WO2015045067A1 - 表示装置および表示装置の制御方法 - Google Patents

表示装置および表示装置の制御方法 Download PDF

Info

Publication number
WO2015045067A1
WO2015045067A1 PCT/JP2013/076099 JP2013076099W WO2015045067A1 WO 2015045067 A1 WO2015045067 A1 WO 2015045067A1 JP 2013076099 W JP2013076099 W JP 2013076099W WO 2015045067 A1 WO2015045067 A1 WO 2015045067A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time
voltage
screen
switching
Prior art date
Application number
PCT/JP2013/076099
Other languages
English (en)
French (fr)
Inventor
伊藤 友二
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2013/076099 priority Critical patent/WO2015045067A1/ja
Publication of WO2015045067A1 publication Critical patent/WO2015045067A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the present invention relates to a display device for displaying video and a control method for the display device.
  • a display device that displays an image by projecting a projection image from a light source such as a projector onto a screen (projection surface) is known.
  • Patent Document 1 a transmissive liquid crystal display panel is used as a screen, and the transmittance of the screen is controlled to alternately change between a transparent state and an opaque state, and placed behind the screen in the transparent state. It has been proposed that an image is taken by a viewer using a camera that is displayed and an image is displayed as a display when the camera is in an opaque state.
  • the screen described in Patent Document 1 can adjust the degree of scattering by adjusting the drive waveform. That is, by arbitrarily setting the transmittance (transparency), it is possible to adjust the degree of transparency of the background, and various applications that are not limited to shooting through a screen are possible.
  • timing to project or the timing control to make the screen in a scattering state is performed by a microcomputer (microcontroller) or the like
  • the microcomputer is generally monitored while monitoring the operation of the built-in timer
  • timing adjustment is performed by a branching process of software operating in the above.
  • timing shift may occur depending on the performance of the microcomputer used, the display or scattering state becomes unstable, and in the worst case, the scattering state is projected insufficiently, and the projection light is projected to the observer. There is a danger of seeing directly.
  • an object of the present invention is to provide a display device that can be projected onto a screen safely and at a low cost, and a control method for the display device.
  • the invention according to claim 1 is characterized in that an image is projected intermittently at a predetermined cycle, a screen capable of switching between a transmission state and a scattering state with respect to light, and the predetermined cycle.
  • a first signal acquisition means for acquiring a first signal in which a pulse signal having a width is output every other period of the predetermined period; and a second signal obtained by delaying the first signal by a first time.
  • a fourth signal output means for outputting a fourth signal delayed from the first signal by a third time, and the screen is switched between a transmission state and a scattering state based on the first signal and the fourth signal.
  • Switching signal output means for outputting a switching signal;
  • Projection control signal output means for outputting a projection control signal for determining a period during which the image is projected based on the second signal and the third signal, and the first time and the second signal And the third time is set to be equal to or shorter than the predetermined period.
  • a screen in which an image is intermittently projected at a predetermined cycle and the light can be switched between a transmission state and a scattering state, a cycle twice as long as the predetermined cycle, and a predetermined cycle.
  • First signal acquisition means for acquiring a first signal from which a pulse signal having a width of 2 is output; and second signal output means for outputting the first signal as a second signal obtained by delaying the first signal by a first time;
  • a third signal output means for outputting the first signal as a third signal delayed by a second time from the second signal; and a third time delay from the third signal to the first signal.
  • a fourth signal output means for outputting the fourth signal, and a switching signal output for outputting a switching signal for switching the screen between a transmission state and a scattering state based on the first signal and the fourth signal.
  • Means, the second signal and the third signal Projection control signal output means for outputting a projection control signal for determining a period during which the image is projected based on the signal, and the first time, the second time, and the third time, Is set to be equal to or shorter than the predetermined period.
  • the invention according to claim 15 is a control method of a display device having a screen in which an image is intermittently projected at a predetermined cycle and capable of switching between a transmission state and a scattering state with respect to light.
  • Switching signal that outputs switching signal And a projection control signal output step of outputting a projection control signal for determining a period during which the image is projected based on the second signal and the third signal, and the first time And the second time and the third time are set to be equal to or less than the predetermined period.
  • the invention according to claim 16 is the control method of a display device having a screen in which an image is intermittently projected at a predetermined cycle and capable of switching between a transmission state and a scattering state with respect to light.
  • FIG. 1 is a schematic configuration diagram of a display device according to a first embodiment of the present invention. It is typical sectional drawing of the screen shown by FIG. It is explanatory drawing of the projector which projects in synchronization with the optical characteristic of the screen shown by FIG. It is explanatory drawing of the display state with which the image
  • It is a functional block diagram of the synchronous control part shown by FIG. 2 is a timing chart showing an example of a relationship between a signal waveform in the synchronization control unit shown in FIG. 1, a drive voltage waveform to be applied, and an optical state. It is a functional block diagram of the synchronous control part concerning the 2nd Example of this invention.
  • FIG. 2 is a timing chart showing an example of a relationship between a signal waveform in the synchronization control unit shown in FIG. 1, a drive voltage waveform to be applied, and an optical state.
  • FIG. 8 is a timing chart showing an example of a relationship among a signal waveform in the synchronization control unit shown in FIG. 7, a drive voltage waveform to be applied, and an optical state. It is a functional block diagram concerning the structural example which has two power supplies of the 2nd Example of this invention. It is a functional block diagram in case the screen concerning the 2nd Example of this invention is a normal mode. 11 is a timing chart showing an example of a relationship among a signal waveform in the synchronization control unit shown in FIG. 10, a drive voltage waveform to be applied, and an optical state. It is a functional block diagram of the synchronous control part 31 concerning the 3rd Example of this invention.
  • a display device has a screen in which an image is intermittently projected at a predetermined cycle, a screen capable of switching between a transmission state and a scattering state with respect to light, and a pulse signal having a predetermined cycle width is predetermined.
  • First signal acquisition means for acquiring a first signal output every other period of the above, and second signal output means for outputting the first signal as a second signal obtained by delaying the first signal by a first time;
  • Third signal output means for outputting the first signal as a third signal delayed for a second time from the second signal, and a fourth signal for delaying the first signal from the third signal for a third time
  • a fourth signal output means for outputting as a signal.
  • a switching signal output means for outputting a switching signal for switching the screen between the transmission state and the scattering state, and on the basis of the second signal and the third signal, the image Projection control signal output means for outputting a projection control signal for determining a period during which the projector is projected.
  • the total time of 1st time, 2nd time, and 3rd time is set to below a predetermined period.
  • the switching signal and the projection control signal can be generated based on the second to fourth signals obtained by delaying the first signal, a simple circuit configuration can be achieved. Cost can be reduced.
  • the projection control signal is output based on the second and third signals obtained by delaying the first signal, the projection is always performed in the scattering state. Can be safely projected onto the screen.
  • the second voltage may be a voltage whose absolute value is smaller than that of the first voltage.
  • the first voltage can be applied to the beginning of the scattering state period to quickly change to the scattering state.
  • a scattering state can be stabilized by applying the 2nd voltage whose absolute value is smaller than a 1st voltage.
  • the voltage switching means may switch between the first voltage and the second voltage based on the result of the exclusive OR operation of the first signal and the second signal.
  • the first voltage and the second voltage can be switched with a simple circuit.
  • a fifth signal output means for outputting the first signal as a fifth signal delayed by a fourth time from the fourth signal, and the transmission state of the screen based on the fourth signal and the fifth signal Voltage switching means for controlling switching between a first voltage applied to the screen for a predetermined time in the period and a second voltage applied to the screen after the first time has elapsed, the second voltage Is a voltage whose absolute value is smaller than that of the first voltage, and the total time of the first time, the second time, the third time, and the fourth time is set to a predetermined period or less. Also good.
  • the first voltage is applied to the beginning of the period of the transmission state, so that the screen can be changed to the transmission state at high speed. Then, the transmission state can be stabilized by applying the second voltage whose absolute value is smaller than that of the first voltage.
  • the voltage switching means may generate the first voltage and the second voltage from one power source. By doing in this way, two voltages can be output with one power supply, and the cost of the power supply unit can be suppressed.
  • the voltage switching means may switch voltages supplied from two power sources that respectively generate the first voltage and the second voltage. By doing so, it is possible to prevent a delay from occurring when the power supply voltage is switched.
  • the projection control signal output means may perform an exclusive OR operation on the second signal and the third signal and output a projection control signal. In this way, the projection control signal can be generated with a simple circuit.
  • the first time setting means may set the first time based on a table in which the relationship between the ambient temperature acquired by the ambient temperature acquisition means and the first time is predetermined. By doing so, it is possible to set the rise time of the change to the scattering state suitable for the temperature environment without performing complicated calculations.
  • the screen is divided into a plurality of regions, the fourth signal output means outputs a plurality of fourth signals delayed by a plurality of third times, and the switching signal output means has the first signal output.
  • a plurality of switching signals corresponding to a plurality of regions may be output based on the signal and the plurality of fourth signals. By doing so, the degree of scattering, that is, the transmittance can be changed for each region.
  • an optical layer in which the screen changes between a transmission state and a scattering state with respect to light by application of a voltage and a first electrode and a second electrode that are arranged to face each other with the optical layer interposed therebetween in order to apply a voltage.
  • a plurality of second electrodes arranged so as to be orthogonal to one first electrode a voltage is applied to the first electrode based on the first signal, and a switching signal based on the first signal May be output to the first electrode, and a switching signal based on the plurality of fourth signals may be output to the second electrode.
  • an optical layer in which the screen changes between a transmission state and a scattering state with respect to light by application of a voltage and a first electrode and a second electrode that are arranged to face each other with the optical layer interposed therebetween in order to apply a voltage.
  • a plurality of second electrodes are arranged so as to be orthogonal to the plurality of arranged first electrodes, and a signal obtained by inverting the polarity of the first signal is delayed from the third signal by a third time.
  • a switching signal based on the signal may be output to the first electrode, and a switching signal based on the plurality of fourth signals may be output to the second electrode.
  • an imaging control signal output means which outputs the imaging control signal which controls the imaging period of the imaging means imaged toward a screen to an imaging means based on a 1st signal and 3rd time.
  • a display device includes a screen in which an image is projected intermittently at a predetermined cycle, and is capable of switching between a transmission state and a scattering state with respect to light, and twice the predetermined cycle.
  • First signal output means for outputting a first signal from which a pulse signal having a period and a predetermined width is output, and second signal output means for outputting the first signal as a second signal delayed by a first time
  • a third signal output means for outputting the first signal as a third signal delayed by a second time from the second signal, and the first signal delayed by a third time from the third signal
  • a fourth signal output means for outputting as a fourth signal.
  • a switching signal output means for outputting a switching signal for switching the screen between the transmission state and the scattering state, and on the basis of the second signal and the third signal, the image Projection control signal output means for outputting a projection control signal for determining a period during which the projector is projected. And the total time of 1st time, 2nd time, and 3rd time is set to below a predetermined period. In this way, since the switching signal and the projection control signal can be generated based on the second to fourth signals obtained by sequentially delaying the first signal, a simple circuit configuration can be achieved. Therefore, the cost can be reduced.
  • the switching signal is output based on the first signal and the projection control signal is output based on the second and third signals obtained by delaying the first signal, the projection is always performed in the scattering state. Can be safely projected onto the screen. Further, since the pulse width of the first signal is not fixed at a predetermined period, the pulse width of the first signal can be arbitrarily set.
  • the first signal output step outputs a first signal in which a pulse signal having a predetermined cycle width is output every other cycle of the predetermined cycle.
  • the first signal is output as a second signal delayed by a first time
  • the third signal output step the first signal is delayed from the second signal by a second time.
  • the fourth signal output step the first signal is output as the fourth signal delayed from the third signal by a third time.
  • a switching signal for switching the screen between the transmission state and the scattering state is output based on the first signal and the fourth signal, and in the projection control signal output step, the second signal and the second signal are output.
  • a projection control signal for determining a period during which an image is projected is output based on the signal 3. And the total time of 1st time, 2nd time, and 3rd time is set to below a predetermined period.
  • the switching signal and the projection control signal can be generated based on the second to fourth signals obtained by sequentially delaying the first signal, a simple circuit configuration can be achieved. Therefore, the cost can be reduced.
  • the switching signal is output based on the first signal and the projection control signal is output based on the second and third signals obtained by delaying the first signal, the projection is always performed in the scattering state. Can be safely projected onto the screen.
  • a first signal that outputs a pulse signal having a cycle twice a predetermined cycle and a predetermined width is output.
  • the first signal is output as the second signal delayed by the first time
  • the first signal is output from the second signal to the second time.
  • the delayed third signal is output
  • the fourth signal output step the first signal is output as a fourth signal delayed for a third time from the third signal.
  • a switching signal for switching the screen between the transmission state and the scattering state is output based on the first signal and the fourth signal, and in the projection control signal output step, the second signal and the second signal are output.
  • a projection control signal for determining a period during which an image is projected is output based on the signal 3. And the total time of 1st time, 2nd time, and 3rd time is set to below a predetermined period.
  • the switching signal and the projection control signal can be generated based on the second to fourth signals obtained by sequentially delaying the first signal, a simple circuit configuration can be achieved. Therefore, the cost can be reduced.
  • the switching signal is output based on the first signal and the projection control signal is output based on the second and third signals obtained by delaying the first signal, the projection is always performed in the scattering state. Can be safely projected onto the screen. Further, since the pulse width of the first signal is not fixed at a predetermined period, the pulse width of the first signal can be arbitrarily set.
  • a display device 1 according to a first embodiment of the present invention will be described with reference to FIGS.
  • the display device 1 includes a screen 21 and a synchronization control unit 31, and a projector 11 is connected to the display device 1.
  • the display device 1 is a transmissive projection device that transmits and scatters image light from the projector 11 through a screen 21.
  • the projector 11 can use a transmissive or reflective liquid crystal light valve that sequentially shifts the black state (the state in which no projection light is emitted) on the screen 21 during the scanning cycle, but other elements may be used. Alternatively, the projector 11 may perform raster scanning in a video scanning cycle and project video light on the display surface of the screen 21 dot-sequentially. That is, the image light is projected intermittently at a predetermined cycle.
  • a laser projector or the like in which the irradiation direction of the intensity-modulated light beam is reflected by a movable mirror and shaken can be used.
  • the projector 11 can be considered in the same manner as the image light irradiation position being sequentially scanned in one direction on the screen 21.
  • the projector 11 may be any projector that can project video light modulated by video information (image information) onto the screen 21.
  • video information is obtained from a video signal input to the projector 11.
  • Video signals include, for example, NTSC (National Television Standards Committee), analog video signals such as PAL (Phase Alternation by Line), MPEG-TS (Moving Picture Experts Group-Transport Stream) format, HDV (High -There are video signals in digital format such as Definition (Video) format.
  • the projector 11 may receive not only a moving image video signal but also a still image video signal such as JPEG (Joint (Photographic Experts Group). In this case, the projector 11 may scan the screen 21 repeatedly with the same video light for displaying a still image.
  • the screen 21 may be anything that can change the optical state by applying a voltage.
  • a scattering state is an image state, and a transparent transmission state in which scattering of incident light is smaller and parallel light transmittance is higher than that is a non-image state. That is, it is possible to switch between a transmission state and a scattering state with respect to light.
  • the screen 21 may be, for example, a dimming screen that uses a liquid crystal material and changes a scattering state and a transparent transmission state with small scattering of incident light.
  • the light control screen uses, for example, a liquid crystal element such as a polymer-dispersed liquid crystal, or an element that controls a transparent transmission state with small scattering of incident light by moving white powder in a transparent cell. There are things that use etc.
  • FIG. 2 is a schematic cross-sectional view of the screen 21 that can control the optical state.
  • the screen 21 shown in FIG. 2 includes an optical layer 25 in which a composite material containing liquid crystal is sandwiched between a pair of transparent glass plates 23 and 24.
  • a counter electrode 26 is formed on the entire surface of one glass plate 24 on the optical layer 25 side.
  • a control electrode 27 is disposed on the entire surface of the other glass plate 23 on the optical layer 25 side.
  • An intermediate layer made of an insulator may be formed between the electrodes 26 and 27 and the optical layer 25.
