを用いてもよい。
 例えば特開2013-065493号公報に記載されたような、アクリル酸とイタコン酸との共重合体からなり、カルボキシル基どうしが縮合して形成された酸無水物基を分子中に含んでいるポリマーを結着剤として用いることも好ましい。一分子中にカルボキシル基を二つ以上有する酸性度の高いモノマー由来の構造があることにより、充電時に電解液分解反応が起こる前にリチウムイオンなどをトラップし易くなると考えられている。さらに、ポリアクリル酸やポリメタクリル酸に比べてカルボキシル基が多く酸性度が高まると共に、所定量のカルボキシル基が酸無水物基に変化しているため、酸性度が高まりすぎることもない。そのため、この結着剤を用いて形成された負極をもつ二次電池は、初期効率が向上し、入出力特性が向上する。
 負極活物質層中の結着剤の配合割合は、質量比で、負極活物質:結着剤=1:0.005~1:0.3であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、及び各種金属粒子などが例示される。これらの導電助剤を単独又は二種以上組み合わせて活物質層に添加することができる。負極活物質層中の導電助剤の配合割合は、質量比で、負極活物質:導電助剤=1:0.01~1:0.5であるのが好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると負極活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。
 リチウムイオン二次電池に用いられる正極は、リチウムイオンを吸蔵及び放出し得る正極活物質を有する。正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。正極活物質層は正極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。正極の集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はなく、例えば、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。
 正極の電位をリチウム基準で4V以上とする場合には、集電体としてアルミニウムを採用するのが好ましい。
 具体的には、正極用集電体として、アルミニウムまたはアルミニウム合金からなるものを用いるのが好ましい。ここでアルミニウムは、純アルミニウムを指し、純度99.0%以上のアルミニウムを純アルミニウムと称する。純アルミニウムに種々の元素を添加して合金としたものをアルミニウム合金と称する。アルミニウム合金としては、Al-Cu系、Al-Mn系、Al-Fe系、Al-Si系、Al-Mg系、AL-Mg-Si系、Al-Zn-Mg系が挙げられる。
 また、アルミニウムまたはアルミニウム合金として、具体的には、例えばJIS A1085、A1N30等のA1000系合金(純アルミニウム系)、JIS A3003、A3004等のA3000系合金(Al-Mn系)、JIS A8079、A8021等のA8000系合金(Al-Fe系)が挙げられる。
 集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。
 正極の結着剤および導電助剤は負極で説明したものと同様である。
 正極活物質としては、層状化合物のLiNiCoMn(0.2≦a≦1.2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦2.1)、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル、及びスピネルと層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、電荷担体(例えば充放電に寄与するリチウムイオン)を含まないものを用いても良い。例えば、硫黄単体(S)、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウム等の電荷担体を含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予め電荷担体を添加しておく必要がある。電荷担体は、イオンの状態で添加しても良いし、金属等の非イオンの状態で添加しても良い。例えば、電荷担体がリチウムである場合には、リチウム箔を正極および/または負極に貼り付けるなどして一体化しても良い。
 集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、並びに必要に応じて結着剤及び導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥する。溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。
 リチウムイオン二次電池には必要に応じてセパレータが用いられる。セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。本発明の電解液は粘度がやや高く極性が高いため、水などの極性溶媒が浸み込みやすい膜が好ましい。具体的には、存在する空隙の90%以上に水などの極性溶媒が浸み込む膜がさらに好ましい。
 正極及び負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に本発明の電解液を加えてリチウムイオン二次電池とするとよい。また、本発明のリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。
 本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。
 本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。
 以下、電気二重層キャパシタ及びリチウムイオンキャパシタについて説明する。
 本発明の電気二重層キャパシタ及びリチウムイオンキャパシタは、本発明の電解液と、一対の電極と、セパレータを具備する。
 電極は、集電体と、集電体上に形成され、炭素材料を含む炭素含有層とで構成される。
 集電体は、電気の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、通常の電気二重層キャパシタ又はリチウムイオンキャパシタに用いられるものであればよく、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護膜で被覆されていても良い。
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。
 炭素含有層は、炭素材料、並びに、必要に応じて結着剤(分散剤)及び導電助剤を含む。
 炭素材料としては、通常の電気二重層キャパシタに用いられるものであればよく、種々の原料から製造した活性炭を挙げることができる。活性炭は、比表面積の大きなものが好ましい。また、ポリアセンなどの導電性高分子や2,2,6,6-テトラメチルピペリジン-N -オキシル(TEMPO)のようにアニオンの吸脱着により容量が大きくなるようなレドックスキャパシタに使われる材料であっても良い。
 ただし、リチウムイオンキャパシタの負極の炭素含有層の炭素材料は、リチウムイオンを吸蔵及び放出し得る材料である必要があるため、天然黒鉛又は人造黒鉛などの黒鉛含有材料となる。
 結着剤は炭素材料及び導電助剤を集電体の表面に繋ぎ止める役割を果たすものである。
 結着剤としては、通常の電気二重層キャパシタ又はリチウムイオンキャパシタに用いられるものであればよく、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を例示することができる。炭素含有層中の結着剤の配合割合は、質量比で、炭素材料:結着剤=1:0.005~1:0.3であるのが好ましい。
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては、通常の電気二重層キャパシタ又はリチウムイオンキャパシタに用いられるものであればよく、炭素質微粒子であるカーボンブラック、天然黒鉛、人造黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、および各種金属粒子などが例示される。これらの導電助剤を単独または二種以上組み合わせて炭素含有層に添加することができる。炭素含有層中の導電助剤の配合割合は、質量比で、炭素材料:導電助剤=1:0.01~1:0.5であるのが好ましい。
 また、リチウムイオンキャパシタの正極の炭素含有層は、リチウム酸化物、リチウム酸化物と活性炭の混合物又はカーボン被覆リチウム酸化物を含んでいてもよい。リチウム酸化物としては、LiaMO(5≦a≦6、Mは1種以上の遷移金属である。)を挙げることができ、具体的には、LiFeO、LiMnO、LiCoO等の逆蛍石型構造のリチウム酸化物を挙げることができる。これらのリチウム酸化物は、上で説明した「過剰リチウムを含む遷移金属酸化物」に該当する。過剰リチウムを含む遷移金属酸化物は、正極の炭素含有層に均一に分散されているのが好ましい。
 集電体の表面に炭素含有層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に炭素材料などを塗布すればよい。具体的には、炭素材料、及び、必要に応じて結着剤、導電助剤、リチウム酸化物と活性炭の固溶体、カーボン被覆リチウム酸化物を含む炭素含有層形成用組成物を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥する。溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。過剰リチウムを含む遷移金属酸化物を含む炭素含有層を具備する正極の好適な製造方法としては、活性炭等の炭素材料及び過剰リチウムを含む遷移金属酸化物を混合した混合物に、適当な溶剤を加えてペースト状にしてから、正極集電体の表面に塗布後、乾燥する方法を挙げることができる。
 セパレータは、一対の電極を互いに隔離し、両極の接触による電流の短絡を防止するためのものである。セパレータとしては、通常の電気二重層キャパシタ又はリチウムイオンキャパシタに用いられるものであればよく、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、ガラス繊維、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。本発明の電解液は粘度がやや高く極性が高いため、水などの極性溶媒が浸み込みやすい膜が好ましい。具体的には、存在する空隙の90%以上に水などの極性溶媒が浸み込む膜がさらに好ましい。セパレータの厚みは、5~100μmが好ましく、10~80μmがより好ましく、20~60μmが特に好ましい。
 本発明の電気二重層キャパシタ又はリチウムイオンキャパシタは、通常の電気二重層キャパシタ又はリチウムイオンキャパシタの製造方法に準じて製造すればよい。なお、本発明のリチウムイオンキャパシタの負極にリチウムイオンをプレドープするためには、一般的なリチウムイオンキャパシタのプレドープと同様に金属リチウムを用いて行えばよい。ここで、本発明のリチウムイオンキャパシタの正極の炭素含有層に、リチウム酸化物又はカーボン被覆リチウム酸化物が含まれていれば、これらのリチウム酸化物を利用して、リチウムイオンのプレドープを行うことができる。そして、リチウム酸化物又はカーボン被覆リチウム酸化物からリチウムイオンが脱着したものは、正極の活物質として機能することができる。
 本発明のキャパシタの形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。
 本発明のキャパシタは、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にキャパシタによる電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。キャパシタを搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、蓄電装置で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のキャパシタは、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、実施例及び比較例を示し、本発明を具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。以下において、特に断らない限り、「部」とは質量部を意味し、「%」とは質量%を意味する。
(実施例1)
 本発明の電解液を以下のとおり製造した。
 有機溶媒である1,2-ジメトキシエタン約5mLを、撹拌子及び温度計を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中の1,2-ジメトキシエタンに対し、リチウム塩である(CFSONLiを溶液温度が40℃以下を保つように徐々に加え、溶解させた。約13gの(CFSONLiを加えた時点で(CFSONLiの溶解が一時停滞したので、上記フラスコを恒温槽に投入し、フラスコ内の溶液温度が50℃となるよう加温し、(CFSONLiを溶解させた。約15gの(CFSONLiを加えた時点で(CFSONLiの溶解が再び停滞したので、1,2-ジメトキシエタンをピペットで1滴加えたところ、(CFSONLiは溶解した。さらに(CFSONLiを徐々に加え、所定の(CFSONLiを全量加えた。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまで1,2-ジメトキシエタンを加えた。これを実施例1の電解液(第3電解液)とした。
 (CFSONLiの溶解が停滞した時点の濃度を超えた電解液が過飽和状態の第2電解液に相当する。
 得られた電解液は容積20mLであり、この電解液に含まれる(CFSONLiは18.38gであった。実施例1の電解液における(CFSONLiの濃度は3.2mol/Lであり、密度は1.39g/cmであった。密度は20℃で測定した。実施例1の電解液においては、(CFSONLi1分子に対し1,2-ジメトキシエタン1.6分子が含まれている。
 なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
(実施例2)
 16.08gの(CFSONLiを用い、実施例1と同様の方法で、(CFSONLiの濃度が2.8mol/Lであり、密度が1.36g/cmである実施例2の電解液を製造した。実施例2の電解液においては、(CFSONLi1分子に対し1,2-ジメトキシエタン2.1分子が含まれている。
(実施例3)
 有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(CFSONLiを徐々に加え、溶解させた。(CFSONLiを全量で24.11g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。これを実施例3の電解液とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 実施例3の電解液における(CFSONLiの濃度は4.2mol/Lであり、密度が1.52g/cmであった。実施例3の電解液においては、(CFSONLi1分子に対しアセトニトリル1.9分子が含まれている。
(実施例4)
 19.52gの(CFSONLiを用い、実施例3と同様の方法で、(CFSONLiの濃度が3.4mol/Lである実施例4の電解液を製造した。実施例4の電解液においては、(CFSONLi1分子に対しアセトニトリル3分子が含まれている。
(実施例5)
 実施例3と同様の方法で、(CFSONLiの濃度が3.0mol/Lであり、密度が1.31g/cmである、実施例5の電解液を製造した。
(実施例6)
 有機溶媒としてスルホランを用いた以外は、実施例3と同様の方法で、(CFSONLiの濃度が3.0mol/Lであり、密度が1.57g/cmである、実施例6の電解液を製造した。
(実施例7)
 有機溶媒としてジメチルスルホキシドを用いた以外は、実施例3と同様の方法で、(CFSONLiの濃度が3.2mol/Lであり、密度が1.49g/cmである、実施例7の電解液を製造した。
(実施例8)
 リチウム塩として14.97gの(FSONLiを用い、有機溶媒として1,2-ジメトキシエタンを用いた以外は、実施例3と同様の方法で、(FSONLiの濃度が4.0mol/Lであり、密度が1.33g/cmである実施例8の電解液を製造した。実施例8の電解液においては、(FSONLi1分子に対し1,2-ジメトキシエタン1.5分子が含まれている。
(実施例9)
 13.47gの(FSONLiを用い、実施例8と同様の方法で、(FSONLiの濃度が3.6mol/Lであり、密度が1.29g/cmである実施例9の電解液を製造した。実施例9の電解液においては、(FSONLi1分子に対し1,2-ジメトキシエタン1.9分子が含まれている。
(実施例10)
 実施例8と同様の方法で、(FSONLiの濃度が2.4mol/Lであり、密度が1.18g/cmである、実施例10の電解液を製造した。
(実施例11)
 リチウム塩として20.21gの(FSONLiを用いた以外は、実施例3と同様の方法で、(FSONLiの濃度が5.4mol/Lである実施例11の電解液を製造した。実施例11の電解液においては、(FSONLi1分子に対しアセトニトリル2分子が含まれている。
(実施例12)
 18.71gの(FSONLiを用い、実施例11と同様の方法で、(FSONLiの濃度が5.0mol/Lであり、密度が1.40g/cmである実施例12の電解液を製造した。実施例12の電解液においては、(FSONLi1分子に対しアセトニトリル2.1分子が含まれている。
