WO2017198072A1 - 彩膜基板及其制备方法、显示装置 - Google Patents

彩膜基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2017198072A1
WO2017198072A1 PCT/CN2017/082856 CN2017082856W WO2017198072A1 WO 2017198072 A1 WO2017198072 A1 WO 2017198072A1 CN 2017082856 W CN2017082856 W CN 2017082856W WO 2017198072 A1 WO2017198072 A1 WO 2017198072A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
electrode layer
liquid crystal
color
Prior art date
Application number
PCT/CN2017/082856
Other languages
English (en)
French (fr)
Inventor
鹿岛美纪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/738,095 priority Critical patent/US20180173047A1/en
Publication of WO2017198072A1 publication Critical patent/WO2017198072A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/05Function characteristic wavelength dependent
    • G02F2203/055Function characteristic wavelength dependent wavelength filtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/09Function characteristic transflective
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/10Function characteristic plasmon

Definitions

  • Embodiments of the present invention relate to the field of display technologies, and in particular, to a color film substrate, a method for fabricating the same, and a display device.
  • the inside of the display device is usually provided with a color film layer, and the color film layer usually includes a pattern formed of a resin material of a plurality of colors, and different colors of light can be filtered to obtain different colors of light, but this
  • the color film layer has a low transmittance.
  • a color film substrate comprising: a first substrate and a color film layer formed on the first surface of the first substrate;
  • the color film layer is periodically distributed with a plurality of transmission patterns, each of which is formed by a wavelength hole of a range of apertures, and each of the transmission patterns transmits light of one color.
  • the color film layer is a metal layer composed of a metal material.
  • the metal material comprises at least one of aluminum, gold, silver, platinum, copper, nickel, palladium, zinc, iron, and chromium.
  • the color film layer has a thickness of 100 nm to 300 nm.
  • the shape of the wavelength aperture is a circle and/or a regular polygon.
  • the plurality of transmission patterns include a red light transmission pattern, a blue light transmission pattern, and a green light transmission pattern.
  • a wavelength hole constituting the red light transmitting pattern has a diameter ranging from 400 nm to 470 nm
  • a wavelength hole constituting the green light transmitting pattern has a diameter ranging from 280 nm to 310 nm, constituting the blue light transmission.
  • the wavelength of the wavelength hole of the pattern ranges from 200 nm to 270 nm.
  • a display device comprising: a color filter substrate, a liquid crystal cell, and a backlight according to any one of the first aspects;
  • the color filter substrate is disposed between the liquid crystal cell and the backlight.
  • the liquid crystal cell includes a second substrate, a third substrate, a first electrode layer, a second electrode layer, and a liquid crystal layer;
  • the first electrode layer is disposed on a surface of the third substrate facing the second substrate, and the second electrode layer is disposed on a surface of the second substrate facing the third substrate, the liquid crystal layer Provided between the first electrode layer and the second electrode layer.
  • the first surface of the first substrate faces the backlight
  • the first surface of the first substrate faces away from the backlight.
  • the liquid crystal cell includes the first substrate, the second substrate, a first electrode layer, a second electrode layer and a liquid crystal layer;
  • the first electrode layer is disposed on the second surface of the first substrate, the second surface and the first surface are two opposite surfaces on the first substrate, and the second electrode layer is disposed
  • the liquid crystal layer is disposed between the first electrode layer and the second electrode layer on a surface of the second substrate facing the first substrate.
  • the liquid crystal cell includes the first substrate, an insulating layer, a second substrate, a first electrode layer, a second electrode layer, and a liquid crystal layer;
  • the insulating layer is disposed on the first surface of the first substrate, the first electrode layer is disposed on the insulating layer, and the second electrode layer is disposed on the second substrate toward the first substrate
  • the surface of the liquid crystal layer is disposed between the first electrode layer and the second electrode layer.
  • the first electrode layer and the second electrode layer are transparent electrode layers.
  • the liquid crystal layer is formed by polymerizing a composition comprising a negative liquid crystal, a polymerizable monomer, and a photoinitiator.
  • a method for fabricating a color filter substrate comprising:
  • each of the transmission patterns being periodically arranged by a wavelength hole of a range of apertures, And each transmission pattern transmits light of one color.
  • the step of forming a color film layer on the first surface of the first substrate further includes:
  • Wavelength holes of various aperture ranges are etched on the metal layer to obtain a plurality of transmission patterns.
  • the plurality of transmission patterns include a red light transmission pattern, a blue light transmission pattern, and a green light transmission pattern.
  • the wavelength of the wavelength hole constituting the red light transmission pattern ranges from 400 nm to 470 nm
  • the aperture of the wavelength hole constituting the green light transmission pattern ranges from 280 nm to 310 nm, which constitutes blue light transmission.
  • the wavelength of the wavelength hole of the pattern ranges from 200 nm to 270 nm.
  • a plurality of transmission patterns are periodically distributed on the color filter layer, and each of the transmission patterns can transmit light of one color, such that When the light emitted by the backlight passes through the color filter layer, light of different colors is transmitted through the wavelength holes having different aperture ranges, so that the light of each color has a good transmittance, thereby improving the display effect.
  • FIG. 1 is a schematic structural view of a color filter substrate according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a transmission pattern according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a transmission pattern according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a display device according to an embodiment of the invention.
  • FIG. 6 is a schematic structural diagram of a display device according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a display device according to still another embodiment of the present invention.
  • FIG. 8 is a flow chart of a method of fabricating a color filter substrate according to an embodiment of the invention.
  • an embodiment of the present invention provides a color filter substrate 10 including a first substrate 11 and a color film layer 12 formed on the first surface 11 a of the first substrate 11 .
  • the first surface is any major surface on the first substrate 11.
  • a plurality of transmission patterns P are periodically distributed on the color filter layer 12, and each of the transmission patterns is periodically arranged by a wavelength hole H of a range of apertures, and each of the transmission patterns P transmits a color. Light.
  • a plurality of transmission patterns are periodically distributed on the color filter layer, and each of the transmission patterns can transmit light of one color, so that when the light emitted by the backlight passes through the color film layer After that, the light of different colors is transmitted through the wavelength holes having different aperture ranges, so that the light of each color has a good transmittance, thereby improving the display effect.
  • the color film layer 12 in the color filter substrate 10 may be a metal layer composed of a metal material.
  • the metal material may include at least one of aluminum, gold, silver, platinum, copper, nickel, palladium, zinc, iron, and chromium.
  • the color film layer 12 made of a metal material is a plasmonic color film (Plasmonic) CF) not only has a high reflectivity, but also has a good mirror display function, and can utilize the plasmon resonance effect of the metal surface to realize wavelength holes of different aperture ranges to transmit light of different colors.
  • the color film layer 12 may have a thickness of generally 100 nm to 300 nm.
  • the shape of the wavelength aperture H on the transmission pattern is a circle and/or a regular polygon.
  • the shape of the wavelength hole H is circular.
  • the plurality of transmission patterns may include a red light transmission pattern P1, a blue light transmission pattern P3, a green light transmission pattern P2, and the like, each of which is capable of transmitting light of one color.
  • a red light transmission pattern capable of transmitting red light a blue light transmission pattern capable of transmitting blue light
  • a green light transmission pattern capable of transmitting green light Since the wavelengths of light of different colors are different, correspondingly, the range of apertures required for the transmission of light of each color from the wavelength holes of the see-through pattern is different. In general, the aperture range of the wavelength hole H1 in the red light transmission pattern P1 is different.
  • the aperture range of the wavelength hole H2 in the maximum green light perspective pattern P2 is smaller than the aperture range of the wavelength hole H1 in the red light transmission pattern P1, and the aperture range of the wavelength hole H3 in the blue light transmission pattern P3 shape is the smallest.
  • the aperture of the wavelength hole H1 constituting the red light transmission pattern P1 is in the range of 400 nm to 470 nm
  • the aperture of the wavelength hole H2 constituting the green light transmission pattern P2 is in the range of 280 nm to 310 nm
  • the wavelength aperture of the blue transmission pattern P3 is formed.
  • the pore size of H3 ranges from 200 nm to 270 nm.
  • 3 is a schematic view showing different transmission patterns on the color filter layer 12, the transmission pattern on the left side is a red light transmission pattern P1, the middle perspective pattern is a green light transmission pattern P2, and the right side transmission pattern is a blue light transmission pattern P3.
  • the color filter layer 12 may further be provided with a protective layer 13, for example, the protective layer may be Silicon oxide layer.
  • a plurality of transmission patterns are periodically distributed on the color filter layer, and each of the transmission patterns can transmit light of one color, so that when the light emitted by the backlight passes through the color film layer After that, the light of different colors is transmitted through the wavelength holes having different aperture ranges, so that the light of each color has a good transmittance, thereby improving the display effect.
  • the color film substrate provided by the various embodiments of the present invention in addition to the foregoing first substrate 11 and color film layer 12, necessarily includes various components and layer structures as essential components of the color film substrate.
  • various components and layer structures for example, photoresist and the like, however, the description and description of these elements and layer structures are omitted for the sake of clarity.
  • an embodiment of the present invention provides a display device including the color filter substrate 10, the liquid crystal cell 20, and the backlight 30 shown in FIG.
  • the color filter substrate 10 is disposed between the liquid crystal cell 20 and the backlight 30.
  • the display device may be any product or component having a display function, such as a liquid crystal display panel, a smart phone, a tablet computer, a smart TV, a desktop computer, a digital frame camera navigator, and the like.
  • a display function such as a liquid crystal display panel, a smart phone, a tablet computer, a smart TV, a desktop computer, a digital frame camera navigator, and the like.
  • a plurality of transmission patterns are periodically distributed on the color film layer of the color filter substrate, and each of the transmission patterns can transmit light of one color, so that when the light emitted by the backlight passes through the color After the film layer, the light of different colors is transmitted through the wavelength holes having different aperture ranges, so that the light of each color has a good transmittance, thereby improving the display effect.
  • the liquid crystal cell 20 in the display device includes a second substrate 21, a third substrate 22, a first electrode layer 23, a second electrode layer 24, and a liquid crystal layer 25.
  • the first electrode layer 23 is disposed on the surface of the third substrate 22 facing the second substrate 21
  • the second electrode layer 24 is disposed on the surface of the second substrate 21 facing the third substrate 22, and the liquid crystal layer 25 is disposed on the surface Between an electrode layer 23 and the second electrode layer 24.
  • the first surface 11a of the first substrate 11 as shown in FIG. 1 may face the backlight 30, and the first surface 11a of the first substrate 11 may also face away from the backlight 30.
  • the first electrode layer 23 and the second electrode layer 24 may be transparent electrode layers.
  • the liquid crystal layer 25 may be composed of a negative liquid crystal, a polymerizable monomer, a photoinitiator, or the like. According to the difference in refractive index between the liquid crystal and the polymer, the liquid crystal layer 25 is in a transparent state without applying a voltage, and can be used as a transparent functional film material; in the case where a voltage is applied, the liquid crystal layer 25 is in a non-transparent state, and can be used as a An opaque functional film material.
