WO2015039557A1 - 反射式滤光片及其制备方法、显示装置 - Google Patents

反射式滤光片及其制备方法、显示装置 Download PDF

Info

Publication number
WO2015039557A1
WO2015039557A1 PCT/CN2014/085730 CN2014085730W WO2015039557A1 WO 2015039557 A1 WO2015039557 A1 WO 2015039557A1 CN 2014085730 W CN2014085730 W CN 2014085730W WO 2015039557 A1 WO2015039557 A1 WO 2015039557A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
light
crystal layer
reflective filter
filter according
Prior art date
Application number
PCT/CN2014/085730
Other languages
English (en)
French (fr)
Inventor
吴俊�
占红明
田超
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/649,866 priority Critical patent/US20150316694A1/en
Publication of WO2015039557A1 publication Critical patent/WO2015039557A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/05Function characteristic wavelength dependent
    • G02F2203/055Function characteristic wavelength dependent wavelength filtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters

Definitions

  • Reflective filter preparation method thereof, and display device
  • Embodiments of the present invention relate to a reflective filter, a method of fabricating the reflective filter, and a display device using the reflective filter. Background technique
  • the flat panel display device Compared with the conventional cathode ray tube display device, the flat panel display device has the advantages of being thin and light, having a low driving voltage, no flickering jitter, and a long service life.
  • the flat panel display device is divided into an active light emitting display device and a passive light emitting display device.
  • a Thin Film Transistor-Liquid Crystal Display (TFT-LCD) is a passive light emitting display device.
  • TFT-LCD has been widely used in electronic products such as TVs, mobile phones, and display devices because of its stable image, vivid image, radiation elimination, space saving, and energy saving. It has occupied a dominant position in the field of flat display.
  • the liquid crystal display device includes a transmissive display device, a transflective display device, and a reflective display device.
  • a reflective sheet is added to the back surface of the display panel of the reflective display device, so that the incident ambient light is reflected by the reflective sheet and then emitted from the pixel region, thereby achieving the purpose of display.
  • the reflective liquid crystal display device can make full use of the surrounding ambient light source as an illumination source to display images without setting a backlight module, thereby being more environmentally friendly. For example, in an outdoor or well-lit office, a reflective display is usually chosen.
  • the display quality of the reflective display device is closely related to the brightness of the light reflected by the reflective filter. If the ambient light is brighter, the higher the reflectivity of the reflective sheet to the ambient light in the reflective display device, the contrast of the display device. The higher the picture, the clearer the displayed picture will be. However, the reflective sheet absorbs a considerable amount of light while reflecting ambient light, resulting in a decrease in the reflectance of the reflective display device to ambient light, causing a decrease in contrast of the display device. Summary of the invention
  • Embodiments of the present invention provide a reflective filter capable of improving reflectance to ambient light; Further, embodiments of the present invention also provide a method of fabricating the reflective filter and a display device using the reflective filter.
  • At least one embodiment of the present invention provides a reflective filter comprising a photonic crystal layer for reflecting light of a particular wavelength band.
  • the photonic crystal layer includes a first photonic crystal region for reflecting light of a first wavelength band, a second photonic crystal region for reflecting light of a second wavelength band, and a third photoreflection region for reflecting a third photonic crystal region of the band light; a plurality of the first photonic crystal region, the second photonic crystal region, and the third photonic crystal region are alternately arranged in an array structure.
  • the first band of light is red light
  • the second band of light is green light
  • the third band of light is blue light
  • the photonic crystal layer has an opal-like structure; the photonic crystal layer is composed of a base material having a first refractive index and a second periodically formed in the base material The dielectric material of the refractive index is composed.
  • the reflective filter further includes a protective layer disposed on the light incident surface and/or the transmitted light exit surface of the photonic crystal layer.
  • the reflective filter further includes a base substrate; the photonic crystal layer is disposed on the base substrate.
  • the base material having the first refractive index is air
  • the dielectric material having the second refractive index periodically formed in the base material is a single microsphere.
  • n the photon
  • the effective refractive index of the crystal layer is the angle between the incident light and the normal of the photonic crystal layer, and c is a constant associated with the photonic crystal layer preparation method.
  • the single: microspheres comprise one or more of polystyrene microspheres, polydecyl methacrylate microspheres, and silica microspheres.
  • the photonic crystal layer comprises a plurality of layers of monodisperse microspheres.
  • the number of layers of the monodisperse microspheres is not less than 10.
  • Another embodiment of the present invention also provides a method for preparing a reflective filter, comprising: A photonic crystal layer for reflecting light of a specific wavelength band is formed.
  • the forming a photonic crystal layer for reflecting light of a particular wavelength band comprises:
  • first photonic crystal region for reflecting light of the first wavelength band
  • second photonic crystal region for reflecting light of the second wavelength band
  • third photonic crystal region for reflecting light of the third wavelength band on the base substrate
  • the photonic crystal layer is formed using a self-assembly process.
  • the method comprises: preparing a solution containing a monodisperse microsphere material; using one or more of a quasi-equilibrium evaporation method, a gravity sedimentation method, a spin coating method, and a sputtering deposition method A photonic crystal layer is formed on the base substrate.
  • Another embodiment of the present invention also provides a display device comprising any of the above-described reflective filters.
