WO2015040726A1 - 測定治具 - Google Patents

測定治具 Download PDF

Info

Publication number
WO2015040726A1
WO2015040726A1 PCT/JP2013/075371 JP2013075371W WO2015040726A1 WO 2015040726 A1 WO2015040726 A1 WO 2015040726A1 JP 2013075371 W JP2013075371 W JP 2013075371W WO 2015040726 A1 WO2015040726 A1 WO 2015040726A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
mirror
prism
attached
prism mirror
Prior art date
Application number
PCT/JP2013/075371
Other languages
English (en)
French (fr)
Inventor
正暢 関
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to DE112013005525.2T priority Critical patent/DE112013005525B4/de
Priority to CN201380064082.XA priority patent/CN104838234B/zh
Priority to US14/650,509 priority patent/US9404745B2/en
Priority to KR1020157014698A priority patent/KR101587513B1/ko
Priority to PCT/JP2013/075371 priority patent/WO2015040726A1/ja
Priority to JP2013555679A priority patent/JP5816706B2/ja
Publication of WO2015040726A1 publication Critical patent/WO2015040726A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers

Definitions

  • the present invention relates to a measurement jig.
  • Information-oriented construction means that when construction work such as civil engineering work is performed using construction machines such as hydraulic excavators, bulldozers, or motor graders, information and communication technology (ICT) and RTK-GNSS (Real Time Kinematic) -Global (Navigation (Satellite Systems)) is used to detect the position of the work point of the work machine provided on these construction machines, and automatically control the work machine based on the detected work point, By displaying information such as the work point for the terrain on the display device in the cab, the purpose is to perform the construction work (hereinafter simply referred to as work) with high efficiency and to obtain highly accurate construction results. Is.
  • the work point of the work machine is the position of the blade edge of the bucket when the construction machine is a hydraulic excavator, for example.
  • the position of the cutting edge is designed based on the positional relationship between the GNS antenna and the boom foot pin, the length of each of the boom, arm, and bucket, the stroke length of each of the boom cylinder, arm cylinder, and bucket cylinder. Calculated as position coordinates.
  • the lengths of booms, arms, buckets, and cylinders used for calculation are design values, their actual lengths are calculated because they include errors due to manufacturing and assembly dimensional tolerances.
  • the position coordinates and the actual position coordinates of the cutting edge do not always coincide with each other, and the accuracy of detecting the position of the cutting edge is reduced. For this reason, in order to improve the accuracy of detecting the position of the blade edge, the parameters used for the calculation must be calibrated with a predetermined calibration value based on the position coordinates obtained by the actual position measurement. Need to do work.
  • the conventional prism is a type that is attached to a general pin pole in surveying work, and the center of the mirror (the apex portion of the prism) collimated through the total station coincides with the measurement point to actually measure the position.
  • the measurement point is offset with respect to the mirror center. Therefore, in order to accurately calculate the calibration value, it is necessary to keep the positional relationship between the mirror center and the measurement point when collimated through the total station, that is, the offset amount at each measurement position.
  • An object of the present invention is to provide a measuring jig that can easily perform position measurement by a total station.
  • the measurement jig of the present invention is a measurement jig that is attached to a mounted portion and is used for measuring the position of a measurement point together with a total station, and includes a prism mirror that reflects projection light from the total station, and the prism mirror And an attachment member attached to the attachment portion, wherein the mirror center of the prism mirror coincides with the measurement point.
  • “attaching the prism mirror to the attached portion” means attaching the prism mirror to the attached portion without manually supporting the prism mirror or the attaching member.
  • the mirror center of the prism mirror is coincident with the measurement point, there is no conventional offset amount, and the measurement point is not displaced from the mirror center even if the measurement position is different. .
  • the center of the mirror can be collimated through the total station, it is unnecessary to adjust the position of the prism mirror for each measurement position, such as making the prism mirror directly face the total station, and position measurement can be facilitated. If the mirror center can be collimated, even if the measurement position is above, it is not necessary to face the prism mirror to the total station at a high place, and the workability can be greatly improved.
  • the prism mirror is attached to the attachment member via a support means, and is supported to be rotatable in a predetermined direction with respect to the support means.
  • the mirror center is preferably coincident with the mirror center. According to the present invention, since the pivot point of the prism mirror coincides with the mirror center and coincides with the measurement point, even if the prism mirror is rotated, the total station, the mirror center, and the measurement The positional relationship between points does not change. Therefore, when the mirror center cannot be collimated from the total station at first glance, the prism mirror may be rotated in a predetermined direction and adjusted so that the mirror center can be collimated.
  • the prism mirror since it is only necessary to collimate the mirror center at a minimum, the prism mirror does not necessarily have to face the total station strictly, and the position can be easily adjusted. Therefore, even if the measurement position exists over a wide range, the measurement point can be reliably measured by rotating the prism mirror.
  • the prism mirror is detachably attached to the support means, and the support means includes the attachment member and the attached portion with the prism mirror removed. It is preferable that an opening that can visually recognize the contact position is provided. According to the present invention, it is possible to easily confirm whether the mounting member and the mounted portion are in contact with each other and to confirm the matching state when the measurement point and the mounted portion are matched.
  • the attachment member is provided with a magnet that is magnetically attached to the attached portion. According to the present invention, the mounting member and thus the entire measuring jig can be easily mounted on the mounted portion using the magnet, and the installation work can be performed quickly.
  • the measurement jig of the present invention is a measurement jig that is attached to a mounted portion and is used for measuring the position of a measurement point together with a total station, and includes a prism mirror that reflects projection light from the total station, and the prism mirror supports the measurement jig. And a mounting member for mounting the supporting unit to the mounted portion.
  • the prism mirror is rotatably supported in a predetermined direction with respect to the supporting unit, and a mirror center of the prism mirror is provided.
  • the measurement point is coincident, the rotation point of the prism mirror is coincident with the mirror center, and the support member is configured such that the attachment member and the attachment portion are mutually connected with the prism mirror removed.
  • the support means is attached to the attachment member by a bolt inserted through the long hole. Characterized in that it is Attach. According to the present invention, the above-described effects can be achieved, and the position of the support means can be adjusted with respect to the mounting member according to the result of visual recognition through the opening by using the long hole.
  • the perspective view which shows a mode that the calibration operation
  • the disassembler view which shows the measurement jig
  • FIG. 5 is a side view of the measurement jig, as viewed from the arrow V side in FIG. 4.
  • the front view which shows the state which removed the prism mirror from the measurement jig
  • FIG. 1 shows a state in which a measurement jig 30 according to the present embodiment is attached to a hydraulic excavator 100 and calibration work is performed using the measurement jig 30 and the total station TS.
  • a hydraulic excavator 100 as a construction machine has a vehicle body 1 and a work implement 2.
  • the vehicle body 1 includes a revolving body 3, a cab 4, and a traveling device 5.
  • the swivel body 3 is attached to the traveling device 5 so as to be turnable.
  • the swivel body 3 houses devices such as an engine and a hydraulic pump (not shown).
  • Two antennas 21 and 22 for RTK-GNSS Real Time Kinematic-Global Navigation Satellite Systems
  • the cab 4 is placed on the front part of the revolving unit 3.
  • the traveling device 5 has left and right crawler belts 5A and 5B, and the excavator 100 travels as the crawler belts 5A and 5B rotate.
  • the work machine 2 is attached to the front portion of the vehicle body 1 and includes a boom 6, an arm 7, a bucket 8, a boom cylinder 10, an arm cylinder 11, and a bucket cylinder 12.
  • a base end portion of the boom 6 is rotatably attached to a front portion of the vehicle body 1 via a boom foot pin 13. That is, the boom foot pin 13 corresponds to the center of rotation of the boom 6 with respect to the swing body 3.
  • a base end portion of the arm 7 is rotatably attached to a distal end portion of the boom 6 via an arm foot pin 14. That is, the arm foot pin 14 corresponds to the rotation center of the arm 7 with respect to the boom 6.
  • a bucket 8 is rotatably attached to the tip of the arm 7 via a bucket foot pin 15. That is, the bucket foot pin 15 corresponds to the rotation center of the bucket 8 with respect to the arm 7.
  • the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 are hydraulic cylinders that are each driven by hydraulic pressure.
  • the base end portion of the boom cylinder 10 is rotatably attached to the swing body 3 via a boom cylinder foot pin 10A.
  • the tip of the boom cylinder 10 is rotatably attached to the boom 6 via a boom cylinder top pin 10B.
  • the boom cylinder 10 drives the boom 6 by expanding and contracting by hydraulic pressure.
  • the base end of the arm cylinder 11 is rotatably attached to the boom 6 via an arm cylinder foot pin 11A.
  • the tip of the arm cylinder 11 is rotatably attached to the arm 7 via an arm cylinder top pin 11B.
  • the arm cylinder 11 drives the arm 7 by expanding and contracting by hydraulic pressure.
  • the base end portion of the bucket cylinder 12 is rotatably attached to the arm 7 via a bucket cylinder foot pin 12A.
  • the tip of the bucket cylinder 12 is rotatably attached to one end of the first link member 16 and one end of the second link member 17 via the bucket cylinder top pin 12B.
  • the other end of the first link member 16 is rotatably attached to the distal end portion of the arm 7 via the first link pin 16A.
  • the other end of the second link member 17 is rotatably attached to the bucket 8 via a second link pin 17A.
  • the bucket cylinder 12 drives the bucket 8 by expanding and contracting by hydraulic pressure.
  • a proportional control valve is disposed between a hydraulic cylinder such as the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 and a hydraulic pump (not shown).
  • a hydraulic cylinder such as the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12
  • a hydraulic pump not shown
  • the measurement operation of the measurement point MP set in the vicinity of the cutting edge P is actually performed at a plurality of measurement positions with different postures of the work machine 2, and based on the position coordinates and parameters of the measurement point MP by actual measurement.
  • a calibration value is calculated from the calculated position coordinates of the measurement point MP, and the parameters are calibrated using this calibration value. This is a calibration operation.
  • the total station TS and the measurement jig 30 are used.
  • the coordinate system of the position coordinate which specifies a construction position by information construction is a global coordinate system measured by GNSS, and is a coordinate system based on the origin fixed to the earth.
  • the coordinate system of the measurement point MP (cutting edge P) calculated using the length parameter in the work machine 2 is a vehicle body coordinate system, and is an origin fixed to the vehicle body 1 (specifically, the turning body 3). Is a coordinate system based on.
  • the coordinate system used for actual measurement of the measurement point MP in the calibration operation is a total station coordinate system, and as shown in FIG. 1, is a coordinate system based on the origin set on the ground surface directly below the total station TS. .
  • the front side of the vehicle body 1 is set as the X axis (positive side)
  • the front side facing the vehicle body is set as the Y axis (positive side)
  • the upper side is set as the Z axis (positive side).
  • the total station TS is installed at a position separated from the boom foot pin 13 by a predetermined distance in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the position coordinates of the measurement point MP of the total station coordinate system by actual measurement are converted into the vehicle body coordinate system in order to unify the coordinate system, and the measurement by the calculation using the same vehicle body coordinate system is performed. It is compared with the position coordinates of the point MP.
  • coordinate system conversion is performed between the position coordinates of the center Q of the cutting edge of the vehicle body coordinate system calculated sequentially and the position coordinates of the global coordinate system for specifying the construction position.
  • the work implement 2 is controlled based on the position coordinates in the same coordinate system.
  • the measurement jig 30 used in the actual measurement of the calibration work will be described in detail.
  • FIG. 2 shows an exploded perspective view of the measuring jig 30 attached to the cutting edge P of the bucket 8.
  • FIG. 3 shows a front view when the measuring jig 30 is viewed from the total station TS side.
  • FIG. 4 shows a plan view of the measurement jig 30.
  • FIG. 5 is a side view of the measurement jig 30 and shows an arrow view seen from the arrow V side in FIG. 4.
  • the measuring jig 30 is attached to the cutting edge (attached portion) P of the tooth 8A closest to the total station TS (the Y axis direction positive side) among the plurality of teeth 8A included in the bucket 8. It is done. This is because the projection light projected from the total station TS is incident on the prism mirror 40 described later of the measurement jig 30 without being interrupted. For this reason, the cutting edge P is in a positional relationship that is separated from the cutting edge center Q by a predetermined distance along the Y-axis direction. On the other hand, the positions of the cutting edge P and the cutting edge center Q on the X axis and the Z axis are The same.
  • the measurement jig 30 includes a prism mirror (hereinafter simply referred to as a prism) 40 that reflects the projection light from the total station TS, an angle adjustment mechanism 50 as a support means for supporting the prism 40, and an angle adjustment mechanism 50. And an attachment member 60 for attaching the prism 40 to the cutting edge P.
  • a prism mirror hereinafter simply referred to as a prism
  • the prism 40 includes a prism main body 41 having a reflecting surface formed by combining three prisms in a triangular pyramid shape, and an exterior member 42 that covers the prism main body 41.
  • the apex of the triangular pyramid portion of the prism main body 41 is a mirror center MC collimated through the total station TS. Further, the mirror center MC coincides with the measurement point MP in the present embodiment.
  • the mirror center MC is a point that is collimated through the total station TS in the actual measurement during the calibration operation, and the measurement point MP is a point that is measured using the total station TS. Therefore, since the mirror center MC of the prism 40 and the measurement point MP coincide with each other, there is no conventional offset amount between them, and even if the measurement position is different, the measurement point with respect to the mirror center MC. MP is not misaligned.
  • the circular front surface of the exterior member 42 is a transparent glass surface 42A.
  • the projection light projected from the total station TS passes through the glass surface 42A, enters the internal prism main body 41, is reflected by the reflection surface of the prism main body 41, and then exits the total station TS through the glass surface 42A as reflected light.
  • a male thread portion 42B (FIGS. 4 and 5) is engraved on the side opposite to the glass surface 42A of the exterior member 42.
  • the angle adjustment mechanism 50 includes a first rotation bracket 51 on which the prism 40 is supported, a second rotation bracket 52 on which the first rotation bracket 51 is supported, and a support bracket on which the second rotation bracket 52 is supported. 53 and a universal joint structure as a whole.
  • the first rotation bracket 51 has a channel shape opened to the total station TS side in a plan view, and a block-like support portion 51A is provided on the inner portion thereof.
  • the support portion 51A is provided with a support opening 51B penetrating in the front and back direction (Y-axis direction), and a female screw portion 51C is engraved on the inner peripheral surface of the support opening 51B.
