WO2012114512A1 - 表示装置 - Google Patents
表示装置 Download PDFInfo
- Publication number
- WO2012114512A1 WO2012114512A1 PCT/JP2011/054340 JP2011054340W WO2012114512A1 WO 2012114512 A1 WO2012114512 A1 WO 2012114512A1 JP 2011054340 W JP2011054340 W JP 2011054340W WO 2012114512 A1 WO2012114512 A1 WO 2012114512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- screen
- state
- display device
- divided
- image light
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 53
- 238000002834 transmittance Methods 0.000 claims abstract description 52
- 230000007423 decrease Effects 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 25
- 230000008859 change Effects 0.000 description 23
- 239000004973 liquid crystal related substance Substances 0.000 description 12
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 210000002858 crystal cell Anatomy 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/54—Accessories
- G03B21/56—Projection screens
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/10—Projectors with built-in or built-on screen
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/54—Accessories
- G03B21/56—Projection screens
- G03B21/60—Projection screens characterised by the nature of the surface
- G03B21/62—Translucent screens
Definitions
- the present invention relates to a display device that displays video.
- Patent Document 1 there is a technology for displaying a projected image from a projector on a screen.
- the screen is vertically divided, and for each divided region, the screen state is switched and controlled between a first mode that exhibits a reflection function and a second mode that exhibits an absorption function.
- a technique for suppressing motion blur (motion blur) is disclosed.
- Patent Document 2 when displaying an image by scanning and projecting image light onto a screen, the reflectance of the area where the image light is scanned is reflected on the reflection of the area where the image light is not scanned.
- Patent Documents 3 to 6 A technique for suppressing a decrease in contrast even in a bright room by increasing the ratio is disclosed.
- technologies related to the present invention are disclosed in Patent Documents 3 to 6, respectively.
- an ambient display In recent years, a new display called an ambient display has been proposed that displays various information on all surfaces without being aware of the display device.
- the space where human activities are not limited to the living space is roughly divided into the boundary with the outside world by the “opaque surface” and the “transparent surface”, and information on this surface is maintained without impairing the see-through function of the “transparent surface”. Displaying can open up new applications of ambient displays and provide value. Note that the transparent surface includes a “space with nothing”.
- the display surface is basically opaque, and light from an object behind the display is shielded regardless of whether or not the display is present. For this reason, in order to see the object on the opposite side of the display surface, it is necessary to move the display or move the viewpoint to a position where the display does not block the view. Therefore, it is difficult to properly view the information behind and the display information without a large movement of the line of sight, and a new display device is required.
- the present invention has been made to solve the above-described problems, and can display an image on the entire display surface while visually recognizing an object behind the display surface, and has high see-through performance and display visibility.
- the main object is to provide a display device capable of satisfying both of the above.
- a screen capable of changing an optical characteristic
- a projector that projects image light constituting an image on the screen, a state in which the image light is projected, and the image light
- a portion of the screen on which the image light is projected so as to have a regular transmittance capable of recognizing an object on the opposite side of the screen from both the front and back surfaces.
- Control means for switching the optical state of the region to be included from a transparent state to a scattering state modulated in time or space.
- (A) shows an example of schematic structure of the display apparatus which concerns on 1st Example.
- (B) (c) is a figure which shows notionally the transition of the optical state of a screen. This is an example in which the see-through display state is controlled by increasing / decreasing the regular transmittance during image non-projection.
- (A) is an example of the schematic block diagram of the display apparatus which concerns on 2nd Example.
- (B) is an example of a time chart showing a change in presence or absence of video projection and a change in the optical state of the screen in the video frame period.
- (A) shows the example of the waveform of the voltage between electrodes of a screen in case a screen will be in a transparent state at the time of a voltage application.
- (B) shows the example of the waveform of the voltage between electrodes of a screen in case a screen will be in a scattering state at the time of a voltage application.
- (A) is an example of the schematic block diagram of the display apparatus which concerns on 3rd Example.
- (B) is an example of a time chart showing a change in presence / absence of video projection in a predetermined divided region and a change in the optical state of the screen.
- the example of the waveform of the voltage between electrodes of a screen in case a screen will be in a transparent state at the time of a voltage application is shown.
- the example of the waveform of the voltage between electrodes of a screen in case a screen will be in a scattering state at the time of a voltage application is shown.
- a screen capable of changing optical characteristics
- a projector that projects image light that forms an image on the screen, a state in which the image light is projected, and the image light is projected
- the screen includes a portion of the screen on which the image light is projected so as to have a regular transmittance capable of recognizing an object on the opposite side of the screen from both the front and back surfaces.
- Control means for switching the optical state of the region from a transparent state to a scattering state modulated in time or space.
- the display device includes a screen, a projector, and control means.
- the screen can change optical properties.
- the projector projects image light constituting an image on a screen.
- the control means has a regular transmittance capable of recognizing an object on the opposite side of the screen from both the front and back surfaces in either a state where the image light is projected or a state where the image light is not projected.
- the optical state of the region including the portion on which the image light is projected is switched from the transparent state to the scattering state modulated in time or space.
- regular transmittance is the ratio of the amount of light that has passed through the screen without being scattered with respect to the amount of light that has entered the screen, and is an index for accurately viewing the shape of the object on the opposite side across the screen. It is also expressed as linear transmittance. In this specification, the instantaneous regular transmittance indicating the state of the screen is expressed as regular transmittance. Also, “regular transmittance that can recognize an object on the opposite side of the screen from both front and back surfaces” means a time-average positive index that is an indicator of the visibility of the object on the opposite side when the system is operated.
- the transmittance refers to a regular transmittance that is equal to or higher than the lower limit value of the regular transmittance that allows the object on the opposite side of the screen to be recognized from both the front and back surfaces, and the above lower limit value is determined in advance by, for example, an experiment.
- the display device can display an image on the entire display surface while visually recognizing an object behind the display surface, and can achieve both high see-through performance and display visibility.
- the screen is a screen capable of changing the optical characteristics of the divided areas in the display area
- the projector includes video light that forms an image on the screen. Is a projector that projects in a time-sharing manner on the divided screen area.
- the display device can preferably display an image on the entire display surface while visually recognizing an object behind the display surface, and can achieve both high see-through performance and display visibility.
- the screen is a screen capable of changing an optical characteristic of a region divided in one direction in the display region, and the projector forms an image on the screen.
- This is a projector that projects time-division in the direction divided into divided screen areas.
- the display device can preferably display an image on the entire display surface while visually recognizing an object behind the display surface, and can achieve both high see-through performance and display visibility.
- the screen is a screen capable of changing the optical characteristics of a region divided in the vertical and horizontal directions or the islands in the display region.
- the display device can preferably display an image on the entire display surface while visually recognizing an object behind the display surface, and can achieve both high see-through performance and display visibility.
- the control means increases or decreases the regular transmittance of the area of the screen that is in a transparent state.
- the “screen region” is a region in which the optical characteristics are changed at the same time. Specifically, when the scattering state is modulated only by time, it refers to the entire display region of the screen. When modulated in space, it refers to each divided area of the display area.
- control means increases or decreases the time ratio between the transparent state and the scattering state of the region of the screen that is in the transparent state. By doing in this way, the display device can change the visibility of the object in the background of the video, that is, can suppress or eliminate the see-through property.
- the control unit may be configured such that the screen area is in a transparent state in which the regular transmittance is higher than a predetermined value according to the presence or absence of projection of the image light, and the opposite side of the screen from the front and back sides. Switching between a transparent state and a state switched between a scattering state modulated in time or space so as to have a regular transmittance capable of recognizing the object.
- the “predetermined value” is, for example, a value higher than the regular transmittance when an image is projected, and is specifically determined in advance based on experiments or the like. In this way, since the state having high transmittance and the see-through display state can be switched according to the image, the display device can display the image in a state in which the background object can be clearly seen. It is possible to display on the top.
- the control means recognizes an object on the opposite side of the screen from both the front and back sides, and a state where the screen area is always in a scattered state depending on whether the image light is projected. Switching between a transparent state and a state that switches between a scattering state modulated in time or space so as to have a regular transmittance. By doing so, the display device can suppress or eliminate the see-through property.
- the control unit switches the optical state between a transparent state and a scattering state for each divided region obtained by dividing the screen, and the image light scans the screen.
- the divided area having a high scanning speed has a larger width in the scanning direction of the divided area than the divided area having a low scanning speed.
- the control unit divides the screen into predetermined divided regions, and switches the optical state between the transparent state and the scattering state for each divided region, for each divided region.
- the time ratio between the transparent state and the scattering state is made uniform.
- the display device can preferably achieve the see-through property of the display without causing unevenness in the see-through property.
- control unit increases or decreases the regular transmittance of the area by changing the time ratio between the transparent state and the scattering state of the area of the screen. In this way, the display device can easily increase or decrease the regular transmittance of the predetermined region.
- the control unit switches the optical state of a region including a portion onto which the image light is projected to a scattering state before the image light is projected.
- the display device is of a reflective type, the image light from the projector irradiated to the object on the back side of the screen can be minimized, and the influence on color recognition can be suppressed.
- the transmission type the leakage of the projection light to the observer can be suppressed.
- the control unit when the control unit divides the screen into predetermined divided regions and switches the optical state between a transparent state and a scattered state for each divided region, the video light is Within the irradiation time, the scattering characteristics of each of the divided regions are made uniform. By doing so, the display device can suppress the occurrence of block unevenness in which the region boundary is conspicuous.
- Fig.1 (a) shows an example of schematic structure of the display apparatus 100 which concerns on 1st Example.
- the display device 100 includes a projector 3 that projects an image, and a screen 5 that can change optical characteristics.
- the projector 3 projects image light for full-screen display once within a part of the frame period of the image.
- the projector 3 includes, for example, a liquid crystal light valve provided with a color filter, a reflective liquid crystal element, and the like, and emits white light in which RGB three primary colors are mixed.
- a white light source for example, a flash lamp that can be pulse-driven, a white LED lamp, and a laser that mixes RGB.
- the projector 3 may be a so-called three-plate projector. That is, in this case, the projector 3 uses liquid crystal light valves for RGB and a reflective liquid crystal element (for example, LCOS: Liquid Crystal On Silicon) or the like, and emits light from RGB light sources that can be pulse-driven respectively. Then, these images are superimposed through the optical system, and the transmitted light or reflected light necessary for the predetermined image is formed on the display surface of the screen 5.
- the RGB light source is, for example, an RGB single color LED or a laser.
- the projector 3 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and includes a control unit 30 that controls the projector 3 and controls the state of the screen 5.
- a CPU Central Processing Unit
- RAM Random Access Memory
- ROM Read Only Memory
- the screen 5 can switch the optical state between a transparent state and a scattering state.
- a polymer-dispersed liquid crystal that changes the refractive index of a particulate liquid crystal cell or a white powder in a transparent cell can be used. It is composed of an element that controls the scattering state by moving it.
- the screen 5 receives a control signal (also referred to as “control signal Sw”) for switching the state of the screen 5 from the projector 3.
- a control signal also referred to as “control signal Sw” for switching the state of the screen 5 from the projector 3.
- the screen 5 is switched from the transparent state to the scattering state before the pulsed image light from the projector 3 is irradiated, and is switched from the scattering state to the transparent state after the irradiation is completed.
- the scattering state of the screen 5 has an optical characteristic such that the screen 5 is scattered as efficiently as possible.
- the control signal Sw described above is generated by the control unit 30 of the projector 3 and sent to the screen 5 by a wireless method using electromagnetic waves such as microwaves, visible light, and infrared rays, or by electrical connection.
- the control signal Sw may reach the screen and be received by a mechanism similar to that of video or video.
- FIGS. 1B and 1C are diagrams showing an example of a change in the optical state of the screen 5.
- the predetermined area 51 including the irradiation area 50 of the image light emitted from the projector 3 is in a scattering state, and the other areas 52 to 54 are in a transparent state.
- the region 52 that newly includes the irradiation region 50 is in a scattering state, and the other regions 51, 53, 54 are It is in a transparent state.
- the change in the optical state is not limited to the examples in FIGS. 1B and 1C, and the screen 5 can be switched between the transparent state and the scattering state simultaneously over the entire surface.
- the area including the irradiation area 50 is in a scattering state and the image is displayed on the screen 5, and when the image light is not irradiated, the screen 5 is in a transparent state. Therefore, these are averaged (integrated) and visually recognized by human eyes, and a see-through characteristic that the screen 5 is transparent even in a bright display state is obtained.
- the display device 100 can change the visibility of an object in the background by adjusting the scattering intensity of the transparent screen 5. For example, when polymer dispersed liquid crystal is used for the screen 5, the screen 5 changes the AC applied voltage in the transparent state based on the control of the control unit 30. This increases or decreases the scattering intensity of the screen 5 as shown in FIG. At this time, since the scattering intensity when the image light is irradiated does not change, the regular transmittance can be increased or decreased while the display brightness remains the same.
- the display device 100 sets the screen 5 in a state in which the scattering intensity of the screen 5 in the transparent state becomes the scattering intensity when the image light is irradiated.
- the control unit 30 can control the screen 5 to be in this state, for example, at a cycle of several hundreds of milliseconds, so that the background motion can be shown to the observer like frame advance.
- the control unit 30 keeps the screen 5 in this state for the first few seconds so that the viewer watches the video on the display surface of the screen 5 instead of the background. You can make a situation.
- the display device 100 may continue the transparent state without providing time for the screen 5 to be in a scattering state.
- the projector 3 inserts a black screen (that is, a state in which there is no projection light) into the image at a cycle of several hundreds ms, so that the image on the display surface of the screen 5 has a high transmittance. See-through display status appears alternately.
- the display apparatus 100 can display an image on the screen 5 in a state where the back object can be visually recognized more clearly.
- the display device 100 displays an image based on a method of modulating the optical state of the screen 5 based on time (also referred to as “time division method”).
- the range in which the video is displayed on the display surface of the screen 3 is simply referred to as “display area”, and the range in which no video is displayed on the display surface is also referred to as “non-display area”.
- FIG. 3A is an example of a schematic configuration diagram of the display device 100 according to the second embodiment.
- the projector 3 projects light constituting the entire image of the video onto the screen 5. At this time, the projector 3 projects video light corresponding to at least one video at least once within a part of the video frame period.
- a method of the projector 3 there is a method in which light from an RGB light source is irradiated on a liquid crystal light valve, a reflective liquid crystal element, or a digital mirror device in a time division manner.
- the RGB light source is, for example, an RGB single color LED or a laser.
- the screen 5 can switch the optical state between the transparent state and the scattering state as in the first embodiment.
- the screen 5 includes, for example, a polymer-dispersed liquid crystal that changes the refractive index of a particulate liquid crystal cell, an element that controls a scattering state by moving white powder in a transparent cell, and the like. Further, the screen 5 can be switched between a transparent state and a scattering state simultaneously over the entire display surface or the entire display region. This example will be described later with reference to FIG.
- FIG. 3B is an example of a time chart showing a change in presence / absence of video projection and a change in optical characteristics of the screen 5 in the video frame period.
- the projector 3 projects the video light at a part of the video frame period. Specifically, when “video projection” in FIG. 3B is “ON”, video light is emitted from the projector 3 at least once.
- the screen 5 is switched from the transparent state to the scattering state before or before the image light is irradiated. As a result, an image is displayed on the screen 5. Further, the screen 5 is in a transparent state when the image light is not irradiated. Therefore, these are averaged (integrated) and visually recognized by human eyes, and a see-through characteristic that the screen 5 is transparent even in a bright display state is obtained.
- FIG. 4A shows an example of the waveform of the voltage between the electrodes of the screen 5 when the screen 5 becomes transparent when a voltage is applied.
- FIG. 4A when no voltage is applied, the entire surface of the screen 5 or the entire display area is scattered, and when the voltage is applied, the entire surface of the screen 5 is scattered. Alternatively, the entire display area is transparent.
- FIG. 4B shows an example of the waveform of the voltage between the electrodes of the screen 5 when the screen 5 is in a scattering state when a voltage is applied.
- the entire surface of the screen 5 or the entire display area is transparent, and when the voltage is applied, the screen 5 is in a scattering state over the entire surface of 5 or the entire display region.
- the display device 100 according to the third embodiment is based on a method of changing the state of the screen 5 for each predetermined region in accordance with scanning on the screen 5 (also referred to as “region division method”). Is displayed. In the following, the description of the same parts as in the first embodiment will be omitted as appropriate.
- FIG. 5A is an example of a schematic configuration diagram of the display device 100 according to the third embodiment.
- the projector 3 that projects an image sequentially projects line-shaped images on the display surface of the screen 5 during the image frame period.
- the projector 3 is composed of, for example, a liquid crystal light valve or a reflective liquid crystal element that sequentially shifts the projection area in the entire image within one frame (that is, scans the projection light).
- the screen 5 is a transparent state in which regions divided into strips (hereinafter also referred to as “divided regions Td”) corresponding to the scanning direction of the projector 3 are respectively independent timing. And switch to the scattering state.
- the screen 5 is composed of, for example, a polymer-dispersed liquid crystal that changes the refractive index of a particulate liquid crystal cell, or an element that controls the scattering state by moving white powder in a transparent cell.
- FIG. 5B is an example of a time chart showing the presence / absence of video projection in a predetermined divided region Td and the change in the optical characteristics of the screen 5.
- each divided region Td of the screen 5 is switched from the transparent state to the scattering state before the timing at which the image light from the projector 3 is irradiated. Switches from transparent to transparent. Accordingly, the optical state of each divided region Td is sequentially switched while shifting the time.
- the screen 5 desirably has optical characteristics such that the screen 5 is scattered as efficiently as possible to the viewer side.
- the timing for switching the optical state of the screen 5 is controlled by the control unit 30 of the projector 3. Specifically, the control unit 30 transmits a control signal Sw indicating the switching timing of the optical characteristics to the screen 5 by, for example, a wireless method using electromagnetic waves such as microwaves, visible light, infrared rays, or electrical connection.
- the screen 5 switches the optical state based on the control signal Sw.
- control signal Sw is possible only by synchronizing the frame period, but preferably includes information on the timing of starting scanning of the projector 3, information on the scanning speed, and information on scanning delay and shift. Therefore, by driving the screen 5 based on the control signal Sw, it is possible to realize a good see-through display without any image disturbance even when the frame frequency changes.
- FIG. 6 shows an example of the waveform of the voltage between the electrodes of the screen 5 when the screen 5 becomes transparent when a voltage is applied.
- FIG. 6 shows, as an example, an example of an eight-division scanning modulation method in which the display surface of the screen 5 is divided into eight division regions Td, and voltage waveforms applied to the eight division regions Td are shown in a line.
- the divided region Td to which a voltage is applied is in a transparent state
- the divided region Td to which no voltage is applied is in a scattering state.
- another divided region Td is changed from the transparent state to the scattered state before the divided region Td in the scattered state transitions to the transparent state.
- FIG. 7 shows an example of the waveform of the inter-electrode voltage of the screen 5 when the screen 5 is in a scattering state when a voltage is applied.
- FIG. 7 as in FIG. 6, as an example, an example of an eight-division scanning modulation method that divides the display surface of the screen 5 into eight divided regions Td is shown, and the voltage waveform applied to each of the eight divided regions Td is shown vertically. Shown side by side.
- the divided region Td to which a voltage is applied is in a scattering state
- the divided region Td to which no voltage is applied is in a transparent state.
- another divided region Td is changed from the transparent state to the scattered state before the divided region Td in the scattered state transitions to the transparent state.
- the projector 3 is a projector having a configuration in which a light beam is shaken by a mirror, for example, a laser projector.
- the region including the scanned point is in a scattering state so as to correspond to the scanning direction of the projector 3. Note that the region including the scanned point transitions to a scattering state before the image light from the projector 3 is irradiated.
- the screen 5 is in a scattering state when the image light is irradiated, and the image is displayed, and when the image light is not irradiated, the screen 5 is in a transparent state. Accordingly, similarly in the fourth embodiment, the display device 100 can be seen by the human eye by averaging (integrating) these, and the screen 5 is transparent even in a bright display state. .
- the light projected from the projector 3 onto the screen 5 is scattered by the display surface of the screen 5 (also simply referred to as “display surface”) and recognized as an image on the screen 5 by the observer.
- the transmittance of the display surface depends on the time ratio between the scattering state and the transparent state.
- the regular transmittance in the transparent state is “Tr0”
- the regular transmittance in the scattering state is “Trs”
- the time ratio of the transparent state in all the optical states is “R”, with a sufficiently short period of several tens of ms or less.
- the transition time between the states is sufficiently short.
- the regular transmittance in the see-through state displaying the image is about 50% (Tr ⁇ 0.5), and the background object High see-through performance can be realized.
- the normal transmittance Tr0 in the transparent state is increased, the regular transmittance Trs in the scattering state is decreased, and the transparent state is increased. It is necessary to increase the time ratio R.
- the brightness of the image projected on the display surface depends on the intensity of the projection light and the scattering intensity. Note that the scattering directivity is not mentioned here.
- FIG. 8 is a graph showing the relationship between the scanning position and time in the case of executing full batch projection in which RGB light is projected all over the display area.
- the “scanning position” specifically indicates the position of the screen 5 in the vertical direction.
- two-dot chain lines “Lr1” and “Lr2” indicate the red (R) projection position and time
- broken lines “Lg1” and “Lg2” indicate the green (G) projection position and time
- Dotted lines “Lb1” and “Lb2” indicate the projection position and time of blue (B).
- the area between the solid lines “L1” and “L2” and the area between the solid lines “L3” and “L4” indicate the scanning position and time of the screen 5 controlled to switch the optical state to the scattering state. Show.
- the projection position and time of RGB light are represented by the lines in the drawing, at least the time when switching to the scattering state of the region sandwiched between “L1”, “L2” or “L3”, “L4” is included. As long as the image is projected as described above.
- the display area of the projector 3 is maintained in a scattering state over the entire surface in a period including the timing at which RGB light is projected.
- the example shown in FIG. 5 corresponds to a method similar to a so-called three-plate projector in which RGB is projected simultaneously or a single-plate projector using a white light source and a color filter.
- FIG. 9 is a graph showing the relationship between the scanning position and time when RGB light is projected onto the entire display area at independent timing.
- the two-dot chain lines “Lr3” and “Lr4” indicate the red (R) projection position and time
- the broken line “Lg3” indicates the green (G) projection position and time
- a region sandwiched by solid lines “L5” and “L6” a region sandwiched by solid lines “L7” and “L8”, a region sandwiched by solid lines “L9” and “L10”, and solid lines “L11” and “L12”.
- the region sandwiched by indicates the position and time of the screen 5 being switched to the scattering state.
- the projection position and time of the projection light are represented by lines in the figure, the image is projected so as to include at least the time switched to the scattering state of the region sandwiched between “L5”, “L6”, and the like. That's fine.
- the screen 5 is switched from the transparent state to the scattering state at the timing when the RGB light is projected onto the screen 5, respectively.
- the display area of the projector 3 is maintained in a scattering state over the entire surface in a period including the timing at which RGB light is projected.
- This example corresponds to a method similar to a single-plate projector in which RGB is time-division or a projector using subfield (SF) division of a digital mirror device (DMD).
- the display device 100 can be made to scatter strongly only the projected wavelength, instead of being made to scatter all wavelengths. By doing so, the display device 100 can suppress a decrease in see-through performance due to a reduction in the transparent time ratio R. In this case, for example, when the display device 100 stacks the scattering layers corresponding to each wavelength and displays only a specific color, the display device 100 modulates only the layer corresponding to the color.
- FIG. 10 is a graph showing the relationship between the scanning position and time in the area division method.
- two-dot chain lines “Lr5” and “Lr6” indicate the projection position and time of red (R)
- broken lines “Lg5” and “Lg6” indicate the projection position and time of green (G).
- Dotted lines “Lb5" and “Lb6” indicate the projection position and time of blue (B).
- the region sandwiched between the solid lines “L13” and “L14” and the region sandwiched between the solid lines “L15” and “L16” indicate the position and time of the screen 5 switched to the scattering state.
- the projection position and time of the projection light are represented by lines in the figure, the image is projected so as to include at least the time switched to the scattering state of the region sandwiched between “L13” and “L14”. That's fine.
- the image light is scanned at a constant speed in one direction.
- the display device 100 switches the area of the screen 5 divided so as to include the area irradiated with the image light from the transparent state to the scattering state.
- the area division method has a demerit such as the need for multi-channel driving circuits (when electrically switching), strong light source light intensity can be obtained in a short time as in the two examples shown in FIGS. It is not necessary, and stable and bright display can be realized relatively easily.
- the example shown in FIG. 10 corresponds to the case where a laser scanning projector or the like is used.
- the display device 100 adjusts the regular transmittance in the transparent state.
- the display device 100 modulates the scattering state by pulse width modulation (PWM: Pulse Width Modulation). Thereby, the display device 100 can achieve good display visibility while controlling the see-through property.
- PWM Pulse Width Modulation
- the projection light is RGB, but it goes without saying that the effect of the present invention can be obtained even if it is a single color or other colors as required.
- Part 1 when image light is applied to a reflective screen 5 in a reflective state (an arrangement in which projection light from a projector is projected from the viewer side), the image light is applied to an object on the back side. For example, when a red image is displayed, a white object appears colored red even with weak leakage light, and the color cannot be accurately recognized even though the shape can be identified. Even in the case of the transmission type (arrangement in which the projection light from the projector is projected on the screen from the opposite side of the observer), when the image light is irradiated onto the transparent screen 5, strong image light leaks to the observer. This will give an unpleasant stimulus.
- the screen 5 for switching between the scattering state and the transparent state has a response characteristic having a predetermined transition time. Accordingly, at the timing of projecting the image light, the screen 5 needs to be in a state where the screen 5 has completely shifted from the transparent state to the scattering state, that is, the scattering state has risen sufficiently.
- the display device 100 starts shifting to the scattering state of the display surface of the screen 5 on which the image light is projected before the timing of projecting the image light.
- the control unit 30 synchronizes the timing for projecting image light (that is, scanning) and the timing for switching the optical state of the screen 5 to the scattering state, the timing for switching the optical state of the screen 5 to the scattering state. Rather, the timing of projecting the image light is delayed.
- this delay is also referred to as “scan delay”.
- the display device 100 is a reflection type
- the image light from the projector 3 irradiated to the object on the back side of the screen 5 can be minimized, and the influence on the color recognition is suppressed. be able to.
- unnecessary leakage light to the observer can be minimized.
- Part 2 In general, in the case of the time division method, even if the scattering characteristics of the screen 5 are changed, the image displayed on the screen 5 does not appear uneven. On the other hand, in the case of the area division method, when the scattering characteristics of each divided area Td are not uniform (that is, not constant) at the timing when the image light is irradiated, block unevenness in which the area boundary is conspicuous in the image displayed on the screen 5. Will occur.
- the display device 100 makes the scattering characteristics of each divided area Td substantially constant within the irradiation time as shown in FIG. Further, when the image light is irradiated and scanned on the boundary between the two divided regions Td, the display device 100 makes the scattering characteristics of the two divided regions Td substantially the same. By doing in this way, the display apparatus 100 can suppress block nonuniformity.
- Part 3 In general, even in the see-through state, the transmittance of the display area in the display surface of the screen 5 is reduced and the scattering state is mixed, so that the haze value (ratio of the scattered transmittance to the total transmittance) is increased.
- the display area of the display surface of the screen 5 is in a transparent state with high transmittance. Therefore, the vicinity of the boundary between the display area and the non-display area may be conspicuous like the boundary between the ground glass and the transparent glass.
- the display device 100 allows the non-display area to be switched to the scattering state, and gradually brings the non-display area closer to the transparent state having a high haze value. In this way, the boundary near the boundary between the display area and the non-display area can be made inconspicuous. Note that the optical characteristics of the non-display area do not need to change with time as in the display area.
- the screen 5 is a reflection type projection that allows an observer to visually recognize an image by mainly reflecting light emitted from the projector 3.
- the configuration to which the present invention is applicable is not limited to this.
- the screen 5 may be a transmissive screen that is provided between the projector 3 and the observer and allows the observer to visually recognize the image by transmitting light. Even in this case, the present invention is preferably applied.
- Modification 2 In the area division method, in addition to the processing described above, the control unit 30 sets the ratio of the time occupied by the scattering state among all the optical states (also referred to as “modulation time ratio Rt”) to each divided area of the screen 5. It is desirable to switch so that Td is constant. At this time, the modulation time rate Rt is set to a value equal to or greater than the minimum value of the time rate at which the image light is projected in each divided region Td. Thereby, the see-through transmittance and the scattering state of the entire display area are uniform, and a good see-through display without unevenness is realized.
- the projector 3 determines the time ratio of the scattering state of each divided area Td and the scanning delay time of each divided area Td. Scan with constant width.
- the control unit 30 sets the modulation time rate Rt. It is held constant and the scanning delay is controlled to synchronize the timing at which the image light is projected to each divided region Td and the timing for switching to the scattering state of the divided region Td. This also applies to the case where the display area is divided vertically and horizontally.
- the display device 100 can make the boundary between the transparent portion and the display portion of the display inconspicuous by modulating at the same modulation time rate Rt as that of the display region even in the non-display region. See-through display without any problem can be realized.
- the display device 100 changes the modulation time rate Rt of each divided region Td, for example, without changing the scan delay time width of each divided region Td.
- the width (also referred to as “scanning width”) of the divided region Td having a relatively high scanning speed in the scanning direction is large, and the scanning speed is relatively high.
- the display area may be divided so that the scanning width of the slow divided area Td becomes small.
- the display device 100 sets the scanning delay of each divided region Td according to the above-described distribution of the scanning width. As a result, the output of the drive circuit can be reduced, and the cost can be reduced without degrading the performance.
- the display device 100 may substantially increase the scanning width by driving (outputting) the divided regions Td that are finely divided together.
- the display device 100 may divide the display area into rectangular (including square) or hexagonal blocks when dividing the display area vertically and horizontally. Even when the extending direction of each divided region Td is different from the scanning direction, the display device 100 can adjust the switching timing to the scattering state so as to maintain the see-through property.
- the display device 100 does not need to finely divide each divided region Td. This is based on the fact that the effect is the same if the modulation time rate Rt is the same between the case where the divided region Td is finely divided and the other cases.
- Modification 4 The regular transmittance is uniquely determined by the modulation time rate Rt. Therefore, the display device 100 may vary the modulation time rate Rt from the minimum value that can be taken to 1 or less. An example is shown in FIG.
- the display device 100 can easily control the see-through property, and when the object (background object) in the background of the screen 5 is not desired to enter the viewer's field of view or the background object is in the field of view. This can be handled when it is desired to suppress entry. For example, when the background object is a structure with a fine contrast change or is strongly illuminated, if the see-through property is high, the visibility of the image projected on the screen 5 decreases. In this case, the display device 100 can improve visibility by suppressing see-through performance.
- the display device 100 sets an upper limit value and a lower limit value of the modulation time rate Rt so that the regular transmittance falls within a predetermined range.
- the display apparatus 100 can set the range of the regular transmittance.
- the display device 100 improves safety by setting the lower limit value or / and upper limit value of the modulation time rate Rt low, and sets the lower limit value or / and upper limit value of the modulation time rate Rt high. It is possible to emphasize privacy protection.
- the regular transmittance may be variable for each divided area Td.
- the modulation time rate Rt of the divided region Td where the video is not projected may be set to be equal to or less than the minimum value of the modulation time rate Rt of the divided region Td where the video is projected.
- the display device 100 can perform highlighting with reduced see-through and the like, and can set the regular transmittance of the divided region Td on which no image is projected to be extremely high.
- the display device 100 when the display device 100 is installed on the dashboard of the vehicle, the display device 100 displays a see-through image that is not disturbed only at the bottom of the display area during driving, and the display area when the vehicle is stopped.
- the see-through video can be displayed on the entire screen.
- the display device 100 sets an upper limit value and a lower limit value of the modulation time rate Rt for each divided region Td.
- the display apparatus 100 can set the range of the regular transmittance for each divided region Td.
- the display device 100 sets the lower limit value and / or the upper limit value of the modulation time rate Rt higher in the divided area Td corresponding to the display part necessary for alerting or the like than in other divided areas Td.
- the control unit 30 is provided in the projector 3.
- the configuration to which the present invention is applicable is not limited to this, and the projector 3 may exist outside. Even in this case, the control unit 30 controls the optical state of the screen 5 by transmitting the control signal Sw to the screen 5.
- the present invention is preferably applied to an apparatus for displaying an image.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transforming Electric Information Into Light Information (AREA)
- Liquid Crystal (AREA)
- Overhead Projectors And Projection Screens (AREA)
- Projection Apparatus (AREA)
Abstract
表示装置(100)は、スクリーン(5)と、プロジェクタ(3)と、制御手段(30)と、を備える。スクリーン(5)は、光学的特性を変化させることが可能である。プロジェクタ(3)は、スクリーン(5)に映像を構成する映像光を投影する。制御手段(30)は、映像光が投射された状態及び映像光が投射されていない状態のいずれの状態であっても、表裏両面から当該スクリーン(5)の反対側の物体を認識しうる正透過率を有するように、スクリーン(5)のうち、映像光が投影される部位を含む領域の光学状態を、透明状態から時間又は空間で変調された散乱状態に切り替える。
Description
本発明は、映像を表示する表示装置に関する。
従来から、プロジェクタからの投影映像をスクリーンに表示する技術が存在する。例えば、特許文献1には、スクリーンを縦分割し、分割した領域各々について、スクリーン状態を、反射機能を発揮する第1モードと、吸収機能を発揮する第2モードとで切替制御することで、動画ボケ(モーションブルア)を抑制する技術が開示されている。
また、特許文献2には、画像光をスクリーン上に走査投射して画像を表示する際に、スクリーンの画像光が走査されている領域の反射率を、画像光が走査されていない領域の反射率よりも高くすることで、明室内であってもコントラストの低下を抑制する技術が開示されている。その他、本発明に関連する技術が特許文献3乃至6にそれぞれ開示されている。
近年、アンビエントディスプレイ等と呼ばれる、表示デバイスを意識させず、自然に様々な情報をあらゆる面に表示する新たなディスプレイが提唱されている。生活空間に限らず人間が活動する空間は、大きく分けて「不透明面」と「透明面」によって外界との境界を構成しており、「透明面」のシースルー機能を損なうことなくこの面に情報表示することは、アンビエントディスプレイの新たな応用形態を拓き、価値を提供することが可能となる。なお、透明面とは「何もない空間」を含んでいる。
現在のフラットパネルディスプレイは高性能、高画質化しているものの、基本的に表示面は不透明であり、表示の有無に関わらずディスプレイ背後にある物体からの光は遮蔽されてしまう。このため、表示面の反対側の物体を見るには、ディスプレイを移動させるか、ディスプレイが視界を遮蔽しない位置に視点を移動させる必要がある。従って、背後にあるものと表示情報とを視線の大きな移動を伴わず適切に視認させることは困難となっており、新たな表示デバイスが必要である。
本発明は、上記のような課題を解決するためになされたものであり、表示面背後の物体を視認させつつ表示面全面への映像表示が可能であって、高いシースルー性と表示の視認性を両立することが可能な表示装置を提供することを主な目的とする。
請求項1に記載の発明は、光学的特性を変化させることが可能なスクリーンと、前記スクリーンに映像を構成する映像光を投影するプロジェクタと、前記映像光が投射された状態及び前記映像光が投射されていない状態のいずれの状態であっても、表裏両面から当該スクリーンの反対側の物体を認識しうる正透過率を有するように、前記スクリーンのうち、前記映像光が投影される部位を含む領域の光学状態を、透明状態から時間又は空間で変調された散乱状態に切り替える制御手段と、を備えることを特徴とする。
本発明の1つの観点では、光学的特性を変化させることが可能なスクリーンと、前記スクリーンに映像を構成する映像光を投影するプロジェクタと、前記映像光が投射された状態及び前記映像光が投射されていない状態のいずれの状態であっても、表裏両面から当該スクリーンの反対側の物体を認識しうる正透過率を有するように、前記スクリーンのうち、前記映像光が投影される部位を含む領域の光学状態を、透明状態から時間又は空間で変調された散乱状態に切り替える制御手段と、を備える。
上記の表示装置は、スクリーンと、プロジェクタと、制御手段と、を備える。スクリーンは、光学的特性を変化させることが可能である。プロジェクタは、スクリーンに映像を構成する映像光を投影する。制御手段は、映像光が投射された状態及び映像光が投射されていない状態のいずれの状態であっても、表裏両面から当該スクリーンの反対側の物体を認識しうる正透過率を有するように、スクリーンのうち、映像光が投影される部位を含む領域の光学状態を、透明状態から時間又は空間で変調された散乱状態に切り替える。
ここで「正透過率」とは、スクリーンに入射した光量に対し散乱されずにスクリーンを透過した光量の割合であり、スクリーンを挟んだ反対側にある物体の形状を正確に視認する指標の一つとなり、直線透過率とも表現される。本明細書では、このスクリーンの状態を示す瞬時正透過率を正透過率と表現する。また、「表裏両面から当該スクリーンの反対側の物体を認識しうる正透過率」とは、システムを動作させたときに観察者にとって反対側の物体の見易さを示す指標となる時間平均正透過率であって、表裏両面から当該スクリーンの反対側の物体を認識可能な正透過率の下限値以上の正透過率を指し、上述の下限値は、例えば、実験等により予め定められる。そして、この構成によれば、表示装置は、表示面背後の物体を視認させつつ表示面全面への映像表示を可能にし、高いシースルー性と表示の視認性を両立することが可能となる。
上記の表示装置の一態様では、前記スクリーンが、表示領域中の分割された領域の光学的特性を変化させることが可能なスクリーンであって、前記プロジェクタが、前記スクリーンに映像を構成する映像光が分割されたスクリーン領域に時分割で投影するプロジェクタである。この態様によれば、表示装置は、好適に、表示面背後の物体を視認させつつ表示面全面への映像表示を可能にし、高いシースルー性と表示の視認性を両立することが可能となる。
上記の表示装置の一態様では、前記スクリーンが、表示領域中の1方向に分割された領域の光学的特性を変化させることが可能なスクリーンであって、前記プロジェクタが、前記スクリーンに映像を構成する映像光が分割されたスクリーン領域に分割された方向に時分割で投影するプロジェクタである。この態様によっても、表示装置は、好適に、表示面背後の物体を視認させつつ表示面全面への映像表示を可能にし、高いシースルー性と表示の視認性を両立することが可能となる。
上記の表示装置の一態様では、前記スクリーンが、表示領域中の縦横方向あるいは島状に分割された領域の光学的特性を変化させることが可能なスクリーンである。この態様によっても、表示装置は、好適に、表示面背後の物体を視認させつつ表示面全面への映像表示を可能にし、高いシースルー性と表示の視認性を両立することが可能となる。
上記の表示装置の一態様では、前記制御手段は、透明状態である前記スクリーンの領域の正透過率を増減させる。ここで、「スクリーンの領域」とは光学特性を同時に変化させる領域であって、具体的には、散乱状態が時間のみで変調される場合には、スクリーンの表示領域全体を指し、散乱状態が空間で変調される場合には、表示領域の各分割領域を指す。このようにすることで、表示装置は、映像の背景にある物体の見易さを変化させる、つまりシースルー性を抑制又は消失させることができる。
上記の表示装置の一態様では、前記制御手段は、透明状態である前記スクリーンの領域の透明状態と散乱状態との時間比率を増減させる。このようにすることで、表示装置は、映像の背景にある物体の見易さを変化させる、つまりシースルー性を抑制又は消失させることができる。
上記表示装置の一態様では、前記制御手段は、前記スクリーンの領域を、前記映像光の投射の有無に応じ、正透過率が所定値よりも高い透明状態と、表裏両面から当該スクリーンの反対側の物体を認識しうる正透過率を有するように、透明状態と、時間又は空間で変調された散乱状態とで切り替わる状態と、で切り替える。「所定値」は、例えば、映像が投影されている場合の正透過率より高い値であり、具体的には実験等に基づき予め定められる。このようにすることで、高い透過率を有する状態と、シースルーの表示状態とを映像に応じて切り替えることができるため、表示装置は、背景物体をより明確に視認可能な状態で、映像をスクリーン上に表示することが可能となる。
上記表示装置の一態様では、前記制御手段は、前記スクリーンの領域を、前記映像光の投射の有無に応じ、常に散乱状態である状態と、表裏両面から当該スクリーンの反対側の物体を認識しうる正透過率を有するように、透明状態と、時間又は空間で変調された散乱状態とで切り替わる状態と、で切り替える。このようにすることで、表示装置は、シースルー性を抑制又は消失させることが可能となる。
上記表示装置の一態様では、前記制御手段が、前記スクリーンを分割した分割領域ごとに、前記光学状態を、透明状態と散乱状態とで切り替える場合であって、前記スクリーン上を前記映像光が走査する走査速度を変化させる場合、前記走査速度が速い分割領域は、前記走査速度が遅い分割領域と比較して、当該分割領域の走査方向における幅が大きい。これにより、表示装置は、走査速度を変化させる場合であっても、駆動回路の出力を少なくすることが可能となる。
上記の表示装置の一態様では、前記制御手段は、前記スクリーンを所定の分割領域に分割し、当該分割領域ごとに、前記光学状態を、透明状態と散乱状態とで切り替える場合、前記分割領域ごとの透明状態と散乱状態との時間比率を均一にする。これにより、表示装置は、シースルー性にムラを生じさせることなく、好適に表示のシースルー性を実現することが可能となる。
上記の表示装置の一態様では、前記制御手段は、前記スクリーンの領域の透明状態と散乱状態との時間比率を変化させることで、当該領域の前記正透過率を増減させる。このようにすることで、好適に、表示装置は、所定の領域の正透過率を容易に増減させることができる。
上記の表示装置の一態様では、前記制御手段は、前記映像光が投影される部位を含む領域の光学状態を、前記映像光が投影される前に散乱状態に切り替える。このようにすることで、表示装置は、反射型の場合、スクリーンの裏面側の物体に照射されるプロジェクタからの映像光を最小限に抑えることができ、色認識への影響を抑えることができ、透過型の場合、観察者への投影光の漏洩を抑えることができる。
上記の表示装置の一態様では、前記制御手段は、前記スクリーンを所定の分割領域に分割し、当該分割領域ごとに、前記光学状態を、透明状態と散乱状態とで切り替える場合、前記映像光が照射される時間内で、前記分割領域の各々の散乱特性を均一にする。このようにすることで、表示装置は、領域境界が目立つブロックムラが発生するのを抑制することができる。
以下、図面を参照して本発明の好適な各実施例について説明する。
<第1実施例>
図1(a)は、第1実施例に係る表示装置100の概略構成の一例を示す。図1(a)に示すように、表示装置100は、映像を投影するプロジェクタ3と、光学的特性を変化させることが可能なスクリーン5と、を備える。
図1(a)は、第1実施例に係る表示装置100の概略構成の一例を示す。図1(a)に示すように、表示装置100は、映像を投影するプロジェクタ3と、光学的特性を変化させることが可能なスクリーン5と、を備える。
プロジェクタ3は、映像のフレーム周期の一部の時間内に全面表示のための映像光を1回投射する。プロジェクタ3は、例えば、カラーフィルタを配置した液晶ライトバルブ、反射型液晶素子などを有し、これらにRGB3原色を混合した白色光を照射する。これにより、所定の映像に必要な透過光あるいは反射光は、光学系を通してスクリーン5の表示面上に結像される。この場合、プロジェクタ3は、白色光源として、例えばパルス駆動が可能なフラッシュランプ、白色LEDランプ、RGBを混合したレーザーなどを有する。
なお、プロジェクタ3は、所謂3板式プロジェクタであってもよい。即ち、この場合、プロジェクタ3は、RGB別々の液晶ライトバルブ、反射型液晶素子(例えば、LCOS:Liquid Crystal On Silicon)などを用い、それぞれにパルス駆動が可能なRGB別の光源から光を出射し、光学系を通してこれらの映像を重ね合わせてスクリーン5の表示面上に所定の映像に必要な透過光あるいは反射光を結像させる。この場合、RGB光源は、例えばRGB単色LEDやレーザーである。また、プロジェクタ3は、CPU(Central Processing Unit)やRAM(Random Access Memory)、ROM(Read Only Memory)などを有し、プロジェクタ3の制御及びスクリーン5の状態制御を行う制御部30を備える。
スクリーン5は、光学状態を透明状態と散乱状態との間で切り替えることが可能であり、例えば、粒子状の液晶セルの屈折率を変化させる高分子分散液晶や、透明セル内の白色粉体を移動させることで散乱状態を制御する素子などで構成される。
スクリーン5は、スクリーン5の状態を切り替える制御信号(「制御信号Sw」とも呼ぶ。)をプロジェクタ3から受信する。これにより、スクリーン5は、プロジェクタ3からのパルス状の映像光が照射される前に、透明状態から散乱状態に切り替えられ、照射が終了した後に散乱状態から透明状態に切り替えられる。この場合、スクリーン5の散乱状態は、可能な限り観察者側に効率的に散乱されるような光学特性を有することが望ましい。上述の制御信号Swは、プロジェクタ3の制御部30によって生成され、マイクロ波や可視光線、赤外線など電磁波を用いたワイヤレス手法あるいは電気的接続などにより、スクリーン5に送出される。この制御信号Swは映像あるいは映像と同様な機構でスクリーンに到達、受信させても良い。
図1(b)、(c)は、スクリーン5の光学状態の変化の一例を示す図である。図1(b)では、プロジェクタ3から照射された映像光の照射領域50を含む所定の領域51が散乱状態となり、他の領域52乃至54は、透明状態となっている。また、図1(c)では、スクリーン5上での照射領域50の変化に伴い、新たに照射領域50を含むことになった領域52が散乱状態となり、他の領域51、53、54は、透明状態となっている。なお、光学状態の変化は、図1(b)、(c)の例に限定されず、スクリーン5は、全面に亘り同時に透明状態と散乱状態を切り替えることが可能である。
このように、スクリーン5は、映像光が照射されたときは、照射領域50を含む領域が散乱状態となり映像が表示され、映像光が照射されていないときには透明状態となる。従って、人間の目にはこれらが平均(積分)されて視認され、明るい表示状態であってもスクリーン5は透明であるというシースルー特性が得られる。
ここで、スクリーン5の状態を制御する具体的方法について説明する。
表示装置100は、透明状態のスクリーン5の散乱強度を調整することで、背景にある物体の見易さを変化させることができる。例えばスクリーン5に高分子分散液晶を用いた場合、スクリーン5は、制御部30の制御に基づき、透明状態の交流印加電圧を変える。これにより、図2に示すようにスクリーン5の散乱強度が増減する。このとき、映像光を照射したときの散乱強度は変わらないため、表示の明るさは同じままで、正透過率を増減させることができる。
透明状態のスクリーン5の散乱強度を調整する一例では、表示装置100は、スクリーン5を、透明状態のスクリーン5の散乱強度が、映像光を照射したときの散乱強度となるような状態にすることで、シースルー性を極めて低く、あるいは消失させることもできる。制御部30は、例えば数100msの周期で、スクリーン5がこの状態になるように制御することで、観察者に背景の動きをコマ送りのように見せることもできる。また、制御部30は、特に注目して欲しい情報を表示する際、最初の数秒間はスクリーン5をこの状態にすることで、視聴者が背景ではなくスクリーン5の表示面の映像を注視するという状況を作ることができる。
また、表示装置100は、映像光がない場合に、スクリーン5を散乱状態にする時間を設けず、透明状態を連続させてもよい。この場合、例えば、プロジェクタ3は、数100ms周期で黒画面(即ち、投射光がない状態)を映像に挿入することで、スクリーン5の表示面上の映像は、高い透過率をもった状態とシースルー表示状態とが交互に現れる。これにより、表示装置100は、背面物体をより明確に視認可能な状態で映像をスクリーン5上に表示することが可能である。
<第2実施例>
次に、第2実施例について説明する。概略的には、第2実施例の表示装置100は、時間に基づきスクリーン5の光学状態を変調させる方式(「時分割方式」とも呼ぶ。)に基づき映像を表示する。
次に、第2実施例について説明する。概略的には、第2実施例の表示装置100は、時間に基づきスクリーン5の光学状態を変調させる方式(「時分割方式」とも呼ぶ。)に基づき映像を表示する。
以下では、第1実施例と同様の部分については適宜その説明を省略する。また、以後では、スクリーン3の表示面のうち、映像が表示される範囲を、単に「表示領域」とも呼び、当該表示面のうち映像が表示されない範囲を「非表示領域」とも呼ぶ。
図3(a)は、第2実施例に係る表示装置100の概略構成図の一例である。
図3(a)に示すように、プロジェクタ3は、スクリーン5に対して、映像の全体像を構成する光を投射する。このとき、プロジェクタ3は、映像のフレーム周期のうち、一部の時間内に少なくとも1つの映像に対応する映像光を少なくとも1回投射する。このプロジェクタ3の方式には、RGB光源からの光が時分割で液晶ライトバルブ、反射型液晶素子、又はデジタルミラーデバイスに照射される方式などがある。この場合、RGB光源は、例えばRGB単色LED又はレーザーなどである。
スクリーン5は、第1実施例と同様、光学状態を透明状態と散乱状態との間で切り替え可能である。スクリーン5は、例えば、粒子状の液晶セルの屈折率を変化させる高分子分散液晶や、透明セル内の白色粉体を移動させることで散乱状態を制御する素子などで構成される。また、スクリーン5は、表示面の全面又は表示領域の全領域に亘り同時に透明状態と散乱状態とを切り替え可能である。この例については、図4で後述する。
図3(b)は、映像のフレーム周期における、映像投射の有無の変化及びスクリーン5の光学特性の変化を示すタイムチャートの一例である。図3(b)に示すように、プロジェクタ3は、映像のフレーム周期のうち、一部の時間で映像光を投影する。具体的には、図3(b)の「映像投射」が「ON」の場合に、映像光がプロジェクタ3から少なくとも1回出射される。
そして、スクリーン5は、映像光が照射されるときには、その前に表示領域又は全面が透明状態から散乱状態に切り替わる。これにより、スクリーン5上に映像が表示される。また、スクリーン5は、映像光が照射されていないときには透明状態となる。従って、人間の目にはこれらが平均(積分)されて視認され、明るい表示状態であってもスクリーン5は透明であるというシースルー特性が得られる。
次に、スクリーン5の透明状態と散乱状態とを切り替える際の、スクリーン5の電圧制御について図4(a)、(b)を参照して2つ具体例を挙げて説明する。
図4(a)は、電圧印加時にスクリーン5が透明状態となる場合のスクリーン5の電極間電圧の波形の例を示す。図4(a)に示すように、電圧が印加されていない場合には、スクリーン5の全面又は表示領域の全領域に亘り散乱状態となり、電圧が印加されている場合には、スクリーン5の全面又は表示領域の全領域に亘り透明状態となる。
図4(b)は、電圧印加時にスクリーン5が散乱状態となる場合のスクリーン5の電極間電圧の波形の例を示す。この場合、図4(b)に示すように、電圧が印加されていない場合には、スクリーン5の全面又は表示領域の全領域に亘り透明状態となり、電圧が印加されている場合には、スクリーン5の全面又は表示領域の全領域に亘り散乱状態となる。
<第3実施例>
次に、第3実施例について説明する。概略的には、第3実施例の表示装置100は、スクリーン5上での走査に応じて所定の領域ごとにスクリーン5の状態を変更させる方式(「領域分割方式」とも呼ぶ。)に基づき映像を表示する。以下では、第1実施例と同様の部分については適宜その説明を省略する。
次に、第3実施例について説明する。概略的には、第3実施例の表示装置100は、スクリーン5上での走査に応じて所定の領域ごとにスクリーン5の状態を変更させる方式(「領域分割方式」とも呼ぶ。)に基づき映像を表示する。以下では、第1実施例と同様の部分については適宜その説明を省略する。
図5(a)は、第3実施例に係る表示装置100の概略構成図の一例である。図5(a)に示すように、映像を投影するプロジェクタ3は、映像のフレーム周期中にライン状の映像を順次スクリーン5の表示面に投影する。
プロジェクタ3は、例えば、1フレーム内に映像全体の中の投影領域が順次シフト(即ち、投射光を走査)していくような液晶ライトバルブ又は反射型液晶素子などで構成される。
スクリーン5は、制御部30の制御に基づき、プロジェクタ3の走査方向に対応するように短冊状に分割された領域(以後、「分割領域Td」とも呼ぶ。)が、それぞれ独立したタイミングで透明状態と散乱状態に切り替わる。スクリーン5は、例えば、粒子状の液晶セルの屈折率を変化させる高分子分散液晶、又は透明セル内の白色粉体を移動させることで散乱状態を制御する素子などで構成される。
図5(b)は、所定の分割領域Tdでの映像投射の有無及びスクリーン5の光学特性の変化を示すタイムチャートの一例である。図5(b)に示すように、スクリーン5の各分割領域Tdは、プロジェクタ3からの映像光が照射されるタイミングより前に透明状態から散乱状態に切り替わり、照射が終了した後、さらに散乱状態から透明状態に切り替わる。従って、各分割領域Tdは時間をずらしながら順次光学状態が切り替わる。ここで、スクリーン5は、第1実施例と同様、可能な限り観察者側に効率的に散乱されるような光学特性を有することが望ましい。
そして、上述のスクリーン5の光学状態を切り替えるタイミングは、プロジェクタ3の制御部30により制御される。具体的には、制御部30は、例えばマイクロ波や可視光線、赤外線など電磁波を用いたワイヤレス手法あるいは電気的接続により、光学特性の切り替えのタイミングを示す制御信号Swをスクリーン5に送信する。そして、スクリーン5は、制御信号Swに基づいて光学状態を切り替える。
また、制御信号Swは、フレーム周期の同期のみで可能であるが、好適には、プロジェクタ3の走査開始のタイミングの情報、走査速度の情報、及び走査の遅延、シフトの情報を含む。従って、スクリーン5は、制御信号Swに基づき駆動することで、フレーム周波数が変化したような場合にも映像の乱れなく、良好なシースルー表示を実現することが可能となる。
ここで、スクリーン5の透明状態と散乱状態とを切り替える際の、スクリーン5の電圧制御について図6、図7を参照して2つ具体例を挙げて説明する。
図6は、電圧印加時にスクリーン5が透明状態となる場合のスクリーン5の電極間電圧の波形の例を示す。図6は、一例として、スクリーン5の表示面を8つの分割領域Tdに分ける8分割走査変調方式の例を示し、8つの分割領域Tdそれぞれに印加される電圧波形を縦に並べて示している。
図6に示すように、電圧が印加された分割領域Tdは、透明状態となり、電圧が印加されていない分割領域Tdは、散乱状態となる。また、光学状態の切り替えに要する遷移時間を考慮し、散乱状態の分割領域Tdが透明状態に遷移する前に、他の一つの分割領域Tdが透明状態から散乱状態となっている。
図7は、電圧印加時にスクリーン5が散乱状態となる場合のスクリーン5の電極間電圧の波形の例を示す。図7では、図6と同様、一例として、スクリーン5の表示面を8つの分割領域Tdに分ける8分割走査変調方式の例を示し、8つの分割領域Tdそれぞれに印加される電圧波形を縦に並べて示している。
図7に示すように、電圧が印加された分割領域Tdは、散乱状態となり、電圧が印加されていない分割領域Tdは、透明状態となる。また、光学状態の切り替えに要する遷移時間を考慮し、散乱状態の分割領域Tdが透明状態に遷移する前に、他の一つの分割領域Tdが透明状態から散乱状態となっている。
<第4実施例>
第4実施例では、プロジェクタ3は、映像のフレーム周期でラスター走査を行い、映像を点順次にスクリーン5の表示面に投影する点で第1乃至第3実施例と異なる。尚、その他、第1乃至第3実施例と同様の部分については、適宜その説明を省略する。
第4実施例では、プロジェクタ3は、映像のフレーム周期でラスター走査を行い、映像を点順次にスクリーン5の表示面に投影する点で第1乃至第3実施例と異なる。尚、その他、第1乃至第3実施例と同様の部分については、適宜その説明を省略する。
第4実施例では、プロジェクタ3は、光ビームをミラーで振る形態のプロジェクタであり、例えばレーザプロジェクタである。
スクリーン5は、制御部30の制御に基づき、プロジェクタ3の走査方向に対応するように、走査される点を含む領域が散乱状態となる。なお、走査される点を含む領域は、プロジェクタ3からの映像光が照射される前に散乱状態に遷移する。
これにより、スクリーン5は、映像光が照射されたときは散乱状態となり映像が表示され、映像光が照射されていないときには透明状態となる。従って、第4実施例でも同様に、表示装置100は、人間の目にはこれらが平均(積分)されて視認され、明るい表示状態であってもスクリーン5は透明であるというシースルー特性が得られる。
<作用効果>
次に、第1実施例乃至第4実施例に係る表示装置100を実現する上で基本となる技術について補足説明する。
次に、第1実施例乃至第4実施例に係る表示装置100を実現する上で基本となる技術について補足説明する。
プロジェクタ3からスクリーン5上に投射された光は、スクリーン5の表示面(単に「表示面」とも呼ぶ。)で散乱されスクリーン5上の映像として観察者に認識される。
表示面の透過率は散乱状態と透明状態との時間比率に依存する。ここで、透明状態の正透過率を「Tr0」、散乱状態の正透過率を「Trs」、全光学状態のうち透明状態となる時間比率を「R」とし、数10ms以下の十分短い周期で変調が繰り返される場合、観察者が実際に視認する時間平均化された表示面の正透過率「Tr」は、
Tr={Tr0×R}+{Trs×(1-R)} 式(1)
である。但し、ここでは各状態間の遷移時間は十分短いとしている。例えば、「Tr0=70%、Trs=10%、R=0.60」とすると、映像を表示しているシースルー状態の正透過率は約50%(Tr≒0.5)となり、背景の物体を視認するに十分高いシースルー性を実現することができる。式(1)に示すように、シースルー性を高めるには、即ち、透過率Trを大きくするには、透明状態の正透過率Tr0を大きく、散乱状態の正透過率Trsを小さくし、透明状態の時間比率Rを大きくすることが必要となる。
Tr={Tr0×R}+{Trs×(1-R)} 式(1)
である。但し、ここでは各状態間の遷移時間は十分短いとしている。例えば、「Tr0=70%、Trs=10%、R=0.60」とすると、映像を表示しているシースルー状態の正透過率は約50%(Tr≒0.5)となり、背景の物体を視認するに十分高いシースルー性を実現することができる。式(1)に示すように、シースルー性を高めるには、即ち、透過率Trを大きくするには、透明状態の正透過率Tr0を大きく、散乱状態の正透過率Trsを小さくし、透明状態の時間比率Rを大きくすることが必要となる。
一方、表示面に投射される映像の明るさは投射光の強度と散乱強度に依存する。なお、ここでは散乱の指向性については言及しない。特定の領域「j」に照射される一周期で規格(正規)化された投射光強度の時間変化を「Ij(t)」、光散乱効率の時間変化を「Sj(t)」とすると、プロジェクタ3の光束を「IO」として明るさに比例する指標(以下「輝度指標B」と呼ぶ。)は、
B=I0・∫Ij(t)・Sj(t)/T・dt (積分時間は一周期0~T)
である。ここで、実効的な透明状態の時間比率「Reff」は、
Reff=1-∫Sj(t)/T・dt (積分時間は一周期0~T)
程度である。
B=I0・∫Ij(t)・Sj(t)/T・dt (積分時間は一周期0~T)
である。ここで、実効的な透明状態の時間比率「Reff」は、
Reff=1-∫Sj(t)/T・dt (積分時間は一周期0~T)
程度である。
定常スクリーンの場合は「Sj(t)~1=max.,const.」であるため、どのような「Ij(t)」に対しても最大輝度指標「Bmax」が得られる。しかし、「Reff(~R)=0」であるため正透過率は極めて小さくシースルー性は得られない。
今、「Sj(t)=1;0≦t≦0.2T」(「T」はフレーム周期)を仮定すると、「Reff(~R)=0.8」であり、「Ij(t)=IO=const.」の場合には、輝度指標Bは、「Bmax/5」程度となる。従って、輝度指標Bを上げようとすれば、時間比率Reffを小さくしなければならず、シースルー性を犠牲にしてしまう。
ここで、「Ij(t)=10×I0;0.05T≦t≦0.15T」とすれば、正透過率は50%以上を保ったまま、輝度指標Bを最大輝度指標Bmaxにすることができ、シースルー性と表示映像の視認性とが両立した表示、つまりシースルー表示を実現できる。定常的なスクリーン5と同様な高い光利用効率かつ高い輝度指標を得るには、「Ij(t)≠0」であるタイミングに、「Sj(t)=1」とすればよい。
ここで、第2実施例に相当する時分割方式での、一周期で規格化された投射光強度の時間変化「I(t)」と、一周期で規格化された光散乱効率の時間変化「S(t)」との関係について図8、9を参照して説明する。
図8は、表示領域の全面にRGB光を一括して投射する全面一括投射を実行する場合の走査位置と時間との関係を示すグラフである。ここで、「走査位置」とは、具体的には、スクリーン5の縦方向の位置を示すものとする。また、図8において、2点鎖線「Lr1」、「Lr2」は、赤(R)の投射位置及び時間を示し、破線「Lg1」、「Lg2」は、緑(G)の投射位置及び時間を示し、一点鎖線「Lb1」、「Lb2」は、青(B)の投射位置及び時間を示す。また、実線「L1」、「L2」により挟まれる領域と、実線「L3」、「L4」により挟まれる領域は、光学状態を散乱状態に切り替えるように制御されるスクリーン5の走査位置と時間を示す。なお、RGB光の投射位置及び時間を図中の線で表しているが、「L1」、「L2」または「L3」、「L4」に挟まれる領域の散乱状態に切り替えられた時間を少なくとも含むように映像が投射されればよい。
この場合、図8に示すように、全面一括投射の場合には、RGBの光が投射されるタイミングを含む期間で、プロジェクタ3の表示領域は、全面で散乱状態に保たれる。なお、図5に示す例は、RGBが同時に投射された所謂3板式プロジェクタあるいは白色光源とカラーフィルタを用いた単板式プロジェクタと同様な方式に相当する。
図9は、表示領域の全面にRGB光を独立したタイミングで投射する場合の走査位置と時間との関係を示すグラフである。図9において、2点鎖線「Lr3」、「Lr4」は、赤(R)の投射位置及び時間を示し、破線「Lg3」は、緑(G)の投射位置及び時間を示し、一点鎖線「Lb3」は、青(B)の投射位置及び時間を示す。また、実線「L5」、「L6」により挟まれる領域と、実線「L7」、「L8」により挟まれる領域、実線「L9」、「L10」により挟まれる領域、実線「L11」、「L12」により挟まれる領域は、散乱状態に切り替えられているスクリーン5の位置と時間を示す。なお、投射光の投射位置及び時間を図中の線で表しているが、「L5」、「L6」などに挟まれる領域の散乱状態に切り替えられた時間を少なくとも含むように映像が投射されればよい。
この場合、図9に示すように、RGB光がそれぞれスクリーン5に投射されるタイミングで、スクリーン5は、透明状態から散乱状態に切り替わる。また、全面一括投射の場合と同様に、RGBの光が投射されるタイミングを含む期間で、プロジェクタ3の表示領域は、全面で散乱状態に保たれる。この例は、RGBを時分割にした単板式プロジェクタあるいはデジタルミラーデバイス(DMD)のサブフィールド(SF)分割を用いたプロジェクタと同様な方式に相当する。
なお、このようにRGBで時分割する場合、表示装置100は、全波長を散乱させる状態にするのではなく、投射された波長のみ強く散乱するようにすることもできる。こうすることで、表示装置100は、透明状態の時間比率Rが短くなることによるシースルー性の低下を抑制することができる。この場合、例えば、表示装置100は、各波長に対応する散乱層を積層し、特定の色のみ表示する場合には、当該色に対応した層のみ変調を行う。
次に、第3実施例で説明した領域分割方式の場合について説明する。以後では、表示面の領域を1次元で分割する場合を代表例に説明する。なお、以下の説明は、2次元で分割する場合についても同様に適用される。
図10は、領域分割方式の走査位置と時間との関係を示すグラフである。図10において、2点鎖線「Lr5」、「Lr6」は、赤(R)の投射位置及び時間を示し、破線「Lg5」、「Lg6」は、緑(G)の投射位置及び時間を示し、一点鎖線「Lb5」、「Lb6」は、青(B)の投射位置及び時間を示す。また、実線「L13」、「L14」により挟まれる領域と、実線「L15」、「L16」により挟まれる領域は、散乱状態に切り替えられているスクリーン5の位置と時間を示す。なお、投射光の投射位置及び時間を図中の線で表しているが、「L13」、「L14」などに挟まれる領域の散乱状態に切り替えられた時間を少なくとも含むように映像が投射されればよい。
図10に示す例では、映像光は一方向に一定の速さで走査されている。そして、表示装置100は、この映像光の照射されている領域を含むように分割されたスクリーン5の領域を透明状態から散乱状態に切り替えている。
領域分割方式は、駆動回路(電気的に切り替える場合)の多チャンネル化が必要であるなどのデメリットはあるものの、図8、図9で示した2例のように短時間に強い光源光強度が必要とならず、安定で明るい表示を比較的簡単に実現できる。図10に示す例は、レーザー走査プロジェクタなどを用いた場合に相当する。
次に、シースルーの透過率を制御する方法について補足説明する。例えば、表示装置100は、透明状態の正透過率を調整する。他の例では、表示装置100は、散乱状態をパルス幅変調(PWM:Pulse Width Modulation)により変調する。これにより、表示装置100は、シースルー性を制御しつつ良好な表示視認性を実現することが可能となる。
なお、上記説明では投影光をRGBとしたが、必要に応じて単色あるいは他の色であっても本発明効果を得ることはいうまでもない。
<その他の作用効果>
次に、第1実施例乃至第4実施例における表示装置100の作用効果について例示する。
次に、第1実施例乃至第4実施例における表示装置100の作用効果について例示する。
(その1)
一般に、反射型(プロジェクタからの投影光が観察者側から投射される配置)の透明状態のスクリーン5に映像光が照射されると、その裏面側の物体に映像光が照射される。例えば、赤い映像を表示するような場合に、弱い漏洩光でも白い物体は赤く着色して見えてしまい、形は識別できても色を正確に認識することはできない。透過型(プロジェクタからの投影光がスクリーンに対し観察者の反対側から投射される配置)の場合でも、透明状態のスクリーン5に映像光が照射されると、強い映像光が観察者に漏洩することになり、不快な刺激を与えることになる。また、一般に、散乱状態と透明状態を切り替えるスクリーン5は、所定の遷移時間を有する応答特性を有する。従って、映像光を投射するタイミングでは、スクリーン5は、透明状態から散乱状態へ完全に移行した状態、即ち散乱状態が十分に立ち上がった状態となる必要がある。
一般に、反射型(プロジェクタからの投影光が観察者側から投射される配置)の透明状態のスクリーン5に映像光が照射されると、その裏面側の物体に映像光が照射される。例えば、赤い映像を表示するような場合に、弱い漏洩光でも白い物体は赤く着色して見えてしまい、形は識別できても色を正確に認識することはできない。透過型(プロジェクタからの投影光がスクリーンに対し観察者の反対側から投射される配置)の場合でも、透明状態のスクリーン5に映像光が照射されると、強い映像光が観察者に漏洩することになり、不快な刺激を与えることになる。また、一般に、散乱状態と透明状態を切り替えるスクリーン5は、所定の遷移時間を有する応答特性を有する。従って、映像光を投射するタイミングでは、スクリーン5は、透明状態から散乱状態へ完全に移行した状態、即ち散乱状態が十分に立ち上がった状態となる必要がある。
以上を勘案し、表示装置100は、映像光を投射するタイミングよりも前に、当該映像光が投射されるスクリーン5の表示面の散乱状態への移行を開始する。言い換えると、制御部30は、映像光を投射する(即ち走査を行う)タイミングと、スクリーン5の光学状態を散乱状態へ切り替えるタイミングとを同期させる際、スクリーン5の光学状態を散乱状態へ切り替えるタイミングよりも、映像光を投射するタイミングを遅延させる。以後、この遅延を、「走査遅延」とも呼ぶ。
このようにすることで、表示装置100は、反射型の場合、スクリーン5の裏面側の物体に照射されるプロジェクタ3からの映像光を最小限に抑えることができ、色認識への影響を抑えることができる。また透過型の場合でも、観察者への不必要な漏洩光を最小限に抑えることができる。
(その2)
一般に、時分割方式の場合、スクリーン5の散乱特性に変化があっても、スクリーン5に表示される映像にムラが見えない。一方、領域分割方式の場合、各分割領域Tdの散乱特性が映像光の照射されるタイミングで均一でない(即ち一定でない)場合には、スクリーン5に表示される映像に、領域境界が目立つブロックムラが発生する。
一般に、時分割方式の場合、スクリーン5の散乱特性に変化があっても、スクリーン5に表示される映像にムラが見えない。一方、領域分割方式の場合、各分割領域Tdの散乱特性が映像光の照射されるタイミングで均一でない(即ち一定でない)場合には、スクリーン5に表示される映像に、領域境界が目立つブロックムラが発生する。
以上を勘案し、領域分割方式では、表示装置100は、各分割領域Tdの散乱特性を図11に示すように照射時間内でほぼ一定にする。また、表示装置100は、2つの分割領域Tdの境界を映像光が照射走査される時、当該2つの分割領域Tdの散乱特性をほぼ同じにする。このようにすることで、表示装置100は、ブロックムラを抑制することができる。
(その3)
一般に、シースルー状態であっても、スクリーン5の表示面のうち表示領域の透過率は低下し散乱状態が混じるため、ヘイズ値(全透過率に対する散乱透過率の比率)が上昇する。一方、スクリーン5の表示面のうち表示領域は、透過率の高い透明状態となる。従って、すりガラスと透明ガラスとの境界のように、表示領域と非表示領域との境界付近が目立つ場合がある。
一般に、シースルー状態であっても、スクリーン5の表示面のうち表示領域の透過率は低下し散乱状態が混じるため、ヘイズ値(全透過率に対する散乱透過率の比率)が上昇する。一方、スクリーン5の表示面のうち表示領域は、透過率の高い透明状態となる。従って、すりガラスと透明ガラスとの境界のように、表示領域と非表示領域との境界付近が目立つ場合がある。
以上を勘案し、表示装置100は、非表示領域も散乱状態に切り替え可能とし、非表示領域を徐々にヘイズ値の高い透明状態に近づけるようにする。このようにすることで表示領域と非表示領域との境界付近の境界を目立たなくすることができる。なお、非表示領域の光学特性は、表示領域のように時間的に変化させなくてもよい。
<変形例>
以下、第1実施例乃至第4実施例に好適な変形例について説明する。以下の変形例は、任意に組み合わせて第1実施例乃至第4実施例に適用してもよい。
以下、第1実施例乃至第4実施例に好適な変形例について説明する。以下の変形例は、任意に組み合わせて第1実施例乃至第4実施例に適用してもよい。
(変形例1)
第1実施例乃至第4実施例では、スクリーン5は、主にプロジェクタ3から照射された光を反射することで観察者に映像を視認させる反射型のプロジェクションであった。しかし、本発明が適用可能な構成は、これに限定されない。これに代えて、スクリーン5は、プロジェクタ3と観察者との間に設けられ、光を透過させて映像を観察者に視認させる透過型スクリーンであってもよい。この場合であっても、本発明は好適に適用される。
第1実施例乃至第4実施例では、スクリーン5は、主にプロジェクタ3から照射された光を反射することで観察者に映像を視認させる反射型のプロジェクションであった。しかし、本発明が適用可能な構成は、これに限定されない。これに代えて、スクリーン5は、プロジェクタ3と観察者との間に設けられ、光を透過させて映像を観察者に視認させる透過型スクリーンであってもよい。この場合であっても、本発明は好適に適用される。
(変形例2)
領域分割方式では、制御部30は、上述した処理に加え、全ての光学状態のうち、散乱状態が全体に占める時間の比率(「変調時間率Rt」とも呼ぶ。)をスクリーン5の各分割領域Tdで一定にするように切り替えることが望ましい。このとき、変調時間率Rtは、各分割領域Tdで映像光が投影される時間率の最小値以上の値に設定される。これにより、表示領域全体のシースルー透過率及び散乱状態が均一となり、ムラのない良好なシースルー表示が実現される。
領域分割方式では、制御部30は、上述した処理に加え、全ての光学状態のうち、散乱状態が全体に占める時間の比率(「変調時間率Rt」とも呼ぶ。)をスクリーン5の各分割領域Tdで一定にするように切り替えることが望ましい。このとき、変調時間率Rtは、各分割領域Tdで映像光が投影される時間率の最小値以上の値に設定される。これにより、表示領域全体のシースルー透過率及び散乱状態が均一となり、ムラのない良好なシースルー表示が実現される。
例えば、縦方向に表示領域が分割されて走査される場合、走査速度が一定であるならば、プロジェクタ3は、各分割領域Tdの散乱状態の時間比率と、各分割領域Tdの走査遅延の時間幅とを一定にして走査する。
MEMS(Micro Electro Mechanical System)共振ミラーを用いた場合など走査速度が正弦波の一部であるような変化である場合、即ち、走査速度が一定でない場合、制御部30は、変調時間率Rtを一定に保持し、走査遅延を制御して、各分割領域Tdへ映像光が投射されるタイミングと当該分割領域Tdの散乱状態への切り替えのタイミングとを同期させる。なお、これは、縦横に表示領域を分割した場合等についても同様である。
また、これに加え、表示装置100は、非表示領域であっても表示領域と同じ変調時間率Rtで変調することにより、ディスプレイの透明部分と表示部分の境界を目立たなくすることができ、違和感のないシースルー表示を実現することができる。
なお、表示装置100は、各分割領域Tdの変調時間率Rtを変更する場合、例えば各分割領域Tdの走査遅延の時間幅を変えずに各分割領域Tdの変調時間率Rtを変更する。
(変形例3)
変形例2に加え、映像投射の走査速度が一定でない場合、走査速度が相対的に早い分割領域Tdの走査方向での幅(「走査幅」とも呼ぶ。)が大きく、走査速度が相対的に遅い分割領域Tdの走査幅が細かくなるように、表示領域を分割してもよい。この場合、表示装置100は、各分割領域Tdの走査遅延を、上述の走査幅の分布に合わせて設定する。これにより、駆動回路出力を少なくすることができ、性能を落とすことなく低コスト化することが可能となる。
変形例2に加え、映像投射の走査速度が一定でない場合、走査速度が相対的に早い分割領域Tdの走査方向での幅(「走査幅」とも呼ぶ。)が大きく、走査速度が相対的に遅い分割領域Tdの走査幅が細かくなるように、表示領域を分割してもよい。この場合、表示装置100は、各分割領域Tdの走査遅延を、上述の走査幅の分布に合わせて設定する。これにより、駆動回路出力を少なくすることができ、性能を落とすことなく低コスト化することが可能となる。
また、表示装置100は、細かく分割された分割領域Tdをまとめて駆動する(出力)ことで、実質的に走査幅を大きくしても良い。
なお、表示装置100は、表示領域を縦横分割する場合、長方形(正方形も含む。)あるいは六角形のブロックに分割してもよい。各分割領域Tdの延在方向と走査方向とが異なる場合でも、表示装置100は、シースルー性を維持するように散乱状態への切り替えタイミングを調整することができる。
また、表示装置100は、各分割領域Tdを細かく分割する必要はない。これは、分割領域Tdを細かく分割した場合とその他の場合とで、変調時間率Rtが同じであれば、作用効果が同じであることに基づく。
(変形例4)
正透過率は、変調時間率Rtによって一意に定まる。従って、表示装置100は、変調時間率Rtを、そのとり得る最小値以上1以下で可変にしてもよい。その例を図12に示す。
正透過率は、変調時間率Rtによって一意に定まる。従って、表示装置100は、変調時間率Rtを、そのとり得る最小値以上1以下で可変にしてもよい。その例を図12に示す。
このようにすることで、表示装置100は、シースルー性を容易に制御することができ、スクリーン5の背景にある物体(背景物体)を観察者の視界に入れたくない場合あるいは背景物体が視界に入るのを抑制したい場合に、これに対応することができる。例えば、背景物体が、コントラストの変化が細かい構造物、あるいは強く照明されている場合、シースルー性が高いとスクリーン5に投影された映像の視認性が低下する。この場合には、表示装置100は、シースルー性を抑制することで視認性を高めることが可能となる。
また、好適には、表示装置100は、正透過率が所定の範囲をとるように、変調時間率Rtの上限値及び下限値を設定する。これにより、表示装置100は、正透過率の範囲を設定することができる。例えば、表示装置100は、変調時間率Rtの下限値又は/及び上限値を低く設定することで、安全性を向上させ、変調時間率Rtの下限値又は/及び上限値を高く設定することで、プライバシー保護を重視することが可能である。
また、領域分割方式の場合、正透過率は、分割領域Tdごとに可変であってもよい。この場合、映像が投影されていない分割領域Tdの変調時間率Rtを、映像が投影された分割領域Tdの変調時間率Rtの最小値以下に設定してもよい。これにより、表示装置100は、シースルー性を抑制した強調表示などが可能となると共に、映像が投影されていない分割領域Tdの正透過率を極めて高く設定することができる。
例えば、車両のダッシュボード上に表示装置100を設置したような場合、表示装置100は、運転中は表示領域の下部にのみ妨害にならない程度のシースルー映像を表示し、車両の停止中では表示領域の全体にシースルー映像を表示することが可能となる。
また、好適には、表示装置100は、分割領域Tdごとに変調時間率Rtの上限値及び下限値を設定する。これにより、表示装置100は、分割領域Tdごとに正透過率の範囲を設定することができる。例えば、表示装置100は、注意喚起などに必要な表示部分に対応する分割領域Tdでは、他の分割領域Tdと比較して、変調時間率Rtの下限値又は/及び上限値を高く設定することで、背景物体像を遮蔽して強調した表示を実現できる。
(変形例5)
図1(a)、図3(a)、図5(a)では、制御部30は、プロジェクタ3内に設けられていたが、本発明が適用可能な構成は、これに限定されず、プロジェクタ3外に存在してもよい。この場合であっても、制御部30は、制御信号Swをスクリーン5に送信することで、スクリーン5の光学状態を制御する。
図1(a)、図3(a)、図5(a)では、制御部30は、プロジェクタ3内に設けられていたが、本発明が適用可能な構成は、これに限定されず、プロジェクタ3外に存在してもよい。この場合であっても、制御部30は、制御信号Swをスクリーン5に送信することで、スクリーン5の光学状態を制御する。
本発明は、映像を表示する装置に好適に適用される。
3 プロジェクタ
5 スクリーン
30 制御部
100 表示装置
5 スクリーン
30 制御部
100 表示装置
Claims (13)
- 光学的特性を変化させることが可能なスクリーンと、
前記スクリーンに映像を構成する映像光を投影するプロジェクタと、
前記映像光が投射された状態及び前記映像光が投射されていない状態のいずれの状態であっても、表裏両面から当該スクリーンの反対側の物体を認識しうる正透過率を有するように、前記スクリーンのうち、前記映像光が投影される部位を含む領域の光学状態を、透明状態から時間又は空間で変調された散乱状態に切り替える制御手段と、
を備えることを特徴とする表示装置。 - 前記スクリーンが、表示領域中の分割された領域の光学的特性を変化させることが可能なスクリーンであって、
前記プロジェクタが、前記スクリーンに映像を構成する映像光が分割されたスクリーン領域に時分割で投影するプロジェクタであることを特徴とする請求項1に記載の表示装置。 - 前記スクリーンが、表示領域中の1方向に分割された領域の光学的特性を変化させることが可能なスクリーンであって、
前記プロジェクタが、前記スクリーンに映像を構成する映像光が分割されたスクリーン領域に分割された方向に時分割で投影するプロジェクタであることを特徴とする請求項2に記載の表示装置。 - 前記スクリーンが、表示領域中の縦横方向あるいは島状に分割された領域の光学的特性を変化させることが可能なスクリーンであることを特徴とする請求項2に記載の表示装置。
- 前記制御手段は、透明状態である前記スクリーンの領域の正透過率を増減させることを特徴とする請求項2乃至4のいずれか一項に記載の表示装置。
- 前記制御手段は、透明状態である前記スクリーンの領域の透明状態と散乱状態との時間比率を増減させることを特徴とする請求項1乃至4のいずれか一項に記載の表示装置。
- 前記制御手段は、
前記スクリーンの領域を、
前記映像光の投射の有無に応じ、
正透過率が所定値よりも高い透明状態と、
表裏両面から当該スクリーンの反対側の物体を認識しうる正透過率を有するように、透明状態と、時間又は空間で変調された散乱状態とで切り替わる状態と、
で切り替えることを特徴とする請求項1乃至4のいずれか一項に記載の表示装置。 - 前記制御手段は、
前記スクリーンの領域を、
前記映像光の投射の有無に応じ、
常に散乱状態である状態と、
表裏両面から当該スクリーンの反対側の物体を認識しうる正透過率を有するように、透明状態と、時間又は空間で変調された散乱状態とで切り替わる状態と、
で切り替えることを特徴とする請求項1乃至4のいずれか一項に記載の表示装置。 - 前記制御手段が、前記スクリーンを分割した分割領域ごとに、前記光学状態を、透明状態と散乱状態とで切り替える場合であって、前記スクリーン上を前記映像光が走査する走査速度を変化させる場合、
前記走査速度が速い分割領域は、
前記走査速度が遅い分割領域と比較して、
当該分割領域の走査方向における幅が大きいことを特徴とする請求項2乃至4のいずれか一項に記載の表示装置。 - 前記スクリーンを所定の分割領域に分割し、当該分割領域ごとに、前記光学状態を、透明状態と散乱状態とで切り替える場合、
前記分割領域ごとの透明状態と散乱状態との時間比率を均一にすることを特徴とする請求項4に記載の表示装置。 - 前記制御手段は、前記スクリーンの領域の透明状態と散乱状態との時間比率を変化させることで、当該領域の前記正透過率を増減させることを特徴とする請求項1乃至4のいずれか一項に記載の表示装置。
- 前記制御手段は、前記映像光が投影される部位を含む領域の光学状態を、前記映像光が投影される前に、散乱状態に切り替えることを特徴とする請求項1乃至4のいずれか一項に記載の表示装置。
- 前記制御手段は、
前記スクリーンを所定の分割領域に分割し、当該分割領域ごとに、前記光学状態を、透明状態と散乱状態とで切り替える場合、
前記映像光が照射される時間内で、前記分割領域の各々の散乱特性を均一にすることを特徴とする請求項2乃至4のいずれか一項に記載の表示装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013500801A JP5774675B2 (ja) | 2011-02-25 | 2011-02-25 | 表示装置 |
EP11859405.0A EP2680070A4 (en) | 2011-02-25 | 2011-02-25 | Display device |
PCT/JP2011/054340 WO2012114512A1 (ja) | 2011-02-25 | 2011-02-25 | 表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/054340 WO2012114512A1 (ja) | 2011-02-25 | 2011-02-25 | 表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012114512A1 true WO2012114512A1 (ja) | 2012-08-30 |
Family
ID=46720328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/054340 WO2012114512A1 (ja) | 2011-02-25 | 2011-02-25 | 表示装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2680070A4 (ja) |
JP (1) | JP5774675B2 (ja) |
WO (1) | WO2012114512A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014024298A1 (ja) * | 2012-08-10 | 2014-02-13 | パイオニア株式会社 | 表示装置 |
WO2014080466A1 (ja) * | 2012-11-21 | 2014-05-30 | パイオニア株式会社 | 表示装置 |
WO2014147703A1 (ja) * | 2013-03-18 | 2014-09-25 | パイオニア株式会社 | 表示装置 |
WO2015045067A1 (ja) * | 2013-09-26 | 2015-04-02 | パイオニア株式会社 | 表示装置および表示装置の制御方法 |
JP2015068941A (ja) * | 2013-09-27 | 2015-04-13 | パイオニア株式会社 | 表示装置および表示装置の駆動方法 |
WO2015097750A1 (ja) * | 2013-12-24 | 2015-07-02 | パイオニア株式会社 | 表示装置および表示方法 |
WO2015125207A1 (ja) * | 2014-02-18 | 2015-08-27 | パイオニア株式会社 | 表示制御装置 |
WO2015132907A1 (ja) * | 2014-03-05 | 2015-09-11 | パイオニア株式会社 | 表示制御装置 |
WO2018169095A1 (ja) * | 2017-03-17 | 2018-09-20 | 富士フイルム株式会社 | コレステリック液晶層を有する透明スクリーン、および透明スクリーンシステム |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05191726A (ja) | 1992-01-09 | 1993-07-30 | Nippon Telegr & Teleph Corp <Ntt> | 臨場感表示装置 |
JPH05506109A (ja) * | 1990-04-05 | 1993-09-02 | レイケム・コーポレイション | コントラストを改善した表示器 |
JPH0667217A (ja) * | 1992-08-20 | 1994-03-11 | Nissan Motor Co Ltd | 調光パネルの制御装置 |
JP2003121943A (ja) | 2001-10-17 | 2003-04-23 | Victor Co Of Japan Ltd | 反射率変化スクリーン、投射システム及び投射方法 |
JP2004184979A (ja) * | 2002-09-03 | 2004-07-02 | Optrex Corp | 画像表示装置 |
JP2005024763A (ja) * | 2003-06-30 | 2005-01-27 | Optrex Corp | 画像表示装置 |
JP2005114913A (ja) | 2003-10-06 | 2005-04-28 | Seiko Epson Corp | スクリーン及びプロジェクタシステム |
JP2006091258A (ja) | 2004-09-22 | 2006-04-06 | Seiko Epson Corp | プロジェクタシステム |
JP2008065022A (ja) * | 2006-09-07 | 2008-03-21 | Matsushita Electric Ind Co Ltd | 画像投影用スクリーン及び投影型三次元画像通信端末装置 |
JP2008076973A (ja) | 2006-09-25 | 2008-04-03 | Seiko Epson Corp | プロジェクタ用スクリーンとプロジェクタ |
JP2008310260A (ja) | 2007-06-18 | 2008-12-25 | Sony Corp | 画像投射方法及びこれに用いるスクリーン |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI275827B (en) * | 2002-09-03 | 2007-03-11 | Optrex Kk | Image display system |
-
2011
- 2011-02-25 EP EP11859405.0A patent/EP2680070A4/en not_active Withdrawn
- 2011-02-25 JP JP2013500801A patent/JP5774675B2/ja not_active Expired - Fee Related
- 2011-02-25 WO PCT/JP2011/054340 patent/WO2012114512A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05506109A (ja) * | 1990-04-05 | 1993-09-02 | レイケム・コーポレイション | コントラストを改善した表示器 |
JPH05191726A (ja) | 1992-01-09 | 1993-07-30 | Nippon Telegr & Teleph Corp <Ntt> | 臨場感表示装置 |
JPH0667217A (ja) * | 1992-08-20 | 1994-03-11 | Nissan Motor Co Ltd | 調光パネルの制御装置 |
JP2003121943A (ja) | 2001-10-17 | 2003-04-23 | Victor Co Of Japan Ltd | 反射率変化スクリーン、投射システム及び投射方法 |
JP2004184979A (ja) * | 2002-09-03 | 2004-07-02 | Optrex Corp | 画像表示装置 |
JP2005024763A (ja) * | 2003-06-30 | 2005-01-27 | Optrex Corp | 画像表示装置 |
JP2005114913A (ja) | 2003-10-06 | 2005-04-28 | Seiko Epson Corp | スクリーン及びプロジェクタシステム |
JP2006091258A (ja) | 2004-09-22 | 2006-04-06 | Seiko Epson Corp | プロジェクタシステム |
JP2008065022A (ja) * | 2006-09-07 | 2008-03-21 | Matsushita Electric Ind Co Ltd | 画像投影用スクリーン及び投影型三次元画像通信端末装置 |
JP2008076973A (ja) | 2006-09-25 | 2008-04-03 | Seiko Epson Corp | プロジェクタ用スクリーンとプロジェクタ |
JP2008310260A (ja) | 2007-06-18 | 2008-12-25 | Sony Corp | 画像投射方法及びこれに用いるスクリーン |
Non-Patent Citations (1)
Title |
---|
See also references of EP2680070A4 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014024298A1 (ja) * | 2012-08-10 | 2016-07-21 | パイオニア株式会社 | 表示装置 |
WO2014024298A1 (ja) * | 2012-08-10 | 2014-02-13 | パイオニア株式会社 | 表示装置 |
WO2014080466A1 (ja) * | 2012-11-21 | 2014-05-30 | パイオニア株式会社 | 表示装置 |
JPWO2014080466A1 (ja) * | 2012-11-21 | 2017-01-05 | パイオニア株式会社 | 表示装置 |
WO2014147703A1 (ja) * | 2013-03-18 | 2014-09-25 | パイオニア株式会社 | 表示装置 |
WO2015045067A1 (ja) * | 2013-09-26 | 2015-04-02 | パイオニア株式会社 | 表示装置および表示装置の制御方法 |
JP2015068941A (ja) * | 2013-09-27 | 2015-04-13 | パイオニア株式会社 | 表示装置および表示装置の駆動方法 |
WO2015097750A1 (ja) * | 2013-12-24 | 2015-07-02 | パイオニア株式会社 | 表示装置および表示方法 |
WO2015125207A1 (ja) * | 2014-02-18 | 2015-08-27 | パイオニア株式会社 | 表示制御装置 |
JPWO2015125207A1 (ja) * | 2014-02-18 | 2017-03-30 | パイオニア株式会社 | 表示制御装置 |
WO2015132907A1 (ja) * | 2014-03-05 | 2015-09-11 | パイオニア株式会社 | 表示制御装置 |
JPWO2015132907A1 (ja) * | 2014-03-05 | 2017-03-30 | パイオニア株式会社 | 表示制御装置 |
WO2018169095A1 (ja) * | 2017-03-17 | 2018-09-20 | 富士フイルム株式会社 | コレステリック液晶層を有する透明スクリーン、および透明スクリーンシステム |
JPWO2018169095A1 (ja) * | 2017-03-17 | 2020-01-09 | 富士フイルム株式会社 | コレステリック液晶層を有する透明スクリーン、および透明スクリーンシステム |
US10996550B2 (en) | 2017-03-17 | 2021-05-04 | Fujifilm Corporation | Transparent screen having cholesteric liquid crystal layer, and transparent screen system |
Also Published As
Publication number | Publication date |
---|---|
EP2680070A1 (en) | 2014-01-01 |
EP2680070A4 (en) | 2017-05-10 |
JP5774675B2 (ja) | 2015-09-09 |
JPWO2012114512A1 (ja) | 2014-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5774675B2 (ja) | 表示装置 | |
US10841546B2 (en) | Display device | |
US9843791B2 (en) | Electro-optic device and stereoscopic vision display apparatus | |
JP6962521B2 (ja) | 指向性プライバシーディスプレイ | |
KR100712471B1 (ko) | 시분할 방식 액정표시장치 및 그의 컬러영상표시방법 | |
JP5998681B2 (ja) | フィールドシーケンシャル画像表示装置 | |
EP2763129B1 (en) | Field sequential image display device | |
JP5866936B2 (ja) | 画像表示システム | |
US9548013B2 (en) | Image display device and drive method therefor | |
US9620044B2 (en) | Image display device and drive method therefor | |
WO2016104340A1 (ja) | 表示装置及びその駆動方法 | |
WO2011058728A1 (ja) | 液晶表示装置 | |
US20110298790A1 (en) | Image signal processing device and image signal processing method, and computer program | |
JP5856285B2 (ja) | 表示装置、その駆動方法、および表示用スクリーン装置 | |
US9426453B2 (en) | Methods and apparatus for 3D shutter glasses synchronization | |
US9448466B2 (en) | Display device and drive method for display device | |
JP2015226296A (ja) | 表示装置 | |
JP4609385B2 (ja) | 表示装置および投射型表示装置 | |
JP2006113229A (ja) | プロジェクタ | |
WO2013140627A1 (ja) | 表示装置、その駆動方法、および表示用スクリーン装置 | |
JP2009031798A (ja) | 画像表示方法及び装置並びにプロジェクタ | |
JP2009163079A (ja) | 電気光学装置、その駆動方法およびプロジェクタ | |
WO2014080466A1 (ja) | 表示装置 | |
JP6119105B2 (ja) | 表示制御回路、表示制御方法及び電子機器 | |
JP2008058627A (ja) | プロジェクタおよび投写システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11859405 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011859405 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013500801 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |