WO2015045069A1 - 永久磁石埋込型電動機、圧縮機及び冷凍空調装置 - Google Patents

永久磁石埋込型電動機、圧縮機及び冷凍空調装置 Download PDF

Info

Publication number
WO2015045069A1
WO2015045069A1 PCT/JP2013/076116 JP2013076116W WO2015045069A1 WO 2015045069 A1 WO2015045069 A1 WO 2015045069A1 JP 2013076116 W JP2013076116 W JP 2013076116W WO 2015045069 A1 WO2015045069 A1 WO 2015045069A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
caulking
slit
electric motor
permanent magnet
Prior art date
Application number
PCT/JP2013/076116
Other languages
English (en)
French (fr)
Inventor
和慶 土田
昌弘 仁吾
馬場 和彦
石川 淳史
及川 智明
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/076116 priority Critical patent/WO2015045069A1/ja
Priority to JP2015539145A priority patent/JP6037362B2/ja
Priority to PCT/JP2014/074635 priority patent/WO2015045999A1/ja
Priority to CN201480052725.3A priority patent/CN105580244B/zh
Priority to US14/912,752 priority patent/US9876402B2/en
Priority to CN201420555812.8U priority patent/CN204179779U/zh
Publication of WO2015045069A1 publication Critical patent/WO2015045069A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Definitions

