WO2020253731A1 - 彩膜基板及其制备方法、液晶显示面板及液晶显示装置 - Google Patents

彩膜基板及其制备方法、液晶显示面板及液晶显示装置 Download PDF

Info

Publication number
WO2020253731A1
WO2020253731A1 PCT/CN2020/096609 CN2020096609W WO2020253731A1 WO 2020253731 A1 WO2020253731 A1 WO 2020253731A1 CN 2020096609 W CN2020096609 W CN 2020096609W WO 2020253731 A1 WO2020253731 A1 WO 2020253731A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pattern
sub
color
substrate
Prior art date
Application number
PCT/CN2020/096609
Other languages
English (en)
French (fr)
Inventor
于美娜
赵伟利
刘明星
李锐
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/264,530 priority Critical patent/US11320690B2/en
Publication of WO2020253731A1 publication Critical patent/WO2020253731A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01791Quantum boxes or quantum dots
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/02Frequency-changing of light, e.g. by quantum counters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • G02F1/133557Half-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present disclosure relates to the field of display technology, in particular to a color filter substrate and a preparation method thereof, a liquid crystal display panel and a liquid crystal display device.
  • Liquid crystal display devices (Liquid Crystal Display, referred to as LCD) have the characteristics of small size, low power consumption, and no radiation, and occupy a dominant position in the current display market.
  • an embodiment of the present disclosure provides a color filter substrate, including: a first substrate, a first metal wire grid polarizing layer provided on the first substrate, and a first metal wire grid polarizing layer provided on the first substrate.
  • a plurality of sub-pixel units on the side of the layer away from the first surface; wherein, the first surface is the surface of the first metal wire grid polarizing layer away from the first substrate.
  • the plurality of sub-pixel units includes a plurality of first sub-pixel units, a plurality of second sub-pixel units, and a plurality of third sub-pixel units.
  • a first sub-pixel unit of the plurality of first sub-pixel units includes a first light conversion pattern and a first reflection pattern that are stacked and arranged, and the first reflection pattern is disposed on the first light conversion pattern away from the One side of the first metal wire grid polarizing layer; the first light conversion pattern is configured to emit a second color light under the excitation of a first color incident light, and the first reflection pattern is configured to reflect the first color light And transmit the second color light.
  • One second sub-pixel unit of the plurality of second sub-pixel units includes a second light conversion pattern and a second reflection pattern that are stacked and arranged, and the second reflection pattern is disposed on the second light conversion pattern away from the One side of the first metal wire grid polarizing layer; the second light conversion pattern is configured to emit a third color light under the excitation of the first color incident light, and the second reflection pattern is configured to reflect the first color Color light and transmit the third color light.
  • the third sub-pixel unit is configured to receive the first color light and emit the fourth color light.
  • the second color light, the third color light, and the fourth color light are three primary colors.
  • the third sub-pixel unit includes a transparent filling pattern, the fourth color light and the first color light are light in the same wavelength range; the first color light is blue light, and the second color light The light of the third color is red light and green light, respectively.
  • a third sub-pixel unit of the plurality of third sub-pixel units includes a third light conversion pattern and a third reflection pattern that are stacked and arranged, and the third reflection pattern is disposed on the third The light conversion pattern is away from the side of the first metal wire grid polarizing layer; the third light conversion pattern is configured to emit light of a fourth color under the excitation of the incident light of the first color, and the third reflection pattern is configured To reflect the first color light and transmit the fourth color light.
  • the material of the first light conversion pattern includes first quantum dots; the material of the second light conversion pattern includes second quantum dots.
  • the materials of the first quantum dot and the second quantum dot include: at least one of indium phosphide, indium arsenide, cadmium sulfide, cadmium selenide, cadmium telluride, zinc selenide, and zinc sulfide.
  • the diameters of the first quantum dot and the second quantum dot are different.
  • the first sub-pixel unit further includes a first absorption pattern disposed on a side of the first reflection pattern away from the first light conversion pattern, and the first absorption pattern is configured to absorb the first Color light and transmit the second color light.
  • the second sub-pixel unit further includes a second absorption pattern disposed on a side of the second reflection pattern away from the second light conversion pattern, and the second absorption pattern is configured to absorb the first color light and transmit the third light. Color light.
  • both the first reflective pattern and the second reflective pattern include: at least one layer of first reflective sub-patterns and at least one layer of second reflective sub-patterns stacked in a thickness direction of the first substrate pattern.
  • the materials of the at least one layer of the first reflective sub-pattern and the at least one layer of the second reflective sub-pattern both include cholesteric liquid crystal, and the spiral direction of the cholesteric liquid crystal in the at least one layer of the first reflective sub-pattern It is left-handed, and the spiral direction of the cholesteric liquid crystal in the at least one second reflective sub-pattern is right-handed.
  • the thickness of the first reflective sub-pattern is 2um-5um; the thickness of the second reflective sub-pattern is 2um-5um.
  • the materials of the first absorption pattern and the second absorption pattern both include blue light absorbing dye; the blue light absorbing dye includes at least one of coumarin and benzotriazole.
  • the material of the first absorption pattern and the second absorption pattern are the same, and the adjacent first absorption pattern and the second absorption pattern are an integral structure.
  • the first absorption pattern is a red filter pattern
  • the second absorption pattern is a green filter pattern
  • both the red filter pattern and the green filter pattern include polymer materials and organic dye.
  • the color filter substrate further includes: a flat layer disposed between the first metal wire grid polarizing layer and the first light conversion pattern, the second light conversion pattern, and the transparent filling pattern .
  • the flat layer and the transparent filling pattern are made of the same material and have an integral structure.
  • the first sub-pixel unit, the second sub-pixel unit, and the third sub-pixel unit are all disposed between the first metal wire grid polarizing layer and the first substrate .
  • the color filter substrate further includes a first light-shielding pattern, the first light-shielding pattern has a grid structure; each sub-pixel unit is arranged in each of the plurality of grids of the first light-shielding pattern.
  • the color filter substrate further includes a second light-shielding pattern, the second light-shielding pattern is in a grid structure; the first light conversion pattern, the second light conversion pattern, and the transparent filling pattern are disposed in In each of the plurality of grids of the second shading pattern; any adjacent first reflective pattern, any adjacent second reflective pattern, and any adjacent first reflective pattern and The second reflective pattern is an integral structure.
  • the first metal wire grid polarization layer is also multiplexed as a common electrode.
  • an embodiment of the present disclosure provides a liquid crystal display panel including an array substrate and the color filter substrate as described above.
  • the array substrate is provided with a polarization layer; the polarization direction of the first metal wire grid polarization layer is parallel or perpendicular to the polarization direction of the polarization layer.
  • the array substrate includes a second substrate; the polarizing layer is a second metal wire grid polarizing layer, and the second metal wire grid polarizing layer is disposed on the second substrate close to the color One side of the film substrate or the side away from the color filter substrate.
  • an embodiment of the present disclosure provides a liquid crystal display device including the above-mentioned liquid crystal display panel and a backlight module.
  • the backlight module includes a light source and a reflective sheet, and the light emitted by the light source is light of the first color.
  • an embodiment of the present disclosure provides a method for preparing a color filter substrate, including: forming a plurality of sub-pixel units on a first substrate; the plurality of sub-pixel units include a plurality of first sub-pixel units and a plurality of first sub-pixel units. Two sub-pixel units and a plurality of third sub-pixel units; forming a first metal wire grid polarizing layer on the side of the plurality of sub-pixel units away from the first substrate.
  • forming a first sub-pixel unit, a second sub-pixel unit, and a third sub-pixel unit on a first substrate includes: a first sub-pixel area and a second sub-pixel area on the first substrate, respectively Forming a first reflection pattern and a second reflection pattern; forming a first light conversion pattern in the first sub-pixel area and on the first reflection pattern, in the second sub-pixel area and in the second reflection A second light conversion pattern is formed on the pattern, and a transparent filling pattern is formed in the third sub-pixel area on the first substrate; the first light conversion pattern is configured to emit a second light under the excitation of incident light of the first color Two-color light, the first reflection pattern is configured to reflect a first color light and to transmit a second color light; the second light conversion pattern is configured to emit a third color light under the excitation of the first color incident light, the The second reflection pattern is configured to reflect the first color light and transmit the third color light; the first color light, the second color light, and the third color light are three primary colors.
  • an embodiment of the present disclosure provides a method for preparing a color filter substrate, including: forming a plurality of sub-pixel units on a first substrate; the plurality of sub-pixel units include a plurality of first sub-pixel units and a plurality of first sub-pixel units. Two sub-pixel units and a plurality of third sub-pixel units; forming a first metal wire grid polarizing layer on the side of the plurality of sub-pixel units away from the first substrate.