  • the prism 40 is detachably supported by the first rotation bracket 51 by screwing the male screw portion 42B into the female screw portion 51C.
  • First shaft members 54, 54 that pass through the second rotation bracket 52 are inserted into both side portions 51 ⁇ / b> D, 51 ⁇ / b> D of the first rotation bracket 51.
  • the first shaft member 54 rotatably supports the prism 40 by the second rotation bracket 52 together with the first rotation bracket 51 around the first rotation axis R1.
  • the tip of the first shaft member 54 has a cone shape and is formed in a bowl shape, but the shape of the first shaft member 54 is not limited to this and is arbitrary.
  • the second rotation bracket 52 has a channel shape opened downward in a front view, and both side portions 51D and 51D of the first rotation bracket 51 are supported inside the both side portions 52A and 52A.
  • a second shaft member 55 that passes through the support bracket 53 is inserted into the upper portion 52 ⁇ / b> B of the second rotation bracket 52.
  • the prism 40 is rotatably supported by the support bracket 53 together with the first and second rotation brackets 51 and 52 about the second rotation axis R ⁇ b> 2 by the second shaft member 55.
  • first and second rotation brackets 51 and 52 in FIGS. 3 to 5, the first rotation axis R1 is drawn in parallel with the X axis of the coordinate axis shown in FIG. 1, and the second rotation axis R2 is Z. It is drawn parallel to the axis. Therefore, the prism 40 rotates in the vertical direction around the first rotation axis R1 and rotates in the left-right direction around the second rotation axis R2.
  • the relationship between the first and second rotation axes R1 and R2 and the X and Y axes varies depending on the attitude of the work implement 2, and is not limited to this.
  • the first and second rotation axes R1 and R2 intersect at the position of the mirror center MC.
  • the prism 40 rotates with the mirror center MC, that is, the measurement point MP, as the rotation point RP.
  • the prism 40 rotates with the mirror center MC, that is, the measurement point MP, as the rotation point RP.
  • the positional relationship among the total station TS, the mirror center MC, and the measurement point MP does not change.
  • the support bracket 53 has a reverse L shape when viewed from the side, and the upper portion 52B of the second rotation bracket 52 is supported by the upper surface portion 53A.
  • the vertical portion 53B of the support bracket 53 is provided with a pair of long holes 53C that are elongated along the vertical direction (Z-axis direction).
  • the prism 40 is attached to the attachment member 60 so that the vertical position of the prism 40 can be adjusted together with the first and second rotating brackets 51 and 52 and the support bracket 53 by the bolts 56 inserted into the long holes 53C.
  • the vertical portion 53B is further provided with an opening 53D penetrating in the front and back direction (Y-axis direction).
  • the center of the opening 53D, the measurement point MP, and the cutting edge P are located along the Y axis.
  • the actual contact portion between the mounting member 60 and the tip of the tooth 8A can be confirmed at the center of the opening 53D. It is. That both are in contact at the center of the opening 53D means that the cutting edge P is not displaced in the X-axis direction or the Z-axis direction with respect to the measurement point MP.
  • the measurement point MP is only displaced along the Y axis with respect to the cutting edge P (see FIG. 4), and therefore, by changing the value of the Y coordinate of the position coordinate of the measurement point MP, any measurement point MP can be obtained. It is possible to calculate the position coordinates of the cutting edge P and thus the center Q of the cutting edge in the tooth 8A.
  • the attachment member 60 is L-shaped in a front view and has a bottom surface portion 61 and a vertical surface portion 62.
  • a bolt hole 63 for bolting the support bracket 53 of the angle adjusting mechanism 50 is provided on the end surface of the mounting member 60 on the angle adjusting mechanism 50 side.
  • a plurality of magnets 64 are attached to the bottom surface portion 61 of the attachment member 60 by bolts 66 on the upper surface side facing the lower surface of the tooth 8A. Due to the magnetizing force of these magnets 64, it is possible to easily attach the attachment member 60 and thus the entire measurement jig 30 to the iron tooth 8A.
  • One vertical surface of the vertical surface portion 62 of the mounting member 60 is a contact surface 65 with which the cutting edge P of the tooth 8A contacts. The contact state at the contact surface 65 is visually recognized through the opening 53D.
  • the measurement procedure of the measurement point MP using the total station TS and the measurement jig 30 of the present invention will be briefly described.
  • the total station TS is installed at a position away from the excavator 100 by a predetermined distance, and the measuring jig 30 with the prism 40 removed is attached to the cutting edge P.
  • the predetermined distance at this time is not an exact distance but may be an approximate distance.
  • the opening 53D is looked into, and it is confirmed whether the cutting edge P of the tooth 8A is in contact with the mounting member 60 at the center of the opening 53D. If not, the elongate hole 53C is used to adjust the vertical position of the support bracket 53 with respect to the mounting member 60, or to contact the contact surface 65 of the mounting member 60 with certainty. Ensure the condition.
  • the work machine 2 is driven, the cutting edge P is moved to a plurality of predetermined measurement positions, and the position of the measurement point MP by the total station TS is measured at each measurement position.
  • the mirror center MC of the prism 40 and the measurement point MP coincide with each other, and even if the blade edge P is moved to each measurement position, the mutual positional relationship does not shift. Can be measured without adjusting the position of the measuring jig 30 as it is. Only when the mirror center MC cannot be collimated as a result of moving the blade edge P to each measurement position, the blade edge P is temporarily moved to a position where the operator can work, and the prism 40 is appropriately rotated to appropriately rotate the mirror center MC.
  • the cutting edge P is returned to the measurement position and measured. Then, the position coordinate data of the measurement point MP at each measurement position obtained by actual measurement is output to a control device (not shown), and a calibration value is automatically calculated by the control device based on the data.
  • the mirror center MC and the measurement point MP coincide with each other, and even if the measurement position is different, the measurement point MP does not shift with respect to the mirror center MC.
  • the center MC can be collimated, it is not necessary to make the prism 40 exactly face the total station TS. Therefore, there is no need to adjust the position of the prism 40 every time the measurement position changes, and there is an effect that the position measurement can be easily performed.
  • the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • the measurement point MP and the cutting edge P are displaced along the Y axis, but may be displaced along the X axis and the Z axis. This is because the positional relationship between the two does not change even if the measurement position is different, and thus does not cause any inconvenience in calculating the calibration value.
  • the measurement point MP and the cutting edge P may coincide.
  • the angle adjustment mechanism 50 is configured to include the first and second rotating brackets 51 and 52 and the support bracket 53.
  • the present invention is not limited to this.
  • a structure such as a spherical joint may be used.
  • the prism 40 may not be supported by a mechanism such as the angle adjustment mechanism 50, but may be fixed to the attachment member 60 so as not to rotate, for example, from a state in which the front surface (glass surface 42A) faces in the Y-axis direction. .
  • the object of the present invention can be achieved by matching the mirror center MC with the measurement point MP.
  • the prism 40 is supported by some angle adjustment mechanism, and the rotation point RP, the mirror center MC, and the measurement point MP are matched. It is preferable to do so because it can be dealt with reliably.
  • the present invention can be used for a hydraulic excavator to which a normal bucket is mounted as described in the embodiment, a hydraulic excavator to which a slope bucket that presses and hardens a slope, or a hydraulic excavator to which a bucket is mounted.
  • it can be used for construction machines such as bulldozers and motor graders to which blades are attached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Acoustics & Sound (AREA)
  • Earth Drilling (AREA)
  • Jib Cranes (AREA)