  • the present invention relates to a permanent magnet embedded electric motor, a compressor, and a refrigeration air conditioner.
  • Patent Document 1 discloses a permanent magnet embedded electric motor in which a plurality of slits are provided on the outer side in the radial direction than the magnet insertion hole in the rotor.
  • the harmonic component of the magnetic flux density waveform is reduced by the action of the slit, the harmonic of the induced voltage and the cogging torque are reduced, and noise and vibration can be reduced.
  • the rotor of the permanent magnet embedded motor is configured by laminating thin electromagnetic steel plates, caulking is necessary to fix the steel plates together. And the direction where the crimping is located in the diameter direction outside in a rotor can fix steel plates effectively.
  • the present invention has been made in view of the above, and it is possible to more effectively fix a plate member by caulking, and it is possible to reduce noise and vibration, and an embedded permanent magnet electric motor The purpose is to provide.
  • the present invention includes a stator and a rotor that is rotatably provided facing the stator, and the rotor has a rotor core configured by stacking a plurality of plate members.
  • the rotor core is formed with a plurality of magnet insertion holes into which corresponding permanent magnets are inserted, and the plurality of magnet insertion holes are formed in a shape protruding toward the center of the rotor.
  • the embedded permanent magnet electric motor wherein at least one slit and at least one caulking are formed between a rotor outer peripheral surface of the rotor and a radially outer insertion hole outer surface of the magnet insertion hole.
  • At least a part of the caulking is located between the pair of width extension lines of the slit.
  • a plurality of slits are formed between a rotor outer peripheral surface of the rotor and a radially outer insertion hole outer surface of the magnet insertion hole, and the plurality of slits are arranged in the width direction. May be.
  • the present invention also provides a compressor, and the compressor according to the present invention includes an electric motor and a compression element in a hermetic container, and the electric motor includes the book described above. It is the permanent magnet embedded type electric motor which concerns on invention. Furthermore, in order to achieve the object, the present invention also provides a refrigeration air conditioner, and the refrigeration air conditioner according to the present invention includes the above-described compressor according to the present invention as a component of the refrigeration circuit.
  • the plate member can be more effectively fixed by caulking, and noise and vibration can be reduced.
  • FIG. 1 It is a figure which shows the cross section orthogonal to the rotation centerline of the permanent magnet embedded type electric motor which concerns on Embodiment 1 of this invention. It is a figure which expands and shows the surrounding part of one permanent magnet in FIG. It is a figure which expands further and shows the circumference
  • FIG. 6 is a diagram showing a configuration when caulking is further added to the rotor of FIG. 5. It is a figure which shows the case where at least one part of crimping is located between a pair of width extension line of a slit. It is a figure which shows the case where the whole crimp is not located between a pair of width extension line of a slit. It is a figure which shows the form in which the crimp is formed in the radial direction outer side of a slit.
  • FIG. 4 is a cross-sectional view taken along line II in FIG. 3. It is sectional drawing by the II-II line of FIG. It is a figure of the same aspect as FIG. 1 of a rotor part regarding Embodiment 4 of this invention.
  • FIG. 1 of a rotor part Regard Embodiment 5 of this invention. It is a figure of the same aspect as FIG. It is a figure of the same aspect as FIG. 1 of a rotor part regarding Embodiment 6 of this invention. It is a figure of the same aspect as FIG. It is a figure of the same aspect as FIG. 1 of a rotor part regarding Embodiment 7 of this invention. It is a figure of the same aspect as FIG. It is a longitudinal cross-sectional view of the rotary compressor which concerns on Embodiment 8 of this invention carrying a permanent magnet embedded type electric motor.
  • FIG. 7 to FIG. 11, and FIG. 14 to FIG. 21 give priority to the clarity of the drawings, and hatching is omitted.
  • FIG. FIG. 1 is a view showing a cross section orthogonal to the rotation center line of the permanent magnet embedded electric motor according to Embodiment 1 of the present invention
  • FIG. 2 is an enlarged view of the periphery of one permanent magnet in FIG.
  • FIG. 3 is a diagram further enlarging the periphery of the plurality of slits in FIG. 2.
  • the embedded permanent magnet electric motor 1 includes a stator 3 and a rotor 5 that is rotatably provided facing the stator.
  • the stator 3 has a plurality of tooth portions 7. Each of the plurality of tooth portions 7 is adjacent to another tooth portion 7 via a corresponding slot portion 9.
  • the plurality of tooth portions 7 and the plurality of slot portions 9 are arranged so as to be alternately arranged at equal intervals in the circumferential direction.
  • a known stator winding (not shown) is wound around each of the plurality of tooth portions 7 in a known manner.
  • the rotor 5 has a rotor core 11 and a shaft 13.
  • the shaft 13 is connected to the axial center portion of the rotor core 11 by shrink fitting, press fitting, or the like, and transmits rotational energy to the rotor core 11.
  • An air gap 15 is secured between the outer peripheral surface of the rotor 5 and the inner peripheral surface of the stator 3.
  • the rotor 5 is held inside the stator 3 via the air gap 15 so as to be rotatable around the rotation center line CL (rotor center of the rotor, shaft axis).
  • a current of a frequency synchronized with the command rotational speed is supplied to the stator 3 to generate a rotating magnetic field and rotate the rotor 5.
  • the air gap 15 between the stator 3 and the rotor 5 is a gap of 0.3 to 1 mm.
  • the stator 3 has a stator core 17.
  • the stator core 17 is configured, for example, by punching out electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm per sheet into a predetermined shape and laminating a predetermined number of electromagnetic steel sheets while being fastened with caulking.
  • an electromagnetic steel plate having a plate thickness of 0.35 mm is used.
  • the stator core 17 is radially formed with nine slot portions 9 at substantially equal intervals in the circumferential direction on the inner diameter side thereof.
  • a region between adjacent slot portions 9 in the stator core 17 is referred to as a teeth portion 7.
  • Each of the tooth portions 7 extends in the radial direction and protrudes toward the rotation center line CL. Further, most of the tooth portion 7 has a substantially equal circumferential width from the radially outer side to the radially inner side, but the tooth tip portion is located at the tip end that is the radially inner side of the tooth portion 7. 7a.
  • Each of the tooth tip portions 7a is formed in an umbrella shape in which both side portions extend in the circumferential direction.
  • a stator winding (not shown) constituting a coil (not shown) for generating a rotating magnetic field is wound around the teeth portion.
  • the coil is formed by winding a magnet wire directly around a magnetic pole tooth through an insulator. This winding method is called concentrated winding.
  • the coil is connected to a three-phase Y connection.
  • the number of turns and the wire diameter of the coil are determined according to the required characteristics (rotation speed, torque, etc.), voltage specifications, and the cross-sectional area of the slot.
  • the divided teeth are spread in a strip shape so that winding is easy.
  • a magnet wire having a wire diameter of about 0.8 to 1.0 mm is wound around each magnetic pole tooth for about 50 to 100 turns. These are rounded and welded to form a stator.
