WO2015040729A1 - ハイブリッド車両の制御装置及び制御方法 - Google Patents

ハイブリッド車両の制御装置及び制御方法 Download PDF

Info

Publication number
WO2015040729A1
WO2015040729A1 PCT/JP2013/075422 JP2013075422W WO2015040729A1 WO 2015040729 A1 WO2015040729 A1 WO 2015040729A1 JP 2013075422 W JP2013075422 W JP 2013075422W WO 2015040729 A1 WO2015040729 A1 WO 2015040729A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
engine
vehicle
notification
engine speed
Prior art date
Application number
PCT/JP2013/075422
Other languages
English (en)
French (fr)
Inventor
敏矢 水嶋
良祐 伊東
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2013/075422 priority Critical patent/WO2015040729A1/ja
Priority to MX2016003556A priority patent/MX351367B/es
Priority to CN201380079712.0A priority patent/CN105579311B/zh
Priority to RU2016110078A priority patent/RU2627247C1/ru
Priority to MYPI2016700970A priority patent/MY177283A/en
Priority to JP2015537514A priority patent/JP6079889B2/ja
Priority to EP13893847.7A priority patent/EP3048020B1/en
Priority to US15/023,624 priority patent/US9802603B2/en
Publication of WO2015040729A1 publication Critical patent/WO2015040729A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/912Drive line clutch
    • Y10S903/914Actuated, e.g. engaged or disengaged by electrical, hydraulic or mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • Y10S903/918Continuously variable

Definitions

  • the present invention relates to a hybrid vehicle that uses an engine and a drive motor as a vehicle drive source, and more particularly, to switching control of notification / notification of an EV (Electric Vehicle) state using only the drive motor as a drive source.
  • EV Electric Vehicle
  • the instrument panel or the like makes the driver aware that the driver is in an energy-saving EV state using only the drive motor as a drive source. It is known that an EV display unit is provided to display that the vehicle is in the EV state.
  • Patent Document 1 when the engine rotational speed falls below a predetermined threshold value, it is determined that the engine is in the non-operating state, and the EV display unit indicates that the EV state (electric only mode) is present.
  • the technology is described.
  • the display / non-display of the EV display unit is switched based on only the engine speed as described above, for example, if the threshold value of the engine speed is set to a sufficiently low value, the EV state from the non-EV state (engine operating state) to the EV state When transitioning to (the engine non-operating state), although the engine is already rotating in the inertia state despite the transition to the EV state, the engine rotational speed does not easily fall below the threshold, and the EV display unit Switching from non-display to display tends to be delayed. Therefore, if the threshold value of the engine speed is set high, the engine speed may not exceed the threshold value at the transition from the EV state to the non-EV state although the engine has already been started. In such a case, switching to non-display of the EV display unit tends to be delayed.
  • the EV display unit switches from display to non-display before or after engine start. As a result, the display period of the EV display unit for recognizing and appealing to the driver that energy saving is achieved is shortened.
  • the present invention has been made in view of such circumstances, and has an object of appropriately switching between notification and non notification of an EV state.
  • the present invention is a hybrid vehicle that uses an engine and a traveling motor in combination as a vehicle drive source, and is an EV state in which only the traveling motor is used as a drive source. And an EV status indicator for reporting
  • an EV state in which only the traveling motor is the drive source is determined, and it is determined that the EV state is not the EV state, and the EV state alarm is not notified when the engine rotational speed is greater than a predetermined first threshold.
  • the EV state alarm is set to the notification state.
  • FIG. 1 is a configuration explanatory view showing a system configuration of a hybrid vehicle to which an embodiment of the present invention is applied.
  • the characteristic view showing the characteristic of the mode change of this hybrid vehicle.
  • FIG. 2 is a front view schematically showing an instrument panel of the hybrid vehicle.
  • 3 is a flowchart showing a flow of on / off control of the EV lamp of the present embodiment.
  • the timing chart which shows an example of operation
  • the timing chart which similarly shows the other example of operation
  • FIG. 1 is a configuration explanatory view showing a system configuration of an FF (front engine / front drive) type hybrid vehicle as an example of a hybrid vehicle to which the present invention is applied.
  • FF front engine / front drive
  • the hybrid vehicle includes an engine 1 and a motor generator 2 as a traveling motor as a drive source of the vehicle, and also includes a belt type continuously variable transmission 3 as a transmission mechanism.
  • a power transmission path between the engine 1 and the motor generator 2 includes a first clutch 4 that switches connection and disconnection of power transmission, and a power transmission path between the motor generator 2 and the belt type continuously variable transmission 3
  • a second clutch 5 is interposed to switch between connection and disconnection of transmission.
  • the engine 1 is made of, for example, a gasoline engine, and the start control and the stop control are performed based on the control command from the engine controller 20, the opening of the throttle valve is controlled, and the fuel cut control is performed.
  • the first clutch 4 provided between the output shaft of the engine 1 and the rotor of the motor generator 2 couples the engine 1 to the motor generator 2 or the engine 1 according to the selected traveling mode.
  • the engagement / disengagement is controlled by a first clutch hydraulic pressure generated by a hydraulic unit (not shown) based on a control command from the CVT controller 21.
  • the first clutch 4 is of a normally open type.
  • the motor generator 2 is formed of, for example, a three-phase AC synchronous motor generator, and is connected to a high power circuit 11 including a high voltage battery 12, an inverter 13 and a high power system relay 14.
  • Motor generator 2 receives a power supply from high voltage battery 12 via inverter 13 based on a control command from motor controller 22 and outputs a positive torque (so-called power running) and absorbs the torque.
  • the power generation is performed, and the regeneration operation of charging the high voltage battery 12 through the inverter 13 is performed.
  • the second clutch 5 provided between the rotor of the motor generator 2 and the input shaft of the continuously variable transmission 3 has power between the vehicle drive source including the engine 1 and the motor generator 2 and the drive wheels 6 (front wheels).
  • the engagement / disengagement is controlled by a second clutch hydraulic pressure generated by a hydraulic unit (not shown) based on a control command from the CVT controller 21.
  • the second clutch 5 can be brought into a slip engagement state in which power transmission is carried out with slippage by variable control of the transmission torque capacity, and smooth start is enabled in a configuration not equipped with a torque converter. At the same time, we are aiming to realize creeping.
  • the second clutch 5 is not actually a single friction element, but a forward clutch or a reverse brake in a forward / backward switching mechanism provided at the input portion of the continuously variable transmission 3 is used as the second clutch 5 .
  • the forward / backward switching mechanism which switches the input rotation direction to the continuously variable transmission 3 between the forward rotation direction during forward traveling and the reverse rotation direction during backward traveling, is not shown in detail, but the planetary gear mechanism and the forward traveling
  • the forward clutch includes the forward clutch engaged at a time and the reverse brake engaged during reverse travel.
  • the forward clutch functions as the second clutch 5 during forward travel
  • the reverse brake functions as the second clutch 5 during reverse travel. .
  • both the forward clutch and the reverse brake serving as the second clutch 5 are released, torque transmission is not performed, and the rotor of the motor generator 2 and the continuously variable transmission 3 are substantially disconnected.
  • both the forward clutch and the reverse brake are normally open type.
  • the belt-type continuously variable transmission 3 has a primary pulley on the input side, a secondary pulley on the output side, and a metal belt wound around the two, and is illustrated based on a control command from the CVT controller 21.
  • the belt contact radius of each pulley and thus the transmission ratio are continuously controlled by the primary hydraulic pressure and the secondary hydraulic pressure generated by the external hydraulic unit.
  • the output shaft of the continuously variable transmission 3 is connected to the drive wheel 6 via a final reduction mechanism (not shown).
  • the engine 1 includes a starter motor 25 for starting.
  • the starter motor 25 is a DC motor whose rated voltage is lower than that of the motor generator 2 and is connected to the weak electric circuit 15 including the DC / DC converter 16 and the low voltage battery 17.
  • the starter motor 25 is driven based on a control command from the engine controller 20 to perform cranking of the engine 1.
  • the low voltage battery 17 is charged via the DC / DC converter 16 with the power from the high voltage circuit 11 including the high voltage battery 12.
  • the control system of the vehicle including the engine controller 20 and the like, the air conditioner of the vehicle, the audio device, the illumination, and the like receive the power supply from the weak power circuit 15.
  • the control system of the hybrid vehicle includes the above-described engine controller 20, CVT controller 21 and motor controller 22, and an integrated controller 23 for performing integrated control of the entire vehicle.
  • These respective controllers 20, 21, 22, 23 are connected via a CAN communication line 24 capable of exchanging information with each other.
  • various sensors such as an accelerator opening sensor 31, an engine speed sensor 32 as an engine speed detector (engine speed detection means) for detecting an engine speed, a vehicle speed sensor 33, a motor speed sensor 34, etc.
  • the detection signals of these sensors are input to each controller such as the integrated controller 23 individually or via the CAN communication line 24.
  • the hybrid vehicle configured as described above has an electric vehicle travel mode (hereinafter referred to as “EV mode”), a hybrid travel mode (hereinafter referred to as “HEV mode”), and a drive torque control start mode (hereinafter referred to as “ (Referred to as “WSC mode”), etc., and the most suitable travel mode is selected according to the driving state of the vehicle, the driver's accelerator operation, etc.
  • EV mode electric vehicle travel mode
  • HEV mode hybrid travel mode
  • WSC mode drive torque control start mode
  • the "EV mode” is a mode in which the first clutch 4 is in a released state and travels with only the motor generator 2 as a drive source, and has a motor travel mode and a regenerative travel mode.
  • the "EV mode” is selected when the driver's requested driving power is relatively low.
  • the “HEV mode” is a mode in which the first clutch 4 is engaged and travels with the engine 1 and the motor generator 2 as drive sources, and has a motor assist travel mode, a travel power generation mode, and an engine travel mode. This "HEV mode” is selected when the driver's requested driving power is relatively large, and when there is a request from the system based on the state of charge (SOC) of high voltage battery 12, the operating state of the vehicle, etc. .
  • SOC state of charge
  • the “WSC mode” is a mode selected in a region where the vehicle speed at the time of vehicle start is relatively low, and variable control of the transmission torque capacity of the second clutch 5 while controlling the rotation speed of the motor generator 2 2) The clutch 5 is engaged in slip engagement.
  • FIG. 2 shows basic switching characteristics of the “EV mode”, “HEV mode”, and “WSC mode” based on the vehicle speed VSP and the accelerator opening APO.
  • “HEV ⁇ EV switching line” transitioning from “HEV mode” to “EV mode” and “EV ⁇ HEV switching line” transitioning from “EV mode” to “HEV mode” It is set to have appropriate hysteresis. Further, in the region below the predetermined vehicle speed VSP1, the “WSC mode” is set.
  • FIG. 3 schematically shows an instrument panel 41 disposed on a dashboard in front of the front seat of the vehicle.
  • the instrument panel 41 includes a speedometer 42 for displaying the vehicle speed, and a tachometer 43 for displaying the engine rotational speed, although not shown, but a fuel gauge and a direction indicator
  • an EV status indicator (EV status notification that displays in the tachometer 43 of the instrument panel 41 that the vehicle is an EV mode (EV status) using only the motor generator 2 as a vehicle drive source) Means) are provided.
  • the EV lamp 44 lights or extinguishes, for example, the characters "EV", is displayed / lighted in the EV mode, and is non-displayed / lighted in the non-EV mode such as the HEV mode.
  • the EV status indicator is not limited to the EV lamp 44 described above, and may display, for example, a figure or a pattern corresponding to the EV mode, or may notify the driver of the EV mode by voice. It is good.
  • FIG. 4 is a flowchart showing a flow of switching control of lighting and extinguishing of the EV lamp 44.
  • This routine is stored by the integrated controller 23 and repeatedly executed every predetermined period (for example, every 10 ms).
  • step S11 it is determined whether the engine speed NE is larger than a predetermined first threshold value NE1.
  • the first threshold value NE1 is a value near the initial explosion rotational speed at which ignition is started during engine start, and is set to a value of 300 rpm or less, more specifically, about 150 rpm.
  • step S12 it is determined whether it is in the non-EV state. This determination is made in accordance with the value of the EV state flag.
  • the EV state flag is set to “1” in the EV state and to “0” in the non-EV state as shown in FIGS. 5 and 6, and the accelerator is opened by the general controller 23. It is set according to the vehicle operating condition such as the battery charging condition. According to the set state of the EV state flag, switching of the first clutch 4 is performed in addition to switching on / off of the EV lamp 44 described later. That is, switching control of the first clutch 4 and the EV lamp 44 is performed with the EV state flag as a command value. Therefore, when the EV status flag is "0", the determination in step S12 is affirmed as being in the non-EV status.
  • step S13 When the engine speed NE exceeds the first threshold value NE1 and is in the non-EV state, the process proceeds to step S13, and the EV lamp 44 is turned off or not displayed.
  • step S14 it is determined whether the engine speed NE is less than or equal to a predetermined second threshold value NE2.
  • the second threshold value NE2 is at least a value larger than the first threshold value NE1 and is a minimum rotation speed at which the engine can perform self-sustaining operation, that is, a value lower than an idle rotation speed.
  • the value is set to about 600 to 700 rpm.
  • step S15 it is determined whether it is in the EV state. This determination is made in accordance with the value of the EV state flag, as in step S12. When the EV state flag is "1", the determination in step S15 is affirmed as being in the EV state.
  • step S16 When the engine rotational speed is equal to or lower than the second threshold NE2 and in the EV state, the process proceeds to step S16, and the EV lamp 44 indicating the EV state is lit and displayed.
  • the EV state flag in the figure is a flag that is set to "1" when in the EV state, and to "0" when in the non-EV state.
  • the EV lamp lighting request flag is a flag set to “1” when lighting the EV lamp 44 and “0” when lighting the EV lamp 44, and the integrated controller 23 according to the value of the EV lamp lighting request flag. Controls switching ON / OFF of the EV lamp 44.
  • FIG. 5 is a timing chart in the case of transition from EV state to non-EV state to EV state. If the EV lamp 44 is turned off at time t1 when the EV status flag becomes 0, the first clutch 4 is engaged according to the determination result of the EV status flag, and the engine 1 is started. As a result, the EV lamp 44 is turned off, and the lighting time of the EV lamp 44 becomes unduly short. On the other hand, in the present embodiment, the EV lamp lighting request flag is set to "0" at time t2 when the EV state flag is "0", that is, the non-EV state and the engine speed NE exceeds the first threshold NE1. , EV lamp 44 is turned off.
  • the EV lamp 44 Since the EV lamp 44 is turned off after waiting for the engine rotational speed NE to rise to a certain degree in this way, compared with the case where the EV lamp 44 is turned off at t1 immediately after the EV state, The lighting time can be increased by ⁇ T1. Moreover, by setting the first threshold value NE1 to a sufficiently small value, the EV lamp 44 is turned off in conjunction with the increase of the engine rotational speed displayed on the tachometer 43, and as described above, the EV lamp 44 The driver does not have a sense of discomfort while securing a long lighting period.
  • the EV lamp lighting request flag is set to "1" and the EV lamp 44 is set to "1" at time t4 when the EV state flag is "1" and the engine speed NE becomes less than the second threshold NE2. It is on. That is, even in the EV state, since the EV lamp 44 is turned on after waiting for the engine speed NE to actually decrease to some extent ( ⁇ T 2), the EV lamp 44 is turned on although the engine sound can be heard. There will be no discomfort to the driver.
  • FIG. 6 is a timing chart in the case of transition from non-EV state to EV state to non-EV state.
  • the EV lamp lighting request flag is set to "1” and the EV lamp 44 is turned on at time t5 when the EV state flag is "1" and the engine speed NE becomes less than or equal to the second threshold NE2. doing.
  • the EV lamp lighting request flag is set to “0” and the EV lamp 44 is extinguished.
  • the flag relating to the EV state and the engine speed are used together, and in particular, when the non-EV state and the engine speed NE is greater than the first threshold NE1, the EV lamp 44 is extinguished. Since the EV lamp 44 is turned on when the state and the engine speed NE are less than or equal to the second threshold NE2, the lighting period of the EV lamp 44 is sufficiently secured without giving a sense of discomfort to the driver, and appropriate. It is possible to switch on and off the EV lamp 44.
  • the threshold value NE1 is a very small value (about 150 rpm) corresponding to the stage of first explosion and ignition start at the initial stage of engine start.
  • the threshold value NE1 is a very small value (about 150 rpm) corresponding to the stage of first explosion and ignition start at the initial stage of engine start.
  • the EV lamp 44 can be appropriately turned off according to the rise of the engine speed.
  • the second threshold NE2 to be set is set to a relatively large value (about 700 rpm) as compared to the first threshold NE1 for turning off.
  • the above-described setting of the threshold is a setting that can be realized by using it together with the determination of the EV state as in this embodiment.
  • the EV state determination flag is a flag generated based on the command value of engagement / disengagement of the first clutch 4 and corresponds to the engagement / disengagement of the first clutch 4.
  • the EV state determination flag is generated based on the command value used for control of engagement / disengagement of the first clutch 4 and the like. Therefore, for example, the EV state based on the actual switching result of the first clutch 4 Switching of the EV lamp 44 with good response as compared to the case of determining the condition, and various sensors for detecting the operation of the first clutch 4 and the like are unnecessary, thus simplifying the control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 車両駆動源としてエンジン(1)とモータジェネレータ(2)とを併用するハイブリッド車両は、エンジン回転数を検出するクランク角センサ(23)と、モータジェネレータ(2)のみを駆動源とするEV状態であることを表示するEVランプ(44)と、を有する。非EV状態で、かつ、エンジン回転数が第1閾値(NE1)より大きい場合、EVランプ(44)を消灯する。EV状態であり、かつエンジン回転数が第2閾値(NE2)以下の場合、EVランプ(44)を点灯する。

Description

ハイブリッド車両の制御装置及び制御方法
 本発明は、車両駆動源としてエンジンと走行用モータとを併用するハイブリッド車両に関し、特に、走行用モータのみを駆動源とするEV(エレクトリック・ビークル)状態の報知・非報知の切換制御に関する。
 車両駆動源としてエンジンと走行用モータとを併用するハイブリッド車両では、運転者に走行用モータのみを駆動源とする省エネルギーなEV状態であることを運転者に認知させるために、インストルメントパネル等にEV状態であることを表示するEV表示部を設けたものが知られている。
 例えば特許文献1には、エンジン回転数が所定の閾値を下回るときに、エンジンが非作動状態であると判断して、EV表示部にEV状態(エレクトリック・オンリー・モード)であることを表示する技術が記載されている。
特開2005-255158号公報
 しかしながら、このようにエンジン回転数のみに基づいてEV表示部の表示・非表示を切り換える場合、例えばエンジン回転数の閾値を十分に低い値に設定すると、非EV状態(エンジン作動状態)からEV状態(エンジン非作動状態)へ移行する際に、既にEV状態へ移行しているにもかかわらず、エンジンが惰性で回転しているような場合、エンジン回転数が閾値をなかなか下回らず、EV表示部の非表示から表示への切換が遅れがちになる。そこで、エンジン回転数の閾値を高く設定すると、EV状態から非EV状態への移行時に、エンジンの始動を既に開始しているにもかかわらずエンジン回転数が閾値を上回らない状態となることがあり、このような場合にEV表示部の非表示への切換が遅れがちになる。
 一方、このようなハイブリッド車両では、一般的に、走行用モータのみを駆動源とする上記のEV状態の他、エンジンと走行用モータとを併用するハイブリッド状態等の複数の走行モードを切り換えて用いている。従って、走行モードがEV状態であることを示す信号に基づいてEV表示部の表示・非表示の切換を行うことも考えられる。
 但し、このようなEV状態の判定結果のみに基づいてEV表示部の表示・非表示の切換を行うと、非EV状態からEV状態へ移行する際、例えばEV状態となった後にも排気清浄化等の目的でエンジンをしばらく回転させるような場合には、エンジン回転数が未だ高くエンジン音が残存する状況にあり、このような状況でEV状態の表示がなされると、運転者に違和感(エンジンが稼働しているにもかかわらずEV状態であると表示され、両者が矛盾する印象)を与えるおそれがある。
 一方、EV状態から非EV状態への移行時には、非EV状態の判定結果に基づいてエンジンが始動されることから、エンジンの始動前(もしくは始動直後)からEV表示部が表示から非表示に切り換えられることとなり、省エネルギーであることを運転者に認知・アピールするためのEV表示部の表示期間が短くなってしまう。
 本発明は、このような事情に鑑みてなされたものであり、EV状態の報知・非報知の切換を適切に行うことを目的としている。
 本発明は、車両駆動源としてエンジンと走行用モータとを併用するハイブリッド車両であり、エンジン回転数を検出するエンジン回転数検出器と、上記走行用モータのみを駆動源とするEV状態であることを報知するEV状態報知器と、を有している。
 そして、走行用モータのみを駆動源とするEV状態を判定し、上記EV状態で無いと判定され、かつ、上記エンジン回転数が所定の第1閾値より大きい場合に、EV状態報知器を非報知状態とし、上記EV状態で有ると判定され、かつ、上記エンジン回転数が所定の第2閾値以下の場合に、EV状態報知器を報知状態とする。
 このように本発明では、エンジン回転数とEV状態とを併用して、EV状態の報知・非報知の切換を適切に行うことができる。
本発明の一実施例が適用されるハイブリッド車両のシステム構成を示す構成説明図。 このハイブリッド車両のモード切換の特性を示す特性図。 このハイブリッド車両のインストルメントパネルを簡略的に示す正面図。 本実施例のEVランプの点灯・消灯制御の流れを示すフローチャート。 本実施例の動作の一例を示すタイミングチャート。 同じく本実施例の動作の他の例を示すタイミングチャート。
 以下、この発明の一実施例を図面に基づいて詳細に説明する。
 図1は、この発明が適用されるハイブリッド車両の一例としてFF(フロントエンジン/フロントドライブ)型ハイブリッド車両のシステム構成を示す構成説明図である。
 このハイブリッド車両は、車両の駆動源として、エンジン1と走行用モータとしてのモータジェネレータ2とを備えているとともに、変速機構としてベルト式無段変速機3を備えている。エンジン1とモータジェネレータ2との動力伝達経路には、動力伝達の接続と開放を切り換える第1クラッチ4が介在し、モータジェネレータ2とベルト式無段変速機3との動力伝達経路には、動力伝達の接続と開放を切り換える第2クラッチ5が介在している。
 エンジン1は、例えばガソリンエンジンからなり、エンジンコントローラ20からの制御指令に基づいて、始動制御ならびに停止制御が行われるとともに、スロットルバルブの開度が制御され、かつ燃料カット制御等が行われる。
 上記エンジン1の出力軸とモータジェネレータ2のロータとの間に設けられる第1クラッチ4は、選択された走行モードに応じて、エンジン1をモータジェネレータ2に結合し、あるいは、エンジン1をモータジェネレータ2から切り離すものであり、CVTコントローラ21からの制御指令に基づき図外の油圧ユニットにより生成される第1クラッチ油圧によって、締結/解放が制御される。本実施例では、第1クラッチ4は、ノーマルオープン型の構成である。
 モータジェネレータ2は、例えば三相交流の同期型モータジェネレータからなり、高電圧バッテリ12、インバータ13および強電系リレー14を含む強電回路11に接続されている。モータジェネレータ2は、モータコントローラ22からの制御指令に基づき、インバータ13を介して高電圧バッテリ12からの電力供給を受けて正のトルクを出力するモータ動作(いわゆる力行)と、トルクを吸収して発電し、インバータ13を介して高電圧バッテリ12の充電を行う回生動作と、の双方を行う。
 モータジェネレータ2のロータと無段変速機3の入力軸との間に設けられる第2クラッチ5は、エンジン1およびモータジェネレータ2を含む車両駆動源と駆動輪6(前輪)との間での動力の伝達および切り離しを行うものであり、CVTコントローラ21からの制御指令に基づき図外の油圧ユニットにより生成される第2クラッチ油圧によって、締結/解放が制御される。特に、第2クラッチ5は、伝達トルク容量の可変制御により、滑りを伴って動力伝達を行うスリップ締結状態とすることが可能であり、トルクコンバータを具備しない構成において、円滑な発進を可能にするとともに、クリープ走行の実現を図っている。
 ここで、上記第2クラッチ5は、実際には単一の摩擦要素ではなく、無段変速機3の入力部に設けられる前後進切換機構における前進クラッチもしくは後退ブレーキが第2クラッチ5として用いられる。無段変速機3への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向とに切り換える前後進切換機構は、詳細には図示していないが、遊星歯車機構と、前進走行時に締結される前進クラッチと、後退走行時に締結される後退ブレーキと、を含んでおり、前進走行時には前進クラッチが第2クラッチ5として機能し、後退走行時には後退ブレーキが第2クラッチ5として機能する。第2クラッチ5となる前進クラッチおよび後退ブレーキの双方が解放された状態では、トルク伝達はなされず、モータジェネレータ2のロータと無段変速機3とが実質的に切り離される。なお、本実施例では、前進クラッチおよび後退ブレーキのいずれもノーマルオープン型の構成である。
 ベルト式無段変速機3は、入力側のプライマリプーリと、出力側のセカンダリプーリと、両者間に巻き掛けられた金属製のベルトと、を有し、CVTコントローラ21からの制御指令に基づき図外の油圧ユニットにより生成されるプライマリ油圧とセカンダリ油圧とによって、各プーリのベルト接触半径ひいては変速比が連続的に制御される。この無段変速機3の出力軸は、図示せぬ終減速機構を介して駆動輪6に接続されている。
 上記エンジン1は、始動用のスタータモータ25を具備している。このスタータモータ25は、モータジェネレータ2に比較して定格電圧が低い直流モータからなり、DC/DCコンバータ16および低電圧バッテリ17を含む弱電回路15に接続されている。スタータモータ25は、エンジンコントローラ20からの制御指令に基づいて駆動され、エンジン1のクランキングを行う。
 上記低電圧バッテリ17は、高電圧バッテリ12を含む強電回路11からの電力により、DC/DCコンバータ16を介して充電される。なお、エンジンコントローラ20等を含む車両の制御システム、車両の空調装置、オーディオ装置、照明、等は、弱電回路15による電力供給を受ける。
 上記ハイブリッド車両の制御システムは、上述したエンジンコントローラ20、CVTコントローラ21、モータコントローラ22のほか、車両全体の統合制御を行う統合コントローラ23を備えており、これらの各コントローラ20,21,22,23は、情報交換が互いに可能なCAN通信線24を介して接続されている。また、アクセル開度センサ31、エンジン回転数を検出するエンジン回転数検出器(エンジン回転数検出手段)としてのエンジン回転数センサ32、車速センサ33、モータ回転数センサ34、等の種々のセンサ類を備えており、これらセンサの検出信号が、統合コントローラ23等の各コントローラに個々にあるいはCAN通信線24を介して入力されている。
 上記のように構成されたハイブリッド車両は、電気自動車走行モード(以下、「EVモード」という。)と、ハイブリッド走行モード(以下、「HEVモード」という。)と、駆動トルクコントロール発進モード(以下、「WSCモード」という。)等の走行モードを有し、車両の運転状態や運転者のアクセル操作等に応じて最適な走行モードが選択される。
 「EVモード」は、第1クラッチ4を解放状態とし、モータジェネレータ2のみを駆動源として走行するモードであり、モータ走行モードと回生走行モードとを有する。この「EVモード」は、運転者による要求駆動力が比較的に低いときに選択される。
 「HEVモード」は、第1クラッチ4を締結状態とし、エンジン1とモータジェネレータ2とを駆動源として走行するモードであり、モータアシスト走行モード、走行発電モード、エンジン走行モード、を有する。この「HEVモード」は、運転者による要求駆動力が比較的大きいとき、および高電圧バッテリ12の充電状態(SOC)や車両の運転状態等に基づくシステムからの要求があったときに選択される。
 「WSCモード」は、車両発進時等の車速が比較的低い領域で選択されるモードであり、モータジェネレータ2を回転数制御しつつ第2クラッチ5の伝達トルク容量を可変制御することで、第2クラッチ5をスリップ締結状態とする。
 図2は、車速VSPおよびアクセル開度APOとに基づく上記の「EVモード」、「HEVモード」、「WSCモード」の基本的な切換の特性を示している。図示するように、「HEVモード」から「EVモード」へ移行する「HEV→EV切換線」と、逆に「EVモード」から「HEVモード」へ移行する「EV→HEV切換線」と、は適宜なヒステリシスを有するように設定されている。また、所定の車速VSP1以下の領域では、「WSCモード」となる。
 図3は、車両の前席正面のダッシュボードに配置されたインストルメントパネル41を簡略的に示している。同図に示すように、インストルメントパネル41には、車両速度を表示するスピードメーター42と、エンジン回転数を表示するタコメーター43と、の他、図示していないが、燃料計や方向指示器等の車両運転状況を表す各種の計器類が設けられている。そして本実施例では、このインストルメントパネル41のタコメーター43内に、モータジェネレータ2のみを車両駆動源とする「EVモード(EV状態)」であることを表示するEV状態報知器(EV状態報知手段)としてのEVランプ44が設けられている。このEVランプ44は、例えば「EV」の文字を点灯もしくは消灯するものであり、EVモードであるときに表示・点灯され、HEVモード等の非EVモードであるときに非表示・消灯される。
 なお、EV状態報知器としては上記のEVランプ44に限らず、例えばEVモードに対応した図形や絵柄を表示するものであっても良く、あるいは音声によりEVモードを運転者に報知するものであっても良い。
 図4はEVランプ44の点灯・消灯の切換制御の流れを示すフローチャートであり、本ルーチンは上記の統合コントローラ23により記憶され、所定期間毎(例えば10ms毎)に繰り返し実行される。
 ステップS11では、エンジン回転数NEが所定の第1閾値NE1よりも大きいか否かを判定する。この第1閾値NE1は、エンジン始動中に点火を開始する初爆回転数の近傍の値であり、300rpm以下、より具体的には150rpm程度の値に設定される。
 ステップS12では、非EV状態であるか否かを判定する。この判定は、EV状態フラグの値に応じて判定される。このEV状態フラグは、図5及び図6にも示すように、EV状態である場合に「1」,非EV状態である場合に「0」に設定されるもので、総合コントローラ23によりアクセル開度やバッテリ充電状態等の車両運転状態に応じて設定されるものである。このEV状態フラグの設定状態に応じて、後述するEVランプ44の点灯・消灯の切換の他、第1クラッチ4の切換が行われる。つまり、このEV状態フラグを指令値として、第1クラッチ4やEVランプ44等の切換制御が行われる。従って、EV状態フラグが「0」の場合に、非EV状態であるとして、ステップS12の判定が肯定される。
 エンジン回転数NEが第1閾値NE1を超えており、かつ、非EV状態である場合に、ステップS13へ進み、EVランプ44を消灯つまり非表示とする。
 ステップS14では、エンジン回転数NEが所定の第2閾値NE2以下であるか否かを判定する。この第2閾値NE2は、少なくとも上記の第1閾値NE1よりも大きい値で、かつ、エンジンの自立運転が可能な最小の回転数、つまりアイドル回転数よりも低い値であり、具体的には、600~700rpm程度の値に設定される。
 ステップS15では、EV状態であるか否かを判定する。この判定は、ステップS12と同様に、EV状態フラグの値に応じて判定され、EV状態フラグが「1」の場合に、EV状態であるとして、このステップS15の判定が肯定される。
 エンジン回転数が第2閾値NE2以下であり、かつEV状態である場合に、ステップS16へ進み、EV状態であることを表すEVランプ44を点灯・表示する。
 図5及び図6は、このような本実施例の制御を適用した場合のタイミングチャートである。図中のEV状態フラグは、上述したように、EV状態であるときに「1」に、非EV状態であるときに「0」に設定されるフラグである。EVランプ点灯要求フラグは、EVランプ44を点灯させるときに「1」に、消灯させるときに「0」に設定されるフラグであり、このEVランプ点灯要求フラグの値に応じて、統合コントローラ23がEVランプ44の点灯・消灯を切換制御する。
 図5は、EV状態-非EV状態-EV状態と移行する場合のタイミングチャートである。仮にEV状態フラグが0となった時点t1でEVランプ44を消灯すると、EV状態フラグの判定結果に応じて第1クラッチ4が締結されてエンジン1の始動が行われることから、エンジンの始動前からEVランプ44が消灯されることとなり、EVランプ44の点灯時間が不当に短くなる。これに対して本実施例では、EV状態フラグが「0」つまり非EV状態で、かつエンジン回転数NEが第1閾値NE1を上回った時点t2で、EVランプ点灯要求フラグが「0」とされ、EVランプ44が消灯される。このようにエンジン回転数NEがある程度立ち上がるのを待ってからEVランプ44を消灯しているために、EV状態となった直後t1にEVランプ44を消灯させる場合に比して、EVランプ44の点灯時間をΔT1だけ長くすることができる。しかも、第1閾値NE1を十分に小さな値とすることで、タコメータ43に表示されるエンジン回転数の上昇と連動する形で、EVランプ44が消灯されることとなり、上記のようにEVランプ44の点灯期間を長く確保しつつ、運転者に違和感を与えることもない。
 また、仮にEV状態フラグが「1」となった時点t3でEVランプ44を点灯すると、未だエンジン回転数NEが高い状態、つまりエンジン音が生じている状態でEVランプ44が点灯することとなり、運転者に違和感を与えるおそれがある。これに対して本実施例では、EV状態フラグが「1」で、かつエンジン回転数NEが第2閾値NE2以下となった時点t4で、EVランプ点灯要求フラグを「1」としてEVランプ44を点灯している。つまり、EV状態であっても、実際にエンジン回転数NEがある程度(ΔT2)低下するのを待ってからEVランプ44を点灯させているために、エンジン音が聞こえるのにEVランプ44が点灯することがなく、運転者に違和感を与えることがない。
 図6は、非EV状態-EV状態-非EV状態と移行する場合のタイミングチャートである。図5の場合と同様に、EV状態フラグが「1」で、かつエンジン回転数NEが第2閾値NE2以下となった時点t5で、EVランプ点灯要求フラグを「1」としてEVランプ44を点灯している。その後、EV状態フラグ「0」となり、かつエンジン回転数NEが第1閾値NE1を上回った時点t6で、EVランプ点灯要求フラグを「0」としてEVランプ44を消灯している。
 以上のように本実施例では、EV状態に関するフラグとエンジン回転数とを併用し、特に、非EV状態かつエンジン回転数NEが第1閾値NE1より大きい場合に、EVランプ44を消灯し、EV状態かつエンジン回転数NEが第2閾値NE2以下の場合に、EVランプ44を点灯するようにしたので、運転者に違和感を与えることなく、EVランプ44の点灯期間を十分に確保し、適切なEVランプ44の点灯・消灯の切換を行うことができる。
 EVランプ44の点灯から消灯への切換の際には、エンジンが始動されてエンジン回転数NEが速やかに立ち上がる状況であるために、このEVランプ44の点灯から消灯への切換に用いられる第1閾値NE1は、エンジン始動初期の初爆・点火開始の段階に対応した極小さな値(150rpm程度)とされる。これによって、エンジン回転数の立ち上がりに応じて適切にEVランプ44を消灯させることができる。一方、EVランプ44の消灯から点灯への切換の際には、エンジンが停止してエンジン回転数NEが低下していく状況であるために、このEVランプ44の消灯から点灯への切換に用いられる第2閾値NE2は、消灯用の第1閾値NE1に比して相対的に大きな値(700rpm程度)に設定される。
 なお、エンジン回転数NEのみに基づいてEVランプ44の点灯・消灯を切り換える場合、上記の如く消灯用の第1閾値NE1を点灯用の第2閾値NE2よりも小さくすることは困難である。つまり、エンジン回転数NEが第1閾値NE1と第2閾値NE2の間にある場合は両者の論理判断が矛盾して点灯・消灯の判定ができなくなる。上述した閾値の設定(NE1<NE2)は、本実施例のようにEV状態の判定と併用することによって実現可能となる設定である。
 本実施例では、EV状態判定フラグは、第1クラッチ4の締結・開放の指令値に基づいて生成されるフラグであり、第1クラッチ4の締結・開放に一致する。このEV状態判定フラグを利用してEVランプ44の点灯・消灯の判定を行うことで、EV状態フラグが「0」の場合はクラッチが解放状態である為、エンジン回転数はエンジン自身の運転(燃焼)以外の理由で回転数が上昇することは原理上あり得ないので、エンジンの自立運転が可能な最小の回転数、つまりアイドル回転数よりも低い値となった時点でEVランプ44の点灯を判断できるのである。他方、EV状態フラグが「1」の場合、クラッチが締結状態であるので、今後エンジンの回転は継続するものとし、点火を開始する初爆回転数の近傍の値でEVランプ44の消灯を判断できる。以上のようにEV状態判定フラグを第1クラッチ4の締結・開放に一致させることで正確なEVランプ44の点灯・消灯の判定を実現している。
 さらに、本実施例においてEV状態判定フラグは、第1クラッチ4の締結・開放の制御等に用いられる指令値に基づき生成されるので、例えば実際の第1クラッチ4の切換結果に基づいてEV状態を判定する場合に比して、応答性良くEVランプ44の点灯・消灯の切換を行うことができるとともに、第1クラッチ4等の動作を検出する各種のセンサ類が不要となり、制御の簡素化を図ることができる。

Claims (6)

  1.  車両駆動源としてエンジンと走行用モータとを併用するハイブリッド車両の制御装置において、
     エンジン回転数を検出するエンジン回転数検出手段と、
     上記走行用モータを主たる駆動源とするEV状態を判定するEV状態判定手段と、
     上記EV状態であることを運転者に報知するEV状態報知手段と、
     このEV状態の報知と非報知とを切換制御する切換制御部と、を有し、
     この切換制御部は、上記EV状態判定手段によりEV状態で無いと判定され、かつ、上記エンジン回転数が所定の第1閾値より大きい場合に、上記EV状態報知手段を非報知とし、
     上記EV状態判定手段によりEV状態で有ると判定され、かつ、上記エンジン回転数が所定の第2閾値以下の場合に、上記EV状態報知手段を報知状態とする、
    ハイブリッド車両の制御装置。
  2.  上記第1閾値が第2閾値よりも小さい値である、
    請求項1に記載のハイブリッド車両の制御装置。
  3.  上記エンジンと駆動輪との間に上記走行用モータが介装され、
     かつ、上記エンジンと走行用モータとの動力伝達経路に介装され、エンジンと走行用モータとの動力伝達の接続と開放を切換える第1クラッチと、
     上記走行用モータと駆動輪との動力伝達経路に介装され、上記走行用モータと駆動輪との動力伝達の接続と開放を切換える第2クラッチと、を有し、
     上記EV状態である場合に、上記第1クラッチが開放される、
    請求項1又は2に記載のハイブリッド車両の制御装置。
  4.  上記EV状態判定手段の判定結果を表す指令値に基づいて、上記第1クラッチの締結・開放が切り換えられるとともに、上記切換制御部による上記EV表示部の表示と非表示との切換制御が行われる、
    請求項3に記載のハイブリッド車両の制御装置。
  5.  車両駆動源としてエンジンと走行用モータとを併用するハイブリッド車両であって、
     エンジン回転数を検出するエンジン回転数検出手段と、
     上記走行用モータのみを駆動源とするEV状態であることを報知するEV状態報知手段と、を有するハイブリッド車両の制御方法において、
     上記走行用モータのみを駆動源とするEV状態を判定し、
     上記EV状態で無いと判定され、かつ、上記エンジン回転数が所定の第1閾値より大きい場合に、上記EV状態報知手段を非報知状態とし、
     上記EV状態で有ると判定され、かつ、上記エンジン回転数が所定の第2閾値以下の場合に、上記EV状態報知手段を報知状態とする、
    ハイブリッド車両の制御方法。
  6.  車両駆動源としてエンジンと走行用モータとを併用するハイブリッド車両の制御装置において、
     エンジン回転数を検出するエンジン回転数検出器と、
     上記走行用モータを主たる駆動源とするEV状態を判定するEV状態判定器と、
     上記EV状態であることを運転者に報知するEV状態報知器と、
     このEV状態の報知と非報知とを切換制御する切換制御器と、を有し、
     この切換制御部は、上記EV状態判定器によりEV状態で無いと判定され、かつ、上記エンジン回転数が所定の第1閾値より大きい場合に、上記EV状態報知器を非報知状態とし、
     上記EV状態判定器によりEV状態で有ると判定され、かつ、上記エンジン回転数が所定の第2閾値以下の場合に、上記EV状態報知器を報知状態とする、
    ハイブリッド車両の制御装置。
PCT/JP2013/075422 2013-09-20 2013-09-20 ハイブリッド車両の制御装置及び制御方法 WO2015040729A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2013/075422 WO2015040729A1 (ja) 2013-09-20 2013-09-20 ハイブリッド車両の制御装置及び制御方法
MX2016003556A MX351367B (es) 2013-09-20 2013-09-20 Dispositivo de control y metodo de control de vehiculo hibrido.
CN201380079712.0A CN105579311B (zh) 2013-09-20 2013-09-20 混合动力车辆的控制装置以及控制方法
RU2016110078A RU2627247C1 (ru) 2013-09-20 2013-09-20 Устройство управления и способ управления гибридного транспортного средства
MYPI2016700970A MY177283A (en) 2013-09-20 2013-09-20 Hybrid vehicle control device and control method
JP2015537514A JP6079889B2 (ja) 2013-09-20 2013-09-20 ハイブリッド車両の制御装置及び制御方法
EP13893847.7A EP3048020B1 (en) 2013-09-20 2013-09-20 Hybrid vehicle control device and control method
US15/023,624 US9802603B2 (en) 2013-09-20 2013-09-20 Hybrid vehicle control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075422 WO2015040729A1 (ja) 2013-09-20 2013-09-20 ハイブリッド車両の制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2015040729A1 true WO2015040729A1 (ja) 2015-03-26

Family

ID=52688411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075422 WO2015040729A1 (ja) 2013-09-20 2013-09-20 ハイブリッド車両の制御装置及び制御方法

Country Status (7)

Country Link
US (1) US9802603B2 (ja)
EP (1) EP3048020B1 (ja)
JP (1) JP6079889B2 (ja)
CN (1) CN105579311B (ja)
MX (1) MX351367B (ja)
RU (1) RU2627247C1 (ja)
WO (1) WO2015040729A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106809219A (zh) * 2015-11-27 2017-06-09 铃木株式会社 能量流动的显示装置和显示方法
US10661812B2 (en) 2017-08-10 2020-05-26 Honda Motor Co., Ltd. Display device
KR20210005337A (ko) * 2019-07-03 2021-01-14 현대자동차주식회사 하이브리드 차량의 엔진 온 제어방법 및 시스템

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697027B2 (en) 2001-07-31 2010-04-13 Donnelly Corporation Vehicular video system
US6882287B2 (en) 2001-07-31 2005-04-19 Donnelly Corporation Automotive lane change aid
AU2003225228A1 (en) 2002-05-03 2003-11-17 Donnelly Corporation Object detection system for vehicle
US20060061008A1 (en) 2004-09-14 2006-03-23 Lee Karner Mounting assembly for vehicle interior mirror
US10144353B2 (en) 2002-08-21 2018-12-04 Magna Electronics Inc. Multi-camera vision system for a vehicle
US7526103B2 (en) 2004-04-15 2009-04-28 Donnelly Corporation Imaging system for vehicle
US7881496B2 (en) 2004-09-30 2011-02-01 Donnelly Corporation Vision system for vehicle
US7720580B2 (en) 2004-12-23 2010-05-18 Donnelly Corporation Object detection system for vehicle
WO2008024639A2 (en) 2006-08-11 2008-02-28 Donnelly Corporation Automatic headlamp control system
US7914187B2 (en) 2007-07-12 2011-03-29 Magna Electronics Inc. Automatic lighting system with adaptive alignment function
US8017898B2 (en) 2007-08-17 2011-09-13 Magna Electronics Inc. Vehicular imaging system in an automatic headlamp control system
US8451107B2 (en) 2007-09-11 2013-05-28 Magna Electronics, Inc. Imaging system for vehicle
WO2009046268A1 (en) 2007-10-04 2009-04-09 Magna Electronics Combined rgb and ir imaging sensor
EP2401176B1 (en) 2009-02-27 2019-05-08 Magna Electronics Alert system for vehicle
WO2011014497A1 (en) 2009-07-27 2011-02-03 Magna Electronics Inc. Vehicular camera with on-board microcontroller
WO2011014482A1 (en) 2009-07-27 2011-02-03 Magna Electronics Inc. Parking assist system
WO2011028686A1 (en) 2009-09-01 2011-03-10 Magna Mirrors Of America, Inc. Imaging and display system for vehicle
WO2012075250A1 (en) 2010-12-01 2012-06-07 Magna Electronics Inc. System and method of establishing a multi-camera image using pixel remapping
US9264672B2 (en) 2010-12-22 2016-02-16 Magna Mirrors Of America, Inc. Vision display system for vehicle
WO2012158167A1 (en) 2011-05-18 2012-11-22 Magna Electronics Inc. Self-calibrating vehicular camera
WO2013016409A1 (en) 2011-07-26 2013-01-31 Magna Electronics Inc. Vision system for vehicle
US9146898B2 (en) 2011-10-27 2015-09-29 Magna Electronics Inc. Driver assist system with algorithm switching
US10457209B2 (en) 2012-02-22 2019-10-29 Magna Electronics Inc. Vehicle vision system with multi-paned view
US9743002B2 (en) 2012-11-19 2017-08-22 Magna Electronics Inc. Vehicle vision system with enhanced display functions
US10328932B2 (en) 2014-06-02 2019-06-25 Magna Electronics Inc. Parking assist system with annotated map generation
US10078789B2 (en) 2015-07-17 2018-09-18 Magna Electronics Inc. Vehicle parking assist system with vision-based parking space detection
CN115419692A (zh) 2017-01-20 2022-12-02 北极星工业有限公司 车辆的车辆诊断方法
JP2020093647A (ja) * 2018-12-12 2020-06-18 トヨタ自動車株式会社 ハイブリッド車両
JP7222737B2 (ja) * 2019-02-05 2023-02-15 株式会社Subaru 車両
JP7380521B2 (ja) * 2020-10-28 2023-11-15 トヨタ自動車株式会社 車両の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255158A (ja) 2004-03-09 2005-09-22 Ford Global Technologies Llc ハイブリッド電気自動車のための表示器
JP2010143307A (ja) * 2008-12-17 2010-07-01 Nissan Motor Co Ltd ハイブリッド車両の制御装置
WO2011158318A1 (ja) * 2010-06-14 2011-12-22 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060265A1 (de) * 2008-12-03 2010-06-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Anzeigeeinrichtung für ein Hybridfahrzeug
DE102010047980A1 (de) * 2010-07-02 2011-06-09 Daimler Ag Anzeigevorrichtung für Hypridfahrzeuge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255158A (ja) 2004-03-09 2005-09-22 Ford Global Technologies Llc ハイブリッド電気自動車のための表示器
JP2010143307A (ja) * 2008-12-17 2010-07-01 Nissan Motor Co Ltd ハイブリッド車両の制御装置
WO2011158318A1 (ja) * 2010-06-14 2011-12-22 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106809219A (zh) * 2015-11-27 2017-06-09 铃木株式会社 能量流动的显示装置和显示方法
US10661812B2 (en) 2017-08-10 2020-05-26 Honda Motor Co., Ltd. Display device
KR20210005337A (ko) * 2019-07-03 2021-01-14 현대자동차주식회사 하이브리드 차량의 엔진 온 제어방법 및 시스템
KR102659242B1 (ko) 2019-07-03 2024-04-19 현대자동차주식회사 하이브리드 차량의 엔진 온 제어방법 및 시스템

Also Published As

Publication number Publication date
MX351367B (es) 2017-10-12
EP3048020A4 (en) 2017-05-17
EP3048020A1 (en) 2016-07-27
JPWO2015040729A1 (ja) 2017-03-02
JP6079889B2 (ja) 2017-02-15
US9802603B2 (en) 2017-10-31
MX2016003556A (es) 2016-07-21
US20160207520A1 (en) 2016-07-21
CN105579311B (zh) 2018-03-16
RU2627247C1 (ru) 2017-08-04
CN105579311A (zh) 2016-05-11
EP3048020B1 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
WO2015040729A1 (ja) ハイブリッド車両の制御装置及び制御方法
US7823668B2 (en) Control device for a hybrid electric vehicle
JP5973710B2 (ja) ハイブリッド車両の制御装置
JP4630408B2 (ja) ハイブリッド車両及びその制御方法
JP5298960B2 (ja) ハイブリッド車両の制御装置
JP5420154B2 (ja) 電子吸気量制御装置が搭載されたハイブリッド電気自動車のエンジントルク制御方法
JPWO2015045051A1 (ja) ハイブリッド車両の起動制御装置及び起動制御方法
CN106256646B (zh) 具有停止-起动效益度量的用户界面
JP2007246011A (ja) ハイブリッド電気自動車の制御装置
JP6229728B2 (ja) ハイブリッド車両の制御装置および制御方法
JP2012061898A (ja) 車両の制御システム
WO2012127677A1 (ja) 車両および車両用制御方法
JP2007230431A (ja) 車両の駆動制御装置
JP5464122B2 (ja) ハイブリッド車両のオイルポンプ駆動装置
JP5967313B2 (ja) 車両の制御装置および制御方法
JP2016144977A (ja) 車両制御装置
JP5737349B2 (ja) ハイブリッド車両の制御装置
EP2397385B1 (en) Method for controlling a parallel hybrid driving system for a vehicle equiped with a manual transmission and corresponding drivind system
JP2017222308A (ja) 車両のメータ表示制御方法とメータ表示制御装置
JP2014088056A (ja) ハイブリッド電気自動車の制御装置
KR101449323B1 (ko) 하이브리드 차량의 클러치 제어 장치 및 방법
JP2009261180A (ja) 車両およびその制御方法
JP4107044B2 (ja) 車両のエンジン自動停止・自動再始動装置
JP2013169857A (ja) ハイブリッド車におけるハイブリッド制御システム
JPWO2013021429A1 (ja) 車両の制御装置、車両、および、車両を制御する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380079712.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537514

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/003556

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15023624

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013893847

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013893847

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201602061

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016110078

Country of ref document: RU

Kind code of ref document: A