  • the counter electrode 26 and the control electrode 27 are formed as transparent electrodes by using, for example, ITO (indium tin oxide).
  • the optical layer 25 is disposed between the control electrode 27 and the counter electrode 26.
  • at least one of the counter electrode 26 and the control electrode 27 may be configured as an electrode that is a half mirror that transmits a part of incident light.
  • a voltage is applied to the screen 21 so as to generate a potential difference between the counter electrode 26 as the first electrode and the control electrode 27 as the second electrode.
  • the optical state in the optical layer 25 varies depending on the voltage applied to the counter electrode 26 and the control electrode 27.
  • the screen 21 is classified into a reverse mode and a normal mode according to the state when a voltage is applied so as to generate a potential difference.
  • the screen 21 operating in the reverse mode is in a transparent transmissive state in a normal state where no voltage is applied. When a voltage is applied, it becomes a scattering state with a scattering rate of parallel rays according to the applied voltage.
  • a screen operating in the normal mode the screen is in a scattering state in a normal state where no voltage is applied.
  • a transparent transmission state with parallel light transmittance corresponding to the applied voltage is obtained.
  • a predetermined scattering state corresponds to an image state, and a transparent transmission state having a higher parallel light transmittance than that corresponds to a non-image state.
  • the reverse mode is described, but the normal mode is also applicable.
  • the synchronization control unit 31 as a control unit controls the screen 21 on which the image is projected to a state in which the projected image light is scattered, and controls the screen 21 to a transmission state when it is not projected. As shown in FIG. 1, the synchronization control unit 31 is connected to the projector 11 and the screen 21. The synchronization control unit 31 controls the optical state of the screen 21 in synchronization with the projection of the image light of the projector 11.
  • FIG. 3 is an explanatory diagram of a method in which the projector 11 projects image light at intervals.
  • image light is projected on the screen 21 in a short period of time during a part of the scanning cycle.
  • the screen 21 may be in a scattering state during the partial period.
  • the see-through characteristic of the screen 21 is not caused in the scanning cycle without causing a decrease in the luminance of the image. Is obtained.
  • the projection light whose intensity is approximately the reciprocal of the duty (duty: a) in the scattering state for one scanning period is required. It becomes. Therefore, in order to obtain a high see-through characteristic, a powerful pulsed projection light output is required.
  • the screen 21 scatters image light with the same brightness as when it is always in a scattering state while having transparency that can recognize the object on the back side. Can be transmitted. That is, it is possible to achieve both a see-through property capable of recognizing a background object and a high image visibility.
  • the information of the switching timing for the synchronization control of the projector 11 and the screen 21 is sent from the synchronization control unit 31 as a synchronization signal.
  • the projector 11 and the synchronization control unit 31 may be capable of wireless communication using electromagnetic waves such as microwaves and infrared rays, and information for obtaining these synchronizations may be exchanged by radio signals.
  • FIG. 4 is an explanatory diagram of a display state in which the image by the image light and the background of the screen 21 overlap.
  • an image of a person 41 by video light is shown on the right side of the screen 21, and a tree 42 as a background on the other side of the screen 21 can be seen on the left side.
  • FIG. 5 shows a functional configuration of the synchronization control unit 31.
  • the synchronization control unit 31 includes a startup signal generation unit 311, a projector control signal generation unit 312, a drive control signal generation unit 313, an exclusive OR unit 314, gate drivers 315 and 316, and a delay information setting unit 317. And.
  • the rising signal generator 311 as the second signal output means outputs the common control signal Scom as the first signal input from the outside as a rising signal Sup with a first time delay (delayed in phase). To do. That is, the rising signal Sup becomes the second signal.
  • the first time that is the delay amount has an initial value set in advance, but is a value that can be adjusted within a range described later.
  • the common control signal Scom for example, a synchronization signal synchronized with a video cycle input to the projector 11 can be acquired from the projector 11 and used.
  • the projector control signal generation unit 312 as the third signal output unit delays the start-up signal Sup for a second time (delays the phase) and outputs it as the projector control signal Spj. That is, the projector control signal Spj is the third signal.
  • the initial value of the second time that is the delay amount is set in advance, but is a value that can be adjusted within a range described later. That is, since the startup signal Sup is a signal obtained by delaying the common control signal Scom, the projector control signal Spj is a signal obtained by further delaying the common control signal Scom by a second time from the startup signal Sup.
  • the drive control signal generation unit 313 as the fourth signal output unit delays the projector control signal Spj by a third time (delays the phase) and outputs it as the drive control signal Sdrv. That is, the drive control signal Sdrv is the fourth signal.
  • the initial value of the third time that is the delay amount is set in advance, but is a value that can be adjusted within a range described later. That is, since the projector control signal Spj is a signal obtained by delaying the common control signal Scom, the drive control signal Sdrv is a signal obtained by further delaying the common control signal Scom by a third time from the projector control signal Spj.
  • the start-up signal generation unit 311, the projector control signal generation unit 312, and the drive control signal generation unit 313 may be configured by hardware such as a delay circuit, for example, and are output when a delay time elapses by a timer of the microcomputer. Control by such software (computer program) may be used.
  • the exclusive OR unit 314 serving as a projection control signal output unit performs an exclusive OR operation between the start-up signal Sup and the projector control signal Spj and outputs the result to the projector 11 as a projector control signal output.
  • the exclusive OR operation may be constituted by an exclusive OR operation circuit or may be operated on software.
  • the gate driver 315 as a switching signal output means is a driver circuit that is connected to the counter electrode 26 side and outputs a driving voltage supplied from a driving voltage circuit (not shown).
  • the gate driver 315 outputs a drive voltage based on the common control signal Scom.
  • the gate driver 316 as a switching signal output means is a driver circuit that is connected to the control electrode 27 side and outputs a drive voltage supplied from a drive voltage circuit (not shown).
  • the gate driver 316 outputs a drive voltage based on the drive control signal Sdrv.
  • the delay information setting unit 317 sets the first time, the second time, and the third time set in each of the start-up signal generation unit 311, the projector control signal generation unit 312, and the drive control signal generation unit 313.
  • the adjustment range of the first, second, and third times is the sum of each time ⁇ the projection period on the screen 21. That is, the total time of the first time, the second time, and the third time is equal to or shorter than a predetermined period. Therefore, the first time is a range less than or equal to the projection period on the screen 21, the second time is the projection period on the screen 21, the first time range, and the third time is the projection period on the screen 21- (first 1 time + second time) is the adjustment range of each delay time.
  • the delay information setting unit 317 receives the value of the projection period on the screen 21 and the set values of the first, second, and third times from the outside.
  • the input method may be input from a supply source that supplies video to the projector 11 as long as it is a projection cycle on the screen 21, or may be input manually from input means such as a keyboard.
  • initial values of the first, second, and third times may be set in advance.
  • the delay information setting unit 317 calculates the adjustment range described above from the input projection period value on the screen 21 and the set values (or initial values) of the first, second, and third times, and is the adjustment range.
  • the input value or the initial value is set in each of the startup signal generation unit 311, the projector control signal generation unit 312, and the drive control signal generation unit 313. If it is outside the adjustment range, a warning or the like indicating that the value is inappropriate may be given.
  • the first time is a rising period during which the screen 21 shifts to the scattering state, and thus is usually a value sufficiently smaller than the projection period on the screen 21. Therefore, the adjustment range may be narrowed down to a range smaller than the projection period on the screen 21.
  • the common control signal Scom is input from the outside.
  • the synchronization control unit 31 functions as a first signal acquisition unit.
  • FIG. 6 is a timing chart showing an example of the relationship between the signal waveform in the synchronization control unit 31 according to the present embodiment, the drive voltage waveform to be applied, and the optical state.
  • the horizontal axis is time
  • the vertical axis is high level or low level.
  • the horizontal axis represents time
  • the vertical axis represents voltage.
  • the screen scattering state is the optical state of the screen 21 (optical layer 25), the horizontal axis is time, and the vertical axis is scattering or transmission.
  • the common control signal Scom is a synchronization signal in which the period T is the same length as one frame period, that is, a synchronization signal synchronized with the video period input to the projector 11 (the projection period on the screen 21 is the period T). That is, the common control signal Scom is output as a pulse signal having a predetermined period width (T) every other predetermined period (once every 2T).
  • the start-up signal Sup is delayed from the common control signal Scom by a first time ⁇ up.
  • the projector control signal Spj is delayed from the start signal Sup by a second time ⁇ pj.
  • the drive control signal Sdrv is delayed from the projector control signal Spj by a third time ⁇ drv.
  • the rising signal Sup is a signal obtained by delaying the common control signal Scom by the first time ⁇ up.
  • the projector control signal Spj is a signal obtained by delaying the common control signal Scom by the first time ⁇ up + the second time ⁇ pj.
  • the drive control signal Sdrv is a signal obtained by delaying the common control signal Scom by the first time ⁇ up + second time ⁇ pj + third time ⁇ drv.
  • the projector control signal output Spjo is the result of the exclusive OR operation between the start-up signal Sup and the projector control signal Spj.
  • the projector 11 projects image light during a period when the projector control signal output Spjo is High. Therefore, the projector control signal output Spjo becomes a projection control signal.
  • the common drive voltage output Vcom is a drive voltage waveform output from the gate driver 315.
  • the common drive voltage output Vcom has the same waveform as the common control signal Scom.
  • the common drive signal output Vcom is the voltage V1 when the common control signal Scom is High, and is 0 volts during the Low period.
  • the selected drive voltage output Vdrv1 is a drive voltage waveform output from the gate driver 316.
  • the selected drive voltage output Vdrv1 has the same waveform as that of the drive control signal Sdrv, and is the voltage V1 when the drive control signal Sdrv is High and 0 volt during the Low period.
  • the screen driving voltage indicates a voltage waveform applied to the optical layer 25. That is, the common drive voltage output Vcom is applied as a positive voltage to the counter electrode 26 of the screen 21 and the selection drive voltage output Vdrv1 is applied as a negative voltage to the control electrode 27, that is, the common drive voltage output Vcom ⁇ the selection drive voltage output. Vdrv1 is shown.
  • the frame inversion method has two cycles as one cycle. That is, AC voltage driving is performed in which a positive voltage and a negative voltage are alternately applied every frame period T.
  • the screen scattering state is a scattering state as a state in which a voltage is applied when the potential difference (the absolute value of the screen driving voltage) between the counter electrode 26 and the control electrode 27 is V1.
  • V1 the potential difference (the absolute value of the screen driving voltage) between the counter electrode 26 and the control electrode 27 is V1.
  • V1 the potential difference (the absolute value of the screen driving voltage) between the counter electrode 26 and the control electrode 27 is V1.
  • V1 is applied as a screen drive voltage
  • the screen 21 reaches a peak in the scattering state after a rising period, and enters a transmissive state after a predetermined period when V1 is not applied.
  • the common drive voltage output Vcom output from the gate driver 315 and the selection drive voltage output Vdrv1 output from the gate driver 316 switch the screen 21 between the transmission state and the scattering state.
  • the rising period of the screen 21 described above is the first time ⁇ up. That is, the first time ⁇ up is preferably set based on the rising period determined by the device characteristics of the optical layer 25 of the screen 21 and the external environment.
  • the projection period of the projector 11 is a period in which the screen 21 is in a scattering state and the projector control signal output Spjo is at a high level, and this period is determined by the second time ⁇ pj. Further, the end of the scattering period of the screen 21 is determined by the time when the drive control signal Sdrv rises, and is determined by the third time ⁇ drv.
  • the transition to the transmission state starts after the second time ⁇ pj has elapsed, that is, immediately after the projection period of the projector 11 ends.
  • the third time ⁇ drv is set to the maximum value (T ⁇ ( ⁇ up + ⁇ pj))
  • the scattering time can be set to one frame period T, and the transmittance can be substantially minimized. That is, the scattering state period in one frame period can be determined by the third time ⁇ drv, and the transmittance of the screen 21 can be controlled.
  • the transmittance can be further increased by shortening the projection period of the projector 11 in addition to the third time ⁇ drv, that is, the second time ⁇ pj.
  • the second time ⁇ pj may be shortened as long as it does not affect the image quality of the image projected on the screen 21. Note that the second time ⁇ pj may be increased, and in that case, the transmittance is naturally reduced.
  • ⁇ up + ⁇ pj + ⁇ drv ⁇ T is necessary, and ⁇ drv ⁇ T ⁇ ( ⁇ up + ⁇ pj). If the first time ⁇ up is a fixed value, the adjustment range of the third time ⁇ drv is reduced when the second time ⁇ pj is increased.
  • the display device 1 includes a reverse mode screen 21 capable of switching between a transmission state and a scattering state in which an image is intermittently projected in one frame period T, and has the same width as the one frame period T.
  • a synchronous control unit 31 that acquires a common control signal Scom that outputs a pulse signal once every two frame periods T, and a rise signal Sup that outputs the common control signal Scom delayed by a first time ⁇ up.
  • a drive control signal generation unit 313 that outputs the signal Sdrv.
  • a gate driver 315 that outputs a common drive voltage output Vcom that switches the screen 21 between a transmission state and a scattering state, and a gate driver 316 that outputs a selection drive voltage output Vdrv1.
  • an exclusive OR unit 314 that outputs a projector control signal output Spjo that determines a period during which an image is projected based on the start-up signal Sup and the projector control signal Spj.
  • the total time of the first time ⁇ up, the second time ⁇ pj, and the third time ⁇ drv is set to one frame period T or less.
  • the common drive voltage output Vcom, the selected drive voltage output Vdrv1 and the projector control signal output are based on the rising signal Sup, the projector control signal Spj, and the drive control signal Sdrv obtained by sequentially delaying the common control signal Scom. Since Spjo can be generated, a simple circuit configuration can be obtained, so that cost can be reduced. Further, the common drive voltage output Vcom and the selection drive voltage output Vdrv1 are output based on the common control signal, and the projector control signal output Spjo is output based on the start-up signal Sup and the projector control signal Spj obtained by delaying the common control signal. Therefore, it is always possible to project in the scattering state. Therefore, the projection light can be safely projected onto the screen without penetrating the screen.
  • the exclusive OR unit 314 outputs the projector control signal output Spjo
  • the projector control signal output Spjo can be generated with a simple circuit that calculates the exclusive OR.
  • the common control signal Scom is delayed to generate the rising signal Sup, the rising signal Sup is delayed to generate the projector control signal Spj, and the projector control signal Spj is delayed.
  • a drive control signal Sdrv is generated.
  • a signal delayed by a first time ⁇ up with respect to the common control signal Scom is a rising signal Sup, and the first time ⁇ up + second time with respect to the common control signal Scom.
  • a signal obtained by delaying the ⁇ pj delayed signal with respect to the projector control signal Spj and the common control signal Scom by the first time ⁇ up + second time ⁇ pj + third signal ⁇ drv may be used as the drive control signal Sdrv.
  • the common control signal Scom can be output as the rising signal Sup delayed by the first time ⁇ up, and the common control signal Scom can be output as the projector control signal Spj delayed from the rising signal Sup by the second time ⁇ pj. It suffices if the control signal Scom can be output as the drive control signal Sdrv delayed from the projector control signal Spj by the third time ⁇ drv.
  • the common control signal Scom is acquired (first signal acquisition step), the startup signal generation unit 311 (second signal output step), and the projector control signal generation unit 312 ( The third signal output step), the drive control signal generator 313 (fourth signal output step), and the corresponding operations are sequentially performed to output the start signal Sup, the projector control signal Spj, and the drive control signal Sdrv.
  • the gate drivers 315 and 316 are caused to output the common drive voltage output Vcom and the selected drive voltage output Vdrv1 (switching signal output process), and the start signal An exclusive OR operation of Sup and projector control signal Spj is performed and output to projector 11 (projection control signal output step).
  • an exclusive OR unit 318 and a drive voltage circuit 319 are added to the configuration of the first embodiment.
  • the voltage output from the common drive voltage output Vcom and the selection drive voltage output Vdrv1 is excessively higher than the threshold voltage in order to make the change (rise) to the scattering state faster, the scattering characteristics of the screen 21 are reduced. A phenomenon may occur in which the degree of scattering decreases after reaching the peak of scattering. For this reason, in the present embodiment, the first voltage V1 for speeding up the start to the scattering state and the second voltage V2 that can stably maintain the scattering state can be switched. Therefore, the first voltage V1 and the second voltage V2 have a relationship of
  • the exclusive OR unit 318 as voltage switching means performs an exclusive OR operation on the common control signal Scom and the rising signal Sup, and outputs it to the drive voltage circuit 319 as the rising signal output Supo.
  • the exclusive OR operation may be constituted by an exclusive OR operation circuit like the exclusive OR unit 314, or may be operated on software.
  • the drive voltage circuit 319 as voltage switching means is a circuit that can switch between two types of voltages, the first voltage V1 and the second voltage V2, for example, a DC-DC converter or resistor from one power source (not shown). For example, the two voltages are switched.
  • the drive voltage circuit 319 switches between the first voltage V1 and the second voltage V2 according to the output signal of the exclusive OR unit 318.
  • FIG. 8 shows a timing chart showing an example of the relationship between the signal waveform in the synchronization control unit 31 according to the present embodiment, the drive voltage waveform to be applied, and the optical state.
  • a rising signal output Supo is added to the timing chart of FIG.
  • the rising signal output Supo is the result of the exclusive OR operation of the common control signal Scom and the rising signal Sup. That is, it becomes High level only during the period of the first time ⁇ up.
  • the drive voltage circuit 319 switches so that the first voltage V1 is output when the rising signal output Supo is High and the second voltage V2 is output during the Low period.
  • the first voltage V ⁇ b> 1 can be applied only during the startup period of the screen 21. That is, the first voltage V1 is applied to the screen 21 for the first time ⁇ up, and the second voltage V2 is applied to the screen 21 after the first time ⁇ up has elapsed.