  • a shaft 13 that is rotatably held is disposed.
  • the rotor 5 is fitted to the shaft 13.
  • the rotor 5 has a rotor core 11, and the rotor core 11 is also punched out from a magnetic steel sheet having a thickness of about 0.1 to 0.7 mm in a predetermined shape, for example, as a predetermined number of plate members.
  • the magnetic steel sheets are laminated while being fastened with caulking described later.
  • an electromagnetic steel plate having a plate thickness of 0.35 mm is used.
  • Each of these thin interpole portions serves as a path for leakage magnetic flux between adjacent magnetic poles, and is preferably as thin as possible.
  • the minimum width that can be pressed is set to about 0.35 mm of the thickness of the electromagnetic steel sheet.
  • a plurality of (six in this example) permanent magnets 19 are provided so that N poles and S poles are alternately arranged.
  • Each of the permanent magnets 19 is curved in an arc shape as viewed in FIG. 1, and is arranged so that the convex portion side of the arc shape faces the center side of the rotor 5.
  • the rotor core 11 has a number of magnet insertion holes 21 corresponding to the plurality of permanent magnets 19, and the corresponding permanent magnets 19 are inserted into the plurality of magnet insertion holes 21, respectively. . That is, the plurality of permanent magnets 19 and the plurality of magnet insertion holes 21 are both formed in an arc shape that is convex toward the center side of the rotor 5. As shown in FIG. 1, one permanent magnet 19 is inserted into one magnet insertion hole 21.
  • the number of magnetic poles of the rotor 5 may be any number as long as it is two or more, but in this example, the case of six poles is illustrated.
  • At least one slit and at least one caulking are formed between the rotor outer peripheral surface of the rotor and the outer surface of the radially outer insertion hole described later of the magnet insertion hole.
  • a plurality of (more specifically, three) slits 72 and one caulking 76 are formed for each of the six magnetic poles.
  • Each of the permanent magnets 19 has a radially inner magnet outer surface 43, a radially outer magnet outer surface 45, and a pair of side end magnet outer surfaces 47.
  • Each of the magnet insertion holes 21 has a radially inner insertion hole outer surface 53, a radially outer insertion hole outer surface 55, and a pair of side end insertion hole outer surfaces 57.
  • the radially outer insertion hole outer surface 55 is constituted by a first arc surface having a first arc radius.
  • the radially inner insertion hole outer shape surface 53 is configured by a second arc surface having a second arc radius larger than the first arc radius.
  • the first arc radius and the second arc radius have a common radius center, and the common radius center is on the outer side in the radial direction than the permanent magnet 19 and the magnet insertion hole 21 and corresponds. It exists on the magnetic pole center line ML.
  • the radially inner insertion hole outer surface 53 and the radially outer insertion hole outer surface 55 are configured concentrically, and the center of the first arc surface and the center of the second arc surface are the orientation centers of the permanent magnets. (Alignment focus).
  • pair of side end magnet outer surfaces 47 respectively connect corresponding ends of the radially inner magnet outer surface 43 and the radially outer magnet outer surface 45 in FIG.
  • Each outer surface 57 connects corresponding ends of the radially inner insertion hole outer surface 53 and the radially outer insertion hole outer surface 55 in FIG.
  • Each of the slits 72 extends in a direction parallel to the corresponding magnetic pole center line ML and penetrates the rotor core 11 in the direction of the rotation center line CL.
  • the width direction WD is a direction orthogonal to the corresponding magnetic pole center line ML and the width of one slit 72 (caulking arrangement slit 72 a) corresponding to the caulking 76 is SW
  • the present invention provides the slit 72 corresponding to the caulking 76. At least a part of the caulking 76 is located between the pair of width extension lines WE.
  • the state in which at least a part of the caulking 76 is located between the pair of width extension lines WE of the slit 72 corresponding to the caulking 76 (a state in which the part is located and the whole is located).
  • the slit 72 and the caulking 76 are “arranged” in the radial direction.
  • the entire caulking 76 is located between a pair of width extension lines of one corresponding slit 72 (caulking alignment slit 72a).
  • slits 72 (single slits 72b) that are not aligned with the caulking 76 are located on both sides of the caulking arrangement slit 72a in the width direction WD.
  • the three slits 72 are spaced apart at equal intervals when viewed in the width direction WD.
  • the extension length of one caulking alignment slit 72a is shorter than the extension length of two single slits 72b.
  • the width of the caulking 76 is smaller than the width of the caulking alignment slit 72a.
  • the caulking 76 is formed on the radially inner side of the caulking alignment slit 72a.
  • the center line in the width direction of the caulking alignment slit 72a and the center line in the width direction of the caulking 76 are aligned on the same line.
  • the three slits 72 and one caulking 76 are arranged symmetrically about the corresponding magnetic pole center line ML.
  • FIG. 4 shows a rotor without slits.
  • a rotor without slits when a magnetic flux is generated in the stator, an attractive force acts on the core portion on the radially outer side of the magnet insertion hole of the rotor by the magnetic flux of the stator. Since this force becomes vibration and noise, it is desirable to reduce the suction force acting near the outer peripheral surface of the rotor as much as possible.
  • FIG. 6 shows an analysis result of electromagnetic force (fundamental wave component) generated (causing noise) when the rotor shown in FIG. 4 and the rotor shown in FIG. 5 are driven under the same operating conditions. .
  • electromagnetic force fundamental wave component
  • the slit As the slit is increased, the width of the magnetic path is reduced, and the efficiency of the rotor is reduced due to the reduced magnetic force of the rotor. Therefore, it is important to provide the slit with a balance that does not reduce the magnetic force of the rotor.
  • the caulking 76 is positioned between the pair of width extension lines WE of the slit 72, in other words, as shown in FIG. Is not located between the pair of width extension lines of the slit.
  • the entire caulking 76 is configured to be positioned between the pair of width extension lines WE of the slit 72. .
  • the decrease in magnetic force can be suppressed by the area of the caulking portion positioned within the slit width range.
  • the caulking 76 can be provided on the radially outer side of the magnet insertion hole 21 without occupying the path. Therefore, the constituent plate member of the rotor can be more effectively fixed by caulking, and noise and vibration can be reduced.
  • FIG. 12 and 13 show cross sections taken along line II in FIG. 3 and line II-II in FIG. 11, respectively.
  • the caulking 76 of the laminated steel sheet can maintain the laminated state by being press-fitted, but stress is exerted by the press-fitting. For this reason, in the aspect in which the caulking 76 is formed on the radially outer side of the slit 72, the outer diameter of the rotor slightly expands due to the radially outward stress F indicated by the arrow in FIG. Care must be taken not to. On the other hand, in the embodiment in which the caulking 76 is formed on the radially inner side of the slit 72 as in the first embodiment, the radially outward stress F indicated by the arrow in FIG.
  • FIG. A second embodiment of the present invention will be described.
  • the second embodiment of the present invention for example, as shown in FIG. 9, at least a part of the caulking is positioned between a pair of width extension lines of the slit.
  • the second embodiment is the same as the first embodiment.
  • FIG. Embodiment 3 of the present invention will be described.
  • a third embodiment of the present invention for example, as shown in FIGS. 11 and 13, there is a form in which caulking is formed on the radially outer side of the corresponding slit.
  • the third embodiment is the same as the first or second embodiment.
  • Embodiment 4 FIG. Next, a fourth embodiment of the present invention will be described.
  • the present invention is not limited to the form in which the crimp is on the magnetic pole center line ML, or the form in which the crimp and the caulking arrangement slit are sandwiched between a pair of single slits.
  • the crimp is on the magnetic pole center line ML. It is also possible to carry out the present invention in a form in which there is no single slit on both sides in the width direction of the caulking and caulking arrangement slits.
  • the fourth embodiment is the same as the first or second embodiment. According to the fourth embodiment, in addition to the same advantages as those of the first or second embodiment described above, the caulking is provided on both sides of each magnetic pole center line ML, so that the opening of the core is suppressed. There is an advantage that the effect can be obtained more strongly.
  • FIG. 16 and FIG. 17 are examples thereof, and in the fourth embodiment, the positional relationship between the radial direction inside and outside is exchanged between the caulking 176 and the slit 172 (caulking alignment slit 172a).
  • the fifth embodiment is the same as the fourth embodiment.
  • caulking is provided on both sides of each magnetic pole center line ML as in the fourth embodiment. Therefore, there is an advantage that the effect of suppressing the opening of the core can be obtained more strongly. Further, in the fifth embodiment, the holding force of the laminated steel sheet is further increased because the caulking on both sides of each magnetic pole center line ML is arranged on the outer side in the radial direction, and a significant improvement in quality is expected. it can.
  • Embodiment 6 FIG. Next, a sixth embodiment of the present invention will be described.
  • the center in the width direction of the caulking and the center in the width direction of the caulking alignment slit are both shifted from the magnetic pole center line ML, and the single slit 72b is located on the magnetic pole center line ML.
  • you can. 18 and 19 are examples thereof.
  • On the magnetic pole center line ML there is a slit 272 (single slit 172b), a slit 272 (single slit 72b) on one side in the width direction, and a slit 272 (caulking and arranging slit 172a) and caulking on the other side.
  • the sixth embodiment is the same as the first or second embodiment. According to the sixth embodiment, the same advantages as in the first or second embodiment described above can be obtained.
  • Embodiment 7 FIG. Next, a seventh embodiment of the present invention will be described. As shown in FIGS. 20 and 21, the seventh embodiment replaces the positional relationship in the radial direction between the caulking 276 and the slit 272 (the caulking arrangement slit 172 a) in the sixth embodiment. It is a form. For configurations other than those described above, the seventh embodiment is the same as the sixth embodiment. According to the seventh embodiment, the same advantages as in the first or second embodiment described above can be obtained.
  • Embodiment 8 FIG. Next, as an eighth embodiment of the present invention, a rotary compressor on which the permanent magnet embedded motor according to any of the first to seventh embodiments described above is mounted will be described.
  • the present invention includes a compressor equipped with the permanent magnet embedded type electric motor according to any of the first to seventh embodiments described above, but the type of the compressor is not limited to the rotary compressor. .
  • FIG. 22 is a longitudinal sectional view of a rotary compressor equipped with a permanent magnet embedded type electric motor.
  • the rotary compressor 100 includes an embedded permanent magnet electric motor 1 (electric element) and a compression element 103 in an airtight container 101.
  • refrigerating machine oil that lubricates each sliding portion of the compression element 103 is stored at the bottom of the sealed container 101.
  • the compression element 103 includes, as main elements, a cylinder 105 provided in a vertically stacked state, a rotation shaft 107 that is a shaft that is rotated by the embedded permanent magnet electric motor 1, a piston 109 that is inserted into the rotation shaft 107, A vane (not shown) that divides the inside of the cylinder 105 into a suction side and a compression side, and a pair of upper and lower frames 111 and 113 that are rotatably inserted into the rotary shaft 107 and close the axial end surface of the cylinder 105. , And mufflers 115 respectively mounted on the upper frame 111 and the lower frame 113.
  • the stator 3 of the permanent magnet embedded electric motor 1 is directly attached and held on the sealed container 101 by a method such as shrink fitting or welding. Electric power is supplied to the coil of the stator 3 from a glass terminal fixed to the sealed container 101.
  • the rotor 5 is disposed on the inner diameter side of the stator 3 via a gap, and a bearing portion (an upper frame 111 and a lower frame 113) of the compression element 103 via a rotation shaft 107 (shaft 13) at the center of the rotor 5. ) Is held in a freely rotatable state.
  • the refrigerant gas supplied from the accumulator 117 is sucked into the cylinder 105 through a suction pipe 119 fixed to the sealed container 101.
  • the permanent magnet embedded electric motor 1 is rotated by energization of the inverter, so that the piston 109 fitted to the rotating shaft 107 is rotated in the cylinder 105.
  • the refrigerant is compressed in the cylinder 105.
  • the refrigerant passes through the muffler 115, the refrigerant rises in the sealed container 101. At this time, refrigeration oil is mixed in the compressed refrigerant.
  • the mixture of the refrigerant and the refrigerating machine oil passes through the air holes provided in the rotor core 11, the separation of the refrigerant and the refrigerating machine oil is promoted, and the refrigerating machine oil can be prevented from flowing into the discharge pipe 121. In this way, the compressed refrigerant is supplied to the high-pressure side of the refrigeration cycle through the discharge pipe 121 provided in the sealed container 101.
  • any refrigerant such as a low GWP (global warming potential) refrigerant can be applied. From the viewpoint of preventing global warming, a low GWP refrigerant is desired.
  • the low GWP refrigerant there are the following refrigerants.
  • HFO is an abbreviation for Hydro-Fluoro-Olefin
  • Olefin is an unsaturated hydrocarbon having one double bond.
  • the GFO of HFO-1234yf is 4.
  • Hydrocarbon having a carbon double bond in the composition for example, R1270 (propylene).
  • GWP is 3, which is smaller than HFO-1234yf, but flammability is larger than HFO-1234yf.
  • the rotary compressor according to the eighth embodiment configured as described above has the same advantages as any of the corresponding ones of the above-described first to seventh embodiments if the above-described permanent magnet embedded type electric motor is used.
  • Embodiment 9 FIG.
  • the present invention can also be implemented as a refrigeration air conditioner including the above-described compressor of the eighth embodiment as a component of the refrigeration circuit.
  • the structure of components other than the compressor in the refrigeration circuit of the refrigeration air conditioner is not particularly limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 永久磁石埋込型電動機1においては、ステータ3と、ロータ5とを備え、ロータは、複数の板部材を積層して構成されたロータコア11を有し、ロータコアには、それぞれ対応する永久磁石19が挿入される複数の磁石挿入孔21が形成されており、磁石挿入孔は、ロータの中心側に凸となる形状で形成されており、ロータにおけるロータ外周面25と磁石挿入孔の径方向外側挿入孔外形面55との間には、少なくとも一つのスリット72と、少なくとも一つのカシメ76とが形成されており、スリットの一対の幅延長線WEの間に、カシメの少なくとも一部が位置している。

Description

永久磁石埋込型電動機、圧縮機及び冷凍空調装置
 本発明は、永久磁石埋込型電動機、圧縮機及び冷凍空調装置に関するものである。
 従来の永久磁石埋込型電動機として、特許文献1には、ロータにおいて磁石挿入孔よりも径方向外側に複数のスリットを設けた永久磁石埋込型電動機が開示されている。かかる永久磁石埋込型電動機では、スリットの作用により、磁束密度波形の高調波成分が低減し、誘起電圧の高調波、コギングトルクが低減し、騒音及び振動の低減を図ることができる。
特開2008-167583号公報
 一方、永久磁石埋込型電動機のロータは、薄い電磁鋼板を積層して構成されるため、鋼板同士を固定するためにカシメが必要となる。そして、カシメは、ロータにおける径方向外側に位置している方が、鋼板同士を効果的に固定できる。
 本発明は、上記に鑑みてなされたものであり、カシメによる板部材の固定をより効果的に行うことができ、尚且つ、騒音及び振動の低減を図ることができる、永久磁石埋込型電動機を提供することを目的とする。
 上述した目的を達成するための本発明は、ステータと、前記ステータに対向して回転可能に設けられたロータとを備え、前記ロータは、複数の板部材を積層して構成されたロータコアを有し、前記ロータコアには、それぞれ対応する永久磁石が挿入される複数の磁石挿入孔が形成されており、前記複数の磁石挿入孔は、前記ロータの中心側に凸となる形状で形成されている、永久磁石埋込型電動機であって、前記ロータにおけるロータ外周面と前記磁石挿入孔の径方向外側挿入孔外形面との間には、少なくとも一つのスリットと、少なくとも一つのカシメとが形成されており、前記スリットの一対の幅延長線の間に、前記カシメの少なくとも一部が位置している。
 前記カシメは、その全体が、前記スリットの一対の幅延長線の間に、位置しているように構成してもよい。
 前記ロータにおけるロータ外周面と前記磁石挿入孔の径方向外側挿入孔外形面との間には、複数のスリットが形成されており、前記複数のスリットは、幅方向に並んでいるように構成してもよい。
 前記カシメは、対応する前記スリットの径方向内側に形成されているように構成してもよい。
 さらに、同目的を達成するため、本発明は圧縮機も提供するものであり、本発明に係る圧縮機は、密閉容器内に、電動機と、圧縮要素とを備え、前記電動機は、上述した本発明に係る永久磁石埋込型電動機である。
 さらに、同目的を達成するため、本発明は冷凍空調装置も提供するものであり、本発明に係る冷凍空調装置は、上述した本発明に係る圧縮機を冷凍回路の構成要素として含む。
 本発明によれば、カシメによる板部材の固定をより効果的に行うことができ、尚且つ、騒音及び振動の低減を図ることができる。
本発明の実施の形態1に係る永久磁石埋込型電動機の回転中心線と直交する断面を示す図である。 図1における一つの永久磁石の周囲部を拡大して示す図である。 図2における複数のスリットの周囲をさらに拡大して示す図である。 スリットの無いロータを示す図である。 スリットが形成されたロータを示す図である。 図4に示すロータと、図5に示すロータとの電磁力の解析結果を示すグラフである。 図5におけるロータの磁路(磁束の通路)を矢印で模式的に示す図である。 図5のロータにおいて、さらに、カシメを追加した場合の構成を示す図である。 カシメの少なくとも一部がスリットの一対の幅延長線の間に位置する場合を示す図である。 カシメの全体がスリットの一対の幅延長線の間に位置しない場合を示す図である。 カシメが、スリットの径方向外側に形成されている形態を示す図である。 図3のI-I線による断面図である。 図11のII-II線による断面図である。 本発明の実施の形態4に関し、ロータ部分の図1と同態様の図である。 本実施の形態4に関する、図2と同態様の図である。 本発明の実施の形態5に関し、ロータ部分の図1と同態様の図である。 本実施の形態5に関する、図2と同態様の図である。 本発明の実施の形態6に関し、ロータ部分の図1と同態様の図である。 本実施の形態6に関する、図2と同態様の図である。 本発明の実施の形態7に関し、ロータ部分の図1と同態様の図である。 本実施の形態7に関する、図2と同態様の図である。 永久磁石埋込型電動機を搭載した本発明の実施の形態8に係るロータリ圧縮機の縦断面図である。
 以下、本発明の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。なお、図2~図5、図7~図11、図14~図21については、図の明瞭性を優先し、ハッチングは省略する。
 実施の形態1.
 図1は、本発明の実施の形態1に係る永久磁石埋込型電動機の回転中心線と直交する断面を示す図であり、図2は、図1における一つの永久磁石の周囲部を拡大して示す図であり、図3は、図2における複数のスリットの周囲をさらに拡大して示す図である。
 永久磁石埋込型電動機1は、ステータ3と、ステータに対向して回転可能に設けられたロータ5とを備える。ステータ3は、複数のティース部7を有している。複数のティース部7はそれぞれ、対応するスロット部9を介して別のティース部7と隣り合っている。複数のティース部7と複数のスロット部9とは、周方向に交互に且つ等間隔で並ぶように配置されている。複数のティース部7には、それぞれ、図示省略する公知のステータ巻線が公知の態様で巻回されている。
 ロータ5は、ロータコア11と、シャフト13とを有している。シャフト13は、ロータコア11の軸心部に、焼嵌、圧入等により連結されており、ロータコア11に回転エネルギーを伝達する。ロータ5の外周面と、ステータ3の内周面との間には、エアギャップ15が確保されている。
 このような構成において、ロータ5はエアギャップ15を介したステータ3の内側で、回転中心線CL(ロータの回転中心、シャフトの軸線)を中心に回転自在に保持されている。具体的には、ステータ3に、指令回転数に同期した周波数の電流を通電することにより、回転磁界を発生させ、ロータ5を回転させる。ステータ3とロータ5との間のエアギャップ15は、例を挙げると0.3~1mmの空隙である。
 次に、ステータ3と、ロータ5との構成を詳細に説明する。ステータ3は、ステータコア17を有する。ステータコア17は、例えば、一枚あたりの厚さが0.1~0.7mm程度の電磁鋼板を所定の形状に打ち抜き、所定枚数の電磁鋼板をカシメで締結しながら積層して構成される。ここでは、一例として、板厚が0.35mmの電磁鋼板を用いている。
 ステータコア17には、その内径側に周方向に略等間隔に9個のスロット部9が放射状に形成されている。そして、ステータコア17において隣接するスロット部9の間の領域をティース部7と称する。ティース部7はそれぞれ、径方向を延びており、回転中心線CLに向けて突出する。また、ティース部7の大部分は、径方向外側から径方向内側にかけて略等しい周方向の幅を有しているが、ティース部7の最も径方向内側となる先端部には、ティース歯先部7aを有している。ティース歯先部7aはそれぞれ、その両側部が周方向に広がる傘状の形状に形成されている。
 ティース部には、回転磁界を発生させるコイル(図示せず)を構成するステータ巻線(図示せず)が巻かれている。コイルは、マグネットワイヤーを、絶縁体を介して磁極ティースに直接巻き付けて形成される。この巻線方式を、集中巻線という。そして、コイルは、3相Y結線に結線される。コイルのターン数や線径は、要求される特性(回転数やトルク等)、電圧仕様、スロットの断面積に応じて定まる。ここでは、巻線し易いように分割ティースを帯状に展開し、例えば、線径φ0.8~1.0mm程度のマグネットワイヤーを各磁極ティースに50~100ターン程度巻き付け、巻線後、分割ティースを環状に丸め、溶接してステータを構成している。
 ステータ3の中心付近には、回転可能に保持されたシャフト13が配置されている。そして、そのシャフト13にロータ5が嵌合されている。ロータ5は、ロータコア11を有しており、そのロータコア11もまた、ステータコア17同様、例えば、厚さ0.1~0.7mm程度の電磁鋼板を所定の形状に打ち抜き、所定枚数の板部材としての電磁鋼板を後述するカシメで締結しながら積層して構成される。ここでは、一例として、板厚が0.35mmの電磁鋼板を用いている。ロータ外周面25と後述する側端挿入孔外形面57との間は、一様な肉厚の極間薄肉部が存在する。これらの極間薄肉部はそれぞれ、隣接する磁極間での漏れ磁束の経路となるため、できるだけ薄いことが好ましい。ここでは一例としてプレス可能な最小幅として電磁鋼板の板厚程度0.35mmに設定している。