(実施例13)
 16.83gの(FSONLiを用い、実施例11と同様の方法で、(FSONLiの濃度が4.5mol/Lであり、密度が1.34g/cmである実施例13の電解液を製造した。実施例13の電解液においては、(FSONLi1分子に対しアセトニトリル2.4分子が含まれている。
(実施例14)
 15.72gの(FSONLiを用い、実施例11と同様の方法で、(FSONLiの濃度が4.2mol/Lである実施例14の電解液を製造した。実施例14の電解液においては、(FSONLi1分子に対しアセトニトリル3分子が含まれている。
(実施例15)
 有機溶媒であるジメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジメチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で14.64g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジメチルカーボネートを加えた。これを実施例15の電解液とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 実施例15の電解液における(FSONLiの濃度は3.9mol/Lであり、密度が1.44g/cmであった。実施例15の電解液においては、(FSONLi1分子に対しジメチルカーボネート2分子が含まれている。
(実施例16)
 実施例15の電解液にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が3.4mol/Lの実施例16の電解液とした。実施例16の電解液においては、(FSONLi1分子に対しジメチルカーボネート2.5分子が含まれている。
(実施例17)
 実施例15の電解液にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.9mol/Lの実施例17の電解液とした。実施例17の電解液においては、(FSONLi1分子に対しジメチルカーボネート3分子が含まれている。実施例17の電解液の密度は、1.36g/cmであった。
(実施例18)
 実施例15の電解液にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.6mol/Lの実施例18の電解液とした。実施例18の電解液においては、(FSONLi1分子に対しジメチルカーボネート3.5分子が含まれている。
(実施例19)
 実施例15の電解液にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.0mol/Lの実施例19の電解液とした。実施例19の電解液においては、(FSONLi1分子に対しジメチルカーボネート5分子が含まれている。
(実施例20)
 有機溶媒であるエチルメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のエチルメチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で12.81g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでエチルメチルカーボネートを加えた。これを実施例20の電解液とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 実施例20の電解液における(FSONLiの濃度は3.4mol/Lであり、密度が1.35g/cmであった。実施例20の電解液においては、(FSONLi1分子に対しエチルメチルカーボネート2分子が含まれている。
(実施例21)
 実施例20の電解液にエチルメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.9mol/Lの実施例21の電解液とした。実施例21の電解液においては、(FSONLi1分子に対しエチルメチルカーボネート2.5分子が含まれている。
(実施例22)
 実施例20の電解液にエチルメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.2mol/Lの実施例22の電解液とした。実施例22の電解液においては、(FSONLi1分子に対しエチルメチルカーボネート3.5分子が含まれている。
(実施例23)
 有機溶媒であるジエチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジエチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で11.37g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジエチルカーボネートを加えた。これを実施例23の電解液とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 実施例23の電解液における(FSONLiの濃度は3.0mol/Lであり、密度が1.29g/cmであった。実施例23の電解液においては、(FSONLi1分子に対しジエチルカーボネート2分子が含まれている。
(実施例24)
 実施例23の電解液にジエチルカーボネートを加えて希釈し、(FSONLiの濃度が2.6mol/Lの実施例24の電解液とした。実施例24の電解液においては、(FSONLi1分子に対しジエチルカーボネート2.5分子が含まれている。
(実施例25)
 実施例23の電解液にジエチルカーボネートを加えて希釈し、(FSONLiの濃度が2.0mol/Lの実施例25の電解液とした。実施例25の電解液においては、(FSONLi1分子に対しジエチルカーボネート3.5分子が含まれている。
(実施例26)
 リチウム塩として9.23gのLiBFを用いた以外は、実施例15と同様の方法で、LiBFの濃度が4.9mol/Lである実施例26の電解液を製造した。実施例26の電解液においては、LiBF1分子に対しジメチルカーボネート2分子が含まれている。実施例26の電解液の密度は1.30g/cmであった。
(実施例27)
 リチウム塩として13.37gのLiPFを用いた以外は、実施例15と同様の方法で、LiPFの濃度が4.4mol/Lである実施例27の電解液を製造した。実施例27の電解液においては、LiPF1分子に対しジメチルカーボネート2分子が含まれている。実施例27の電解液の密度は1.46g/cmであった。
(比較例1)
 有機溶媒として1,2-ジメトキシエタンを用い、実施例3と同様の方法で、(CFSONLiの濃度が1.6mol/Lであり、密度が1.18g/cmである、比較例1の電解液を製造した。
(比較例2)
 比較例1と同様の方法で、(CFSONLiの濃度が1.2mol/Lであり、密度が1.09g/cmである、比較例2の電解液を製造した。
(比較例3)
 比較例1と同様の方法で、(CFSONLiの濃度が1.0mol/Lであり、密度が1.06g/cmである、比較例3の電解液を製造した。比較例3の電解液においては、(CFSONLi1分子に対し1,2-ジメトキシエタン8.3分子が含まれている。
(比較例4)
 比較例1と同様の方法で、(CFSONLiの濃度が0.5mol/Lであり、密度が0.96g/cmである、比較例4の電解液を製造した。
(比較例5)
 比較例1と同様の方法で、(CFSONLiの濃度が0.2mol/Lであり、密度が0.91g/cmである、比較例5の電解液を製造した。
(比較例6)
 比較例1と同様の方法で、(CFSONLiの濃度が0.1mol/Lであり、密度が0.89g/cmである、比較例6の電解液を製造した。
(比較例7)
 実施例3と同様の方法で、(CFSONLiの濃度が1.0mol/Lであり、密度が0.96g/cmである、比較例7の電解液を製造した。比較例7の電解液においては、(CFSONLi1分子に対しアセトニトリル16分子が含まれている。
(比較例8)
 実施例6と同様の方法で、(CFSONLiの濃度が1.0mol/Lであり、密度が1.38g/cmである、比較例8の電解液を製造した。
(比較例9)
 実施例7と同様の方法で、(CFSONLiの濃度が1.0mol/Lであり、密度が1.22g/cmである、比較例9の電解液を製造した。
(比較例10)
 実施例8と同様の方法で、(FSONLiの濃度が2.0mol/Lであり、密度が1.13g/cmである、比較例10の電解液を製造した。
(比較例11)
 実施例8と同様の方法で、(FSONLiの濃度が1.0mol/Lであり、密度が1.01g/cmである、比較例11の電解液を製造した。比較例11の電解液においては、(FSONLi1分子に対し1,2-ジメトキシエタン8.8分子が含まれている。
(比較例12)
 実施例8と同様の方法で、(FSONLiの濃度が0.5mol/Lであり、密度が0.94g/cmである、比較例12の電解液を製造した。
(比較例13)
 実施例8と同様の方法で、(FSONLiの濃度が0.1mol/Lであり、密度が0.88g/cmである、比較例13の電解液を製造した。
(比較例14)
 実施例12と同様の方法で、(FSONLiの濃度が1.0mol/Lであり、密度が0.91g/cmである、比較例14の電解液を製造した。比較例14の電解液においては、(FSONLi1分子に対しアセトニトリル17分子が含まれている。
(比較例15)
 実施例15の電解液にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が1.1mol/Lであり、密度が1.16g/cmである、比較例15の電解液を製造した。比較例15の電解液においては、(FSONLi1分子に対しジメチルカーボネート10分子が含まれている。
(比較例16)
 実施例20の電解液にエチルメチルカーボネートを加えて希釈し、(FSONLiの濃度が1.1mol/Lであり、密度が1.12g/cmである、比較例16の電解液を製造した。比較例16の電解液においては、(FSONLi1分子に対しエチルメチルカーボネート8分子が含まれている。
(比較例17)
 実施例23の電解液にジエチルカーボネートを加えて希釈し、(FSONLiの濃度が1.1mol/Lであり、密度が1.08g/cmである、比較例17の電解液を製造した。比較例17の電解液においては、(FSONLi1分子に対しジエチルカーボネート7分子が含まれている。
(比較例18)
 有機溶媒としてエチレンカーボネート及びジエチルカーボネートの混合溶媒(体積比3:7)(以下、「EC/DEC」ということがある。)を用い、リチウム塩として3.04gのLiPFを用いた以外は、実施例3と同様の方法で、LiPFの濃度が1.0mol/Lである比較例18の電解液を製造した。
 表4及び表5に実施例及び比較例の電解液の一覧を示す。表中の空欄は未算出を意味する。
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
 表6及び表7に実施例及び比較例の電解液の密度及びd/cの一覧を示す。表中の空欄は未測定又は未算出を意味する。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
(評価例1:IR測定)
 実施例3、実施例4、実施例11、実施例13、実施例14、比較例7、比較例14の電解液、並びに、アセトニトリル、(CFSONLi、(FSONLiにつき、以下の条件でIR測定を行った。2100~2400cm-1の範囲のIRスペクトルをそれぞれ図1~図10に示す。図の横軸は波数(cm-1)であり、縦軸は吸光度(反射吸光度)である。
 実施例15~実施例25、比較例15~17の電解液、並びに、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートにつき、以下の条件でIR測定を行った。1900~1600cm-1の範囲のIRスペクトルをそれぞれ図11~図27に示す。また、(FSONLiにつき、1900~1600cm-1の範囲のIRスペクトルを図28に示す。図の横軸は波数(cm-1)であり、縦軸は吸光度(反射吸光度)である。
 さらに、実施例26、実施例27の電解液につき、以下の条件でIR測定を行った。1900~1600cm-1の範囲のIRスペクトルをそれぞれ図29~図30に示す。図の横軸は波数(cm-1)であり、縦軸は吸光度(反射吸光度)である。
 IR測定条件
 装置:FT-IR(ブルカーオプティクス社製)
 測定条件:ATR法(ダイヤモンド使用)
 測定雰囲気:不活性ガス雰囲気下
 図8で示されるアセトニトリルのIRスペクトルの2250cm-1付近には、アセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークが観察された。なお、図9で示される(CFSONLiのIRスペクトル及び図10で示される(FSONLiのIRスペクトルの2250cm-1付近には、特段のピークが観察されなかった。
 図1で示される実施例4の電解液のIRスペクトルには、2250cm-1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.00699)観察された。さらに図1のIRスペクトルには、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.05828で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=8×Ioであった。
 図2で示される実施例3の電解液のIRスペクトルには、2250cm-1付近にアセトニトリル由来のピークが観察されず、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.05234で観察された。IsとIoのピーク強度の関係はIs>Ioであった。
 図3で示される実施例14の電解液のIRスペクトルには、2250cm-1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.00997)観察された。さらに図3のIRスペクトルには、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.08288で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=8×Ioであった。
 図4で示される実施例13の電解液のIRスペクトルについても、図3のIRチャートと同様の強度のピークが同様の波数に観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=11×Ioであった。
 図5で示される実施例11の電解液のIRスペクトルには、2250cm-1付近にアセトニトリル由来のピークが観察されず、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.07350で観察された。IsとIoのピーク強度の関係はIs>Ioであった。
 図6で示される比較例7の電解液のIRスペクトルには、図8と同じく、2250cm-1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Io=0.04441で観察された。さらに図6のIRスペクトルには、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.03018で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
 図7で示される比較例14の電解液のIRスペクトルには、図8と同じく、2250cm-1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Io=0.04975で観察された。さらに図7のIRスペクトルには、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.03804で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
 図17で示されるジメチルカーボネートのIRスペクトルの1750cm-1付近には、ジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークが観察された。なお、図28で示される(FSONLiのIRスペクトルの1750cm-1付近には、特段のピークが観察されなかった。
 図11で示される実施例15の電解液のIRスペクトルには、1750cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.16628)観察された。さらに図11のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.48032で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.89×Ioであった。
 図12で示される実施例16の電解液のIRスペクトルには、1750cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.18129)観察された。さらに図12のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.52005で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.87×Ioであった。
 図13で示される実施例17の電解液のIRスペクトルには、1750cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.20293)観察された。さらに図13のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.53091で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.62×Ioであった。
 図14で示される実施例18の電解液のIRスペクトルには、1750cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.23891)観察された。さらに図14のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.53098で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.22×Ioであった。
 図15で示される実施例19の電解液のIRスペクトルには、1750cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.30514)観察された。さらに図15のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.50223で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=1.65×Ioであった。
 図16で示される比較例15の電解液のIRスペクトルには、1750cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークが(Io=0.48204)観察された。さらに図16のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.39244で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
 図22で示されるエチルメチルカーボネートのIRスペクトルの1745cm-1付近には、エチルメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークが観察された。
 図18で示される実施例20の電解液のIRスペクトルには、1745cm-1付近にエチルメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.13582)観察された。さらに図18のIRスペクトルには、1745cm-1付近から低波数側にシフトした1711cm-1付近にエチルメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.45888で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.38×Ioであった。
 図19で示される実施例21の電解液のIRスペクトルには、1745cm-1付近にエチルメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.15151)観察された。さらに図19のIRスペクトルには、1745cm-1付近から低波数側にシフトした1711cm-1付近にエチルメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.48779で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.22×Ioであった。
 図20で示される実施例22の電解液のIRスペクトルには、1745cm-1付近にエチルメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.20191)観察された。さらに図20のIRスペクトルには、1745cm-1付近から低波数側にシフトした1711cm-1付近にエチルメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.48407で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.40×Ioであった。
 図21で示される比較例16の電解液のIRスペクトルには、1745cm-1付近にエチルメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークが(Io=0.41907)観察された。さらに図21のIRスペクトルには、1745cm-1付近から低波数側にシフトした1711cm-1付近にエチルメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.33929で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
 図27で示されるジエチルカーボネートのIRスペクトルの1742cm-1付近には、ジエチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークが観察された。
 図23で示される実施例23の電解液のIRスペクトルには、1742cm-1付近にジエチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.11202)観察された。さらに図23のIRスペクトルには、1742cm-1付近から低波数側にシフトした1706cm-1付近にジエチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.42925で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.83×Ioであった。
 図24で示される実施例24の電解液のIRスペクトルには、1742cm-1付近にジエチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.15231)観察された。さらに図24のIRスペクトルには、1742cm-1付近から低波数側にシフトした1706cm-1付近にジエチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.45679で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.00×Ioであった。
 図25で示される実施例25の電解液のIRスペクトルには、1742cm-1付近にジエチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.20337)観察された。さらに図25のIRスペクトルには、1742cm-1付近から低波数側にシフトした1706cm-1付近にジエチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.43841で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.16×Ioであった。
 図26で示される比較例17の電解液のIRスペクトルには、1742cm-1付近にジエチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークが(Io=0.39636)観察された。さらに図26のIRスペクトルには、1742cm-1付近から低波数側にシフトした1709cm-1付近にジエチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.31129で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
 図29で示される実施例26の電解液のIRスペクトルには、1747cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.24305)観察された。さらに図29のIRスペクトルには、1747cm-1付近から低波数側にシフトした1719cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.42654で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=1.75×Ioであった。
 図30で示される実施例27の電解液のIRスペクトルには、1743cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.18779)観察された。さらに図30のIRスペクトルには、1743cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのC及びO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.49461で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.63×Ioであった。
(評価例2:イオン伝導度)
 実施例1~3、8、9、12、13、15、17、20、23、26、27の電解液のイオン伝導度を以下の条件で測定した。結果を表8に示す。
 イオン伝導度測定条件
 Ar雰囲気下、白金極を備えたセル定数既知のガラス製セルに、電解液を封入し、30℃、1kHzでのインピーダンスを測定した。インピーダンスの測定結果から、イオン伝導度を算出した。測定機器はSolartron 147055BEC(ソーラトロン社)を使用した。
Figure JPOXMLDOC01-appb-T000008
 実施例1~3、8、9、12、13、15、17、20、23、26、27の電解液は、いずれもイオン伝導性を示した。よって、本発明の電解液は、いずれも各種の電解液として機能し得ると理解できる。
(評価例3:粘度)
 実施例1~3、8、9、12、13、15、17、20、23並びに比較例3、7、11、14~17の電解液の粘度を以下の条件で測定した。結果を表9に示す。
 粘度測定条件
 落球式粘度計(AntonPaar GmbH(アントンパール社)製 Lovis 2000M)を用い、Ar雰囲気下、試験セルに電解液を封入し、30℃の条件下で粘度を測定した。
Figure JPOXMLDOC01-appb-T000009
 各実施例の電解液の粘度は、各比較例の電解液の粘度と比較して、著しく高かった。よって、本発明の電解液を用いた電池であれば、仮に電池が破損したとしても、電解液漏れが抑制される。また、本発明の電解液を用いたキャパシタであれば、仮にキャパシタが破損したとしても、電解液漏れが抑制される。
(評価例4:揮発性)
 実施例2、3、13、15、17、比較例3、7、14、15の電解液の揮発性を以下の方法で測定した。
 約10mgの電解液をアルミニウム製のパンに入れ、熱重量測定装置(TAインスツルメント社製、SDT600)に配置し、室温での電解液の重量変化を測定した。重量変化(質量%)を時間で微分することで揮発速度を算出した。揮発速度のうち最大のものを選択し、表10に示した。
Figure JPOXMLDOC01-appb-T000010
 実施例2、3、13、15、17の電解液の最大揮発速度は、比較例3、7、14、15の最大揮発速度と比較して、著しく小さかった。よって、本発明の電解液を用いた電池は、仮に損傷したとしても、電解液の揮発速度が小さいため、電池外への有機溶媒の急速な揮発が抑制される。また、本発明の電解液を用いたキャパシタは、仮に損傷したとしても、電解液の揮発速度が小さいため、キャパシタ外への有機溶媒の急速な揮発が抑制される。
(評価例5:燃焼性)
 実施例3、比較例7の電解液の燃焼性を以下の方法で試験した。
 電解液をガラスフィルターにピペットで3滴滴下し、電解液をガラスフィルターに保持させた。当該ガラスフィルターをピンセットで把持し、そして、当該ガラスフィルターに接炎させた。
 実施例3の電解液は15秒間接炎させても引火しなかった。他方、比較例7の電解液は5秒余りで燃え尽きた。
 本発明の電解液は燃焼しにくいことが裏付けられた。
(評価例6:Li輸率)
 実施例2、13、比較例14、18の電解液のLi輸率を以下の条件で測定した。結果を表11に示す。
 Li輸率測定条件
 電解液を入れたNMR管をPFG-NMR装置(ECA-500、日本電子)に供し、Li、19Fを対象として、スピンエコー法を用い、磁場パルス幅を変化させながら、各電解液中のLiイオン及びアニオンの拡散係数を測定した。Li輸率は以下の式で算出した。
 Li輸率=(Liイオン拡散係数)/(Liイオン拡散係数+アニオン拡散係数)
Figure JPOXMLDOC01-appb-T000011
 実施例2、13の電解液のLi輸率は、比較例14、18の電解液のLi輸率と比較して、著しく高かった。ここで、電解液のLiイオン伝導度は、電解液に含まれるイオン伝導度(全イオン電導度)にLi輸率を乗じて算出することができる。そうすると、本発明の電解液は、同程度のイオン伝導度を示す従来の電解液と比較して、リチウムイオン(カチオン)の輸送速度が高いといえる。
 また、実施例13の電解液につき、温度を変化させた場合のLi輸率を、上記Li輸率測定条件に準じて測定した。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 表12の結果から、本発明の電解液は、温度に因らず、好適なLi輸率を保つことがわかる。本発明の電解液は、低温でも液体状態を保っているといえる。
(評価例7:低温試験)
 実施例15、17、20、23の各電解液をそれぞれ容器に入れ、不活性ガスを充填して密閉した。これらを-30℃の冷凍庫に2日間保管した。保管後に各電解液を観察した。いずれの電解液も固化せず液体状態を維持しており、塩の析出も観察されなかった。
(評価例8:ラマンスペクトル測定)
 実施例12、実施例13、比較例14、並びに、実施例15、実施例17、実施例19、比較例15の電解液につき、以下の条件でラマンスペクトル測定を行った。各電解液の金属塩のアニオン部分に由来するピークが観察されたラマンスペクトルをそれぞれ図31~図37に示す。図の横軸は波数(cm-1)であり、縦軸は散乱強度である。
 ラマンスペクトル測定条件
 装置:レーザーラマン分光光度計(日本分光株式会社NRSシリーズ)
 レーザー波長:532nm
 不活性ガス雰囲気下で電解液を石英セルに密閉し、測定に供した。
 図31~33で示される実施例12、実施例13、比較例14の電解液のラマンスペクトルの700~800cm-1には、アセトニトリルに溶解したLiFSAの(FSONに由来する特徴的なピークが観察された。ここで、図31~33から、LiFSAの濃度の増加に伴い、上記ピークが高波数側にシフトするのがわかる。電解液が高濃度化するに従い、塩のアニオンに該当する(FSONがLiと相互作用する状態になる、換言すると、濃度が低い場合はLiとアニオンはSSIP(Solvent-separated ion pairs)状態を主に形成しており、高濃度化に伴いCIP(Contact ion pairs)状態やAGG(aggregate)状態を主に形成していると推察される。そして、かかる状態の変化がラマンスペクトルのピークシフトとして観察されたと考察できる。
 図34~37で示される実施例15、実施例17、実施例19、比較例15の電解液のラマンスペクトルの700~800cm-1には、ジメチルカーボネートに溶解したLiFSAの(FSONに由来する特徴的なピークが観察された。ここで、図34~37から、LiFSAの濃度の増加に伴い、上記ピークが高波数側にシフトするのがわかる。この現象は、前段落で考察したのと同様に、電解液が高濃度化するに従い、塩のアニオンに該当する(FSONがLiと相互作用する状態になり、そして、かかる状態の変化がラマンスペクトルのピークシフトとして観察されたと考察できる。
(実施例A)
 実施例13の電解液を用いたハーフセルを以下のとおり製造した。
 活物質である平均粒径10μmの黒鉛90質量部、及び結着剤であるポリフッ化ビニリデン10質量部を混合した。この混合物を適量のN-メチル-2-ピロリドンに分散させて、スラリーを作製した。集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥してN-メチル-2-ピロリドンを除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、活物質層が形成された銅箔を得た。これを作用極とした。
 対極は金属Liとした。
 作用極、対極、両者の間に挟装したセパレータとしての厚さ400μmのWhatmanガラス繊維ろ紙及び実施例13の電解液を電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容しハーフセルを構成した。これを実施例Aのハーフセルとした。
(比較例A)
 電解液として比較例18の電解液を用いた以外は、実施例Aと同様の方法で、比較例Aのハーフセルを製造した。
(評価例9:レート特性)
 実施例A、比較例Aのハーフセルのレート特性を以下の方法で試験した。
 ハーフセルに対し、0.1C、0.2C、0.5C、1C、2Cレート(1Cとは一定電流において1時間で電池を完全充電または放電させるために要する電流値を意味する。)で充電を行った後に放電を行い、それぞれの速度における作用極の容量(放電容量)を測定した。なお、ここでの記述は、対極を負極、作用極を正極とみなしている。0.1Cレートでの作用極の容量に対する他のレートにおける容量の割合(レート特性)を算出した。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 実施例Aのハーフセルは、0.2C、0.5C、1C、2Cのいずれのレートにおいても、比較例Aのハーフセルと比較して、容量の低下が抑制されており、優れたレート特性を示した。本発明の電解液を使用した二次電池は、優れたレート特性を示すことが裏付けられた。
(評価例10:急速充放電の繰り返しに対する応答性)
 実施例A、比較例Aのハーフセルに対し、1Cレートで充放電を3回繰り返した際の、容量と電圧の変化を観察した。結果を図38に示す。
 比較例Aのハーフセルは充放電を繰り返すに伴い、1Cレートで電流を流した場合の分極が大きくなる傾向があり、2Vから0.01Vに到達するまでに得られる容量が急速に低下した。他方、実施例Aのハーフセルは充放電を繰り返しても、図38において3本の曲線が重なっている様からも確認できるように分極の増減がほとんどなく、好適に容量を維持した。比較例Aにおいて分極が増加した理由として、急速に充放電を繰り返した際の電解液中に生じたLi濃度ムラに因り、電極との反応界面に十分な量のLiを電解液が供給できなくなったこと、つまり、電解液のLi濃度の偏在が考えられる。実施例Aでは、Li濃度が高い本発明の電解液を用いたことで、電解液のLi濃度の偏在を抑制できたものと考えられる。本発明の電解液を使用した二次電池は、急速充放電に対し、優れた応答性を示すことが裏付けられた。また、本発明の電解液の存在下での急速充放電に対し、黒鉛含有電極が優れた応答性を示すことが裏付けられたといえる。
 また、リチウムイオンキャパシタは、既述のとおり、充放電時に負極及び電解液の間でリチウムイオン二次電池と等しい電気化学反応(電池反応)を伴うため、負極及び電解液の間で生じる電気化学反応(電池反応)には可逆性と速度が求められる。ここで、リチウムイオンキャパシタに求められる負極及び電解液の間で生じる電気化学反応(電池反応)の可逆性と速度は、上述又は以下のハーフセルに対する評価例にて評価できる。表13の結果から、本発明の電解液の存在下で、リチウムイオンキャパシタの黒鉛含有電極が優れたレート特性と可逆性を示すことが裏付けられたといえる。
(実施例B)
 実施例13の電解液を用いたリチウムイオン二次電池を以下のとおり製造した。
 正極活物質であるLiNi5/10Co2/10Mn3/10で表される層状岩塩構造のリチウム含有金属酸化物94質量部、導電助剤であるアセチレンブラック3質量部、および結着剤であるポリフッ化ビニリデン3質量部を混合した。この混合物を適量のN-メチル-2-ピロリドンに分散させて、スラリーを作製した。正極集電体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布されたアルミニウム箔を80℃で20分間乾燥することでN-メチル-2-ピロリドンを揮発により除去した。その後、このアルミニウム箔をプレスし接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、正極活物質層が形成されたアルミニウム箔を得た。これを正極とした。
 負極活物質である天然黒鉛98質量部、並びに結着剤であるスチレンブタジエンゴム1質量部及びカルボキシメチルセルロース1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で100℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。これを負極とした。
 セパレータとして、実験用濾紙(東洋濾紙株式会社、セルロース製、厚み260μm)を準備した。
 正極と負極とでセパレータを挟持し、極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに実施例13の電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたリチウムイオン二次電池を得た。この電池を実施例Bのリチウムイオン二次電池とした。
(比較例B)
 電解液として比較例18の電解液を用いた以外は、実施例Bと同様の方法で、比較例Bのリチウムイオン二次電池を製造した。
(評価例11:熱安定性)
 実施例B、比較例Bのリチウムイオン二次電池の充電状態の正極に対する電解液の熱安定性を以下の方法で評価した。
 リチウムイオン二次電池に対し、充電終始電圧4.2V、定電流定電圧条件で満充電した。満充電後のリチウムイオン二次電池を解体し、正極を取り出した。当該正極3mg及び電解液1.8μLをステンレス製のパンに入れ、該パンを密閉した。密閉パンを用いて、窒素雰囲気下、昇温速度20℃/min.の条件で示差走査熱量分析を行い、DSC曲線を観察した。示差走査熱量測定装置としてRigaku DSC8230を使用した。実施例Bのリチウムイオン二次電池の充電状態の正極と電解液を共存させた場合のDSCチャートを図39に、比較例Bのリチウムイオン二次電池の充電状態の正極と電解液を共存させた場合のDSCチャートを図40にそれぞれ示す。
 図39及び図40の結果から明らかなように、実施例Bのリチウムイオン二次電池における充電状態の正極と電解液を共存させた場合のDSC曲線はほとんど吸発熱ピークが観察されなかったのに対し、比較例Bのリチウムイオン二次電池の充電状態の正極と電解液を共存させた場合のDSC曲線においては300℃付近に発熱ピークが観察された。この発熱ピークは、正極活物質と電解液とが反応した結果、生じたものと推定される。
 これらの結果から、本発明の電解液を用いたリチウムイオン二次電池は、従来の電解液を用いたリチウムイオン二次電池と比較して、正極活物質と電解液との反応性が低く、熱安定性に優れていることがわかる。
(実施例C)
 実施例13の電解液を用いた実施例Cのリチウムイオン二次電池を以下のとおり製造した。
 正極は、実施例Bのリチウムイオン二次電池の正極と同様に製造した。
 負極活物質である天然黒鉛98質量部、並びに結着剤であるスチレンブタジエンゴム1質量部及びカルボキシメチルセルロース1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で100℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。これを負極とした。
 セパレータとして、厚さ20μmのセルロース製不織布を準備した。
 正極と負極とでセパレータを挟持し、極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに実施例13の電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたリチウムイオン二次電池を得た。この電池を実施例Cのリチウムイオン二次電池とした。
(実施例D)
 実施例13の電解液を用いた実施例Dのリチウムイオン二次電池を以下のとおり製造した。
 正極は、実施例Bのリチウムイオン二次電池の正極と同様に製造した。
 負極活物質である天然黒鉛90質量部、及び結着剤であるポリフッ化ビニリデン10質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。これを負極とした。
 セパレータとして、厚さ20μmのセルロース製不織布を準備した。
 正極と負極とでセパレータを挟持し、極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに実施例13の電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたリチウムイオン二次電池を得た。この電池を実施例Dのリチウムイオン二次電池とした。
(比較例C)
 比較例18の電解液を用いた以外は、実施例Cと同様に、比較例Cのリチウムイオン二次電池を製造した。
(比較例D)
 比較例18の電解液を用いた以外は、実施例Dと同様に、比較例Dのリチウムイオン二次電池を製造した。
(評価例12:リチウムイオン二次電池の入出力特性)
 実施例C、D、比較例C、Dのリチウムイオン二次電池の出力特性を以下の条件で評価した。
(1)0℃又は25℃、SOC80%での入力特性評価
 評価条件は、充電状態(SOC)80%、0℃又は25℃、使用電圧範囲3V―4.2V、容量13.5mAhとした。入力特性の評価は、2秒入力と5秒入力について電池毎にそれぞれ3回行った。
 また、各電池の体積に基づき、25℃、2秒入力における電池出力密度(W/L)を算出した。
 入力特性の評価結果を表14に示す。表14の中の「2秒入力」は、充電開始から2秒後での入力を意味し、「5秒入力」は充電開始から5秒後での入力を意味している。
 表14に示すように、温度の違いに関わらず、実施例Cの電池の入力は、比較例Cの電池の入力に比べて、著しく高かった。同様に、実施例Dの電池の入力は、比較例Dの電池の入力に比べて、著しく高かった。
 また、実施例Cの電池の電池入力密度は、比較例Cの電池の電池入力密度に比べて、著しく高かった。同様に、実施例Dの電池の電池入力密度は、比較例Dの電池の電池入力密度に比べて、著しく高かった。
(2)0℃又は25℃、SOC20%での出力特性評価
 評価条件は、充電状態(SOC)20%、0℃又は25℃、使用電圧範囲3V―4.2V、容量13.5mAhとした。SOC20%、0℃は、例えば、冷蔵室などで使用する場合のように出力特性が出にくい領域である。出力特性の評価は、2秒出力と5秒出力について電池毎にそれぞれ3回行った。
 また、各電池の体積に基づき、25℃、2秒出力における電池出力密度(W/L)を算出した。
 出力特性の評価結果を表14に示す。表14の中の「2秒出力」は、放電開始から2秒後での出力を意味し、「5秒出力」は放電開始から5秒後での出力を意味している。
 表14に示すように、温度の違いに関わらず、実施例Cの電池の出力は、比較例Cの電池の出力に比べて、著しく高かった。同様に、実施例Dの電池の出力は、比較例Dの電池の出力に比べて、著しく高かった。
 また、実施例Cの電池の電池出力密度は、比較例Cの電池の電池出力密度に比べて、著しく高かった。同様に、実施例Dの電池の電池出力密度は、比較例Dの電池の電池出力密度に比べて、著しく高かった。
Figure JPOXMLDOC01-appb-T000014
(実施例E)
 実施例13の電解液を用いたハーフセルを以下のとおり製造した。
 活物質である平均粒径10μmの黒鉛90質量部、及び結着剤であるポリフッ化ビニリデン10質量部を混合した。この混合物を適量のN-メチル-2-ピロリドンに分散させて、スラリーを作製した。集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥してN-メチル-2-ピロリドンを除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、活物質層が形成された銅箔を得た。これを作用極とした。なお、銅箔1cmあたりの活物質の質量は1.48mgであった。また、プレス前の黒鉛及びポリフッ化ビニリデンの密度は0.68g/cmであり、プレス後の活物質層の密度は1.025g/cmであった。
 対極は金属Liとした。
 作用極、対極、両者の間に挟装したセパレータとしての厚さ400μmの Whatmanガラス繊維ろ紙及び実施例13の電解液を、径13.82mmの電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容しハーフセルを構成した。これを実施例Eのハーフセルとした。
(実施例F)
 電解液として実施例15の電解液を用いた以外は、実施例Eと同様の方法で、実施例Fのハーフセルを製造した。
(実施例G)
 電解液として実施例20の電解液を用いた以外は、実施例Eと同様の方法で、実施例Gのハーフセルを製造した。
(実施例H)
 電解液として実施例23の電解液を用いた以外は、実施例Eと同様の方法で、実施例Hのハーフセルを製造した。
(比較例E)
 電解液として比較例18の電解液を用いた以外は、実施例Eと同様の方法で、比較例Eのハーフセルを製造した。
(評価例13:レート特性)
 実施例E~H、比較例Eのハーフセルのレート特性を以下の方法で試験した。ハーフセルに対し、0.1C、0.2C、0.5C、1C、2Cレート(1Cとは一定電流において1時間で電池を完全充電または放電させるために要する電流値を意味する。)で充電を行った後に放電を行い、それぞれの速度における作用極の容量(放電容量)を測定した。なお、ここでの記述は、対極を負極、作用極を正極とみなしている。0.1Cレートでの作用極の容量に対する他のレートにおける容量の割合(レート特性)を算出した。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 実施例E~Hのハーフセルは0.2C、0.5C、1Cのレートにおいて、さらに、実施例E、Fは2Cのレートにおいても比較例Eのハーフセルと比較して、容量低下が抑制されており、優れたレート特性を示すことが裏付けられた。また、本発明の電解液の存在下で、黒鉛含有電極が優れたレート特性を示すことが裏付けられたともいえる。
(評価例14:容量維持率)
 実施例E~H、比較例Eのハーフセルの容量維持率を以下の方法で試験した。
 各ハーフセルに対し、25℃、電圧2.0VまでCC充電(定電流充電)し、電圧0.01VまでCC放電(定電流放電)を行う2.0V-0.01Vの充放電サイクルを、充放電レート0.1Cで3サイクル行い、その後、0.2C、0.5C、1C、2C、5C、10Cの順で各充放電レートにつき3サイクルずつ充放電を行い、最後に0.1Cで3サイクル充放電を行った。各ハーフセルの容量維持率(%)は以下の式で求めた。
 容量維持率(%)=B/A×100
 A:最初の0.1C充放電サイクルにおける2回目の作用極の放電容量
 B:最後の0.1Cの充放電サイクルにおける2回目の作用極の放電容量
 結果を表16に示す。なお、ここでの記述は、対極を負極、作用極を正極とみなしている。
Figure JPOXMLDOC01-appb-T000016
 いずれのハーフセルも、良好に充放電反応を行い、好適な容量維持率を示した。特に、実施例F、G、Hのハーフセルの容量維持率は著しく優れていた。また、本発明の電解液の存在下で、黒鉛含有電極が優れた容量維持率を示すことが裏付けられたともいえる。
(評価例15:充放電の可逆性)
 実施例E~H、比較例Eのハーフセルに対し、25℃、電圧2.0VまでCC充電(定電流充電)し、電圧0.01VまでCC放電(定電流放電)を行う2.0V-0.01Vの充放電サイクルを、充放電レート0.1Cで3サイクル行った。各ハーフセルの充放電曲線を図41~45に示す。
 図41~45に示されるように、実施例E~Hのハーフセルは、一般的な電解液を用いた比較例Eのハーフセルと同様に、可逆的に充放電反応することがわかる。また、本発明の電解液の存在下で、黒鉛含有電極が可逆的に充放電反応することが裏付けられたともいえる。
(実施例I)
 実施例13の電解液を用いたハーフセルを以下のとおり製造した。
 径13.82mm、面積1.5cm、厚み20μmのアルミニウム箔(JIS A1000番系)を作用極とし、対極は金属Liとした。セパレータは、厚み400μmのWhatmanガラスフィルター不織布:品番1825-055を用いた。
 作用極、対極、セパレータおよび実施例13の電解液を電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容しハーフセルを構成した。これを実施例Iのハーフセルとした。
(実施例J)
 実施例15の電解液を用いた以外は、実施例Iのハーフセルと同様にして、実施例Jのハーフセルを作製した。
(実施例K)
 実施例17の電解液を用いた以外は、実施例Iのハーフセルと同様にして、実施例Kのハーフセルを作製した。
(実施例L)
 実施例20の電解液を用いた以外は、実施例Iのハーフセルと同様にして、実施例Lのハーフセルを作製した。
(実施例M)
 実施例23の電解液を用いた以外は、実施例Iのハーフセルと同様にして、実施例Mのハーフセルを作製した。
(比較例F)
 比較例18の電解液を用いた以外は、実施例Iのハーフセルと同様にして、比較例Fのハーフセルを作製した。
(比較例G)
 比較例15の電解液を用いた以外は、実施例Iのハーフセルと同様にして、比較例Gのハーフセルを作製した。
(評価例16:作用極Alでのサイクリックボルタンメトリー評価)
 実施例I~J、L~Mおよび比較例Fのハーフセルに対して、3.1V~4.6V、1mV/sの条件で5サイクルのサイクリックボルタンメトリー評価を行い、その後、3.1V~5.1V、1mV/sの条件で5サイクルのサイクリックボルタンメトリー評価を行った。実施例I~J、L~Mおよび比較例Fのハーフセルに対する電位と応答電流との関係を示すグラフを図46~図54に示す。
 また、実施例J、K及び比較例Gのハーフセルに対して、3.0V~4.5V、1mV/sの条件で、10サイクルのサイクリックボルタンメトリー評価を行い、その後、3.0V~5.0V、1mV/sの条件で、10サイクルのサイクリックボルタンメトリー評価を行った。実施例J、K及び比較例Gのハーフセルに対する電位と応答電流との関係を示すグラフを図55~図60に示す。
 図54から、比較例Fのハーフセルでは、2サイクル以降も3.1Vから4.6Vにかけて電流が流れ、高電位になるに従い電流が増大しているのがわかる。また、図59および図60から、比較例Gのハーフセルにおいても同様に、2サイクル以降も3.0Vから4.5Vにかけて電流が流れ、高電位になるに従い電流が増大している。この電流は、作用極のアルミニウムが腐食したことによるAlの酸化電流と推定される。
 他方、図46~図53から、実施例I~J、L~Mのハーフセルでは2サイクル以降は3.1Vから4.6Vにかけてほとんど電流が流れていないことがわかる。4.3V以上では電位上昇に伴いわずかに電流の増大が観察されるものの、サイクルを繰り返すに従い、電流の量は減少し、定常状態に向かった。特に、実施例J、L~Mのハーフセルは、高電位である5.1Vまで電流の顕著な増大が観察されず、しかも、サイクルの繰り返しに伴い電流量の減少が観察された。
 また、図55~図58から、実施例J、Kのハーフセルにおいても同様に、2サイクル以降は3.0Vから4.5Vにかけてほとんど電流が流れていないことがわかる。特に3サイクル目以降では4.5Vに至るまで電流の増大はほぼない。そして、実施例Kのハーフセルでは高電位となる4.5V以降に電流の増大がみられるが、これは比較例Gのハーフセルにおける4.5V以降の電流値に比べると遙かに小さい値である。実施例Jのハーフセルについては、4.5V以降も5.0Vに至るまで電流の増大はほぼなく、サイクルの繰り返しに伴い電流量の減少が観察された。
 サイクリックボルタンメトリー評価の結果から、5Vを超える高電位条件でも、実施例13、実施例15、実施例17、実施例20および実施例23の各電解液のアルミニウムに対する腐食性は低いといえる。すなわち、実施例13、実施例15、実施例17、実施例20および実施例23の各電解液は、集電体などにアルミニウムを用いた電池およびキャパシタに対し、好適な電解液といえる。
(実施例N)
 電解液として実施例12の電解液を用いた以外は、実施例Aと同様の方法で、実施例Nのリチウムイオン二次電池を得た。
(比較例H)
 電解液として比較例18の電解液を用いた以外は、実施例Nと同様の方法で、比較例Hのリチウムイオン二次電池を得た。
(評価例17:低温でのレート特性)
 実施例Nと比較例Hのリチウムイオン二次電池を用い、-20℃でのレート特性を以下のとおり評価した。結果を図61及び図62に示す。
 (1) 負極(評価極)へのリチウム吸蔵が進行する向きに電流を流す。
 (2) 電圧範囲:2V→0.01V(v.s.Li/Li+
 (3) レート:0.02C、0.05C、0.1C、0.2C、0.5C (0.01V到達後に電流を停止)
 なお、1Cは、一定電流において1時間で電池を完全充電、又は放電させるために要する電流値を示す。
 図61及び図62から、各電流レートにおける実施例Nのリチウムイオン二次電池の電圧カーブは、比較例Hのリチウムイオン二次電池の電圧カーブと比較して、高い電圧を示しているのがわかる。本発明の電解液の存在下で、黒鉛含有電極が低温環境においても優れたレート特性を示すことが裏付けられたといえる。つまり、本発明の電解液を用いたリチウムイオン二次電池およびリチウムイオンキャパシタは、低温環境においても優れたレート特性を示すことが裏付けられた。
(実施例O)
 実施例13の電解液を用いた実施例Oのリチウムイオン二次電池を以下のとおり製造した。
 正極活物質であるLiNi5/10Co2/10Mn3/10で表される層状岩塩構造のリチウム含有金属酸化物90質量部、導電助剤であるアセチレンブラック8質量部、および結着剤であるポリフッ化ビニリデン2質量部を混合した。この混合物を適量のN-メチル-2-ピロリドンに分散させて、スラリーを作製した。正極集電体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布されたアルミニウム箔を80℃で20分間乾燥することでN-メチル-2-ピロリドンを揮発により除去した。その後、このアルミニウム箔をプレスし接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、正極活物質層が形成されたアルミニウム箔を得た。これを正極とした。
 負極活物質である天然黒鉛98質量部、並びに結着剤であるスチレンブタジエンゴム1質量部及びカルボキシメチルセルロース1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で100℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。これを負極とした。
 セパレータとして、厚さ20μmのセルロース製不織布を準備した。
 正極と負極とでセパレータを挟持し、極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに実施例13の電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたリチウムイオン二次電池を得た。この電池を実施例Oのリチウムイオン二次電池とした。
(実施例P)
 電解液として実施例15の電解液を用いた以外は、実施例Oと同様の方法で、実施例Pのリチウムイオン二次電池を得た。
(実施例Q)
 電解液として実施例17の電解液を用いた以外は、実施例Oと同様の方法で、実施例Qのリチウムイオン二次電池を得た。
(比較例I)
 電解液として比較例18の電解液を用いた以外は、実施例Oと同様の方法で、比較例Iのリチウムイオン二次電池を得た。
(評価例18:電池の内部抵抗)
 実施例O~Qおよび比較例Iのリチウムイオン二次電池を準備し、電池の内部抵抗を評価した。
 各リチウムイオン二次電池について、室温、3.0V~4.1V(vs.Li基準)の範囲でCC充放電、つまり定電流充放電を繰り返した。そして、初回充放電後の交流インピーダンス、および、100サイクル経過後の交流インピーダンスを測定した。得られた複素インピーダンス平面プロットを基に、電解液、負極および正極の反応抵抗を各々解析した。図63に示すように、複素インピーダンス平面プロットには、二つの円弧がみられた。図中左側(つまり複素インピーダンスの実部が小さい側)の円弧を第1円弧と呼ぶ。図中右側の円弧を第2円弧と呼ぶ。第1円弧の大きさを基に負極の反応抵抗を解析し、第2円弧の大きさを基に正極の反応抵抗を解析した。第1円弧に連続する図63中最左側のプロットを基に電解液の抵抗を解析した。解析結果を表17および表18に示す。なお、表17は、初回充放電後の電解液の抵抗(所謂溶液抵抗)、負極の反応抵抗、正極の反応抵抗を示し、表18は100サイクル経過後の各抵抗を示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表17および表18に示すように、各リチウムイオン二次電池において、100サイクル経過後の負極反応抵抗および正極反応抵抗は、初回充放電後の各抵抗に比べて低下する傾向にある。そして、表18に示す100サイクル経過後では、実施例O~Qのリチウムイオン二次電池の負極反応抵抗および正極反応抵抗は、比較例Iのリチウムイオン二次電池の負極反応抵抗および正極反応抵抗に比べて低い。
 なお、実施例O、Qおよび比較例Iのリチウムイオン二次電池における電解液の溶液抵抗はほぼ同じであり、実施例Pのリチウムイオン二次電池における電解液の溶液抵抗は、実施例O、Qおよび比較例Iに比べて高い。また、各リチウムイオン二次電池における各電解液の溶液抵抗は初回充放電後も100サイクル経過後も同等である。このため、各電解液の耐久劣化は生じていないと考えられ、上記した比較例および実施例において生じた負極反応抵抗および正極反応抵抗の差は、電解液の耐久劣化に関係するものでなく電極自体に生じているものであると考えられる。
 リチウムイオン二次電池の内部抵抗は、電解液の溶液抵抗、負極の反応抵抗および正極の反応抵抗から総合的に判断できる。表17および表18の結果を基にすると、リチウムイオン二次電池の内部抵抗増大を抑制する観点からは、実施例P、Qのリチウムイオン二次電池が最も耐久性に優れ、次いで実施例Oのリチウムイオン二次電池が耐久性に優れていると言える。
(評価例19:電池のサイクル耐久性)
 実施例O~Qおよび比較例Iのリチウムイオン二次電池について、室温、3.0V~4.1V(vs.Li基準)の範囲でCC充放電を繰り返し、初回充放電時の放電容量、100サイクル時の放電容量、および500サイクル時の放電容量を測定した。そして、初回充放電時の各リチウムイオン二次電池の容量を100%とし、100サイクル時および500サイクル時の各リチウムイオン二次電池の容量維持率(%)を算出した。結果を表19に示す。
Figure JPOXMLDOC01-appb-T000019
 表19に示すように、実施例O~Qのリチウムイオン二次電池は、SEIの材料となるECを含まないにも拘わらず、ECを含む比較例Iのリチウムイオン二次電池と同等の100サイクル時の容量維持率を示した。これは、実施例O~Qのリチウムイオン二次電池における正極および負極には、本発明の電解液に由来する皮膜が存在するためだと考えられる。そして、実施例Pのリチウムイオン二次電池については、500サイクル経過時にも極めて高い容量維持率を示し、特に耐久性に優れていた。この結果から、電解液の有機溶媒としてDMCを選択する場合には、ANを選択する場合に比べて、より耐久性が向上するといえる。
(実施例R)
 本発明のキャパシタを以下のとおり製造した。
 本発明のキャパシタの正極及び負極として、宝泉株式会社製のMDLC-105N2を用いた。実施例11の電解液をガラスフィルターに浸み込ませたものと、上記正極及び上記負極とで、コイン型のセルを作成した。このセルを実施例Rのキャパシタとした。なお、正極及び負極はセル作製前に120℃で24時間真空乾燥させたものを使用し、セル作製は不活性ガス雰囲気下、露点が-70℃以下に調整したグローブボックス内で行った。
(比較例J)
 電解液として1-エチル-3-メチルイミダゾリウム ビス(フルオロスルホニル)アミドを用いた以外は、実施例Rと同様の方法で、比較例Jのキャパシタを製造した。
(評価例20)
 実施例R及び比較例Jのキャパシタにつき、以下の試験を行った。
 各キャパシタに対し、電流密度100mA/g、Cut-off電圧0~1Vにて、10回の充放電を行い、これをコンディショニングとした。各キャパシタにおけるコンディショニングの最後の充放電曲線を図64に示す。
 図64から、実施例Rのキャパシタは比較例Jのキャパシタと比較して容量が大きいのがわかる。
 また、上記充放電を経た実施例R及び比較例Jのキャパシタに対し、Cut-off電圧0~2Vにて、電流密度100、500、1000、2000mA/gで充放電を行った。結果を表20に示す。
Figure JPOXMLDOC01-appb-T000020
 実施例Rのキャパシタは比較例Jのキャパシタと同等以上の容量を示した。特に、高レートの充放電においても、実施例Rのキャパシタは十分な容量を示した。
(実施例S)
 キャパシタの正極及び負極として、宝泉株式会社製のMDLC-105N2を準備した。実施例26の電解液、厚さ20μmのセルロース製不織布、上記正極及び上記負極とで、コイン型のセルを作成した。このセルを実施例Sのキャパシタとした。なお、正極及び負極はセル作製前に120℃で24時間真空乾燥させたものを使用し、セル作製は不活性ガス雰囲気下、露点が-70℃以下に調整したグローブボックス内で行った。
(比較例K)
 電解液として1-エチル-3-メチルイミダゾリウム ビス(フルオロスルホニル)イミドを用いた以外は、実施例Sと同様の方法で、比較例Kのキャパシタを製造した。
(評価例21)
 実施例S及び比較例Kのキャパシタにつき、以下の試験を行った。
 各キャパシタに対し、電流密度100mA/g、Cut-off電圧0~1Vにて、10回の充放電を行った。上記充放電を経た各キャパシタに対し、Cut-off電圧0~2.5Vにて、電流密度100mA/gで充放電を行った。結果を図65及び表21に示す。なお、充放電効率とは、充電容量に対する放電容量の割合である。上記と同様にして、実施例Sのキャパシタに対し、Cut-off電圧0~2V、0~2.5V、0~3V、0~4Vにて、電流密度100mA/gで充放電を行った。Cut-off電圧0~2V、0~2.5V、0~3Vの充放電曲線を図66~68に示し、各放電曲線を図69に示し、各放電容量を表22に示す。
Figure JPOXMLDOC01-appb-T000021
 図65から、比較例Kのキャパシタの充電カーブは充電の途中で直線からずれているのがわかる。当該充電カーブにおいては、特に電圧が2Vを超えたあたりの充電カーブの傾きが小さくなっており、電圧が上昇しにくくなっているのがわかる。この現象は、印加した電流が電解液の分解などの望まれない不可逆反応に用いられているためと推定される。さらに、表21の結果から、比較例Kのキャパシタの充放電効率は劣っていることがわかる。他方、実施例Sのキャパシタの充電カーブが直線である点、及び、充放電効率が100%である点から、実施例Sのキャパシタにおいては印加した電流が電解液の分解などの不可逆反応に用いられずにキャパシタ容量として働いていると考察でき、実施例Sのキャパシタは安定に作動しているといえる。
Figure JPOXMLDOC01-appb-T000022
 図66~69に示すように、実施例Sのキャパシタは各電位で好適に作動した。特に、実施例Sのキャパシタが充電電位4Vにおいても好適に作動したことは特筆に値する。表22の結果から、充電電位の上昇に従い、実施例Sのキャパシタの放電容量が好適に上昇していることがわかる。
(実施例T)
 本発明のリチウムイオンキャパシタを以下のとおり製造した。
 負極は、以下のように製造した。
 天然黒鉛と、ポリフッ化ビニリデンと、N-メチル-2-ピロリドンを添加混合し、スラリー状の負極合材を調製した。スラリー中の各成分(固形分)の組成比は、黒鉛:ポリフッ化ビニリデン=90:10(質量比)であった。
 ここで用いた天然黒鉛粉末をラマンスペクトル分析(装置:日本分光株式会社製のRMP-320:励起波長λ=532nm、グレーチング:1800gr/mm、分解能:3cm-1)すると、得られるラマンスペクトルのG-bandとD-bandのピークの強度比であるG/D比は12.3であった。
 このスラリー状の負極合材を、厚さ20μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成させた。その後、80℃で20分間乾燥し、負極活物質層から有機溶媒を揮発させて除去した。乾燥後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを120℃で6時間真空乾燥して、負極活物質層の目付量0.9mg/cm、密度0.5g/cmの負極を形成した。
 負極と、実施例15の電解液と、厚さ20μmのセルロース製不織布と、上記実施例Rのキャパシタの正極と同じ正極とでセルを作製し、このセルを実施例Tのリチウムイオンキャパシタとした。
(評価例22)
 実施例Tのリチウムイオンキャパシタにつき、以下の試験を行った。
 キャパシタに対し、電流密度20mA/g、Cut-off電圧0~1Vにて、充放電曲線が安定するまで充放電を行った。上記充放電を経たキャパシタに対し、電流密度20mA/gで4.5Vまで充電を行い、電圧4.5Vで2時間保持し、次いで、電流密度20mA/gで2.5Vまで放電を行うとの充放電を、キャパシタの充放電曲線が安定するまで複数回行った。最後の充放電曲線を図70に示す。
 図70の充放電曲線から、高電位において実施例Tのリチウムイオンキャパシタがリチウムイオンキャパシタとして好適に作動したことがわかる。実施例Tのリチウムイオンキャパシタは、負極に黒鉛を用いており、かつ、高濃度でリチウム塩が含まれている本発明の電解液を用いている。ここで、一般的に負極に黒鉛を用いたリチウムイオンキャパシタは、負極電位を下げるために、あらかじめリチウムイオンをドープした状態が必要とされる。しかし、本発明の電解液を用いた実施例Tのリチウムイオンキャパシタは、負極の黒鉛にリチウムイオンのプレドープ作業を行っていないにも関わらず、高電位においてリチウムイオンキャパシタとして安定に作動した。これは、従来の電解液よりも大過剰でリチウムイオンが存在している本発明の電解液を用いた環境下、リチウムイオンキャパシタを高電位で作動させたことにより、電解液中のリチウムイオンが徐々に負極の黒鉛にドープされた結果といえる。すなわち、本発明のリチウムイオンキャパシタは、系外からのリチウムのプレドープが不要との利点を有する。なお、以下の実施例Uで示すように、通常のリチウムイオンキャパシタで行われるリチウムのプレドープを実施しても、本発明のリチウムイオンキャパシタを製造することができる。
 上述のとおり、負極に黒鉛を用いたリチウムイオンキャパシタに本発明の電解液を用いることで、黒鉛にあらかじめリチウムイオンをドープしなくても、充放電により本発明の電解液中のリチウムイオンが黒鉛に挿入して、キャパシタの負極電位が下がり、リチウムイオンキャパシタとなることが証明された。ここで、黒鉛が電位によって電解液に含まれるカチオンやアニオンを挿入及び脱離し得ることが広く知られている。したがって、アニオンが正極に挿入及び脱離するタイプのキャパシタ、すなわち正極に黒鉛を用いたキャパシタを提供することができる。
(実施例U)
 通常のリチウムイオンキャパシタで行われるリチウムのプレドープを実施した場合の本発明のリチウムイオンキャパシタは以下のとおり製造できる。
 負極は、以下のように製造する。
 天然黒鉛と、ポリフッ化ビニリデンと、N-メチル-2-ピロリドンを添加混合し、スラリー状の負極合材を調製する。スラリー中の各成分(固形分)の組成比は、黒鉛:ポリフッ化ビニリデン=90:10(質量比)である。
 このスラリー状の負極合材を、厚さ20μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成する。その後、80℃で20分間乾燥し、負極活物質層から有機溶媒を揮発させて除去する。乾燥後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させる。これを120℃で6時間真空乾燥して、負極活物質層の目付量0.9mg/cm、密度0.5g/cmの負極を形成する。負極の負極活物質層に金属リチウムを圧着し、これと、比較例18の電解液、及び公知の炭素電極とでセルを作成し、リチウムプレドープ用セルとする。リチウムプレドープ用セルを数サイクル充放電し、放電状態(負極活物質にリチウムがドープされた状態)でセルを解体し、リチウムプレドープ負極を取り出す。
 リチウムプレドープ負極と、実施例15の電解液をガラスフィルターに浸み込ませたものと、上記実施例Rのキャパシタの正極と同じ正極とでセルを作製し、このセルを実施例Uのリチウムイオンキャパシタとする。