  • the display device further includes a light absorbing unit, the light absorbing unit is located on a light transmitting side of the reflective filter and is configured to absorb the light transmitting through the reflective filter. Light.
  • the light absorbing unit is a protective layer disposed on a light transmitting surface of the photonic crystal layer; or the photonic crystal layer is disposed on a base substrate, the light absorbing unit It is the base substrate.
  • FIG. 1 is a schematic cross-sectional structural view of a reflective filter according to an embodiment of the present invention
  • FIG. 2 is a schematic top plan view of a reflective filter according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a display device in an embodiment of the present invention. detailed description
  • Photonic Crystal is an emerging optical material. Since the photonic crystal material has a crystal structure with a repeating refractive index period, the Bragg scattered light will be modulated to form an energy band structure, which generates a photonic band gap (PBG), which is strong at the center of the photonic band gap. The reflection peak, thus the photonic crystal material has a reflectivity of approximately 100% for light located in the photonic band gap band.
  • the reflective filter and the reflective display device provided by the embodiments of the present invention employ a photonic crystal. The reflective filter, the reflective filter manufacturing method, and the reflective display device in the embodiments of the present invention will be described in detail below with reference to specific implementations.
  • Embodiments of the present invention provide a reflective filter that includes a photonic crystal layer for reflecting light in a particular band.
  • a reflective filter can utilize different photonic crystal regions of a photonic crystal layer having different photonic band gaps to reflect light in different wavelength bands. Due to the reflectivity of the specific photonic crystal filter to ambient light, the contrast of the display device is improved, the display of the display device is made clearer, and the user experience is enhanced.
  • FIG. 1 is a schematic cross-sectional view of a reflective filter according to an embodiment of the present invention.
  • the retroreflective filter 1 includes a photonic crystal layer for reflecting light of a specific wavelength band and a base substrate 2 on which the photonic crystal layer is disposed.
  • the reflective filter provided by the embodiment of the present invention may also not include a substrate.
  • the photonic crystal layer of the reflective filter 1 comprises three photonic crystal regions, namely a first photonic crystal region 11 for reflecting light of the first wavelength band, a second photonic crystal region 12 for reflecting light of the second wavelength band, and A third photonic crystal region 13 that reflects light of the third wavelength band.
  • the plurality of first photonic crystal regions 11, second photonic crystal regions 12, and third photonic crystal regions 13 are alternately arranged in an array structure as shown in Fig. 2.
  • the photonic crystal layer of this embodiment is used to reflect three colors of common RGB (red, green, and blue), that is, the first band light is red light, the second band light is green light, and the third band light is blue light.
  • the light reflected by the photonic crystal layer may also be light of other wavelengths, such as CMY (cyan, magenta, yellow) three-color light and the like.
  • the photonic crystal layer can also reflect light of four or more different wavelength bands.
  • the reflective filter provided in the embodiment can be used to reflect RGBK (red, green, blue, black), CMYK (cyan, magenta, yellow, black), etc., and thus can be used for RGBK (red, green, blue, respectively).
  • the black), CMYK (cyan, magenta, yellow, black) displays are not limited to the modes listed in the embodiments of the present invention.
  • the photonic crystal layer in the embodiment of the present invention is composed of a base material having a first refractive index and a dielectric material having a second refractive index periodically formed in the base material.
  • opal-like (Opal) structures and inverse opal (Inverse Opal) structures are two common photonic crystal structures. Protein-like photonic crystals have the same cubic close-packed structure as natural opals, also known as artificial opals.
  • the opal-like photonic crystal may be formed of a base material having a first refractive index and a dielectric material having a second refractive index periodically formed in the base material, such as air or the like, the dielectric material may be Monodisperse microspheres, such as polystyrene (PS) microspheres, polymethylmethacrylate (PMMA) microspheres or silica (Si0 2 ) microspheres.
  • PS polystyrene
  • PMMA polymethylmethacrylate
  • Si0 2 silica
  • the above-mentioned base material is usually preferably air.
  • This opal-like structure can be used as a template to fill an inorganic material having a higher refractive index in the gap of the microspheres, and remove the template to obtain a photonic crystal having an inverse opal structure.
  • the accuracy of structural "replication" depends on various factors such as van der Waals interactions, wettability of the template surface, filling of template voids, curing The volume shrinkage of the matrix during the process, etc., so small changes in a certain factor will lead to defects in the inverse opal structure, and structural disorder often occurs, which will seriously affect the optical properties of the photonic crystal. Therefore, the photonic crystal layer in the embodiment of the present invention preferably includes the above photonic crystal having an opal-like structure.
  • the photonic crystal layer may be formed by stacking a plurality of layers of monodisperse microspheres.
  • the single: microspheres may be, for example, any one or more of polystyrene microspheres, polydecylmercaptoacrylate microspheres, and silica microspheres.
  • the number of layers of monodisperse microspheres is more than about 10 layers, significant photonic crystal characteristics are exhibited.
  • the more the number of layers of monodisperse microspheres the higher the reflection efficiency of the photonic crystal layer. Therefore, the number of layers of the monodisperse microspheres in the embodiment of the present invention is limited to 10 layers, and the upper limit is not particularly limited.
  • the photon band can be accurately calculated from the Bragg scattering equation.
  • n is the effective refractive index of the photonic crystal layer, that is, the refractive index of the photonic crystal layer as a whole.
  • the photonic crystal is formed of polystyrene microspheres.
  • « > / « PS 2 x 74% + « air 2 x 26%
  • n PS the refractive index of polystyrene
  • n PS 1.59
  • the refractive index of air
  • R the radius of the polystyrene microspheres.
  • the photonic crystal has no defects, the photon
  • the reflected light of the band gap is monochromatic light. It is known that most display devices are difficult to generate monochromatic (single wavelength) light, which makes it difficult to further increase the color gamut of the display device. However, in the embodiment of the present invention, the light reflected by the photonic band gap is almost monochromatic light. Therefore, the display color gamut of the display device can be greatly improved, that is, the wide color gamut display can be realized more easily.
  • the angle between the incident light and the normal of the photonic crystal layer, c is a constant associated with the photonic crystal layer preparation method.
  • the red wavelength is 700.0 nm
  • the green wavelength is 546.1 nm
  • the blue wavelength is 435.8 nm.
  • the photonic crystal formed by the microspheres reflects red light when the particle diameter (diameter) of the polystyrene microspheres is 293.7 nm, and reflects green light when the particle diameter of the polystyrene microspheres is 229. lnm, in the polystyrene microspheres. The blue light is reflected when the particle diameter is 182.8 nm.
  • an embodiment of the present invention also provides a protective layer for the photonic crystal layer.
  • the protective layer may be disposed on the light incident surface and the transmitted light exit surface of the photonic crystal layer, or may be separately provided on only one of the light incident surface or the transmitted light exit surface.
  • the photonic crystal layer in one embodiment of the present invention is disposed on the base substrate, that is, the transmitted light exit surface of the photonic crystal layer is in direct contact with the base substrate, and therefore, the base substrate can also function as a protective layer.
  • the method for producing a reflective filter comprising: forming a photonic crystal layer for reflecting light of a specific wavelength band.
  • the reflective filter preparation method provided by one embodiment of the present invention further includes the step of providing the substrate 2 .
  • forming a photonic crystal layer for reflecting light of a specific wavelength band includes: forming a first photonic crystal region 11 for reflecting light of the first wavelength band on the base substrate 2, and a second photonic crystal region for reflecting light of the second wavelength band 12 and a third photonic crystal region 13 for reflecting light of the third wavelength band, the plurality of first photonic crystal regions 11, the second photonic crystal region 12, and the third photonic crystal region 13 are alternately arranged in an array structure.
  • the parameters of the material, the thickness, the monodisperse microsphere diameter and the like of the photonic crystal layer are set according to the above-mentioned reflective filter, and will not be described herein.
  • the method includes the following steps.
  • a monodisperse microsphere material for example, polystyrene microspheres, polydecyl methacrylate microspheres or silica microspheres, etc.
  • a monodisperse microsphere material for example, polystyrene microspheres, polydecyl methacrylate microspheres or silica microspheres, etc.
  • ethanol and water are mixed into a mixed solution of ethanol and water to obtain a mixed dispersion of monodisperse globules.
  • a solution of the material for example, polystyrene microspheres, polydecyl methacrylate microspheres or silica microspheres, etc.
  • a photonic crystal layer is formed on the base substrate 2 by one or more of self-assembly methods such as quasi-equilibrium evaporation, gravity sedimentation, spin coating, and sputter deposition.
  • a solution in which a monodisperse microsphere material is mixed is naturally evaporated, and a photonic crystal is obtained by self-assembly using a surface tension of the solution.
  • a monodisperse microsphere material is used to form an opal-like structure spontaneously under the action of a gravitational field to obtain a photonic crystal.
  • the monodisperse microsphere material is ordered and self-assembled by the action of centrifugal force.
  • the formation of the photonic crystal in the embodiment of the present invention can also be achieved by other means.
  • an exposure technique can be used to mix a small amount of photoresist in a monodisperse microsphere material and After being applied to the base substrate 2, exposure and development are carried out to form a photonic crystal.
  • physical methods such as micromechanical methods, drilling methods, and the like can be utilized.
  • an etching method, a layer-by-layer superposition method, a two-photon polymerization method, a hologram printing method, or the like can be used.
  • Embodiments of the present invention also provide a display device as shown in FIG.
  • the display device includes the display panel 3 and the reflective filter 1 according to any of the above embodiments, and the display panel 3 is located on the light incident side of the reflective filter.
  • the reflective filter can also be used to prepare a color filter substrate, and the color filter substrate and the array substrate are paired to form a display panel.
  • the photonic crystal layer provided on the reflective filter 1 contains a plurality of photonic crystal regions, and different kinds of photonic crystal regions are used to reflect light of different wavelength bands.
  • the display panel 3 may be a liquid crystal display panel, an electrophoretic display panel, an electrowetting display panel, or an electrochromic display panel or the like.
  • the display device provided by the embodiment of the present invention may further include a light absorbing unit 4 located on the transmitted light exit side of the reflective filter 1 and configured to absorb the light transmitted through the reflective filter 1 to avoid the light. After reflection, it affects the image display.
  • the protective layer may be provided as a light absorbing unit; when the photonic crystal layer is directly disposed on the base substrate, the base substrate may simultaneously serve as a light absorbing unit. Therefore, the display device can greatly improve the reflectance of ambient light, thereby improving the contrast of the display device, making the display of the display device clearer and enhancing the user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种反射式滤光片、该反射式滤光片的制备方法及应用该反射式滤光片的显示装置。该反射式滤光片(1)包括用于反射特定波段光的光子晶体层。利用光子晶体层中不同种类的光子晶体区域反射不同波段的光,可以大幅度提升反射式滤光片对环境光的反射率,进而提升了显示装置的对比度。

Description

反射式滤光片及其制备方法、 显示装置 技术领域
本发明的实施例涉及一种反射式滤光片、 该反射式滤光片的制备方法及 应用该反射式滤光片的显示装置。 背景技术
与传统的阴极射线管显示装置相比, 平板显示装置具有轻薄、 驱动电压 低、 没有闪烁抖动以及使用寿命长等优点。 平板显示装置分为主动发光显示 装置与被动发光显示装置。 例如, 薄膜晶体管液晶显示装置 (Thin Film Transistor-Liquid Crystal Display, TFT-LCD )就是一种被动发光显示装置。 由于 TFT-LCD具有画面稳定、 图像逼真、 消除辐射、 节省空间以及节省能 耗等优点, 被广泛应用于电视、 手机、 显示装置等电子产品中, 已占据了平 面显示领域的主导地位。
液晶显示装置的包含透射型显示装置、 半透射型显示装置以及反射式显 示装置。 反射式显示装置的显示面板背面添加有反射片, 使得入射的环境光 经过反射片的反射后, 然后从像素区域出射, 从而达到显示的目的。 相比于 透射型显示装置和半透射型显示装置, 反射式液晶显示装置能够充分利用周 围的环境光源作为照明来源以显示影像, 而无需设置背光模组, 因此更为节 能环保。 例如, 在户外或者光线良好的办公室内, 通常会选择布置反射式显 示装置。
反射式显示装置的画面显示质量与反射式滤光片反射出的光线的亮度 密切相关, 如果环境光越亮, 反射式显示装置中反射片对环境光的反射率越 高, 则显示装置的对比度越高, 所显示的画面也就会越清晰。 然而, 反射片 在反射环境光的同时, 会吸收掉相当一部分光, 导致反射式显示装置对环境 光的反射率降低, 引起显示装置对比度下降等。 发明内容
本发明的实施例提供了一种能够提升对环境光反射率的反射式滤光片; 进一步, 本发明的实施例还提供了一种该反射式滤光片的制备方法以及应用 该反射式滤光片的显示装置。
本发明的至少一个实施例提供了一种反射式滤光片, 所述反射式滤光片 包括用于反射特定波段光的光子晶体层。
例如, 在本发明的一个实施例中, 所述光子晶体层包括用于反射第一波 段光的第一光子晶体区域、 用于反射第二波段光的第二光子晶体区域以及用 于反射第三波段光的第三光子晶体区域; 多个所述第一光子晶体区域、 第二 光子晶体区域以及第三光子晶体区域交替布置成阵列结构。
例如, 在本发明的一个实施例中, 所述第一波段光为红光, 所述第二波 段光为绿光, 所述第三波段光为蓝光。
例如, 在本发明的一个实施例中, 所述光子晶体层具有类蛋白石结构; 所述光子晶体层由具有第一折射率的基础材料以及周期性地形成于所述基础 材料中的具有第二折射率的介电材料构成。
例如, 在本发明的一个实施例中, 反射式滤光片还包括保护层, 所述保 护层设置在所述光子晶体层入光面和 /或透射光出射面上。
例如, 在本发明的一个实施例中, 反射式滤光片还包括衬底基板; 所述 光子晶体层设置在所述衬底基板上。
例如, 在本发明的一个实施例中, 所述具有第一折射率的基础材料为空 气, 所述周期性地形成于所述基础材料中的具有第二折射率的介电材料为单 微球。
例如, 在本发明的一个实施例中, 对于用于反射中心波长为 λ的波段光 的光子晶体层, 所述单分散微球的半径 ? = ; 其中, n为该光子
In - cos(0) - c
晶体层的有效折射率, Θ为入射光与该光子晶体层法线之间的夹角, c为与光 子晶体层制备方法相关的常数。
例如, 在本发明的一个实施例中, 所述单^:微球包括聚苯乙烯微球、 聚曱基丙烯酸曱酯微球以及二氧化硅微球中的一种或者多种。
例如,在本发明的一个实施例中,所述光子晶体层包括多层单分散微球。 例如, 在本发明的一个实施例中, 所述单分散微球的层数不小于 10。 本发明的另一个实施例还提供了一种反射式滤光片的制备方法, 包括: 形成用于反射特定波段光的光子晶体层。
例如, 在本发明的一个实施例中, 所述形成用于反射特定波段光的光子 晶体层包括:
在衬底基板上形成用于反射第一波段光的第一光子晶体区域、 用于反射 第二波段光的第二光子晶体区域以及用于反射第三波段光的第三光子晶体区 域, 多个所述第一光子晶体区域、 第二光子晶体区域以及第三光子晶体区域 交替布置成阵列结构。
例如,在本发明的一个实施例中,利用自组装方法形成所述光子晶体层。 例如, 在本发明的一个实施例中, 所述方法包括: 制备含有单分散微球 材料的溶液; 利用准平衡蒸发法、 重力沉降法、 旋涂法、 溅射沉积法中的一 种或多种在衬底基板上形成光子晶体层。
本发明的另一个实施例还提供了一种包括上述任意一种反射式滤光片的 显示装置。
例如, 在本发明的一个实施例中, 所述显示装置还包括吸光单元, 所述 吸光单元位于所述反射式滤光片的透射光出射侧并用于吸收透过所述反射式 滤光片的光。
例如, 在本发明的一个实施例中, 所述吸光单元为设置在所述光子晶体 层的透射光出射面的保护层; 或者, 所述光子晶体层设置在衬底基板上, 所 述吸光单元为所述衬底基板。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1是本发明实施例中反射式滤光片的剖面结构示意图;
图 2是本发明实施例中反射式滤光片俯视结构示意图;
图 3是本发明实施例中显示装置的剖面结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
光子晶体(Photonic Crystal, 简称 PC )是一种新兴的光学材料。 由于光 子晶体材料具有折射率周期重复的晶体结构, 布拉格散射光在其中传播时将 会受到调制而形成能带结构,产生光子带隙(Photonic Band Gap,简称 PBG ), 在光子带隙中心具有强反射峰, 因而该光子晶体材料对于位于该光子带隙波 段的光具有近乎 100%的反射率。 本发明的实施例提供的反射式滤光片、 反 射式显示装置应用了光子晶体。 下面结合具体实现方式, 对本发明的实施例 中的反射式滤光片、 反射式滤光片制备方法以及反射式显示装置加以详细说 明。
本发明的实施例提供了一种反射式滤光片, 该反射式滤光片包括用于反 射特定波段光的光子晶体层。 例如, 反射式滤光片可以利用光子晶体层的具 有不同光子带隙的光子晶体区域反射不同波段的光。 由于特定的光子晶体材 式滤光片对环境光的反射率, 从而提升了显示装置的对比度, 使显示装置显 示的画面更加清晰, 增强了用户体验。
图 1为本发明的一个实施例提供的反射式滤光片的剖面结构示意图。 反 射式滤光片 1 包括用于反射特定波段光的光子晶体层和衬底基板 2, 该光子 晶体层设置在该衬底基板 2上。 本发明的实施例提供的反射式滤光片也可不 包括衬底基板。 反射式滤光片 1的光子晶体层包括三种光子晶体区域, 即用 于反射第一波段光的第一光子晶体区域 11、用于反射第二波段光的第二光子 晶体区域 12以及用于反射第三波段光的第三光子晶体区域 13。 多个第一光 子晶体区域 11、第二光子晶体区域 12以及第三光子晶体区域 13交替布置成 如图 2中所示的阵列结构。
例如, 本实施例的光子晶体层用于反射常用的 RGB (红、绿、蓝)三色, 即上述第一波段光为红光, 第二波段光为绿光, 第三波段光为蓝光。 光子晶 体层反射的光也可以是其他波段的光, 例如 CMY (青、 洋红、 黄)三色光 等等。 光子晶体层还可以反射 4种或者更多种不同波段的光。 例如, 本发明 实施例提供的反射式滤光片可用于反射 RGBK (红、 绿、 蓝、 黑) 、 CMYK (青、 洋红、黄、 黑)四色光等, 因此可分别用于 RGBK (红、绿、蓝、 黑)、 CMYK (青、 洋红、 黄、 黑)显示器中, 并不局限于本发明的实施例中所列 举的方式。
本发明实施例中的光子晶体层由具有第一折射率的基础材料以及周期性 地形成于所述基础材料中的具有第二折射率的介电材料构成。 例如, 类蛋白 石(Opal )结构和反蛋白石(Inverse Opal )结构是两种常见的光子晶体结构。 类蛋白光子晶体具有与天然蛋白石相同的立方密堆积结构, 又称为人工蛋白 石。 类蛋白石光子晶体可以由具有第一折射率的基础材料以及周期性地形成 于该基础材料中的具有第二折射率的介电材料形成, 该基础材料例如为空气 等, 该介电材料可以为单分散微球, 例如聚苯乙烯(polystyrene, 简称 PS ) 微球、 聚曱基丙烯酸曱酯(polymethylmethacrylate, 简称 PMMA )微球或者 二氧化硅(Si02 )微球等。
在本发明的一个实施例中,为了简化制备工艺,在类蛋白石光子晶体中, 上述基础材料通常优选为空气。
这种类蛋白石结构可作为模板, 在微球的间隙充填具有较高折射率的无 机材料, 除去模板得到具有反蛋白石结构的光子晶体。 由于需要通过具有类 蛋白石结构的模板来制备具有反蛋白石结构的光子晶体, 结构 "复制" 的精 确性取决于多种因素, 如范德华相互作用、 模板表面的浸润性、 模板空隙的 充填情况、 固化过程中母体的体积收缩等等, 因此某一因素的微小变化将会 导致反蛋白石结构的缺陷, 而且经常会出现结构的无序性, 这些都会严重的 影响光子晶体的光学性能。 因此, 本发明的实施例中的光子晶体层优选包括 上述具有类蛋白石结构的光子晶体。
在本发明的一个实施例中, 光子晶体层可以是由多层单分散微球堆积而 成。 该单^:微球可以是例如聚苯乙烯微球、 聚曱基丙烯酸曱酯微球以及二 氧化硅微球中的任意一种或者多种。 通常来讲, 单分散微球的层数大于 10 层左右时, 就会呈现明显的光子晶体特性。 而且, 单分散微球的层数越多, 光子晶体层的反射效率越高。 因此, 本发明实施例中的单分散微球的层数下 限为 10层, 上限则不做特殊限定。
对于类蛋白光子晶体, 可以根据布拉格散射公式精确地计算出其光子带 隙的中心波长, 即: 光子带隙的中心波长为 /l = 2«i cos(( ), 其中, d为面心 立方晶格中的面间距; Θ为入射光矢量与光子晶体法线之间的夹角。 例如, 对于由聚苯乙烯微球形成的光子晶体, n 为光子晶体层的有效折射率, 即光 子晶体层整体的折射率。例如,在光子晶体由聚苯乙烯微球形成的实施例中, « = >PS 2 x 74% + «air 2 x 26%, 其中, nPS为聚苯乙烯的折射率, nPS =1.59, ΐ 为空气的折射率, 11^ =1, d=1.633R, R为聚苯乙烯微球的半径, 在入射光垂 直入射时, Θ为 0。 因此, 可以通过调整单分散微球的粒径大小, 来精确控制 光子带隙的中心波长, 从而实现对特定波段的光进行反射。 而且, 由于光子 带隙的反射作用以及光子晶体的完整性, 光子晶体层的反射光语极窄。 也就 是说, 如果光子晶体不存在缺陷, 光子带隙的反射光为单色光。 已知大多数 显示装置都 4艮难生成单色 (单波长) 的光, 导致显示装置的色域难以进一步 提升。 然而, 在本发明的实施例中, 光子带隙反射的光几乎为单色光, 因此 可以在很大程度上提升显示装置的显示色域, 即可以更容易地实现广色域显 示。
单分散微球的粒径大小可以根据上述布拉格散射公式反推得到, 即对于 用于反射中心波长为 λ的波段光的光子晶体层, 形成该光子晶体层的单分散 微球的半径 ? = , 其中, n为该光子晶体层的有效折射率, Θ为
2n - cos(e) - c
入射光与该光子晶体层法线之间的夹角, c 为与光子晶体层制备方法相关的 常数。
例如,对于 CIE 1931 (国际照明委员会 1931年制定的标准)定义的 RGB 三原色,其中红光波长为 700.0nm,绿光波长为 546.1nm,蓝光波长为 435.8nm, 通过计算可以得知由聚苯乙烯微球形成的光子晶体在聚苯乙烯微球粒径(直 径)为 293.7nm时反射红光,在聚苯乙烯微球的粒径为 229. lnm时反射绿光, 在聚苯乙烯微球的粒径为 182.8nm时反射蓝光。 如果将聚苯乙烯微球换为二 氧化硅微球, 则光子晶体的有效折射率更改为 1.45, 通过计算得知由二氧化 硅微球形成的光子晶体在二氧化硅的粒径为 318.1nm时反射红光, 在二氧化 硅的粒径为 248.2nm时反射绿光,在二氧化硅的粒径为 198nm时反射蓝光等 等。 为了避免光子晶体层的结构受到外界损伤而对其光学特性造成不良影 响, 本发明的一个实施例还为光子晶体层设置了保护层。 保护层可以设置在 光子晶体层入光面和透射光出射面上, 也可以仅在光子晶体层入光面或者透 射光出射面中的一面上单独设置。 本发明的一个实施例中的光子晶体层设置 在衬底基板上, 即光子晶体层的透射光出射面与衬底基板直接接触, 因此, 衬底基板也可以起到保护层的作用。
本发明的实施例中还提供了一种制备上述实施例任一所述的反射式滤光 片的方法, 该反射式滤光片制备方法包括: 形成用于反射特定波段光的光子 晶体层。 例如, 本发明的一个实施例提供的反射式滤光片制备方法还包括提 供衬底基板 2的步骤。 例如, 形成用于反射特定波段光的光子晶体层包括: 在衬底基板 2上形成用于反射第一波段光的第一光子晶体区域 11、用于反射 第二波段光的第二光子晶体区域 12 以及用于反射第三波段光的第三光子晶 体区域 13, 多个第一光子晶体区域 11、 第二光子晶体区域 12以及第三光子 晶体区域 13交替布置成阵列结构。制备方法中对于光子晶体层的材料、厚度、 单分散微球粒径等参数要求根据上述反射式滤光片而设定, 在此不再赘述。
例如, 可以釆用多种自组装方法形成本发明的实施例中的光子晶体层。 例如, 所述方法包括如下步骤。
首先, 生成混合有单分散微球材料的溶液。
例如, 将单分散微球材料(例如, 聚苯乙烯微球、 聚曱基丙烯酸曱酯微 球或者二氧化硅微球等) 混合到乙醇和水的混合溶液中, 得到混合有单分散 敖球材料的溶液。
然后, 利用诸如准平衡蒸发法、 重力沉降法、 旋涂法、 溅射沉积法的自 组装方法中的一种或多种方法例如在衬底基板 2上形成光子晶体层。
例如,在准平衡蒸发方法中,将混合有单分散微球材料的溶液自然蒸发, 利用溶液表面张力进行自组装得到光子晶体。 又例如, 在重力沉降法中, 利 用单分散微球材料在重力场作用下自发形成类蛋白石结构, 得到光子晶体。 再例如, 在旋涂法中, 借助于离心力的作用使单分散微球材料发生有序自组 装。
当然, 本发明的实施例中的光子晶体的形成也可以通过其他方式实现。 例如, 可以利用曝光技术, 在将少量光刻胶混于单分散微球材料中, 并将其 涂布到衬底基板 2后, 进行曝光以及显影, 形成光子晶体。 或者, 可以利用 物理方法, 例如微机械法、 钻孔法等等。 再例如, 可以利用腐蚀法、 逐层叠 加法、 双光子聚合法以及全息印刷法等等。
本发明的实施例还提供了一种显示装置, 如图 3中所示。 该显示装置包 括显示面板 3以及上述实施例任一所述的反射式滤光片 1, 所述显示面板 3 位于所述反射式滤光片的入光侧。 当然, 也可以利用该反射式滤光片制备彩 膜基板, 该彩膜基板与阵列基板对盒后形成显示面板。 例如, 反射式滤光片 1 上设置的光子晶体层包含多种光子晶体区域, 不同种类的光子晶体区域用 于反射不同波段的光。 例如, 环境光入射到显示面板 3后, 分别在第一光子 晶体区域 11、 第二光子晶体区域 12以及第三光子晶体区域 13被反射, 反射 光为红光、 绿光以及蓝光, 显示面板 3根据图像信息对反射光进行调制, 从 而实现画面显示。 例如, 显示面板 3可以为液晶显示面板、 电泳显示面板、 电润湿显示面板或者电致变色显示面板等等。
此外, 本发明的实施例提供的显示装置还可以包括吸光单元 4, 吸光单 元 4位于反射滤光片 1的透射光出射侧并用于吸收透过反射式滤光片 1的光, 以避免这些光经过反射后对图像显示造成影响。 例如, 当光子晶体层透射光 出射面设置有保护层时, 可以将该保护层设置为吸光单元; 当光子晶体层直 接设置在衬底基板上时, 可以由衬底基板同时作为吸光单元。 射, 因此该显示装置可以大幅度提升对环境光的反射率, 从而提升了显示装 置的对比度, 使显示装置显示的画面更加清晰, 增强了用户体验。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的保护范畴。
本申请要求于 2013年 9月 17日递交的中国专利申请第 201310425554.1 号的优先权, 在此全文引用上述中国专利申请公开的内容以作为本申请的一 部分。

Claims

权利要求书
1、 一种反射式滤光片, 包括用于反射特定波段光的光子晶体层。
2、根据权利要求 1所述的反射式滤光片, 其中, 所述光子晶体层包括用 于反射第一波段光的第一光子晶体区域、 用于反射第二波段光的第二光子晶 体区域以及用于反射第三波段光的第三光子晶体区域, 多个所述第一光子晶 体区域、 第二光子晶体区域以及第三光子晶体区域交替布置成阵列结构。
3、根据权利要求 2所述的反射式滤光片,其中,所述第一波段光为红光, 所述第二波段光为绿光, 所述第三波段光为蓝光。
4、 根据权利要求 1-3任意一项所述的反射式滤光片, 其中, 所述光子晶 体层具有类蛋白石结构, 所述光子晶体层由具有第一折射率的基础材料以及 周期性地形成于所述基础材料中的具有第二折射率的介电材料构成。
5、 根据权利要求 1-4中任一项所述的反射式滤光片, 还包括保护层, 其 中, 所述保护层设置在所述光子晶体层的入光面和 /或透射光出射面上。
6、 根据权利要求 1-5中任一项所述的反射式滤光片, 还包括衬底基板, 其中, 所述光子晶体层设置在所述衬底基板上。
7、根据权利要求 4所述的反射式滤光片, 其中, 所述具有第一折射率的 基础材料为空气, 所述周期性地形成于所述基础材料中的具有第二折射率的 介电材料为单分散微球。
8、根据权利要求 7所述的反射式滤光片, 其中, 对于用于反射中心波长 为 λ的波段光的光子晶体层,所述单分散微球的半径 = ,其中,
2n - cos(0) - c n 为该光子晶体层的有效折射率, Θ 为入射光与该光子晶体层法线之间的夹 角, c为与光子晶体层制备方法相关的常数。
9、根据权利要求 7或 8所述的反射式滤光片, 其中, 所述单^:微球包 括聚苯乙烯微球、 聚曱基丙烯酸曱酯微球以及二氧化硅微球中的一种或者多 种。
10、 根据权利要求 7-9任意一项所述的反射式滤光片, 其中, 所述光子 晶体层包括多层单分散微球。
11、根据权利要求 10任意一项所述的反射式滤光片, 其中, 所述单^: 微球的层数不小于 10。
12、 一种反射式滤光片制备方法, 包括: 形成用于反射特定波段光的光 子晶体层。
13、根据权利要求 12所述的反射式滤光片制备方法, 其中, 所述形成用 于反射特定波段光的光子晶体层包括:
在衬底基板上形成用于反射第一波段光的第一光子晶体区域、 用于反射 第二波段光的第二光子晶体区域以及用于反射第三波段光的第三光子晶体区 域, 多个所述第一光子晶体区域、 第二光子晶体区域以及第三光子晶体区域 交替布置成阵列结构。
14、 根据权利要求 12或 13所述的反射式滤光片制备方法, 其中, 利用 自组装方法形成所述光子晶体层。
15、 根据权利要求 14所述的反射式滤光片制备方法, 包括:
制备含有单^:微球材料的溶液;
利用准平衡蒸发法、 重力沉降法、 旋涂法、 溅射沉积法中的一种或多种 在衬底基板上形成光子晶体层。
16、一种显示装置,包括如权利要求 1-11任意一项所述的反射式滤光片。
17、根据权利要求 16所述的显示装置, 还包括吸光单元, 其中, 所述吸 光单元位于所述反射式滤光片的透射光出射侧并用于吸收透过所述反射式滤 光片的光。
18、根据权利要求 17所述的显示装置, 其中, 所述吸光单元为设置在所 述光子晶体层透射光出射面的保护层; 或者, 所述光子晶体层设置在衬底基 板上, 所述吸光单元为所述衬底基板。
PCT/CN2014/085730 2013-09-17 2014-09-02 反射式滤光片及其制备方法、显示装置 WO2015039557A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/649,866 US20150316694A1 (en) 2013-09-17 2014-09-02 Reflective Filter, Manufacture Method Thereof, and Display Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013104255541A CN103472516A (zh) 2013-09-17 2013-09-17 反射式滤光片及其制备方法、显示装置
CN201310425554.1 2013-09-17

Publications (1)

Publication Number Publication Date
WO2015039557A1 true WO2015039557A1 (zh) 2015-03-26

Family

ID=49797433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085730 WO2015039557A1 (zh) 2013-09-17 2014-09-02 反射式滤光片及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20150316694A1 (zh)
CN (1) CN103472516A (zh)
WO (1) WO2015039557A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472516A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 反射式滤光片及其制备方法、显示装置
CN105720069B (zh) * 2014-12-01 2019-02-05 联想(北京)有限公司 一种显示装置及电子设备
CN104765155B (zh) * 2015-03-31 2017-08-01 深圳市光科全息技术有限公司 一种虚拟影像显示系统
CN105301860A (zh) * 2015-11-09 2016-02-03 昆山龙腾光电有限公司 蓝相液晶显示面板
CN105572955A (zh) * 2016-02-24 2016-05-11 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板、触控面板
CN106647015B (zh) * 2017-03-24 2019-07-09 京东方科技集团股份有限公司 一种显示装置
CN109212665B (zh) * 2017-07-07 2019-09-17 京东方科技集团股份有限公司 透明显示装置
CN107561618A (zh) * 2017-09-28 2018-01-09 重庆秉为科技有限公司 一种反射式滤光片
CN107957653A (zh) * 2018-01-16 2018-04-24 京东方科技集团股份有限公司 幕布及其制造方法、投影系统
CN112136065A (zh) * 2018-05-25 2020-12-25 松下知识产权经营株式会社 光学滤波器及多重光学滤波器、以及使用了它们的发光装置及照明系统
CN108919402B (zh) * 2018-07-24 2021-11-16 京东方科技集团股份有限公司 彩色滤光基板及其制作方法、显示装置
CN109581562A (zh) * 2019-01-02 2019-04-05 京东方科技集团股份有限公司 光子晶体复合彩膜、制作方法、彩色滤光基板
CN109709695B (zh) * 2019-01-10 2021-12-24 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
JP7398693B2 (ja) * 2019-06-27 2023-12-15 パナソニックIpマネジメント株式会社 照明装置
CN110459140A (zh) * 2019-08-16 2019-11-15 云谷(固安)科技有限公司 发光元件和显示面板
CN110687714A (zh) * 2019-10-14 2020-01-14 深圳市华星光电技术有限公司 Coa阵列基板及液晶显示面板
CN111524916A (zh) * 2020-04-28 2020-08-11 深圳市华星光电半导体显示技术有限公司 光电转换器件及其制作方法、显示装置
CN113838375B (zh) * 2020-10-12 2023-01-03 友达光电股份有限公司 显示器
EP4220294A4 (en) * 2020-10-31 2023-10-18 Huawei Technologies Co., Ltd. REFLECTIVE DISPLAY DEVICE, DISPLAY PANEL AND DISPLAY SCREEN

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544961A (zh) * 2003-11-24 2004-11-10 中国人民解放军国防科学技术大学 光子晶体全方向全反膜
US20040224154A1 (en) * 2003-01-28 2004-11-11 Atsushi Toda Fine particle structure and optical medium
JP2006139050A (ja) * 2004-11-12 2006-06-01 Shin Etsu Handotai Co Ltd 多層基板およびそれを用いた反射型液晶表示素子
US20090284696A1 (en) * 2008-05-13 2009-11-19 Samsung Electronics Co., Ltd. Photonic crystal type color filter and reflective liquid crystal display device having the same
CN102346269A (zh) * 2011-11-09 2012-02-08 苏州大学 一种反射式彩色滤光片
CN102789021A (zh) * 2012-08-31 2012-11-21 苏州大学 一种反射式彩色滤光片
CN102998726A (zh) * 2011-09-09 2013-03-27 三星电子株式会社 光子晶体结构及其制造方法、反射滤色器和显示装置
CN103143303A (zh) * 2013-03-01 2013-06-12 东南大学 一种宽视角的胶体晶体膜及其制备方法
CN103472516A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 反射式滤光片及其制备方法、显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096635A2 (en) * 2000-06-15 2001-12-20 Merck Patent Gmbh A method for producing sphere-based crystals
JP4123939B2 (ja) * 2001-12-13 2008-07-23 ソニー株式会社 スクリーンおよびその製造方法ならびに画像表示システム
KR100451689B1 (ko) * 2002-04-30 2004-10-11 삼성전자주식회사 포토닉 크리스탈을 이용한 반사형 디스플레이 장치
KR101040805B1 (ko) * 2005-11-08 2011-06-13 주식회사 엘지화학 콜로이드 나노입자를 이용한 콜로이드 광결정 및 그제조방법
US8982446B2 (en) * 2013-01-17 2015-03-17 Nthdegree Technologies Worldwide Inc. Reflective color display

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040224154A1 (en) * 2003-01-28 2004-11-11 Atsushi Toda Fine particle structure and optical medium
CN1544961A (zh) * 2003-11-24 2004-11-10 中国人民解放军国防科学技术大学 光子晶体全方向全反膜
JP2006139050A (ja) * 2004-11-12 2006-06-01 Shin Etsu Handotai Co Ltd 多層基板およびそれを用いた反射型液晶表示素子
US20090284696A1 (en) * 2008-05-13 2009-11-19 Samsung Electronics Co., Ltd. Photonic crystal type color filter and reflective liquid crystal display device having the same
CN102998726A (zh) * 2011-09-09 2013-03-27 三星电子株式会社 光子晶体结构及其制造方法、反射滤色器和显示装置
CN102346269A (zh) * 2011-11-09 2012-02-08 苏州大学 一种反射式彩色滤光片
CN102789021A (zh) * 2012-08-31 2012-11-21 苏州大学 一种反射式彩色滤光片
CN103143303A (zh) * 2013-03-01 2013-06-12 东南大学 一种宽视角的胶体晶体膜及其制备方法
CN103472516A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 反射式滤光片及其制备方法、显示装置

Also Published As

Publication number Publication date
US20150316694A1 (en) 2015-11-05
CN103472516A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2015039557A1 (zh) 反射式滤光片及其制备方法、显示装置
US8081382B2 (en) Reflective screen, display device, and mobile apparatus
JP6629243B2 (ja) グレーティング、表示装置およびグレーティングの製造方法
WO2020253731A1 (zh) 彩膜基板及其制备方法、液晶显示面板及液晶显示装置
JP6890470B2 (ja) フォトルミネセンス表示装置およびその製造方法
WO2010150615A1 (ja) 表示装置及び多層基板
TW525033B (en) An electrode substrate for reflected type liquid crystal display device, and reflected type liquid crystal display device
JP4168328B2 (ja) 光学媒体
WO2014176818A1 (zh) 液晶显示装置
US20230266512A1 (en) Nanoparticle-Based Holographic Photopolymer Materials and Related Applications
WO2019042151A1 (zh) 彩膜片及其制作方法、彩膜基板和显示装置
JP2009276766A (ja) 光結晶型カラーフィルタ及びこれを具備する反射型液晶ディスプレイ装置
JP2005308871A (ja) 干渉カラーフィルター
WO2018205537A1 (zh) 一种显示面板及其制作方法、显示装置
US20100214644A1 (en) Interference light modulator and display apparatus employing the same
WO2011108138A1 (ja) 光学素子、光源装置及び投射型表示装置
US20220128860A1 (en) Reflective display substrate and method for fabricating the same, display panel and display device
JP2011145672A (ja) 反射型カラーフィルタ及びこれを備えるディスプレイ装置
KR20120049796A (ko) 액정 표시 장치 및 액정 표시 장치의 제조 방법
CN111025728A (zh) 显示装置
JPWO2019202897A1 (ja) 液晶表示装置および電子機器
WO2022131254A1 (ja) 表示素子、及び表示装置
WO2017198072A1 (zh) 彩膜基板及其制备方法、显示装置
KR20100040649A (ko) 광결정형 광학필터, 이를 이용한 반사형 컬러 필터 및 디스플레이 장치
CN101191963A (zh) 可反射出色域的电极结构以及单晶硅面板与显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14649866

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/07/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14846322

Country of ref document: EP

Kind code of ref document: A1