 ロータコア11の内部には、N極とS極とが交互になるように着磁された複数の(本具体例では6個の)の永久磁石19が設けられている。永久磁石19はそれぞれ、図1においてみて、弧状に湾曲しており、その弧形状の凸部側がロータ5の中心側に向くように配置されている。より詳細には、ロータコア11には、複数の永久磁石19に対応した数の磁石挿入孔21が形成されており、複数の磁石挿入孔21にはそれぞれ、対応する永久磁石19が挿入されている。つまり、複数の永久磁石19及び複数の磁石挿入孔21が共に、ロータ5の中心側に凸となる向きの弧状に形成されている。また、図1に示されているように、一つの磁石挿入孔21につき一つの永久磁石19が挿入されている。なお、ロータ5の磁極数は、2極以上であればいくつでもよいが、本例では、6極の場合を例示している。
 本発明では、ロータにおけるロータ外周面と磁石挿入孔の後述する径方向外側挿入孔外形面との間に、少なくとも一つのスリットと、少なくとも一つのカシメとが形成されていることを要するが、本実施の形態1では、その一例として、6極の磁極それぞれに関して、複数の(より具体的には3つの)スリット72と、一つのカシメ76とが形成されている。
 次に、主に図2に基づいて、永久磁石及び磁石挿入孔の詳細について説明する。永久磁石19はそれぞれ、径方向内側磁石外形面43と、径方向外側磁石外形面45と、一対の側端磁石外形面47とを有している。また、磁石挿入孔21はそれぞれ、径方向内側挿入孔外形面53と、径方向外側挿入孔外形面55と、一対の側端挿入孔外形面57とを有している。
 径方向外側挿入孔外形面55は、第1円弧半径による第1円弧面によって構成されている。径方向内側挿入孔外形面53は、第1円弧半径よりも大きい第2円弧半径による第2円弧面によって構成されている。第1円弧半径と、第2円弧半径とは、共通の半径中心を有しており、その共通の半径中心は、永久磁石19及び磁石挿入孔21よりも径方向外側に在り、且つ、対応する磁極中心線ML上に在る。換言すると、径方向内側挿入孔外形面53と、径方向外側挿入孔外形面55とは、同心円状に構成され、第1円弧面の中心と第2円弧面の中心は、永久磁石の配向中心(配向焦点)に一致している。
 また、一対の側端磁石外形面47はそれぞれ、図2においてみて、径方向内側磁石外形面43及び径方向外側磁石外形面45の対応する端部同士を結んでおり、一対の側端挿入孔外形面57はそれぞれ、図2においてみて、径方向内側挿入孔外形面53及び径方向外側挿入孔外形面55の対応する端部同士を結んでいる。
 さらに、図2及び図3に基づいて、スリット及びカシメの詳細について説明する。スリット72は何れも、対応する磁極中心線MLと平行な方向に延びており、ロータコア11を回転中心線CL方向に貫通する孔である。対応する磁極中心線MLと直交する方向を幅方向WDとし、カシメ76と対応する1つのスリット72(カシメ並びスリット72a)の幅をSWとしたとき、本発明は、カシメ76と対応するスリット72の一対の幅延長線WEの間に、カシメ76の少なくとも一部が位置している。また、このようにカシメ76と対応するスリット72の一対の幅延長線WEの間に、カシメ76の少なくとも一部が位置している状態(一部が位置している状態と全体が位置している状態を含む)を、スリット72とカシメ76とが径方向に「並ぶ」状態とする。特に、本実施の形態1では、カシメ76は、その全体が、対応する1つのスリット72(カシメ並びスリット72a)の一対の幅延長線の間に、位置している。
 本実施の形態1では、カシメ並びスリット72aの幅方向WDの両側それぞれに、カシメ76と並ばないスリット72(単独スリット72b)が位置している。3つのスリット72は、幅方向WDでみて、等間隔で離隔している。また、1つのカシメ並びスリット72aの延長長さは、2つの単独スリット72bの延長長さよりも短い。また、カシメ76の幅は、カシメ並びスリット72aの幅よりも小さくなっている。さらに、カシメ並びスリット72aと、カシメ76との、対応する磁極中心線MLの延びる方向でみた位置関係については、カシメ76が、カシメ並びスリット72aの径方向内側に形成されている。カシメ並びスリット72aの幅方向中心線と、カシメ76の幅方向中心線とは、同一線上に揃っている。そして、3つのスリット72と1つのカシメ76とは、対応する磁極中心線MLを中心とした線対称に配置されている。
 以上のように構成された本実施の形態1に係る永久磁石埋込型電動機によれば、次のような利点が得られる。まず、図4に、スリットの無いロータを示す。このようなスリットの無いロータにおいては、ステータに磁束が発生した場合、ステータの磁束によってロータの磁石挿入孔の径方向外側のコアの部分に吸引力が働く。この力が振動・騒音となってしまうため、ロータの外周面付近に働く吸引力はできるだけ小さくしたい。
 そこで、図5に示すように、ロータの磁石挿入孔の径方向外側のコアの部分に、スリット78を設けることが有用となる。スリット78の部分は、吸引力が発生しないため、ロータ回転時に働く吸引力を低減し、結果として騒音・振動を低減させることが可能となる。
 図6には、図4に示すロータと、図5に示すロータとを、同一の運転条件下で駆動した時に発生する(騒音の原因となる)電磁力(基本波成分)の解析結果を示す。かかる結果から分かるように、スリットの無い図4のロータの電磁力を100%とした場合、スリットを有する図5のロータの電磁力は、40%程度となり、スリットを追加することで騒音が低減されることが分かる。ここで、さらなる低騒音化にはスリットを大きくしていくことが好ましいが、図7に矢印で示されるように、図5のロータに挿入された磁石の磁束はスリット以外の部分を通過するため、スリットを大きくする分だけ、磁路となる幅が小さくなり、ロータの磁力が小さくなることによる効率の悪化を招いてしまう。よって、スリットは、ロータの磁力を低減させないレベルで設けるバランスが重要となる。
 しかし、その一方で、ロータを構成する部材の固定をより効果的に行うためには、カシメの配置が考える必要がある。カシメは、ロータの径方向外側に設けるほうがコアの開きを抑えるのに効果的となる。よって、かかる観点で図5のロータにカシメ79を設ける場合、図8に示されるように、スリット78の間に設けることとなる。
 しかしながら、図8に示すように一対のスリット78の間にカシメ79を設けた場合、磁力の低下を招いてしまい望ましくない。
 そこで、本発明では、図9に示されるように、スリット72の一対の幅延長線WEの間に、カシメ76の少なくとも一部を位置させ、換言すれば、図10に示されるように、カシメの全体がスリットの一対の幅延長線の間に位置しない状態とはならないようにする。本実施の形態1では、そのような一形態として、図3に示すように、カシメ76の全体が、スリット72の一対の幅延長線WEの間に、位置しているように構成されている。これにより、スリット幅の範囲内に位置するカシメの部分の面積分だけ、磁力の低下を抑制でき、特に、図3に示す構成を有する本実施の形態1では、隣り合うスリット72の間の磁路を占有することなくカシメ76を磁石挿入孔21の径方向外側に設けることができる。よって、カシメによるロータの構成板部材の固定をより効果的に行うことができ、尚且つ、騒音及び振動の低減を図ることができる。
 また、スリット72の一対の幅延長線WEの間に、カシメ76の少なくとも一部が位置している本発明の一形態としては、図11に示されるように、カシメ76が対応するスリット72の径方向外側に形成されている形態が含まれる。一方、本実施の形態1では、図3に示されるように、カシメ76が対応するスリット72の径方向外側に形成されている。これら図3及び図11に示された形態は、双方とも、カシメによるロータの構成板部材の固定をより効果的に行うことが可能でありながら、騒音及び振動の低減を図ることができる利点がある。そして、図3に示す本実施の形態1では、図11の形態よりも、さらに有利な点がある。
 図12及び図13はそれぞれ、図3のI-I線及び図11のII-II線による断面を示す。積層鋼板のカシメ76は圧入されることによって積層状態を維持できるが、圧入により応力が働く。このため、カシメ76がスリット72の径方向外側に形成されている態様では、図13に矢印で示される径方向外側向きの応力Fに起因し、ロータの外径が僅かに拡径してしまわないように注意する必要がある。一方、本実施の形態1のように、カシメ76がスリット72の径方向内側に形成されている態様では、図12に矢印で示される径方向外側向きの応力Fは、スリット72(カシメ並びスリット72a)の存在により、ロータのロータ外周面25近傍まで伝わりにくくなっている。よって、構造そのものから、カシメの圧入によるロータ外周面の膨らみを抑制する効果が期待できる。
 実施の形態2.