Claims (19)

  1.  アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、
     前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであることを特徴とする電解液。
  2.  アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、
     電解液の密度d(g/cm)を電解液の塩濃度c(mol/L)で除したd/cが0.15≦d/c≦0.71であることを特徴とする電解液。
  3.  アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、
     前記電解液の粘度η(mPa・s)が10<η<500であり、かつ、前記電解液のイオン伝導度σ(mS/cm)が1≦σであることを特徴とする電解液。
  4.  前記塩のカチオンがリチウムである請求項1~3のいずれかに記載の電解液。
  5.  前記塩のアニオンの化学構造が、ハロゲン、ホウ素、窒素、酸素、硫黄又は炭素から選択される少なくとも1つの元素を含む請求項1~4のいずれかに記載の電解液。
  6.  前記塩のアニオンの化学構造が下記一般式(1)、一般式(2)又は一般式(3)で表される請求項1~5のいずれかに記載の電解液。
     (R)(R)N            一般式(1)
    (Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     また、RとRは、互いに結合して環を形成しても良い。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、R、R、Rは、R又はRと結合して環を形成しても良い。)
    Y            一般式(2)
    (Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、Rは、Rと結合して環を形成しても良い。
     Yは、O、Sから選択される。)
    (R)(R)(R)C        一般式(3)
    (Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     また、R、R、Rのうち、いずれか2つ又は3つが結合して環を形成しても良い。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、R、R、R、R、Rは、R、R又はRと結合して環を形成しても良い。)
  7.  前記塩のアニオンの化学構造が下記一般式(4)、一般式(5)又は一般式(6)で表される請求項1~6のいずれかに記載の電解液。
    (R)(R)N            一般式(4)
    (R、Rは、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
     n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
     また、RとRは、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+e+f+g+hを満たす。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、R、R、Rは、R又はRと結合して環を形成しても良い。)
    Y            一般式(5)
    (Rは、CClBr(CN)(SCN)(OCN)である。
     n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、Rは、Rと結合して環を形成しても良い。
     Yは、O、Sから選択される。)
    (R1010)(R1111)(R1212)C     一般式(6)
    (R10、R11、R12は、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
     n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
     R10、R11、R12のうちいずれか2つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+e+f+g+hを満たす。また、R10、R11、R12の3つが結合して環を形成しても良く、その場合、3つのうち2つの基が2n=a+b+c+d+e+f+g+hを満たし、1つの基が2n-1=a+b+c+d+e+f+g+hを満たす。
     X10は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     X11は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     X12は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、R、R、R、R、Rは、R10、R11又はR12と結合して環を形成しても良い。)
  8.  前記塩のアニオンの化学構造が下記一般式(7)、一般式(8)又は一般式(9)で表される請求項1~7のいずれかに記載の電解液。
    (R13SO)(R14SO)N         一般式(7)
    (R13、R14は、それぞれ独立に、CClBrである。
     n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
     また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。)
    15SO            一般式(8)
    (R15は、CClBrである。
     n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。)
    (R16SO)(R17SO)(R18SO)C   一般式(9)
    (R16、R17、R18は、それぞれ独立に、CClBrである。
     n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
     R16、R17、R18のうちいずれか2つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+eを満たす。また、R16、R17、R18の3つが結合して環を形成しても良く、その場合、3つのうち2つの基が2n=a+b+c+d+eを満たし、1つの基が2n-1=a+b+c+d+eを満たす。)
  9.  前記塩が(CFSONLi、(FSONLi、(CSONLi、FSO(CFSO)NLi、(SOCFCFSO)NLi、又は(SOCFCFCFSO)NLiである請求項1~8のいずれかに記載の電解液。
  10.  前記有機溶媒のヘテロ元素が窒素、酸素、硫黄、ハロゲンから選択される少なくとも1つである請求項1~9のいずれかに記載の電解液。
  11.  前記有機溶媒が非プロトン性溶媒である請求項1~10のいずれかに記載の電解液。
  12.  前記有機溶媒がアセトニトリル又は1,2-ジメトキシエタンから選択される請求項1~11のいずれかに記載の電解液。
  13.  前記有機溶媒が下記一般式(10)で示される鎖状カーボネートから選択される請求項1~11のいずれかに記載の電解液。
    19OCOOR20               一般式(10)
    (R19、R20は、それぞれ独立に、鎖状アルキルであるCClBr、又は、環状アルキルを化学構造に含むCClBrのいずれかから選択される。n、a、b、c、d、e、m、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
  14.  前記有機溶媒がジメチルカーボネート、エチルメチルカーボネート又はジエチルカーボネートから選択される請求項1~11、13のいずれかに記載の電解液。
  15.  前記電解液が電池用電解液である請求項1~14のいずれかに記載の電解液。
  16.  前記電解液が二次電池用電解液である請求項1~15のいずれかに記載の電解液。
  17.  前記電解液がリチウムイオン二次電池用電解液である請求項1~16のいずれかに記載の電解液。
  18.  請求項1に記載の電解液を具備することを特徴とするキャパシタ。
  19.  ヘテロ元素を有する有機溶媒と、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩とを混合し、当該塩を溶解して、第1電解液を調製する第1溶解工程と、
     撹拌及び/又は加温条件下、前記第1電解液に前記塩を加え、前記塩を溶解し、過飽和状態の第2電解液を調製する第2溶解工程と、
     撹拌及び/又は加温条件下、前記第2電解液に前記塩を加え、前記塩を溶解し、第3電解液を調製する第3溶解工程を含むことを特徴とする電解液の製造方法。
PCT/JP2014/004913 2013-09-25 2014-09-25 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ WO2015045389A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2016115736A RU2645104C2 (ru) 2013-09-25 2014-09-25 Раствор электролита для устройств хранения электроэнергии, таких как батареи и конденсаторы, содержащий соль, катион которой является щелочным металлом, щелочноземельным металлом или алюминием, и органический растворитель с гетероэлементом, способ получения упомянутого раствора электролита, а также конденсатор, включающий в себя упомянутый раствор электролита
CN201480053185.0A CN105580190B (zh) 2013-09-25 2014-09-25 蓄电装置用电解液及其制造方法和具备该电解液的电容器
KR1020167010619A KR20160060719A (ko) 2013-09-25 2014-09-25 알칼리 금속, 알칼리 토금속 또는 알루미늄을 양이온으로 하는 염과, 헤테로 원소를 갖는 유기 용매를 포함하는, 전지, 커패시터 등의 축전 장치용 전해액 및, 그의 제조 방법, 그리고 당해 전해액을 구비하는 커패시터
KR1020187026219A KR101940151B1 (ko) 2013-09-25 2014-09-25 알칼리 금속, 알칼리 토금속 또는 알루미늄을 양이온으로 하는 염과, 헤테로 원소를 갖는 유기 용매를 포함하는, 전지, 커패시터 등의 축전 장치용 전해액 및, 그의 제조 방법, 그리고 당해 전해액을 구비하는 커패시터
US15/024,436 US20160218394A1 (en) 2013-09-25 2014-09-25 Electrolytic solution, for electrical storage devices such as batteries and capacitors, containing salt whose cation is alkali metal, alkaline earth metal, or aluminum, and organic solvent having heteroelement, method for producing said electrolytic solution, and capacitor including said electrolytic solution
BR112016006399A BR112016006399A2 (pt) 2013-09-25 2014-09-25 solução eletrolítica, para dispositivos de armazenagem elétrica tais como baterias e capacitores, contendo sais cujo cátion é um metal alcalino, metal alcalinoterroso, ou alumínio, e sol-vente orgânico tendo heteroelemento, método para produção da referida solução eletrolítica, e capaci-tor incluindo a referida solução eletrolítica
CA2925379A CA2925379C (en) 2013-09-25 2014-09-25 Electrolytic solution, for electrical storage devices such as batteries and capacitors, containing salt whose cation is alkali metal, alkaline earth metal, or aluminum, and organic solvent having heteroelement, method for producing said electrolytic solution, and capacitor including said electrolytic solution
EP14848198.9A EP3051620A4 (en) 2013-09-25 2014-09-25 Electrolyte solution for electricity storage devices such as batteries and capacitors containing salt, wherein alkali metal, alkaline earth metal or aluminum serves as cations, and organic solvent having hetero element, method for producing same, and capacitor provided with said electrolyte solution

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
JP2013198598 2013-09-25
JP2013-198414 2013-09-25
JP2013198303 2013-09-25
JP2013198556 2013-09-25
JP2013-198595 2013-09-25
JP2013198414 2013-09-25
JP2013-198303 2013-09-25
JP2013-198598 2013-09-25
JP2013-198556 2013-09-25
JP2013198595 2013-09-25
JP2013-255087 2013-12-10
JP2013255087 2013-12-10
JP2013-255075 2013-12-10
JP2013-255097 2013-12-10
JP2013255097 2013-12-10
JP2013255075 2013-12-10
JP2014-186297 2014-09-12
JP2014-186296 2014-09-12
JP2014186296A JP5816999B2 (ja) 2013-09-25 2014-09-12 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液の製造方法
JP2014186294A JP5816997B2 (ja) 2013-09-25 2014-09-12 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液
JP2014-186295 2014-09-12
JP2014186295A JP5816998B2 (ja) 2013-09-25 2014-09-12 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
JP2014186297A JP5817000B2 (ja) 2013-09-25 2014-09-12 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液群
JP2014-186298 2014-09-12
JP2014186298A JP5828493B2 (ja) 2013-09-25 2014-09-12 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液を具備するキャパシタ
JP2014-186294 2014-09-12

Publications (1)