Abstract

 被取付部としての刃先(P)に取り付けられ、トータルステーション(TS)と共に計測点(MP)の位置計測に用いられる測定治具(30)であって、トータルステーション(TS)からの投射光を反射するプリズムミラー(40)と、プリズムミラー(40)を刃先(P)に取り付ける取付部材(60)とを備え、プリズムミラー(40)のミラー中心(MC)と計測点(MP)とが一致している。

Description

測定治具
 本発明は、測定治具に関する。
 近年、建設機械を用いた土木作業等への情報化施工の導入が進んでいる。情報化施工とは、土木工事等の施工作業を油圧ショベルやブルドーザ、あるいはモータグレーダといった建設機械を用いて行う際、情報化通信技術(ICT ;Information and Communication Technology)およびRTK-GNSS(Real Time Kinematic-Global Navigation Satellite Systems)を駆使して、それら建設機械に設けられた作業機の作業点の位置検出を行い、検出された作業点に基づいて作業機を自動制御したり、施工作業現場の地形とその地形に対する作業点といった情報をキャブ内の表示装置に表示したりすることにより、当該施工作業(以下、単に作業)を高効率に行い、高精度な施工結果を取得することを目的とするものである。
 情報化施工において、作業機の作業点としては、建設機械が例えば油圧ショベルの場合では、バケットの刃先の位置である。この刃先の位置は、GNSアンテナとブームフートピンとの位置関係、ブーム、アーム、バケットのそれぞれの長さ、ブームシリンダ、アームシリンダ、バケットシリンダのそれぞれのストローク長さなどのパラメータに基づき、設計上の位置座標として演算される。
 一方、演算に用いられるブーム、アーム、バケット、および各シリンダの長さが設計値である場合、それらの実際の長さは製造上および組立上の寸法公差による誤差を含むことから、演算された位置座標と実際の刃先の位置座標とは必ずしも一致せず、刃先の位置検出の精度低下をもたらす。このため、刃先の位置検出の精度を向上させるためには、実際の位置計測で得られる位置座標に基づき、演算に用いられるパラメータを所定の較正値で較正しなければならず、位置計測といった較正作業を行う必要がある。
 このような較正作業として、ブームフートピンから側方に数メートル離れた位置にトータルステーションを設置し、このトータルステーションを使用してバケットの刃先近くに設定された計測点の位置計測を行うことが知られている(例えば、特許文献1参照)。特許文献1の較正作業では、バケットの刃先を地上面位置および地上面から上方に所定高さ離れた位置など、複数の計測位置に位置させ、それぞれの計測位置において計測点の位置計測を実施する。そして、計測された複数の計測点の位置座標に基づいてパラメータの較正値を演算している。
 また、刃先の位置計測にあたっては、プリズムミラー(以下、単にプリズム)を刃先近くに取り付けて位置計測を実施する。すなわち、トータルステーションからプリズムに向けてレーザ光を投射し、プリズムからの反射光を計測するのである。
特開2012-202061号公報
 ところで、従来のプリズムは、測量作業では一般的なピンポールに取り付けられるタイプのものであり、トータルステーションを通して視準されるミラー中心(プリズムの頂点部分)と、実際に位置計測したい計測点とは一致しておらず、ミラー中心に対して計測点がオフセットしている。従って、較正値の演算を正確に行うためには、トータルステーションを通して視準した場合のミラー中心と計測点との位置関係、つまりオフセット量を各計測位置で一定に保つ必要がある。
 しかしながら、各計測位置でオフセット量を一定に保とうとすると、いずれの計測位置での計測時においても、トータルステーションからの投射光をプリズムの正面から入射させる必要があることから、計測位置毎にプリズムをトータルステーションに対して厳密に正対させなければならず、プリズムの位置調整に手間がかかるという問題がある。特にバケットの刃先を上方に位置させ、作業者の届かない計測位置にプリズムがある場合には、脚立等を利用した高所の作業となってさらに面倒である。
 本発明の目的は、トータルステーションによる位置計測を容易にできる測定治具を提供することにある。
 本発明の測定治具は、被取付部に取り付けられ、トータルステーションと共に計測点の位置計測に用いられる測定治具であって、前記トータルステーションからの投射光を反射するプリズムミラーと、前記プリズムミラーを前記被取付部に取り付ける取付部材とを備え、前記プリズムミラーのミラー中心と前記計測点とが一致していることを特徴とする。
 ここで、「プリズムミラーを前記被取付部に取り付ける」とは、作業者等の人手によりプリズムミラーや取付部材を支えることなく、当該プリズムミラーを被取付部に取り付けることをいう。
 本発明によれば、プリズムミラーのミラー中心と計測点とが一致しているので、従来のようなオフセット量が存在せず、計測位置が異なってもミラー中心に対して計測点が位置ずれしない。このため、トータルステーションを通してミラー中心が視準可能である限り、わざわざプリズムミラーをトータルステーションに正対させるといった、計測位置毎のプリズムミラーの位置調整を不要にでき、位置計測を容易にできる。そして、ミラー中心が視準可能であれば、計測位置が上方にある場合でも、高所にてプリズムミラーをトータルステーションに正対させる必要がなく、作業性を大幅に改善できる。
 本発明の測定治具では、前記プリズムミラーは、前記取付部材に支持手段を介して取り付けられるとともに、前記支持手段に対して所定方向に回動自在に支持され、前記プリズムミラーの回動点と前記ミラー中心とが一致していることが好ましい。
 本発明によれば、プリズムミラーの回動点は、ミラー中心と一致していることで、計測点とも一致することになるから、プリズムミラーを回動させても、トータルステーション、ミラー中心、および計測点間相互の位置関係は変化しない。従って、一見してトータルステーションからミラー中心を視準できない場合には、プリズムミラーを所定方向に回動させ、ミラー中心を視準できるように調整すればよい。そして、この際には、ミラー中心を最低限視準できればよいので、プリズムミラーをトータルステーションに必ずしも厳密に正対させる必要がなく、位置調整を容易にできる。従って、計測位置が広範囲にわたって存在しても、プリズムミラーを回動させることで、計測点を確実に計測できる。
本発明の測定治具では、前記プリズムミラーは、前記支持手段に対して着脱自在に設けられ、前記支持手段には、前記プリズムミラーが外された状態で前記取付部材と前記被取付部との互いの当接位置を視認可能な開口部が設けられることが好ましい。
 本発明によれば、取付部材と被取付部とが確実に当接しているかの確認や、計測点と被取付部とを一致させたい場合の一致状態の確認を、開口部を通して簡単にできる。
 本発明の測定治具では、前記取付部材には、前記被取付部に磁着する磁石が設けられていることが好ましい。
 本発明によれば、取付部材ひいては測定治具全体を磁石を用いて被取付部に容易に取り付けることができ、設置作業を迅速に行える。
 本発明の測定治具は、被取付部に取り付けられ、トータルステーションと共に計測点の位置計測に用いられる測定治具であって、前記トータルステーションからの投射光を反射するプリズムミラーと、前記プリズムミラーが支持される支持手段と、前記支持手段を前記被取付部に取り付ける取付部材とを備え、前記プリズムミラーは、前記支持手段に対して所定方向に回動自在に支持され、前記プリズムミラーのミラー中心と前記計測点とが一致し、前記プリズムミラーの回動点と前記ミラー中心とが一致し、前記支持手段には、前記プリズムミラーが外された状態で前記取付部材と前記被取付部との互いの当接位置を視認可能な開口部と、鉛直方向に長い長孔が設けられ、前記長孔に挿通されるボルトにより前記支持手段が前記取付部材に取り付けられることを特徴とする。
 本発明によれば、上述した各作用効果を奏するうえ、長孔を利用することにより、開口部を通しての視認結果に応じて支持手段を取付部材に対して位置調整できる。
本発明の一実施形態に係る測定治具が取り付けられた油圧ショベルにて較正作業を実施している様子を示す斜視図。 油圧ショベルのバケットの刃先に取り付けられる測定治具を示す分解者視図。 測定治具の正面図。 測定治具の平面図。 測定治具の側面図であり、図4の矢印V側から見た矢視図。 測定治具からプリズムミラーを取り外した状態を示す正面図。
 以下、本発明の一実施形態を図面に基づいて説明する。
 図1には、油圧ショベル100に本実施形態に係る測定治具30を取り付け、この測定治具30およびトータルステーションTSを用いて較正作業を実施している様子が示されている。
[油圧ショベル]
 図1において先ず、建設機械としての油圧ショベル100は、車体1と作業機2とを有する。車体1は、旋回体3とキャブ4と走行装置5とを有する。旋回体3は、走行装置5に旋回可能に取り付けられている。旋回体3は、図示しないエンジンや油圧ポンプなどの装置を収容している。旋回体3の後部側には、RTK-GNSS(Real Time Kinematic - Global Navigation Satellite Systems、GNSSは全地球航法衛星システムをいう)用の2つのアンテナ21、22が設けられている。キャブ4は旋回体3の前部に載置されている。走行装置5は左右の履帯5A,5Bを有しており、履帯5A,5Bが回転することにより油圧ショベル100が走行する。
 作業機2は、車体1の前部に取り付けられており、ブーム6、アーム7、バケット8、ブームシリンダ10、アームシリンダ11、およびバケットシリンダ12を有する。
 ブーム6の基端部は、ブームフートピン13を介して車体1の前部に回動可能に取り付けられている。すなわち、ブームフートピン13は、ブーム6の旋回体3に対する回動中心に相当する。
 アーム7の基端部は、アームフートピン14を介してブーム6の先端部に回動可能に取り付けられている。すなわち、アームフートピン14は、アーム7のブーム6に対する回動中心に相当する。
 アーム7の先端部には、バケットフートピン15を介してバケット8が回動可能に取り付けられている。すなわち、バケットフートピン15は、バケット8のアーム7に対する回動中心に相当する。
 ブームシリンダ10、アームシリンダ11、バケットシリンダ12は、それぞれ油圧によって駆動される油圧シリンダである。ブームシリンダ10の基端部は、ブームシリンダフートピン10Aを介して旋回体3に回動可能に取り付けられている。また、ブームシリンダ10の先端部は、ブームシリンダトップピン10Bを介してブーム6に回動可能に取り付けられている。ブームシリンダ10は、油圧によって伸縮することによって、ブーム6を駆動する。
 アームシリンダ11の基端部は、アームシリンダフートピン11Aを介してブーム6に回動可能に取り付けられている。また、アームシリンダ11の先端部は、アームシリンダトップピン11Bを介してアーム7に回動可能に取り付けられている。アームシリンダ11は、油圧によって伸縮することによって、アーム7を駆動する。
 バケットシリンダ12の基端部は、バケットシリンダフートピン12Aを介してアーム7に回動可能に取り付けられている。また、バケットシリンダ12の先端部は、バケットシリンダトップピン12Bを介して第1リンク部材16の一端および第2リンク部材17の一端に回動可能に取り付けられている。第1リンク部材16の他端は、第1リンクピン16Aを介してアーム7の先端部に回動可能に取り付けられている。第2リンク部材17の他端は、第2リンクピン17Aを介してバケット8に回動可能に取り付けられている。バケットシリンダ12は、油圧によって伸縮することによって、バケット8を駆動する。
 ブームシリンダ10、アームシリンダ11、およびバケットシリンダ12などの油圧シリンダと図示しない油圧ポンプとの間には、比例制御弁が配置されている。比例制御弁が作業機コントローラによって制御されることにより、油圧シリンダ10~12に供給される作動油の流量が制御され、油圧シリンダ10~12の動作が制御される。
[較正作業と座標系]
 ここで、情報化施工を実施するためには、油圧ショベル100のバケット8の刃先中央Qの位置座標を逐次演算によって検出する必要がある。刃先中央Qの位置とは、ブーム6およびアーム7の長手方向に沿った中心線と、バケット8に設けられたツース8Aの先端を通り、かつバケット8の回動軸に平行な線との交点として定義される位置である。そして、油圧ショベル100のブーム6の長さ、すなわちブームフートピン13からアームフートピン14までの長さ、アーム7の長さ、すなわちアームフートピン14からバケットフートピン15までの長さ、バケット8の長さ、すなわちバケットフートピン15からバケット8の刃先中央Qまでの長さが、演算上必要なパラメータとして用いられる。また、ブームシリンダ10のストローク長さ、アームシリンダ11のストローク長さ、およびバケットシリンダ12のストローク長さについても、演算上必要なパラメータとして用いられる。
 それらの長さは設計値であり、製造誤差や組立誤差の関係で実際の長さとは一致しない。このため、作業機2の姿勢を異ならせた複数の計測位置にて、刃先Pの近傍に設定された計測点MPの計測作業を実際に行い、実測による計測点MPの位置座標とパラメータに基づいて演算された計測点MPの位置座標とから較正値を算出し、この較正値によりパラメータを較正することが行われる。これが較正作業である。この較正作業での計測点MPの実測において、トータルステーションTSおよび測定治具30が用いられる。
 なお、情報化施工で施工位置を特定する位置座標の座標系は、GNSSによって計測されるグローバル座標系であり、地球に固定された原点を基準とした座標系である。一方、作業機2中の長さのパラメータを用いて演算される計測点MP(刃先P)の座標系は車体座標系であり、車体1(具体的には旋回体3)に固定された原点を基準とする座標系である。また、較正作業での計測点MPの実測に用いられる座標系はトータルステーション座標系であり、図1に示すように、トータルステーションTSの直下の地上面に設定された原点を基準とする座標系である。
 そして、トータルステーション座標系では、車体1の前方側がX軸(正側)、車体前方を向いて右手外方側がY軸(正側)、上方側がZ軸(正側)として設定されている。トータルステーションTSは、ブームフートピン13からX軸方向、Y軸方向、およびZ軸方向に所定距離だけ離間した位置に設置される。
 このため、較正作業での較正値の演算に際しては、座標系を統一すべく、実測によるトータルステーション座標系の計測点MPの位置座標が車体座標系に変換され、同じ車体座標系である演算による計測点MPの位置座標と比較される。また、情報化施工を実施するにあたっては、逐次演算される車体座標系の刃先中央Qの位置座標と、施工位置を特定するためのグローバル座標系の位置座標との間で座標系変換が行われ、同一座標系の位置座標に基づいて作業機2が制御される。
 以下には、較正作業の実測で用いられる測定治具30について詳細に説明する。
[測定治具]
 図2には、バケット8の刃先Pに取り付けられる測定治具30の分解斜視図が示されている。図3には、測定治具30をトータルステーションTS側から見た場合の正面図が示されている。図4には、測定治具30の平面図が示されている。図5には、測定治具30の側面図であり、図4の矢印V側から見た矢視図が示されている。
 図2ないし図5において、測定治具30は、バケット8が有する複数のツース8Aのうち、最もトータルステーションTSに近い側(Y軸方向正側)のツース8Aの刃先(被取付部)Pに取り付けられる。これは、トータルステーションTSから投射された投射光を、測定治具30の後述するプリズムミラー40に何ら遮られることなく入射させるためである。このため、刃先Pは、刃先中央Qに対しY軸方向に沿って所定距離だけ離間した位置関係にあり、一方で、刃先Pと刃先中央QとにおけるX軸上およびZ軸上での位置は、同じである。
 具体的に測定治具30は、トータルステーションTSからの投射光を反射するプリズムミラー(以下、単にプリズム)40と、プリズム40を支持する支持手段としての角度調整機構50と、角度調整機構50を介してプリズム40を刃先Pに取り付ける取付部材60とを備える。
[プリズム]
 プリズム40は、三角錐状に3つのプリズムを組み合せて反射面としたプリズム本体41と、プリズム本体41を覆う外装部材42とを備える。
 プリズム本体41の三角錐状部分の頂点は、トータルステーションTSを通して視準されるミラー中心MCになっている。また、ミラー中心MCは、本実施形態での計測点MPと一致している。ミラー中心MCは、較正作業時の実測において、トータルステーションTSを通して視準される点であり、計測点MPは、トータルステーションTSを用いて計測される点のことである。
 従って、プリズム40のミラー中心MCと計測点MPとが一致していることにより、両者間に従来のようなオフセット量が存在せず、計測位置を異ならせてもミラー中心MCに対して計測点MPが位置ずれしない。
 外装部材42の円形の正面は、透明なガラス面42Aとされている。トータルステーションTSから投射された投射光は、ガラス面42Aを通過して内部のプリズム本体41に入射し、プリズム本体41の反射面で反射した後、反射光としてガラス面42Aを通してトータルステーションTSへ出射する。外装部材42のガラス面42Aとは反対側には、雄ねじ部42B(図4、図5)が刻設されている。
[角度調整機構]
 角度調整機構50は、プリズム40が支持される第1回動ブラケット51と、第1回動ブラケット51が支持される第2回動ブラケット52と、第2回動ブラケット52が支持される支持ブラケット53とを備え、全体で自在継手の構造を成す。
 第1回動ブラケット51は、平面視でトータルステーションTS側に開口したチャンネル形状とされ、その内側部分にはブロック状の支持部51Aが設けられている。支持部51Aには表裏方向(Y軸方向)に貫通した支持開口51Bが設けられ、支持開口51Bの内周面には雌ねじ部51Cが刻設されている。雌ねじ部51Cに雄ねじ部42Bを螺合させることで、プリズム40が第1回動ブラケット51に着脱自在に支持される。
 第1回動ブラケット51の両側部51D,51Dには、第2回動ブラケット52を貫通する第1軸部材54,54が挿通されている。第1軸部材54によりプリズム40は、第1回動軸R1を回動中心として、第1回動ブラケット51ごと第2回動ブラケット52に回動自在に支持される。なお、本実施形態では、第1軸部材54の先端が円錐とされ、鋲状に形成されているが、第1軸部材54の形状はこれに限定されず、任意である。
 第2回動ブラケット52は、正面視で下方に開口したチャンネル形状とされ、その両側部52A,52A内側には、第1回動ブラケット51の両側部51D,51Dが支持される。
 第2回動ブラケット52の上側部52Bには、支持ブラケット53を貫通する第2軸部材55が挿通されている。第2軸部材55によりプリズム40は、第2回動軸R2を回動中心として、第1、第2回動ブラケット51,52ごと支持ブラケット53に回動自在に支持される。
 これら第1、第2回動ブラケット51,52において、図3ないし図5では、第1回動軸R1が図1に示す座標軸のX軸と平行に描かれ、第2回動軸R2がZ軸と平行に描かれている。従って、プリズム40は、第1回動軸R1を回動中心として上下方向に回動し、第2回動軸R2を回動中心として左右方向に回動する。ただし、第1、第2回動軸R1,R2とX、Y軸との関係は作業機2の姿勢によって異なるため、この限りではない。
 また、第1、第2回動軸R1,R2はミラー中心MCの位置で交差している。このため、プリズム40は、ミラー中心MCすなわち計測点MPを回動点RPとして回動することになる。この結果、プリズム40を回動させても、トータルステーションTS、ミラー中心MC、および計測点MP間相互の位置関係は変わらない。
 支持ブラケット53は、側面視で逆L時形状とされ、その上面部53Aには第2回動ブラケット52の上側部52Bが支持される。
 支持ブラケット53の鉛直部53Bには、鉛直方向(Z軸方向)に沿って長形状とされた一対の長孔53Cが設けられている。これらの長孔53Cに挿通されるボルト56によりプリズム40は、第1、第2回動ブラケット51,52および支持ブラケット53ごと上下位置を調整可能に取付部材60に取り付けられる。
 鉛直部53Bにはさらに、表裏方向(Y軸方向)に貫通した開口部53Dが設けられている。開口部53Dの中心、計測点MP、および刃先Pは、Y軸に沿って位置する。
 図6に示すように、測定治具30からプリズム40を外した状態で開口部53Dをのぞき込むと、開口部53Dの中心で取付部材60とツース8Aの先端との実際の当接部分を確認可能である。両者が開口部53Dの中心で当接していることはすなわち、刃先Pが計測点MPに対し、X軸方向やZ軸方向に位置ずれしていないことを意味する。なお、計測点MPは、刃先Pに対してY軸に沿って位置ずれしているだけであるから(図4参照)、計測点MPの位置座標のY座標の値を変えるだけで、任意のツース8Aでの刃先Pひいては刃先中央Qの位置座標を算出することができる。
[取付部材]
 取付部材60は、正面視にてL字形状とされ、底面部61と鉛直面部62とを有する。取付部材60の角度調整機構50側の端面には、角度調整機構50の支持ブラケット53をボルト止めするためのボルト孔63が設けられている。取付部材60の底面部61には、ツース8Aの下面と対向する上面側に複数の磁石64がボルト66にて取り付けられている。これらの磁石64の磁着力により、取付部材60ひいては測定治具30全体を鉄製のツース8Aに容易に取り付けることが可能である。
 取付部材60の鉛直面部62の一方の鉛直面は、ツース8Aの刃先Pが当接する当接面65である。当接面65での当接状態が開口部53Dを通して視認される。
[計測点の実測手順]
 以下には、トータルステーションTSおよび本発明の測定治具30を用いた計測点MPの計測手順について簡単に説明する。
 先ず、トータルステーションTSを油圧ショベル100に対して所定距離だけ離れた位置に設置するとともに、プリズム40を取り除いた状態の測定治具30を刃先Pに取り付ける。この際の所定距離としては、厳密な距離ではなく、大凡の距離でよい。また、測定治具30において、開口部53Dをのぞき込み、ツース8Aの刃先Pが開口部53Dの中心で取付部材60に当接しているかを確認する。位置していない場合には、長孔53Cを利用し、取付部材60に対する支持ブラケット53の上下位置を調整したり、取付部材60の当接面65に確実に当接させたりして、当接状態を確実に確保する。
 次いで、作業機2を駆動し、刃先Pを予め決められた複数の計測位置に移動し、各計測位置にて、トータルステーションTSによる計測点MPの位置計測を行う。ここで、測定治具30では、プリズム40のミラー中心MCと計測点MPとが一致し、刃先Pを各計測位置に移動させても互いの位置関係がずれないため、トータルステーションTSを通してミラー中心MCを視認できれば、そのまま測定治具30の位置を調整することなく計測を継続できる。刃先Pを各計測位置に移動させた結果、ミラー中心MCを視準できない場合に限って、刃先Pを作業者が作業可能な位置に一旦移動し、プリズム40を適宜回動させてミラー中心MCを視準可能となる位置に調整し、この後、刃先Pを計測位置に再度戻し、計測すればよい。
そして、実測によって得られた各計測位置での計測点MPの位置座標のデータは、図示しない制御装置に出力され、そのデータに基づいて制御装置にて較正値が自動的に演算される。
 以上に説明した本実施形態によれば、ミラー中心MCと計測点MPとが一致しており、計測位置が異なってもミラー中心MCに対して計測点MPが位置ずれしないため、トータルステーションTSを通してミラー中心MCが視準可能である限り、わざわざプリズム40をトータルステーションTSに厳密に正対させる必要がない。従って、計測位置が変わる毎にプリズム40の位置を調整する必要もなく、位置計測を容易にできるという効果がある。
[変形例]
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、前記実施形態では、計測点MPと刃先PとがY軸に沿って位置ずれしていたが、加えてX軸やZ軸に沿って位置ずれしてもよい。両者の位置関係は計測位置が異なっても変化しないため、較正値を演算する上で何ら不都合を生じさせるものではないからである。なお、計測点MPと刃先Pとが一致していても、勿論よい。
 前記実施形態では、角度調整機構50は第1、第2回動ブラケット51,52および支持ブラケット53を備えて構成されていたが、これに限らず、例えば球面継手のような構造であってもよい。
 また、プリズム40を角度調整機構50のような機構に支持させるのではなく、例えばY軸方向に正面(ガラス面42A)が向いた状態から回動しないよう、取付部材60に固定してもよい。このような場合でも、ミラー中心MCと計測点MPとが一致していることで、本発明の目的を達成できる。しかし、プリズム40を何らかの角度調整機構に支持させ、回動点RP、ミラー中心MC、および計測点MPを一致させることで、前記実施形態で説明したように、計測位置を広範囲にわたって移動させても確実に対応できるため、そうすることが好ましい。
 本発明は、実施形態で説明したような通常のバケットが装着される油圧ショベルに利用できる他、法面を押圧して固める法面バケットが装着された油圧ショベル、あるいはバケットが装着される油圧ショベル以外に、ブレードが装着されるブルドーザやモータグレーダ等の建設機械にも利用できる。
 30…測定治具、40…プリズムミラー、50…支持手段である角度調整機構、53D…開口部、60…取付部材、64…磁石、MC…ミラー中心、MP…計測点、P…被取付部である刃先、RP…回動点、TS…トータルステーション。
 
 

Claims (5)

  1.  被取付部に取り付けられ、トータルステーションと共に計測点の位置計測に用いられる測定治具であって、
     前記トータルステーションからの投射光を反射するプリズムミラーと、
     前記プリズムミラーを前記被取付部に取り付ける取付部材とを備え、
     前記プリズムミラーのミラー中心と前記計測点とが一致している
     ことを特徴とする測定治具。
  2.  請求項1に記載の測定治具において、
     前記プリズムミラーは、前記取付部材に支持手段を介して取り付けられるとともに、前記支持手段に対して所定方向に回動自在に支持され、
     前記プリズムミラーの回動点と前記ミラー中心とが一致している
     ことを特徴とする測定治具。
  3.  請求項2に記載の測定治具において、
     前記プリズムミラーは、前記支持手段に対して着脱自在に設けられ、
     前記支持手段には、前記プリズムミラーが外された状態で前記取付部材と前記被取付部との互いの当接位置を視認可能な開口部が設けられる
     ことを特徴とする測定治具。
  4.  請求項1ないし請求項3のいずれかに記載の測定治具において、
     前記取付部材には、前記被取付部に磁着する磁石が設けられている
     ことを特徴とする測定治具。
  5.  被取付部に取り付けられ、トータルステーションと共に計測点の位置計測に用いられる測定治具であって、
     前記トータルステーションからの投射光を反射するプリズムミラーと、
     前記プリズムミラーが支持される支持手段と、
     前記支持手段を前記被取付部に取り付ける取付部材とを備え、
     前記プリズムミラーは、前記支持手段に対して所定方向に回動自在に支持され、
     前記プリズムミラーのミラー中心と前記計測点とが一致し、
     前記プリズムミラーの回動点と前記ミラー中心とが一致し、
     前記支持手段には、前記プリズムミラーが外された状態で前記取付部材と前記被取付部との互いの当接位置を視認可能な開口部と、鉛直方向に長い長孔が設けられ、
     前記長孔に挿通されるボルトにより前記支持手段が前記取付部材に取り付けられる
     ことを特徴とする測定治具。
     
     
PCT/JP2013/075371 2013-09-19 2013-09-19 測定治具 WO2015040726A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112013005525.2T DE112013005525B4 (de) 2013-09-19 2013-09-19 Messvorrichtung
CN201380064082.XA CN104838234B (zh) 2013-09-19 2013-09-19 测定工具
US14/650,509 US9404745B2 (en) 2013-09-19 2013-09-19 Measurement jig
KR1020157014698A KR101587513B1 (ko) 2013-09-19 2013-09-19 측정 지그
PCT/JP2013/075371 WO2015040726A1 (ja) 2013-09-19 2013-09-19 測定治具
JP2013555679A JP5816706B2 (ja) 2013-09-19 2013-09-19 測定治具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075371 WO2015040726A1 (ja) 2013-09-19 2013-09-19 測定治具

Publications (1)

Publication Number Publication Date
WO2015040726A1 true WO2015040726A1 (ja) 2015-03-26

Family

ID=52688408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075371 WO2015040726A1 (ja) 2013-09-19 2013-09-19 測定治具

Country Status (6)

Country Link
US (1) US9404745B2 (ja)
JP (1) JP5816706B2 (ja)
KR (1) KR101587513B1 (ja)
CN (1) CN104838234B (ja)
DE (1) DE112013005525B4 (ja)
WO (1) WO2015040726A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181340A (ja) * 2016-03-31 2017-10-05 日立建機株式会社 建設機械及び建設機械の較正方法
WO2019012650A1 (ja) * 2017-07-13 2019-01-17 株式会社小松製作所 測定冶具および油圧ショベルの較正方法
KR20190019888A (ko) 2017-07-13 2019-02-27 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계의 교정 방법, 교정 장치 및 작업 기계의 교정 시스템
JP2019152453A (ja) * 2018-02-28 2019-09-12 日立建機株式会社 計測治具
US10422111B2 (en) 2017-07-13 2019-09-24 Komatsu Ltd. Hydraulic excavator and hydraulic excavator calibration method
JP2022136216A (ja) * 2017-05-19 2022-09-15 清水建設株式会社 反射ターゲット

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627719B2 (ja) * 2013-01-16 2014-11-19 三菱重工業株式会社 ターゲット保持冶具及び測定装置
KR102353868B1 (ko) * 2016-03-31 2022-01-19 스미도모쥬기가이고교 가부시키가이샤 쇼벨
US11592277B2 (en) 2019-03-18 2023-02-28 Deere & Company Calibration kit for work machine
JP7445496B2 (ja) * 2020-03-31 2024-03-07 三菱重工業株式会社 フィン先端位置の計測方法、フィン先端位置の計測システム、及びフィン先端位置の計測用冶具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182111U (ja) * 1982-05-28 1983-12-05 青島 正明 測量用反射器
JPS6341713U (ja) * 1986-09-05 1988-03-18
JP2599431Y2 (ja) * 1993-12-30 1999-09-06 株式会社ソキア 反射鏡装置
JP2001165662A (ja) * 1999-12-08 2001-06-22 Toshiyasu Kato 反射プリズム等の正対装置
JP2002310658A (ja) * 2001-03-23 2002-10-23 Leica Geosystems Ag 目標対象
JP2006119005A (ja) * 2004-10-22 2006-05-11 Ryonichi Engineering Co Ltd 大規模構造物計測装置及び大規模構造物計測方法
JP2008121219A (ja) * 2006-11-09 2008-05-29 Penta Ocean Construction Co Ltd 杭打設方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU531188B2 (en) 1978-10-30 1983-08-11 Hewson, A.J. Clamp movable in several directions
JPS58182111A (ja) 1982-04-16 1983-10-25 Sony Corp 記録媒体
US4875291A (en) * 1987-03-20 1989-10-24 Omni Optical Products, Inc. Rotating reflector prism and target
US4948249A (en) 1987-06-23 1990-08-14 Hopkins Manufacturing Corporation Headlight aiming and light pattern testing apparatus and method
US5311222A (en) * 1988-09-14 1994-05-10 Pyramid Optical Prism assembly
US5368392B1 (en) * 1993-09-17 1998-11-03 Omega Engineering Method and apparatus for measuring temperature using infrared techniques
DE19602327C2 (de) 1996-01-24 1999-08-12 Leica Geosystems Ag Meßkugel-Reflektor
US6043879A (en) * 1998-06-01 2000-03-28 Dong; Dawei Automatic laser level
KR200448989Y1 (ko) 2008-03-28 2010-06-09 대한지적공사 프리즘홀더
US8539685B2 (en) * 2011-01-20 2013-09-24 Trimble Navigation Limited Integrated surveying and leveling
JP5237408B2 (ja) 2011-03-24 2013-07-17 株式会社小松製作所 油圧ショベルの較正システム及び較正方法
JP5796998B2 (ja) * 2011-04-28 2015-10-21 株式会社トプコン 測設点指示装置及び測量システム
EP2801841B1 (de) * 2013-05-10 2018-07-04 Leica Geosystems AG Lasertracker mit einer Zielerfassungseinheit für eine Zielverfolgung und eine Orientierungserkennung
JP6209021B2 (ja) * 2013-08-23 2017-10-04 株式会社トプコン 測量機
JP6436695B2 (ja) * 2014-09-17 2018-12-12 株式会社トプコン 測量装置及び測量装置の設置方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182111U (ja) * 1982-05-28 1983-12-05 青島 正明 測量用反射器
JPS6341713U (ja) * 1986-09-05 1988-03-18
JP2599431Y2 (ja) * 1993-12-30 1999-09-06 株式会社ソキア 反射鏡装置
JP2001165662A (ja) * 1999-12-08 2001-06-22 Toshiyasu Kato 反射プリズム等の正対装置
JP2002310658A (ja) * 2001-03-23 2002-10-23 Leica Geosystems Ag 目標対象
JP2006119005A (ja) * 2004-10-22 2006-05-11 Ryonichi Engineering Co Ltd 大規模構造物計測装置及び大規模構造物計測方法
JP2008121219A (ja) * 2006-11-09 2008-05-29 Penta Ocean Construction Co Ltd 杭打設方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181340A (ja) * 2016-03-31 2017-10-05 日立建機株式会社 建設機械及び建設機械の較正方法
JP2022136216A (ja) * 2017-05-19 2022-09-15 清水建設株式会社 反射ターゲット
WO2019012650A1 (ja) * 2017-07-13 2019-01-17 株式会社小松製作所 測定冶具および油圧ショベルの較正方法
KR20190019888A (ko) 2017-07-13 2019-02-27 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계의 교정 방법, 교정 장치 및 작업 기계의 교정 시스템
KR20190021185A (ko) 2017-07-13 2019-03-05 가부시키가이샤 고마쓰 세이사쿠쇼 측정 지그 및 유압 셔블의 교정 방법
US10422111B2 (en) 2017-07-13 2019-09-24 Komatsu Ltd. Hydraulic excavator and hydraulic excavator calibration method
US10597853B2 (en) 2017-07-13 2020-03-24 Komatsu Ltd. Measuring jig and hydraulic excavator calibration method
JPWO2019012650A1 (ja) * 2017-07-13 2020-05-07 株式会社小松製作所 測定冶具および油圧ショベルの較正方法
JPWO2019012649A1 (ja) * 2017-07-13 2020-05-07 株式会社小松製作所 作業機械の較正方法、較正装置および作業機械の較正システム
DE112017000124B4 (de) 2017-07-13 2022-11-10 Komatsu Ltd. Hydraulikbagger und Verfahren zur Kalibrierung eines Hydraulikbaggers
JP2019152453A (ja) * 2018-02-28 2019-09-12 日立建機株式会社 計測治具

Also Published As

Publication number Publication date
KR101587513B1 (ko) 2016-01-21
KR20150079956A (ko) 2015-07-08
DE112013005525T5 (de) 2015-07-30
DE112013005525B4 (de) 2018-02-15
US20150308826A1 (en) 2015-10-29
JPWO2015040726A1 (ja) 2017-03-02
CN104838234B (zh) 2016-10-05
CN104838234A (zh) 2015-08-12
JP5816706B2 (ja) 2015-11-18
US9404745B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP5816706B2 (ja) 測定治具
US10697759B2 (en) All-in-one integrated sensing device for machine control
KR101833603B1 (ko) 작업 기계의 제어 시스템 및 작업 기계
CN101903599B (zh) 用于挖掘机工具联接器的控制系统
US7640683B2 (en) Method and apparatus for satellite positioning of earth-moving equipment
JP6058217B2 (ja) 作業車両、バケット装置及びチルト角度の取得方法
US10378186B2 (en) Construction machine
JP2012233353A (ja) 油圧ショベルの較正システム及び油圧ショベルの較正方法
JP6845810B2 (ja) 油圧ショベルおよび油圧ショベルの較正方法
JP6966108B2 (ja) 建設作業機械の測位較正方法及びその測位較正コントローラ
US9689145B1 (en) Work vehicle and method for obtaining tilt angle
WO2018164079A1 (ja) 建築作業機械における傾斜センサー補正量取得方法
KR102131316B1 (ko) 작업 기계의 교정 방법, 교정 장치 및 작업 기계의 교정 시스템
WO2018164078A1 (ja) 建築作業機械における回転部材の回転中心取得方法
JP6826062B2 (ja) 計測治具
JP7424960B2 (ja) 情報取得システムおよび情報取得方法
JP6292562B1 (ja) 水平認識装置の設置装置
WO2023166885A1 (ja) 情報較正方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013555679

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157014698

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130055252

Country of ref document: DE

Ref document number: 112013005525

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14650509

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13893720

Country of ref document: EP

Kind code of ref document: A1