  • the display device shown in Figure 5 works as follows:
  • the backlight 30 In the case where no voltage is applied, the backlight 30 is in a closed state, the liquid crystal layer 25 is in a transparent state, and the color film layer 12 on the color filter substrate 10 can reflect ambient light to exhibit a mirror function; in the case of applying a voltage, the backlight The light emitted by 30 is transmitted through the color film layer 12 to emit light of different colors, and the transmitted light is controlled by the liquid crystal layer 25 to achieve a good display effect.
  • a plurality of transmission patterns are periodically distributed on the color film layer of the color filter substrate, and each of the transmission patterns can transmit light of one color, so that when the light emitted by the backlight passes through the color After the film layer, different colors of light are transmitted through wavelength holes having different aperture ranges.
  • the light of each color has a good transmittance, thereby improving the display effect.
  • the liquid crystal cell 20 in the display device includes a first substrate 11 and a second substrate 21.
  • the first electrode layer 23 is disposed on the second surface 11b of the first substrate 11, and the color film layer 12 is disposed on the first surface 11a of the first substrate 11.
  • the second surface 11b and the first surface 11a are Two opposite surfaces of the first substrate 11 are disposed on the surface of the second substrate 21 facing the first substrate 11 , and the liquid crystal layer 25 is disposed between the first electrode layer 23 and the second electrode layer 24 .
  • the first electrode layer 23 and the second electrode layer 24 may be transparent electrode layers.
  • the liquid crystal layer 25 may be composed of a negative liquid crystal, a polymerizable monomer, a photoinitiator, or the like. According to the difference in refractive index between the liquid crystal and the polymer, the liquid crystal layer 25 is in a transparent state without applying a voltage, and can be used as a transparent functional film material; in the case where a voltage is applied, the liquid crystal layer 25 is in a non-transparent state, and can be used as a An opaque functional film material.
  • the display device shown in Figure 6 works as follows:
  • the backlight 30 In the case where no voltage is applied, the backlight 30 is in a closed state, the liquid crystal layer 25 is in a transparent state, and the color film layer 12 on the color filter substrate 10 can reflect ambient light to exhibit a mirror function; in the case of applying a voltage, the backlight The light emitted by 30 is transmitted through the color film layer 12 to emit light of different colors, and the transmitted light is controlled by the liquid crystal layer 25 to achieve a good display effect.
  • the color film layer of the color filter substrate is periodically distributed. a transmission pattern, each of which is capable of transmitting light of one color such that when light emitted by the backlight passes through the color filter layer, light of different colors is transmitted through wavelength holes having different aperture ranges, such that each color Light has a good transmittance, which improves the display.
  • the liquid crystal cell 20 in the display device includes a first substrate 11, an insulating layer 26, and a first The second substrate 21, the first electrode layer 23, the second electrode layer 24, and the liquid crystal layer 25.
  • the insulating layer 26 is disposed on the color film layer 12 on the first surface 11a of the first substrate 11.
  • the first electrode layer 23 is disposed on the insulating layer 26, and the second electrode layer 24 is disposed on the second substrate 21.
  • the liquid crystal layer 25 is disposed between the first electrode layer 23 and the second electrode layer 24.
  • the first electrode layer 23 and the second electrode layer 24 may be transparent electrode layers.
  • the liquid crystal layer 25 may be composed of a negative liquid crystal, a polymerizable monomer, a photoinitiator, or the like. According to the difference in refractive index between the liquid crystal and the polymer, the liquid crystal layer 25 is in a transparent state without applying a voltage, and can be used as a transparent functional film material; in the case where a voltage is applied, the liquid crystal layer 25 is in a non-transparent state, and can be used as a An opaque functional film material.
  • the display device shown in Figure 7 works as follows:
  • the backlight 30 In the case where no voltage is applied, the backlight 30 is in a closed state, the liquid crystal layer 25 is in a transparent state, and the color film layer 12 on the color filter substrate 10 can reflect ambient light to exhibit a mirror function; in the case of applying a voltage, the backlight The light emitted by 30 transmits light of different colors through the color film layer 12, and the transmitted light passes through the liquid crystal layer 25 to control the transmittance, thereby achieving good display. effect.
  • a plurality of transmission patterns are periodically distributed on the color film layer of the color filter substrate, and each of the transmission patterns can transmit light of one color, so that when the light emitted by the backlight passes through the color After the film layer, the light of different colors is transmitted through the wavelength holes having different aperture ranges, so that the light of each color has a good transmittance, thereby improving the display effect.
  • the display device provided by the various embodiments of the present invention in addition to the color film substrate 10, the liquid crystal cell 20 and the backlight 30, must include various components and layers as essential components of the display device. Structures such as array substrates and the like, however, are omitted for the sake of clarity and description and description of these elements and layer structures.
  • the embodiment of the invention provides a method for preparing a color film substrate.
  • the method for preparing a color film substrate provided by the embodiment mainly includes:
  • Step 801 providing a first substrate
  • Step 802 forming a color film layer on the first surface of the first substrate.
  • the first substrate may be a glass substrate, a quartz substrate, or the like. This embodiment does not specifically limit the type of the first substrate.
  • step 802 may further include the following sub-steps.
  • the thickness of the metal layer is preferably from 100 nm to 300 nm, and the metal to be coated comprises at least one of aluminum, gold, silver, platinum, copper, nickel, palladium, zinc, iron and chromium.
  • aluminum metal is used.
  • a plurality of transmission patterns each of which is formed by a periodic arrangement of wavelength apertures of a range of apertures, and each transmission pattern transmits light of one color.
  • the plurality of transmission patterns described above include a red light transmission pattern, a blue light transmission pattern, and a green light transmission pattern.
  • the wavelength of the wavelength hole constituting the red light transmission pattern ranges from 400 nm to 470 nm
  • the aperture of the wavelength hole constituting the green light transmission pattern ranges from 280 nm to 310 nm
  • the aperture of the wavelength hole constituting the blue light transmission pattern ranges from 200 nm to 270 nm.
  • the method provided in this embodiment may further include a step of coating a surface of the metal layer with a protective layer, for example, the protective layer is a silicon oxide film.
  • a plurality of transmission patterns are periodically distributed on the color filter layer of the color filter substrate, and each of the transmission patterns can transmit light of one color, so that when the backlight is emitted After the light passes through the color film layer, the light of different colors is transmitted through the wavelength holes having different aperture ranges, so that the light of each color has a good transmittance, thereby improving the display effect.
  • the method for preparing a color filter substrate provided by various embodiments of the present invention, in addition to the foregoing steps, necessarily includes the steps of manufacturing various components and layer structures as essential components of the color filter substrate. Descriptions and descriptions of these manufacturing steps are omitted for the sake of clarity.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种彩膜基板及其制备方法和一种显示装置。彩膜基板(10)包括:第一基板(11)和形成于第一基板(11)的第一表面(11a)上的彩膜层(12);其中,彩膜层(12)上周期性地分布着多种透射图形(P),每种透射图形(P)由一种孔径范围的波长孔(H)周期性排布构成,且每种透射图形(P)透射一种颜色的光。当背光源(30)发出的光经过彩膜层(12)后,不同颜色的光经过具有不同孔径范围的波长孔(H)透射,使得每种颜色的光都具有很好的透过率,从而提高了显示效果。

Description

彩膜基板及其制备方法、显示装置
相关申请的交叉引用
本申请要求于2016年5月16日向中国国家知识产权局递交的中国专利申请201610324334.3的权益,该申请的公开内容通过引用整体并入本文中。
技术领域
本发明实施例涉及显示技术领域,特别涉及一种彩膜基板及其制备方法和一种显示装置。
背景技术
为了实现彩色显示,显示装置的内部通常会设置有彩膜层,彩膜层通常包括由多种颜色的树脂材料形成的图案,通过不同颜色的树脂材料可以过滤得到不同颜色的光,但是这种彩膜层的透过率较低。
发明内容
根据本发明实施例的第一方面,提供了一种彩膜基板,所述彩膜基板包括:第一基板和形成于所述第一基板的第一表面上的彩膜层;
其中,所述彩膜层上周期性地分布着多种透射图形,每种透射图形由一种孔径范围的波长孔周期性排布构成,且每种透射图形透射一种颜色的光。
在本发明的一个实施例中,所述彩膜层为由金属材料构成的金属层。
在本发明的一个实施例中,所述金属材料包括铝、金、银、铂、铜、镍、钯、锌、铁及铬中至少一种。
在本发明的一个实施例中,所述彩膜层的厚度为100nm~300nm。
在本发明的一个实施例中,所述波长孔的形状为圆形和/或正多边形。
在本发明的一个实施例中,所述多种透射图形包括红光透射图形、蓝光透射图形和绿光透射图形。
在本发明的一个实施例中,构成所述红光透射图形的波长孔的孔径范围为400nm~470nm,构成所述绿光透射图形的波长孔的孔径范围为280nm~310nm,构成所述蓝光透射图形的波长孔的孔径范围为200nm~270nm。
根据本发明实施例的第二方面,提供了一种显示装置,所述显示装置包括:如第一方面中任一实施例所述的彩膜基板、液晶盒及背光源;其中,
所述彩膜基板设置于所述液晶盒与所述背光源之间。
在本发明的一个实施例中,所述液晶盒包括第二基板、第三基板、第一电极层、第二电极层及液晶层;
所述第一电极层设置于所述第三基板朝向所述第二基板的表面上,所述第二电极层设置于所述第二基板朝向所述第三基板的表面上,所述液晶层设置于所述第一电极层和所述第二电极层之间。
在本发明的一个实施例中,所述第一基板的第一表面朝向所述背光源;或者,
所述第一基板的第一表面背离所述背光源。
在本发明的一个实施例中,所述液晶盒包括所述第一基板、第二基板、 第一电极层、第二电极层及液晶层;
所述第一电极层设置于所述第一基板的第二表面上,所述第二表面与所述第一表面为所述第一基板上两个相对的表面,所述第二电极层设置于所述第二基板朝向所述第一基板的表面上,所述液晶层设置于所述第一电极层与所述第二电极层之间。
在本发明的一个实施例中,所述液晶盒包括所述第一基板、绝缘层、第二基板、第一电极层、第二电极层及液晶层;
所述绝缘层设置于所述第一基板的第一表面上,所述第一电极层设置于所述绝缘层上,所述第二电极层设置于所述第二基板朝向所述第一基板的表面上,所述液晶层设置于所述第一电极层与所述第二电极层之间。
在本发明的一个实施例中,所述第一电极层和所述第二电极层为透明电极层。
在本发明的一个实施例中,所述液晶层由包括负性液晶、可聚合单体和光引发剂的组合物聚合形成。
根据本发明实施例的第三方面,提供了一种彩膜基板的制备方法,所述方法包括:
提供第一基板;和
在所述第一基板的第一表面上形成彩膜层,所述彩膜层上周期性地分布着多种透射图形,每种透射图形由一种孔径范围的波长孔周期性排布构成,且每种透射图形透射一种颜色的光。
在本发明的一个实施例中,所述在所述第一基板的第一表面上形成彩膜层的步骤,进一步包括:
在所述第一基板的第一表面上涂覆一层金属层;和
在所述金属层上刻蚀出多种孔径范围的波长孔,得到多种透射图形。
在本发明的一个实施例中,所述多种透射图形包括红光透射图形、蓝光透射图形和绿光透射图形。
在本发明的一个实施例中,所述构成所述红光透射图形的波长孔的孔径范围为400nm~470nm,构成所述绿光透射图形的波长孔的孔径范围为280nm~310nm,构成蓝光透射图形的波长孔的孔径范围为200nm~270nm。
在根据本发明实施例所述的上述彩膜基板及其制备方法和显示装置中,彩膜层上周期性地分布有多种透射图形,每种透射图形能够透射一种颜色的光,这样,当背光源发出的光经过该彩膜层后,不同颜色的光经过具有不同孔径范围的波长孔透射,使得每种颜色的光都具有很好的透过率,从而提高了显示效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明一个实施例提供的一种彩膜基板的结构示意图;
图2是根据本发明一个实施例提供的一种透射图形的结构示意图;
图3是根据本发明另一个实施例提供的一种透射图形的结构示意图;
图4是根据本发明一个实施例提供的一种显示装置的结构示意图;
图5是根据本发明一个实施例提供的一种显示装置的结构示意图;
图6是根据本发明另一个实施例提供的一种显示装置的结构示意图;
图7是根据本发明又一个实施例提供的一种显示装置的结构示意图;和
图8是根据本发明一个实施例提供的一种彩膜基板的制备方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
参见图1,本发明实施例提供了一种彩膜基板10,该彩膜基板10包括:第一基板11和形成于第一基板11的第一表面11a上的彩膜层12。其中,第一表面为第一基板11上的任一主要表面。参见图2,彩膜层12上周期性地分布着多种透射图形P,每种透射图形由一种孔径范围的波长孔H周期性排布构成,且每种透射图形P透射一种颜色的光。
本发明实施例提供的彩膜基板中,彩膜层上周期性地分布有多种透射图形,每种透射图形能够透射一种颜色的光,这样,当背光源发出的光经过该彩膜层后,不同颜色的光经过具有不同孔径范围的波长孔透射,使得每种颜色的光都具有很好的透过率,从而提高了显示效果。
在图1所示的彩膜基板的结构基础上,本发明另一实施例提供了一种彩膜基板,该彩膜基板10中的彩膜层12可以为由金属材料构成的金属层,该金属材料可以包括铝、金、银、铂、铜、镍、钯、锌、铁和铬等中的至少一种。由金属材料制作的彩膜层12为一种等离激元的彩膜(Plasmonic  CF),不仅具有很高的反射率,从而具有良好的镜子显示功能,而且能够利用金属表面的等离子体激元共鸣效应,实现不同孔径范围的波长孔透射不同颜色的光。
作为一种可选的实施例,彩膜层12的厚度一般可以为100nm~300nm。
作为一种可选的实施例,透射图形上的波长孔H的形状为圆形和/或正多边形。在图示的实施例中,波长孔H的形状为圆形。
作为一种可选的实施例,如图3所示,多种透射图形可以包括红光透射图形P1、蓝光透射图形P3和绿光透射图形P2等,每种透射图形能够透射一种颜色的光,例如,红光透射图形能够透射红光,蓝光透射图形能够透射蓝光,绿光透射图形能够透射绿光。由于不同颜色的光波长不同,相应地,每种颜色的光从透视图形的波长孔中透射所需要的孔径范围是不同的,一般情况下,红光透射图形P1中的波长孔H1的孔径范围最大,绿光透视图形P2中的波长孔H2的孔径范围相对红光透射图形P1中的波长孔H1的孔径范围要小,蓝光透射图P3形中的波长孔H3的孔径范围最小。在本实施例中,构成红光透射图形P1的波长孔H1的孔径范围为400nm~470nm,构成绿光透射图形P2的波长孔H2的孔径范围为280nm~310nm,构成蓝光透射图形P3的波长孔H3的孔径范围为200nm~270nm。图3示出了彩膜层12上不同透射图形的示意图,左侧的透射图形为红光透射图形P1,中间的透视图形为绿光透射图形P2,右侧的透射图形为蓝光透射图形P3。
作为一种可选的实施例,为了防止透射图形上的波长孔被破坏,如图3a所示,彩膜层12上还可设置有一层保护层13,例如,该保护层可以为 氧化硅层。
本发明实施例提供的彩膜基板中,彩膜层上周期性地分布有多种透射图形,每种透射图形能够透射一种颜色的光,这样,当背光源发出的光经过该彩膜层后,不同颜色的光经过具有不同孔径范围的波长孔透射,使得每种颜色的光都具有很好的透过率,从而提高了显示效果。
需要注意的是,本发明各个实施例提供的彩膜基板,除了包括前述的第一基板11和彩膜层12之外,必然还包括作为彩膜基板的必要组成部分的各种元件和层结构,如光阻等,然而,为了清楚的目的,省略这些元件和层结构的描述和说明。
参见图4,本发明实施例提供了一种显示装置,该显示装置包括图1所示的彩膜基板10、液晶盒20及背光源30。其中,彩膜基板10设置于液晶盒20与背光源30之间。
在实际应用中,该显示装置可以为液晶显示面板、智能手机、平板电脑、智能电视、台式电脑、数码相框机导航仪等任何具有显示功能的产品或部件。
本实施例提供的显示装置中,彩膜基板的彩膜层上周期性地分布有多种透射图形,每种透射图形能够透射一种颜色的光,这样,当背光源发出的光经过该彩膜层后,不同颜色的光经过具有不同孔径范围的波长孔透射,使得每种颜色的光都具有很好的透过率,从而提高了显示效果。
在图4所示的显示装置的基础上,本发明另一实施例提供了一种显示 装置,如图5所示,该显示装置中的液晶盒20包括第二基板21、第三基板22、第一电极层23、第二电极层24及液晶层25。参见图5,第一电极层23设置于第三基板22朝向第二基板21的表面上,第二电极层24设置于第二基板21朝向第三基板22的表面上,液晶层25设置于第一电极层23和第二电极层24之间。
在本实施例中,如图1中所示的第一基板11的第一表面11a可以朝向背光源30,第一基板11的第一表面11a也可以背离背光源30。
作为一种可选的实施例,第一电极层23和第二电极层24可以为透明电极层。
作为一种可选的实施例,液晶层25可以由负性液晶、可聚合单体和光引发剂等组成。根据液晶和高分子折射率的差异,在不施加电压的情况下,液晶层25为透明态,可作为透明的功能膜材料;在施加电压的情况下,液晶层25为非透明态,可作为一种不透明的功能膜材料。
图5所示的显示装置工作原理如下:
在不施加电压的情况下,背光源30处于关闭状态,液晶层25处于透明状态,彩膜基板10上的彩膜层12能够反射环境光,呈现镜子功能;在施加电压的情况下,背光源30发出的光经过彩膜层12透射出不同颜色的光,且所透射的光经过液晶层25对透过率的控制,从而实现良好的显示效果。
本实施例提供的显示装置中,彩膜基板的彩膜层上周期性地分布有多种透射图形,每种透射图形能够透射一种颜色的光,这样,当背光源发出的光经过该彩膜层后,不同颜色的光经过具有不同孔径范围的波长孔透射, 使得每种颜色的光都具有很好的透过率,从而提高了显示效果。
在图4所示的显示装置的基础上,本发明另一实施例提供了一种显示装置,如图6所示,该显示装置中的液晶盒20包括第一基板11、第二基板21、第一电极层23、第二电极层24及液晶层25。参见图6,第一电极层23设置于第一基板11的第二表面11b上,彩膜层12设置于第一基板11的第一表面11a上,该第二表面11b与第一表面11a为第一基板11上两个相对的表面,第二电极24层设置于第二基板21朝向第一基板11的表面上,液晶层25设置于第一电极层23与第二电极层24之间。
作为一种可选的实施例,第一电极层23和第二电极层24可以为透明电极层。
作为一种可选的实施例,液晶层25可以由负性液晶、可聚合单体和光引发剂等组成。根据液晶和高分子折射率的差异,在不施加电压的情况下,液晶层25为透明态,可作为透明的功能膜材料;在施加电压的情况下,液晶层25为非透明态,可作为一种不透明的功能膜材料。
图6所示的显示装置工作原理如下:
在不施加电压的情况下,背光源30处于关闭状态,液晶层25处于透明状态,彩膜基板10上的彩膜层12能够反射环境光,呈现镜子功能;在施加电压的情况下,背光源30发出的光经过彩膜层12透射出不同颜色的光,且所透射的光经过液晶层25对透过率的控制,从而实现良好的显示效果。
本实施例提供的显示装置中,彩膜基板的彩膜层上周期性地分布有多 种透射图形,每种透射图形能够透射一种颜色的光,这样,当背光源发出的光经过该彩膜层后,不同颜色的光经过具有不同孔径范围的波长孔透射,使得每种颜色的光都具有很好的透过率,从而提高了显示效果。
在图4所示的显示装置的基础上,本发明另一实施例提供了一种显示装置,如图7所示,该显示装置中的液晶盒20包括第一基板11、绝缘层26、第二基板21、第一电极层23、第二电极层24及液晶层25。参见图7,绝缘层26设置于位于第一基板11的第一表面11a上的彩膜层12上,第一电极层23设置于绝缘层26上,第二电极层24设置于第二基板21朝向第一基板11的表面上,液晶层25设置于第一电极层23与第二电极层24之间。
作为一种可选的实施例,第一电极层23和第二电极层24可以为透明电极层。
作为一种可选的实施例,液晶层25可以由负性液晶、可聚合单体和光引发剂等组成。根据液晶和高分子折射率的差异,在不施加电压的情况下,液晶层25为透明态,可作为透明的功能膜材料;在施加电压的情况下,液晶层25为非透明态,可作为一种不透明的功能膜材料。
图7所示的显示装置工作原理如下:
在不施加电压的情况下,背光源30处于关闭状态,液晶层25处于透明状态,彩膜基板10上的彩膜层12能够反射环境光,呈现镜子功能;在施加电压的情况下,背光源30发出的光经过彩膜层12透射出不同颜色的光,且所透射的光经过液晶层25对透过率的控制,从而实现良好的显示 效果。
本实施例提供的显示装置中,彩膜基板的彩膜层上周期性地分布有多种透射图形,每种透射图形能够透射一种颜色的光,这样,当背光源发出的光经过该彩膜层后,不同颜色的光经过具有不同孔径范围的波长孔透射,使得每种颜色的光都具有很好的透过率,从而提高了显示效果。
需要注意的是,本发明各个实施例提供的显示装置,除了包括前述的彩膜基板10、液晶盒20和背光源30之外,必然还包括作为显示装置的必要组成部分的各种元件和层结构,如阵列基板等,然而,为了清楚的目的,省略这些元件和层结构的描述和说明。
本发明实施例提供了一种彩膜基板的制备方法,参见图8,本实施例提供的彩膜基板的制备方法流程主要包括:
步骤801、提供第一基板;和
步骤802、在第一基板的第一表面上形成彩膜层。
在步骤801中,第一基板可以为玻璃基板、石英基板等,本实施例不对第一基板的类型作具体的限定。
在本发明的一个具体实施例中,上述步骤802可以进一步包括如下子步骤。
(1)、在第一基板的第一表面上涂覆一层金属层。其中,金属层的厚度以100nm~300nm为宜,所涂覆的金属包括铝、金、银、铂、铜、镍、钯、锌、铁及铬中至少一种。优选地,采用铝金属。
(2)、在形成有金属层的第一基板的第一表面涂覆一层光刻胶。
(3)、利用掩膜版对涂覆光刻胶的第一基板的第一表面进行曝光处理,形成光刻胶完全去除区域和光刻胶完全保留区域。
(4)、采用金属刻蚀液对曝光处理后的第一基板的第一表面进行刻蚀,以在第一基板的第一表面上形成彩膜层,该彩膜层上周期性地分布着多种透射图形,每种透射图形由一种孔径范围的波长孔周期性排布构成,且每种透射图形透射一种颜色的光。在一个实施例中,前述多种透射图形包括红光透射图形、蓝光透射图形和绿光透射图形等。构成红光透射图形的波长孔的孔径范围为400nm~470nm,构成绿光透射图形的波长孔的孔径范围为280nm~310nm,构成蓝光透射图形的波长孔的孔径范围为200nm~270nm。
另外,为了防止透射图形上的波长孔被破坏,本实施例提供的方法还可以包括在金属层的表面涂覆一层保护层的步骤,例如,该保护层为氧化硅薄膜。
本发明实施例提供的彩膜基板的制备方法中,彩膜基板的彩膜层上周期性地分布有多种透射图形,每种透射图形能够透射一种颜色的光,这样,当背光源发出的光经过该彩膜层后,不同颜色的光经过具有不同孔径范围的波长孔透射,使得每种颜色的光都具有很好的透过率,从而提高了显示效果。
需要注意的是,本发明各个实施例提供的彩膜基板的制备方法,除了包括前述步骤之外,必然还包括制造作为彩膜基板的必要组成部分的各种元件和层结构的步骤,然而,为了清楚的目的,省略这些制造步骤的描述和说明。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种彩膜基板,包括:第一基板和形成于所述第一基板的第一表面上的彩膜层;
    其中,所述彩膜层上周期性地分布着多种透射图形,每种透射图形由一种孔径范围的波长孔周期性排布构成,且每种透射图形透射一种颜色的光。
  2. 根据权利要求1所述的彩膜基板,其中,所述彩膜层为由金属材料构成的金属层。
  3. 根据权利要求2所述的彩膜基板,其中,所述金属材料包括铝、金、银、铂、铜、镍、钯、锌、铁及铬中至少一种。
  4. 根据权利要求1所述的彩膜基板,其中,所述彩膜层的厚度为100nm~300nm。
  5. 根据权利要求1所述的彩膜基板,其中,所述波长孔的形状为圆形和/或正多边形。
  6. 根据权利要求1所述的彩膜基板,其中,所述多种透射图形包括红光透射图形、蓝光透射图形和绿光透射图形。
  7. 根据权利要求6所述的彩膜基板,其中,构成所述红光透射图形的波长孔的孔径范围为400nm~470nm,构成所述绿光透射图形的波长孔的孔径范围为280nm~310nm,构成所述蓝光透射图形的波长孔的孔径范围为200nm~270nm。
  8. 一种显示装置,包括:上述权利要求1至7中任一所述的彩膜基板、液晶盒及背光源;其中,
    所述彩膜基板设置于所述液晶盒与所述背光源之间。
  9. 根据权利要求8所述的显示装置,其中,所述液晶盒包括第二基板、第三基板、第一电极层、第二电极层及液晶层;
    所述第一电极层设置于所述第三基板朝向所述第二基板的表面上,所述第二电极层设置于所述第二基板朝向所述第三基板的表面上,所述液晶层设置于所述第一电极层和所述第二电极层之间。
  10. 根据权利要求9所述的显示装置,其中,所述第一基板的第一表面朝向所述背光源;或者,
    所述第一基板的第一表面背离所述背光源。
  11. 根据权利要求8所述的显示装置,其中,所述液晶盒包括所述第一基板、第二基板、第一电极层、第二电极层及液晶层;
    所述第一电极层设置于所述第一基板的第二表面上,所述第二表面与 所述第一表面为所述第一基板上两个相对的表面,所述第二电极层设置于所述第二基板朝向所述第一基板的表面上,所述液晶层设置于所述第一电极层与所述第二电极层之间。
  12. 根据权利要求8所述的显示装置,其中,所述液晶盒包括所述第一基板、绝缘层、第二基板、第一电极层、第二电极层及液晶层;
    所述绝缘层设置于所述第一基板的第一表面上,所述第一电极层设置于所述绝缘层上,所述第二电极层设置于所述第二基板朝向所述第一基板的表面上,所述液晶层设置于所述第一电极层与所述第二电极层之间。
  13. 根据权利要求8至12中任一项所述的显示装置,其中,所述第一电极层和所述第二电极层为透明电极层。
  14. 根据权利要求8至12中任一项所述的显示装置,其中,所述液晶层由包括负性液晶、可聚合单体和光引发剂的组合物聚合形成。
  15. 一种彩膜基板的制备方法,所述方法包括:
    提供第一基板;和
    在所述第一基板的第一表面上形成彩膜层,其中,所述彩膜层上周期性地分布着多种透射图形,每种透射图形由一种孔径范围的波长孔周期性排布构成,且每种透射图形透射一种颜色的光。
  16. 根据权利要求15所述的方法,其中,所述在所述第一基板的第一表面上形成彩膜层的步骤,进一步包括:
    在所述第一基板的第一表面上涂覆一层金属层;和
    在所述金属层上刻蚀出多种孔径范围的波长孔,得到多种透射图形。
  17. 根据权利要求15所述的方法,其中,所述多种透射图形包括红光透射图形、蓝光透射图形和绿光透射图形。
  18. 根据权利要求17所述的方法,其中,所述构成所述红光透射图形的波长孔的孔径范围为400nm~470nm,构成所述绿光透射图形的波长孔的孔径范围为280nm~310nm,构成蓝光透射图形的波长孔的孔径范围为200nm~270nm。
PCT/CN2017/082856 2016-05-16 2017-05-03 彩膜基板及其制备方法、显示装置 WO2017198072A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/738,095 US20180173047A1 (en) 2016-05-16 2017-05-03 Color film substrate assembly and method of manufacturing the same, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610324334.3A CN105759494A (zh) 2016-05-16 2016-05-16 彩膜基板及其制备方法、显示装置
CN201610324334.3 2016-05-16

Publications (1)

Publication Number Publication Date
WO2017198072A1 true WO2017198072A1 (zh) 2017-11-23

Family

ID=56324043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082856 WO2017198072A1 (zh) 2016-05-16 2017-05-03 彩膜基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20180173047A1 (zh)
CN (1) CN105759494A (zh)
WO (1) WO2017198072A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105759494A (zh) * 2016-05-16 2016-07-13 京东方科技集团股份有限公司 彩膜基板及其制备方法、显示装置
CN107861287B (zh) * 2017-12-13 2020-06-26 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的制备方法
CN112071205B (zh) * 2020-09-11 2022-03-08 武汉华星光电半导体显示技术有限公司 一种粘结结构及其制备方法、盖板及其制备方法
CN114648925A (zh) * 2020-12-21 2022-06-21 深圳市柔宇科技股份有限公司 显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916671A (zh) * 2006-09-05 2007-02-21 广辉电子股份有限公司 彩色滤光片及其制造方法
CN101551544A (zh) * 2008-04-03 2009-10-07 胜华科技股份有限公司 具触控功能的彩色滤光片及液晶显示装置
US20120147456A1 (en) * 2009-09-09 2012-06-14 Sharp Kabushiki Kaisha Wavelength selective reflection element, wavelength selective reflection unit, and reflective display device