Publication Number Publication Date
WO2015045389A1 true WO2015045389A1 (ja) 2015-04-02

Family

ID=52742558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004913 WO2015045389A1 (ja) 2013-09-25 2014-09-25 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ

Country Status (1)

Country Link
WO (1) WO2015045389A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049819A (ja) * 2016-08-31 2018-03-29 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド エーテルを含む水性電解液及び当該電解液を使用した電池
KR20180087386A (ko) 2016-02-26 2018-08-01 고쿠리츠다이가쿠호우진 도쿄다이가쿠 전해액
US11201354B2 (en) 2016-04-15 2021-12-14 Kabushiki Kaisha Toyota Jidoshokki Electrolytic solution and lithium ion secondary battery
US11271242B2 (en) 2016-04-15 2022-03-08 Kabushiki Kaisha Toyota Jidoshokki Lithium ion secondary battery

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027733A (ja) 1996-07-12 1998-01-27 Matsushita Electric Ind Co Ltd 電気二重層キャパシタおよびその製造方法
JPH1131637A (ja) 1997-05-16 1999-02-02 Asahi Glass Co Ltd 電気二重層キャパシタ、そのための炭素材料及び電極
JP2001507043A (ja) * 1997-07-25 2001-05-29 アセップ・インク 非局在化アニオン電荷を有するイオン化合物、及びそれらのイオン伝導性成分又は触媒としての使用
WO2004019356A1 (ja) 2002-08-23 2004-03-04 Nisshinbo Industries, Inc. 電気二重層キャパシタ
WO2004027789A1 (ja) 2002-09-20 2004-04-01 Nisshinbo Industries, Inc. 高分子電解質用組成物および高分子電解質ならびに電気二重層キャパシタおよび非水電解質二次電池
JP2004111294A (ja) 2002-09-20 2004-04-08 Nisshinbo Ind Inc 非水電解質、電気二重層キャパシタおよび非水電解質二次電池
JP2004511887A (ja) * 2000-10-06 2004-04-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高性能リチウムまたはリチウムイオン電池
WO2005076299A1 (ja) 2004-02-03 2005-08-18 Nisshinbo Industries, Inc. 電気二重層キャパシタ
WO2006115023A1 (ja) * 2005-04-19 2006-11-02 Matsushita Electric Industrial Co., Ltd. 非水電解液、およびそれを用いた電気化学エネルギー蓄積デバイス並びに非水電解液二次電池
JP2008010613A (ja) 2006-06-29 2008-01-17 Nisshinbo Ind Inc 電気二重層キャパシタ
JP2008047479A (ja) * 2006-08-21 2008-02-28 Matsushita Electric Ind Co Ltd 非水電解液およびそれを具備した電気化学エネルギー蓄積デバイス
JP4732072B2 (ja) 2005-08-30 2011-07-27 富士重工業株式会社 捲回型リチウムイオンキャパシタ
JP2013065493A (ja) 2011-09-20 2013-04-11 Toyota Industries Corp リチウムイオン二次電池の負極用バインダ及びその負極用バインダを用いたリチウムイオン二次電池
JP2013134922A (ja) 2011-12-27 2013-07-08 Panasonic Corp 非水電解液二次電池
JP2013137873A (ja) 2011-12-28 2013-07-11 Toyota Industries Corp リチウムイオン二次電池
JP2013145724A (ja) 2012-01-16 2013-07-25 Gs Yuasa Corp 非水電解質二次電池、非水電解質二次電池の製造方法及び非水電解液
JP2013149477A (ja) 2012-01-19 2013-08-01 Hitachi Maxell Ltd 非水二次電池の製造方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027733A (ja) 1996-07-12 1998-01-27 Matsushita Electric Ind Co Ltd 電気二重層キャパシタおよびその製造方法
JPH1131637A (ja) 1997-05-16 1999-02-02 Asahi Glass Co Ltd 電気二重層キャパシタ、そのための炭素材料及び電極
JP2001507043A (ja) * 1997-07-25 2001-05-29 アセップ・インク 非局在化アニオン電荷を有するイオン化合物、及びそれらのイオン伝導性成分又は触媒としての使用
JP2004511887A (ja) * 2000-10-06 2004-04-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高性能リチウムまたはリチウムイオン電池
WO2004019356A1 (ja) 2002-08-23 2004-03-04 Nisshinbo Industries, Inc. 電気二重層キャパシタ
WO2004027789A1 (ja) 2002-09-20 2004-04-01 Nisshinbo Industries, Inc. 高分子電解質用組成物および高分子電解質ならびに電気二重層キャパシタおよび非水電解質二次電池
JP2004111294A (ja) 2002-09-20 2004-04-08 Nisshinbo Ind Inc 非水電解質、電気二重層キャパシタおよび非水電解質二次電池
WO2005076299A1 (ja) 2004-02-03 2005-08-18 Nisshinbo Industries, Inc. 電気二重層キャパシタ
WO2006115023A1 (ja) * 2005-04-19 2006-11-02 Matsushita Electric Industrial Co., Ltd. 非水電解液、およびそれを用いた電気化学エネルギー蓄積デバイス並びに非水電解液二次電池
JP4732072B2 (ja) 2005-08-30 2011-07-27 富士重工業株式会社 捲回型リチウムイオンキャパシタ
JP2008010613A (ja) 2006-06-29 2008-01-17 Nisshinbo Ind Inc 電気二重層キャパシタ
JP2008047479A (ja) * 2006-08-21 2008-02-28 Matsushita Electric Ind Co Ltd 非水電解液およびそれを具備した電気化学エネルギー蓄積デバイス
JP2013065493A (ja) 2011-09-20 2013-04-11 Toyota Industries Corp リチウムイオン二次電池の負極用バインダ及びその負極用バインダを用いたリチウムイオン二次電池
JP2013134922A (ja) 2011-12-27 2013-07-08 Panasonic Corp 非水電解液二次電池
JP2013137873A (ja) 2011-12-28 2013-07-11 Toyota Industries Corp リチウムイオン二次電池
JP2013145724A (ja) 2012-01-16 2013-07-25 Gs Yuasa Corp 非水電解質二次電池、非水電解質二次電池の製造方法及び非水電解液
JP2013149477A (ja) 2012-01-19 2013-08-01 Hitachi Maxell Ltd 非水二次電池の製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIROO HAMAGUCHI; AKIKO HIRAKAWA: "Raman spectrometry", JAPAN SCIENTIFIC SOCIETIES PRESS, article "Spectroscopical Society of Japan measurement method series 17", pages: 231 - 249
J. ELECTROCHEM. SOC., vol. 159, no. 8, 2012, pages A1329 - A1334
KEIZO FURUKAWA: "Konodo Acetonitrile Denkaieki o Mochiita Kuki Denchi", ABSTRACTS, THE 53RD BATTERY SYMPOSIUM IN JAPAN , THE COMMITTEE OF BATTERY TECHNOLOGY, 13 November 2012 (2012-11-13), pages 455, XP008182798 *
RYO YAEGASHI: "Yobai Bunshi no Haii Jotai Seigyo ni yoru Yuki Yoeki no Shinkino Hatsugen", ABSTRACTS, THE 53RD BATTERY SYMPOSIUM IN JAPAN , THE COMMITTEE OF BATTERY TECHNOLOGY, 13 November 2012 (2012-11-13), pages 507, XP008182797 *
See also references of EP3051620A4 *
YUKI YAMADA ET AL.: "Electrochemical Lithium Intercalation into Graphite in Dimethyl Sulfoxide-Based Electrolytes: Effect of Solvation Structure of Lithium Ion", JOURNAL OF PHYSICAL CHEMISTRY, vol. 114, 2010, pages 11680 - 11685, XP055330025 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087386A (ko) 2016-02-26 2018-08-01 고쿠리츠다이가쿠호우진 도쿄다이가쿠 전해액
DE112017001007T5 (de) 2016-02-26 2018-11-22 The University Of Tokyo Elektrolytlösung
US11201354B2 (en) 2016-04-15 2021-12-14 Kabushiki Kaisha Toyota Jidoshokki Electrolytic solution and lithium ion secondary battery
US11271242B2 (en) 2016-04-15 2022-03-08 Kabushiki Kaisha Toyota Jidoshokki Lithium ion secondary battery
JP2018049819A (ja) * 2016-08-31 2018-03-29 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド エーテルを含む水性電解液及び当該電解液を使用した電池

Similar Documents

Publication Publication Date Title
WO2016063468A1 (ja) 電解液
KR101940151B1 (ko) 알칼리 금속, 알칼리 토금속 또는 알루미늄을 양이온으로 하는 염과, 헤테로 원소를 갖는 유기 용매를 포함하는, 전지, 커패시터 등의 축전 장치용 전해액 및, 그의 제조 방법, 그리고 당해 전해액을 구비하는 커패시터
JP5965445B2 (ja) 非水電解質二次電池
WO2016079919A1 (ja) 電解液
JP5816997B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液
JP5828493B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液を具備するキャパシタ
WO2015045389A1 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ
JP5817009B1 (ja) 非水系二次電池
JP6575022B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
JP5965444B2 (ja) 非水系二次電池
JP5817004B2 (ja) リチウムイオン二次電池
JP5817001B2 (ja) 非水系二次電池
JP5817002B2 (ja) 非水系二次電池
JP5816999B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液の製造方法
JP5817003B2 (ja) 非水電解質二次電池
JP5965446B2 (ja) 蓄電装置
JP6423330B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液群
WO2017145677A1 (ja) 電解液
JP2016189340A (ja) 非水電解質二次電池
JP5817007B1 (ja) 非水系二次電池
WO2015045393A1 (ja) 非水電解質二次電池
JP5817008B1 (ja) 非水系二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053185.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2925379

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2014848198

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15024436

Country of ref document: US

Ref document number: 2014848198

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016006399

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167010619

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016115736

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016006399

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160323