  • the gate driver 315 that outputs the common drive voltage output Vcom and the gate driver 316 that outputs the selected drive voltage output Vdrv1 alternately output the first voltage V1. That is, the gate driver 315 outputs the first voltage V1 in the first frame, the gate driver 316 outputs the first voltage V1 in the second frame, and the gate driver 315 outputs the first voltage in the third frame. For example, V1 is output. In this way, as shown in the screen scattering state of FIG. 8, the first voltage V1 can be applied during the rising period of the scattering state, and the scattering state can be started up at high speed.
  • the first voltage V1 that the screen 21 applies for the first time ⁇ up during the scattering state period, and after the first time ⁇ up has elapsed.
  • An exclusive OR unit 318 that controls switching between the second voltage V2 that is a voltage having a smaller absolute value than the first voltage V1 to be applied is provided.
  • the first voltage V1 and the second voltage V2 are switched based on the result of the exclusive OR operation, the first voltage V1 and the second voltage V2 are switched with a simple circuit. be able to.
  • the drive voltage circuit 319 switches between the first voltage V1 and the second voltage V2.
  • a general-purpose power supply IC is used as the drive voltage circuit 319
  • the drive voltage circuit 319 varies depending on the variable amount. In some cases, the delay time required for switching is too large compared to the start-up period to the scattering state, so that it is not in time. Therefore, as shown in FIG. 9, a power supply circuit 31Aa for generating the first voltage V1 and a power supply circuit 31Ab for generating the second voltage V2 are provided and switched by the drive voltage switching circuit 31B as voltage switching means. It may be. Switching by the drive voltage switching circuit 31B is the same as the switching operation of the drive voltage circuit of FIG.
  • 9 includes the two power supply circuits 31Aa and 31Ab that generate the first voltage V1 and the second voltage V2, respectively, so that no delay is caused when the power supply voltage is switched.
  • the transmission state (transparent state) is obtained when there is a potential difference between the counter electrode 26 and the control electrode 27. Therefore, in the normal mode, the voltage V1 is applied to change the state to the transmission state at high speed (fall). Then, the transmission state is stabilized by applying the voltage V2.
  • FIG. 10 shows the synchronization control unit 31 in the normal mode. 7, a fall signal generation unit 31C is added, and the input of the exclusive OR unit 318 is changed to the drive control signal Sdrv and the fall signal Sdown that is an output signal of the fall signal generation unit 31C. ing.
  • the fall signal generator 31C as the fifth signal output means delays the drive control signal Sdrv by a fourth time (delays the phase) and outputs it as the fall signal Sdown. That is, the falling signal Sdown becomes the fifth signal.
  • the fourth time which is the delay amount, is a value that can be adjusted within a range that will be described later, although an initial value is set in advance. That is, since the drive control signal Sdrv is a signal obtained by delaying the common control signal Scom, the falling signal Sdown is a signal obtained by further delaying the common control signal Scom by a fourth time from the drive control signal Sdrv.
  • the delay information setting unit 317 also receives the fourth time from the outside.
  • the initial value may be set in advance.
  • the adjustment range of the first, second, and third times is the sum of the respective times ⁇ the projection cycle on the screen 21, but the configuration shown in FIG. In the case of the normal mode), the sum of the first, second, third and fourth times ⁇ the projection cycle on the screen 21. Accordingly, the adjustment range of the first, second, and third times is narrower than that of the first embodiment by the amount of the fourth time.
  • the exclusive OR unit 318 as voltage switching means performs an exclusive OR operation between the drive control signal Sdrv and the fall signal Sdown and outputs the rise signal output Sdownno to the drive voltage circuit 319.
  • FIG. 11 is a timing chart showing an example of the relationship between the signal waveform in the synchronization control unit 31, the drive voltage waveform to be applied, and the optical state.
  • a falling signal Sdown is added to the timing chart of FIG.
  • the falling signal Sdown is delayed from the drive control signal Sdrv by a fourth time ⁇ down. That is, the falling signal Sdown is a signal obtained by delaying the common control signal Scom by the first time ⁇ up + second time ⁇ pj + third time ⁇ drv + fourth time ⁇ down.
  • the drive voltage circuit 319 switches so that the first voltage V1 is output when the falling signal output Sdownno is High and the second voltage V2 is output during the Low period. By doing so, the first voltage V1 can be applied only during the falling period of the screen 21, as shown in FIG.
  • the gate driver 315 that outputs the common drive voltage output Vcom and the gate driver 316 that outputs the selection drive voltage output Vdrv1 alternately output the first voltage V1 as in the reverse mode. By doing so, as shown in the screen scattering state of FIG. 11, the first voltage V1 can be applied during the falling state of the scattering state, and the transmission state can be rapidly lowered.
  • the fall signal generation unit 31C generates the fall signal Sdown obtained by delaying the drive control signal Sdrv by the fourth time ⁇ down, and based on the drive control signal Sdrv and the fall signal Sdown.
  • the drive voltage circuit 319 switches between the first voltage V1 and the second voltage V2. In this way, even a screen using a normal mode liquid crystal element can be changed to a transmission state at high speed. Then, the transmission state can be stabilized by applying the second voltage whose absolute value is smaller than that of the first voltage.
  • the display device automatically adjusts the first time ⁇ up based on the ambient temperature, and the configuration can be applied to either the first embodiment or the second embodiment.
  • the rise time (rise period), which is the first time ⁇ up, can be obtained from an equation showing general characteristics when a liquid crystal material is used for the screen 21. Assuming that the start-up time is ⁇ r, it depends on the applied voltage V as shown in the following formula (1), and the higher the voltage, the faster the start-up time.
  • ⁇ r is the rise time
  • is the rotational viscosity coefficient
  • d is the cell gap
  • ⁇ 0 is the dielectric constant in vacuum
  • is the dielectric anisotropy of the liquid crystal
  • V is the applied voltage
  • Vth is the threshold voltage
  • equation (3) is derived from equation (2).
  • equation (4) is derived from equations (1) and (3).
  • the expression (5) is derived from the expressions (2) and (4).
  • the slope constant a and the intercept constant b which are parameters for performing control, are determined by the relationship between the rise time ⁇ r, the temperature Te, and the rise voltage V. From this equation, the rise time ⁇ r of the screen 21 can be derived by, for example, obtaining the rise response of the linear transmittance by actual measurement while changing the temperature Te. Since the intercept constant b includes a voltage component, it is approximated by the following equation (8) where ba is the slope constant of the intercept constant b and bb is the intercept constant of the intercept constant b.
  • the rising voltage V can be replaced by the equation (9).
  • the rising voltage (applied voltage) V and the rising time ⁇ r that is, the first time ⁇ up are the slope constant a, the slope constant ba of the intercept constant b, the intercept constant bb of the intercept constant b, the maximum voltage VMAX that can be applied, and the threshold value. It is determined by obtaining the minimum voltage VMIN and the ambient temperature Te in advance. Therefore, automatic control is possible with a small number of parameters.
  • Equations (7) and (9) may be performed by a CPU (not shown) or the like in the synchronization control unit 31; However, processing may be difficult due to an increase in memory consumption. For this reason, it is possible to reduce the burden by deriving a control curve in advance using Equations (7) and (9) and controlling the curve using a lookup table (LUT). .
  • the CPU and LUT function as a part of the delay information setting unit 317. That is, the delay information setting unit 317 functions as a first time setting unit.
  • the ambient temperature Te of the screen 21 may be newly provided near the screen 21 as shown in FIG. 12, or a sensor for detecting the temperature may be mounted on the screen 21. It may be used. Alternatively, the room temperature at which the display device 1 is manually installed may be input as the ambient temperature Te from an input unit or the like regardless of the sensor. Of course, the temperature information detected (input) by these sensors is output to the delay information setting unit 317, and the delay information setting unit 317 functions as an ambient temperature acquisition unit.
  • the delay information setting unit 317 sets the first time ⁇ up based on the ambient temperature Te of the display device 1, the change to the scattering state suitable for the temperature environment is started. Raise time can be set.
  • the start-up signal generation unit 311 may set the first time ⁇ up based on a LUT in which the relationship between the ambient temperature Te and the first time ⁇ up is determined in advance. By doing so, it is possible to set the rise time of the change to the scattering state suitable for the temperature environment without performing complicated calculations.
  • FIGS. a display device according to a fourth embodiment of the present invention is described with reference to FIGS.
  • the same parts as those in the first to third embodiments described above are denoted by the same reference numerals and description thereof is omitted.
  • the screen 21 is divided into a plurality of regions as shown in FIG.
  • the selective drive voltage outputs Vdrv1, Vdrv2, and Vdrv3 arranged so as to be orthogonal to the counter electrode 26 are output to one counter electrode 26 that outputs the common drive voltage output Vcom.
  • a plurality of control electrodes 27 (three in the figure) are provided (one-to-multiple electrode arrangement). The region is divided into three regions 1 to 3 so as to correspond to the control electrode 27.
  • FIG. 13B shows a selection drive voltage output Vdrv1 arranged so as to be orthogonal to the counter electrode 26 with respect to a plurality of counter electrodes 26 (two in the figure) from which the selection drive voltage outputs Vdrv3 and Vdrv4 are output.
  • a plurality of control electrodes 27 (two in the figure) to which Vdrv2 is output are provided (multi-to-multi electrode arrangement). Then, each counter power 26 and each control electrode 27 are divided into four regions of a matrix shape 3-1, 3-2, 4-1, 4-2. In the many-to-many electrode arrangement shown in FIG. 13B, the common drive voltage output Vcom is not output, and the reason will be described later.
  • FIG. 14 is a timing chart showing an example of the relationship between the signal waveform in the synchronization control unit 31 in the case of the one-to-multiple electrode arrangement shown in FIG. 13A, the drive voltage waveform to be applied, and the optical state. Indicates.
  • FIG. 14 shows an example in which the method of switching between the first voltage V1 and the second voltage V2 described in the second embodiment is applied, but it goes without saying that the first embodiment can be applied.
  • the first time ⁇ up may be set based on the third embodiment.
  • the drive control signal generator 313 outputs the selected drive voltage outputs Vdrv1, Vdrv2, and Vdrv3 from the gate driver 316 to each of the plurality of control electrodes 27.
  • the output drive control signal is a plurality of Sdrv1, Sdrv2, and Sdrv3. Accordingly, a plurality of ⁇ drv1, ⁇ drv2, and ⁇ drv3 are also set for the third time. That is, the third time can be set individually for each region.
  • a switching signal (common drive voltage output Vcom) based on the common control signal Scom is output to the counter electrode 26, and a switching signal based on the drive control signals Sdrv1, Sdrv2, Sdrv3 (selective drive voltage outputs Vdrv1, Vdrv2, Vdrv3). Is output to the control electrode 27.
  • the scattering period can be varied for each region as shown in the screen scattering state.
  • the region 2 is in the scattering state only during the projection period, and the region 3 is in the scattering state throughout the one frame period.
  • FIG. 15 shows an example of the relationship between the signal waveform in the synchronization control unit 31 in the case of the many-to-many electrode arrangement shown in FIG. 13B, the drive voltage waveform to be applied, and the optical state. A timing chart is shown.
  • the drive control signal generator 313 outputs the selected drive voltage outputs Vdrv1, Vdrv2, Vdrv3, and Vdrv4 to the plurality of counter electrodes 26 and the plurality of control electrodes 27, respectively, as in FIG.
  • the drive control signals to be output are a plurality of Sdrv1, Sdrv2, Sdrv3, and Sdrv4. Therefore, a plurality of ⁇ drv1, ⁇ drv2, ⁇ drv3, and ⁇ drv4 are also set for the third time.
  • the selection drive voltage output Vdrv1, the selection drive voltage output Vdrv3, the selection drive voltage output Vdrv2, the selection drive voltage output Vdrv3, and the selection drive voltage output Vdrv1 are selected.
  • the optical layer 25 corresponding to each region is changed to the scattering state by the potential difference between the drive voltage output Vdrv4, the selection drive voltage output Vdrv2, and the selection drive voltage output Vdrv4. Therefore, the common control signal Scom is only used as a reference signal for timing control of each control signal, and is not used for control of the gate driver 315 (common drive voltage output Vcom). Instead, drive control signals Sdrv3 and Sdrv4 corresponding to the counter electrode 26 are used.
  • the drive control signals Sdrv3 and Sdrv4 are delayed by a third time ⁇ drv3 and ⁇ drv4 as in the case of the drive control signals Sdrv1 and Sdrv2, but are different in that the polarity is inverted (the phase is shifted by 180 °). That is, the signal is inverted by the third time ⁇ drv3 and ⁇ drv4 with respect to the signal obtained by inverting the polarity of the common control signal Scom.
  • the screen drive voltage corresponding to each region by the selection drive voltage outputs Vdrv1, Vdrv2, Vdrv3, and Vdrv4 generated from the drive control signals Sdrv1, Sdrv2, Sdrv3, and Sdrv4 is simply changed to the scattering state. It can be a potential difference.
  • the drive control signals Sdrv3 and Sdrv4 may be delayed by a third time ⁇ drv3 and ⁇ drv4 with respect to the signal obtained by inverting the polarity of the projector control signal Spj, or the signal obtained by inverting the polarity of the common control signal Scom.
  • the first time ⁇ up + second time ⁇ pj + third time + ⁇ drv3 or ⁇ drv4 may be delayed.
  • the many-to-multielectrode arrangement is a switching signal (selective drive voltage) based on the drive control signals Sdrv3 and Sdrv4 obtained by delaying the signal obtained by inverting the polarity of the common control signal Scom for the third time ⁇ drv3 and ⁇ drv4 from the projector control signal Spj.
  • Outputs Vdrv3, Vdrv4) are output to the counter electrode 26, and switching signals (selective drive voltage outputs Vdrv3, Vdrv4) based on the drive control signals Sdrv1, Sdrv2 are output to the control electrode 27.
  • the screen 21 is divided into a plurality of areas, and the drive control signal generation unit 313 delays the plurality of third times ⁇ drv1, ⁇ drv2, and ⁇ drv3, respectively, and a plurality of drive control signals Sdrv1, Sdrv2. , Sdrv3, and the gate driver 316 outputs a plurality of switching signals corresponding to a plurality of regions based on the plurality of drive control signals Sdrv1, Sdrv2, Sdrv3.
  • the degree of scattering that is, the transmittance can be changed for each region.
  • the drive control signal generator 313 outputs the signals Sdrv3 and Sdrv4 and the drive control signals Sdrv1 and Sdrv2 corresponding to the control electrode 27. Then, the drive control signals Sdrv3 and Sdrv4 corresponding to the counter electrode 26 are respectively delayed by a third time ⁇ drv3 and ⁇ drv4 with respect to the signal obtained by inverting the polarity of the common control signal Scom. By doing so, the scattering state can be controlled for each region even when divided into a matrix.
  • FIGS. a display device according to a fifth embodiment of the present invention is described with reference to FIGS.
  • the same parts as those in the first to fourth embodiments described above are denoted by the same reference numerals and description thereof is omitted.
  • the display device can control the camera 61 as an added imaging unit as shown in FIG.
  • the camera 61 is installed toward the screen 21 on the opposite side across the screen 21 with the observer.
  • the camera 61 can capture an image from the front of the observer by capturing the direction of the screen 21 when the screen 21 is in a transmissive state.
  • FIG. 17 is a configuration diagram of the synchronization control unit 31 according to the present embodiment.
  • FIG. 17 is configured based on the first embodiment (FIG. 5), it may be configured based on the second embodiment (FIGS. 7 and 9).
  • the first time ⁇ up may be set based on the third embodiment, or the screen 21 may be divided into a plurality of regions as in the fourth embodiment.
  • an imaging control signal generation unit 31D and an exclusive OR unit 31E are added to the configuration of FIG.
  • the imaging control signal generation unit 31D as the imaging control signal output unit outputs a signal obtained by advancing the phase of the common control signal Scom by the fourth time ⁇ c as the imaging control signal Sc.
  • a signal whose polarity is inverted with respect to the common control signal Scom is delayed by T- ⁇ c.
  • the fourth time ⁇ c is set from the delay information setting unit 317 in accordance with the relationship with the third delay time ⁇ drv.
  • the exclusive OR unit 31E as the imaging control signal output means performs an exclusive OR operation on the common control signal Scom and the imaging control signal Sc, and outputs it to the camera 61 as an imaging control signal output.
  • the exclusive OR operation may be constituted by an exclusive OR operation circuit or may be operated on software.
  • FIG. 18 is a timing chart showing an example of the relationship between the signal waveform in the synchronization control unit 31 according to the present embodiment, the drive voltage waveform to be applied, and the optical state.
  • the imaging control signal Sc is advanced in phase by the fourth time ⁇ c as described above. Since the imaging by the camera 61 must be performed when the screen 21 is in the transmissive state, the screen 21 must transition to the transmissive state before the fourth time ⁇ c is reached. Assuming that the time for transition from the scattering state to the transmission state is ⁇ down, the maximum value ⁇ drvMAX of the third time ⁇ drv is T ⁇ ( ⁇ up + ⁇ pj + ⁇ down + ⁇ c).
  • the imaging period is set by the time from the rear end of the one frame period (fourth time ⁇ c), so that the imaging can be reliably performed during the transmission state period.
  • the fourth time ⁇ c may be set after elapse of ⁇ down as the time for transition from the scattering state to the transmission state at time ⁇ drv.
  • the fourth time ⁇ c for imaging in the transmissive state period other than the scattering state in the frame period T is set based on the third time ⁇ drv. That is, the imaging control signal output Sco for controlling the imaging period of the camera 61 that images the screen 21 is output to the camera 61 based on the common control signal Scom and the third time ⁇ drv.
  • the imaging control signal generation for outputting the imaging control signal Sc for controlling the imaging period of the camera 61 that images the screen 21 based on the exclusive OR operation of the common control signal Scom and the drive control signal Sdrv. It has a portion 31D. By doing in this way, when imaging an observer etc. through the screen 21, the imaging period can be set easily.
  • the imaging period as the time from the rear end of the one frame period (fourth time ⁇ c), it is possible to avoid the scattering period and reliably capture the image during the transmission state.
  • the screen 21 in the reverse mode has been described, but a screen operating in the normal mode may be used.
  • a screen operating in the normal mode the screen is in a scattering state in a normal state where no voltage is applied.
  • a transparent transmission state with parallel light transmittance corresponding to the applied voltage is obtained. Therefore, for example, in order to obtain the screen scattering state as shown in FIG. 6, the period of V1 and 0 volt of the selection drive voltage output Vdrv1 may be reversed.
  • the polarity of the drive control signal Sdrv may be inverted (inverted with a delay). Even in this case, switching of the scattering state and the transmission state of the screen 21 is controlled based on the control signals obtained by delaying the common control signal Scom.
  • the common control signal Scom which is the first signal
  • the common control signal Scom is a pulse signal having the same width as one frame period (a pulse signal having a predetermined cycle width).
  • the width of the pulse signal may be arbitrarily determined as long as the period is within the range of. That is, the duty of the common control signal Scom is not limited to 50%.
  • the first signal may be a pulse signal having a period twice as long as a predetermined period and a predetermined width.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Liquid Crystal (AREA)