 本発明の実施の形態2について説明する。本発明の実施の形態2としては、例えば図9に示されるように、スリットの一対の幅延長線の間に、カシメの少なくとも一部を位置させた形態を挙げる。なお、上記以外の構成については、本実施の形態2は実施の形態1と同様であるものとする。
 実施の形態3.
 本発明の実施の形態3について説明する。本発明の実施の形態3としては、例えば図11及び図13に示されるように、カシメが、対応するスリットの径方向外側に形成されている形態を挙げる。なお、上記以外の構成については、本実施の形態3は実施の形態1又は2と同様であるものとする。
 実施の形態4.
 次に、本発明の実施の形態4について説明する。本発明は、カシメが磁極中心線ML上にある形態や、カシメ及びカシメ並びスリットが、一対の単独スリットの間に挟まれている形態に限定されるものではなく、カシメが磁極中心線ML上にない形態、カシメ及びカシメ並びスリットの幅方向両側に単独スリットが無い形態として実施することも可能である。図14及び図15は、その一例であり、磁極中心線ML上には、スリット172(単独スリット172b)があり、そのスリット172(単独スリット172b)の幅方向両側に位置するように、一対のカシメ176と一対のスリット172(カシメ並びスリット72a)とが設けられている。なお、上記以外の構成については、本実施の形態4は実施の形態1又は2と同様であるものとする。本実施の形態4によれば、上述した実施の形態1又は2と同様な利点が得られることに加え、各磁極中心線MLの両側にカシメが設けられているので、コアの開きを抑制する効果がより強く得られる利点がある。
 実施の形態5.
 次に、本発明の実施の形態5について説明する。本発明は、上記実施の形態4のように、一つに磁極に関し、複数のカシメ176が設けられていれもよく、その場合、カシメ176はそれぞれ、対応するカシメ並びスリット172aの径方向内側に位置することには限定されない。図16及び図17は、その一例であり、上記実施の形態4において、カシメ176と、スリット172(カシメ並びスリット172a)との間で、径方向内外の位置関係を入れ替えた形態である。なお、上記以外の構成については、本実施の形態5は実施の形態4と同様であるものとする。本実施の形態5によれば、上述した実施の形態1又は2と同様な利点が得られることに加え、実施の形態4のように、各磁極中心線MLの両側にカシメが設けられているので、コアの開きを抑制する効果がより強く得られる利点がある。また、本実施の形態5は、各磁極中心線MLの両側にあるカシメが、径方向のより外側に配置されたことにより積層鋼板の保持力が一層高まっており、より大幅な品質向上が期待できる。
 実施の形態6.
 次に、本発明の実施の形態6について説明する。本発明は、カシメの幅方向中心と、カシメ並びスリットの幅方向中心とが、共に、磁極中心線ML上からずれ、且つ、磁極中心線ML上には、単独スリット72bが位置している態様でもよい。図18及び図19は、その一例である。磁極中心線ML上には、スリット272(単独スリット172b)があり、その幅方向の一方側に、スリット272(単独スリット72b)があり、他方側に、スリット272(カシメ並びスリット172a)及びカシメ276がある。なお、上記以外の構成については、本実施の形態6は実施の形態1又は2と同様であるものとする。本実施の形態6によれば、上述した実施の形態1又は2と同様な利点が得られる。
 実施の形態7.
 次に、本発明の実施の形態7について説明する。本実施の形態7は、図20及び図21に示されるように、上記実施の形態6において、カシメ276と、スリット272(カシメ並びスリット172a)との間で、径方向内外の位置関係を入れ替えた形態である。なお、上記以外の構成については、本実施の形態7は実施の形態6と同様であるものとする。本実施の形態7によれば、上述した実施の形態1又は2と同様な利点が得られる。
 実施の形態8.
 次に、本発明の実施の形態8として、上述した実施の形態1~7の何れかの永久磁石埋込型電動機を搭載したロータリ圧縮機について説明する。なお、本発明は、上述した実施の形態1~7の何れかの永久磁石埋込型電動機を搭載した圧縮機を含むものであるが、圧縮機の種別は、ロータリ圧縮機に限定されるものではない。
 図22は、永久磁石埋込型電動機を搭載したロータリ圧縮機の縦断面図である。ロータリ圧縮機100は、密閉容器101内に、永久磁石埋込型電動機1(電動要素)と、圧縮要素103とを備えている。図示はしないが、密閉容器101の底部に、圧縮要素103の各摺動部を潤滑する冷凍機油が貯留されている。
 圧縮要素103は、主な要素として、上下積層状態に設けられたシリンダ105と、永久磁石埋込型電動機1により回転するシャフトである回転軸107と、回転軸107に嵌挿されるピストン109と、シリンダ105内を吸入側と圧縮側に分けるベーン(図示せず)と、回転軸107が回転自在に嵌挿され、シリンダ105の軸方向端面を閉塞する上下一対の上部フレーム111及び下部フレーム113と、上部フレーム111及び下部フレーム113にそれぞれ装着されたマフラ115とを含んでいる。
 永久磁石埋込型電動機1のステータ3は、密閉容器101に焼嵌または溶接等の方法により直接取り付けられ保持されている。ステータ3のコイルには、密閉容器101に固定されるガラス端子から電力が供給される。
 ロータ5は、ステータ3の内径側に、空隙を介して配置されており、ロータ5の中心部の回転軸107(シャフト13)を介して圧縮要素103の軸受け部(上部フレーム111及び下部フレーム113)により回転自在な状態で保持されている。
 次に、かかるロータリ圧縮機100の動作について説明する。アキュムレータ117から供給された冷媒ガスは、密閉容器101に固定された吸入パイプ119よりシリンダ105内へ吸入される。インバータの通電によって永久磁石埋込型電動機1が回転されていることで、回転軸107に嵌合されたピストン109がシリンダ105内で回転される。それにより、シリンダ105内では冷媒の圧縮が行われる。冷媒は、マフラ115を経た後、密閉容器101内を上昇する。このとき、圧縮された冷媒には冷凍機油が混入している。この冷媒と冷凍機油との混合物は、ロータコア11に設けた風穴を通過する際に、冷媒と冷凍機油との分離を促進され、冷凍機油が吐出パイプ121へ流入するのを防止できる。このようにして、圧縮された冷媒が、密閉容器101に設けられた吐出パイプ121を通って冷凍サイクルの高圧側へと供給される。
 尚、ロータリ圧縮機100の冷媒には、従来からあるR410A、R407C、R22等を用いてもよいが、低GWP(地球温暖化係数)の冷媒等などいかなる冷媒も適用できる。地球温暖化防止の観点からは、低GWP冷媒が望まれている。低GWP冷媒の代表例として、以下の冷媒がある。
(1)組成中に炭素の二重結合を有するハロゲン化炭化水素:例えば、HFO-1234yf(CF3CF=CH2)である。HFOは、Hydro-Fluoro-Olefinの略で、Olefinは、二重結合を一つ持つ不飽和炭化水素のことである。尚、HFO-1234yfのGWPは4である。
(2)組成中に炭素の二重結合を有する炭化水素:例えば、R1270(プロピレン)である。尚、GWPは3で、HFO-1234yfより小さいが、可燃性はHFO-1234yfより大きい。
(3)組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物:例えば、HFO-1234yfとR32との混合物等である。HFO-1234yfは、低圧冷媒のため圧損が大きくなり、冷凍サイクル(特に、蒸発器において)の性能が低下しやすい。そのため、HFO-1234yfより高圧冷媒であるR32又はR41等との混合物が実用上は有力になる。
 以上に構成された本実施の形態8に係るロータリ圧縮機においても、上述した永久磁石埋込型電動機を用いれば、上述した実施の形態1~7の対応する何れかと同様な利点を有する。
 実施の形態9.
 また、本発明は、上述した実施の形態8の圧縮機を冷凍回路の構成要素として含む、冷凍空調装置として実施することも可能である。なお、冷凍空調装置の冷凍回路における、圧縮機以外の構成要素の構成は、特に、限定されるものではない。
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
 1 永久磁石埋込型電動機、3 ステータ、5 ロータ、11 ロータコア、19 永久磁石、21 磁石挿入孔、25 ロータ外周面、55 径方向外側挿入孔外形面、72、172、272 スリット、72a、172a カシメ並びスリット、72b,172b 単独スリット,76,176,276 カシメ、100 ロータリ圧縮機、101 密閉容器、103 圧縮要素、105 シリンダ、ML 磁極中心線、WE 幅延長線。