CN103293726A (zh) * 2012-06-29 2013-09-11 上海天马微电子有限公司 液晶盒、3d触控显示装置及其控制方法
CN105093679A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板和显示装置
CN105759494A (zh) * 2016-05-16 2016-07-13 京东方科技集团股份有限公司 彩膜基板及其制备方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654082B1 (en) * 1998-09-16 2003-11-25 Optrex Corporation Liquid crystal display element and color display device having particular transflector
KR20110120722A (ko) * 2010-04-29 2011-11-04 엘지디스플레이 주식회사 나노 패터닝 방법 및 이를 이용한 표면 플라즈몬 컬러필터와 액정표시장치의 제조방법
JP6252078B2 (ja) * 2013-10-01 2017-12-27 Jsr株式会社 液晶組成物、液晶表示素子及び液晶表示素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916671A (zh) * 2006-09-05 2007-02-21 广辉电子股份有限公司 彩色滤光片及其制造方法
CN101551544A (zh) * 2008-04-03 2009-10-07 胜华科技股份有限公司 具触控功能的彩色滤光片及液晶显示装置
US20120147456A1 (en) * 2009-09-09 2012-06-14 Sharp Kabushiki Kaisha Wavelength selective reflection element, wavelength selective reflection unit, and reflective display device
CN103293726A (zh) * 2012-06-29 2013-09-11 上海天马微电子有限公司 液晶盒、3d触控显示装置及其控制方法
CN105093679A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板和显示装置
CN105759494A (zh) * 2016-05-16 2016-07-13 京东方科技集团股份有限公司 彩膜基板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN105759494A (zh) 2016-07-13
US20180173047A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2017198072A1 (zh) 彩膜基板及其制备方法、显示装置
US8767282B2 (en) Plasmonic in-cell polarizer
JP2005308871A (ja) 干渉カラーフィルター
US20210088840A1 (en) Method of having a polarizer built in a lcd panel, lcd device, and lcd device manufacturing method
US10473838B2 (en) Color filter substrate and manufacturing method thereof, and display device
US9726804B2 (en) Light guide plate and method of manufacturing the same, and backlight module
WO2015039557A1 (zh) 反射式滤光片及其制备方法、显示装置
WO2019100707A1 (zh) 一种彩膜基板及其制造方法、液晶面板
KR20100096809A (ko) 간섭 광 변조기 및 이를 채용한 디스플레이
CN108333832A (zh) 彩膜基板、液晶显示面板及显示装置
JP2019515343A (ja) カラーフィルタ基板の製作方法及び液晶パネルの製作方法
WO2014183362A1 (zh) 显示装置、彩膜基板及其制作方法
TW201629591A (zh) 包括反射性極化器及補償膜之光學堆疊
US20130234966A1 (en) Optical element and display system
TWI457615B (zh) 彩色濾光片、光柵結構及顯示模組
CN109212813B (zh) 彩膜基板、显示装置
JP2003177410A (ja) 液晶表示装置用カラーフィルターおよび半透過型液晶表示装置
KR20150118502A (ko) 광차단 영역을 가진 자동정렬형 컬러 필터 어레이 및 이의 제조 방법
JP4275351B2 (ja) 半透過半反射型液晶表示装置用カラーフィルタ
JP2016184016A (ja) 表示装置および表示装置用基板
WO2020124705A1 (zh) 显示面板的制备方法、显示面板及显示装置
JP2008287204A (ja) 半透過型液晶表示装置用カラーフィルターおよびその製造方法、並びにそれを用いた半透過型液晶表示装置
JP2013195969A (ja) 表示素子
JP2003161933A (ja) カラーフィルタ及び液晶表示装置
JP2007212663A (ja) カラーフィルタ基板、カラー液晶表示装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15738095

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798635

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17798635

Country of ref document: EP

Kind code of ref document: A1