Abstract

 安全かつ低コストに投影タイミングやスクリーンの散乱状態タイミングを調整することができる表示装置および表示装置の制御方法を提供する。 表示装置(1)は、1フレーム期間Tと同じ幅のパルス信号が期間Tの2回に1回出力される共通制御信号Scomを順次遅延させた立ち上げ信号Sup、プロジェクタ制御信号Spj、駆動制御信号Sdrvに基づいて、共通駆動電圧出力Vcom、選択駆動電圧出力Vdrv1やプロジェクタ制御信号出力Spjoを生成する。

Description

表示装置および表示装置の制御方法
 本発明は、映像を表示する表示装置および表示装置の制御方法に関する。
 従来からプロジェクタ等の光源からの投影映像をスクリーン(投影面)に投影して映像を表示する表示装置が知られている。
 例えば特許文献1には、スクリーンとして透過型の液晶ディスプレイパネルを使用し、スクリーンの透過率を制御して透明状態と不透明状態とを交互に変化させて、透明状態のときにスクリーンの背後に設置されたカメラで鑑賞者の撮影を行い、不透明状態のときにはディプレイとして映像を表示させることが提案されている。
 特許文献1に記載されたスクリーンは、駆動波形を調整することで散乱度合いを調整することができる。つまり、透過率(透明度)を任意に設定することで、背景の透け具合を調整することが可能となり単にスクリーン越しに撮影するに限らない様々な応用が可能となる。
 ただし、透明度を任意に設定する場合でも、投影光はスクリーンが散乱状態の期間に投影する必要がある。そうならないと、投影光を観察者が直視して眩しいと感じてしまう。
特開平2-228893号公報
 引用文献1には、表示スクリーンが透明時に投影画像をOFFにする同期動作を行ってもよいことは記載されているものの、具体的にどのように行うかは記載されていない。
 引用文献1に記載されている同期制御、つまり、投影するタイミングやスクリーンを散乱状態にするタイミング制御をマイコン(マイクロコントローラ)等で行う場合、一般的に内蔵のタイマの動作を監視しながらマイコン上で動作するソフトウェアの分岐処理等でタイミング調整を行うことが多い。しかしながら、この方法では、使用するマイコンの性能によってタイミングのずれが生じる場合があり、表示や散乱状態が不安定になり、最悪の場合散乱状態が十分でない状態にて投影され、投射光を観察者が直視してしまうなどの危険性がある。
 このような問題に対して、高性能なマイコンを使用すれば、高精度なタイミング調整が可能となるが、その場合はコストアップとなってしまう。また、ハードウェアでタイミング調整回路を構成した場合も、回路規模が増大し、高価なFPGA(Field Programmable Gate Array)等を使用しなければならなくなり、やはりコストアップとなってしまう。
 そこで、本発明は、上述した問題に鑑み、例えば、安全かつ低コストにスクリーンに投影することができる表示装置および表示装置の制御方法を提供することを課題とする。
 上記課題を解決するために、請求項1に記載の発明は、所定の周期で画像が間欠的に投影され、光に対し透過状態と散乱状態とを切り替え可能なスクリーンと、前記所定の周期の幅のパルス信号が前記所定の周期の1周期おきに出力される第1の信号を取得する第1信号取得手段と、前記第1の信号を第1の時間遅延させた第2の信号として出力する第2信号出力手段と、前記第1の信号を前記第2の信号から第2の時間遅延させた第3の信号として出力する第3信号出力手段と、前記第1の信号を前記第3の信号から第3の時間遅延させた第4の信号として出力する第4信号出力手段と、前記第1の信号および前記第4の信号に基づいて、前記スクリーンを透過状態と散乱状態とに切り替える切替信号を出力する切替信号出力手段と、前記第2の信号および前記第3の信号に基づいて、前記画像が投影される期間を決定する投影制御信号を出力する投影制御信号出力手段と、を有し、前記第1の時間と前記第2の時間と前記第3の時間との合計時間が、前記所定の周期以下に設定されている、ことを特徴としている。
 また、請求項14に記載の発明は、所定の周期で画像が間欠的に投影され、光に対し透過状態と散乱状態とを切り替え可能なスクリーンと、前記所定の周期の2倍の周期かつ所定の幅のパルス信号が出力される第1の信号を取得する第1信号取得手段と、前記第1の信号を第1の時間遅延させた第2の信号として出力する第2信号出力手段と、前記第1の信号を前記第2の信号から第2の時間遅延させた第3の信号として出力する第3信号出力手段と、前記第1の信号を前記第3の信号から第3の時間遅延させた第4の信号として出力する第4信号出力手段と、前記第1の信号および前記第4の信号に基づいて、前記スクリーンを透過状態と散乱状態とに切り替える切替信号を出力する切替信号出力手段と、前記第2の信号および前記第3の信号に基づいて、前記画像が投影される期間を決定する投影制御信号を出力する投影制御信号出力手段と、を有し、前記第1の時間と前記第2の時間と前記第3の時間との合計時間が、前記所定の周期以下に設定されている、ことを特徴としている。
 また、請求項15に記載の発明は、所定の周期で画像が間欠的に投影され、光に対し透過状態と散乱状態とを切り替え可能なスクリーンを有する表示装置の制御方法において、前記所定の周期の幅のパルス信号が前記所定の周期の1周期おきに取得される第1の信号を出力する第1信号取得工程と、前記第1の信号を第1の時間遅延させた第2の信号として出力する第2信号出力工程と、前記第1の信号を前記第2の信号から第2の時間遅延させた第3の信号として出力する第3信号出力工程と、前記第1の信号を前記第3の信号から第3の時間遅延させた第4の信号として出力する第4信号出力工程と、前記第1の信号および前記第4の信号に基づいて、前記スクリーンを透過状態と散乱状態とに切り替える切替信号を出力する切替信号出力工程と、前記第2の信号および前記第3の信号に基づいて、前記画像が投影される期間を決定する投影制御信号を出力する投影制御信号出力工程と、を含み、前記第1の時間と前記第2の時間と前記第3の時間との合計時間が、前記所定の周期以下に設定されている、ことを特徴としている。
 また、請求項16に記載の発明は、所定の周期で画像が間欠的に投影され、光に対し透過状態と散乱状態とを切り替え可能なスクリーンを有する表示装置の制御方法において、前記所定の周期の2倍の周期かつ所定の幅のパルス信号が出力される第1の信号を取得する第1信号取得工程と、前記第1の信号を第1の時間遅延させた第2の信号として出力する第2信号出力工程と、前記第1の信号を前記第2の信号から第2の時間遅延させた第3の信号として出力する第3信号出力工程と、前記第1の信号を前記第3の信号から第3の時間遅延させた第4の信号として出力する第4信号出力工程と、前記第1の信号および前記第4の信号に基づいて、前記スクリーンを透過状態と散乱状態とに切り替える切替信号を出力する切替信号出力工程と、前記第2の信号および前記第3の信号に基づいて、前記画像が投影される期間を決定する投影制御信号を出力する投影制御信号出力工程と、を有し、前記第1の時間と前記第2の時間と前記第3の時間との合計時間が、前記所定の周期以下に設定されている、ことを特徴としている。
本発明の第1の実施例にかかる表示装置の概略構成図である。 図1に示されたスクリーンの模式的な断面図である。 図1に示されたスクリーンの光学特性と同期して投射するプロジェクタの説明図である。 図1に示された表示装置における映像光による映像とスクリーンの背景が重なる表示状態の説明図である。 図1に示された同期制御部の機能的構成図である。 図1に示された同期制御部内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートである。 本発明の第2の実施例にかかる同期制御部の機能的構成図である。 図7に示された同期制御部内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートである。 本発明の第2の実施例の電源を2つ有する構成例にかかる機能的構成図である。 本発明の第2の実施例にかかるスクリーンがノーマルモードの場合の機能的構成図である。 図10に示された同期制御部内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートである。 本発明の第3の実施例にかかる同期制御部31の機能的構成図である。 本発明の第4の実施例にかかる表示装置のスクリーンの分割例を示した説明図である。 本発明の第4の実施例にかかる表示装置の同期制御部内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートである。 本発明の第4の実施例にかかる表示装置の同期制御部内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートである。 本発明の第5の実施例にかかる表示装置の概略構成図である。 図16に示された同期制御部の機能的構成図である。 図16に示された同期制御部内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートである。
 以下、本発明の一実施形態にかかる表示装置を説明する。本発明の一実施形態にかかる表示装置は、所定の周期で画像が間欠的に投影され、光に対し透過状態と散乱状態とを切り替え可能なスクリーンと、所定の周期の幅のパルス信号が所定の周期の1周期おきに出力される第1の信号を取得する第1信号取得手段と、第1の信号を第1の時間遅延させた第2の信号として出力する第2信号出力手段と、第1の信号を第2の信号から第2の時間遅延させた第3の信号として出力する第3信号出力手段と、第1の信号を第3の信号から第3の時間遅延させた第4の信号として出力する第4信号出力手段と、を有している。さらに、第1の信号および第4の信号に基づいて、スクリーンを透過状態と散乱状態とに切り替える切替信号を出力する切替信号出力手段と、第2の信号および第3の信号に基づいて、画像が投影される期間を決定する投影制御信号を出力する投影制御信号出力手段と、を有している。そして、第1の時間と第2の時間と第3の時間との合計時間が、所定の周期以下に設定されている。このようにすることにより、第1の信号を遅延させた第2~第4の信号に基づいて、切替信号や投影制御信号を生成することができるため、シンプルな回路構成とすることができるのでコストを低減することができる。また、切替信号が第1の信号に基づいて出力され、投影制御信号が第1の信号を遅延させた第2、第3の信号に基づいて出力されるため、必ず散乱状態の時に投影することができるので、安全にスクリーンに投影することができる。
 また、第1の信号と第2の信号に基づいて、スクリーンが散乱状態期間のうち第1の時間だけ印加する第1の電圧と、第1の時間経過後にスクリーンに印加する第2の電圧と、の切り替えを制御する電圧切替手段を有し、第2の電圧が、第1の電圧よりも絶対値が小さい電圧であってもよい。このようにすることにより、例えばリバースモードの液晶素子を用いたスクリーンの場合、散乱状態の期間の先頭に第1の電圧を印加することで、高速に散乱状態への変化させることができる。そして、第1の電圧よりも絶対値が小さい第2の電圧を印加することで、散乱状態を安定させることができる。
 また、電圧切替手段が、第1の信号と第2の信号の排他的論理和演算の結果に基づいて第1の電圧と第2の電圧の切り替えを行うようにしてもよい。このようにすることにより、簡単な回路で第1の電圧と第2の電圧の切り替えをすることができる。
 また、第1の信号を第4の信号から第4の時間遅延させた第5の信号として出力する第5信号出力手段と、第4の信号および第5の信号に基づいて、スクリーンの透過状態期間のうち所定時間だけスクリーンに印加する第1の電圧と、第1の時間経過後にスクリーンに印加する第2の電圧と、の切り替えを制御する電圧切替手段と、を有し、第2の電圧が、第1の電圧よりも絶対値が小さい電圧であり、第1の時間と第2の時間と第3の時間と第4の時間との合計時間が、所定の周期以下に設定されていてもよい。このようにすることにより、例えばノーマルモードの液晶素子を用いたスクリーンの場合、透過状態の期間の先頭に第1の電圧を印加することで、高速に透過状態への変化させることができる。そして、第1の電圧よりも絶対値が小さい第2の電圧を印加することで、透過状態を安定させることができる。
 また、電圧切替手段が、第1の電圧と第2の電圧を1つの電源から生成するようにしてもよい。このようにすることにより、1電源で2つの電圧を出力することができ、電源部のコストを抑えることができる。
 また、電圧切替手段が、第1の電圧と第2の電圧をそれぞれ発生させる2つの電源から供給される電圧を切り替えてもよい。このようにすることにより、電源電圧の切り替え時に遅延を生じさせないようにできる。
 また、投影制御信号出力手段が、第2の信号と第3の信号の排他的論理和演算を行って投影制御信号を出力するようにしてもよい。このようにすることにより、簡単な回路で投影制御信号を生成することができる。
 また、スクリーンの周囲温度を取得する周囲温度取得手段と、第1の時間を周囲温度取得手段が取得した周囲温度に基づいて設定する第1時間設定手段を有してもよい。このようにすることにより、温度環境に適した散乱状態への変化の立ち上げ時間を設定することができる。
 また、第1時間設定手段が、周囲温度取得手段が取得した周囲温度と第1の時間の関係を予め定めたテーブルに基づいて第1の時間を設定するようにしてもよい。このようにすることにより、複雑な演算をすることなく温度環境に適した散乱状態への変化の立ち上げ時間を設定することができる。
 また、スクリーンが複数の領域に分割されており、第4信号出力手段が、複数の第3の時間でそれぞれ遅延させた複数の第4の信号を出力し、切替信号出力手段が、第1の信号および複数の第4の信号に基づいて、複数の領域に対応した複数の切替信号を出力するようにしてもよい。このようにすることにより、領域ごとに散乱の度合い、つまり、透過率を変化させることができる。
 また、スクリーンが、電圧の印加により光に対し透過状態と散乱状態とに変化する光学層と、電圧を印加するために光学層を挟んで対向配置される第1電極および第2電極と、を有し、1つの第1電極に対して複数の第2電極が直交するように並べて配置され、第1の信号に基づいて第1電極に電圧が印加され、第1の信号に基づいた切替信号が第1電極に出力され、複数の第4の信号に基づいた切替信号が第2電極に出力されていてもよい。このようにすることにより、複数の領域が1列に並んだように分割され、それぞれの領域ごとに散乱の度合い、つまり、透過率を変化させることができる。
 また、スクリーンが、電圧の印加により光に対し透過状態と散乱状態とに変化する光学層と、電圧を印加するために光学層を挟んで対向配置される第1電極および第2電極と、を有し、複数並べられた第1電極に対して複数の第2電極が直交するように並べて配置され、第1の信号の極性を反転した信号を第3の信号から第3の時間遅延させた信号に基づいた切替信号が第1電極に出力され、複数の第4の信号に基づいた切替信号が第2電極に出力されていてもよい。このようにすることにより、複数の領域がマトリクス状に並んだように分割され、それぞれの領域ごとに散乱の度合い、つまり、透過率を変化させることができる。
 また、スクリーンに向かって撮像する撮像手段の撮像期間を制御する撮像制御信号を、第1の信号と第3の時間に基づいて撮像手段に出力する撮像制御信号出力手段を有するようにしてもよい。このようにすることにより、スクリーン越しに観察者等を撮像する場合に、その撮像期間を、透過状態の期間に容易に設定することができる。
 また、本発明の他の実施形態にかかる表示装置は、所定の周期で画像が間欠的に投影され、光に対し透過状態と散乱状態とを切り替え可能なスクリーンと、所定の周期の2倍の周期かつ所定の幅のパルス信号が出力される第1の信号を出力する第1信号出力手段と、第1の信号を第1の時間遅延させた第2の信号として出力する第2信号出力手段と、第1の信号を第2の信号から第2の時間遅延させた第3の信号として出力する第3信号出力手段と、第1の信号を第3の信号から第3の時間遅延させた第4の信号として出力する第4信号出力手段と、を有している。さらに、第1の信号および第4の信号に基づいて、スクリーンを透過状態と散乱状態とに切り替える切替信号を出力する切替信号出力手段と、第2の信号および第3の信号に基づいて、画像が投影される期間を決定する投影制御信号を出力する投影制御信号出力手段と、を有している。そして、第1の時間と第2の時間と第3の時間との合計時間が、所定の周期以下に設定されている。このようにすることにより、第1の信号を順次遅延させた第2~第4の信号に基づいて、切替信号や投影制御信号を生成することができるため、シンプルな回路構成とすることができるのでコストを低減することができる。また、切替信号が第1の信号に基づいて出力され、投影制御信号が第1の信号を遅延させた第2、第3の信号に基づいて出力されるため、必ず散乱状態の時に投影することができるので、安全にスクリーンに投影することができる。また、第1の信号のパルス幅が所定の周期に固定されないので、第1の信号のパルス幅を任意に設定することができる。
 また、本発明の一実施形態にかかる表示装置の制御方法は、第1信号出力工程で、所定の周期の幅のパルス信号が所定の周期の1周期おきに出力される第1信号を出力し、第2信号出力工程で、第1の信号を第1の時間遅延させた第2の信号として出力し、第3信号出力工程で、第1の信号を第2の信号から第2の時間遅延させた第3の信号として出力し、第4信号出力工程で、第1の信号を第3の信号から第3の時間遅延させた第4の信号として出力として出力する。さらに、切替信号出力工程で、第1の信号および第4の信号に基づいて、スクリーンを透過状態と散乱状態とに切り替える切替信号を出力し、投影制御信号出力工程で、第2の信号および第3の信号に基づいて、画像が投影される期間を決定する投影制御信号を出力する。そして、第1の時間と第2の時間と第3の時間との合計時間が、所定の周期以下に設定されている。このようにすることにより、第1の信号を順次遅延させた第2~第4の信号に基づいて、切替信号や投影制御信号を生成することができるため、シンプルな回路構成とすることができるのでコストを低減することができる。また、切替信号が第1の信号に基づいて出力され、投影制御信号が第1の信号を遅延させた第2、第3の信号に基づいて出力されるため、必ず散乱状態の時に投影することができるので、安全にスクリーンに投影することができる。
 また、本発明の他の実施形態にかかる表示装置の制御方法は、第1信号出力工程で、所定の周期の2倍の周期かつ所定の幅のパルス信号が出力される第1の信号を出力し、第2信号出力工程で、第1の信号を第1の時間遅延させた第2の信号として出力し、第3信号出力工程で、第1の信号を第2の信号から第2の時間遅延させた第3の信号として出力し、第4信号出力工程で、第1の信号を第3の信号から第3の時間遅延させた第4の信号として出力する。さらに、切替信号出力工程で、第1の信号および第4の信号に基づいて、スクリーンを透過状態と散乱状態とに切り替える切替信号を出力し、投影制御信号出力工程で、第2の信号および第3の信号に基づいて、画像が投影される期間を決定する投影制御信号を出力する。そして、第1の時間と第2の時間と第3の時間との合計時間が、所定の周期以下に設定されている。このようにすることにより、第1の信号を順次遅延させた第2~第4の信号に基づいて、切替信号や投影制御信号を生成することができるため、シンプルな回路構成とすることができるのでコストを低減することができる。また、切替信号が第1の信号に基づいて出力され、投影制御信号が第1の信号を遅延させた第2、第3の信号に基づいて出力されるため、必ず散乱状態の時に投影することができるので、安全にスクリーンに投影することができる。また、第1の信号のパルス幅が所定の周期に固定されないので、第1の信号のパルス幅を任意に設定することができる。
 本発明の第1の実施例にかかる表示装置1を図1乃至図6を参照して説明する。表示装置1は図1に示すように、スクリーン21と、同期制御部31と、を備え、プロジェクタ11が接続されている。表示装置1は、プロジェクタ11の映像光をスクリーン21で透過散乱する透過型プロジェクション装置である。
 プロジェクタ11は、走査周期中にスクリーン21上で黒状態(投射光が出ない状態)を順次シフトさせる透過型あるいは反射型液晶ライトバルブなどを使用できるが、これ以外の素子を用いてもよい。また、プロジェクタ11は、映像の走査周期においてラスター走査し、スクリーン21の表示面に映像光を点順次で投影するものでもよい。つまり、映像光が所定の周期で間欠的に投影される。このプロジェクタ11では、強度変調された光ビームの照射方向を可動ミラーで反射して振るような、例えばレーザプロジェクタなどを用いることができる。このプロジェクタ11は、映像光の照射位置がスクリーン21上の一方向に順次走査されているものと同様に考えることができる。
 プロジェクタ11は、スクリーン21へ映像情報(画像情報)により変調された映像光を投影できるものであればよい。なお、映像情報は、プロジェクタ11に入力される映像信号から得られる。映像信号には、たとえば、NTSC(National Television Standards Committee)方式、PAL(Phase Alternation by Line)方式のようなアナログ方式の映像信号、MPEG-TS(Moving Picture Experts Group - Transport Stream)フォーマット、HDV(High-Definition Video)フォーマットのようなデジタルフォーマットの映像信号がある。プロジェクタ11には、動画の映像信号だけでなく、たとえばJPEG(Joint Photographic Experts Group)のような静止画の映像信号が入力されてもよい。この場合、プロジェクタ11は、静止画を表示するための同じ映像光で、スクリーン21を繰り返し走査すればよい。
 スクリーン21は、電圧の印加により光学状態を変化できるものであればよい。スクリーン21の光学状態は、散乱する状態が映像状態であり、それよりも入射光の散乱が小さく且つ平行光線透過率が高い透明な透過状態が非映像状態である。即ち、光に対し透過状態と散乱状態とを切り替え可能となっている。
 スクリーン21は、例えば、液晶材料を用い、散乱状態と入射光の散乱が小さい透明な透過状態を変化させる調光スクリーンなどでよい。調光スクリーンには、たとえば、高分子分散液晶などの液晶素子を用いたもの、透明セル内の白色粉体を移動させることで散乱状態と入射光の散乱が小さい透明な透過状態を制御する素子などを用いたものなどがある。
 図2に、光学状態を制御可能なスクリーン21の模式的な断面図を示す。図2に示したスクリーン21は、一対の透明なガラス板23,24の間に液晶を含む複合材料等を挟み込んだ光学層25を有する。一方のガラス板24の光学層25側には、全面に対向電極26が形成される。他方のガラス板23の光学層25側には、全面に制御電極27が配置される。なお、電極26、27と光学層25との間に、絶縁体からなる中間層を形成してもよい。
 また、対向電極26および制御電極27は、たとえばITO(酸化インジウム・スズ)により、透明電極として形成される。光学層25は、制御電極27と対向電極26との間に配置される。また、対向電極26および制御電極27は、少なくともいずれか一方が、入射光の一部を透過させるハーフミラーとなるような電極として構成されていてもよい。
 スクリーン21は、第1の電極としての対向電極26と第2の電極としての制御電極27との間に電位差を生じるように電圧が印加される。光学層25内の光学状態は、対向電極26と制御電極27の印加電圧により変化する。
 スクリーン21は、電位差を生じるように電圧が印加された際の状態によりリバースモードとノーマルモードに分類される。リバースモードで動作するスクリーン21は、電圧を印加していない通常状態において、スクリーン21が透明な透過状態となる。電圧を印加すると、印加電圧に応じた平行光線の散乱率の散乱状態となる。ノーマルモードで動作するスクリーンでは、電圧を印加していない通常状態において、スクリーンが散乱状態となる。電圧を印加すると、印加電圧に応じた平行光線透過率の透明な透過状態となる。そして、スクリーン21の光学状態は、所定の散乱状態が映像状態に対応し、それよりも平行光線透過率が高い透明な透過状態が非映像状態に対応する。なお、本実施例では、リバースモードで説明するが、ノーマルモードでも適用できる。
 制御部としての同期制御部31は、映像が投影されるスクリーン21を、投影された映像光を散乱する状態に制御し、投影されていない場合に透過状態に制御する。同期制御部31は、図1に示したように、プロジェクタ11とスクリーン21とに接続される。同期制御部31は、プロジェクタ11の映像光の投影に同期させて、スクリーン21の光学状態を制御する。
 次に、本実施例にかかる表示装置1において、スクリーン21の光学特性と同期して投射するプロジェクタ11の投影方式を、図3を参照して説明する。図3は、プロジェクタ11がインターバルを空けて映像光を投影する方式の説明図である。この場合、スクリーン21には、図3(B)に示すように、走査周期の一部において短期的に映像光が投影される。スクリーン21は、図3(C)に示すように、該一部の期間において散乱状態とすればよい。
 そして、該一部以外の期間において、スクリーン21の平行光線透過率を高くするようにスクリーン21の光学状態を制御すると、走査周期おいて、映像の輝度低下を招くことなく、スクリーン21のシースルー特性が得られる。定常的に映像光を投影する場合に比べ、同一輝度を得るには、1走査周期に対する散乱状態の時間程度のデューティ(図中duty:a)の概ね逆数倍の強さの投影光が必要となる。従って高いシースルー特性を得るには、強力なパルス発光の投影光出力が必要である。
 このようにプロジェクタ11とスクリーン21を制御することで、スクリーン21は、その背面の物体を認識しうる透明さを有しつつ、常時散乱状態とした場合と同等の明るさで映像光を散乱して透過できる。つまり、背景物体を認識することが可能なシースルー性と、映像の高い視認性とを両立することが可能となる。
 このプロジェクタ11とスクリーン21の同期制御のための切り替えタイミングの情報は、同期信号として同期制御部31から送出される。なお、プロジェクタ11および同期制御部31をマイクロ波、赤外線などの電磁波を用いたワイヤレス通信可能とし、これらの同期を得るための情報を無線信号により授受してもよい。
 表示装置1では、たとえば図1の設置環境下では、図4に示したように画像を視認できる。図4は、映像光による映像とスクリーン21の背景とが重なる表示状態の説明図である。図4では、スクリーン21の右側に映像光による人物41の像が映り、左側に、スクリーン21の向こう側にある背景としての樹木42を見ることができる。
 次に、図5に同期制御部31の機能的構成を示す。同期制御部31は、立ち上げ信号生成部311と、プロジェクタ制御信号生成部312と、駆動制御信号生成部313と、排他的論理和部314と、ゲートドライバ315、316と、遅延情報設定部317と、を備えている。
 第2信号出力手段としての立ち上げ信号生成部311は、外部から入力される第1の信号としての共通制御信号Scomを第1の時間遅延させて(位相を遅らせて)立ち上げ信号Supとして出力する。つまり、立ち上げ信号Supが第2の信号となる。遅延量である第1の時間は、初期値が予め設定されているが、後述する範囲で調整可能な値である。なお、共通制御信号Scomは、例えばプロジェクタ11に入力される映像周期に同期した同期信号などをプロジェクタ11から取得して用いることができる。
 第3信号出力手段としてのプロジェクタ制御信号生成部312は、立ち上げ信号Supを第2の時間遅延させて(位相を遅らせて)プロジェクタ制御信号Spjとして出力する。つまり、プロジェクタ制御信号Spjが第3の信号となる。遅延量である第2の時間は、初期値が予め設定されているが、後述する範囲で調整可能な値である。つまり、立ち上げ信号Supは、共通制御信号Scomを遅延させた信号であるので、プロジェクタ制御信号Spjは、共通制御信号Scomを立ち上げ信号Supから更に第2の時間遅延させた信号である。
 第4信号出力手段としての駆動制御信号生成部313は、プロジェクタ制御信号Spjを第3の時間遅延させて(位相を遅らせて)駆動制御信号Sdrvとして出力する。つまり、駆動制御信号Sdrvが第4の信号となる。遅延量である第3の時間は、初期値が予め設定されているが、後述する範囲で調整可能な値である。つまり、プロジェクタ制御信号Spjは、共通制御信号Scomを遅延させた信号であるので、駆動制御信号Sdrvは、共通制御信号Scomをプロジェクタ制御信号Spjから更に第3の時間遅延させた信号である。
 立ち上げ信号生成部311と、プロジェクタ制御信号生成部312と、駆動制御信号生成部313と、は、例えば遅延回路などハードウェアで構成でもよいし、マイコンのタイマによりそれぞれの遅延時間経過時に出力するようなソフトウェア(コンピュータプログラム)による制御でもよい。
 投影制御信号出力手段としての排他的論理和部314は、立ち上げ信号Supとプロジェクタ制御信号Spjとの排他的論理和演算を行いプロジェクタ制御信号出力としてプロジェクタ11へ出力される。排他的論理和演算は、排他的論理和演算回路で構成してもよいし、ソフトウェア上で演算するようにしてもよい。
 切替信号出力手段としてのゲートドライバ315は、対向電極26側に接続されて図示しない駆動電圧回路から供給される駆動電圧を出力するドライバ回路である。ゲートドライバ315は、共通制御信号Scomに基づいて駆動電圧を出力する。
 切替信号出力手段としてのゲートドライバ316は、制御電極27側に接続されて図示しない駆動電圧回路から供給される駆動電圧を出力するドライバ回路である。ゲートドライバ316は、駆動制御信号Sdrvに基づいて駆動電圧を出力する。
 遅延情報設定部317は、立ち上げ信号生成部311、プロジェクタ制御信号生成部312、駆動制御信号生成部313のそれぞれに設定する第1の時間、第2の時間、第3の時間を設定する。本実施例では、第1、第2、第3の時間の調整範囲は、各時間の和≦スクリーン21への投影周期とっている。即ち、第1の時間と第2の時間と第3の時間との合計時間が、所定の周期以下となっている。したがって、第1の時間はスクリーン21への投影周期以下の範囲、第2の時間はスクリーン21への投影周期-第1の時間の範囲、第3の時間はスクリーン21への投影周期-(第1の時間+第2の時間)の範囲がそれぞれの遅延時間の調整範囲となる。
 遅延情報設定部317は、スクリーン21への投影周期の値および第1、第2、第3の時間の設定値を外部から入力される。入力方法はスクリーン21への投影周期であればプロジェクタ11に映像を供給する供給源等から入力されるようにしてもよいし、キーボード等の入力手段から人手により入力するようにしてもよい。なお、遅延情報設定部317には、第1、第2、第3の時間の初期値が予め設定されていてもよい。遅延情報設定部317は、入力されたスクリーン21への投影周期の値および第1、第2、第3の時間の設定値(あるいは初期値)から上記した調整範囲を算出し、調整範囲である場合は、入力値あるいは初期値を立ち上げ信号生成部311、プロジェクタ制御信号生成部312、駆動制御信号生成部313のそれぞれに設定する。調整範囲外である場合は、不適切な値である旨警告等を行ってもよい。
 なお、第1の時間は、後述するように、スクリーン21が散乱状態に移行する立ち上がり期間であるので、通常、スクリーン21への投影周期よりも十分に小さい値となる。そのため、調整範囲をスクリーン21への投影周期よりも小さい範囲に絞ってもよい。
 なお、図5に示した構成では、共通制御信号Scomを外部から入力するようにしていたが、例えば1フレーム期間の値のみを外部から取得し、内部でタイマ等により生成してもよい。即ち、同期制御部31が第1信号取得手段として機能する。
 次に、リバースモードで動作するスクリーン21を用いる表示装置1の駆動を説明する。
 図6に、本実施例にかかる同期制御部31内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートを示す。また、図6において共通制御信号Scom~プロジェクタ制御信号出力Spjoまでは横軸は時間、縦軸はHighレベルまたはLowレベルである。共通駆動電圧出力Vcom~スクリーン駆動電圧までは横軸は時間、縦軸は電圧である。スクリーン散乱状態はスクリーン21(光学層25)の光学状態であり横軸は時間、縦軸は散乱または透過である。
 図6では、共通制御信号Scomには、周期2Tの矩形波が入力されている。この共通制御信号Scomは、期間Tが1フレーム期間と同じ長さ、つまり、プロジェクタ11に入力される映像周期に同期した同期信号となっている(スクリーン21への投影周期が期間T)。即ち、共通制御信号Scomは、所定の周期の幅(T)のパルス信号が所定の周期の1周期おき(2Tに1回)に出力されている。
 立ち上げ信号Supは、共通制御信号Scomから第1の時間αup遅延されている。プロジェクタ制御信号Spjは、立ち上げ信号Supから第2の時間αpj遅延されている。駆動制御信号Sdrvは、プロジェクタ制御信号Spjから第3の時間αdrv遅延されている。
 図6に示したように、立ち上げ信号Supは、共通制御信号Scomを第1の時間αup分遅延させた信号である。プロジェクタ制御信号Spjは、共通制御信号Scomを第1の時間αup+第2の時間αpj分遅延させた信号である。駆動制御信号Sdrvは、共通制御信号Scomを第1の時間αup+第2の時間αpj+第3の時間αdrv分遅延させた信号である。
 プロジェクタ制御信号出力Spjoは、上述したように、立ち上げ信号Supとプロジェクタ制御信号Spjの排他的論理和演算の結果である。プロジェクタ11は、このプロジェクタ制御信号出力SpjoがHighの期間映像光を投影する。したがって、プロジェクタ制御信号出力Spjoが投影制御信号となる。
 共通駆動電圧出力Vcomは、ゲートドライバ315から出力される駆動電圧波形である。共通駆動電圧出力Vcomは、本実施例では、共通制御信号Scomと同じ波形であって、共通制御信号ScomがHighの期間は電圧V1となり、Lowの期間は0ボルトとなる。
 選択駆動電圧出力Vdrv1は、ゲートドライバ316から出力される駆動電圧波形である。選択駆動電圧出力Vdrv1は、本実施例では、駆動制御信号Sdrvと同じ波形であって、駆動制御信号SdrvがHighの期間は電圧V1となり、Lowの期間は0ボルトとなる。
 スクリーン駆動電圧は、光学層25に印加される電圧波形を示したものである。つまり、スクリーン21の対向電極26に共通駆動電圧出力Vcomを正電圧として印加し、制御電極27に選択駆動電圧出力Vdrv1を負電圧として印加した状態、即ち、共通駆動電圧出力Vcom-選択駆動電圧出力Vdrv1を示している。このスクリーン駆動電圧波形によって、2フレームを1周期とするフレーム反転方式となっている。即ち、1フレーム期間Tごとに交互に正電圧と負電圧が印加される交流電圧駆動となっている。
 スクリーン散乱状態は、対向電極26と制御電極27の電位差(スクリーン駆動電圧の絶対値)がV1である場合に、電圧が印加された状態として散乱状態となる。スクリーン21は、スクリーン駆動電圧としてV1が印加されると、立ち上がり期間を経て散乱状態がピークとなり、V1の印加がなされなくなると、所定期間を経て透過状態となる。
 以上の説明から明らかなように、ゲートドライバ315から出力される共通駆動電圧出力Vcomと、ゲートドライバ316から出力される選択駆動電圧出力Vdrv1がスクリーン21を透過状態と散乱状態とに切り替える切替信号となる。
 図6に記載されているように、上述したスクリーン21の立ち上がり期間は、第1の時間αupとなる。つまり、第1の時間αupはスクリーン21の光学層25のデバイス特性や外部環境等によって定まる立ち上がり期間に基づいて設定することが好ましい。また、プロジェクタ11の投影期間は、スクリーン21が散乱状態の期間であって、プロジェクタ制御信号出力SpjoがHighレベルの期間であり、この期間は第2の時間αpjによって定められる。さらに、スクリーン21の散乱期間の終端は駆動制御信号Sdrvが立ち上がる時間によって定まり、第3の時間αdrvによって定められる。
 第3の時間αdrvを0にすると、第2の時間αpj経過後、つまり、プロジェクタ11の投影期間終了直後に透過状態に遷移し始める。また、第3の時間αdrvを最大値(T-(αup+αpj))にすると、散乱時間を1フレーム期間T期間全てとすることができ、実質的に透過率を最小にすることができる。つまり、第3の時間αdrvによって1フレーム期間における散乱状態の期間を定めることができ、スクリーン21の透過率を制御することができる。
 なお、第3の時間αdrvに加えてプロジェクタ11の投影期間、即ち第2の時間αpjを短くすることでさらに透過率を高くすることもできるが、プロジェクタ11の投影期間を短くすると、スクリーン21に投影される映像等の画質に影響を及ぼすので、あまり短くするのは好ましくない。したがって、スクリーン21に投影される映像等の画質に影響を及ぼさない範囲であれば、第2の時間αpjを短くしてもよい。なお、第2の時間αpjを長くしてもよく、その場合は、当然ながら透過率は低くなる。
 また、上述したように、αup+αpj+αdrv≦Tとする必要があるので、αdrv≦T-(αup+αpj)となる。第1の時間αupを固定値とすると、第2の時間αpjを長くすると第3の時間αdrvの調整幅が小さくなる。
 本実施例によれば、表示装置1は、1フレーム期間Tで映像が間欠的に投影される透過状態と散乱状態とを切り替え可能なリバースモードのスクリーン21と、1フレーム期間Tと同じ幅のパルス信号が1フレーム期間Tの2回に1回出力される共通制御信号Scomを取得する同期制御部31と、共通制御信号Scomを第1の時間αup遅延させた立ち上げ信号Supとして出力する立ち上げ信号生成部311と、立ち上げ信号Supを第2の時間αpj遅延させたプロジェクタ制御信号Spjとして出力するプロジェクタ制御信号生成部312と、プロジェクタ制御信号Spjを第3の時間αdrv遅延させた駆動制御信号Sdrvとして出力する駆動制御信号生成部313と、を有している。さらに、共通制御信号Scomと駆動制御信号Sdrvとに基づいて、スクリーン21を透過状態と散乱状態とに切り替える共通駆動電圧出力Vcomを出力するゲートドライバ315、選択駆動電圧出力Vdrv1を出力するゲートドライバ316と、立ち上げ信号Supとプロジェクタ制御信号Spjとに基づいて、画像が投影される期間を決定するプロジェクタ制御信号出力Spjoを出力する排他的論理和部314と、を有している。そして、第1の時間αupと第2の時間αpjと第3の時間αdrvの合計時間が、1フレーム期間T以下に設定されている。このようにすることにより、共通制御信号Scomを順次遅延させた立ち上げ信号Sup、プロジェクタ制御信号Spj、駆動制御信号Sdrvに基づいて、共通駆動電圧出力Vcom、選択駆動電圧出力Vdrv1やプロジェクタ制御信号出力Spjoを生成することができるため、シンプルな回路構成とすることができるのでコストを低減することができる。また、共通駆動電圧出力Vcom、選択駆動電圧出力Vdrv1が共通制御信号に基づいて出力され、プロジェクタ制御信号出力Spjoが共通制御信号を遅延させた立ち上げ信号Sup、プロジェクタ制御信号Spjに基づいて出力されるので、必ず散乱状態の時に投影することができる。したがって、投影光がスクリーンを突き抜けることなく、安全にスクリーンに投影することができる。
 また、排他的論理和部314でプロジェクタ制御信号出力Spjoを出力しているので、排他的論理和を演算する簡単な回路でプロジェクタ制御信号出力Spjoを生成することができる。
 なお、図5に示した構成では、共通制御信号Scomを遅延させて立ち上げ信号Supを生成し、立ち上げ信号Supを遅延させてプロジェクタ制御信号Spjを生成し、プロジェクタ制御信号Spjを遅延させて駆動制御信号Sdrvを生成している。しかしながら、この方法に限らず、例えば、共通制御信号Scomに対して、第1の時間αup遅延させた信号を立ち上げ信号Sup、共通制御信号Scomに対して、第1の時間αup+第2の時間αpj遅延させた信号をプロジェクタ制御信号Spj、共通制御信号Scomに対して、第1の時間αup+第2の時間αpj+第3の信号αdrv遅延させた信号を駆動制御信号Sdrvとしてもよい。要するに、共通制御信号Scomを第1の時間αup遅延させた立ち上げ信号Supとして出力でき、共通制御信号Scomを立ち上げ信号Supから第2の時間αpj遅延させたプロジェクタ制御信号Spjとして出力でき、共通制御信号Scomをプロジェクタ制御信号Spjから第3の時間αdrv遅延させた駆動制御信号Sdrvとして出力できればよい。
 また、図5に示した構成をソフトウェアで行う場合、共通制御信号Scomを取得し(第1信号取得工程)、立ち上げ信号生成部311(第2信号出力工程)、プロジェクタ制御信号生成部312(第3信号出力工程)、駆動制御信号生成部313(第4信号出力工程)、それぞれに相当する動作を順次行って立ち上げ信号Sup、プロジェクタ制御信号Spj、駆動制御信号Sdrvを出力する。そして、共通制御信号Scomと駆動制御信号生成部313に相当する動作に基づいてゲートドライバ315、316に共通駆動電圧出力Vcomと選択駆動電圧出力Vdrv1を出力させ(切替信号出力工程)、立ち上げ信号Supとプロジェクタ制御信号Spjとの排他的論理和演算を行ってプロジェクタ11に出力する(投影制御信号出力工程)。
 次に、本発明の第2の実施例にかかる表示装置を図7乃至図11を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。
 本実施例にかかる表示装置は、図7に示すように第1の実施例と構成に対して排他的論理和部318と、駆動電圧回路319が追加されている。共通駆動電圧出力Vcomと選択駆動電圧出力Vdrv1から出力される電圧は、散乱状態への変化(立ち上げ)を高速にするために閾値電圧よりも過剰に高くした場合に、スクリーン21の散乱特性が散乱のピークに到達したのち散乱度合いが低下する現象が生じることがある。そのため、本実施例では散乱状態への立ち上げを高速にするための第1の電圧V1と、安定して散乱状態を維持できる第2の電圧V2を切り替えられるようにしている。したがって、第1の電圧V1と第2の電圧V2は、|V1|>|V2|の関係となっている。
 電圧切替手段としての排他的論理和部318は、共通制御信号Scomと立ち上げ信号Supとの排他的論理和演算を行い立ち上げ信号出力Supoとして駆動電圧回路319へ出力される。排他的論理和演算は、排他的論理和部314と同様に排他的論理和演算回路で構成してもよいし、ソフトウェア上で演算するようにしてもよい。
 電圧切替手段としての駆動電圧回路319は、第1の電圧V1と第2の電圧V2との2種類の電圧を切り替え可能な回路であり、例えば図示しない1つの電源から、DC-DCコンバータや抵抗等により2つの電圧の切り替えを行う。駆動電圧回路319は、排他的論理和部318の出力信号に応じて第1の電圧V1と第2の電圧V2を切り替える。
 次に、本実施例にかかる同期制御部31内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートを図8示す。図8のタイミングチャートは、図6のタイミングチャートに対して立ち上げ信号出力Supoが追加されている。立ち上げ信号出力Supoは、上述したように、共通制御信号Scomと立ち上げ信号Supの排他的論理和演算の結果である。即ち、第1の時間αupの期間のみHighレベルとなる。
 駆動電圧回路319は、立ち上げ信号出力SupoがHighの期間は第1の電圧V1が出力され、Lowの期間は第2の電圧V2が出力されるように切り替える。このようにすることによって、図8に示したように、スクリーン21の立ち上げ期間にみに第1の電圧V1を印加することができる。即ち、第1の電圧V1を第1の時間αupだけスクリーン21に印加し、第2の電圧V2を第1の時間αup経過後にスクリーン21に印加している。
 共通駆動電圧出力Vcomを出力するゲートドライバ315と選択駆動電圧出力Vdrv1を出力するゲートドライバ316は、第1の電圧V1を交互に出力している。つまり、1フレーム目は、ゲートドライバ315が第1の電圧V1を出力し、2フレーム目はゲートドライバ316が第1の電圧V1を出力し、3フレーム目は、ゲートドライバ315が第1の電圧V1を出力するといったようにする。このようにすることで、図8のスクリーン散乱状態に示したように、散乱状態の立ち上げ期間に第1の電圧V1を印加することができ、散乱状態に高速に立ち上げることができる。
 本実施例によれば、共通制御信号Scomと立ち上げ信号Supに基づいて、スクリーン21が散乱状態期間のうち第1の時間αupだけ印加する第1の電圧V1と、第1の時間αup経過後に印加する第1の電圧V1よりも絶対値が小さい電圧である第2の電圧V2と、の切り替えを制御する排他的論理和部318を有している。このようにすることにより、例えば散乱状態の期間の先頭に第1の電圧V1を印加することで、高速に散乱状態への変化を立ち上げることができる。そして、第1の電圧V1よりも絶対値が小さい第2の電圧V2を印加することで、散乱状態を安定させることができる。
 また、排他的論理和演算の結果に基づいて第1の電圧V1と第2の電圧V2の切り替えを行っているので、簡単な回路で第1の電圧V1と第2の電圧V2の切り替えをすることができる。
 なお、図7に示した構成では、駆動電圧回路319が第1の電圧V1と第2の電圧V2を切り替えていたが、駆動電圧回路319として汎用の電源ICを用いた場合に、可変量によっては、散乱状態への立ち上げ期間と比較して切替にかかる遅延時間が大きすぎて間に合わない場合がある。そこで、図9に示したように、第1の電圧V1を発生する電源回路31Aaと第2の電圧V2を発生する電源回路31Abを設けて、電圧切替手段としての駆動電圧切替回路31Bによって切り替えるようにしてもよい。駆動電圧切替回路31Bによる切り替えは、図7の駆動電圧回路の切替動作と同様である。
 図9の構成によれば、第1の電圧V1と第2の電圧V2をそれぞれ発生させる2つの電源回路31Aa、31Abを有するので、電源電圧の切り替え時に遅延を生じさせないようにできる。
 図7乃至図9に示した実施例はリバースモードのスクリーン21であったが、ノーマルモードでも適用することができる。ノーマルモードの場合は、対向電極26と制御電極27の間に電位差があるときに透過状態(透明状態)となる。そのため、ノーマルモードの場合は、電圧V1を印加することで高速に透過状態に変化させる(立ち下げる)。そして、電圧V2を印加することで透過状態を安定させる。
 図10にノーマルモードの場合の同期制御部31を示す。図7に対して、立ち下げ信号生成部31Cが追加され、排他的論理和部318の入力が、駆動制御信号Sdrvと、立ち下げ信号生成部31Cの出力信号である立ち下げ信号Sdownに変更されている。
 第5信号出力手段としての立ち下げ信号生成部31Cは、駆動制御信号Sdrvを第4の時間遅延させて(位相を遅らせて)立ち下げ信号Sdownとして出力する。つまり、立ち下げ信号Sdownが第5の信号となる。遅延量である第4の時間は、初期値が予め設定されているが後述する範囲で調整可能な値である。つまり、駆動制御信号Sdrvは、共通制御信号Scomを遅延させた信号であるので、立ち下げ信号Sdownは、共通制御信号Scomを駆動制御信号Sdrvから更に第4の時間遅延させた信号である。
 図10に示した構成では、遅延情報設定部は317には、第4の時間も外部から入力される。勿論初期値が予め設定されていてもよい。
 第1の実施例で説明したように、第1、第2、第3の時間の調整範囲は、各時間の和≦スクリーン21への投影周期となっていたが、図10に示した構成(ノーマルモードの場合)では、第1、第2、第3、第4の時間の和≦スクリーン21への投影周期となる。したがって、第4の時間の分だけ第1、第2、第3の時間の調整範囲が第1の実施例よりも狭くなる。
 電圧切替手段としての排他的論理和部318は、駆動制御信号Sdrvと立ち下げ信号Sdownとの排他的論理和演算を行い立ち上げ信号出力Sdownoとして駆動電圧回路319へ出力される。
 次に、ノーマルモードで動作するスクリーン21を用いる表示装置1の駆動を説明する。図11に、同期制御部31内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートを示す。図11の場合、図8のタイミングチャートに対して、立ち下げ信号Sdownが追加されている。立ち下げ信号Sdownは、駆動制御信号Sdrvから第4の時間αdown遅延されている。つまり、立ち下げ信号Sdownは、共通制御信号Scomを第1の時間αup+第2の時間αpj+第3の時間αdrv+第4の時間αdown分遅延させた信号である。
 駆動電圧回路319は、立ち下げ信号出力SdownoがHighの期間は第1の電圧V1が出力され、Lowの期間は第2の電圧V2が出力されるように切り替える。このようにすることによって、図11に示したように、スクリーン21の立ち下げ期間にみに第1の電圧V1を印加することができる。そして、共通駆動電圧出力Vcomを出力するゲートドライバ315と選択駆動電圧出力Vdrv1を出力するゲートドライバ316は、リバースモードの場合と同様に第1の電圧V1を交互に出力している。このようにすることで、図11のスクリーン散乱状態に示したように、散乱状態の立ち下げ期間に第1の電圧V1を印加することができ、透過状態に高速に立ち下げることができる。
 図10及び図11に示したように、立ち下げ信号生成部31Cで駆動制御信号Sdrvを第4の時間αdown遅延させた立ち下げ信号Sdownを生成し、駆動制御信号Sdrvと立ち下げ信号Sdownに基づいて、駆動電圧回路319が第1の電圧V1と第2の電圧V2と、の切り替えを行う。このようにすることにより、ノーマルモードの液晶素子を用いたスクリーンでも、高速に透過状態への変化させることができる。そして、第1の電圧よりも絶対値が小さい第2の電圧を印加することで、透過状態を安定させることができる。
 次に、本発明の第3の実施例にかかる表示装置を説明する。なお、前述した第1、第2の実施例と同一部分には、同一符号を付して説明を省略する。
 本実施例にかかる表示装置は、第1の時間αupを周囲温度に基づいて自動調整するものであり、構成は第1の実施例、第2の実施例のいずれでも適用可能である。
 第1の時間αupである立ち上げ時間(立ち上がり期間)は、スクリーン21に液晶材料を用いた場合においては一般的な特性を示す式から求めることができる。立ち上げ時間をτrとすると、以下の(1)式の通り印加電圧Vに依存し、電圧が高いほど高速に立ち上がる。
Figure JPOXMLDOC01-appb-M000001
 ここで、τrは立ち上げ時間、γは回転粘性係数、dはセルギャップ、ε0は真空中の誘電率、Δεは液晶の誘電率異方性、Vは印加電圧、Vthは閾値電圧である。
 ここで、スクリーン21の光学層25に注入されている材料の回転粘性係数γが温度で決定されるアンドレードの式にある程度当てはまる場合、γは温度Teを含む以下の(2)式に置き換えることができる。
 Aは比例定数、Eは流動の活性化エネルギー、Rは気体定数、Teは温度(K)である。また、(2)式より(3)式が導かれる。
Figure JPOXMLDOC01-appb-M000003
 したがって、(1)(3)式より(4)式が導かれる。
Figure JPOXMLDOC01-appb-M000004
 また、(2)(4)式から(5)式が導かれる。
Figure JPOXMLDOC01-appb-M000005
 (5)式に変形することにより、τrとTおよびVで決定される式に近似することができる。ここで、縦軸をln(τr)、横軸を1/Tとし、傾きをa=E/R、切片を次の(6)式に置き換えた場合、τrは(7)式に簡易化できる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ここで、制御を行うためのパラメータとなる傾き定数aおよび切片定数bは立ち上げ時間τrと温度Te、立ち上げ電圧Vの関係によって決まる。この式からスクリーン21の立ち上げ時間τrは、温度Teを変化させながら例えば直線透過率の立ち上げ応答を実測にて求めることにより導出することができるようになる。また、切片定数bには電圧成分も含まれるので、baを切片定数bの傾き定数、bbを切片定数bの切片定数とする以下の(8)式に近似される。
Figure JPOXMLDOC01-appb-M000008
 (8)式から立ち上げ電圧Vは(9)式に置き換えることができる。
Figure JPOXMLDOC01-appb-M000009
 したがって、立ち上げ電圧(印加電圧)Vと立ち上げ時間τr即ち第1の時間αupは、傾き定数a、切片定数bの傾き定数ba、切片定数bの切片定数bb、印加できる最大電圧VMAX、閾値以上の最小電圧VMIN、周囲温度Teで事前に求めることで決まる。よって、少ないパラメータで自動制御が可能となる。
 (7)式や(9)式の演算は同期制御部31内の図示しないCPU等で演算するようにしてもよいが、指数計算を含むのでCPUの演算能力によって処理時間が長くなったり、RAM等のメモリの消費量が大きくなるため、処理が困難となる場合がある。そのため、事前に制御カーブを(7)式や(9)式にて導出しておき、それをルックアップテーブル(LUT)に置き換えたものを用いる方法で制御することで負担を軽減することができる。本実施例の場合、CPUやLUTが遅延情報設定部317の一部として機能することとなる。即ち、遅延情報設定部317が第1時間設定手段として機能する。
 なお、スクリーン21の周囲温度Teは、図12に示したように、スクリーン21の近傍に温度センサ51を新たに配置してもよいし、スクリーン21に温度を検出するセンサ等を搭載していれば、それを用いてもよい。或いは、センサによらず入力手段等から人手により表示装置1が設置された室温を周囲温度Teとして入力してもよい。それらのセンサ等が検出した(入力された)温度情報は、勿論遅延情報設定部317に出力され、遅延情報設定部317が周囲温度取得手段として機能する。
 本実施例によれば、遅延情報設定部317が、第1の時間αupを表示装置1の周囲温度Teに基づいて設定するようにしているので、温度環境に適した散乱状態への変化の立ち上げ時間を設定することができる。
 また、立ち上げ信号生成部311が、周囲温度Teと第1の時間αupの関係を予め定めたLUTに基づいて第1の時間αupを設定するようにしてもよい。このようにすることにより、複雑な演算をすることなく温度環境に適した散乱状態への変化の立ち上げ時間を設定することができる。
 なお、上記実施例は、液晶スクリーンの一般的な式から自動制御パラメータを求める例を挙げたが、事前評価が許される範囲内において実測とチューニングにてLUTや近似式を新たに作成してもよく、周囲温度Teに基づいて第1の時間αupを求めることができれば、その方法を限定するものではない。
 次に、本発明の第4の実施例にかかる表示装置を図13乃至図15を参照して説明する。なお、前述した第1乃至第3の実施例と同一部分には、同一符号を付して説明を省略する。
 本実施例にかかる表示装置1は、図13に示したように、スクリーン21が複数の領域に分割されている。図13(a)は、共通駆動電圧出力Vcomが出力される1つの対向電極26に対して、対向電極26に直交するように並べられた選択駆動電圧出力Vdrv1、Vdrv2、Vdrv3がそれぞれ出力される複数の制御電極27(図では3つ)が設けられている(1対多電極配置)。そして、制御電極27に対応するように領域1~3の3つに分割されている。
 図13(b)は、選択駆動電圧出力Vdrv3、Vdrv4がそれぞれ出力される複数の対向電極26(図では2つ)に対して、対向電極26に直交するように並べられた選択駆動電圧出力Vdrv1、Vdrv2がそれぞれ出力される複数の制御電極27(図では2つ)が設けられている(多対多電極配置)。そして、各対向電力26と各制御電極27とが重なるマトリクス状の領域3-1、3-2、4-1、4-2の4つに分割されている。なお、図13(b)に示した多対多電極配置は、共通駆動電圧出力Vcomが出力されていないが、その理由については後述する。
 図14に、図13(a)に示した1対多電極配置の場合の同期制御部31内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートを示す。なお、図14は、第2の実施例に記載した第1の電圧V1と第2の電圧V2を切り替える方法を適用した例であるが、第1の実施例を適用できることは言うまでもない。勿論、第1の時間αupを第3の実施例に基づいて設定してもよい。
 図14に示したように、1対多電極配置の場合は、複数の制御電極27それぞれにゲートドライバ316から選択駆動電圧出力Vdrv1、Vdrv2、Vdrv3を出力するために、駆動制御信号生成部313から出力される駆動制御信号は、Sdrv1、Sdrv2、Sdrv3の複数となる。したがって、第3の時間も、αdrv1、αdrv2、αdrv3の複数設定する。つまり、領域ごとに個別に第3の時間を設定することができる。即ち、共通制御信号Scomに基づいた切替信号(共通駆動電圧出力Vcom)が対向電極26に出力され、駆動制御信号Sdrv1、Sdrv2、Sdrv3に基づいた切替信号(選択駆動電圧出力Vdrv1、Vdrv2、Vdrv3)が制御電極27に出力されている。
 このように、第3の時間を個別に設定できるため、スクリーン散乱状態に示したように、各領域ごとに散乱期間を異ならせることができる。図14に示した例では、領域2は、投影期間のみ散乱状態にし、領域3は、1フレーム期間全て散乱状態にしている。
 次に、図15に、図13(b)に示した多対多電極配置の場合の同期制御部31内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートを示す。
 図15に示した場合も図14と同様に、複数の対向電極26と複数の制御電極27それぞれに選択駆動電圧出力Vdrv1、Vdrv2、Vdrv3、Vdrv4を出力するために、駆動制御信号生成部313から出力される駆動制御信号は、Sdrv1、Sdrv2、Sdrv3、Sdrv4の複数となる。したがって、第3の時間も、αdrv1、αdrv2、αdrv3、αdrv4の複数設定する。
 多対多電極配置の場合、駆動制御信号生成部313から出力される駆動制御信号が複数になるだけでなく、ゲートドライバ315に入力されていた共通制御信号Scomに代わり、駆動制御信号生成部313から出力される複数の駆動制御信号のうち、対向電極に対応する駆動制御信号Sdrv3、Sdrv4がゲートドライバ315に接続される。
 多対多電極配置の場合、図13(b)に示したように、選択駆動電圧出力Vdrv1と選択駆動電圧出力Vdrv3、選択駆動電圧出力Vdrv2と選択駆動電圧出力Vdrv3、選択駆動電圧出力Vdrv1と選択駆動電圧出力Vdrv4、選択駆動電圧出力Vdrv2と選択駆動電圧出力Vdrv4、のそれぞれの電位差によって各領域に対応する光学層25を散乱状態に遷移させる。したがって、共通制御信号Scomは各制御信号のタイミング制御用の基準信号として使われるのみでゲートドライバ315の制御用(共通駆動電圧出力Vcom)としては使用されない。その代わりに、対向電極26に対応する駆動制御信号Sdrv3、Sdrv4を使用する。
 駆動制御信号Sdrv3、Sdrv4は、駆動制御信号Sdrv1、Sdrv2と同様に第3の時間αdrv3、αdrv4分遅延されるが、極性を反転している(180°位相をずらしている)点が異なる。つまり、共通制御信号Scomの極性を反転した信号に対して第3の時間αdrv3、αdrv4分遅延させる。このようにすることにより、各駆動制御信号Sdrv1、Sdrv2、Sdrv3、Sdrv4から生成される選択駆動電圧出力Vdrv1、Vdrv2、Vdrv3、Vdrv4による各領域に対応するスクリーン駆動電圧を散乱状態に変化させるだけの電位差とすることができる。
 なお、駆動制御信号Sdrv3、Sdrv4は、プロジェクタ制御信号Spjの極性を反転した信号に対して第3の時間αdrv3、αdrv4分遅延してもよいし、共通制御信号Scomの極性を反転した信号に対して第1の時間αup+第2の時間αpj+第3の時間+αdrv3またはαdrv4遅延させてもよい。
 即ち、多対多電極配置は、共通制御信号Scomの極性を反転した信号をプロジェクタ制御信号Spjから第3の時間αdrv3、αdrv4遅延させた駆動制御信号Sdrv3、Sdrv4に基づいた切替信号(選択駆動電圧出力Vdrv3、Vdrv4)が対向電極26に出力され、駆動制御信号Sdrv1、Sdrv2に基づいた切替信号(選択駆動電圧出力Vdrv3、Vdrv4)が制御電極27に出力されている。
 本実施例によれば、スクリーン21が複数の領域に分割されており、駆動制御信号生成部313が、複数の第3の時間αdrv1、αdrv2、αdrv3それぞれ遅延させた複数の駆動制御信号Sdrv1、Sdrv2、Sdrv3を出力し、ゲートドライバ316が、複数の駆動制御信号Sdrv1、Sdrv2、Sdrv3に基づいて、複数の領域に対応した複数の切替信号を出力している。このようにすることにより、領域ごとに散乱の度合い、つまり、透過率を変化させることができる。
 また、複数の領域を複数並べられた対向電極26と、その対向電極26と直交するように複数並べられた制御電極27と、でマトリクス状に分割した場合は、対向電極26に対応する駆動制御信号Sdrv3、Sdrv4と、制御電極27に対応する駆動制御信号Sdrv1、Sdrv2と、を駆動制御信号生成部313が出力している。そして、対向電極26に対応する駆動制御信号Sdrv3、Sdrv4が共通制御信号Scomの極性を反転した信号に対して第3の時間αdrv3、αdrv4それぞれ遅延されている。このようにすることにより、マトリクス状に分割された場合でも、各領域ごとに散乱状態を制御することができる。
 次に、本発明の第5の実施例にかかる表示装置を図16乃至図18を参照して説明する。なお、前述した第1乃至第4の実施例と同一部分には、同一符号を付して説明を省略する。
 本実施例にかかる表示装置は、図16に示したように、追加された撮像手段としてのカメラ61に対する制御が可能となっている。カメラ61は、観察者とスクリーン21を挟んで反対側にスクリーン21に向かって設置されている。カメラ61は、スクリーン21が透過状態のときにスクリーン21の方向を撮像することによって観察者の正面から撮像することができる。
 図17は、本実施例にかかる同期制御部31の構成図である。図17は第1の実施例(図5)に基づいて構成しているが、第2の実施例(図7、図9)に基づいて構成してもよい。勿論、本実施例においても第1の時間αupを第3の実施例に基づいて設定してもよいし、第4の実施例のようにスクリーン21を複数の領域に分割してもよい。
 図17に示した構成は、図5の構成に加えて撮像制御信号生成部31Dと、排他的論理和部31Eと、が追加されている。
 撮像制御信号出力手段としての撮像制御信号生成部31Dは、共通制御信号Scomを第4の時間αcだけ位相を早めた信号を撮像制御信号Scとして出力する。つまり、共通制御信号Scomに対して極性を反転した信号を、T-αcだけ遅延させる。ただし、後述するように、第3遅延時間αdrvとの関係に応じて第4の時間αcは遅延情報設定部317から設定される。
 撮像制御信号出力手段としての排他的論理和部31Eは、共通制御信号Scomと撮像制御信号Scとの排他的論理和演算を行い撮像制御信号出力としてカメラ61へ出力される。排他的論理和演算は、排他的論理和演算回路で構成してもよいし、ソフトウェア上で演算するようにしてもよい。
 図18に、本実施例にかかる同期制御部31内の信号波形と、印加する駆動電圧波形と、光学状態と、の関係の一例を示したタイミングチャートを示す。図18において、撮像制御信号Scは、上述したように共通制御信号Scomを第4の時間αcだけ位相を早めている。カメラ61による撮像はスクリーン21が透過状態のときに行わなければならないので、スクリーン21はこの第4の時間αcにかかる前に透過状態に遷移させなければならない。散乱状態から透過状態に遷移するための時間をαdownとすると、第3の時間αdrvの最大値αdrvMAXは、T-(αup+αpj+αdown+αc)となる。
 図18に示した例では、1フレーム期間の後端からの時間(第4の時間αc)で撮像期間を設定することで、確実に透過状態の期間に撮像できるようにしているが、第3の時間αdrvに散乱状態から透過状態に遷移するための時間をαdown経過後から第4の時間αcを設定するようにしてもよい。
 本実施例は、第1の時間αupと第2の時間αpjを固定値とすると、散乱状態の調整は第3の時間αdrvによって定まる。したがって、フレーム周期Tのうち散乱状態以外の期間である透過状態の期間に撮像するための第4の時間αcは第3の時間αdrvに基づいて設定されることとなる。即ち、スクリーン21を撮像するカメラ61の撮像期間を制御する撮像制御信号出力Scoを、共通制御信号Scomと第3の時間αdrvに基づいてカメラ61に出力している。
 本実施例によれば、スクリーン21を撮像するカメラ61の撮像期間を制御する撮像制御信号Scを、共通制御信号Scomと駆動制御信号Sdrvの排他的論理和演算に基づいて出力する撮像制御信号生成部31Dを有している。このようにすることにより、スクリーン21越しに観察者等を撮像する場合に、その撮像期間を、容易に設定することができる。
 また、撮像期間を1フレーム期間の後端からの時間(第4の時間αc)で撮像期間を設定することで、散乱期間を避け、確実に透過状態の期間に撮像できる。
 なお、上述した5つの実施例では、リバースモードのスクリーン21で説明したが、ノーマルモードで動作するスクリーンでもよい。ノーマルモードで動作するスクリーンでは、電圧を印加していない通常状態において、スクリーンが散乱状態となる。電圧を印加すると、印加電圧に応じた平行光線透過率の透明な透過状態となる。したがって、例えば、図6のようなスクリーン散乱状態とするには、選択駆動電圧出力Vdrv1のV1と0ボルトの期間を反転させればよい。または、駆動制御信号Sdrvの極性を反転させてもよい(遅延させて反転する)。この場合でも、共通制御信号Scomをそれぞれ遅延させた制御信号に基づいてスクリーン21の散乱状態と透過状態の切り替えを制御していることとなる。
 また、上述した5つの実施例では、第1の信号である共通制御信号Scomを、1フレーム期間と同じ幅のパルス信号(所定の周期の幅のパルス信号)としていたが、それに限らず、2Tの周期の範囲であれば、パルス信号の幅は任意に定めてもよい。つまり、共通制御信号Scomのデューティは50%に限らない。即ち、第1の信号は、所定の周期の2倍の周期かつ所定の幅のパルス信号であってもよい。
 また、本発明は上記実施例に限定されるものではない。即ち、当業者は、従来公知の知見に従い、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。かかる変形によってもなお本発明の表示装置の構成を具備する限り、勿論、本発明の範疇に含まれるものである。
  1        表示装置
  11       プロジェクタ
  21       スクリーン
  31       同期制御部(第1信号取得手段)
  311      立ち上げ信号生成部(第2信号出力手段)
  312      プロジェクタ制御信号生成部(第3信号出力手段)
  313      駆動制御信号生成部(第4信号出力手段)
  314      排他的論理和部(投影制御信号出力手段)
  315      ゲートドライバ(切替信号出力手段)
  316      ゲートドライバ(切替信号出力手段)
  317      遅延情報設定部(第1時間設定手段、周囲温度取得手段)
  318      排他的論理和部(電圧切替手段)
  319      駆動電圧回路(電圧切替手段)
  31Aa     電源回路(電源)
  31Ab     電源回路(電源)
  31B      駆動電圧切替回路(電圧切替手段)
  31C      立ち下げ信号生成部(第5信号出力手段)
  31D      撮像制御信号生成部(撮像制御信号出力手段)
  31E      排他的論理和部(撮像制御信号出力手段)
  61       カメラ(撮像手段)
  Scom     共通制御信号(第1の信号)
  Sup      立ち上げ信号(第2の信号)
  Spj      プロジェクタ制御信号(第3の信号)
  Sdrv     駆動制御信号(第4の信号)
  Sdrv1    駆動制御信号(第4の信号)
  Sdrv2    駆動制御信号(第4の信号)
  Sdrv3    駆動制御信号(第4の信号)
  Sdrv4    駆動制御信号(第4の信号)
  Sdown    立ち下げ制御信号(第5の信号)
  T        1フレーム期間(所定の周期)
  αup      第1の時間
  αpj      第2の時間
  αdrv     第3の時間
  αdown    第4の時間

Claims (16)

  1.  所定の周期で画像が間欠的に投影され、光に対し透過状態と散乱状態とを切り替え可能なスクリーンと、
     前記所定の周期の幅のパルス信号が前記所定の周期の1周期おきに出力される第1の信号を取得する第1信号取得手段と、
     前記第1の信号を第1の時間遅延させた第2の信号として出力する第2信号出力手段と、
     前記第1の信号を前記第2の信号から第2の時間遅延させた第3の信号として出力する第3信号出力手段と、
     前記第1の信号を前記第3の信号から第3の時間遅延させた第4の信号として出力する第4信号出力手段と、
     前記第1の信号および前記第4の信号に基づいて、前記スクリーンを透過状態と散乱状態とに切り替える切替信号を出力する切替信号出力手段と、
     前記第2の信号および前記第3の信号に基づいて、前記画像が投影される期間を決定する投影制御信号を出力する投影制御信号出力手段と、
    を有し、
     前記第1の時間と前記第2の時間と前記第3の時間との合計時間が、前記所定の周期以下に設定されている、
    ことを特徴とする表示装置。
  2.  前記第1の信号および前記第2の信号に基づいて、前記スクリーンの散乱状態期間のうち前記第1の時間だけ前記スクリーンに印加する第1の電圧と、前記第1の時間経過後に前記スクリーンに印加する第2の電圧と、の切り替えを制御する電圧切替手段を有し、
     前記第2の電圧が、前記第1の電圧よりも絶対値が小さい電圧である、
    ことを特徴とする請求項1に記載の表示装置。
  3.  前記電圧切替手段が、前記第1の信号および前記第2の信号の排他的論理和演算の結果に基づいて前記第1の電圧と前記第2の電圧との切り替えを行うことを特徴とする請求項2に記載の表示装置。
  4.  前記第1の信号を前記第4の信号から第4の時間遅延させた第5の信号として出力する第5信号出力手段と、
     前記第4の信号および前記第5の信号に基づいて、前記スクリーンの透過状態期間のうち前記所定時間だけ前記スクリーンに印加する第1の電圧と、前記第1の時間経過後に前記スクリーンに印加する第2の電圧と、の切り替えを制御する電圧切替手段と、を有し、
     前記第2の電圧が、前記第1の電圧よりも絶対値が小さい電圧であり、
     前記第1の時間と前記第2の時間と前記第3の時間と前記第4の時間との合計時間が、前記所定の周期以下に設定されている、
    ことを特徴とする請求項1に記載の表示装置。
  5.  前記電圧切替手段が、前記第1の電圧および前記第2の電圧を1つの電源から生成することを特徴とする請求項2乃至4のうちいずれか一項に記載の表示装置。
  6.  前記電圧切替手段が、前記第1の電圧および前記第2の電圧をそれぞれ発生させる2つの電源から供給される電圧を切り替えることを特徴とする請求項2乃至4のうちいずれか一項に記載の表示装置。
  7.  前記投影制御信号出力手段が、前記第2の信号および前記第3の信号の排他的論理和演算を行って前記投影制御信号を出力することを特徴とする請求項1乃至6のうちいずれか一項に記載の表示装置。
  8.  前記スクリーンの周囲温度を取得する周囲温度取得手段と、
     前記第1の時間を前記周囲温度取得手段が取得した前記周囲温度に基づいて設定する第1時間設定手段を有することを特徴とする請求項1乃至7のうちいずれか一項に記載の表示装置。
  9.  第1時間設定手段が、前記周囲温度取得手段が取得した前記周囲温度と前記第1の時間の関係を予め定めたテーブルに基づいて前記第1の時間を設定することを特徴とする請求項8に記載の表示装置。
  10.  前記スクリーンが複数の領域に分割されており、
     前記第4信号出力手段が、複数の前記第3の時間でそれぞれ遅延させた複数の前記第4の信号を出力し、
     前記切替信号出力手段が、前記第1の信号および複数の前記第4の信号に基づいて、前記複数の領域に対応した複数の前記切替信号を出力する、
    ことを特徴とする請求項1乃至9のうちいずれか一項に記載の表示装置。
  11.  前記スクリーンが、電圧の印加により光に対し透過状態と散乱状態とに変化する光学層と、前記電圧を印加するために前記光学層を挟んで対向配置される第1電極および第2電極と、を有し、
     1つの前記第1電極に対して複数の前記第2電極が直交するように並べて配置され、
     前記第1の信号に基づいた前記切替信号が前記第1電極に出力され、
    複数の前記第4の信号に基づいた前記切替信号が前記第2電極に出力されている、
    ことを特徴とする請求項10に記載の表示装置。
  12.  前記スクリーンが、電圧の印加により光に対し透過状態と散乱状態とに変化する光学層と、前記電圧を印加するために前記光学層を挟んで対向配置される第1電極および第2電極と、を有し、
     複数並べられた前記第1電極に対して複数の前記第2電極が直交するように並べて配置され、
     前記第1の信号の極性を反転した信号を前記第3の信号から前記第3の時間遅延させた信号に基づいた前記切替信号が前記第1電極に出力され、
     複数の前記第4の信号に基づいた前記切替信号が前記第2電極に出力されている、
    ことを特徴とする請求項10に記載の表示装置。
  13.  前記スクリーンに向かって撮像する撮像手段の撮像期間を制御する撮像制御信号を、前記第1の信号と前記第3の時間に基づいて前記撮像手段に出力する撮像制御信号出力手段を有することを特徴とする請求項1乃至12のうちいずれか一項に記載の表示装置。
  14.  所定の周期で画像が間欠的に投影され、光に対し透過状態と散乱状態とを切り替え可能なスクリーンと、
     前記所定の周期の2倍の周期かつ所定の幅のパルス信号が出力される第1の信号を取得する第1信号取得手段と、
     前記第1の信号を第1の時間遅延させた第2の信号として出力する第2信号出力手段と、
     前記第1の信号を前記第2の信号から第2の時間遅延させた第3の信号として出力する第3信号出力手段と、
     前記第1の信号を前記第3の信号から第3の時間遅延させた第4の信号として出力する第4信号出力手段と、
     前記第1の信号および前記第4の信号に基づいて、前記スクリーンを透過状態と散乱状態とに切り替える切替信号を出力する切替信号出力手段と、
     前記第2の信号および前記第3の信号に基づいて、前記画像が投影される期間を決定する投影制御信号を出力する投影制御信号出力手段と、
    を有し、
     前記第1の時間と前記第2の時間と前記第3の時間との合計時間が、前記所定の周期以下に設定されている、
    ことを特徴とする表示装置。
  15.  所定の周期で画像が間欠的に投影され、光に対し透過状態と散乱状態とを切り替え可能なスクリーンを有する表示装置の制御方法において、
     前記所定の周期の幅のパルス信号が前記所定の周期の1周期おきに取得される第1の信号を出力する第1信号取得工程と、
     前記第1の信号を第1の時間遅延させた第2の信号として出力する第2信号出力工程と、
     前記第1の信号を前記第2の信号から第2の時間遅延させた第3の信号として出力する第3信号出力工程と、
     前記第1の信号を前記第3の信号から第3の時間遅延させた第4の信号として出力する第4信号出力工程と、
     前記第1の信号および前記第4の信号に基づいて、前記スクリーンを透過状態と散乱状態とに切り替える切替信号を出力する切替信号出力工程と、
     前記第2の信号および前記第3の信号に基づいて、前記画像が投影される期間を決定する投影制御信号を出力する投影制御信号出力工程と、
    を含み、
     前記第1の時間と前記第2の時間と前記第3の時間との合計時間が、前記所定の周期以下に設定されている、
    ことを特徴とする表示装置の制御方法。
  16.  所定の周期で画像が間欠的に投影され、光に対し透過状態と散乱状態とを切り替え可能なスクリーンを有する表示装置の制御方法において、
     前記所定の周期の2倍の周期かつ所定の幅のパルス信号が出力される第1の信号を取得する第1信号取得工程と、
     前記第1の信号を第1の時間遅延させた第2の信号として出力する第2信号出力工程と、
     前記第1の信号を前記第2の信号から第2の時間遅延させた第3の信号として出力する第3信号出力工程と、
     前記第1の信号を前記第3の信号から第3の時間遅延させた第4の信号として出力する第4信号出力工程と、
     前記第1の信号および前記第4の信号に基づいて、前記スクリーンを透過状態と散乱状態とに切り替える切替信号を出力する切替信号出力工程と、
     前記第2の信号および前記第3の信号に基づいて、前記画像が投影される期間を決定する投影制御信号を出力する投影制御信号出力工程と、
    を有し、
     前記第1の時間と前記第2の時間と前記第3の時間との合計時間が、前記所定の周期以下に設定されている、
    ことを特徴とする表示装置の制御方法。
PCT/JP2013/076099 2013-09-26 2013-09-26 表示装置および表示装置の制御方法 WO2015045067A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076099 WO2015045067A1 (ja) 2013-09-26 2013-09-26 表示装置および表示装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076099 WO2015045067A1 (ja) 2013-09-26 2013-09-26 表示装置および表示装置の制御方法

Publications (1)

Publication Number Publication Date
WO2015045067A1 true WO2015045067A1 (ja) 2015-04-02

Family

ID=52742271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076099 WO2015045067A1 (ja) 2013-09-26 2013-09-26 表示装置および表示装置の制御方法

Country Status (1)

Country Link
WO (1) WO2015045067A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154089A1 (ja) * 2016-03-08 2017-09-14 パイオニア株式会社 駆動装置
JP2021103195A (ja) * 2019-12-24 2021-07-15 大日本印刷株式会社 情報表示システム
JP2022062086A (ja) * 2017-12-28 2022-04-19 パナソニックIpマネジメント株式会社 調光パネル、透明スクリーンシステム、及び、映像投影システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228893A (ja) * 1989-03-02 1990-09-11 Nippon Telegr & Teleph Corp <Ntt> 画像通信用表示撮影装置
JP2003059205A (ja) * 2001-06-23 2003-02-28 Samsung Electronics Co Ltd ウォッブル信号を用いたクロック信号生成装置及びそれを用いたデータ再生装置
JP2007233061A (ja) * 2006-03-01 2007-09-13 Sharp Corp 液晶表示装置
JP2009031789A (ja) * 2007-06-29 2009-02-12 Canon Inc 表示装置及びその駆動方法
JP2011197168A (ja) * 2010-03-18 2011-10-06 Sharp Corp 表示装置及び表示方法
WO2012114512A1 (ja) * 2011-02-25 2012-08-30 パイオニア株式会社 表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228893A (ja) * 1989-03-02 1990-09-11 Nippon Telegr & Teleph Corp <Ntt> 画像通信用表示撮影装置
JP2003059205A (ja) * 2001-06-23 2003-02-28 Samsung Electronics Co Ltd ウォッブル信号を用いたクロック信号生成装置及びそれを用いたデータ再生装置
JP2007233061A (ja) * 2006-03-01 2007-09-13 Sharp Corp 液晶表示装置
JP2009031789A (ja) * 2007-06-29 2009-02-12 Canon Inc 表示装置及びその駆動方法
JP2011197168A (ja) * 2010-03-18 2011-10-06 Sharp Corp 表示装置及び表示方法
WO2012114512A1 (ja) * 2011-02-25 2012-08-30 パイオニア株式会社 表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154089A1 (ja) * 2016-03-08 2017-09-14 パイオニア株式会社 駆動装置
JP2022062086A (ja) * 2017-12-28 2022-04-19 パナソニックIpマネジメント株式会社 調光パネル、透明スクリーンシステム、及び、映像投影システム
JP2021103195A (ja) * 2019-12-24 2021-07-15 大日本印刷株式会社 情報表示システム

Similar Documents

Publication Publication Date Title
US9785028B2 (en) Display apparatus, driving method thereof, and screen apparatus for displaying
JP4271701B2 (ja) 液晶表示装置
TWI475553B (zh) 背光控制模組及背光控制方法
US8384652B2 (en) Liquid crystal display
JP5084948B2 (ja) バックライト装置
KR101584863B1 (ko) 백라이트 구동 방법, 백라이트 구동 장치 및 디스플레이 장치
JP2006227617A (ja) ブラックポイント挿入方法
WO2013140626A1 (ja) 表示装置、その駆動方法、および表示用スクリーン装置
TWI441142B (zh) 降低殘影的液晶顯示裝置及其相關的方法
WO2015045067A1 (ja) 表示装置および表示装置の制御方法
JP2014178524A (ja) 表示装置
WO2014033807A1 (ja) 表示装置および表示装置の駆動方法
JP5856285B2 (ja) 表示装置、その駆動方法、および表示用スクリーン装置
US9448466B2 (en) Display device and drive method for display device
WO2015132908A1 (ja) 表示制御装置
WO2013140627A1 (ja) 表示装置、その駆動方法、および表示用スクリーン装置
JP2014153380A (ja) 表示装置
JP6297291B2 (ja) 表示装置および表示装置の駆動方法
JP2016082386A (ja) 表示装置
JP6258465B2 (ja) 表示制御装置
WO2017126079A1 (ja) 表示制御装置
JP2016170306A (ja) 表示装置
JP2022023983A (ja) 表示装置および表示装置の駆動方法
JP2016180875A (ja) 表示制御装置
JP2020173467A (ja) 表示装置および表示装置の駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13894278

Country of ref document: EP

Kind code of ref document: A1