Claims (6)

  1.  ステータと、
     前記ステータに対向して回転可能に設けられたロータとを備え、
     前記ロータは、複数の板部材を積層して構成されたロータコアを有し、
     前記ロータコアには、それぞれ対応する永久磁石が挿入される複数の磁石挿入孔が形成されており、
     前記複数の磁石挿入孔は、前記ロータの中心側に凸となる形状で形成されている、永久磁石埋込型電動機であって、
     前記ロータにおけるロータ外周面と前記磁石挿入孔の径方向外側挿入孔外形面との間には、少なくとも一つのスリットと、少なくとも一つのカシメとが形成されており、
     前記スリットの一対の幅延長線の間に、前記カシメの少なくとも一部が位置している、
    永久磁石埋込型電動機。
  2.  前記カシメは、その全体が、前記スリットの一対の幅延長線の間に、位置している、
    請求項1の永久磁石埋込型電動機。
  3.  前記ロータにおけるロータ外周面と前記磁石挿入孔の径方向外側挿入孔外形面との間には、複数のスリットが形成されており、
     前記複数のスリットは、幅方向に並んでいる、
    請求項1又は2の永久磁石埋込型電動機。
  4.  前記カシメは、対応する前記スリットの径方向内側に形成されている、
    請求項1~3の何れか一項の永久磁石埋込型電動機。
  5.  密閉容器内に、電動機と、圧縮要素とを備えた圧縮機であって、
     前記電動機は、請求項1~4の何れか一項の永久磁石埋込型電動機である、
    圧縮機。
  6.  請求項5の圧縮機を冷凍回路の構成要素として含む、冷凍空調装置。
PCT/JP2013/076116 2013-09-26 2013-09-26 永久磁石埋込型電動機、圧縮機及び冷凍空調装置 WO2015045069A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2013/076116 WO2015045069A1 (ja) 2013-09-26 2013-09-26 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP2015539145A JP6037362B2 (ja) 2013-09-26 2014-09-18 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
PCT/JP2014/074635 WO2015045999A1 (ja) 2013-09-26 2014-09-18 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
CN201480052725.3A CN105580244B (zh) 2013-09-26 2014-09-18 永磁铁埋入型电动机、压缩机以及制冷空调装置
US14/912,752 US9876402B2 (en) 2013-09-26 2014-09-18 Permanent magnet embedded electric motor, compressor, and refrigerating and air-conditioning device
CN201420555812.8U CN204179779U (zh) 2013-09-26 2014-09-25 永磁铁埋入式电动机、压缩机以及制冷空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076116 WO2015045069A1 (ja) 2013-09-26 2013-09-26 永久磁石埋込型電動機、圧縮機及び冷凍空調装置

Publications (1)

Publication Number Publication Date
WO2015045069A1 true WO2015045069A1 (ja) 2015-04-02

Family

ID=52742273

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/076116 WO2015045069A1 (ja) 2013-09-26 2013-09-26 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
PCT/JP2014/074635 WO2015045999A1 (ja) 2013-09-26 2014-09-18 永久磁石埋込型電動機、圧縮機及び冷凍空調装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074635 WO2015045999A1 (ja) 2013-09-26 2014-09-18 永久磁石埋込型電動機、圧縮機及び冷凍空調装置

Country Status (4)

Country Link
US (1) US9876402B2 (ja)
JP (1) JP6037362B2 (ja)
CN (1) CN105580244B (ja)
WO (2) WO2015045069A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594099B (zh) * 2013-09-25 2018-06-08 三菱电机株式会社 永磁铁埋入型电动机、压缩机以及制冷空调装置
CN107591917A (zh) * 2016-07-06 2018-01-16 大银微系统股份有限公司 永磁马达
JP7185389B2 (ja) * 2017-02-01 2022-12-07 三菱重工サーマルシステムズ株式会社 空調機用ロータリ圧縮機システム、空調機用ロータリ圧縮機及びモータ
WO2019187339A1 (ja) * 2018-03-26 2019-10-03 パナソニックIpマネジメント株式会社 ロータ、モータ及びロータの製造方法
KR20210011954A (ko) * 2018-06-25 2021-02-02 미쓰비시덴키 가부시키가이샤 로터, 전동기, 송풍기 및 공기 조화 장치
JP7053392B2 (ja) * 2018-07-13 2022-04-12 オークマ株式会社 同期電動機の回転子
JP2020078200A (ja) * 2018-11-08 2020-05-21 本田技研工業株式会社 回転電機のロータ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187597A (ja) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd 永久磁石埋め込みロータ
JP2001037186A (ja) * 1999-07-19 2001-02-09 Toshiba Kyaria Kk 永久磁石電動機
JP2006320200A (ja) * 2006-09-04 2006-11-24 Matsushita Electric Ind Co Ltd モータ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163647A (ja) 1995-11-30 1997-06-20 Toshiba Corp 永久磁石回転子
JP3631583B2 (ja) 1997-03-31 2005-03-23 三菱電機株式会社 永久磁石形モータ
TW364234B (en) * 1997-04-14 1999-07-11 Sanyo Electric Co Rotor for an electric motor
JP3598804B2 (ja) 1998-04-10 2004-12-08 日産自動車株式会社 電動機のロータ
US6849981B2 (en) * 2002-03-20 2005-02-01 Daikin Industries, Ltd. Permanent magnet type motor and compressor comprising it
JP4815967B2 (ja) * 2005-09-21 2011-11-16 トヨタ自動車株式会社 永久磁石式回転電機
JP4815204B2 (ja) * 2005-12-01 2011-11-16 アイチエレック株式会社 永久磁石回転機及び圧縮機
JP4842670B2 (ja) * 2006-02-27 2011-12-21 トヨタ自動車株式会社 ロータおよび電動車両
JP4709132B2 (ja) 2006-12-28 2011-06-22 三菱電機株式会社 永久磁石埋込型モータの回転子及び送風機用電動機及び圧縮機用電動機
JP4838347B2 (ja) * 2007-02-21 2011-12-14 三菱電機株式会社 永久磁石同期電動機及び密閉型圧縮機
JP5362399B2 (ja) * 2009-03-13 2013-12-11 本田技研工業株式会社 回転電機及び回転電機の製造方法
JP2012060799A (ja) * 2010-09-10 2012-03-22 Mitsubishi Electric Corp 圧縮機用電動機及び圧縮機及び冷凍サイクル装置
JP2014072995A (ja) * 2012-09-28 2014-04-21 Suzuki Motor Corp Ipm型電動回転機
CN204179779U (zh) 2013-09-26 2015-02-25 三菱电机株式会社 永磁铁埋入式电动机、压缩机以及制冷空调装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187597A (ja) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd 永久磁石埋め込みロータ
JP2001037186A (ja) * 1999-07-19 2001-02-09 Toshiba Kyaria Kk 永久磁石電動機
JP2006320200A (ja) * 2006-09-04 2006-11-24 Matsushita Electric Ind Co Ltd モータ

Also Published As

Publication number Publication date
CN105580244A (zh) 2016-05-11
JPWO2015045999A1 (ja) 2017-03-09
US9876402B2 (en) 2018-01-23
CN105580244B (zh) 2018-04-06
JP6037362B2 (ja) 2016-12-07
US20160211709A1 (en) 2016-07-21
WO2015045999A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP6037362B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6009088B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6022031B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6080967B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6188927B2 (ja) 永久磁石埋込型電動機、圧縮機、冷凍空調装置
JP6037361B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6184591B2 (ja) 永久磁石埋込型電動機、圧縮機、冷凍空調装置
JP6612215B2 (ja) ロータ、永久磁石埋込型電動機および圧縮機
JP6289694B2 (ja) 永久磁石埋込型電動機、圧縮機、冷凍空調装置
WO2020021692A1 (ja) 電動機、圧縮機および空気調和装置
JP6339103B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6486492B2 (ja) ロータ、永久磁石埋込型電動機および圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP