WO2015043330A1 - 一种led球泡灯及其制备方法 - Google Patents

一种led球泡灯及其制备方法 Download PDF

Info

Publication number
WO2015043330A1
WO2015043330A1 PCT/CN2014/084508 CN2014084508W WO2015043330A1 WO 2015043330 A1 WO2015043330 A1 WO 2015043330A1 CN 2014084508 W CN2014084508 W CN 2014084508W WO 2015043330 A1 WO2015043330 A1 WO 2015043330A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
light source
led light
led
glass substrate
Prior art date
Application number
PCT/CN2014/084508
Other languages
English (en)
French (fr)
Inventor
孙明
陈兴保
庄文荣
戴坚
Original Assignee
孙明
上海亚浦耳照明电器有限公司
陈兴保
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孙明, 上海亚浦耳照明电器有限公司, 陈兴保 filed Critical 孙明
Priority to JP2016544701A priority Critical patent/JP2016533625A/ja
Priority to US14/395,081 priority patent/US20160258580A1/en
Publication of WO2015043330A1 publication Critical patent/WO2015043330A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/001Arrangement of electric circuit elements in or on lighting devices the elements being electrical wires or cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/101Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening permanently, e.g. welding, gluing or riveting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/0015Fastening arrangements intended to retain light sources
    • F21V19/002Fastening arrangements intended to retain light sources the fastening means engaging the encapsulation or the packaging of the semiconductor device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/86Ceramics or glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • F21V31/005Sealing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Definitions

  • the invention relates to the technical field of application of LED lamps, in particular to an LED bulb lamp and a preparation method thereof.
  • A3 directly coating the glass substrate, the chip and the lead with a fluorescent glue
  • the voltage is controlled between 300V and 600V during the sputtering process
  • the current is controlled between 4A and 8A
  • the chamber pressure is 5*10-3Pa
  • the time is 0.5 hours to 1.0 hour.
  • the glass substrate is divided into glass sheets and glass filaments according to different widths, the width of the glass sheets is larger than the width of the glass fibers, the thickness of the glass sheets is between 0.5 and 1.1 mm, and the width of the glass fibers is between 0.5 mm and 10 mm.
  • the thickness of the glass filament is between 0.3 mm and 1.2 mm.
  • the LED light source is composed of more than one single LED light source, and each LED light source is fixed on the glass substrate by two or more chips through a fluorescent glue, and is turned on by a lead wire, except for the glass substrate. Outside the electrode, the surface of the glass substrate, the chip, and the lead are coated with a fluorescent paste.
  • the invention can effectively excite the light output of the LED chip in the working state by coating the fluorescent glue, and at the same time, can fix the lead wire to avoid the phenomenon that the lead wire is off-line dead light due to external factors; the invention passes through the conductive wire
  • the external lead electrode is prepared, and the electrode on the glass substrate on the LED light source is inserted and fixed on the external lead electrode on the conductive line. Due to the limitation of the material of the glass substrate, it is very difficult to directly prepare the external electrode of the LED chip. Generally, the metal external electrode is bonded to the glass substrate by using an adhesive or a soldering lamp material. The cost is low and the process is easy to implement, but it has great drawbacks, and the high temperature resistance of such methods is particularly poor.
  • the invention finds that the glass substrates of different thickness have different influences on the LED bulbs.
  • the glass substrates are divided into glass sheets and glass filaments according to different widths, and the width of the glass sheets is larger than the width of the glass filaments.
  • the thickness of the glass sheet is controlled between 0.5 and 1.1 mm, and the LED bulb of the present invention has the best effect.
  • the string of conductive lines can be reduced to make the LED light source unstable, and on the other hand, the sealing effect is improved.
  • the glass substrate of the invention is patterned and then plated with aluminum nitride, on the one hand, the adhesion of the aluminum nitride directly attached to the glass substrate is improved, and on the other hand, the glass substrate can increase the surface area thereof by the patterning process, thereby improving the surface area thereof.
  • the heat dissipation effect at the same time the patterning of the glass and the patterning of the aluminum nitride, because the graphics are all nanometer-scale, although the surface of the glass substrate is coated with fluorescent glue in the preparation of the LED light source in the later stage, the fluorescent rubber particles are relatively large and will not penetrate into the pattern. In the region, the air holes are formed between the substrate pattern and the fluorescent glue. Under the working state of the LED light source, the air in the air hole is affected by the thermal energy in the working state of the LED light source, and the heat dissipation of the substrate is accelerated by the continuous high-speed convection of the gas.
  • FIG. 1 is a schematic view of a glass substrate to which an LED light source of the present invention is adhered with an LED chip;
  • FIG. 3 is a schematic view of the LED light source of the present invention.
  • Figure 4 is a schematic view of a glass filament LED bulb of the present invention.
  • Figure 5 is a schematic view of a glass piece LED bulb of the present invention.
  • the LED chip 1 of the present invention is fixed on the surface of the glass substrate 5 by using the fluorescent glue 4 , and the chip 1 and the chip 1 .
  • the chip 1 and the electrode 6 are electrically connected by the metal lead 3, and the fluorescent glue 4 is coated on the glass substrate 5 (excluding the electrode part), the chip 1 and the lead 3, and the LED is effectively coated by the coating of the fluorescent glue 4.
  • the chip 1 emits light in the working state, and at the same time, the lead 3 can be fixedly protected, so that the lead wire 3 is prevented from being disconnected and dead due to external factors.
  • the LED light source 9 is electrically connected and fixed to the conductive wire 14, preferably by preparing the external lead electrode 13 on the conductive wire 14, and the electrode 6 on the glass substrate 5 on the LED light source 9 is inserted and fixed on the conductive wire.
  • the metal outer lead electrode 13 is bonded to the glass substrate 5 by using an adhesive or a soldering lamp material. This method is simple, low in cost, and easy to implement, but it has great drawbacks. This type of method is particularly inferior to high temperature resistance.
  • the LED bulb of the present invention ensures vacuum sealing.
  • the LED light source 9 After the LED light source 9 is placed in the lampshade 10, it needs to be melted and sealed at a high temperature through the glass lampshade 10 and the glass bracket 11 at a temperature of about 250 ° C.
  • the outer lead electrode 13 is fixed by bonding, which is easily detached from the glass substrate 5 to cause a dead light.
  • the invention adopts the plug-in type fixed external lead electrode 13, which can ensure good contact between the outer lead electrode 13 and the electrode of the glass substrate 5, and avoids the disadvantage that the pasting connection is not resistant to high temperature. At the same time, it also reduces the difficulty of manufacturing the lamp electrode and reduces the cost.
  • the prepared LED light source 9 is fixed.
  • a glass hollow bracket with a glass base is selected, and two conductive wires 14 are melted and fixed in the glass bracket base, and both ends of the conductive wire 14 are
  • the bracket 11 is led out, and one end of the conductive wire 14 is connected to the LED light source 9 for fixing one end of the LED light source 9.
  • the other end of the conductive wire 14 is taken out from the base of the bracket 11 for connection with the positive and negative phases of the power source 8, and the conductive wire 14 passes through the glass bracket base.
  • the fusion fixing can reduce the stringing of the conductive wires 14 to make the LED light source 9 unstable, and on the other hand, improve the sealing effect.
  • the LED bulb of the present invention is provided with only one LED light source 9, the above-mentioned conductive wires 14 for connecting to the LED light source 9 and fixing the LED light source 9 are electrically connected to the two electrodes of the LED light source 9 respectively;
  • the glass lampshade 10 required for the bulb lamp is selected, and the bracket 11 to which the LED light source 9 is fixed is placed in the glass lampshade 10.
  • the base of the bracket 11 is melt-sealed and connected with the glass lampshade 10, and the air in the glass lampshade 10 is passed through the hollow portion of the glass bracket.
  • the emptying can prevent the gas in the original air from adversely affecting the LED light source 9 at a later stage, and injecting a mixed gas of helium gas and nitrogen gas into the glass lampshade 10, the volume ratio of the gas is between 5:1 and 2:1, and the bracket 11 is placed.
  • the melt seal is such that the gas pressure in the globe 10 is controlled between 0.05 and 0.15 MPa at room temperature.
  • the LED bulb When the volume ratio of helium to nitrogen in the glass lampshade 10 is between 5:1 and 2:1, and the pressure is controlled between 0.05 and 0.15 MPa at room temperature, the LED bulb is dissipated under working conditions. The effect is the best, the power supply 8 disposed in the socket 7 is electrically connected to the conductive wire 14 of the base of the bracket 11, and the socket 7 is fixedly connected to the lamp cover 10. The preparation of the LED bulb is realized.
  • the LED bulb of the present invention is composed only of the LED light source, the bracket 11, the lamp cover 10, the lamp holder 7 and the power source 8. From the structure, the LED light source 9 is disposed on the bracket 11 and placed. In the lampshade 10, the power source 8 is disposed in the socket 7 of the bracket 11, and the lamp holder 7 of the bracket is fixed to the glass lampshade 10 to form a sealed space.
  • the conductive wire 14 of the LED light source 9 extends the power supply 8 in the bracket base and the lamp holder 7.
  • the connection is made, and the lampshade 10 is filled with a mixed gas of helium and nitrogen.
  • the gas volume ratio is between 5:1 and 2:1, and the gas pressure is controlled between 0.05 and 0.15 MPa at room temperature.
  • each LED light source 9 can be fixed to the glass substrate 5 by two or more chips 1 through the fluorescent glue 4, and the lead 3 is turned on, and the glass substrate 5 and the chip 1 and the lead are 3. Except for the electrode of the glass substrate 5, the surface is coated with a fluorescent glue 4.
  • the glass substrate 5 is cleaned with an acid solution before the etching, wherein the acid solution has a volume ratio of acid to water of 1:5-1:10, and the acid is followed.
  • the acid for etching the glass substrate 5 is selected from hydrochloric acid or phosphoric acid or sulfuric acid, and the etching time is 3-8 min.
  • the preparation of the glass substrate 5 includes the following two methods: First, the patterned glass plate 5 is prepared, the photoresist is prepared by acid cleaning the glass substrate 5, and the photoresist is patterned and then etched to etch the desired pattern.
  • the photoresist is prepared on the patterned glass substrate 2, the photoresist is patterned and developed, and the aluminum nitride is plated. At this time, the whole process temperature is controlled below 130 ° C during the process of coating aluminum nitride, so as to avoid negative photoresist due to temperature. Too high and coked on the surface of the glass substrate 5, affecting the subsequent process, after the aluminum nitride is plated, the photoresist is removed to obtain the patterned aluminum nitride on the patterned glass substrate 2.
  • Method 2 firstly, aluminum nitride is plated on the surface of the glass substrate 5, and then photoresist is prepared on the surface of the aluminum nitride, and the photoresist is patterned and developed, and the glass substrate 5 coated with the aluminum nitride layer is etched after development to prepare A patterned glass substrate 2 having a patterned aluminum nitride layer 2a.
  • the glass substrate 5 of the present invention is subjected to patterning treatment and then plated with aluminum nitride, on the one hand, the adhesion of the aluminum nitride directly adhered to the glass substrate 5 is improved, and on the other hand, the glass substrate 5 can be increased in surface area by pattern processing.
  • the heat dissipation effect is improved, and the patterning of the glass and the patterning of the aluminum nitride are performed because the patterns are all nanometer-scale.
  • the surface of the glass substrate 5 is coated with the fluorescent glue 4 in the later preparation of the LED light source 9, the fluorescent rubber particles are coated. Larger ones will not penetrate into the pattern area, and the air holes will be formed between the substrate pattern and the fluorescent glue 4.
  • the LED light source 9 is in operation, the air in the air holes is affected by the thermal energy in the working state of the LED light source 9, and the gas is continuously convected by the high speed. Accelerate substrate heat dissipation.
  • the electrode is prepared on the glass substrate 5, the LED chip 1 is adhered, the chip 1 and the chip 1 are connected, and the chip 1 and the electrode are connected by the lead 3. After the lead 3 is connected, the surface of the glass substrate 5 is removed from the electrode area. The other parts are coated with the fluorescent glue 4, and cover the entire LED chip 1 and all the leads 3, so as to maximize the excitation of the LED chip 1 and effectively protect the lead 3 from being touched, and avoid the lead wire 3 from being disconnected.
  • Group E is an LED bulb prepared by patterning an aluminum nitride layer according to the technical solution of the present invention on the basis of Group D.
  • the quality, quantity and performance parameters of the chip 1 in each group of LED bulbs are the same.
  • the surface temperature of the lampshade 10, the surface temperature of the light source, and the luminous flux value are recorded, and the average value of each group is calculated (the average value is taken after one decimal point), and the test results of temperature and luminous flux of various LED bulbs shown in FIG. 6 are recorded. table.
  • Each group of LED bulbs are 1.2w; LED drive type: RC drive; test equipment: 1 meter integrating sphere, Pomeranian TMC-16 temperature inspection instrument (K-type surface thermocouple probe + standard thermocouple probe); Test environment: LED laboratory, ambient temperature 26 ° C, ambient relative humidity 75%.
  • the LED light source 9 is prepared, and the thickness of the glass piece is selected to be 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm, 1.1 mm, and 1.2 mm, each of which has a thickness of 15 each.
  • Two electrodes are disposed on the glass substrate 5, and the chip 1 is fixed on the substrate with the fluorescent glue 4, and the lead 3 is connected between the chip 1 and the chip 1, the chip 1 and the electrode, and the glass substrate 5, the chip 1, and the lead 3 are connected.
  • the fluorescent glue 4 is directly coated to prepare an LED light source 9.
  • the initial luminous flux value and the stable luminous flux value of the LED bulb are measured, and the thermal deposition rate is calculated.
  • the average value of each thickness of the substrate is calculated and recorded, as shown in FIG. 7 .
  • the remaining LED light source 9 is used to prepare an LED candle light, and the thermal stacking rate is also calculated as described above, as shown in FIG. (The higher the thermal buildup, the lower the luminous flux when it reaches a stable value)
  • the thermal accumulation of the LED light source 9 of the present invention is about 12%, which is almost half after the preparation of the bulb bulb of the invention.
  • the inventors of the present invention have found in numerous experiments that the thickness of the glass substrate 5 of the LED light source 9 is prepared later.
  • the thermal stacking rate of the LED bulb and the LED candle bulb of the invention has a great influence, but the glass substrate 5 is not as thick as possible, and is not as thin as possible, but has a certain thickness interval when the glass is When the thickness of the substrate 5 is controlled between 0.5 mm and 1.1 mm, the LED bulb of the present invention has the lowest thermal deposition rate.

Abstract

一种LED球泡灯及其制备方法,该制备方法包括以下步骤:步骤A:制备LED光源(9);步骤B:固定LED光源(9)。该LED球泡灯包括LED光源(9)、支架(11)、灯罩(10)、灯座(7)及电源(8),该LED光源(9)设置在支架(11)上,放置于灯罩(10)内,LED光源(9)通过电源线与电源(8)连接,电源(8)固定于灯座内。属于LED照明灯具应用技术领域,不但节约了成本,同时简化了制备工艺。

Description

一种LED球泡灯及其制备方法 技术领域
本发明涉及 LED 灯具应用技术领域,尤其是涉及一种 LED 球泡灯及其制备方法。
背景技术
从市场角度分析,LED球泡灯一般都采用球形或类球形灯泡,其最大的市场是民用市场,因市民用的最多的是球形灯炮,LED球泡灯是替代传统白炽灯泡的新型的绿色光源。
从政府层面分析,传统白炽灯(钨丝灯)耗能高、寿命短,在全球资源紧张的大环境下下,已渐渐被各国政府禁止生产,随之替代产品是电子节能灯,电子节能灯虽然提高了节能效果,但由于使用了诸多污染环境的重金属元素,又有悖于环境保护的大趋势,在全球都注重环境保护的大前提下,这一污染环境的产品必须被淘汰。
随着LED技术的高速发展,LED照明逐渐成为新型绿色照明的不二之选,LED在发光原理、节能、环保的层面上都远远优于传统照明产品。
技术问题
目前传统的LED球泡灯主要由以下部件组成: 1、玻璃罩或者是亚克力罩;2、透镜;3、散热器;4、铝基板;5、电源预装腔体(一般在散热器里面);6、塑料连接件(主要起绝缘作用);7、灯座接口(分E27、M16等);8、光源:光源又分颗粒型和大功率集成型两大类;9、电源。机构复杂,组装麻烦,并且成本昂贵,是目前制约LED球泡灯市场进一步取代白炽灯的一个最为关键性的因素,所以有待于我们去寻找一种组装简单,并能降低成本,更为重要的是能进一步提高LED球泡灯性能的新技术,以实现LED球泡灯在全球民用市场完全替代其他类球泡灯。
技术解决方案
本发明的发明人提供了一种LED球泡灯及其制备方法,以简化目前LED球泡灯的复杂结构,同时降低成本,进一步提高LED球泡灯的性能。
为解决上述技术问题,本发明提供一种LED球泡灯的制备方法,包括以下步骤:
步骤A:制备LED光源
A1:选取玻璃基板,每个所述玻璃基板上至少设两个电极,用荧光胶将芯片固定在所述玻璃基板上;
A2:将芯片与芯片之间、芯片与电极之间用引线连接;
A3:将所述玻璃基板、所述芯片以及所述引线上均直接包覆荧光胶;
步骤B:固定LED光源
B1:选取带玻璃底座的玻璃中空支架,所述玻璃玻璃底座内熔融固定有两根导电线,每根所述导电线的一端从玻璃中空支架内引出与所述LED光源相连接,每根所述导电线另一端从所述玻璃底座引出分别与电源的正负极相连接;
B2:选取玻璃灯罩,把固定有LED光源的支架放置于所述玻璃灯罩内,将所述玻璃底座与所述玻璃灯罩熔融密封;
B3:通过所述玻璃中空支架将玻璃灯罩内的空气排空,并注入氦气和氮气的混合气体;
B4:将所述玻璃中空支架熔融密封,使灯罩内气体压力在室温下控制在0.05-0.15MPa之间;
B5:将设置于灯座内的电源与玻璃底座的导电线电性连接,并把灯座与灯罩固定连接。
本发明的一个实施例中,当只有一个LED光源时,用于与LED光源相连并固定LED光源的导电线分别与该LED光源的两个电极电性连接。
本发明的一个实施例中,当有两个以上LED光源时,光源数量为N,X+Y=N,X、Y均为整数,各LED光源相互电性连接并固定在所述玻璃中空支架非底座端,其中,X个LED光源P极引出与电源正极电性连接并固定,Y个LED光源N极引出与电源负极电性连接并固定。
上述实施例中,所述光源数量N为偶数,并且X=Y。
本发明的一个实施例中,氦气和氮气的混合气体的气体体积比在5:1-2:1之间。
本发明的一个实施例中,所述的电极是在PVD内中空溅镀,先在玻璃基板上溅镀一层Cr,再在Cr层上溅镀一层Ni,制备成电极。
上述实施例中,在溅镀过程中电压控制在300V-600V之间,电流控制在4A-8A之间,腔体压力为5*10-3Pa,时间为0.5小时-1.0小时。
上述实施例中,Cr层的厚度为0.5-1μm,Ni层的厚度为50-100nm。
本发明的一个实施例中,玻璃基板按不同宽度分玻璃片和玻璃丝,玻璃片的宽度大于玻璃丝的宽度,玻璃片的厚度在0.5-1.1mm之间;玻璃丝的宽度在0.5mm-10mm之间,玻璃丝的厚度在0.3mm-1.2mm之间。
上述实施例中,玻璃丝的厚度在0.3mm-0.6mm之间。
本发明的一个实施例中,所述LED光源与导电线电性连接固定,是通过在导电线上制备外引电极,LED光源上玻璃基板上的电极插卡式固定于导电线上的外引电极上。
此外,本发明还提供一种应用上述所述的LED球泡灯制备方法制备的LED球泡灯,包括LED光源、支架、灯罩、灯座及电源,其特征在于所述灯罩为玻璃灯罩,所述的支架为玻璃中空支架并有玻璃底座,所述LED光源设置在所述支架上,并安装在所述玻璃灯罩内,所述电源设置于所述灯座内,所述灯座与所述玻璃灯罩固定并形成密闭空间,所述LED光源的导电线经所述玻璃底座与所述灯座内的电源导通连接,所述玻璃灯罩内充有氦气和氮气的混合气体,气体体积比为5:1-2:1之间,气体压力在室温下控制在0.05-0.15MPa之间。
本发明的一个实施例中,所述的LED光源由一个以上单独的LED光源组成,每个LED光源由两颗以上的芯片通过荧光胶固定于玻璃基板上,通过引线导通,除玻璃基板的电极处外,在玻璃基板、芯片以及引线的表面均涂覆荧光胶封装而成的。
本发明的一个实施例中,所述的玻璃基板为图形化玻璃基板,所述图形化玻璃基板为阵列式周期性排列的凸起半球形、圆锥形、尖锥形、多面体锥形或蒙古包形的形状,凸起周期为1μm-10μm,底面宽度为5μm-25μm,高度为0.1μm-5μm。
本发明的一个实施例中,所述图形化玻璃基板进一步包含一层图形化的氮化铝层,所述图形化的氮化铝层为网状空隙式图形化结构,空隙部分为规则等边三角形或正等边多边形,每条边长大于0.8μm,面积在10μm²-1000μm²之间,相邻空隙之间的距离不超过10μm,氮化铝层的厚度在500-3000埃之间。
本发明通过荧光胶的包覆可有效激发LED芯片在工作状态的出光,同时又可对引线进行固定保护,避免了引线受外界因素的影响出现脱线死灯现象;本发明通过在导电线上制备外引电极,LED光源上玻璃基板上的电极插卡式固定于导电线上的外引电极上。由于玻璃基板其材料的限制在上面直接制备LED芯片的外引电极非常困难,一般情况下均是将金属外引电极用粘结胶或焊锡灯材料粘接在玻璃基板上,这种方式简单、成本低廉、工艺易于实现,但是其存在极大的弊端,这类方式抗高温性特别差。本发明采用插卡式固定外引电极,既保证了外引电极与玻璃基板电极的良好接触,又避免了粘贴连接不耐高温的弊端。同时也降低了灯片电极制造的难度,降低了成本。
本发明发现不同厚度的玻璃基板对LED球泡灯有不同的影响,玻璃基板按不同宽度分玻璃片和玻璃丝,玻璃片的宽度大于玻璃丝的宽带。玻璃片厚度控制在0.5-1.1mm之间,本发明LED球泡灯效果最佳。本发明一方面可降低导电线串动使LED光源不稳定,另一方面提高密封效果。为简化目前传统的LED球泡灯结构,
本发明玻璃基板经图形化处理后再镀氮化铝,一方面提高了氮化铝直接附着在玻璃基板上的附着力,另一方面玻璃基板通过图形化处理可增加了其表面积,提高了其散热效果,同时玻璃的图形化及氮化铝的图形化,因其图形均为纳米级,虽后期在LED光源制备时玻璃基板表面涂覆荧光胶,但因荧光胶颗粒比较大不会渗入图形区域,使基板图形与荧光胶之间形成气孔,在LED光源工作状态下气孔中的空气因受LED光源工作状态下的热能影响,通过气体不断地高速对流而加速基板散热。
附图说明
本发明的附图是为了对本发明进一步说明,而非对本发明发明范围的限制。
图1 本发明LED光源黏贴有LED芯片的玻璃基板示意图;
图2 本发明LED光源示意图;
图3本发明LED光源示意图;
图4本发明玻璃丝LED球泡灯示意图;
图5本发明玻璃片LED球泡灯示意图;
图6本发明的各种LED球泡灯进行温度及光通量的测试结果表;
图7本发明的不同厚度玻璃片的LED球泡灯的热分析表。
【符号简单说明】
1芯片 2图形化玻璃基板
2a图形化氮化铝层 3引线 4荧光胶
5玻璃基板 6电极 7灯座 8电源
9 LED光源 10灯罩 11支架 12气体
13外引电极 14导电线。
本发明的最佳实施方式
本发明的实施例是为了对本发明进一步说明,而非对本发明的发明范围的限制。
请配合参阅图1至图5所示,本发明一种LED球泡灯及其制备方法,其中,LED球泡灯的制备方法如下:首先从光源开始,选取玻璃作为基板,替换传统的铝基板以提高LED芯片的出光效率,因传统的铝基板在光源工作状态下,LED芯片背面的出光几乎尽失,本发明选取几乎全透光的玻璃作为基板,可实现LED芯片1全角度出光。在每个玻璃基板5上至少设有两个电极6,用于之后与LED芯片1电性连接,本发明的LED芯片1选用荧光胶4固定于玻璃基板5表面,对芯片1与芯片1、芯片1与电极6之间利用金属引线3进行电性连接,在玻璃基板5(除电极部位)、芯片1、引线3上均包覆荧光胶4,通过荧光胶4的包覆可有效激发LED芯片1在工作状态的出光,同时又可对引线3进行固定保护,以免引线3受外界因素的影响出现脱线死灯现象。
本发明的玻璃基板5上的电极6是在PVD (Physical Vapor Deposition)内中空溅镀,为提高附着力,先在玻璃基板5上溅镀一层Cr,再在Cr层上溅镀一层Ni,制备成电极6。溅镀过程中电压控制在300V-600V之间,电流控制在4A-8A之间,腔体压力为5*10-3Pa,时间为0.5小时-1.0小时。Cr层的厚度为0.5-1μm,Ni层的厚度为50-100nm。
发明人经试验发现LED光源9与导电线14电性连接固定,最好是通过在导电线14上制备外引电极13,LED光源9上玻璃基板5上的电极6插卡式固定于导电线上的外引电极13上。由于玻璃基板5其材料的限制在上面直接制备LED芯片1的外引电极13非常困难,一般情况下均是将金属外引电极13用粘结胶或焊锡灯材料粘接在玻璃基板5上,这种方式简单、成本低廉、工艺易于实现,但是其存在极大的弊端,这类方式抗高温性特别差。本发明的LED球泡灯为保证真空密封,把LED光源9放入灯罩10内后,需要经过玻璃灯罩10与玻璃支架11底座高温熔融熔封,温度约为250℃左右,在这种高温环境中通过粘接方式固定外引电极13的,其极易与玻璃基板5脱落而造成死灯。本发明采用插卡式固定外引电极13,可在保证外引电极13与玻璃基板5电极的良好接触,又避免了粘贴连接不耐高温的弊端。同时也降低了灯片电极制造的难度,降低了成本。
发明人发现不同厚度的玻璃基板5对LED球泡灯有不同的影响,玻璃基板5按不同宽度分玻璃片和玻璃丝,玻璃片的宽度大于玻璃丝的宽带。玻璃片厚度控制在0.5-1.1mm之间,本发明LED球泡灯效果最佳。玻璃丝的宽度为0.5mm-10mm之间,其厚度为0.3mm-1.2mm之间,优选为0.3mm-0.6mm。
对制备完的LED光源9进行固定,为提高光效及后续LED灯的密封,选取带玻璃底座的玻璃中空支架,玻璃支架底座内熔融固定有两根导电线14,导电线14两端均从支架11引出,导电线14一端与LED光源9相连用于固定LED光源9一端,导电线14另一端从支架11底座引出分别用于与电源8的正负相连接,导电线14通过玻璃支架底座的熔融固定,一方面可降低导电线14串动使LED光源9不稳定,另一方面提高密封效果。
当本发明的LED球泡灯只设有一个LED光源9时,上述用于与LED光源9相连并固定LED光源9的导电线14分别与这个LED光源9的两个电极电性连接;当本发明的LED球泡灯设有两个或两个以上LED光源9时,LED光源9总数为N,假设X+Y=N,X、Y均为整数,各LED光源9一端相互电性连接并固定在玻璃支架非底座端,另一端为X个LED光源9P极引出与电源8正极电性连接并固定,Y个LED光源9N极引出与电源8负极电性连接并固定。与正负电源线连接固定部分一般在玻璃支架底座部位。
选取球泡灯需用的玻璃灯罩10,把固定有LED光源9的支架11放置于玻璃灯罩10内,支架11底座与玻璃灯罩10熔融密封连接,通过玻璃支架中空部位把玻璃灯罩10内的空气排空,可防止原空气内的气体后期对LED光源9产生不利影响,对玻璃灯罩10内注入氦气和氮气的混合气体,气体体积比为5:1-2:1之间,把支架11熔融密封,使灯罩10内气体压力在室温下控制在0.05-0.15MPa之间。当玻璃灯罩10内的氦气和氮气的混合气体体积比为5:1-2:1之间,压力在室温下控制在0.05-0.15MPa之间时,使LED球泡灯在工作状态下散热效果最佳,把设置于灯座7内的电源8与支架11底座的导电线14电性连接,并把灯座7与灯罩10固定连接。实现LED球泡灯的制备。
为简化目前传统的LED球泡灯结构,本发明的LED球泡灯仅由LED光源、支架11、灯罩10、灯座7及电源8组成,从结构上LED光源9设置在支架11上,放置于灯罩10内,电源8设置于支架11的灯座7内,支架的灯座7与玻璃灯罩10固定并形成密闭空间,LED光源9的导电线14延支架底座与灯座7内的电源8导通连接,灯罩10内充有氦气和氮气的混合气体,气体体积比为5:1-2:1之间,气体压力在室温下控制在0.05-0.15MPa之间。
本发明的LED球泡灯,其每个LED光源9可由两颗或两颗以上的芯片1通过荧光胶4固定于玻璃基板5上,进行引线3导通,在玻璃基板5及芯片1、引线3,除玻璃基板5的电极处,表面均涂覆荧光胶4封装而成的。
本发明的LED球泡灯,其LED光源9的玻璃基板5为增加玻璃基板5的表面积,提高散热,玻璃基板5可为图形化玻璃基板2,为使其散热效果优化其图形化为阵列式周期性排列的凸起半球形、圆锥形、尖锥形、多面体锥形或蒙古包形的形状,凸起周期为1μm-10μm,底面宽度为5μm-25μm,高度为 0.1μm-5μm;图形化玻璃基板2进一步包含一层图形化的氮化铝层,其图形为网状空隙式图形化结构,空隙部分为规则等边三角形或正等边多边形,每条边长大于0.8μm,面积在10μm²-1000μm²之间,相邻空隙之间的距离不超过10μm;在玻璃上制备氮化铝层时温度不超过130℃,氮化铝层的厚度为500-3000埃之间,为提高玻璃基板蚀刻效果,玻璃基板5在蚀刻前用酸液清洗表面,所述的酸液为酸与水的体积比为1:5-1:10之间,所述的酸为后续进行蚀刻玻璃基板5的酸,选自盐酸或磷酸或硫酸,蚀刻时间为3-8min。玻璃基板5制备包括以下两种方法:方法一、先制备图形化玻璃板5,对玻璃基板5进行酸液清洗后制备光阻,对光阻进行图形化显影后进行蚀刻,蚀刻出所需图形后对图形化的玻璃基板2再制备光阻,对光阻进行图形化显影后镀氮化铝,此时镀氮化铝的过程中全程温度均控制在130℃以下,以免负光阻因温度过高而焦化于玻璃基板5表面,影响后续工艺,镀完氮化铝后去除光阻得图形化玻璃基板2上的图形化氮化铝。方法二、在玻璃基板5表面先镀氮化铝,而后在氮化铝表面制备光阻,对光阻进行图形化显影,显影后对镀有氮化铝层的玻璃基板5进行蚀刻,制备成具有图形化氮化铝层2a的图形化玻璃基板2。本发明玻璃基板5经图形化处理后再镀氮化铝,一方面提高了氮化铝直接附着在玻璃基板5上的附着力,另一方面玻璃基板5通过图形化处理可增加了其表面积,提高了其散热效果,同时玻璃的图形化及氮化铝的图形化,因其图形均为纳米级,虽后期在LED光源9制备时玻璃基板5表面涂覆荧光胶4,但因荧光胶颗粒比较大不会渗入图形区域,使基板图形与荧光胶4之间形成气孔,在LED光源9工作状态下气孔中的空气因受LED光源9工作状态下的热能影响,通过气体不断地高速对流而加速基板散热。
本发明的一个LED球泡灯内的LED光源9数量如果大于1,并且各LED光源9均一样,假定LED光源9数量为N,X+Y=N,X、Y均为整数,N为偶数,并且X=Y。但X=Y时各LED光源9的电性参数最接近,相对该LED球泡灯工作状态下各项性能最稳定。
实施例1 玻璃基板
选择玻璃基板5,对玻璃基板5表面进行掩膜蚀刻,蚀刻出阵列式周期性排列的蒙古包形凸起,凸起周期为5μm左右,底面宽度为10μm左右,高度为 2.5μm左右。在图形化玻璃基板2表面镀上氮化铝层,而后进行掩膜蚀刻,蚀刻出网状空隙式图形化结构,空隙部分为规则等边六边形,边长为3μm左右,相邻空隙之间的距离为3μm-7μm左右。在玻璃基板5表制备电极,黏贴固定LED芯片1,芯片1与芯片1之间,芯片1与电极之间通过引线3连接,引线3连接完后,在玻璃基板5表面除电极区域外,其他部位均涂覆荧光胶4,并包覆整个LED芯片1及所有引线3,以达到最大程度地激发LED芯片1的出光并有效保护引线3不受触碰,避免引线3脱线死灯。
实施例2 各种LED球泡灯试验数据对比
对以下各种LED球泡灯进行试验,分5组进行,每组分别用15个灯,A组为传统LED球泡灯,由玻璃罩、透镜、散热器、铝基板、电源8预装腔体、塑料连接件、灯座接口、光源、电源8组成;B组为按本发明用玻璃基板5,密封玻璃灯罩10内充气方法制备的LED球泡灯;C组为在B组基础上把玻璃基板5按本发明方法进行蚀刻,蚀刻成图形化的基板制备成LED球泡灯;D组为在C组制备方法的基础上在图形化基板表面镀有一层氮化铝层制备成的LED球泡灯;E组为在D组的基础上按本发明的技术方案对氮化铝层进行图形化处理后制备成的LED球泡灯。各组LED球泡灯内的芯片1质量、数量、各项性能参数均一样,我们对各LED球泡灯进行温度及光通量的测试,在各组LED球泡灯点亮后稳定状态下测试其灯罩10表面温度、光源表面温度及光通量值并进行记录,计算各组平均值(平均值取小数点后面一位),记入图6所示的各种LED球泡灯进行温度及光通量的测试结果表。
各组LED球泡灯均为1.2w;LED驱动类型:阻容驱动;测试设备:1米积分球、普美TMC-16温度巡检仪(K型表面热电偶探头+标准热电偶探头);测试环境:LED实验室,环境温度26℃,环境相对湿度75%。
从图6的图表中可知,通过利用本发明的技术方案制备的LED球泡灯,虽然光源表面温度比传统略有偏高,但其光通量值得到了有效的提高,综合温度及光通量参数,E组的LED球泡灯效果最佳。
实施例3 不同厚度玻璃片的LED球泡灯的热分析实验
使用相同1023芯片1,不同基板厚度,分别在空气中量测LED光源9,再使用相同光源装进球泡灯,抽真空后再填充混气后密封,分别测量点亮后的初始光通量及稳定后的光通量,并计算热堆积率,推导出不同厚度的玻璃基板5对LED球泡灯影响状况。
制备LED光源9,选取玻璃片厚度各为0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm,每种厚度各15个,每个玻璃基板5上设有两个电极,在基板上用荧光胶4固定芯片1,对芯片1与芯片1、芯片1与电极之间进行引线3连接,在玻璃基板5、芯片1、引线3上均直接包覆荧光胶4,制备成LED光源9,各种厚度的玻璃基板5随机均抽取5个,分别测定各LED光源9的初始光通量值、稳定光通量值计算热堆积率,热堆积率= (初始光通量值-稳定光通量)/初始光通量值,对每种厚度基板计算平均值并进行记录,具体如图7所示的不同厚度玻璃片的LED球泡灯的热分析表,同时每种LED光源9随机各抽取5个制备LED球泡灯,每个LED光源9固定于一个玻璃支架上后放置入一个玻璃灯罩10内,进行密封,并均充入压力为0.10MPa,体积比为3:1的氦气和氮气的混合气体,把设置于灯座7内的电源8与支架11底座的导电线14电性连接,并把灯座7与灯罩10固定连接,制备成本发明的LED球泡灯后再测定LED球泡灯的初始光通量值、稳定光通量值,计算热堆积率,对每种厚度基板计算平均值并进行记录,具体见图7。剩下的LED光源9用于制备LED烛泡灯,按上述方法同样计算热堆积率进行记录,见图7。(热堆积越大到达稳定值时的光通量越低)
本发明LED光源9的热堆积约在12%,制备成本发明的球泡灯泡之后几乎降了一半,但经本发明的发明人无数次实验发现,LED光源9的玻璃基板5的厚度对后期制备成本发明的LED球泡灯、LED烛泡灯的热堆积率有非常大的影响,但并不是玻璃基板5越厚越好,也不是越薄越好,而是有一定的厚度区间,当玻璃基板5的厚度控制在0.5mm-1.1mm之间时,本发明的LED球泡灯热堆积率最低。
以上仅为本发明的较佳实施例,当不得以此限定本发明实施的技术范围,因此凡参考本实用新型的说明书内容所作的简单等效变化与修饰,皆应仍属本发明的保护范围。

Claims (15)

  1. 一种LED球泡灯的制备方法,其特征在于包括以下步骤:
    步骤A:制备LED光源
    A1:选取玻璃基板,每个所述玻璃基板上至少设两个电极,用荧光胶将芯片固定在所述玻璃基板上;
    A2:将芯片与芯片之间、芯片与电极之间用引线连接;
    A3:将所述玻璃基板、所述芯片以及所述引线上均直接包覆荧光胶;
    步骤B:固定LED光源
    B1:选取带玻璃底座的玻璃中空支架,所述玻璃底座内熔融固定有两根导电线,每根所述导电线的一端从玻璃中空支架内引出与所述LED光源相连接,每根所述导电线另一端从所述玻璃底座引出分别与电源的正负极相连接;
    B2:选取玻璃灯罩,把固定有LED光源的支架放置于所述玻璃灯罩内,将所述玻璃底座与所述玻璃灯罩熔融密封;
    B3:通过所述玻璃中空支架将玻璃灯罩内的空气排空,并注入氦气和氮气的混合气体;
    B4:将所述玻璃中空支架熔融密封,使灯罩内气体压力在室温下控制在0.05-0.15MPa之间;
    B5:将设置于灯座内的电源与玻璃底座的导电线电性连接,并把灯座与灯罩固定连接。
  2. 根据权利要求1所述的LED球泡灯的制备方法,其特征在于当只有一个LED光源时,用于与LED光源相连并固定LED光源的导电线分别与该LED光源的两个电极电性连接。
  3. 根据权利要求1所述的LED球泡灯的制备方法,其特征在于当有两个以上LED光源时,光源数量为N,X+Y=N,X、Y均为整数,各LED光源相互电性连接并固定在所述玻璃中空支架非底座端,其中,X个LED光源P极引出与电源正极电性连接并固定,Y个LED光源N极引出与电源负极电性连接并固定。
  4. 根据权利要求3所述的LED球泡灯的制备方法,其特征在于所述光源数量N为偶数,并且X=Y。
  5. 根据权利要求1所述的LED球泡灯的制备方法,其特征在于氦气和氮气的混合气体的气体体积比在5:1-2:1之间。
  6. 根据权利要求1所述的LED球泡灯的制备方法,其特征在于所述的电极是在PVD内中空溅镀,先在玻璃基板上溅镀一层Cr,再在Cr层上溅镀一层Ni,制备成电极。
  7. 根据权利要求6所述的LED球泡灯的制备方法,其特征在于在溅镀过程中电压控制在300V-600V之间,电流控制在4A-8A之间,腔体压力为5*10-3Pa,时间为0.5小时-1.0小时。
  8. 根据权利要求6所述的LED球泡灯的制备方法,其特征在于Cr层的厚度为0.5-1μm,Ni层的厚度为50-100nm。
  9. 根据权利要求1所述的LED球泡灯的制备方法,其特征在于玻璃基板按不同宽度分玻璃片和玻璃丝,玻璃片的宽度大于玻璃丝的宽度,玻璃片的厚度在0.5-1.1mm之间;玻璃丝的宽度在0.5mm-10mm之间,玻璃丝的厚度在0.3mm-1.2mm之间。
  10. 根据权利要求9所述的LED球泡灯的制备方法,其特征在于玻璃丝的厚度在0.3mm-0.6mm之间。
  11. 根据权利要求1所述的LED球泡灯的制备方法,其特征在于所述LED光源与导电线电性连接固定,是通过在导电线上制备外引电极,LED光源上玻璃基板上的电极插卡式固定于导电线上的外引电极上。
  12. 一种应用权利要求1-11任一项所述的LED球泡灯制备方法制备的LED球泡灯,包括LED光源、支架、灯罩、灯座及电源,其特征在于所述灯罩为玻璃灯罩,所述的支架为玻璃中空支架并有玻璃底座,所述LED光源设置在所述支架上,并安装在所述玻璃灯罩内,所述电源设置于所述灯座内,所述灯座与所述玻璃灯罩固定并形成密闭空间,所述LED光源的导电线经所述玻璃底座与所述灯座内的电源导通连接,所述玻璃灯罩内充有氦气和氮气的混合气体,气体体积比为5:1-2:1之间,气体压力在室温下控制在0.05-0.15MPa之间。
  13. 根据权利要求12所述的LED球泡灯,其特征在于所述的LED光源由一个以上单独的LED光源组成,每个LED光源由两颗以上的芯片通过荧光胶固定于玻璃基板上,通过引线导通,除玻璃基板的电极处外,在玻璃基板、芯片以及引线的表面均涂覆荧光胶封装而成的。
  14. 根据权利要求13所述的LED球泡灯,其特征在于所述的玻璃基板为图形化玻璃基板,所述图形化玻璃基板为阵列式周期性排列的凸起半球形、圆锥形、尖锥形、多面体锥形或蒙古包形的形状,凸起周期为1μm-10μm,底面宽度为5μm-25μm,高度为0.1μm-5μm。
  15. 根据权利要求14所述的LED球泡灯,其特征在于所述图形化玻璃基板进一步包含一层图形化的氮化铝层,所述图形化的氮化铝层为网状空隙式图形化结构,空隙部分为规则等边三角形或正等边多边形,每条边长大于0.8μm,面积在10μm²-1000μm²之间,相邻空隙之间的距离不超过10μm,氮化铝层的厚度在500-3000埃之间。
PCT/CN2014/084508 2013-09-30 2014-08-15 一种led球泡灯及其制备方法 WO2015043330A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016544701A JP2016533625A (ja) 2013-09-30 2014-08-15 Led電球及びその製法
US14/395,081 US20160258580A1 (en) 2013-09-30 2014-08-15 Led light bulb and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310459326.6 2013-09-30
CN201310459326.6A CN103822114B (zh) 2013-09-30 2013-09-30 一种led球泡灯及其制备方法

Publications (1)

Publication Number Publication Date
WO2015043330A1 true WO2015043330A1 (zh) 2015-04-02

Family

ID=50757314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084508 WO2015043330A1 (zh) 2013-09-30 2014-08-15 一种led球泡灯及其制备方法

Country Status (4)

Country Link
US (1) US20160258580A1 (zh)
JP (1) JP2016533625A (zh)
CN (1) CN103822114B (zh)
WO (1) WO2015043330A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822114B (zh) * 2013-09-30 2016-05-18 亚浦耳照明股份有限公司 一种led球泡灯及其制备方法
CN104089198A (zh) * 2014-06-19 2014-10-08 常州阿拉丁照明电器有限公司 单端玻璃型360度发光led灯
CN104538386A (zh) * 2014-10-08 2015-04-22 安徽世林照明股份有限公司 一种led球泡灯制造方法
WO2016061813A1 (zh) * 2014-10-24 2016-04-28 苏州汉克山姆照明科技有限公司 具有中空式led发光体的灯泡
TWM513319U (zh) * 2015-06-24 2015-12-01 Lediamond Opto Corp 光學模組更換型燈具
CN105179983A (zh) * 2015-10-26 2015-12-23 苏州汉克山姆照明科技有限公司 一种兼具展示功能的灯泡
CN106090660A (zh) * 2016-06-20 2016-11-09 许昌虹榕节能电器设备有限公司 一种节能灯的灯丝
CN106969275B (zh) * 2017-04-01 2022-11-04 浙江阳光美加照明有限公司 一种小灯头外绝缘套的安装机构及安装方法
CN107514553A (zh) * 2017-07-31 2017-12-26 浙江亿米光电科技有限公司 一种带自成型led光源的灯泡
CN219287775U (zh) * 2022-04-27 2023-06-30 徐晓军 一种多色温灯具
CN217763108U (zh) * 2022-06-22 2022-11-08 任菊辉 一种智能多色的led调光灯片模组、灯泡及灯串
CN217422972U (zh) * 2022-06-30 2022-09-13 东莞市辉环照明有限公司 一种包覆扩口式灯具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201757303U (zh) * 2010-07-17 2011-03-09 向海鹏 一种插接式led灯
JP4657364B1 (ja) * 2009-12-24 2011-03-23 シーシーエス株式会社 Led光源装置
CN102374392A (zh) * 2010-08-11 2012-03-14 液光固态照明股份有限公司 Led照明灯具的制造方法
CN102913787A (zh) * 2012-09-26 2013-02-06 厦门华联电子有限公司 一种新型的led光源及采用此光源制造的灯泡
CN102980054A (zh) * 2011-09-07 2013-03-20 王元成 一种led灯泡
CN103822114A (zh) * 2013-09-30 2014-05-28 孙明 一种led球泡灯及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101006031B (zh) * 2004-08-18 2012-06-20 株式会社德山 用于安装发光元件的副安装件用陶瓷基板及其制造方法
JP2009277586A (ja) * 2008-05-16 2009-11-26 San Corporation Kk 電球型led照明器具
CN101994919A (zh) * 2009-08-10 2011-03-30 林万炯 具有散热电路板的led灯
EP2597354B1 (en) * 2010-07-20 2016-12-28 Panasonic Intellectual Property Management Co., Ltd. Lightbulb shaped lamp
CN102109115B (zh) * 2010-12-29 2012-08-15 浙江锐迪生光电有限公司 一种P-N结4π出光的高压LED及LED灯泡
CN202281062U (zh) * 2011-08-29 2012-06-20 浙江锐迪生光电有限公司 一种LED芯片4π出光的高显色指数LED灯泡
CN103080631A (zh) * 2011-01-14 2013-05-01 松下电器产业株式会社 灯及照明装置
CN103322453A (zh) * 2013-06-08 2013-09-25 杭州杭科光电股份有限公司 一种全空间均匀发光的led光源模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4657364B1 (ja) * 2009-12-24 2011-03-23 シーシーエス株式会社 Led光源装置
CN201757303U (zh) * 2010-07-17 2011-03-09 向海鹏 一种插接式led灯
CN102374392A (zh) * 2010-08-11 2012-03-14 液光固态照明股份有限公司 Led照明灯具的制造方法
CN102980054A (zh) * 2011-09-07 2013-03-20 王元成 一种led灯泡
CN102913787A (zh) * 2012-09-26 2013-02-06 厦门华联电子有限公司 一种新型的led光源及采用此光源制造的灯泡
CN103822114A (zh) * 2013-09-30 2014-05-28 孙明 一种led球泡灯及其制备方法

Also Published As

Publication number Publication date
JP2016533625A (ja) 2016-10-27
CN103822114B (zh) 2016-05-18
CN103822114A (zh) 2014-05-28
US20160258580A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
WO2015043330A1 (zh) 一种led球泡灯及其制备方法
CN101566323B (zh) 管型基元led和由管型基元led组成的照明装置
CN105226167B (zh) 一种全角度发光的柔性led灯丝及其制造方法
US10663117B2 (en) Multifunctional LED bulb
US20160238199A1 (en) Light bulb with led symbols
CN103904197B (zh) 一种led灯丝片及其制造方法以及led灯丝片灯泡
US20060003587A1 (en) Grinding method for a sapphire wafer
CN105485541A (zh) 一种全配光型led灯
US20100187961A1 (en) Phosphor housing for light emitting diode lamp
US20110254042A1 (en) Elongated lenses for use in light emitting apparatuses
CN207500850U (zh) Led灯丝与led球泡灯
WO2014090156A1 (zh) 发光二极管封装结构与其制造方法
US20110256647A1 (en) Methods of manufacturing elongated lenses for use in light emitting apparatuses
CN207116466U (zh) 一种GaN基倒装薄膜结构近紫外LED芯片
CN208521957U (zh) 一种防硫化led灯珠
CN104154444A (zh) 一种带有金属反射柱体的led灯
CN110085619A (zh) 一种垂直高压发光二极管芯片及其制作方法
WO2022267248A1 (zh) 一种灯条、led灯及发光装置
CN109087986A (zh) 一种柔性led器件及其制作方法、led灯丝
CN204042516U (zh) 一种带有金属反射柱体的led 灯
CN105870113A (zh) 一种led光源结构及其制备方法
CN106499975A (zh) Led灯珠及其制造方法
CN104518055A (zh) 发光二极管组件及制造方法
TWM266548U (en) Light emitting diode lamp
CN204407351U (zh) Led灯丝灯光源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14395081

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544701

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014849460

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849460

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849460

Country of ref document: EP

Kind code of ref document: A1