WO2014147703A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2014147703A1
WO2014147703A1 PCT/JP2013/057630 JP2013057630W WO2014147703A1 WO 2014147703 A1 WO2014147703 A1 WO 2014147703A1 JP 2013057630 W JP2013057630 W JP 2013057630W WO 2014147703 A1 WO2014147703 A1 WO 2014147703A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
screen
state
scattering
image
Prior art date
Application number
PCT/JP2013/057630
Other languages
English (en)
French (fr)
Inventor
吉岡 俊博
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2013/057630 priority Critical patent/WO2014147703A1/ja
Publication of WO2014147703A1 publication Critical patent/WO2014147703A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam

Definitions

  • the present invention relates to a display device that displays video.
  • display devices that display a video by projecting a video projected from a light source such as a projector onto a screen (projection surface) are known.
  • Patent Document 1 the entire display screen is uniformly switched between a transparent state and an opaque state at a predetermined cycle, and input to the imaging device is performed when the display screen is in a transparent state. It is described that an image can be taken without being affected by an image displayed on the display screen by an image pickup device such as an observer who is positioned with the display screen interposed therebetween.
  • a display screen that can be switched between a transparent state (transmission state) and an opaque state (scattering state) as described in Patent Document 1 projects projection light that is an image to be displayed in the opaque state, and displays an image.
  • the observer can also observe the background behind the display screen.
  • an object of the present invention is to provide a display device capable of improving the transparent display image quality, for example.
  • the invention described in claim 1 has a plurality of regions, and can switch a scattering state and a transmission state for each of the plurality of regions with respect to linearly polarized light in a predetermined direction of visible light.
  • a screen that is projected with linearly polarized projection light having a component parallel to the predetermined direction is in the scattering state, and is transmitted through the area of the screen on which the projection light is not projected.
  • the invention described in claim 5 has a plurality of regions, and performs display control for controlling a screen capable of switching a scattering state and a transmission state for each of the plurality of regions with respect to linearly polarized light in a predetermined direction of visible light.
  • the process performed by the display control device sets the region of the screen on which the linearly polarized projection light having a component parallel to the predetermined direction is projected to the scattering state, and the projection light
  • FIG. 1 is a schematic configuration diagram of a display device according to a first embodiment of the present invention. It is typical sectional drawing of the screen shown by FIG. It is explanatory drawing of the area
  • movement of the screen which has a light control part using the homogeneous alignment polymer liquid crystal composite material shown by FIG. 2 is a graph showing voltage dependence of scattering intensity depending on the polarization direction in the screen shown in FIG. 1.
  • FIG. 2 is an explanatory diagram of polarized projection light, unpolarized background light, transmission, and scattering in the scattering state of the screen shown in FIG. 1. It is explanatory drawing of the synchronous control of the scanning of a screen shown by FIG.
  • 3 is a timing chart showing the state of the screen shown in FIG. 1, the non-polarized light transmittance, the polarized projection light transmittance, and the polarized projection light intensity.
  • 3 is a schematic timing chart of scanning and driving of the screen shown in FIG. 1. It is a schematic block diagram of the display apparatus concerning the 2nd Example of this invention. It is the schematic block diagram which showed the other structural example of the display apparatus concerning a 2nd Example.
  • a display device has a plurality of regions, a screen that can switch a scattering state and a transmission state for each of the plurality of regions with respect to linearly polarized light in a predetermined direction of visible light, and a predetermined direction.
  • Background light and illumination light are often non-polarized light, while projection light projected from a projector or the like can easily control the polarization direction.
  • the screen used in the present embodiment has polarization dependency, the projected polarized projection light is strongly scattered, and the polarization component orthogonal to this is little scattered.
  • conventional screens that do not have polarization dependence if the scattering at the time of scattering is sufficiently large in order to obtain a good display, the scattering of background light, illumination, and ambient light also increases at the same time, and the display quality of the transparent display deteriorates. It was. Therefore, by using the screen as in the present embodiment, the image light is scattered almost 100%, and the background light or the illumination or environment light at the time of scattering is non-polarized, so the scattering is about 50% of the total light. can do.
  • the area where the projection light is projected is in a scattering state
  • the area where the projection light is not projected is in a transmission state.
  • control means projects the region corresponding to the scanning position in the scattering state when projecting the projection light while scanning with a line sequential method or the like. It can be.
  • control means may alternately switch the scattering state and the transmission state of the region at a predetermined cycle.
  • the illumination means which illuminates the target object which can be observed through a screen
  • the polarization means which linearly polarizes the illumination means so that it may orthogonally cross a predetermined direction.
  • the display method has a plurality of regions, and controls a screen that can switch a scattering state and a transmission state for each of the plurality of regions with respect to linearly polarized light in a predetermined direction of visible light.
  • the screen area on which the linearly polarized projection light having a parallel component with the predetermined direction is projected is scattered, and the screen area on which the projection light is not projected is transmitted. It includes a control process to make a state. By doing so, it is possible to suppress scattering of the background light and illumination light on the screen (screen turbidity) and to scatter only the image with sufficient intensity.
  • the scattering can be about 50% of the total light rays.
  • the area where the projection light is projected is in the scattering state, and the area where the projection light is not projected is in the transmission state. Therefore, by averaging the emission peaks of the light source, It is possible to increase the display brightness while reducing the maximum amount of light.
  • the display device 1 includes a projector 11, a screen 21, and a synchronization control unit 31.
  • the display device 1 is a reflection type projection device that projects (projects) image light (projected image) of the projector 11 and transmits and scatters it on a screen 21 (projection surface).
  • the projector 11 is disposed on the opposite side of the observer with the screen 21 in between.
  • the projector 11 may be arranged on the viewer side.
  • the projector 11 can use a transmissive or reflective liquid crystal light valve that sequentially shifts the black state (the state where no projection light is emitted) on the screen 21 during the scanning cycle, but other elements may be used.
  • the projector 11 may perform raster scanning in a video scanning cycle and project video light on the display surface of the screen 21 dot-sequentially.
  • a laser beam scan projector or the like that reflects and shakes the irradiation direction of the intensity-modulated light beam by a movable mirror can be used.
  • the projector 11 can be considered in the same manner as the image light irradiation position being sequentially scanned in one direction on the screen 21.
  • the projector 11 may be any projector that can project video light modulated by video information onto the screen 21.
  • the projector 11 includes a polarizer such as a polarizing plate and a polarizing filter, or uses a laser as a light source, and projects linearly polarized light having a parallel component and a parallel component scattered by a screen 21 described later.
  • the video information is obtained from a video signal input to the projector 11.
  • the projector 11 may receive a video signal of a still image as well as a video signal of a moving image. In this case, the projector 11 only needs to repeatedly display on the screen 21 with the same video light for displaying a still image.
  • FIG. 2 is a schematic cross-sectional view of the screen 21 that can control the optical state.
  • the screen 21 shown in FIG. 2 has a light control unit 25 that is an optical layer in which a composite material containing liquid crystal is sandwiched between a pair of transparent glass substrates 23 and 24.
  • a counter electrode 26 is formed on the entire surface of one glass substrate 24 on the light control unit 25 side.
  • a plurality of control electrodes 27 are disposed on the light control unit 25 side of the other glass substrate 23.
  • the control electrode 27 is shaped and arranged according to the division pattern of the screen 21 described later.
  • An intermediate layer made of an insulator may be formed between the electrodes 26 and 27 and the light control unit 25.
  • the counter electrode 26 and the control electrode 27 are formed as transparent electrodes using, for example, ITO (indium tin oxide).
  • the plurality of control electrodes 27 divide the area irradiated with the image light on the screen 21 into strips in one direction (for example, the scanning direction) (see FIG. 3).
  • the plurality of control electrodes 27 are individually connected to the synchronization control unit 31 and can individually apply voltages.
  • Adjacent control electrodes 27 are arranged apart from each other. In FIG. 3, strip-shaped regions are arranged vertically, but the regions may be divided in a matrix by dividing the strip-shaped regions in the horizontal direction. That is, the screen 21 has a plurality of areas.
  • the light control unit 25 of the present embodiment is a transparent transmission state in which the scattering of incident light is small, and the scattering that scatters the incident light. Adjustable between states.
  • the width of the gap region in the light control unit 25 corresponding to the region where the control electrode 27 is not formed between the control electrodes 27 is about 5 to 100 micrometers, and is desirably as narrow as possible.
  • the thickness of the light control unit 25 is several to several tens of micrometers, and is determined in consideration of optical characteristics and drive voltage.
  • the screen 21 includes a light control unit 25 made of an element or a material that can change an optical state by applying a voltage.
  • the optical state of the light control unit 25 is a state in which an image is displayed in the scattering state, and a transparent transmission state in which the scattering of incident light is smaller and the parallel light transmittance is higher than that in the non-image state in which no image is displayed. is there.
  • the light control unit 25 is disposed between the counter electrode 26 and the control electrode 27. That is, the light control unit 25 can switch the optical state between the transmission state and the scattering state by the voltage applied between the two electrodes for the image light that is sandwiched between the two electrodes and projected while scanning.
  • a so-called homogeneous alignment polymer liquid crystal composite material in which polymer and liquid crystal are mixed and alignment when no voltage is applied is uniform in the gap between the upper and lower substrates can be used for the light control unit 25.
  • the light control unit 25 constituted by a reverse mode liquid crystal element using a homogeneous alignment polymer liquid crystal composite material will be described.
  • the reverse mode is a scattering state when a predetermined voltage is applied and a transmission state when no voltage is applied.
  • the light control unit 25 is aligned so that the counter electrode (conductive film) 26, the control electrode (conductive film) 27, and a predetermined liquid crystal material have a desired alignment on the facing surfaces of the two transparent glass substrates 23 and 24. Process. Then, the liquid crystalline monomer material, nematic liquid crystal material, and polymerization initiator that are polymerized by polymerization are mixed at a predetermined mixing ratio so as to be sandwiched between the glass substrates 23 and 24 (between the counter electrode 26 and the control electrode 27). To obtain a light control material. At this time, the substrates are faced to each other at an interval of 5 to 100 micrometers so that the alignment directions thereof are substantially the same.
  • the polymer In the state where the alignment of the liquid crystalline monomer and the nematic liquid crystal is almost the same, the polymer is polymerized by irradiation with ultraviolet rays. As a result, the nematic liquid crystal is dispersed in the polymer network so as to scatter visible light.
  • FIG. 4A shows when no voltage is applied
  • FIG. 4B shows when voltage is applied.
  • A1 indicates incident light polarized in the alignment direction of the nematic liquid crystal (projection light linearly polarized with a component parallel to a predetermined direction)
  • A2 indicates incident light polarized in a direction orthogonal to A1.
  • the light control material (the light control unit) is configured such that the refractive index difference is substantially equal in the light control material composed of the polymer material and the nematic liquid crystal. Scattering does not occur in the light beam passing through 25). That is, both A1 and A2 are transmitted.
  • the alignment of the nematic liquid crystal changes depending on the electric field, and the incident light polarized in the alignment direction feels a difference in refractive index between the polymer material and the nematic liquid crystal region. Scattering occurs.
  • polarized light orthogonal to this does not cause large scattering because the difference in refractive index is small. That is, A1 is scattered and A2 is transmitted. That is, the screen 21 can switch a scattering state and a transmission state for each of a plurality of regions with respect to linearly polarized light in a predetermined direction of visible light.
  • FIG. 5 is a graph showing the voltage dependence of the intensity of scattering depending on the polarization direction in the screen 21 having the above-described configuration.
  • the dotted line indicates linearly polarized light that is orthogonal (perpendicular) to the polarization direction that the screen 21 scatters
  • the alternate long and short dash line indicates no polarization
  • the solid line indicates the linearly polarized light that is parallel to the polarization direction that the screen 21 scatters. ing.
  • Non-polarized light is considered to be a mixture of polarized light parallel to the polarization direction scattered by the screen 21 and polarized light orthogonal to the polarization direction scattered by the screen 21, so that the regular transmittance is about 50%. .
  • the screen 21 For an observer located on the glass substrate 24 side of the screen 21 described above, for example, when the light control unit 25 of the screen 21 is in a scattering state, the screen 21 appears to be clouded.
  • the screen 21 when the light control unit 25 is in the transmissive state, the screen 21 is in a transparent state. Therefore, the image light projected from the projector 11 can be displayed on the screen 21 when the light control unit 25 is in the scattering state, and the background behind the screen 21 can be observed when in the transmissive state.
  • the polarized light orthogonal to the polarization direction scattered by the screen 21 is transmitted in the background light, so that it can be observed with a transmittance about half that in the transmitting state as will be described later.
  • a voltage is applied to the screen 21 so as to generate a potential difference between the control electrode 27 and the counter electrode 26.
  • the alignment state of the liquid crystals in the light control unit 25 varies depending on the voltage applied to the counter electrode 26 and the control electrode 27.
  • the synchronization control unit 31 as a control unit controls the light control unit 25 of the screen 21 on which the image light is projected to a scattering state in which the image light is scattered when the image light is projected, and is not projected. Control to the transparent state. That is, the area of the screen 21 on which the linearly polarized projection light having a parallel component with the predetermined direction is projected is set in a scattering state, and the area of the screen 21 on which the projection light is not projected is set in a transmission state. Therefore, the synchronous control part 31 performs a control process.
  • the synchronization control unit 31 is connected to the projector 11 and the screen 21.
  • the synchronization control unit 31 controls the optical state of the screen 21 (light control unit 25) in synchronization with the projection of the image light of the projector 11.
  • a synchronization signal synchronized with the scanning period or video period (frame period) of the projector 11 can be used.
  • FIG. 6A shows a state in which the polarized projection light (projection light) projected from the projector 11 is scattered by the screen 21, and
  • FIG. 6B shows the screen 21 in the state of FIG. 6A. It is the figure which showed the relationship between the projection light which injects, and non-polarization scattering and permeation
  • the projection light from the projector 11 is linearly polarized so that the plane of polarization is scattered by the screen 21 (in the direction of the arrow in FIG. 6).
  • background light and environmental light are incident on the screen 21 in addition to the projection light.
  • linearly polarized light (indicated by ⁇ in the figure) orthogonal to the projection light among the background light and the ambient light is transmitted through the screen 21 without being scattered.
  • the regular transmittance of the background light or the like can be maintained at about half of the total light transmittance.
  • FIG. 7 is an explanatory diagram of synchronous control between scanning and driving of the screen 21.
  • the projector 11 scans vertically from the top to the bottom of the screen 21 with video light modulated with video information.
  • the projector 11 scans the screen 21 vertically from top to bottom for each scanning repetition period (hereinafter also referred to as a scanning cycle).
  • FIGS. 7A to 7E show the scanning state at each time point in one scanning cycle in the scanning order.
  • the screen 21 in FIG. 6 has five divided regions 22 as an example.
  • the five divided regions 22 are arranged vertically along the scanning direction of the image light.
  • the synchronization control unit 31 controls the optical states of the five divided regions 22 individually in synchronization with the one-dimensional vertical scanning of the screen 21 by the projector 11.
  • each divided region 22 is in a non-image state, that is, a state in which the dimming unit 25 is controlled to a transparent transmission state in which the scattering of incident light is small, and the ambient light is transmitted as the screen 21. (Non-image state).
  • the scanning light of the projector 11 is first applied to the uppermost divided area 22 of the screen 21 as shown in FIG.
  • reference numeral 221 is used to distinguish the divided region 22 irradiated with the scanning light from other divided regions 22 that are not scanned.
  • the synchronization control unit 31 specifies a period during which the uppermost divided area 221 is scanned in the scanning cycle based on the synchronization signal from the projector, and controls the uppermost divided area 221 to the video state.
  • the image light that scans the uppermost divided area 221 is scattered by the divided area 221 in the scattering state, and an image is displayed in the divided area 221.
  • the synchronization control unit 31 specifies a period during which the second divided region 221 from the top in the scanning cycle is scanned, and controls the second divided region 221 from the top to the video state.
  • the image light that scans the second divided region 221 from the top is scattered by the divided region 221 in the scattering state, and an image is displayed.
  • the synchronization control unit 31 controls the second divided area 221 from the top to the video state, and then controls the uppermost divided area 22 to the non-video state. Thereafter, as shown in FIGS.
  • the synchronization control unit 31 controls the divided area 221 scanned by the scanning light to the video state, and sets the other divided areas 22 to the non-video state. Control. That is, the area of the screen 21 where the projection light linearly polarized parallel to the predetermined direction is projected is in a scattering state, and the area of the screen 21 where the projection light is not projected is in a transmission state.
  • the portion of the screen 21 irradiated with the scanning light is maintained in the video state. Thereby, the image light that scans the screen 21 is scattered by the screen 21 in the scattering state. Further, the portion of the screen 21 that is not irradiated with the scanning light is controlled to a non-image state.
  • Each divided region 22 is controlled to a transmissive state that is a non-video state in most periods during which scanning with the scanning light is not performed. Therefore, the see-through characteristic of the screen 21 can be obtained while maintaining the visibility of the image during the projection period of the image light.
  • FIG. 8 is a timing chart showing the state of the screen 21, the non-polarized light transmittance, the polarized projection light transmittance, and the polarized projection light intensity.
  • Non-polarized light indicates, for example, background light, illumination, or environmental light
  • polarized polarized light indicates image light projected from the projector 11 as described above
  • polarized projected light intensity refers to image light projected from the projector 11. Indicates strength.
  • FIG. 8 shows an example of one divided region 22.
  • the non-polarized light transmittance includes a polarized light component that is not scattered by the screen 21, and therefore the transmittance is not lower than that of the polarized projection light.
  • the projector 11 projects an image on the divided region 22 during this period (period in which the transmittance is reduced), the image light intensity is increased and the image is displayed.
  • the parallel light transmittance of the light control unit 25 increases. During this period, the projector 11 does not project the video onto the divided area 22, and therefore the video is not displayed.
  • each divided region 22 of the screen 21 is in a scattering state as a video state in a period Ton (see FIG. 9) including a video period in which the region is irradiated with video light. Further, in a non-video period Toff (see FIG. 9) in which no video light is irradiated, a transparent transmission state as a non-video state is obtained.
  • the screen 21 can scatter and transmit the image light with the same brightness as the case where the screen 21 is always in a scattering state while having transparency that can recognize the object on the back surface. That is, it is possible to achieve both a see-through property capable of recognizing a background object and a high image visibility.
  • FIG. 9 is a schematic timing chart of scanning and driving of the screen 21.
  • the horizontal axis is time.
  • the vertical axis indicates the position in the vertical direction of the screen 21 and corresponds to a plurality of divided regions 22 on the screen 21.
  • Each divided region 22 of the screen 21 is controlled from the transmission state to the scattering state before the timing at which the image light starts to scan each region. Further, the divided region 22 in the scattering state is controlled from the scattering state to the transmission state after the scanning of the region is completed.
  • the plurality of divided regions 22 are controlled in the image state (scattering state) in synchronization with the partial scanning period TP in which the image light is irradiated to each region, thereby sequentially shifting the time in the scanning order. Switch to video state.
  • the image light that scans the screen 21 is efficiently scattered by the portion maintained in the image state, and it is possible to obtain bright and high visibility.
  • image light scanning is indicated by three arrows, which indicate image light corresponding to the three primary colors of red, green and blue.
  • the synchronization control unit 31 preferably applies a voltage to be applied to the counter electrode 26 and each control electrode 27 so that the image light is irradiated during a period in which the optical state of each divided region 22 is stable in a predetermined scattering state. Control.
  • the optical state of each divided region 22 is switched according to the signal waveform of the voltage applied to the control electrode 27.
  • the information on the switching timing output from the projector 11 to the synchronization control unit 31 may include information on timing at which the projector 11 starts scanning each frame and a scanning speed (scanning delay / shift). Thereby, even when the frame frequency changes, it is possible to realize a good see-through display without disturbing the video.
  • the projector 11 and the synchronization control unit 31 may be capable of wireless communication using electromagnetic waves such as microwaves and infrared rays, and information for obtaining these synchronizations may be exchanged by radio signals.
  • the synchronization control unit 31 of the present embodiment switches the optical state of the plurality of divided regions 22 in the scanning period T of the video light in synchronization with the scanning of the video light by the projector 11 and
  • the optical state of the part where the image light is projected is defined as an image state. That is, the state is switched to the scattering state in synchronization with the projection of the projection light, and the scattering state and transmission state of the region are alternately switched at a predetermined cycle.
  • the screen 21 can display an image because the portion irradiated with the image light is maintained in the scattering state in the period Ton including the timing when the image light is irradiated.
  • the screen 21 since the screen 21 is controlled to be in a transmissive state at a time other than the period Ton during the projection period of the image light, the screen 21 can be seen through. Since the scattered light from the screen 21 appears averaged (integrated) to the human eye, a see-through characteristic without flicker is obtained in a sufficiently short scanning period.
  • the image light is projected in a time of about 1 to 20% of the frame frequency (period), and the light control unit 25 can realize sufficient scattering in this time.
  • a voltage that causes such a scattering state is applied. Since the human eye does not recognize the repetition of the scattering state for each frame as blinking, the screen 21 can display an image while maintaining the see-through state by time averaging (integration).
  • the screen 21 has a plurality of divided regions 22 and can switch the scattering state and the transmission state for each of the plurality of regions with respect to the linearly polarized light in the predetermined direction of visible light, and in parallel with the predetermined direction.
  • a synchronization control unit 31 configured to set a region of the screen 21 on which the linearly polarized projection light is projected to a scattering state and set a region of the screen 21 on which the projection light is not projected to a transmission state. Background light and illumination light are often non-polarized light, while the projection light projected from the projector 11 can easily control the polarization direction.
  • the screen 21 capable of strongly scattering the linearly polarized projection light (polarized projection light) parallel to the predetermined direction, the background light and the illumination light are scattered on the screen 21 (the cloudiness of the screen 21). ), And only the image can be scattered with sufficient intensity.
  • the region where the projection light is projected is in the scattering state, and the region where the projection light is not projected is in the transmission state.
  • the synchronization control unit is a region matched to the scanning position when projecting the projection light while scanning with a line sequential method or the like in order to switch to the scattering state in synchronization with the synchronization signal output from the projector 11. Can be in a scattering state.
  • the synchronization control unit since the synchronization control unit alternately switches between the scattering state and the transmission state of the region at a predetermined cycle, the display on the screen 21 and the observation of the background can be performed alternately. And observation can be performed in a time-sharing manner. Therefore, if the predetermined period is shortened, it seems to the observer that the display on the screen 21 and the background are observed simultaneously.
  • polarized illumination 41 is provided as illumination means.
  • the polarization illumination 41 incorporates polarization means such as a polarizing plate and a polarization filter, and irradiates illumination light having a polarization direction orthogonal to the polarization direction scattered when the screen 21 is in a scattering state. That is, the illumination light emitted from the polarized illumination 41 is not scattered by the screen 21.
  • the polarized illumination 41 is provided on the background side of the screen 21 or the observer side. In FIG. 10, the polarized illumination 41 is provided on both the background side and the viewer side of the screen 21, but only one of them may be provided.
  • the background or the like that can be observed through the screen 21 is illuminated, and the polarization illumination 41 that linearly polarizes with a component orthogonal to the scattering direction of the screen 21, the polarized light projection is provided.
  • the screen 21 that strongly scatters light is used, the background or the like can be illuminated without scattering the illumination light. Further, the influence of the scattering of the screen 21 can be eliminated, and the background or the like can be observed more brightly.
  • polarization illumination 41 is provided, but also a normal (non-polarization) illumination 42 may be combined with the polarizing plate 43 as shown in FIG.
  • the reverse mode liquid crystal element using the homogeneously aligned polymer liquid crystal composite material has been described as the light control section 25, but a normal mode liquid crystal element may be used.
  • the normal mode is a transmission state when a predetermined voltage is applied and a scattering state when no voltage is applied. In short, it is sufficient that the unidirectional polarized light is strongly scattered and the orthogonal polarized light is weakly scattered.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

透明表示画質を向上させることができる表示装置を提供する。複数の分割領域を有し、可視光の所定方向の直線偏光に対して散乱状態と透過状態を複数の領域ごとに切り替え可能なスクリーン(21)と、所定方向と平行成分を持って直線偏光された投影光が投影されているスクリーン(21)の領域を散乱状態とし、該投影光が投影されていないスクリーン(21)の領域を透過状態とする同期制御部(31)と、を有している。

Description

表示装置
 本発明は、映像を表示する表示装置に関する。
従来からプロジェクタ等の光源からの投影映像をスクリーン(投影面)に投影して映像を表示する表示装置が知られている。
特許文献1には、表示スクリーン全体を一様に透明状態と不透明状態とに所定の周期で交互に切り替えて、表示スクリーンの透明状態時に撮像装置への入力を行い、不透明状態時に表示スクリーンへ画像を投射することで、撮像装置が表示スクリーンを挟んで位置している観察者等を表示スクリーンに表示させる画像に影響されずに撮影できることが記載されている。
 特許文献1に記載されたような、透明状態(透過状態)と不透明状態(散乱状態)とを切り替えることができる表示スクリーンは、不透明状態時に表示する画像となる投影光を投射して映像を表示するとともに、透明状態と不透明状態とを交互に切り替えることで、観察者は表示スクリーンの背後にある背景も観察することができる。
特許第2688519号公報
 この種のスクリーンを用いて映像を投影する場合において、良好な表示を得るために散乱時の散乱を十分大きくすると、背景光あるいは照明/環境光の散乱も同時に大きくなり、この期間のヘイズ寄与(透明感の劣化や時間平均へイズの増加)が透明表示画質を劣化させていた。
 そこで、本発明は、上述した問題に鑑み、例えば、透明表示画質を向上させることができる表示装置を提供することを目的とする。
上記課題を解決するために、請求項1に記載された発明は、複数の領域を有し、可視光の所定方向の直線偏光に対して散乱状態と透過状態を前記複数の領域ごとに切り替え可能なスクリーンと、前記所定方向と平行成分を持って直線偏光された投影光が投影されている前記スクリーンの前記領域を前記散乱状態とし、該投影光が投影されていない前記スクリーンの前記領域を透過状態とする制御手段と、を有することを特徴とする表示装置である。
請求項5に記載された発明は、複数の領域を有し、可視光の所定方向の直線偏光に対して散乱状態と透過状態を前記複数の領域ごとに切り替え可能なスクリーンの制御を行う表示制御装置の表示方法において、前記表示制御装置が処理する工程は、前記所定方向と平行成分を持って直線偏光された投影光が投影されている前記スクリーンの前記領域を前記散乱状態とし、該投影光が投影されていない前記スクリーンの前記領域を透過状態とする制御工程を含むことを特徴とする表示方法である。
本発明の第1の実施例にかかる表示装置の概略構成図である。 図1に示されたスクリーンの模式的な断面図である。 図1に示されたスクリーンの分割された領域の説明図である。 図1に示されたホモジニアス配向高分子液晶複合材料を用いた調光部を有するスクリーンの入射光と散乱動作である。 図1に示されたスクリーンにおける偏光方向に依存する散乱の強さの電圧依存性を示したグラフである。 図1に示されたスクリーンの散乱状態における偏光投影光と無偏光背景光と透過と散乱の説明図である。 図1に示されたスクリーンの走査と駆動との同期制御の説明図である。 図1に示されたスクリーンの状態と、無偏光透過率と、偏光投影光透過率と、偏光投影光強度と、を示したタイミングチャートである。 図1に示されたスクリーンの走査と駆動の模式的なタイミングチャートである。 本発明の第2の実施例にかかる表示装置の概略構成図である。 第2の実施例にかかる表示装置の他の構成例を示した概略構成図である。
以下、本発明の一実施形態にかかる表示装置を説明する。本発明の一実施形態にかかる表示装置は、複数の領域を有し、可視光の所定方向の直線偏光に対して散乱状態と透過状態を複数の領域ごとに切り替え可能なスクリーンと、所定方向と平行成分を持って直線偏光された投影光が投影されている領域を散乱状態とし、該投影光が投影されていない領域を透過状態とする制御手段と、を有している。背景光や照明光は無偏光である場合が多い、一方で、プロジェクタ等から投影される投影光は偏光方向を容易に制御することが可能である。したがって、偏光投影光(所定方向と平行成分を持って直線偏光された投影光)を強く散乱することが可能なスクリーンを用いることによって、背景光や照明光のスクリーンでの散乱(スクリーンの白濁感)を抑制し、映像のみを十分な強度で散乱させることが可能となる。
本実施形態に用いるスクリーンは、偏光依存性を持つため、投影される偏光投影光を強く散乱し、これに直交する偏光成分の散乱は小さい。それに対して、従来の偏光依存性を持たないスクリーンでは、良好な表示を得るために散乱時の散乱を十分大きくすると、背景光あるいは照明や環境光の散乱も同時に大きくなり透明表示画質を劣化させていた。したがって、本実施形態のようなスクリーンを用いることで、映像光をほぼ100%散乱させつつ、散乱時の背景光あるいは照明や環境光は無偏光であるため、散乱は全光線の50%程度とすることができる。
また、分割した領域のうち、投影光が投影されている領域を散乱状態とし、該投影光が投影されていない領域は透過状態としているので、スクリーンの全領域に一括投影する場合と比較して、光源の発光ピークを平均化することにより投影光の最大光量を減らしつつ表示の高輝度化をすることができる。
また、制御手段は、投影光の投影と同期して前記散乱状態に切り替えるようにするために、投影光を線順次方式などで走査しながら投影する場合に、走査位置に合わせた領域を散乱状態とすることができる。
また、制御手段は、領域の散乱状態と透過状態とを所定の周期で交互に切り替えるようにしてもよい。このようにすることにより、スクリーンの表示と背景の観察を交互に行うことができるので、それぞれの表示や観察を時分割で行うことができる。したがって、スクリーンの表示と背景の観察を同時にすることができる。
また、スクリーン越しに観察可能な対象物を照明する照明手段と、照明手段が、所定方向と直交するように直線偏光させる偏光手段と、を有していてもよい。このようにすることにより、偏光投影光を強く散乱するスクリーンを利用した場合に、照明光が散乱されずに対象物を照明することができる。
また、本発明の一実施形態にかかる表示方法は、複数の領域を有し、可視光の所定方向の直線偏光に対して散乱状態と透過状態を複数の領域ごとに切り替え可能なスクリーンの制御を行う表示制御装置が処理する工程に、所定方向と平行成分を持って直線偏光された投影光が投影されているスクリーンの領域を散乱状態とし、該投影光が投影されていないスクリーンの領域を透過状態とする制御工程を含んでいる。このようにすることにより、背景光や照明光のスクリーンでの散乱(スクリーンの白濁感)を抑制し、映像のみを十分な強度で散乱させることが可能となる。したがって、映像光をほぼ100%散乱させつつ、散乱時の背景光あるいは照明や環境光は無偏光であるため、散乱は全光線の50%程度とすることができる。そして、分割した領域のうち、投影光が投影されている領域を散乱状態とし、該投影光が投影されていない領域は透過状態としているので、光源の発光ピークを平均化することにより投影光の最大光量を減らしつつ表示の高輝度化をすることができる。
 本発明の第1の実施例にかかる表示装置1を図1乃至図10を参照して説明する。表示装置1は図1に示すように、プロジェクタ11と、スクリーン21と、同期制御部31と、を備えている。表示装置1は、プロジェクタ11の映像光(投影映像)を投射(投影)して、スクリーン21(投影面)で透過散乱する反射型プロジェクション装置である。
 プロジェクタ11は、スクリーン21を挟んで観察者と反対側に配置されている。プロジェクタ11は、観察者側に配置してもよい。プロジェクタ11は、走査周期中にスクリーン21上で黒状態(投影光が出ない状態)を順次シフトさせる透過型あるいは反射型液晶ライトバルブなどを使用できるが、これ以外の素子を用いてもよい。また、プロジェクタ11は、映像の走査周期においてラスター走査し、スクリーン21の表示面に映像光を点順次で投影するものでもよい。このプロジェクタ11では、強度変調された光ビームの照射方向を可動ミラーで反射して振るような、例えばレーザビームスキャンプロジェクタなどを用いることができる。このプロジェクタ11は、映像光の照射位置がスクリーン21上の一方向に順次走査されているものと同様に考えることができる。
プロジェクタ11は、スクリーン21へ映像情報により変調された映像光を投影できるものであればよい。また、プロジェクタ11は、偏光板や偏光フィルタ等の偏光子を内蔵、あるいはレーザーを光源とし、後述するスクリーン21が散乱する直線偏光と平行成分を持った直線偏光が投影されるようになっている。なお、映像情報は、プロジェクタ11に入力される映像信号から得られる。プロジェクタ11には、動画の映像信号だけでなく静止画の映像信号が入力されてもよい。この場合、プロジェクタ11は、静止画を表示するための同じ映像光で、スクリーン21に繰り返し表示すればよい。
 図2に、光学状態を制御可能なスクリーン21の模式的な断面図を示す。図2に示したスクリーン21は、一対の透明なガラス基板23,24の間に液晶を含む複合材料を挟み込んだ光学層である調光部25を有する。一方のガラス基板24の調光部25側には、全面に対向電極26が形成される。他方のガラス基板23の調光部25側には、複数の制御電極27が配置される。制御電極27は、後述するスクリーン21の分割パターンに合わせた形状、配置となっている。なお、電極26、27と調光部25との間に、絶縁体からなる中間層を形成してもよい。
対向電極26と制御電極27は、たとえばITO(酸化インジウム・スズ)により、透明電極として形成される。
 複数の制御電極27は、スクリーン21の映像光が照射される領域を、一方向(例えば走査方向)で短冊状に分割する(図3参照)。複数の制御電極27は、同期制御部31に個別に接続され、個別に電圧を印加することができる。隣接する制御電極27は、互いに離間して配列される。なお、図3では短冊状の領域が縦に配置されているが、横方向にも分割して、マトリクス状に領域が分割されていてもよい。即ち、スクリーン21は複数の領域を有している。
 このように制御電極27が構成されることで、本実施形態の調光部25は、分割領域毎に後述するように、入射光の散乱が小さい透明な透過状態と、入射光を散乱する散乱状態との間で調整できる。
なお、制御電極27の間の、制御電極27が形成されていない領域に対応した調光部25内のギャップ領域の幅は、5から100マイクロメートル程度であり、可能な限り狭いことが望ましい。調光部25の厚さは、数から数十マイクロメートルであり、光学特性と駆動電圧を考慮して決定される。
 スクリーン21は、電圧の印加により光学状態を変化できる素子や材料により構成された調光部25を備えている。調光部25の光学状態は、散乱状態が映像が表示される状態であり、それよりも入射光の散乱が小さく且つ平行光線透過率が高い透明な透過状態が映像が表示されない非映像状態である。調光部25は、対向電極26と制御電極27との間に配置される。即ち、調光部25は、2つの電極間に挟持され、走査しながら投影された映像光を2つの電極間に印加された電圧によって光学状態を透過状態と散乱状態が切り替え可能である。
調光部25には、高分子と液晶を混合させ電圧無印加時の配向が上下基板間ギャップ内で均一な所謂ホモジニアス配向高分子液晶複合材料を用いることができる。以下ホモジニアス配向高分子液晶複合材料を用いたリバースモード液晶素子で構成した調光部25の説明をする。リバースモードとは、所定の電圧を印加した場合に散乱状態となり、電圧を印加しない場合は透過状態となることである。
調光部25は、2枚の透明なガラス基板23、24の向かい合う表面に、対向電極(導電膜)26、制御電極(導電膜)27と所定の液晶材料が所望の配向をなすように配向処理を行う。そして、重合して高分子となる液晶性モノマー材料、ネマチック液晶材料及び重合開始剤を所定の混合比で混合し、ガラス基板23、24間(対向電極26、制御電極27間)に挟み込まれるようにして調光材料とする。この際、の配向方向がほぼ一致するように基板を5乃至100マイクロメートルの間隔で向かい合わせる。液晶性モノマーとネマティック液晶の配向がほぼ一致した状態で、紫外線を照射して高分子化する。これにより、高分子ネットワーク中にネマティック液晶が可視光を散乱する程度の大きさで分散する構造となる。
上述したホモジニアス配向高分子液晶複合材料を用いた調光部25を有するスクリーン21の入射光と散乱動作を図4を参照して説明する。図4(a)は電圧無印加時、(b)は電圧印加時を示している。また、図中A1は、ネマティック液晶の配向方向に偏光した入射光(所定方向と平行成分を持って直線偏光された投影光)、A2はA1と直交する方向に偏光した入射光をそれぞれ示している。
図4(a)に示したように、電圧無印加時は、高分子材料とネマティック液晶からなる調光材料中で屈折率差がほぼ等しくなるようにすることにより、調光材料(調光部25)を通過する光線には散乱が発生しない。つまり、A1、A2とも透過する。
図4(b)に示したように、所定の電圧を印加すると、ネマティック液晶の配向が電場によって変化し、配向方向に偏光した入射光は高分子材料とネマティック液晶領域の屈折率差を感じ、散乱が生じる。一方、これに直交する偏光は屈折率差が小さいため大きな散乱は生じない。つまり、A1は散乱され、A2は透過する。即ち、スクリーン21は、可視光の所定方向の直線偏光に対して散乱状態と透過状態を複数の領域ごとに切り替え可能となっている。
図5に、上述した構成のスクリーン21における偏光方向に依存する散乱の強さの電圧依存性を示したグラフを示す。図中点線は、スクリーン21が散乱する偏光方向に対して直交する(垂直な)直線偏光、一点鎖線は、無偏光、実線は、スクリーン21が散乱する偏光方向に対して平行な直線偏光を示している。
図5に示したように、電圧(交流電圧)値を上げると、スクリーン21(調光部25)散乱強度が上昇する。スクリーン21が散乱する偏光方向に対して平行偏光は散乱されるため正透過率が低下する。スクリーン21の偏光方向に対して直交する直線偏光は透過するため正透過率は殆ど低下しない。無偏光は、スクリーン21が散乱する偏光方向に対して平行な偏光とスクリーン21が散乱する偏光方向に対して直交する偏光が混合されていると考えられるので、正透過率は約50%となる。
上述したスクリーン21の例えばガラス基板24側に位置する観察者からは、スクリーン21の調光部25が散乱状態の場合は、スクリーン21は例えば白濁したように見える。一方、調光部25が透過状態の場合は、スクリーン21は透明な状態となる。したがって、調光部25が散乱状態の場合にはスクリーン21にプロジェクタ11から投影される映像光が表示でき、透過状態の場合はスクリーン21背後の背景を観察することができる。但し、散乱状態の場合にも背景光のうちスクリーン21が散乱する偏光方向に対して直交する偏光は透過するので、後述するように透過状態時の半分程度の透過率で観察することができる。
スクリーン21は、制御電極27と対向電極26との間に電位差を生じるように電圧が印加される。調光部25内の液晶の配列状態は、上述したように、対向電極26と制御電極27の印加電圧により変化する。
 制御手段としての同期制御部31は、映像光が投影されるスクリーン21の調光部25を、映像光が投影されている場合は当該映像光を散乱する散乱状態に制御し、投影されていない場合に透過状態に制御する。即ち、所定方向と平行成分を持って直線偏光された投影光が投影されているスクリーン21の領域を散乱状態とし、該投影光が投影されていないスクリーン21の領域を透過状態とする。したがって、同期制御部31が制御工程を実行する。
同期制御部31は、図1に示したように、プロジェクタ11とスクリーン21とに接続される。同期制御部31は、プロジェクタ11の映像光の投影に同期させて、スクリーン21(調光部25)の光学状態を制御する。プロジェクタ11から同期制御部31へ入力される同期信号は、例えばプロジェクタ11の走査周期や映像周期(フレーム周期)に同期した同期信号などを用いることができる。
次に、上述した表示装置1のスクリーン21の散乱状態における偏光投影光と無偏光背景光と透過と散乱を図6を参照して説明する。図6(a)は、プロジェクタ11から投影される偏光投影光(投影光)がスクリーン21で散乱される状態を示した図、図6(b)は、図6(a)の状態においてスクリーン21に入射する投影光と背景光や環境光などの無偏光の散乱と透過の関係を示した図である。
図6(a)に示したように、プロジェクタ11からの投影光は、偏光面がスクリーン21で散乱されるように直線偏光されている(図6の矢印方向)。このとき、図6(b)に示したように、スクリーン21には投影光に加えて背景光や環境光も入射する。そして、背景光や環境光のうち投影光とは直交する直線偏光(図中●で示す)はスクリーン21では散乱されずに透過する。
 つまり、散乱状態にあっても背景光等は散乱されずに透過する成分もあるために、背景光等の正透過率を全光線透過率の半分程度に保持できる。
 次に、上述した構成の表示装置1の基本的な動作原理を説明する。図7は、スクリーン21の走査と駆動との同期制御の説明図である。プロジェクタ11は、映像情報で変調された映像光でスクリーン21の上から下へ縦に走査する。プロジェクタ11は、走査の繰り返し期間(以下、走査周期ともいう。)毎に、スクリーン21を上から下へ縦に走査する。
図7(A)から(E)は、1回の走査周期中の各時点での走査状態を、走査順で示すものである。図6のスクリーン21は、一例として5つの分割領域22を有する。5つの分割領域22は、映像光の走査方向に沿って縦に配列される。
同期制御部31は、プロジェクタ11によるスクリーン21の一次元の縦方向の走査に同期させて、5つの分割領域22の光学状態を個別に制御する。各分割領域22は、映像光が投影されていない場合、非映像状態、すなわち調光部25が入射光の散乱が小さい透明な透過状態に制御されスクリーン21としては周囲の環境光が透過する状態(非映像状態)となる。
映像光の走査が開始されると、プロジェクタ11の走査光は、まず、図7(A)のように、スクリーン21の最上部の分割領域22に照射される。以下、この説明において、走査光が照射される分割領域22について、走査されていない他の分割領域22から区別するために、符号221を使用する。同期制御部31は、プロジェクタからの同期信号に基づいて、走査周期中での、この最上部の分割領域221が走査される期間を特定し、最上部の分割領域221を映像状態に制御する。最上部の分割領域221を走査する映像光は、散乱状態の分割領域221により散乱され当該分割領域221には映像が表示される。
映像光の走査は、次に、図7(B)のように、スクリーン21の上から2番目の分割領域221に移動する。同期制御部31は、走査周期中での、この上から2番目の分割領域221が走査される期間を特定し、上から2番目の分割領域221を映像状態に制御する。上から2番目の分割領域221を走査する映像光は、散乱状態の分割領域221により散乱され映像が表示される。また、同期制御部31は、上から2番目の分割領域221を映像状態に制御した後、最上部の分割領域22を非映像状態に制御する。その後も、図7(C)から(E)に示すように、同期制御部31は、走査光により走査される分割領域221を映像状態に制御し、それ以外の分割領域22を非映像状態に制御する。即ち、所定方向と平行に直線偏光された投影光が投影されているスクリーン21の領域を散乱状態とし、該投影光が投影されていないスクリーン21の領域を透過状態としている。
以上の同期制御により、スクリーン21についての走査光が照射される部位は、映像状態に維持される。これにより、スクリーン21を走査する映像光は、散乱状態のスクリーン21で散乱される。また、スクリーン21についての走査光が照射されない部位は、非映像状態に制御される。各分割領域22は、走査光により走査されていない殆どの期間において、非映像状態である透過状態に制御される。したがって、映像光の投影期間中に、映像の視認性を保ちつつ、スクリーン21のシースルー特性が得られる。
 図8は、スクリーン21の状態と、無偏光透過率と、偏光投影光透過率と、偏光投影光強度と、を示したタイミングチャートである。無偏光とは例えば背景光あるいは照明や環境光を示し、偏光投影光とは上述したようにプロジェクタ11から投影される映像光を示し、偏光投影光強度とはプロジェクタ11から投影される映像光の強度を示す。なお、図8は、一つの分割領域22の例である。
図8に示したように、スクリーン21(調光部25)が散乱状態となると、無偏光透過率、偏光投影光透過率ともに低下する。但し、無偏光透過率は、図5を参照して説明したように、スクリーン21で散乱されない偏光成分を含むため偏光投影光よりも透過率は低下しない。また、プロジェクタ11は、この期間(透過率が低下している期間)に映像を当該分割領域22に投影するので映像光強度が上昇し映像が表示される。一方、スクリーン21(調光部25)が透過状態となると、調光部25の平行光線透過率は上昇する。この期間にプロジェクタ11は映像を当該分割領域22に投影しないので映像は表示されない。
図3に示したスクリーン21のように一方向に短冊状に分割されている場合、プロジェクタ11の映像光は、スクリーン21の分割方向に順次走査される。同期制御部31は、プロジェクタ11からの同期信号に基づいて、プロジェクタ11の映像光が照射される部位が映像状態(本実施例では散乱状態)に維持されるように、複数の分割領域22を、走査順で、透過状態から散乱状態に制御する。この同期制御により、スクリーン21の各分割領域22は、当該領域に映像光が照射される映像期間を含む期間Ton(図9参照)において、映像状態としての散乱状態になる。また、映像光が照射されない非映像期間Toff(図9参照)においては、非映像状態としての透明な透過状態となる。
したがって、スクリーン21は、その背面の物体を認識しうる透明さを有しつつ、常時散乱状態とした場合と同等の明るさで映像光を散乱して透過できる。つまり、背景物体を認識することが可能なシースルー性と、映像の高い視認性とを両立することが可能となる。
図9は、スクリーン21の走査と駆動との模式的なタイミングチャートである。横軸は、時間である。縦軸は、スクリーン21の縦方向の位置を示し、スクリーン21での複数の分割領域22に対応する。
スクリーン21の各分割領域22は、各々の領域を映像光が走査し始めるタイミングより前に、透過状態から散乱状態に制御される。また、散乱状態の分割領域22は、当該領域についての走査が終了した後に、散乱状態から透過状態に制御される。
複数の分割領域22は、各々の領域に映像光が走査により照射される部分走査期間TPに同期して映像状態(散乱状態)に制御されることにより、走査順で、時間をずらして、順次映像状態へ切り替えられる。スクリーン21を走査する映像光は、映像状態に維持された部分により、効率よく散乱され、明るく高い視認性を得ることができる。なお、図9中映像光走査が3本の矢印で表示されているが、これは赤緑青の光の3原色それぞれに対応する映像光を示している。
この同期制御のための切り替えタイミングの情報は、同期信号としてプロジェクタ11から同期制御部31に送出される。同期制御部31は、好ましくは、各分割領域22の光学状態が所定の散乱状態に安定している期間に映像光が照射されるように、対向電極26と各制御電極27へ印加する電圧を制御する。
各分割領域22の光学状態は、制御電極27へ印加する電圧の信号波形により切り替わる。特に、プロジェクタ11が同期制御部31へ出力する切り替えタイミングの情報には、プロジェクタ11の各フレームの走査を開始するタイミングの情報と、走査速度(走査の遅延/シフト)とを含めるとよい。これにより、フレーム周波数が変化した場合にも、映像を乱すことなく、良好なシースルー表示を実現できる。なお、プロジェクタ11および同期制御部31をマイクロ波、赤外線などの電磁波を用いたワイヤレス通信可能とし、これらの同期を得るための情報を無線信号により授受してもよい。
以上の同期制御により、本実施形態の同期制御部31は、映像光の走査周期Tにおける複数の分割領域22の光学状態を、プロジェクタ11による映像光の走査に同期させて切り替えて、スクリーン21についての、映像光が投影される部位の光学状態を映像状態とする。即ち、投影光の投影と同期して散乱状態に切り替えるとともに、領域の散乱状態と透過状態とを所定の周期で交互に切り替えている。
よって、スクリーン21は、映像光が照射されるタイミングを含む期間Tonにおいて、映像光が照射される部位が散乱状態に維持されるため、映像を表示できる。
しかも、スクリーン21は、映像光の投影期間中に、各部位が期間Ton以外の時間では透過状態に制御されるので、スクリーン21を透視することができる。人間の目にはスクリーン21の散乱光が平均(積分)化されて見えるので、十分短い走査周期の場合、フリッカを感じることのないシースルー特性が得られる。
例えば、映像のフレーム周波数を50Hz程度以上とすると、そのフレーム周波数(周期)のうち1から20%程度の時間に映像光を投影し、調光部25にはこの時間で十分な散乱を実現できるような散乱状態となる電圧を印加する。人間の目にはこのフレーム毎の散乱状態の繰り返しは点滅として認識されないので、時間平均(積分)されることによってスクリーン21はシースルー状態を保持しつつ映像を表示することができる。
 本実施例によれば、複数の分割領域22を有し、可視光の所定方向の直線偏光に対して散乱状態と透過状態を複数の領域ごとに切り替え可能なスクリーン21と、所定方向と平行に直線偏光された投影光が投影されているスクリーン21の領域を散乱状態とし、該投影光が投影されていないスクリーン21の領域を透過状態とする同期制御部31と、を有している。背景光や照明光は無偏光である場合が多い、一方で、プロジェクタ11から投影される投影光は偏光方向を容易に制御することが可能である。したがって、所定方向と平行に直線偏光された投影光(偏光投影光)を強く散乱することが可能なスクリーン21を用いることによって、背景光や照明光のスクリーン21での散乱(スクリーン21の白濁感)を抑制し、映像のみを十分な強度で散乱させることが可能となる。
 また、分割領域22のうち、投影光が投影されている領域を散乱状態とし、該投影光が投影されていない領域は透過状態としているので、スクリーン21の全領域に一括投影する場合と比較して、光源の発光ピークを平均化することにより投影光の光量を減らしつつ表示の高輝度化をすることができる。例えば、比較的小さな光源を用いたプロジェクタであっても、高い透明性を保持したまま十分な明るさで表示することが可能となる。
また、同期制御部は、プロジェクタ11が出力する同期信号と同期して散乱状態に切り替えるようにするために、投影光を線順次方式などで走査しながら投影する場合に、走査位置に合わせた領域を散乱状態とすることができる。
 また、同期制御部は、領域の散乱状態と透過状態とを所定の周期で交互に切り替えるようにしているので、スクリーン21の表示と背景の観察を交互に行うことができるために、それぞれの表示や観察を時分割で行うことができる。したがって、所定の周期を短くすれば、観察者からはスクリーン21の表示と背景を同時に観察しているように見える。
次に、本発明の第2の実施例にかかる表示装置を図10および図11を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。
 本実施例は図10に示したように、照明手段としての偏光照明41が設けられている。偏光照明41は、偏光板や偏光フィルタなど偏光手段を内蔵して、スクリーン21が散乱状態の際に散乱される偏光方向と直交する偏光方向となる照明光を照射する。つまり、偏光照明41から照射される照明光はスクリーン21で散乱されない。
偏光照明41は、スクリーン21の背景側や観察者側に設けられている。なお、図10では、偏光照明41は、スクリーン21の背景側と観察者側の双方に設けられているが、いずれか一方のみとしてもよい。
 本実施例によれば、スクリーン21越しに観察可能な背景等を照明するとともに、スクリーン21の散乱方向に対して直交する成分を持って直線偏光する偏光照明41を有しているので、偏光投影光を強く散乱するスクリーン21を利用した場合に、照明光を散乱させずに背景等を照明することができる。また、スクリーン21の散乱による影響を排除することができ、より背景等を明るく観察することができる。
 なお、図10のように、偏光照明41を設けるに限らず、図11に示すように、通常の(無偏光の)照明42に偏光板43を組み合せた形態としてもよい。
 また、上述した2つの実施例では、調光部25として、ホモジニアス配向高分子液晶複合材料を用いたリバースモード液晶素子で説明したが、ノーマルモードの液晶素子を用いてもよい。ノーマルモードとは、所定の電圧を印加した場合に透過状態となり、電圧を印加しない場合は散乱状態となることである。要するに、一方向偏光を強く散乱し、直交する偏光の散乱が弱いものであればよい。
 また、本発明は上記実施例に限定されるものではない。即ち、当業者は、従来公知の知見に従い、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。かかる変形によってもなお本発明の表示装置の構成を具備する限り、勿論、本発明の範疇に含まれるものである。
  1        表示装置
  21      スクリーン
  31      同期制御部(制御手段)
  41      偏光照明(照明手段、偏光手段)
  42      照明(照明手段)
  43      偏光板

Claims (5)

  1. 複数の領域を有し、可視光の所定方向の直線偏光に対して散乱状態と透過状態を前記複数の領域ごとに切り替え可能なスクリーンと、
    前記所定方向と平行成分を持って直線偏光された投影光が投影されている前記スクリーンの前記領域を前記散乱状態とし、該投影光が投影されていない前記スクリーンの前記領域を透過状態とする制御手段と、
    を有することを特徴とする表示装置。
  2.  前記制御手段は、前記投影光の投影と同期して前記散乱状態に切り替えることを特徴とする請求項1に記載の表示装置。
  3.  前記制御手段は、前記領域の前記散乱状態と前記透過状態とを所定の周期で交互に切り替えることを特徴とする請求項1または2に記載の表示装置。
  4. 前記スクリーン越しに観察可能な対象物を照明する照明手段と、
    前記照明手段が、前記所定方向と直交するように直線偏光させる偏光手段と、
    を有していることを特徴とする請求項1乃至3のうちいずれか一項に記載の表示装置。
  5. 複数の領域を有し、可視光の所定方向の直線偏光に対して散乱状態と透過状態を前記複数の領域ごとに切り替え可能なスクリーンの制御を行う表示制御装置の表示方法において、
    前記表示制御装置が処理する工程は、前記所定方向と平行成分を持って直線偏光された投影光が投影されている前記スクリーンの前記領域を前記散乱状態とし、該投影光が投影されていない前記スクリーンの前記領域を透過状態とする制御工程を含むことを特徴とする表示方法。
PCT/JP2013/057630 2013-03-18 2013-03-18 表示装置 WO2014147703A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057630 WO2014147703A1 (ja) 2013-03-18 2013-03-18 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057630 WO2014147703A1 (ja) 2013-03-18 2013-03-18 表示装置

Publications (1)

Publication Number Publication Date
WO2014147703A1 true WO2014147703A1 (ja) 2014-09-25

Family

ID=51579441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057630 WO2014147703A1 (ja) 2013-03-18 2013-03-18 表示装置

Country Status (1)

Country Link
WO (1) WO2014147703A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024763A (ja) * 2003-06-30 2005-01-27 Optrex Corp 画像表示装置
JP2005156693A (ja) * 2003-11-21 2005-06-16 Dainippon Printing Co Ltd 投影システム
JP2010160216A (ja) * 2009-01-06 2010-07-22 Teijin Ltd 映像表示システム
JP2010197486A (ja) * 2009-02-23 2010-09-09 Seiko Epson Corp 画像表示システム、画像通信システム
WO2012114512A1 (ja) * 2011-02-25 2012-08-30 パイオニア株式会社 表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024763A (ja) * 2003-06-30 2005-01-27 Optrex Corp 画像表示装置
JP2005156693A (ja) * 2003-11-21 2005-06-16 Dainippon Printing Co Ltd 投影システム
JP2010160216A (ja) * 2009-01-06 2010-07-22 Teijin Ltd 映像表示システム
JP2010197486A (ja) * 2009-02-23 2010-09-09 Seiko Epson Corp 画像表示システム、画像通信システム
WO2012114512A1 (ja) * 2011-02-25 2012-08-30 パイオニア株式会社 表示装置

Similar Documents

Publication Publication Date Title
JP5857599B2 (ja) スクリーンおよび画像表示システム
JP2007121893A (ja) 偏光スイッチング液晶素子、およびこれを備える画像表示装置
US8970797B2 (en) Liquid crystal display adopting structure of liquid crystal lens
JP2003259395A (ja) 立体表示方法及び立体表示装置
WO2018168626A1 (ja) 表示装置
JP2014174424A (ja) 表示装置
US20110115994A1 (en) Stereoscopic image display device and method for driving the same
JP2014178524A (ja) 表示装置
WO2016125624A1 (ja) 表示装置
JP2013076956A (ja) 画像表示システムおよび制御装置
TW201416714A (zh) 二維及三維可切換液晶顯示裝置與其之顯示方法
JP5856285B2 (ja) 表示装置、その駆動方法、および表示用スクリーン装置
WO2014033807A1 (ja) 表示装置および表示装置の駆動方法
WO2014147703A1 (ja) 表示装置
US9448466B2 (en) Display device and drive method for display device
JP2005017943A (ja) 画像表示装置
WO2015045067A1 (ja) 表示装置および表示装置の制御方法
JP2015226296A (ja) 表示装置
JP2015232593A (ja) 表示装置
WO2013140627A1 (ja) 表示装置、その駆動方法、および表示用スクリーン装置
JP2014153380A (ja) 表示装置
WO2014080466A1 (ja) 表示装置
JP3973524B2 (ja) 画像シフト素子および画像表示装置
US11009759B2 (en) Transparent display panel, method for fabricating the same, and display device
JP2014126757A (ja) スクリーンおよび画像表示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP