WO2013140627A1 - 表示装置、その駆動方法、および表示用スクリーン装置 - Google Patents

表示装置、その駆動方法、および表示用スクリーン装置 Download PDF

Info

Publication number
WO2013140627A1
WO2013140627A1 PCT/JP2012/057610 JP2012057610W WO2013140627A1 WO 2013140627 A1 WO2013140627 A1 WO 2013140627A1 JP 2012057610 W JP2012057610 W JP 2012057610W WO 2013140627 A1 WO2013140627 A1 WO 2013140627A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
image
screen
voltage
light
Prior art date
Application number
PCT/JP2012/057610
Other languages
English (en)
French (fr)
Inventor
吉岡 俊博
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/057610 priority Critical patent/WO2013140627A1/ja
Publication of WO2013140627A1 publication Critical patent/WO2013140627A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • G09G3/16Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source
    • G09G3/18Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to a display device, a driving method thereof, and a display screen device.
  • Some display devices project image light onto a screen to display the image on the screen.
  • a liquid crystal light control device which can control the transmittance
  • a plurality of control electrodes may be arranged side by side on one surface of the screen, and the optical state of the screen may be controlled for each divided region corresponding to each control electrode.
  • the divided area where the image is projected on the screen is controlled to be in a scattering state, and the other divided areas are controlled to be in a transparent transmission state in which scattering of incident light is small.
  • the screen can be controlled to the see-through state during the projection period of the image light.
  • the projected image and the background on the other side of the screen can be displayed in an overlapping manner.
  • the plurality of divided regions need to be controlled by individual voltages.
  • the plurality of divided regions need to be arranged apart from each other on one surface of the screen. An interval is formed between two adjacent divided regions. For this reason, even if a voltage is applied to each control electrode during the projection period of the image light, the optical state of the gap region corresponding to the two divided regions is the same optical state as the central portion of the control electrode. Difficult to do. As a result, the background visually recognized in the see-through state is disturbed in the gap region.
  • the display device is required to improve the visibility of the background visually recognized in the see-through state, which is caused by arranging a plurality of control electrodes on the screen and controlling the optical state for each divided region.
  • the invention according to claim 1 includes an optical layer whose optical state changes by application of a voltage, and a plurality of control electrodes arranged along the optical layer and spaced apart from each other in order to apply a voltage to the optical layer.
  • a screen a projector that irradiates the screen with image light and displays an image, and controls the application and stop of voltage to a plurality of control electrodes during the image light irradiation period, and the division corresponding to each control electrode by voltage application
  • a control unit that switches a region from a video state that scatters video light to a non-video state that is an optical state that transmits light more than the video state, and the control unit is in a non-video state that is not irradiated with video light.
  • This is a display device that applies a voltage having the same polarity to two adjacent control electrodes arranged in a transparent state, and controls the optical state of a region between two corresponding divided regions.
  • the invention according to claim 7 is a driving method of a display device for displaying an image of image light emitted from a projector on a screen having an optical layer whose optical state changes by application of a voltage, the optical state of the screen being changed.
  • the control unit for controlling applies a voltage to the plurality of control electrodes arranged along the optical layer and spaced apart from each other, and images by the image light irradiated on the screen having the optical layer and the plurality of control electrodes And controlling voltage application and stop to the plurality of control electrodes during the image light irradiation period, and by applying the voltage, the divided region corresponding to each control electrode is changed from the image state in which the image light is scattered to the image state.
  • the invention according to claim 8 has an optical layer whose optical state changes by application of a voltage, and a plurality of control electrodes arranged along the optical layer and spaced apart from each other in order to apply a voltage to the optical layer. And controlling the voltage application and stop to the plurality of control electrodes in the irradiation period of the image light, the screen displaying the image by the irradiated image light, the divided regions corresponding to each control electrode by the voltage application, A control unit that switches from an image state that scatters image light to a non-image state that is an optical state that transmits light more than the image state, and the control unit is a transparent that is a non-image state that is not irradiated with image light. In the transmissive state, a display screen device that applies a voltage of the same polarity to two adjacent control electrodes and controls a non-video state of a region between two corresponding divided regions.
  • FIG. 1 is a schematic configuration diagram of a display device according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the synchronous control of screen scanning and driving.
  • FIG. 3 is an explanatory diagram of a projector that continuously projects a plane image.
  • FIG. 4 is an explanatory diagram of a projector that projects a plane image by time modulation.
  • FIG. 5 is an explanatory diagram of a projector that scans the screen.
  • FIG. 6 is a schematic cross-sectional view of the screen.
  • FIG. 7 is a schematic front view of a screen showing an example of arrangement of a plurality of control electrodes.
  • FIG. 8 is a schematic timing chart of screen scanning and driving.
  • FIG. 1 is a schematic configuration diagram of a display device according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the synchronous control of screen scanning and driving.
  • FIG. 3 is an explanatory diagram of a projector that continuously projects a plane
  • FIG. 9 is an explanatory diagram of a display state in which the image by the image light overlaps the screen background.
  • FIG. 10 is an explanatory diagram of the distribution of the electric field that affects the optical state of the gap region.
  • FIG. 11 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions and the drive voltage waveform in the present embodiment.
  • FIG. 12 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions and the drive voltage waveform in the first comparative example.
  • FIG. 13 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions and the drive voltage waveform in the second comparative example.
  • FIG. 14 is an explanatory diagram of inversion control in units of scanning cycles of drive voltage waveforms applied to a plurality of control electrodes in the second embodiment.
  • FIG. 15 is an explanatory diagram of the waveform shift control of the drive voltage waveform applied to the plurality of control electrodes in the third embodiment.
  • FIG. 16 is an explanatory diagram of control of drive voltage waveforms applied to a plurality of control electrodes in the fourth embodiment.
  • FIG. 1 is a schematic configuration diagram of a display device 1 according to the first embodiment.
  • the display device 1 in FIG. 1 includes a projector 11 that projects image light, a screen 21 that can control the optical state, and a synchronization control unit 31.
  • the synchronization control unit 31 is connected to the projector 11 and the screen 21.
  • the display device 1 of the present embodiment is a transmissive projection device that scatters and transmits the image light of the projector 11 by a screen 21.
  • the synchronization control unit 31 controls the screen 21 on which the image is projected so as to scatter and transmit the projected image light, and when not projected, controls the screen 21 to a transparent transmission state in which the scattering of incident light is small. .
  • the display device 1 can be used as, for example, a sign boat that displays advertisements and the like.
  • FIG. 2 is an explanatory diagram of an example of synchronous control of scanning and driving of the screen 21.
  • the projector 11 vertically scans the screen 21 from the top to the bottom with image light modulated by the image information.
  • the projector 11 scans the screen 21 vertically from top to bottom for each scanning repetition period (hereinafter referred to as a scanning cycle).
  • 2A to 2E show the scanning state at each time point in one scanning cycle in the scanning order.
  • the screen 21 in FIG. 2 has five divided regions 22.
  • the five divided regions 22 are arranged vertically along the scanning direction of the image light.
  • the synchronization control unit 31 controls the optical states of the five divided regions 22 individually in synchronization with the one-dimensional vertical scanning of the screen 21 by the projector 11.
  • each divided region 22 is controlled to a non-image state, that is, a transparent transmissive state with small scattering of incident light.
  • the scanning light of the projector 11 is first applied to the uppermost divided area 22 of the screen 21 as shown in FIG.
  • reference numeral 221 is used to distinguish the divided region 22 irradiated with the scanning light from other divided regions 22 that are not scanned.
  • the synchronization control unit 31 specifies a period during which the uppermost divided area 221 is scanned in the scanning cycle based on the synchronization signal from the projector, and controls the uppermost divided area 221 to the video state.
  • the image light that scans the uppermost divided area 221 is scattered by the divided area 221 in the scattering state and passes through the screen 21.
  • the synchronization control unit 31 specifies a period during which the second divided region 221 from the top in the scanning cycle is scanned, and controls the second divided region 221 from the top to the video state.
  • the image light that scans the second divided region 221 from the top is scattered by the divided region 221 in the scattering state and passes through the screen 21.
  • the synchronization control unit 31 controls the second divided area 221 from the top to the video state, and then controls the uppermost divided area 22 to the non-video state. Thereafter, as shown in FIGS. 2C to 2E, the synchronization control unit 31 controls the divided area 221 scanned by the scanning light to the video state, and sets the other divided areas 22 to the non-video state. Control.
  • the portion of the screen 21 irradiated with the scanning light is maintained in the video state. Thereby, the image light that scans the screen 21 is transmitted through the screen 21 in a scattered state. Further, the portion of the screen 21 that is not irradiated with the scanning light is controlled to a non-image state.
  • Each divided region 22 is controlled to a transparent transmission state in which the scattering of incident light in a non-image state is small in most periods during which scanning with the scanning light is not performed. Therefore, the see-through characteristic of the screen 21 can be obtained while maintaining the visibility of the image during the projection period of the image light.
  • the projector 11 only needs to be able to project video light modulated by video information onto the screen 21.
  • the video information is obtained from a video signal input to the projector 11.
  • Video signals include, for example, NTSC (National Television Standards Committee), analog video signals such as PAL (Phase Alternation by Line), MPEG-TS (Moving Picture Experts Group-Transport Stream) format, HDV (High -There are video signals in digital format such as Definition Video) format.
  • the projector 11 may receive not only a moving image video signal but also a still image video signal such as JPEG (Joint Photographic Experts Group). In this case, the projector 11 may scan the screen 21 repeatedly with the same video light for displaying a still image.
  • FIG. 3 to 5 are explanatory diagrams of the projection method of the projector 11.
  • FIG. 3 is an explanatory diagram of the projector 11 that continuously projects a plane image.
  • FIG. 4 is an explanatory diagram of the projector 11 that projects a plane image by time modulation.
  • FIG. 5 is an explanatory diagram of the projector 11 that scans the screen 21.
  • FIG. 3A is an explanatory diagram of a method in which the projector 11 regularly projects image light.
  • image light is always projected onto the screen 21 in the scanning cycle.
  • the screen 21 must always be in a scattering state.
  • the optical state of the screen 21 is controlled so as to increase the parallel light transmittance, the luminance of the image decreases.
  • the horizontal axis of FIGS. 3B and 3C is the scanning cycle (time). The same applies to FIGS. 4B, 4C, 5B, and 5C.
  • FIG. 4A is an explanatory diagram of a method in which the projector 11 projects image light at an interval.
  • image light is projected on the screen 21 in a short period of time during a part of the scanning cycle.
  • the screen 21 may be in a scattering state during the partial period.
  • the projection light Compared to the case of projecting image light regularly, to obtain the same brightness, the projection light needs to have an intensity that is approximately the reciprocal of the duty (duty: a) in the scattering state with respect to the scanning period. Become. Therefore, in order to obtain a high see-through characteristic, a powerful pulsed projection light output is required.
  • FIG. 5A is an explanatory diagram of a projection method in which the projector 11 scans the screen 21.
  • video light is always projected onto the screen 21 during the scanning cycle.
  • the image light is projected in a part of the scanning period as shown in FIG.
  • each part of the screen only needs to be in a scattering state in the partial scanning period TP in which each part is scanned.
  • the see-through characteristic of the screen 21 can be achieved without causing a decrease in the luminance of the image in the scanning period. can get.
  • the projector 11 that projects the image light may be of any of the above projection methods. However, in order to suppress the generation of image light that is not used for scattering, the method of FIG. 4 or FIG. 5 is desirable. Moreover, a response time is required for the change in the optical state of the screen 21. For this reason, the projection method of FIG. 5 in which the response time is easily secured is preferable to FIG. In the following description, a case where the projector 11 of the projection method shown in FIG. 5 is used will be described.
  • a line-shaped image corresponding to a part of the screen 21 is sequentially projected onto the display surface of the screen 21 during the scanning period of the image light.
  • the projector 11 can be a transmissive or reflective liquid crystal light valve that sequentially shifts the black state (the state in which no projection light is emitted) on the screen 21 during the scanning cycle, but other elements can also be used. Good.
  • the projector 11 may perform raster scanning in a video scanning cycle and project video light on the display surface of the screen 21 dot-sequentially.
  • a laser projector that reflects and shakes the irradiation direction of the image-modulated light beam with a movable mirror can be used.
  • the projector 11 can be considered in the same manner as the image light irradiation position being sequentially scanned in one direction on the screen 21.
  • the screen 21 may be anything that can change the optical state by an electrical signal such as voltage or current.
  • it may be a dimming screen that uses a liquid crystal material and changes a scattering state and a transparent transmission state in which the scattering of incident light is small.
  • the light control screen uses, for example, a liquid crystal element such as a polymer-dispersed liquid crystal, or an element that controls a transparent transmission state with small scattering of incident light by moving white powder in a transparent cell.
  • the screen 21 operating in the normal mode will be described as an example. In the screen 21 operating in the normal mode, the screen 21 is in a scattering state in a normal state where no voltage is applied. When a voltage is applied, a transparent transmission state in which scattering of incident light is small according to the applied voltage is obtained.
  • the screen 21 has a plurality of divided regions 22 that divide the screen 21 at an independent timing, and the optical state of the optical layer includes a transparent transmission state in which incident light scattering is small, and a scattering state in which incident light is scattered. As long as it can be switched between.
  • the screen 21 only needs to have a plurality of divided regions divided into strips so as to correspond to the main scanning direction of the projector 11 (for example, the vertical direction in FIG. 2).
  • the screen 21 may be a screen in which regions divided into rectangles are arranged in a matrix so as to correspond to the main scanning direction and the sub-scanning direction (for example, the horizontal direction of the image) of the projector 11.
  • FIG. 6 is a schematic cross-sectional view of the screen 21 that can control the optical state for each divided region 22.
  • FIG. 6 also shows the synchronization control unit 31.
  • FIG. 7 is a schematic front view of a screen showing the arrangement of a plurality of control electrodes on the screen 21 of FIG.
  • the screen 21 in the example of FIG. 6 has an optical layer 25 in which a composite material containing liquid crystal is sandwiched between a pair of transparent glass plates 23 and 24.
  • a counter electrode 26 is formed on the entire surface of one glass plate 24 on the optical layer 25 side.
  • a plurality of control electrodes 27 are arranged side by side on the optical layer 25 side of the other glass plate 23.
  • An intermediate layer made of an insulator may be formed between the electrodes 26 and 27 and the optical layer 25.
  • the counter electrode 26 and the control electrode 27 are formed as transparent electrodes by using, for example, ITO (indium tin oxide).
  • the optical layer 25 is disposed between the plurality of control electrodes 27 and the counter
  • the plurality of control electrodes 27 divide the area of the screen 21 irradiated with the image light into strips in one direction (for example, the scanning direction).
  • the plurality of control electrodes 27 are individually connected to the synchronization control unit 31 and applied with individual voltages. Adjacent control electrodes 27 are arranged apart from each other. A gap region 28 is formed in the optical layer 25 corresponding to a region where the control electrode 27 is not formed between the two adjacent control electrodes 27.
  • a voltage is applied so as to generate a potential difference between the control electrode 27 and the counter electrode 26. Note that the voltage of the driving waveform described below indicates a potential difference between the control electrode 27 and the counter electrode 26.
  • the voltage applied to the control electrode 27 is applied to the optical layer 25 in a region corresponding to the control electrode 27.
  • the alignment state of the liquid crystal in the optical layer 25 changes depending on the voltage applied to the control electrode 27.
  • the optical layer 25 can be adjusted for each divided region 22 between a transparent transmission state where the scattering of incident light is small and a scattering state where the incident light is scattered.
  • the width of the gap region 28 is about 5 to 100 micrometers, and is desirably as narrow as possible.
  • the thickness of the optical layer 25 is several to several tens of micrometers, and is determined in consideration of optical characteristics and drive voltage.
  • the synchronization control unit 31 is connected to the projector 11 and the screen 21.
  • the synchronization control unit 31 controls the optical state of the screen 21 in synchronization with the projection of the image light of the projector 11.
  • a synchronization signal synchronized with the scanning cycle of the projector 11 can be used.
  • the synchronization control unit 31 sets the plurality of divided regions 22 so that the portion irradiated with the projection light of the projector 11 is maintained in the video state (scattering state in the present embodiment). In the scanning order, the transparent transmission state is controlled to the scattering state.
  • each divided region 22 of the screen 21 is in a scattering state as a video state in a period Ton including a video period in which projection light is irradiated to the region.
  • the screen 21 has transparency that can recognize the object on the back surface, and can scatter and transmit image light with the same brightness as when the screen is always in a scattering state. That is, it is possible to achieve both a see-through property capable of recognizing a background object and a high image visibility.
  • FIG. 8 is a schematic timing chart of scanning and driving of the screen 21.
  • the horizontal axis is time.
  • the vertical axis indicates the position in the vertical direction of the screen, and corresponds to a plurality of divided areas 22 on the screen 21.
  • Each divided region 22 of the screen 21 is controlled from a transparent transmission state to a scattering state before the timing at which the image light starts to scan each region. Further, the divided region 22 in the scattering state is controlled from the scattering state to the transparent transmission state after the scanning of the image light for the region is completed.
  • the plurality of divided regions 22 are controlled to be in a video state in synchronization with a partial scanning period TP timing in which video light is irradiated to each region by scanning, thereby sequentially shifting to a video state in the scanning order. Can be switched.
  • the image light that scans the screen 21 is efficiently scattered by the portion maintained in the image state, and it is possible to obtain bright and high visibility.
  • Information on the switching timing for the synchronization control is sent from the projector 11 to the synchronization control unit 31 as a synchronization signal.
  • the synchronization control unit 31 preferably controls the voltage applied to each control electrode 27 so that the projection light is irradiated during a period in which the optical state of each divided region 22 is stable in a predetermined scattering state.
  • the optical state of each divided region 22 is switched according to the signal waveform of the voltage applied to the control electrode 27.
  • the information on the switching timing output from the projector 11 to the synchronization control unit 31 may include information on timing at which the projector 11 starts scanning in each scanning cycle and scanning speed (scanning delay / shift). .
  • the projector 11 and the synchronization control unit 31 may be capable of wireless communication using electromagnetic waves such as microwaves and infrared rays, and information for obtaining these synchronizations may be exchanged by radio signals.
  • the synchronization control unit 31 of the present embodiment switches the optical state of the plurality of divided regions 22 in the video light scanning period in synchronization with the video light scanning by the projector 11, and
  • the optical state of the part where the image light is projected is defined as the image state. Therefore, the screen 21 can display an image because the portion irradiated with the image light is maintained in the scattering state in the period Ton including the timing when the image light is irradiated. Moreover, since the screen 21 is controlled to be in a transparent transmissive state at times other than the period Ton during the projection period of the image light, the screen 21 can be seen through.
  • FIG. 9 is an explanatory diagram of a display state in which the image by the image light and the background of the screen 21 overlap.
  • an image of a person 41 by video light is shown on the right side of the screen 21, and a tree 42 as a background on the other side of the screen 21 can be seen on the left side.
  • the synchronization control unit 31 switches the voltage applied to the plurality of divided regions 22 in the scanning order in the scanning period of the image light, and the partial scanning period TP in which each divided region 22 is scanned.
  • the non-video state during the period when each is not scanned that is, during the period other than the partial scanning period TP. Therefore, each divided region 22 is in a stable scattering state during a period scanned with image light, and an image formed by scattering of the screen 21 is caused by a change in optical state during scanning in each divided region 22. Brightness unevenness does not occur.
  • the synchronization control unit 31 sets the voltage applied to the control electrode 27 as a low-frequency AC voltage. Therefore, the direct current component of the voltage applied to the optical layer 25 in each scanning period of the image light can be suppressed.
  • FIG. 10 is an explanatory diagram of the electric field distribution in the optical layer in the gap region 28.
  • 10A and 10B are schematic cross-sectional views of the screen 21 in a state where a voltage is applied to the adjacent control electrode 27.
  • FIG. The arrows in the figure indicate a rough electric field distribution.
  • the electric field is different and a difference in optical characteristics is caused by the liquid crystal alignment being different from other parts, and the gap region 28 is visually recognized as a stripe-like unevenness even for a short time.
  • the optical state screen 21 of FIG. 10A the optical state is the same in both divided regions 22, but is different in the gap region 28.
  • a singular part in an optical state is generated along the gap region 28, and a striped scattering part on a transparent screen is generated in a non-image state where a voltage is applied.
  • the synchronization control unit 31 of the present embodiment applies a voltage having the same polarity to the adjacent control electrode 27 as shown in FIG.
  • the direction of the electric field in the gap region 28 is the direction along the electric field in the divided region 22, and the optical state of the gap region 28 at the time of voltage application is the optical state of the divided region 22. It becomes almost the same state.
  • the optical state of the gap region 28 is substantially the same as that of the two divided regions 22, and thus the stripe-shaped unevenness in the gap region 28 is effective over the entire screen 21. And uniform see-through and display are possible.
  • the direction of the electric field in the gap region 28 is in the direction along that of the divided region 22, and the stripe-like unevenness caused by the orientation being different from other portions. Can be suppressed.
  • FIG. 11 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions 22 and the drive voltage waveform in the present embodiment.
  • 11A to 11D show voltages applied to the four consecutive control electrodes 27.
  • FIG. In the following description, a waveform in which a voltage is applied to the control electrode 27 is described, but it can be considered as a voltage waveform applied to a region including the optical layer 25 as a potential difference from the counter electrode 26.
  • the horizontal axis is time, and the vertical axis is voltage.
  • FIGS. 11E to 11H show optical characteristics of four continuous divided regions 22 corresponding to FIGS. 11A to 11D.
  • the horizontal axis is time, and the vertical axis is parallel light transmittance.
  • the four continuous divided regions 22 are controlled to be in a scattering state. Further, as shown in FIGS. 11A to 11D, application of voltage is resumed to the four consecutive control electrodes 27 in order to control the transparent transmission state after each scanning is completed. The By applying such a voltage waveform, as shown in FIGS. 11E to 11H, the four continuous divided regions 22 are controlled to the transmission state.
  • the reference timing information for the synchronization control is sent from the projector 11 to the synchronization control unit 31.
  • the synchronization control unit 31 sequentially switches the voltage applied to the plurality of control electrodes 27 based on the reference timing so that the projection light is not irradiated during a period in which the scattering characteristics are not stable.
  • the voltage applied to the plurality of control electrodes 27 in the non-video period Toff has a waveform whose polarity changes at the same timing. Therefore, in the non-video period Toff, a voltage having the same polarity and the same potential is applied to the control electrode 27 in FIG. 11A and the control electrode 27 in FIG. 11B at the same time during the non-video period Toff. Has been. Therefore, the optical state of the gap region 28 is controlled to the transmission state shown in FIG. The gap region 28 is controlled to a transmission state substantially the same as that of the divided region 22. Similarly, a voltage having the same polarity and the same potential is applied to the control electrode 27 in FIG. 11B and the control electrode 27 in FIG.
  • the synchronization control unit 31 applies the same polarity voltage to the two control electrodes 27 arranged adjacent to each other in the non-video period Toff.
  • the optical state of the gap region 28 of the optical layer corresponding to the region between the two corresponding divided regions 22 where the control electrode 27 is not formed can be controlled to a desired state.
  • the screen 21 operates in a normal mode in which the scattering of incident light is weakened by applying a voltage and the parallel light transmittance is increased, the optical state of the gap region 28 between two adjacent divided regions 22 is changed.
  • the transmission state can be controlled to be close to the state of the divided region 22, and uniform transparency with little streak-like unevenness can be obtained over the entire screen.
  • the synchronization control unit 31 applies a voltage having the same polarity and the same amplitude to two adjacent control electrodes 27. Thereby, the optical state of the gap region 28 of the optical layer corresponding to the region between the two corresponding divided regions 22 where the control electrode 27 is not formed can be further controlled. Therefore, the optical state of the gap region 28 of the screen 21 in the normal mode can be controlled to a transmission state substantially equivalent to that of the divided region 22, and uniform transparency with little streak-like unevenness can be obtained over the entire screen.
  • FIG. 12 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions 22 and the drive voltage waveform in the first comparative example.
  • FIGS. 12A to 12H correspond to FIGS. 11A to 11H.
  • the voltage having the same waveform is applied to the control electrode 27 in the non-video period Toff. Therefore, the optical state of the gap region 28 is d (t1-2) between a first region in FIG.
  • FIG. 12A and a second region in FIG. 12B, for example, in a part of the non-video period Toff.
  • the state shown in FIG. The gap region 28 is in an optical state different from that of the divided region 22.
  • scattering is increased in the gap region 28, and the uniformity of the transparency of the entire screen is impaired.
  • FIG. 13 is a schematic timing chart showing the relationship between the optical state of the plurality of divided regions 22 and the drive voltage waveform in the second comparative example.
  • FIGS. 13A to 13H correspond to FIGS. 11A to 11H.
  • an AC voltage having a plurality of cycles having the same waveform is applied to the control electrode 27 in the non-video period Toff. Therefore, the optical state of the gap region 28 is the state shown in FIG.
  • the gap region 28 is in an optical state different from that of the divided region 22.
  • the optical state of the plurality of divided regions 22 is frequently switched in the non-video period Toff. As a result, scattering is increased in the gap region 28, and the uniformity of the transparency of the entire screen is impaired.
  • the AC voltage applied to each control electrode 27 has the same time ratio between positive polarity and negative polarity.
  • the plurality of divided regions 22 may not necessarily be controlled to the same optical state.
  • the drive voltage waveform shown in FIG. 11A and the drive voltage waveform shown in FIG. 11B are different from each other, so that a transient response is different. It can be a characteristic. Therefore, the synchronization control unit 31 of the present embodiment inverts the polarity of the drive voltage waveform as a set every fixed period with the scanning cycle as a unit.
  • 14 is an explanatory diagram of inversion control for each scanning cycle of the driving voltage waveform applied to the plurality of control electrodes 27 in the second embodiment.
  • 14A to 14D show voltages applied to four consecutive control electrodes 27.
  • FIG. The horizontal axis is time, and the vertical axis is voltage.
  • the voltage applied to each control electrode 27 is maintained for each scanning period while maintaining the voltage between adjacent control electrodes 27 having the same polarity. The polarity is reversed.
  • the synchronization control unit 31 applies a voltage having a waveform whose polarity changes in phase to the plurality of control electrodes 27 in the divided region 22 to be controlled to the non-video state.
  • the waveform whose polarity changes in the same phase is inverted every certain period with the scanning cycle as a unit. Therefore, the gap region 28 can be maintained in the same transmission state as that of the divided region 22 in the non-image period Toff while suppressing the occurrence of the difference in the optical state of the divided region 22 due to the waveform difference, and the entire screen is streaked. Uniform transparency with little unevenness can be obtained.
  • FIG. 15 is an explanatory diagram of the waveform shift control of the drive voltage waveform applied to the plurality of control electrodes 27 in the third embodiment.
  • FIGS. 15A to 15D show voltages applied to the four consecutive control electrodes 27. The horizontal axis is time, and the vertical axis is voltage. Then, as shown in FIGS.
  • the plurality of drive voltage waveforms are shifted by one every scanning period and applied to the plurality of control electrodes 27.
  • the description is made such that the four divisions are shifted from (D) to (A).
  • the number of divisions is not limited to this. Thereby, the difference in the transmission state caused by the difference in waveform can be averaged, and the variation with time can also be suppressed.
  • the waveform shift may be shifted for each part rather than for the whole of the plurality of control electrodes 27.
  • the waveform may be shifted between the blocks of the control electrode 27 in a set of two.
  • the synchronization control unit 31 applies a voltage having a waveform whose polarity changes in phase to the plurality of control electrodes 27 in the divided region 22 to be controlled to the non-video state.
  • the waveform whose polarity changes in the same phase is shifted among the plurality of control electrodes 27 at every fixed period with the scanning period as a unit. Therefore, it is possible to align the time-dependent changes caused by the voltage applied in the non-video period Toff in the plurality of divided regions 22 while suppressing the occurrence of the average optical state difference in the divided regions 22 due to the waveform difference.
  • FIG. 16 is an explanatory diagram of the control of the drive voltage waveform applied to the plurality of control electrodes 27 in the third embodiment.
  • FIGS. 16A to 16D show voltages applied to four consecutive control electrodes 27. The horizontal axis is time, and the vertical axis is voltage. Then, as shown in FIGS.
  • the synchronization control unit 31 maintains the voltage between the adjacent control electrodes 27 to be the same polarity and uses the scanning cycle as a unit.
  • the polarity of the drive voltage waveform is inverted at regular intervals.
  • the plurality of drive voltage waveforms are shifted so as to be shifted one by one for each scanning period, and applied to the plurality of control electrodes 27.
  • the description is made such that the four divisions are shifted from (D) to (A).
  • the number of divisions is not limited to this.
  • transmission state resulting from the difference in an applied voltage waveform can be suppressed.
  • deterioration of the optical layer 25 can be suppressed.
  • uniform transparency with little streak-like unevenness can be obtained over the entire screen.
  • the screen 21 is controlled to be in the scattering state in the image state, and scatters and transmits the image light.
  • the screen 21 may be controlled in a high scattering state in the video state, and may scatter and reflect the video light.
  • the screen 21 functions as a reflective screen in which the viewer is positioned on the side where the image light from the projector 11 is projected.
  • the normal mode screen 21 is used.
  • a screen 21 in the reverse mode may be used.
  • the screen 21 in the reverse mode has low transmittance when a voltage is applied.
  • the synchronization control unit 31 applies the same polarity voltage to the plurality of control electrodes 27 in the non-video period, and What is necessary is just to control the optical characteristic of the gap area

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

スクリーンに複数の制御電極を並べて分割領域ごとに光学状態を制御することに起因する、透明性の劣化を改善する。表示装置(1)は、電圧の印加により散乱の強さに応じた透過率が変化する光学層(25)の一面に、複数の制御電極(27)を互いに離間して配置したスクリーン(21)と、スクリーン(21)に映像光を照射して映像を表示させるプロジェクタ(11)と、映像光の走査周期Tにおいて複数の制御電極(27)への電圧印加と停止とを制御し、電圧印加により、各制御電極(27)に対応する分割領域(22)を映像状態から非映像状態へ切り替える同期制御部(31)と、を有する。同期制御部(31)は、映像光が照射されない非映像状態である透明な透過状態において、隣接して配置された2つの制御電極(27)に同極性の電圧を印加し、対応する2つの分割領域(22)の間のギャップ領域(28)の光学状態を制御する。

Description

表示装置、その駆動方法、および表示用スクリーン装置
 本発明は、表示装置、その駆動方法、および表示用スクリーン装置に関する。
 表示装置には、スクリーンに映像光を投影して、スクリーンに映像を表示させるものがある。
 調光デバイスには、透過率を制御できる液晶調光デバイスがある(特許文献1)。
特開2007-219419号公報
 ところで、液晶調光デバイスの技術を用いて調光スクリーンを形成し、この調光スクリーンを、映像を映すためのスクリーンとして使用することが考えられる。
 また、このような表示装置では、スクリーンの一面に複数の制御電極を並べて配置し、スクリーンの光学状態を、各制御電極に対応する分割領域毎に制御することが考えられる。
 たとえばスクリーンについての、映像を映す分割領域を散乱状態に制御するとともに、それ以外の分割領域を入射光の散乱が小さい透明な透過状態に制御する。
 この場合、映像光の投影期間中にスクリーンをシースルー状態に制御できる。スクリーンに、映し出す映像と、スクリーンの向こう側の背景とを重ねて表示させることができる。
 しかしながら、このようにスクリーンに複数の制御電極を設け、スクリーンの光学状態を分割領域毎に制御した場合、シースルー状態での背景の視認性が低下する可能性がある。
 すなわち、複数の分割領域は、個別の電圧により制御される必要がある。
 複数の分割領域は、スクリーンの一面において互いに離間して配置される必要がある。
 隣接する2つの分割領域の間には、間隔が形成される。
 このため、映像光の投影期間中に、各制御電極に電圧を印加したとしても、該2つの分割領域の間に対応するギャップ領域の光学状態は、制御電極の中央部と同一な光学状態とすることが困難である。
 その結果、シースルー状態で視認される背景が、ギャップ領域において乱れてしまう。
 このように表示装置では、スクリーンに複数の制御電極を並べて分割領域ごとに光学状態を制御することに起因する、シースルー状態で視認される背景の視認性を改善することが求められる。
 請求項1に係る発明は、電圧の印加により光学状態が変化する光学層、および光学層に電圧を印加するために光学層に沿って並べて且つ互いに離間して配置される複数の制御電極を有するスクリーンと、スクリーンに映像光を照射して映像を表示させるプロジェクタと、映像光の照射期間において複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各制御電極に対応する分割領域を、映像光を散乱する映像状態から、映像状態よりも光を透過する光学状態である非映像状態へ切り替える制御部と、を有し、制御部は、映像光が照射されない非映像状態である透明な透過状態において、隣接して配置された2つの制御電極に同極性の電圧を印加し、対応する2つの分割領域の間の領域の光学状態を制御する、表示装置である。
 請求項7に係る発明は、プロジェクタから照射される映像光による映像を、電圧の印加により光学状態が変化する光学層を有するスクリーンに表示する表示装置の駆動方法であって、スクリーンの光学状態を制御する制御部は、光学層に沿って並べて且つ互いに離間して配置される複数の制御電極に電圧を印加して、光学層および複数の制御電極を有するスクリーンに、照射される映像光による映像を表示させ、映像光の照射期間において複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各制御電極に対応する分割領域を、映像光を散乱する映像状態から、映像状態よりも光を透過する光学状態である非映像状態へ切り替え、映像光が照射されない非映像状態である透明な透過状態において、隣接して配置された2つの制御電極に同極性の電圧を印加し、対応する2つの分割領域の間の領域の非映像状態を制御する、表示装置の駆動方法である。
 請求項8に係る発明は、電圧の印加により光学状態が変化する光学層、および光学層に電圧を印加するために光学層に沿って並べて且つ互いに離間して配置される複数の制御電極を有し、照射された映像光による映像を表示するスクリーンと、映像光の照射期間において複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各制御電極に対応する分割領域を、映像光を散乱する映像状態から、映像状態よりも光を透過する光学状態である非映像状態へ切り替える制御部と、を有し、制御部は、映像光が照射されない非映像状態である透明な透過状態において、隣接して配置された2つの制御電極に同極性の電圧を印加し、対応する2つの分割領域の間の領域の非映像状態を制御する、表示用スクリーン装置である。
図1は、本発明の第1実施形態に係る表示装置の概略構成図である。 図2は、スクリーンの走査と駆動との同期制御の説明図である。 図3は、連続的に面映像を投影するプロジェクタの説明図である。 図4は、時間変調により面映像を投影するプロジェクタの説明図である。 図5は、スクリーンを走査するプロジェクタの説明図である。 図6は、スクリーンの模式的な断面図である。 図7は、複数の制御電極の配置の例を示すスクリーンの模式的な正面図である。 図8は、スクリーンの走査と駆動との模式的なタイミングチャートである。 図9は、映像光による映像とスクリーンの背景とが重なる表示状態の説明図である。 図10は、ギャップ領域の光学状態に影響する電界の分布の説明図である。 図11は、本実施形態での、複数の分割領域の光学状態と駆動電圧波形との関係を示す模式的なタイミングチャートである。 図12は、第1比較例での、複数の分割領域の光学状態と駆動電圧波形との関係を示す模式的なタイミングチャートである。 図13は、第2比較例での、複数の分割領域の光学状態と駆動電圧波形との関係を示す模式的なタイミングチャートである。 図14は、第2実施形態での、複数の制御電極に印加する駆動電圧波形の、走査周期単位での反転制御の説明図である。 図15は、第3実施形態での、複数の制御電極に印加する駆動電圧波形の波形シフト制御の説明図である。 図16は、第4実施形態での、複数の制御電極に印加する駆動電圧波形の制御の説明図である。
 以下、本発明の実施形態を、図面を参照して説明する。
[第1実施形態]
 図1は、第1実施形態に係る表示装置1の概略構成図である。
 図1の表示装置1は、映像光を投影するプロジェクタ11と、光学状態を制御可能なスクリーン21と、同期制御部31と、を有する。同期制御部31は、プロジェクタ11とスクリーン21とに接続される。
 本実施形態の表示装置1は、プロジェクタ11の映像光をスクリーン21で散乱して透過する透過型プロジェクション装置である。
 同期制御部31は、映像が投影されるスクリーン21を、投影された映像光を散乱して透過する状態に制御し、投影されていない場合に入射光の散乱が小さい透明な透過状態に制御する。
 スクリーン21の光学状態は、散乱して透過する状態が映像状態であり、それよりも入射光の散乱が小さく且つ平行光線透過率が高い透過状態が非映像状態である。
 表示装置1は、たとえば広告などを表示するサインボートなどとして利用できる。
 次に、図1の表示装置1の基本的な動作原理を説明する。
 図2は、スクリーン21の走査と駆動との同期制御の例の説明図である。
 プロジェクタ11は、映像情報で変調された映像光で、スクリーン21を上から下へ縦に走査する。プロジェクタ11は、走査の繰り返し期間(以下、走査周期という。)毎に、スクリーン21を上から下へ縦に走査する。
 図2(A)から(E)は、1回の走査周期中の各時点での走査状態を、走査順で示すものである。
 図2のスクリーン21は、5つの分割領域22を有する。5つの分割領域22は、映像光の走査方向に沿って縦に配列される。
 同期制御部31は、プロジェクタ11によるスクリーン21の一次元の縦方向の走査に同期させて、5つの分割領域22の光学状態を個別に制御する。各分割領域22は、映像光が投影されていない場合、非映像状態、すなわち入射光の散乱が小さい透明な透過状態に制御される。
 映像光の走査が開始されると、プロジェクタ11の走査光は、まず、図2(A)のように、スクリーン21の最上部の分割領域22に照射される。以下、この説明において、走査光が照射される分割領域22について、走査されていない他の分割領域22から区別するために、符号221を使用する。同期制御部31は、プロジェクタからの同期信号に基づいて、走査周期中での、この最上部の分割領域221が走査される期間を特定し、最上部の分割領域221を映像状態に制御する。最上部の分割領域221を走査する映像光は、散乱状態の分割領域221により散乱され、スクリーン21を透過する。
 映像光の走査は、次に、図2(B)のように、スクリーン21の上から2番目の分割領域221に移動する。同期制御部31は、走査周期中での、この上から2番目の分割領域221が走査される期間を特定し、上から2番目の分割領域221を映像状態に制御する。上から2番目の分割領域221を走査する映像光は、散乱状態の分割領域221により散乱され、スクリーン21を透過する。また、同期制御部31は、上から2番目の分割領域221を映像状態に制御した後、最上部の分割領域22を非映像状態に制御する。
 その後も、図2(C)から(E)に示すように、同期制御部31は、走査光により走査される分割領域221を映像状態に制御し、それ以外の分割領域22を非映像状態に制御する。
 以上の同期制御により、スクリーン21についての走査光が照射される部位は、映像状態に維持される。これにより、スクリーン21を走査する映像光は、散乱状態のスクリーン21を透過する。
 また、スクリーン21についての走査光が照射されない部位は、非映像状態に制御される。各分割領域22は、走査光により走査されていない殆どの期間において、非映像状態の入射光の散乱が小さい透明な透過状態に制御される。従って、映像光の投影期間中に、映像の視認性を保ちつつスクリーン21のシースルー特性が得られる。
 プロジェクタ11は、スクリーン21へ、映像情報により変調された映像光を投影できるものであればよい。
 なお、映像情報は、プロジェクタ11に入力される映像信号から得られる。映像信号には、たとえば、NTSC(National Television Standards Committee)方式、PAL(Phase Alternation by Line)方式のようなアナログ方式の映像信号、MPEG-TS(Moving Picture Experts Group - Transport Stream)フォーマット、HDV(High-Definition Video)フォーマットのようなデジタルフォーマットの映像信号がある。プロジェクタ11には、動画の映像信号だけでなく、たとえばJPEG(Joint Photographic Experts Group)のような静止画の映像信号が入力されてもよい。この場合、プロジェクタ11は、静止画を表示するための同じ映像光で、スクリーン21を繰り返し走査すればよい。
 図3から5は、プロジェクタ11の投影方式の説明図である。図3は、連続的に面映像を投影するプロジェクタ11の説明図である。図4は、時間変調により面映像を投影するプロジェクタ11の説明図である。図5は、スクリーン21を走査するプロジェクタ11の説明図である。
 図3(A)は、プロジェクタ11が定常的に映像光を投影する方式の説明図である。この場合、スクリーン21には、図3(B)に示すように、走査周期において映像光が常に投影されている。スクリーン21は、図3(C)に示すように、常に散乱状態とする必要がある。この場合、平行光線透過率を高くするようにスクリーン21の光学状態を制御すると、映像の輝度が減少する。
 なお、図3(B)、(C)の横軸は、走査周期(時間)である。図4(B)、(C)、図5(B)、(C)も同様である。
 図4(A)は、プロジェクタ11がインターバルを空けて映像光を投影する方式の説明図である。この場合、スクリーン21には、図4(B)に示すように、走査周期の一部において短期的に映像光が投影される。スクリーン21は、図4(C)に示すように、該一部の期間において散乱状態とすればよい。そして、該一部以外の期間において、スクリーン21の平行光線透過率を高くするようにスクリーン21の光学状態を制御すると、走査周期おいて、映像の輝度低下を招くことなく、スクリーン21のシースルー特性が得られる。定常的に映像光を投影する場合に比べ、同一輝度を得るには、走査周期に対する散乱状態の時間程度のデューティ(図中duty:a)の概ね逆数倍の強さの投影光が必要となる。従って高いシースルー特性を得るには、強力なパルス発光の投影光出力が必要である。
 図5(A)は、プロジェクタ11がスクリーン21を走査する投影方式の説明図である。この場合、スクリーン21には、走査周期において常に映像光が投影される。しかしながら、スクリーン21の各部に注目すると、図5(B)に示すように走査周期の一部において映像光が投影されている。このため、図5(C)に示すように、スクリーンの各部は、各々が走査される部分走査期間TPにおいて散乱状態になればよい。また、スクリーン21の各部分は、該部分走査期間TP以外の期間において平行光線透過率を高くするように制御すれば、走査周期において、映像の輝度低下を招くことなく、スクリーン21のシースルー特性が得られる。
 映像光を投影するプロジェクタ11は、上記いずれの投影方式のものでもよい。
 ただし、散乱に利用されない映像光の発生を抑制するためには、図4または図5の方式が望ましい。また、スクリーン21の光学状態の変化には、応答時間が必要である。このため、応答時間が確保し易い図5の投影方式が、図4よりも望ましい。以下の説明では、図5の投影方式のプロジェクタ11を利用した場合ついて説明する。
 図5の駆動方式では、映像光の走査周期中に、スクリーン21の一部に相当するライン状の映像が、順次、スクリーン21の表示面に投影される。
 このプロジェクタ11には、走査周期中にスクリーン21上で黒状態(投射光が出ない状態)を順次シフトさせる透過型あるいは反射型液晶ライトバルブなどを使用できるが、これ以外の素子を用いてもよい。
 また、プロジェクタ11は、映像の走査周期においてラスター走査し、スクリーン21の表示面に映像光を点順次で投影するものでもよい。このプロジェクタ11では、映像変調された光ビームの照射方向を可動ミラーで反射して振るような、例えばレーザプロジェクタなどを用いることができる。このプロジェクタ11は、映像光の照射位置がスクリーン21上の一方向に順次走査されているものと同様に考えることができる。
 スクリーン21は、電圧や電流などの電気信号により光学状態を変化できるものであればよい。
 例えば、液晶材料を用い、散乱状態と入射光の散乱が小さい透明な透過状態を変化させる調光スクリーンなどでよい。調光スクリーンには、たとえば、高分子分散液晶などの液晶素子を用いたもの、透明セル内の白色粉体を移動させることで散乱状態と入射光の散乱が小さい透明な透過状態を制御する素子などを用いたものがある。
 本実施形態では、ノーマルモードで動作するスクリーン21を例に説明する。
 ノーマルモードで動作するスクリーン21では、電圧を印加していない通常状態において、スクリーン21が散乱状態となる。電圧を印加すると、印加電圧に応じて入射光の散乱が小さい透明な透過状態となる。
 また、スクリーン21は、スクリーン21を分割する複数の分割領域22が、それぞれ独立したタイミングで、光学層の光学状態を入射光の散乱が小さい透明な透過状態と、入射光を散乱する散乱状態との間で切り替えることができるものであればよい。
 たとえば、スクリーン21は、プロジェクタ11の主走査方向(たとえば図2での縦方向)に対応するように短冊状に分割された複数の分割領域を有するものであればよい。
 この他にも、スクリーン21は、プロジェクタ11の主走査方向および副走査方向(たとえば映像の横方向)に対応するように、矩形に分割された領域がマトリクス状に配列されたものでもよい。
 図6は、分割領域22毎に光学状態を制御可能なスクリーン21の模式的な断面図である。図6には、同期制御部31も図示されている。
 図7は、図6のスクリーン21での、複数の制御電極の配置を示すスクリーンの模式的な正面図である。
 図6の例のスクリーン21は、一対の透明なガラス板23,24の間に液晶を含む複合材料を挟み込んだ光学層25を有する。
 一方のガラス板24の光学層25側には、全面に対向電極26が形成される。
 他方のガラス板23の光学層25側には、複数の制御電極27が並べて配置される。
 電極26、27と光学層25との間に、絶縁体からなる中間層を形成してもよい。
 対向電極26および制御電極27は、たとえばITO(酸化インジウム・スズ)により、透明電極として形成される。
 光学層25は、複数の制御電極27と対向電極26との間に配置される。
 複数の制御電極27は、スクリーン21の映像光が照射される領域を、一方向(たとえば走査方向)で短冊状に分割する。
 複数の制御電極27は、同期制御部31に個別に接続され、個別の電圧が印加される。
 隣接する制御電極27は、互いに離間して配列される。
 隣接する2つの制御電極27の間の、制御電極27が形成されていない領域に対応した光学層25内に、ギャップ領域28が形成される。
 図6では、制御電極27と対向電極26との間に電位差を生じるように電圧を印加する。なお、以下に説明する駆動波形の電圧は、制御電極27と対向電極26との電位差を示している。
 制御電極27に印加された電圧は、当該制御電極27に対応する領域の光学層25に印加される。光学層25内の液晶の配向状態は、制御電極27の印加電圧により変化する。光学層25は、分割領域22毎に、入射光の散乱が小さい透明な透過状態と、入射光を散乱する散乱状態との間で調整できる。
 なお、ギャップ領域28の幅は、5から100マイクロメートル程度であり、可能な限り狭いことが望ましい。光学層25の厚さは、数から数十マイクロメートルであり、光学特性と駆動電圧を考慮して決定される。
 同期制御部31は、プロジェクタ11とスクリーン21とに接続される。
 同期制御部31は、プロジェクタ11の映像光の投影に同期させて、スクリーン21の光学状態を制御する。
 プロジェクタ11から同期制御部31へ入力される同期信号は、たとえばプロジェクタ11の走査周期に同期した同期信号などを用いることができる。
 図7のスクリーン21のようにスクリーン21が一方向に短冊状に分割されている場合、プロジェクタ11の投影光は、スクリーン21の分割方向に順次走査される。
 同期制御部31は、プロジェクタ11からの同期信号に基づいて、プロジェクタ11の投影光が照射される部位が映像状態(本実施形態では散乱状態)に維持されるように、複数の分割領域22を、走査順で、透明な透過状態から散乱状態に制御する。
 この同期制御により、スクリーン21の各分割領域22は、当該領域に投影光が照射される映像期間を含む期間Tonにおいて、映像状態としての散乱状態になる。また、投影光が照射されない非映像期間Toffにおいては、非映像状態としての透明な透過状態となる。
 スクリーン21は、その背面の物体を認識しうる透明さを有しつつ、常時散乱状態とした場合と同等の明るさで映像光を散乱して透過できる。つまり、背景物体を認識することが可能なシースルー性と、映像の高い視認性とを両立することが可能となる。
 図8は、スクリーン21の走査と駆動との模式的なタイミングチャートである。横軸は、時間である。縦軸はスクリーンの縦方向の位置を示し、スクリーン21での複数の分割領域22に対応する。
 スクリーン21の各分割領域22は、各々の領域を映像光が走査し始めるタイミングより前に、透明な透過状態から散乱状態に制御される。また、散乱状態の分割領域22は、当該領域についての映像光の走査が終了した後に、散乱状態から透明な透過状態に制御される。
 複数の分割領域22は、各々の領域に映像光が走査により照射される部分走査期間TPタイミングに同期して映像状態に制御されることにより、走査順で、時間をずらして、順次映像状態へ切り替えられる。スクリーン21を走査する映像光は、映像状態に維持された部分により効率よく散乱され、明るく高い視認性を得ることができる。
 この同期制御のための切り替えタイミングの情報は、同期信号としてプロジェクタ11から同期制御部31に送出される。
 同期制御部31は、好ましくは、各分割領域22の光学状態が所定の散乱状態に安定している期間に投影光が照射されるように、各制御電極27へ印加する電圧を制御する。各分割領域22の光学状態は、制御電極27へ印加する電圧の信号波形により、切り替わる。
 特に、プロジェクタ11が同期制御部31へ出力する切り替えタイミングの情報には、プロジェクタ11の各走査周期での走査を開始するタイミングの情報と、走査速度(走査の遅延/シフト)とを含めるとよい。これにより、走査周期の周波数が変化した場合にも、映像を乱すことなく、良好なシースルー表示を実現できる。
 なお、プロジェクタ11および同期制御部31をマイクロ波、赤外線などの電磁波を用いたワイヤレス通信可能とし、これらの同期を得るための情報を無線信号により授受してもよい。
 以上の同期制御により、本実施形態の同期制御部31は、映像光の走査周期における複数の分割領域22の光学状態を、プロジェクタ11による映像光の走査に同期させて切り替えて、スクリーン21についての、映像光が投影される部位の光学状態を映像状態とする。
 よって、スクリーン21は、映像光が照射されるタイミングを含む期間Tonにおいて、映像光が照射される部位が散乱状態に維持されるため、映像を表示できる。
 しかも、スクリーン21は、映像光の投影期間中に、各部位が期間Ton以外の時間では透明な透過状態に制御されるので、スクリーン21を透視することができる。人間の目にはスクリーン21の透過光が平均(積分)化されて見えるので、十分短い走査周期の場合、フリッカを感じることのないシースルー特性が得られる。
 これにより、たとえば図1の設置環境下では、スクリーン21を通して、図9の画像を視認できる。
 図9は、映像光による映像とスクリーン21の背景とが重なる表示状態の説明図である。
 図9では、スクリーン21の右側に映像光による人物41の像が映り、左側に、スクリーン21の向こう側にある背景としての樹木42を見ることができる。
 また、本実施形態では、同期制御部31は、映像光の走査周期において複数の分割領域22に印加する電圧を走査順で切り替えて、各分割領域22を、各々が走査される部分走査期間TPにおいて映像状態に制御し、各々が走査されていない期間、すなわち部分走査期間TP以外の期間において非映像状態に制御する。
 よって、各分割領域22は、映像光により走査される期間において安定した散乱状態となり、スクリーン21の散乱により形成される映像には、各分割領域22での走査中の光学状態の変化に起因する輝度ムラが発生しない。
 また、本実施形態では、同期制御部31は、制御電極27に印加する電圧を、低周波の交流電圧としている。
 よって、映像光の各走査周期において光学層25に印加される電圧の直流成分を抑えることができる。
 ところで、ノーマルモードのスクリーン21の一面に、個別の駆動電圧が印加される複数の制御電極27を形成した場合、図6および図7に示すように、隣接する2つの分割領域22の間には、制御電極27が形成されていない領域に対応する光学層25のギャップ領域28が形成される。
 図10は、ギャップ領域28の光学層内の電界の分布の説明図である。
 図10(A)および(B)は、隣接する制御電極27に電圧が印加された状態でのスクリーン21の模式的な断面図である。図中の矢印は、大まかな電界の分布を示している。
 図10(A)に示すように、各々の制御電極27に同一の振幅の交流電圧が印加する場合であっても、図右側の一方の制御電極27に正電圧が印加され、図左側の他方の制御電極27に負電圧が印加され、対向電極26に0Vが印加される場合、すなわち隣接する制御電極27に逆極性の電圧が印加される場合、ギャップ領域28には、制御電極27に対応した分割領域22に対応する部位とは異なる電界が形成される。
 光学層25の液晶の配向は、この電界に影響される。よって、ギャップ領域28の光学状態は、電圧印加による光学状態とは異なる状態となる。
 電界が異なり、液晶配向が他の部位と異なることに起因する光学特性の違いを生じ、短時間であってもギャップ領域28がスジ状のムラとして視認される。
 図10(A)の光学状態のスクリーン21では、光学状態は、双方の分割領域22では揃うが、ギャップ領域28では異なる。その結果、ギャップ領域28に沿って光学状態の特異部が生じ、電圧を印加している非映像状態においては透明なスクリーン上の縞状の散乱部が発生する。
 そこで、本実施形態の同期制御部31は、図10(B)に示すように、隣接する制御電極27に同極性の電圧を印加する。
 図10(B)の場合、ギャップ領域28の電界の向きは、分割領域22での電界に沿った向きとなり、この電圧印加時におけるギャップ領域28の光学状態は、分割領域22の光学状態とは略同じ状態になる。
 その結果、図10(B)対向電極のスクリーン21では、ギャップ領域28の光学状態が、双方の分割領域22のものと概ね揃うことにより、スクリーン21全体にわたりギャップ領域28におけるスジ状のムラが効果的に抑制され、均一なシースルー性と表示が可能となる。
 隣接する制御電極27を同電位あるいは同極性とすることで、ギャップ領域28の電界の方向が分割領域22のものに沿った方向となり、配向が他の部位と異なることに起因するスジ状のムラを抑制できる。
 図11は、本実施形態での、複数の分割領域22の光学状態と駆動電圧波形との関係を示す模式的なタイミングチャートである。
 図11(A)から(D)は、連続する4つの制御電極27に印加する電圧である。以下の説明では制御電極27に電圧を印加した波形を記載しているが、対向電極26との電位差として光学層25を含む領域に印加される電圧波形と考えることができる。横軸は時間であり、縦軸は電圧である。図11(E)から(H)は、図11(A)から(D)に対応する、連続する4つの分割領域22の光学特性である。横軸は時間であり、縦軸は平行光線透過率である。なお、以下の説明では光学状態の変化を平行光線透過率の変化を用いて説明している。本発明スクリーンでは、平行光線透過率の減少は散乱の増大を示している。
 図11(A)から(D)に示すように、連続する4個の制御電極27には、各々が走査されない非映像期間Toffでは、透明な透過状態に制御するために電圧が印加される。印加電圧は、交流とされている。このような電圧波形の印加により、図11(E)から(H)に示すように、連続する4個の分割領域22は、一定の透明な透過状態に制御される。
 そして、各々が走査される部分走査期間TPの前に、電圧の印加が停止される。このような電圧印加の停止により、図11(E)から(H)に示すように、連続する4個の分割領域22は、散乱状態に制御される。
 また、図11(A)から(D)に示すように、連続する4個の制御電極27には、各々の走査が終了した後、透明な透過状態に制御するために電圧の印加が再開される。このような電圧波形の印加により、図11(E)から(H)に示すように、連続する4個の分割領域22は、透過状態に制御される。
 なお、この同期制御のための基準タイミングの情報は、プロジェクタ11から同期制御部31へ送出される。散乱特性が一定に安定していない期間に投影光の照射がなされないように、同期制御部31は、該基準タイミングに基づいて、複数の制御電極27に印加する電圧を順次切り替える。
 図11(A)から(D)に示すように、非映像期間Toffにおいて複数の制御電極27に印加される電圧は、同じタイミングで極性が変化する波形を有する。
 よって、非映像期間Toffにおいて、図11(A)の制御電極27と、図11(B)の制御電極27とには、同時に非映像期間Toffとなる時間では同極性かつ同電位の電圧が印加されている。
 よって、ギャップ領域28の光学状態は、図10(B)の透過状態に制御される。ギャップ領域28は、分割領域22とほぼ同様の透過状態に制御される。
 同様に、図11(B)の制御電極27と、図11(C)の制御電極27とには、同極性かつ同電位の電圧が印加されている。また、図11(C)の制御電極27と、図11(D)の制御電極27とには、同時に非映像期間Toffとなる時間では同極性かつ同電位の電圧が印加されている。
 この結果、スクリーン21を透明な透過状態に制御する非映像期間において、スクリーン21を透過して得られる背景には、ギャップ領域28が他の領域よりも入射光を散乱することによる視認性の低下が生じにくくなる。
 以上のように、本実施形態では、同期制御部31は、非映像期間Toffにおいて、隣接して配置された2つの制御電極27に同極性の電圧を印加する。
 これにより、制御電極27が形成されていない、対応する2つの分割領域22の間の領域に対応する光学層のギャップ領域28の光学状態を望ましい状態に制御できる。
 特に、スクリーン21が、電圧が印加されることで入射光の散乱が弱まり平行光線透過率が高くなるノーマルモードで動作する場合、隣接する2つの分割領域22の間のギャップ領域28の光学状態を、分割領域22の状態に近い透過状態に制御でき、スクリーン全体にわたりスジ状のムラの少ない均一な透明性を得ることができる。
 また、同期制御部31は、隣接する2つの制御電極27に同極性且つ同振幅の電圧を印加する。
 これにより、制御電極27が形成されていない、対応する2つの分割領域22の間の領域に対応する光学層のギャップ領域28の光学状態を更に望ましい状態に制御できる。
 よって、ノーマルモードのスクリーン21のギャップ領域28の光学状態を、分割領域22とほぼ同等の透過状態に制御でき、スクリーン全体にわたりスジ状のムラの少ない均一な透明性を得ることができる。
[第1比較例]
 第1比較例の表示装置1は、第1実施形態のものと同様である。ただし、同期制御部31は、非映像期間Toffにおいて複数の制御電極27に印加する電圧を、ギャップ領域28の制御を考慮していない電圧とする。
 図12は、第1比較例での、複数の分割領域22の光学状態と駆動電圧波形との関係を示す模式的なタイミングチャートである。
 図12(A)から(H)は、図11(A)から(H)に対応する。
 そして、第1比較例では、非映像期間Toffにおいて、制御電極27には、同じ波形の電圧が印加される。
 よって、ギャップ領域28の光学状態は、非映像期間Toffの一部において、例えば図12(A)の第1領域と図12(B)の第2領域との間ではd(t1-2)の期間、図10(A)の状態となる。ギャップ領域28は、分割領域22とは異なる光学状態となる。
 この結果、ギャップ領域28において散乱が強くなり、スクリーン全体の透明性の均一さが損なわれる。
[第2比較例]
 第2比較例の表示装置1は、第1実施形態のものと同様である。ただし、同期制御部31は、非映像期間Toffにおいて複数の制御電極27に印加する電圧を、ギャップ領域28の制御を考慮していない複数サイクルの交流電圧とする。
 図13は、第2比較例での、複数の分割領域22の光学状態と駆動電圧波形との関係を示す模式的なタイミングチャートである。
 図13(A)から(H)は、図11(A)から(H)に対応する。
 そして、第2比較例では、非映像期間Toffにおいて、制御電極27には、同じ波形の複数サイクルの交流電圧が印加される。
 よって、ギャップ領域28の光学状態は、非映像期間Toffの一部において、図10(A)の状態となる。ギャップ領域28は、分割領域22とは異なる光学状態となる。
 また、複数サイクルの交流電圧が印加されているため、複数の分割領域22の光学状態は、非映像期間Toffにおいて、頻繁に切り替わる。
 この結果、ギャップ領域28において散乱が強くなり、スクリーン全体の透明性の均一さが損なわれる。
[第2実施形態]
 第2実施形態では、第1実施形態の表示装置1の変形例を説明する。
 第1実施形態では、各制御電極27に印加する交流電圧は、正極性と負極性との時間比率は等しい。しかしながら、液晶材料の過度応答等を考慮すると、複数の分割領域22が必ずしも同じ光学状態に制御されるとは言えない場合がある。
 たとえば図11(A)の駆動電圧波形と図11(B)の駆動電圧波形とでは、波形が互いに異なるため、過渡応答に違いを生じ、時間平均すると各々の波形に応じて異なる透過状態、光学特性となる可能性がある。
 そこで、本実施形態の同期制御部31は、走査周期を単位とする一定の期間毎に、駆動電圧波形の極性をセットで反転する。
 図14は、第2実施形態での、複数の制御電極27に印加する駆動電圧波形の、走査周期単位での反転制御の説明図である。
 図14(A)から(D)は、連続する4つの制御電極27に印加する電圧である。横軸は時間であり、縦軸は電圧である。
 そして、図14(A)から(D)に示すように、各制御電極27に印加される電圧は、隣接制御電極27間の電圧が同極性となることを維持しつつ、1走査周期毎に極性が反転されている。
 以上のように、本実施形態の同期制御部31は、非映像状態に制御する分割領域22の複数の制御電極27に対して、同相で極性が変化する波形の電圧を印加し、映像光の走査周期を単位とする一定の期間毎に、該同相で極性が変化する波形を反転させる。
 よって、波形差による分割領域22の光学状態の差の発生を抑制しつつ、非映像期間Toffにおいて、ギャップ領域28を分割領域22と同様の透過状態に維持することができ、スクリーン全体にわたりスジ状のムラの少ない均一な透明性を得ることができる。
[第3実施形態]
 第3実施形態では、第1実施形態の表示装置1の別の変形例を説明する。
 本実施形態の同期制御部31は、第2実施形態とは異なり、走査周期を単位とする一定の期間毎に、複数の制御電極27に印加する駆動電圧波形をシフトする。
 図15は、第3実施形態での、複数の制御電極27に印加する駆動電圧波形の波形シフト制御の説明図である。
 図15(A)から(D)は、連続する4つの制御電極27に印加する電圧である。横軸は時間であり、縦軸は電圧である。
 そして、図15(A)から(D)に示すように、複数の駆動電圧波形は、1走査周期毎に1つずつずらすようにシフトして、複数の制御電極27に印加される。なお、図15では便宜上4分割として、(D)から(A)にシフトするように説明しているが、更に多数の分割ではこの限りではない。
 これにより、波形の違いに起因した透過状態の相違を平均化することができ、経時変化のバラツキも抑制できる。
 なお、波形シフトは、複数の制御電極27の全体でシフトするのではなく、一部毎にシフトされてもよい。例えば2個1組とした制御電極27のブロック間で波形をシフトしてもよい。
 以上のように、本実施形態の同期制御部31は、非映像状態に制御する分割領域22の複数の制御電極27に対して、同相で極性が変化する波形の電圧を印加し、映像光の走査周期を単位とする一定の期間毎に、該同相で極性が変化する波形を、複数の制御電極27の間でシフトする。
 よって、波形差による分割領域22の平均的な光学状態の差の発生を抑制しつつ、非映像期間Toffにおいて印加する電圧による経時変化を、複数の分割領域22において揃えるようにすることができる。
[第4実施形態]
 第4実施形態では、第1実施形態の表示装置1の更に別の変形例を説明する。
 本実施形態の同期制御部31は、第2実施形態の走査周期単位での反転制御と、第3実施形態の波形シフトとを組み合わせた制御を実行する。
 図16は、第3実施形態での、複数の制御電極27に印加する駆動電圧波形の制御の説明図である。
 図16(A)から(D)は、連続する4つの制御電極27に印加する電圧である。横軸は時間であり、縦軸は電圧である。
 そして、本実施形態の同期制御部31は、図16(A)から(D)に示すように、隣接制御電極27間の電圧が同極性となることを維持しつつ、走査周期を単位とする一定の期間毎に、駆動電圧波形の極性を反転する。また、複数の駆動電圧波形は、1走査周期毎に1つずつずらすようにシフトして、複数の制御電極27に印加される。なお、図16では便宜上4分割として、(D)から(A)にシフトするように説明しているが、更に多数の分割ではこの限りではない。
 これにより、分割領域22毎のばらつき、印加電圧波形の相違に起因した透過状態のばらつきを抑制できる。また、光学層25の劣化を抑制できる。また、画面全体にわたって、スジ状のムラの少ない均一な透明性が得られる。
 以上の各実施形態は、本発明の好適な実施形態の例であるが、本発明は、これに限定されるものではなく、発明の要旨を逸脱しない範囲において種々の変形または変更が可能である。
 たとえば上記実施形態では、スクリーン21は、映像状態で散乱状態に制御され、映像光を散乱して透過している。この他にもたとえば、スクリーン21は、映像状態で高い散乱状態に制御され、映像光を散乱して反射してもよい。この場合、スクリーン21に関し、プロジェクタ11からの映像光を投射する側に視聴者が位置する反射型スクリーンとして機能する。
 また、上記実施形態では、ノーマルモードのスクリーン21を使用している。この他にもたとえば、リバースモードのスクリーン21を利用してもよい。
 リバースモードのスクリーン21は、電圧が印加されることで透過率が低くなる。
 たとえば、リバースモードのスクリーン21の透明性を抑制して使いたい場合、同期制御部31は、非映像期間において複数の制御電極27に同極性の電圧を印加し、複数の分割領域22の間のギャップ領域28の光学特性を分割領域22の状態に近い透過状態に制御すればよい。
1 表示装置
11 プロジェクタ
21 スクリーン
22 分割領域
25 光学層
27 制御電極
28 ギャップ領域
31 同期制御部(制御部)
T 走査周期
TP 部分走査期間
Ton 映像期間
Toff 非映像期間

Claims (8)

  1.  電圧の印加により光学特性が変化する光学層、および前記光学層に電圧を印加するために前記光学層に沿って並べて且つ互いに離間して配置される複数の制御電極を有するスクリーンと、
     前記スクリーンに映像光を照射して映像を表示させるプロジェクタと、
     映像光の照射期間において前記複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各前記制御電極に対応する分割領域を、前記映像光を散乱する映像状態から、前記映像状態よりも光を透過する光学状態である非映像状態へ切り替える制御部と、
     を有し、
     前記制御部は、
      映像光が照射されない非映像状態である透明な透過状態において、隣接して配置された2つの制御電極に同極性の電圧を印加し、対応する2つの分割領域の間の領域の光学状態を制御する、
     表示装置。
  2.  前記プロジェクタは、映像光により前記スクリーンを走査し、
     前記スクリーンは、電圧が印加されることで平行光線透過率が高くなるノーマルモードで動作し、照射された映像光を散乱して透過し、
     前記制御部は、
      非映像状態に制御する分割領域の制御電極に同極性の電圧を印加し、隣接する分割領域の間の領域の非映像状態を制御する、
     請求項1記載の表示装置。
  3.  前記制御部は、
      非映像状態に制御する分割領域の制御電極に同極性且つ同振幅の電圧を印加し、隣接する分割領域の間の領域の非映像状態を制御する、
     請求項2記載の表示装置。
  4.  前記制御部は、
      非映像状態に制御する分割領域の前記複数の制御電極に対して、同相で極性が変化する波形の電圧を印加し、
      映像光の走査周期を単位とする一定の期間毎に、前記同相で極性が変化する波形の極性を反転させる
     請求項2または3記載の表示装置。
  5.  前記制御部は、
      非映像状態に制御する分割領域の前記複数の制御電極に対して、同相で極性が変化する波形の電圧を印加し、
      映像光の走査周期を単位とする一定の期間毎に、前記同相で極性が変化する波形を、複数の制御電極の間でシフトする、
     請求項2または3記載の表示装置。
  6.  前記プロジェクタは、映像光により前記スクリーンを走査し、
     前記スクリーンは、電圧が印加されることで平行光線透過率が低くなるリバースモードで動作し、照射された映像光を散乱して透過し、
     前記制御部は、
      非映像状態に制御する分割領域の制御電極に同極性の電圧を印加し、隣接する分割領域の間の領域の非映像状態を制御する、
     請求項1記載の表示装置。
  7.  プロジェクタから照射される映像光による映像を、電圧の印加により光学特性が変化する光学層を有するスクリーンに表示する表示装置の駆動方法であって、
     前記スクリーンの光学状態を制御する制御部は、
      前記光学層に沿って並べて且つ互いに離間して配置される複数の制御電極に電圧を印加して、前記光学層および前記複数の制御電極を有するスクリーンに、照射される映像光による映像を表示させ、
      映像光の照射期間において前記複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各前記制御電極に対応する分割領域を、前記映像光を散乱する映像状態から、前記映像状態よりも光を透過する光学状態である非映像状態へ切り替え、
      映像光が照射されない非映像状態である透明な透過状態において、隣接して配置された2つの制御電極に同極性の電圧を印加し、対応する2つの分割領域の間の領域の非映像状態を制御する、
     表示装置の駆動方法。
  8.  電圧の印加により光学特性が変化する光学層、および前記光学層に電圧を印加するために前記光学層に沿って並べて且つ互いに離間して配置される複数の制御電極を有し、照射された映像光による映像を表示するスクリーンと、
     映像光の照射期間において前記複数の制御電極への電圧印加と停止とを制御し、電圧印加により、各前記制御電極に対応する分割領域を、前記映像光を散乱する映像状態から、前記映像状態よりも光を透過する光学状態である非映像状態へ切り替える制御部と、
     を有し、
     前記制御部は、
      映像光が照射されない非映像状態である透明な透過状態において、隣接して配置された2つの制御電極に同極性の電圧を印加し、対応する2つの分割領域の間の領域の非映像状態を制御する、
     表示用スクリーン装置。
PCT/JP2012/057610 2012-03-23 2012-03-23 表示装置、その駆動方法、および表示用スクリーン装置 WO2013140627A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057610 WO2013140627A1 (ja) 2012-03-23 2012-03-23 表示装置、その駆動方法、および表示用スクリーン装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057610 WO2013140627A1 (ja) 2012-03-23 2012-03-23 表示装置、その駆動方法、および表示用スクリーン装置

Publications (1)

Publication Number Publication Date
WO2013140627A1 true WO2013140627A1 (ja) 2013-09-26

Family

ID=49222118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057610 WO2013140627A1 (ja) 2012-03-23 2012-03-23 表示装置、その駆動方法、および表示用スクリーン装置

Country Status (1)

Country Link
WO (1) WO2013140627A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125207A1 (ja) * 2014-02-18 2015-08-27 パイオニア株式会社 表示制御装置
WO2015132907A1 (ja) * 2014-03-05 2015-09-11 パイオニア株式会社 表示制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191726A (ja) * 1992-01-09 1993-07-30 Nippon Telegr & Teleph Corp <Ntt> 臨場感表示装置
JPH0682748A (ja) * 1992-08-31 1994-03-25 Takiron Co Ltd 映写撮像装置
JPH06194627A (ja) * 1992-12-24 1994-07-15 Casio Comput Co Ltd 高分子分散型液晶表示素子の駆動方法
JP2004184979A (ja) * 2002-09-03 2004-07-02 Optrex Corp 画像表示装置
JP2007219414A (ja) * 2006-02-20 2007-08-30 Fujifilm Corp 液晶調光デバイスの駆動方法
JP2010197486A (ja) * 2009-02-23 2010-09-09 Seiko Epson Corp 画像表示システム、画像通信システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191726A (ja) * 1992-01-09 1993-07-30 Nippon Telegr & Teleph Corp <Ntt> 臨場感表示装置
JPH0682748A (ja) * 1992-08-31 1994-03-25 Takiron Co Ltd 映写撮像装置
JPH06194627A (ja) * 1992-12-24 1994-07-15 Casio Comput Co Ltd 高分子分散型液晶表示素子の駆動方法
JP2004184979A (ja) * 2002-09-03 2004-07-02 Optrex Corp 画像表示装置
JP2007219414A (ja) * 2006-02-20 2007-08-30 Fujifilm Corp 液晶調光デバイスの駆動方法
JP2010197486A (ja) * 2009-02-23 2010-09-09 Seiko Epson Corp 画像表示システム、画像通信システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125207A1 (ja) * 2014-02-18 2015-08-27 パイオニア株式会社 表示制御装置
JPWO2015125207A1 (ja) * 2014-02-18 2017-03-30 パイオニア株式会社 表示制御装置
WO2015132907A1 (ja) * 2014-03-05 2015-09-11 パイオニア株式会社 表示制御装置
JPWO2015132907A1 (ja) * 2014-03-05 2017-03-30 パイオニア株式会社 表示制御装置

Similar Documents

Publication Publication Date Title
US9785028B2 (en) Display apparatus, driving method thereof, and screen apparatus for displaying
JP5856284B2 (ja) 表示装置、その駆動方法、および表示用スクリーン装置
JP5943283B2 (ja) 立体視画像を表示するフラットパネルディスプレイ、立体視画像を表示する方法、及び、立体視画像を表示するフラットパネルディスプレイのコントローラ
JP5774675B2 (ja) 表示装置
JP5856285B2 (ja) 表示装置、その駆動方法、および表示用スクリーン装置
US20090128525A1 (en) Liquid crystal display device and method for driving same with making of drive voltages opposite to one another on the basis of an inversion pattern
WO2014033807A1 (ja) 表示装置および表示装置の駆動方法
JP2014178524A (ja) 表示装置
WO2013140627A1 (ja) 表示装置、その駆動方法、および表示用スクリーン装置
US9448466B2 (en) Display device and drive method for display device
US8068079B2 (en) Liquid crystal display apparatus
WO2015045067A1 (ja) 表示装置および表示装置の制御方法
JP2015226296A (ja) 表示装置
JP2019070844A (ja) 表示装置および表示装置の駆動方法
JPWO2013140627A1 (ja) 表示装置、その駆動方法、および表示用スクリーン装置
JP6297291B2 (ja) 表示装置および表示装置の駆動方法
JP2023082004A (ja) 表示装置および表示装置の駆動方法
US20160027395A1 (en) Display apparatus, driving method thereof and screen apparatus for displaying
JP2022023983A (ja) 表示装置および表示装置の駆動方法
WO2014080466A1 (ja) 表示装置
JP2020173467A (ja) 表示装置および表示装置の駆動方法
JP2017156768A (ja) 表示装置および表示装置の駆動方法
WO2015132908A1 (ja) 表示制御装置
JP2016082386A (ja) 表示装置
JP2016180875A (ja) 表示制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871730

Country of ref document: EP

Kind code of ref document: A1