  • forming a first sub-pixel unit, a second sub-pixel unit, and a third sub-pixel unit on a first substrate includes: a first sub-pixel area, a second sub-pixel area, and a A first reflection pattern, a second reflection pattern, and a third reflection pattern are formed in the third sub-pixel area, respectively; a first light conversion pattern is formed in the first sub-pixel area and on the first reflection pattern, and the Two sub-pixel areas and forming a second light conversion pattern on the second reflection pattern, and forming a third light conversion pattern in the third sub-pixel area and on the third reflection pattern; the first light The conversion pattern is configured to emit light of a second color under the excitation of incident light of the first color, the first reflection pattern is configured to reflect the first color light and to transmit the second color light; the second light conversion pattern is configured to A third color light is emitted under the excitation of one color incident light, the second reflection pattern is configured to reflect the first color light and the third color light is transmitted; the third light conversion pattern is configured to be excited
  • FIG. 1 is a structural diagram of a liquid crystal display device provided by some embodiments of the disclosure.
  • FIG. 2A is a structural diagram of a side-lit backlight module provided by some embodiments of the present disclosure.
  • FIG. 2B is a structural diagram of a direct type backlight module provided by some embodiments of the present disclosure.
  • FIG. 3A is a structural diagram of a liquid crystal display panel provided by some embodiments of the present disclosure.
  • FIG. 3B is a structural diagram of a liquid crystal display panel in the related art
  • FIG. 4 is a structural diagram of a color filter substrate provided by some embodiments of the disclosure.
  • FIG. 5 is a structural diagram of another color filter substrate provided by some embodiments of the disclosure.
  • FIG. 6 is a structural diagram of a first metal wire grid polarizing layer provided by some embodiments of the disclosure.
  • FIG. 7 is a schematic diagram of a distribution mode of sub-pixel units provided by some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of the propagation path of blue light in the liquid crystal display device provided by some embodiments of the disclosure.
  • FIG. 9 is a structural diagram of another color filter substrate provided by some embodiments of the disclosure.
  • FIG. 10 is a structural diagram of a first reflective pattern provided by some embodiments of the present disclosure.
  • FIG. 11 is a structural diagram of yet another color filter substrate provided by some embodiments of the present disclosure.
  • FIG. 12 is a structural diagram of yet another color filter substrate provided by some embodiments of the present disclosure.
  • FIG. 13 is a structural diagram of yet another color filter substrate provided by some embodiments of the present disclosure.
  • FIG. 14 is a structural diagram of yet another color filter substrate provided by an embodiment of the disclosure.
  • FIG. 15 is a structural diagram of yet another color filter substrate provided by some embodiments of the present disclosure.
  • 16 is a schematic diagram of the propagation path of light in the first wavelength range in the liquid crystal display device provided by some embodiments of the disclosure.
  • FIG. 17 is a structural diagram of yet another color filter substrate provided by some embodiments of the present disclosure.
  • FIG. 18 is a structural diagram of yet another color filter substrate provided by some embodiments of the present disclosure.
  • FIG. 19 is a structural diagram of yet another color filter substrate provided by some embodiments of the disclosure.
  • FIG. 20 is a structural diagram of an array substrate provided by some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • connection may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “connected” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content herein.
  • the liquid crystal display device mainly includes a liquid crystal display panel 1, a backlight module 2, a circuit board 3, a frame 4, a cover glass 5, and other electronic accessories. .
  • the longitudinal section of the frame 4 is, for example, U-shaped, and the liquid crystal display panel 1, the backlight module 2, the circuit board 3, and other electronic components are arranged in the frame 4.
  • the backlight module 2 is arranged under the liquid crystal display panel 1
  • the circuit board 3 is arranged under the backlight module 2
  • the cover glass 5 is arranged on the side of the liquid crystal display panel 1 away from the backlight module 2.
  • the circuit board 3 is configured to provide the liquid crystal display panel 1 with signals required for display.
  • the circuit board 3 is PCBA, which includes a printed circuit board (Printed Circuit Board, PCB), a timing controller (TCON), a power management integrated circuit (Power Management IC, PMIC), and others arranged on the PCB. IC or circuit etc.
  • the backlight module 2 includes at least one light source 21, a light guide plate 23, and at least one optical film 24 disposed on the light exit side of the light guide plate 23 and the like.
  • the at least one optical film 24 includes, for example, a diffuser and/or at least one Brightness Enhancement Film (BEF).
  • BEF Brightness Enhancement Film
  • the at least one brightness enhancement film includes, for example, a prism film (Prism Sheet) and a reflective polarizing brightness enhancement film (Dual Brightness Enhancement Film, DBEF).
  • the light source 21 includes, for example, a light-emitting diode (LED).
  • the light emitted by the light source 21 is light in the first wavelength range.
  • the backlight module 2 is configured to provide light in the first wavelength range to the liquid crystal display panel 1 as incident light of the liquid crystal display panel 1.
  • the light in the first wavelength range may be any one of blue light, violet light or ultraviolet light.
  • the light source 21 may be arranged on the side of the light guide plate 23.
  • the backlight module 2 is an edge-type backlight module.
  • the light source 21 may also be arranged on the side of the light guide plate 23 away from the light-emitting side.
  • the backlight module 2 is a direct type backlight module.
  • the structure of the backlight module 2 in FIG. 2A and FIG. 2B is only for illustration and does not make any limitation.
  • the backlight module 2 may further include a reflective sheet 22.
  • the reflective sheet 22 is disposed on the side of the light guide plate 23 away from the light exit side; for a direct-lit backlight
  • the reflective sheet 22 is arranged on the side of the light source 21 away from the light guide plate 23.
  • the liquid crystal display panel 1 includes an array substrate 11, a color filter substrate 10, and a liquid crystal layer 12 disposed between the array substrate 11 and the color filter substrate 10.
  • the array substrate 11 and the color filter substrate 10 can be joined together by a frame sealant, so that the liquid crystal molecules in the liquid crystal layer 12 are confined within the area enclosed by the frame sealant.
  • the color filter substrate 10 provided by some embodiments of the present disclosure includes: a first substrate 101, a first metal wire grid polarizing layer 102 disposed on the first substrate 101, and The first metal wire grid polarizing layer 102 is away from the multiple sub-pixel units on the side of the first surface; the first surface is the surface of the first metal wire grid polarizing layer 102 away from the first substrate 101.
  • the plurality of sub-pixel units includes a plurality of first sub-pixel units 104, a plurality of second sub-pixel units 105, and a plurality of third sub-pixel units 106.
  • One first sub-pixel unit 104 of the plurality of first sub-pixel units 104 includes a first light conversion pattern 1041 and a first reflection pattern 1042 that are stacked.
  • each first sub-pixel unit 104 of the plurality of first sub-pixel units 104 includes a first light conversion pattern 1041 and a first reflection pattern 1042 that are stacked.
  • the first reflection pattern 1042 is disposed on the side of the first light conversion pattern 1041 away from the first metal wire grid polarizing layer 102; the first light conversion pattern 1041 is configured to emit a second wavelength range under the excitation of incident light in the first wavelength range
  • the first reflective pattern 1042 is configured to reflect light in the first wavelength range and transmit light in the second wavelength range.
  • One second sub-pixel unit 105 of the plurality of second sub-pixel units 105 includes a second light conversion pattern 1051 and a second reflection pattern 1052 that are stacked.
  • each second sub-pixel unit 105 of the plurality of second sub-pixel units 105 includes a second light conversion pattern 1051 and a second reflection pattern 1052 that are stacked.
  • the second reflection pattern 1052 is disposed on the side of the second light conversion pattern 1051 away from the first metal wire grid polarizing layer 102; the second light conversion pattern 1051 is configured to emit a third wavelength range under the excitation of incident light in the first wavelength range
  • the second reflection pattern 1052 is configured to reflect light in the first wavelength range and transmit light in the third wavelength range.
  • the third sub-pixel unit 106 is configured to receive light in the first wavelength range and emit light in the fourth wavelength range.
  • the light in the first wavelength range is the first color light
  • the light in the second wavelength range is the second color light
  • the light in the third wavelength range is the third color light
  • the light in the fourth wavelength range is The fourth color light
  • the second color light, the third color light and the fourth color light are three primary colors.
  • the color filter substrate 10 includes a first substrate, a color filter layer disposed on the first substrate, and the color filter layer includes a red filter unit R, a green filter unit G, and a blue filter unit.
  • Filter unit B The red filter unit R, the green filter unit G and the blue filter unit B are all made of a mixture of polymer materials and organic dyes.
  • the backlight module provides white light to the liquid crystal display panel.
  • the liquid crystal layer 12 of the liquid crystal display panel controls the transmittance of the white light. After the white light passes through the liquid crystal layer 12, it is filtered by the color film layer to realize different colors of display. .
  • the white light emitted by the backlight module passes through the red filter unit R, the green filter unit G and the blue filter unit B of the color film layer for color conversion, the white light has only one of the three colors of red, green and blue.
  • the light will pass through, and the light of the other colors will be absorbed, so the transmittance is only 1/3, and at least 2/3 of the light intensity is lost, resulting in a low utilization rate of the color film substrate 10 for light.
  • the first sub-pixel unit 104 includes a first light conversion pattern 1041 and a first reflective pattern 1042
  • the second sub-pixel unit 105 includes a second light conversion pattern 1051 and a second reflective pattern.
  • Pattern 1052 under the excitation of the light in the first wavelength range provided by the backlight module, the first light conversion pattern 1041 can emit light in the second wavelength range, and the second light conversion pattern 1051 can emit light in the third wavelength range.
  • the backlight provided by the backlight module is directly converted into the required light, so that the utilization rate of the color film substrate 10 to the light of the backlight module is improved, and the first reflective pattern 1042 and the second reflective pattern 1052 can both reflect the light in the first wavelength range.
  • the light can reflect and reuse the light in the first wavelength range that has not been converted, thereby further improving the utilization rate of light.
  • the third sub-pixel 105 can receive light in the first wavelength range provided by the backlight module, and emit light in the fourth wavelength range, and light in the second wavelength range, light in the third wavelength range, and light in the fourth wavelength range.
  • the light is of three primary colors. Therefore, the color filter substrate 10 provided in some embodiments of the present disclosure is applied to a display device to realize normal display.
  • the third sub-pixel unit 106 includes a transparent filling pattern 1060, that is, the third sub-pixel unit 106 can transmit light in the first wavelength range.
  • the light in the fourth wavelength range and the first wavelength The light in the range is light in the same wavelength range.
  • the light in the first wavelength range is blue light
  • the first wavelength range is 421 nm to 505 nm
  • the center wavelength is 454 nm, that is, the first color light is blue light.
  • the second color light and the third color light are red light and green light, respectively.
  • the light source 21 of the backlight module 2 may be, for example, a blue light-emitting diode (Light-Emitting Diode, LED for short).
  • the white light generally comes from the light emitted by the phosphor excited by the blue light, and about 40% of the energy is lost during the process of exciting the phosphor by the blue light. Therefore, in the embodiment of the present disclosure, the light source 21 is set as a blue LED, that is, the blue light emitted by the blue LED is directly used as the output light of the backlight module 2 to avoid the aforementioned energy loss.
  • the first substrate 101 is ITO (Indium-Tin Oxide, indium tin oxide) glass (glass with an ITO film deposited on the surface).
  • the first metal wire grid polarizer (WGP) 102 includes a plurality of wire grids arranged in parallel, and the gap width between two adjacent wire grids is the same. The so-called parallel here should be understood as substantially parallel. Because process errors are unavoidable, the conventional understanding of those skilled in the art should be followed.
  • the first metal wire grid polarizing layer 102 is characterized by reflecting polarized light parallel to the wire grid direction and transmitting polarized light perpendicular to the wire grid direction.
  • the first metal wire grid polarizing layer 102 includes a substrate 1021 and a plurality of metal wires 1022 that are parallel to each other arranged on the substrate 1021.
  • the base 1021 is disposed close to the first substrate 101.
  • the fabricated base 1021 of the first metal wire grid polarizing layer 102 can be bonded to the surface of the plurality of sub-pixel units away from the first substrate 101 by optical glue.
  • the color filter substrate 10 when the color filter substrate 10 is fabricated, a plurality of metal lines 1022 parallel to each other are fabricated directly on the side surface of the plurality of sub-pixel units that have been fabricated away from the first substrate 101 through a patterning process.
  • the first metal wire grid polarizing layer 102 only includes a plurality of metal wires 1022 parallel to each other.
  • the thickness H of the metal wire 1022 is, for example, 100 nm to 300 nm
  • the width W is, for example, 20 nm to 100 nm
  • the pitch P between two adjacent metal wires 1022 is, for example, 100 to 150 nm.
  • the distribution mode can refer to conventional settings in the art.
  • a plurality of first sub-pixel units 104, a plurality of second sub-pixel units 105, and a plurality of third sub-pixel units 106 are periodically arranged, and along the vertical direction, the same
  • the light-emitting colors of the sub-pixel units in the columns are the same.
  • the first light conversion pattern 1041 and the first reflective pattern 1042 in the first sub-pixel unit 104 may both be located on the first substrate 101 and the first metal wire grid. Between the polarizing layers 102, that is, the first sub-pixel unit 104 is located between the first substrate 101 and the first metal wire grid polarizing layer 102. Or, as shown in FIG. 5, the first light conversion pattern 1041 in the first sub-pixel unit 104 is located between the first substrate 101 and the first metal wire grid polarizing layer 102, and the first reflective pattern 1042 is located on the first substrate. 101 is away from the side of the first metal wire grid polarizing layer 102.
  • the material of the first light conversion pattern 1041 may include first quantum dots, which can emit light in the second wavelength range under excitation of light in the first wavelength range. Since the light in the first wavelength range enters the first light conversion pattern 1041, the utilization rate of the light in the first wavelength range by the first light conversion pattern 1041 may not reach 100%, so there may be unused light in the first wavelength range. Light.
  • the first reflective pattern 1042 can reflect light in the first wavelength range that is not utilized by the first light conversion pattern 1041 into the first light conversion pattern 1041, and is used to excite the first light conversion pattern 1041 to emit light again. At the same time, the first reflective pattern 1042 can also prevent the unused light in the first wavelength range from being emitted from the color filter substrate 10.
  • the second light conversion pattern 1051 and the second reflective pattern 1052 in the second sub-pixel unit 105 can both be located on the first substrate 101 and the first metal wire grid. Between the polarization layers 102, that is, the second sub-pixel unit 105 is located between the first substrate 101 and the first metal wire grid polarization layer 102. Or, as shown in FIG. 5, the second light conversion pattern 1051 in the second sub-pixel unit 105 is located between the first substrate 101 and the first metal wire grid polarizing layer 102, and the second reflective pattern 1052 is located on the first substrate. 101 is away from the side of the first metal wire grid polarizing layer 102.
  • the material of the second light conversion pattern 1051 includes second quantum dots, which can emit light in a third wavelength range when excited by light in the first wavelength range. Since the light in the first wavelength range enters the second light conversion pattern 1051, the utilization rate of the light in the first wavelength range by the second light conversion pattern 1051 may not reach 100%, so there may be unused light in the first wavelength range. Light.
  • the second reflective pattern 1052 can reflect light in the first wavelength range that is not used by the second light conversion pattern 1051 into the second light conversion pattern 1051, and is used to excite the second light conversion pattern 1051 to emit light again. At the same time, the second reflective pattern 1052 can also prevent the unused light in the first wavelength range from being emitted from the color filter substrate 10.
  • the material of the first light conversion pattern 1041 includes: a combination of first quantum dots, photoresist, coupling agent (for example, first quantum dot-photoresist coupling agent).
  • the material of the second light conversion pattern 1051 includes: a combination of second quantum dots, photoresist, coupling agent (for example, second quantum dot-photoresist coupling agent) and the like.
  • the main difference between the first quantum dot and the second quantum dot is the diameter of the quantum dot.
  • the diameter of the first quantum dot is 2.4 nm
  • the diameter of the second quantum dot is 1.7 nm.
  • the material of the first quantum dot and the second quantum dot may include InP (indium phosphide), InAs (indium arsenide), CdS (cadmium sulfide), CdSe (cadmium selenide), CdTe (cadmium telluride), ZnSe (selenium At least one of zinc sulfide) and ZnS (zinc sulfide).
  • InP indium phosphide
  • InAs indium arsenide
  • CdS cadmium sulfide
  • CdSe cadmium selenide
  • CdTe cadmium telluride
  • ZnSe selenium At least one of zinc sulfide
  • ZnS zinc sulfide
  • the first quantum dots and the second quantum dots can be separately dissolved in PMA (Phorbol-12-myristate-13-acetate, propylene glycol methyl ether acetate) , And then mixed with photoresist respectively, and then formed by patterning process steps such as spin coating, pre-baking, photolithography, developing, and post-baking.
  • PMA Phorbol-12-myristate-13-acetate, propylene glycol methyl ether acetate
  • the materials of the first light conversion pattern 1041 and the second light conversion pattern 1051 are also It may include light diffusing particles.
  • the material of the light diffusion particles includes at least one of polystyrene resin, polymethyl methacrylate, polycarbonate, silica, and titanium dioxide.
  • the transparent filling pattern 1060 does not include quantum dots. After the light in the first wavelength range is directed to the transparent filling pattern 1060, it can directly pass through the transparent filling pattern 1060. As shown in FIGS. 4 and 5, the transparent filling pattern 1060 may be directly disposed on the surface of the first substrate 101 facing the first metal wire grid polarizing layer 102. The material of the transparent filling pattern 1060 may include photoresist, for example.
  • the first reflective pattern 1042 and the second reflective pattern 1052 are provided on the first substrate 101 away from the first metal wire grid polarizing layer 102.
  • the layer where the first reflective pattern 1042 and the second reflective pattern 1052 are located needs to be planarized to form a flat pattern 1071.
  • a photoresist can be used to form the flat pattern 1071.
  • the first sub-pixel unit 104, the second sub-pixel unit 105, and the third sub-pixel unit 106 are all disposed between the first metal wire grid polarizing layer 102 and the first substrate 101. between.
  • the first substrate 101 can protect the first sub-pixel unit 104, the second sub-pixel unit 105, and the third sub-pixel unit 106, prevent each sub-pixel unit from being damaged, and increase the service life of the liquid crystal display panel 1.
  • the blue light emitted from the backlight module 2 passes through the array substrate 11.
  • the first metal wire grid polarizing layer 102 After exiting from the first metal wire grid polarizing layer 102, enter the first sub-pixel unit 104, the second sub-pixel unit 105 and the third sub-pixel unit 106 respectively.
  • blue light that is, light in the first wavelength range
  • Part of the blue light is used to excite the first light conversion pattern 1041 to emit light, and the rest is directly emitted, so that the light emitted from the first light conversion pattern 1041 includes both red light (that is, light in the second wavelength range) and blue light.
  • the red light passes through the first reflective pattern 1042 and exits through the first substrate 101, and the blue light is reflected by the first reflective pattern 1042 .
  • the reflected blue light is transmitted toward the side away from the first substrate 101.
  • part of the blue light can again excite the first light conversion pattern 1041 to emit light, while the unused blue light continues It will be transmitted to the first metal wire grid polarizing layer 102, so that part of the blue light is reflected and part of the blue light is transmitted to the array substrate 11.
  • the blue light reflected by the first metal wire grid polarizing layer 102 will again be transmitted to the first substrate 101 side according to the above process.
  • the backlight module 2 since the backlight module 2 includes the reflective sheet 22, when the blue light reaches the reflective sheet 22, it will be reflected by the reflective sheet 22, and then enter the color filter substrate 10.
  • blue light will first be transmitted toward the side of the first substrate 101, and when incident on the second light conversion pattern 1051, part of the blue light is used for excitation
  • the second light conversion pattern 1051 emits light, and the rest is directly emitted, so that the light emitted from the second light conversion pattern 1051 includes both green light (that is, light in the third wavelength range) and blue light.
  • the green light passes through the second reflective pattern 1052 and exits through the first substrate 101, and the blue light is reflected by the second reflective pattern 1052 .
  • the reflected blue light is transmitted toward the side away from the first substrate 101.
  • part of the blue light can again excite the second light conversion pattern 1051 to emit light, while the unused blue light continues It will be transmitted to the first metal wire grid polarizing layer 102, so that part of the blue light is reflected and part of the blue light is transmitted to the array substrate 11.
  • the blue light reflected by the first metal wire grid polarizing layer 102 will again be transmitted to the first substrate 101 side according to the above process.
  • the backlight module 2 since the backlight module 2 includes the reflective sheet 22, when the blue light reaches the reflective sheet 22, it will be reflected by the reflective sheet 22, and then enter the color filter substrate 10.
  • blue light can be transmitted back and forth in the first blue light resonant cavity formed by the first metal wire grid polarizing layer 102, the first reflective pattern 1042 and the reflective sheet 22; corresponding to the second sub-pixel unit In the pixel unit 105, blue light is transmitted back and forth in the second blue light resonant cavity formed by the first metal wire grid polarizing layer 102, the second reflective pattern 1052 and the reflective sheet 22.
  • the blue light propagates back and forth in the first blue light resonant cavity and the second blue light resonant cavity, respectively, and excites the first light conversion pattern 1041 and the second light conversion pattern 1051 to emit light multiple times, so the utilization rate of blue light is improved.
  • the blue light can be directly transmitted to the side of the first substrate 101 through the transparent filling pattern 1060, and exit through the first substrate 101.
  • the third sub-pixel unit 106 includes a transparent filling pattern 1060, so that the structure of the liquid crystal display panel 1 is simpler and easy to manufacture, and at the same time, the blue light can pass through without obstruction, and the transmittance of the blue light is higher.
  • the reflectivity of the first reflective pattern 1042 and the second reflective pattern 1052 to light in the first wavelength range is 100%
  • the efficiency of the liquid crystal layer is 100% (that is, it does not absorb light)
  • the first metal wire grid polarizing layer 102 reflects 50% of light and transmits 50% of light.
  • the materials of the first light conversion pattern 1041 and the second light conversion pattern 1051 include quantum dots
  • the absorption rate of the quantum dots for blue light is 30%
  • the light effect of the quantum dots excited by the blue light once is 0.30EQE( External Quantum Efficiency, external quantum efficiency), and the light efficiency of quantum dots can be increased to 1.34EQE after multiple reflections and repeated excitation; if the absorption rate of the quantum dots to the light in the first wavelength range is 50%, the blue light is excited once
  • the light efficiency of quantum dots is 0.50EQE, and the light efficiency after repeated reflection and reuse can be increased to 0.92EQE, so that the utilization rate of blue light has been greatly improved.
  • the embodiment of the present disclosure provides a color filter substrate 10, in the first sub-pixel unit 104, a first light conversion pattern 1041 and a first reflection pattern 1042 are provided, and a second light conversion pattern is provided in the second sub-pixel unit 105 1051 and the second reflective pattern 1052, a transparent filling pattern 1060 is provided in the third sub-pixel unit 106.
  • a color filter substrate 10 in the first sub-pixel unit 104, a first light conversion pattern 1041 and a first reflection pattern 1042 are provided, and a second light conversion pattern is provided in the second sub-pixel unit 105 1051 and the second reflective pattern 1052, a transparent filling pattern 1060 is provided in the third sub-pixel unit 106.
  • the color filter substrate 10 has a high utilization rate of blue light.
  • the first light conversion pattern 1041 and the second light conversion pattern 1051 include quantum dots
  • the first light conversion pattern 1041 and the second light conversion pattern 1051 respectively emit red light and green light based on excitation of the quantum dots
  • the photoluminescence efficiency of light and quantum dots is high, and when the transparent filling pattern 1060 is provided in the third sub-pixel unit 106, the blue light can pass through the third sub-pixel unit 106 directly without loss, so that the third sub-pixel unit 106
  • the unit 106 has a high transmittance to blue light. Therefore, the color filter substrate 10 provided by the embodiment of the present disclosure can significantly increase the light output rate of the liquid crystal display device and reduce the power consumption of the liquid crystal display device.
  • the first light conversion pattern 1041 and the second light conversion pattern 1051 include In the case of quantum dots, the quantum dots in the embodiments of the present disclosure have narrow emission wavelengths and high color purity. Therefore, when the color film substrate 10 provided by the embodiments of the present disclosure is applied to a liquid crystal display device, the display color gamut can be increased, from 72 %NTSC (National Television Standards Committee, the color gamut standard established by the National Television Standards Committee) is increased to 110% NTSC or more, which can make the display color richer and the picture quality more vivid.
  • 72 %NTSC National Television Standards Committee, the color gamut standard established by the National Television Standards Committee
  • the first sub-pixel unit 104 further includes a first absorption pattern 1045 disposed on a side of the first reflective pattern 1042 away from the first light conversion pattern 1041, and the first absorption pattern 1045 is configured as Absorbs light in the first wavelength range and transmits light in the second wavelength range.
  • the second sub-pixel unit 105 further includes a second absorption pattern 1053 disposed on the side of the second reflection pattern 1052 away from the second light conversion pattern 1051, the second absorption pattern 1053 is configured to absorb light in the first wavelength range and transmit the third wavelength Range of light.
  • the first absorption pattern 1045 may be a red filter pattern, the material of which includes polymer materials and organic dyes, and the red filter pattern may absorb light other than red light.
  • the second absorption pattern 1053 may be a green filter pattern, the material of which includes polymer materials and organic dyes, and the green filter pattern may absorb light other than green light.
  • the materials of the first absorption pattern 1045 and the second absorption pattern 1053 both include blue light absorbing dyes.
  • the blue light absorbing dye includes at least one of coumarin 540 and benzotriazole.
  • the molecular formula of Coumarin 540 (Coumarin 540) is C 20 H 18 N 2 O 2 S, and the maximum absorption wavelength is 458 nm.
  • the molecular formula of benzotriazole is C 6 H 5 N 3 , and the maximum absorption wavelength is 385 nm.
  • the materials of the first absorption pattern 1045 and the second absorption pattern 1053 may be the same, and the adjacent first absorption pattern 1045 and the second absorption pattern 1053 are integrated.
  • the preparation of the first absorption pattern 1045 and the second absorption pattern 1053 can be achieved by dissolving the blue absorbing dye in an organic solvent, and then mixing it into photoresist to obtain a slurry, and then coating the first substrate 101 by spin coating.
  • a film layer is formed on the film layer, and then the film layer is formed by patterning process steps such as pre-baking, photolithography, post-baking, and developing.
  • the organic solvent used includes one or more of toluene and tetrahydrofuran.
  • the first absorption pattern 1045 and the second absorption pattern 1053 are not only used to absorb the blue light from the backlight module 2 so that the blue light cannot enter the human eye; at the same time, they can also absorb the blue light from the external environment to prevent the liquid crystal display panel 1.
  • the display screen appears bluish, which further reduces the irritation of blue light to the eyes.
  • both the first reflective pattern 1042 and the second reflective pattern 1052 include: at least one layer of first reflective sub-patterns 1043 and at least one layer stacked along the thickness direction of the first substrate 101
  • the spiral direction of the cholesteric liquid crystal is left-handed, and the spiral direction of the cholesteric liquid crystal in the at least one second reflective sub-pattern 1044 is right-handed.
  • the range of the reflection wavelengths of the first reflection pattern 1042 and the second reflection pattern may both be 380 nm ⁇ 505 nm.
  • the first reflective sub-pattern 1043 and the second reflective sub-pattern 1044 may be alternately arranged.
  • the first reflective sub-pattern 1043, the second reflective sub-pattern 1044, the first reflective sub-pattern 1043, and the second reflective sub-pattern 1044 may be The reflective sub-patterns 1044 are alternately arranged.
  • the first reflective sub-pattern 1043 and the second reflective sub-pattern 1044 can be prepared in the following manner. Dissolve polymerizable cholesteric liquid crystal monomers, left-handed polymerizable chiral monomers and photoinitiators in organic solvents, then coat them by knife coating or spin coating, and then go through drying, annealing, UV curing, etc. Step forming a first layer of cholesteric liquid crystal film with a thickness of 2um-5um. After that, the second layer of cholesteric liquid crystal film was prepared by the same method on the surface of the first layer of cholesteric liquid crystal film. The chiral monomer in the second layer of cholesteric liquid crystal film was dextrorotary polymerizable chiral monomer. body. Finally, the first layer of cholesteric liquid crystal film layer and the second layer of cholesteric liquid crystal film layer are subjected to processes such as photolithography and development to obtain the first reflective sub-pattern 1043 and the second reflective sub-pattern 1044.
  • the organic solvent used includes one or more of toluene and tetrahydrofuran.
  • Cholesteric liquid crystal is a special form of nematic liquid crystal.
  • the pitch of the cholesteric liquid crystal in the first reflective sub-pattern 1043 and the pitch of the cholesteric liquid crystal in the second reflective sub-pattern 1044 range from 380 nm to 480 nm.
  • the transmittance of cholesteric liquid crystal to light outside the reflection band can reach 90% or even higher. Therefore, by using the cholesteric liquid crystal to reflect the light in the first wavelength range, the reflection efficiency of the first reflective pattern 1042 and the second reflective pattern 1052 to the light in the first wavelength range can be improved.
  • the cholesteric liquid crystals of the first reflective sub-pattern 1043 and the second reflective sub-pattern 1044 can use the same pitch P, so that the first reflector The reflection wavelengths of the pattern 1043 and the second reflection sub-pattern 1044 are equal.
  • the thickness of the first reflective sub-pattern 1043 is 2um-5um, for example, the thickness of the first reflective sub-pattern 1043 is 2um, 3um, 4um, 5um; the thickness of the second reflective sub-pattern 1044 is 2um-5um, For example, the thickness of the second reflective sub-pattern 1044 is 2um, 3um, 4um, 5um.
  • the thickness of the first reflective sub-pattern 1043 and the second reflective sub-pattern 1044 may be the same or different.
  • the thickness of the first reflective sub-pattern 1043 and the second reflective sub-pattern 1044 in the range of 2um to 5um can reduce the first reflective pattern 1042 as much as possible while ensuring the light reflection effect in the first wavelength range And the overall thickness of the second reflective pattern 1052 to prevent the overall thickness of the color filter substrate 10 from being too large.
  • the above-mentioned color filter substrate 10 further includes a flat layer 107 disposed on the first metal wire grid polarizing layer 102 and the first light conversion pattern 1041, and the second light conversion pattern 1051 between the transparent filling patterns 1060; the flat layer 107 and the transparent filling patterns 1060 are made of the same material and have an integral structure.
  • the material of the flat layer 107 and the transparent filling pattern 1060 is, for example, photoresist.
  • the flat layer 107 is used to ensure the flatness of the surface of the first light conversion pattern 1041 and the second light conversion pattern 1051, so that when the first metal wire grid polarizing layer 102 is made, the substrate 1021 can be directly placed on the flat layer 107 away from the first metal wire grid polarizing layer 102.
  • a metal wire 1022 is formed on one side surface of a substrate 101 to reduce the overall thickness of the color filter substrate 10.
  • the color filter substrate 10 further includes a first light shielding pattern 108, and the first light shielding pattern 108 is a mesh. Lattice structure.
  • the first light conversion pattern 1041, the second light conversion pattern 1051, and the transparent filling pattern 1060 are disposed in the first light-shielding pattern 108 In each of the multiple grids.
  • the first light conversion pattern 1041 is arranged in one of the grids of the first light shielding pattern 108
  • the second light conversion pattern 1051 is arranged in one of the grids of the first light shielding pattern 108, with transparent filling
  • the pattern 1060 is arranged in one of a plurality of grids of the first light shielding pattern 108, and the first light conversion pattern 1041, the second light conversion pattern 1051 and the transparent filling pattern 1060 are arranged in different grids.
  • each sub-pixel unit is arranged in each of the plurality of grids of the first light shielding pattern 108.
  • each sub-pixel unit is arranged in one of the grids of the first light shielding pattern 108, and different sub-pixel units are arranged in different grids of the multiple grids of the first light shielding pattern 108.
  • the material of the first light shielding pattern 108 may be black resin.
  • the color filter substrate 10 further includes a second light-shielding pattern 109, the second light-shielding pattern 109 is a grid structure; the first light conversion pattern 1041, the second light conversion pattern 1051, and transparent filling
  • the pattern 1060 is arranged in each of the plurality of grids of the second shading pattern 109; any adjacent first reflective pattern 1042, any adjacent second reflective pattern 1052, and any adjacent first reflective pattern 1042 It is an integral structure with the second reflective pattern 1052.
  • the material of the second light shielding pattern 109 may be black resin.
  • the first metal wire grid polarization layer 102 is also multiplexed as a common electrode. Since the first metal wire grid polarizing layer 102 is provided with the metal wire 1022, it can be used as a common electrode, which is beneficial to simplify the structure of the color filter substrate 10.
  • Some embodiments of the present disclosure also provide a color filter substrate, as shown in FIGS. 14 and 15, including: a first substrate 101, a first metal wire grid polarizing layer 102 disposed on the first substrate 101, and A plurality of sub-pixel units disposed on the side of the first metal wire grid polarizing layer 102 away from the first surface thereof; wherein, the first surface is the surface of the first metal wire grid polarizing layer 102 away from the first substrate 101.
  • the plurality of sub-pixel units includes a plurality of first sub-pixel units 104, a plurality of second sub-pixel units 105, and a plurality of third sub-pixel units 106.
  • One first sub-pixel unit 104 of the plurality of first sub-pixel units 104 includes a first light conversion pattern 1041 and a first reflection pattern 1042 that are stacked.
  • each first sub-pixel unit 104 of the plurality of first sub-pixel units 104 includes a first light conversion pattern 1041 and a first reflection pattern 1042 that are stacked.
  • the first reflection pattern 1042 is disposed on the side of the first light conversion pattern 1041 away from the first metal wire grid polarizing layer 102; the first light conversion pattern 1041 is configured to emit a second wavelength range under the excitation of incident light in the first wavelength range
  • the first reflective pattern 1042 is configured to reflect light in the first wavelength range and transmit light in the second wavelength range.
  • One second sub-pixel unit 105 of the plurality of second sub-pixel units 105 includes a second light conversion pattern 1051 and a second reflection pattern 1052 that are stacked.
  • each second sub-pixel unit 105 of the plurality of second sub-pixel units 105 includes a second light conversion pattern 1051 and a second reflection pattern 1052 that are stacked.
  • the second reflection pattern 1052 is disposed on the side of the second light conversion pattern 1051 away from the first metal wire grid polarizing layer 102; the second light conversion pattern 1051 is configured to emit a third wavelength range under the excitation of incident light in the first wavelength range
  • the second reflection pattern 1052 is configured to reflect light in the first wavelength range and transmit light in the third wavelength range.
  • One third sub-pixel unit 106 of the plurality of third sub-pixel units 106 includes a third light conversion pattern 1061 and a third reflection pattern 1062 that are stacked.
  • each of the plurality of third sub-pixel units 106 includes a third light conversion pattern 1061 and a third reflection pattern 1062 that are stacked.
  • the third reflective pattern 1062 is disposed on the side of the third light conversion pattern 1061 away from the first metal wire grid polarizing layer 102; the third light conversion pattern 1061 is configured to emit a fourth wavelength range under the excitation of incident light in the first wavelength range
  • the third reflective pattern 1062 is configured to reflect light in the first wavelength range and transmit light in the fourth wavelength range.
  • the light in the first wavelength range is the first color light, and the first color light may be violet or ultraviolet light; the light in the second wavelength range, the light in the third wavelength range, and the fourth wavelength range
  • the light of is a second color light, a third color light, and a fourth color light, and the second color light, the third color light, and the fourth color light are three primary colors.
  • the second color light is red light
  • the third color light is green light
  • the fourth color light is blue light.
  • the second color light is cyan light
  • the third color light is magenta light
  • the fourth color light is yellow light.
  • the structure of the first sub-pixel unit 104 and the second sub-pixel unit 105 can refer to the structure of the first sub-pixel unit 104 and the second sub-pixel unit 105 described above, which will not be repeated here. The following focuses on the structure of the third sub-pixel unit 106.
  • the third light conversion pattern 1061 and the third reflective pattern 1062 in the third sub-pixel unit 106 can both be disposed between the first substrate 101 and the first metal wire grid polarizing layer 102, that is, the third The sub-pixel unit 106 is disposed between the first substrate 101 and the first metal wire grid polarizing layer 102.
  • the third light conversion pattern 1061 in the third sub-pixel unit 106 is disposed between the first substrate 101 and the first metal wire grid polarizing layer 102
  • the third reflective pattern 1062 is disposed on the first substrate 101.
  • the substrate 101 is far away from the side of the first metal wire grid polarizing layer 102.
  • the material of the third light conversion pattern 1061 includes third quantum dots, which can emit light in the fourth wavelength range when excited by light in the first wavelength range. Since the light in the first wavelength range enters the third light conversion pattern 1061, the utilization rate of the light in the first wavelength range by the third light conversion pattern 1061 may not reach 100%, so there may be unused light in the first wavelength range. Light.
  • the third reflective pattern 1062 can reflect light in the first wavelength range that is not used by the third light conversion pattern 1061 into the third light conversion pattern 1061, and is used to excite the third light conversion pattern 1061 to emit light again. At the same time, the third reflective pattern 1062 can also prevent the unused light in the first wavelength range from being emitted from the color filter substrate 10.
  • the size of the third quantum dot in the third light conversion pattern 1061 is 1.0 nm.
  • the materials of the third quantum dot include InP (indium phosphide), InAs (indium arsenide), CdS (cadmium sulfide), CdSe (cadmium selenide), CdTe (cadmium telluride), ZnSe (zinc selenide), ZnS ( At least one of zinc sulfide).
  • the third quantum dots can be dissolved in PMA (Phorbol-12-myristate-13-acetate, propylene glycol methyl ether acetate), then mixed with photoresist, and then spin-coated , Pre-baking, photolithography, development, post-baking and other patterning process steps.
  • the materials of the first light conversion pattern 1041, the second light conversion pattern 1051, and the third light conversion pattern 1061 are not limited to quantum dots.
  • the material of the first light conversion pattern may include Pyridine 1 (pyridine 1), which has an emission wavelength range of 665 nm to 725 nm and a peak value of 698 nm;
  • the material may include Coumarin 153 (Coumarin 153), which has an emission wavelength range of 515 nm to 570 nm, and a peak value of 540 nm;
  • the material of the third light conversion pattern may include Coumarin 120 (Coumarin 120), and its emission wavelength range is 428 nm ⁇ 453nm, the peak value is 440nm; or the material of the third light conversion pattern may include Stilbene 3 (symmetric diphenylethylene 3), the emission wavelength range of which is 414nm ⁇ 445nm, and the peak value is 425nm.
  • the material of the third light conversion pattern 1061 may also include light diffusion particles.
  • the material of the light diffusion particles includes at least one of polystyrene resin, polymethyl methacrylate, polycarbonate, silica, and titanium dioxide.
  • the structure of the third reflective pattern 1062 may be the same as the structure of the first reflective pattern 1042 and the second reflective pattern 1052.
  • the light in the first wavelength range emitted from the backlight module 2 passes through the array substrate 11 and enters the first metal wire grid polarizing layer 102. After a metal wire grid polarizing layer 102 exits, it enters the first sub-pixel unit 104, the second sub-pixel unit 105, and the third sub-pixel unit 106 respectively.
  • the propagation path of the light in the first wavelength range in the first sub-pixel unit 104 and the second sub-pixel unit 105 can refer to the above description of the propagation path of the blue light in the first sub-pixel unit 104 and the second sub-pixel unit 105 , I won’t repeat it here.
  • the light in the first wavelength range When the light in the first wavelength range enters the third sub-pixel unit 106, it will first be transmitted toward the side of the first substrate 101.
  • part of the light in the first wavelength range is used for excitation
  • the third light conversion pattern 1061 emits light, and the rest is directly emitted, so that the light emitted from the third light conversion pattern 1061 includes both the light in the fourth wavelength range and the light in the first wavelength range.
  • the light of the fourth wavelength range passes through the third reflective pattern 1062 and exits through the first substrate 101, and the first wavelength range The light is reflected by the third reflective pattern 1062.
  • the reflected light in the first wavelength range is transmitted toward the side away from the first substrate 101.
  • the third light conversion pattern 1061 can be excited again to emit light, while the unused first light
  • the light in the wavelength range will continue to be transmitted to the first metal wire grid polarizing layer 102, so that part of the light in the first wavelength range is reflected by the first metal wire grid polarizing layer 102, and part of the light in the first wavelength range is transmitted to the array substrate 11 side. .
  • the light in the first wavelength range reflected by the first metal wire grid polarizing layer 102 will again be transmitted to the side of the first substrate 101 according to the above process.
  • the backlight module 2 since the backlight module 2 includes the reflective sheet 22, when the light in the first wavelength range reaches the reflective sheet 22, it will be reflected by the reflective sheet 22, thereby entering the color.
  • the film substrate 10 In the film substrate 10.
  • Some embodiments of the present disclosure provide a color filter substrate 10.
  • a first light conversion pattern 1041 and a first reflective pattern 1042 are provided, and a second light conversion pattern is provided in the second sub-pixel unit 105.
  • the pattern 1051 and the second reflective pattern 1052 are provided with the third light conversion pattern 1061 and the third reflective pattern 1062 in the third sub-pixel unit 106.
  • the color filter substrate 10 is applied to a liquid crystal display device, when the backlight module 2 provides light in the first wavelength range, the first sub-pixel unit 104 emits light in the second wavelength range, and the second sub-pixel unit 105
  • the third sub-pixel unit 106 emits light in the third wavelength range, and the third sub-pixel unit 106 emits light in the fourth wavelength range.
  • the first sub-pixel unit 104 since it corresponds to the first sub-pixel unit 104, light in the first wavelength range can travel back and forth between the first metal wire grid polarizing layer 102 and the first reflective pattern 1042 to excite the first light conversion pattern 1041 to emit light, corresponding to the first Two sub-pixel units 105, the light of the first wavelength range can travel back and forth between the first metal wire grid polarizing layer 102 and the second reflective pattern 1052 to excite the second light conversion pattern 1051 to emit light, corresponding to the third sub-pixel unit 106 , The light in the first wavelength range can travel back and forth between the first metal wire grid polarizing layer 102 and the third reflective pattern 1062 to excite the third light conversion pattern 1061 to emit light.
  • the color film substrate provided by some embodiments of the present disclosure 10 The utilization rate of light in the first wavelength range is relatively high.
  • the first light conversion pattern 1041, the second light conversion pattern 1051, and the third light conversion pattern 1061 include quantum dots
  • the conversion pattern 1061 respectively emits light in the second wavelength range, light in the third wavelength range, and light in the fourth wavelength range based on exciting the quantum dots.
  • the photoluminescence efficiency of the quantum dots is relatively high. Therefore, the color provided by the embodiments of the present disclosure
  • the film substrate 10 can significantly increase the light output rate of the liquid crystal display device and reduce the power consumption of the liquid crystal display device.
  • the color film is made of a mixture of polymer materials and organic dyes in the related art
  • the light transmission spectrum is relatively wide and the color purity is relatively low.
  • the quantum dots in the embodiment of the present disclosure have a narrow emission wavelength and high color purity. Therefore, when the color film substrate 10 provided by the embodiment of the present disclosure is applied to a liquid crystal display device, the display The color gamut has been increased from 72% NTSC (National Television Standards Committee, the color gamut standard established by the National Television Standards Committee) to 110% NTSC or more, which can make the display colors richer and the picture quality more vivid.
  • NTSC National Television Standards Committee, the color gamut standard established by the National Television Standards Committee
  • the third sub-pixel unit 106 further includes a third absorption pattern 1063 disposed on a side of the third reflective pattern 1062 away from the third light conversion pattern 1061.
  • the third absorption pattern 1063 may be disposed between the third reflection pattern 1062 and the first substrate 101 or, as shown in FIG. 18, the third absorption pattern 1063 is disposed on the side of the first substrate 101 away from the first metal wire grid polarizing layer 102. As shown in FIG. 19, when the third reflective pattern 1062 is disposed on the side of the first substrate 101 away from the first metal wire grid polarizing layer 102, the third absorption pattern 1063 is disposed on the third reflective pattern 1062 away from the first metal wire grid polarizing layer 102. One side of the substrate 101.
  • the third absorption pattern 1063 is configured to absorb light in the first wavelength range and transmit light in the fourth wavelength range.
  • the third absorption pattern 1063 may be a blue filter pattern, and the blue filter pattern includes a polymer material and an organic dye.
  • Some embodiments of the present disclosure also provide a method for preparing a color filter substrate, including S11 to S12.
  • multiple sub-pixel units are formed on the first substrate 101; the multiple sub-pixel units include multiple first sub-pixel units 104, multiple second sub-pixel units 105, and multiple third sub-pixels Unit 106.
  • a first metal wire grid polarizing layer 102 is formed on the side of the plurality of sub-pixel units away from the first substrate 101.
  • the first sub-pixel unit 104, the second sub-pixel unit 105 and the third sub-pixel unit 106 are formed on the first substrate 101, including S111 to S112.
  • a first light conversion pattern 1041 is formed in the first sub-pixel area and on the first reflective pattern 1042, and a second light conversion pattern 1051 is formed in the second sub-pixel area and on the second reflective pattern 1052.
  • a transparent filling pattern 1060 is formed in the third sub-pixel area on a substrate 101.
  • forming the first light conversion pattern 1041 on the first reflective pattern 1042 includes forming the first light conversion pattern 1041 on the side of the first reflective pattern 1042 away from the first substrate 101; forming on the second reflective pattern 1052
  • the second light conversion pattern 1051 means that the second light conversion pattern 1051 is formed on the side of the second reflective pattern 1052 away from the first substrate 101.
  • the first light conversion pattern 1041 is configured to emit light in the second wavelength range under the excitation of incident light in the first wavelength range, and the first reflection pattern 1042 is configured to reflect light in the first wavelength range and transmit light in the second wavelength range;
  • the second light conversion pattern 1051 is configured to emit light in a third wavelength range under excitation of incident light in the first wavelength range, and the second reflection pattern 1052 is configured to reflect light in the first wavelength range and transmit light in the third wavelength range.
  • the light in the first wavelength range, the light in the second wavelength range, and the light in the third wavelength range are respectively a first color light, a second color light, and a third color light, and the first color light,
  • the second color light and the third color light are three primary colors.
  • the preparation method of the above-mentioned color filter substrate further includes:
  • the first absorption pattern 1045 is configured to absorb light in a first wavelength range and transmit light in a second wavelength range.
  • the second absorption pattern 1053 is configured to absorb light in the first wavelength range and transmit light in the third wavelength range.
  • Some embodiments of the present disclosure also provide another method for preparing the color filter substrate 10, including S21 to S22.
  • multiple sub-pixel units are formed on the first substrate 101; the multiple sub-pixel units include multiple first sub-pixel units 104, multiple second sub-pixel units 105, and multiple third sub-pixels Unit 106.
  • a first metal wire grid polarizing layer 102 is formed on the side of the plurality of sub-pixel units away from the first substrate 101.
  • the first sub-pixel unit 104, the second sub-pixel unit 105 and the third sub-pixel unit 106 are formed on the first substrate 101, including S211 to S212.
  • a first light conversion pattern 1041 is formed in the first sub-pixel area and on the first reflective pattern 1042
  • a second light conversion pattern 1051 is formed in the second sub-pixel area and on the second reflective pattern 1052
  • in the third The sub-pixel area and the third light conversion pattern 1061 are formed on the third reflective pattern 1062.
  • forming the first light conversion pattern 1041 on the first reflective pattern 1042 includes forming the first light conversion pattern 1041 on the side of the first reflective pattern 1042 away from the first substrate 101; forming on the second reflective pattern 1052
  • the second light conversion pattern 1051 includes forming a second light conversion pattern 1051 on a side of the second reflection pattern 1052 away from the first substrate 101; forming a third light conversion pattern 1061 on the third reflection pattern 1062 includes The third light conversion pattern 1061 is formed on the side of the pattern 1062 away from the first substrate 101.
  • the first light conversion pattern 1041 is configured to emit light in the second wavelength range under the excitation of incident light in the first wavelength range, and the first reflection pattern 1042 is configured to reflect light in the first wavelength range and transmit light in the second wavelength range;
  • the second light conversion pattern 1051 is configured to emit light in a third wavelength range under the excitation of incident light in the first wavelength range, and the second reflection pattern 1052 is configured to reflect light in the first wavelength range and transmit light in the third wavelength range;
  • the third light conversion pattern 1061 is configured to emit light in the fourth wavelength range under the excitation of incident light in the first wavelength range, and the third reflection pattern 1062 is configured to reflect light in the first wavelength range and transmit light in the fourth wavelength range.
  • the light in the first wavelength range, the light in the second wavelength range, the light in the third wavelength range, and the light in the fourth wavelength range are respectively a first color light, a second color light, and a third color light.
  • the fourth color light, and the second color light, the third color light and the fourth color light are three primary colors.
  • the method for preparing the color filter substrate further includes:
  • the first absorption pattern 1045 is configured to absorb light in a first wavelength range and transmit light in a second wavelength range.
  • the second absorption pattern 1053 is configured to absorb light in the first wavelength range and transmit light in the third wavelength range
  • the third absorption pattern 1062 is configured to absorb light in the first wavelength range and transmit light in the fourth wavelength range.
  • the preparation method of the above-mentioned color filter substrate 10 has the same beneficial effects as the above-mentioned color filter substrate 10, so it will not be repeated.
  • the array substrate 11 includes a second substrate 110.
  • the array substrate 11 is provided with a thin film transistor 111 and a pixel electrode 112 on the second substrate 110 in a corresponding area of each sub-pixel unit on the color filter substrate 10.
  • the thin film transistor 111 includes an active layer, a source, a drain, a gate, and a gate insulating layer. The source and drain respectively contact the active layer.
  • the pixel electrode 112 is electrically connected to the drain of the thin film transistor 111.
  • the source electrode is electrically connected with the data line.
  • the array substrate 11 when the color filter substrate 10 does not include a common electrode, as shown in FIG. 20, the array substrate 11 further includes a common electrode 113 provided on the second substrate 110.
  • the pixel electrode 112 and the common electrode 113 may be arranged on the same layer.
  • the pixel electrode 112 and the common electrode 113 are both comb-tooth structures including a plurality of strip-shaped sub-electrodes.
  • the pixel electrode 112 and the common electrode 113 may also be provided in different layers.
  • a first insulating layer 114 is provided between the pixel electrode 112 and the common electrode 113.
  • a second insulating layer 115 is further provided between the common electrode 113 and the thin film transistor 111.
  • the array substrate 11 further includes a polarization layer, and the polarization direction of the first metal wire grid polarization layer 102 is parallel or perpendicular to the polarization direction of the polarization layer.
  • the polarizing layer is the second metal wire grid polarizing layer 116.
  • the second metal wire grid polarizing layer 116 is disposed on the second substrate 110 of the array substrate 11 close to the color filter substrate 10 or away from the color filter substrate 10.
  • the second metal wire grid polarizing layer 116 is disposed on the second substrate 110 of the array substrate 11 away from the color filter substrate 10.
  • the light in the first wavelength range will pass through the second metal wire grid polarizing layer 116 and continue to propagate to the backlight module 2 and be reflected by the reflective sheet 22 in the backlight module 2 , It passes through the second metal wire grid polarizing layer 116 and the first metal wire grid polarizing layer 102 again to reach the sub-pixel unit for exciting the sub-pixel unit to emit light.
  • the utilization rate of the first color light of the liquid crystal display panel 1 is further improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种彩膜基板(10),包括:第一衬底(101)、第一金属线栅偏振层(102)、多个子像素单元(104,105,106)。多个子像素单元(104,105,106)包括多个第一子像素单元(104)、多个第二子像素单元(105)和多个第三子像素单元(106)。第一子像素单元(104)包括层叠设置的第一光转换图案(1041)和第一反射图案(1042),第一光转换图案(1041)配置为在入射的第一颜色光的激发下发出第二颜色光,第一反射图案(1042)配置为反射第一颜色光以及透射第二颜色光。第二子像素单元(105)包括层叠设置的第二光转换图案(1051)和第二反射图案(1052),第二光转换图案(1051)配置为在入射的第一颜色入光的激发下发出第三颜色光,第二反射图案(1052)配置为反射第一颜色光以及透射第三颜色光。第三子像素单元(106)配置为接收第一颜色光,并出射第四颜色光。第二颜色光、第三颜色光和第四颜色光为三基色光。

Description

彩膜基板及其制备方法、液晶显示面板及液晶显示装置
本申请要求于2019年06月21日提交的、申请号为201910545071.2的中国专利申请的优先权和权益,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种彩膜基板及其制备方法、液晶显示面板及液晶显示装置。
背景技术
液晶显示装置(Liquid Crystal Display,简称LCD)具有体积小、功耗低、无辐射等特点,在当前的显示器市场中占据主导地位。
发明内容
一方面,本公开实施例提供一种彩膜基板,包括:第一衬底、设置于所述第一衬底上的第一金属线栅偏振层、以及设置于所述第一金属线栅偏振层远离其第一表面一侧的多个子像素单元;其中,所述第一表面为所述第一金属线栅偏振层远离所述第一衬底的表面。所述多个子像素单元包括多个第一子像素单元、多个第二子像素单元和多个第三子像素单元。所述多个第一子像素单元中的一个第一子像素单元包括层叠设置的第一光转换图案和第一反射图案,所述第一反射图案设置于所述第一光转换图案远离所述第一金属线栅偏振层的一侧;所述第一光转换图案配置为在第一颜色入射光的激发下发出第二颜色光,所述第一反射图案配置为反射所述第一颜色光以及透射所述第二颜色光。所述多个第二子像素单元中的一个第二子像素单元包括层叠设置的第二光转换图案和第二反射图案,所述第二反射图案设置于所述第二光转换图案远离所述第一金属线栅偏振层的一侧;所述第二光转换图案配置为在所述第一颜色入射光的激发下发出第三颜色光,所述第二反射图案配置为反射所述第一颜色光以及透射所述第三颜色光。第三子像素单元配置为接收所述第一颜色光,并出射第四颜色光。所述第二颜色光、所述第三颜色光和所述第四颜色光为三基色光。
在一些实施例中,所述第三子像素单元包括透明填充图案,所述第四颜色光与所述第一颜色光为同一波长范围的光;第一颜色光为蓝色光,第二颜色光和第三颜色光分别为红色光和绿色光。
在一些实施例中,所述多个第三子像素单元中的一个第三子像素单元包括层叠设置的第三光转换图案和第三反射图案,所述第三反射图案设置于所 述第三光转换图案远离所述第一金属线栅偏振层的一侧;所述第三光转换图案配置为在所述第一颜色入射光的激发下发出第四颜色光,所述第三反射图案配置为反射第一颜色光以及透射所述第四颜色光。
在一些实施例中,所述第一光转换图案的材料包括第一量子点;所述第二光转换图案的材料包括第二量子点。第一量子点和第二量子点的材料包括:磷化铟、砷化铟、硫化镉、硒化镉、碲化镉、硒化锌、硫化锌中的至少一种。所述第一量子点和所述第二量子点的直径不同。
在一些实施例中,所述第一子像素单元还包括设置于所述第一反射图案远离所述第一光转换图案一侧的第一吸收图案,所述第一吸收图案配置为吸收第一颜色光以及透射第二颜色光。所述第二子像素单元还包括设置于所述第二反射图案远离所述第二光转换图案一侧的第二吸收图案,所述第二吸收图案配置为吸收第一颜色光以及透射第三颜色光。
在一些实施例中,所述第一反射图案和所述第二反射图案均包括:沿所述第一衬底厚度方向层叠设置的至少一层第一反射子图案和至少一层第二反射子图案。所述至少一层第一反射子图案和所述至少一层第二反射子图案的材料均包括胆甾相液晶,且所述至少一层第一反射子图案中的胆甾相液晶的螺旋方向为左旋,所述至少一层第二反射子图案中的胆甾相液晶的螺旋方向为右旋。
在一些实施例中,所述第一反射子图案的厚度为2um~5um;所述第二反射子图案的厚度为2um~5um。
在一些实施例中,所述第一吸收图案和所述第二吸收图案的材料均包括蓝光吸收染料;所述蓝光吸收染料包括香豆素和苯并三唑中的至少一种。
在一些实施例中,所述第一吸收图案和所述第二吸收图案的材料相同,相邻的第一吸收图案和第二吸收图案为一体结构。
在一些实施例中,所述第一吸收图案为红色滤光图案,所述第二吸收图案为绿色滤光图案;所述红色滤光图案和所述绿色滤光图案均包括高分子材料和有机染料。
在一些实施例中,彩膜基板还包括:平坦层,设置于所述第一金属线栅偏振层与所述第一光转换图案、所述第二光转换图案、所述透明填充图案之间。所述平坦层与所述透明填充图案同材料,且为一体结构。
在一些实施例中,所述第一子像素单元、所述第二子像素单元和所述第 三子像素单元均设置于所述第一金属线栅偏振层与所述第一衬底之间。
在一些实施例中,彩膜基板还包括第一遮光图案,所述第一遮光图案呈网格结构;每个子像素单元设置于所述第一遮光图案的多个网格中的各自一个中。
在一些实施例中,彩膜基板还包括第二遮光图案,所述第二遮光图案呈网格结构;所述第一光转换图案、所述第二光转换图案以及所述透明填充图案设置于所述第二遮光图案的多个网格中的各自一个中;任意相邻的所述第一反射图案、任意相邻的所述第二反射图案以及任意相邻的所述第一反射图案和所述第二反射图案为一体结构。
在一些实施例中,所述第一金属线栅偏振层还复用为公共电极。
另一方面,本公开实施例提供一种液晶显示面板,包括阵列基板以及如上所述的彩膜基板。所述阵列基板上设置有偏振层;所述第一金属线栅偏振层的偏振方向与所述偏振层的偏振方向平行或垂直。
在一些实施例中,所述阵列基板包括第二衬底;所述偏振层为第二金属线栅偏振层,所述第二金属线栅偏振层设置于所述第二衬底靠近所述彩膜基板一侧或者远离所述彩膜基板一侧。
另一方面,本公开实施例提供一种液晶显示装置,包括上述液晶显示面板以及背光模组。其中,背光模组包括光源、反射片,所述光源发出的光为第一颜色光。
再一方面,本公开实施例提供一种彩膜基板的制备方法,包括:在第一衬底上形成多个子像素单元;所述多个子像素单元包括多个第一子像素单元、多个第二子像素单元和多个第三子像素单元;在所述多个子像素单元远离所述第一衬底的一侧形成第一金属线栅偏振层。其中,在第一衬底上形成第一子像素单元、第二子像素单元和第三子像素单元,包括:在所述第一衬底上的第一子像素区域、第二子像素区域分别形成第一反射图案和第二反射图案;在所述第一子像素区域且在所述第一反射图案上形成第一光转换图案、在所述第二子像素区域且在所述第二反射图案上形成第二光转换图案,并且,在所述第一衬底上的第三子像素区域形成透明填充图案;所述第一光转换图案配置为在第一颜色入射光的激发下发出第二颜色光,所述第一反射图案配置为反射第一颜色光以及透射第二颜色光;所述第二光转换图案配置为在第一颜色入射光的激发下发出第三颜色光,所述第二反射图案配置为反射第一颜 色光以及透射第三颜色光;所述第一颜色光、所述第二颜色光和所述第三颜色光为三基色光。
再一方面,本公开实施例提供一种彩膜基板的制备方法,包括:在第一衬底上形成多个子像素单元;所述多个子像素单元包括多个第一子像素单元、多个第二子像素单元和多个第三子像素单元;在所述多个子像素单元远离所述第一衬底的一侧形成第一金属线栅偏振层。其中,在第一衬底上形成第一子像素单元、第二子像素单元和第三子像素单元,包括:在所述第一衬底上的第一子像素区域、第二子像素区域和第三子像素区域分别形成第一反射图案、第二反射图案和第三反射图案;在所述第一子像素区域且在所述第一反射图案上形成第一光转换图案,在所述第二子像素区域且在所述第二反射图案上形成第二光转换图案,以及在所述第三子像素区域且在所述第三反射图案上形成第三光转换图案;所述第一光转换图案配置为在第一颜色入射光的激发下发出第二颜色光,所述第一反射图案配置为反射第一颜色光以及透射第二颜色光;所述第二光转换图案配置为在第一颜色入射光的激发下发出第三颜色光,所述第二反射图案配置为反射第一颜色光以及透射第三颜色光;所述第三光转换图案配置为在第一颜色入射光的激发下发出第四颜色光,所述第三反射图案配置为反射第一颜色光以及透射第四颜色光;所述第二颜色光、所述第三颜色光和所述第四颜色光为三基色光。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍。然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为本公开一些实施例提供的一种液晶显示装置的结构图;
图2A本公开一些实施例提供的侧入式的背光模组结构图;
图2B本公开一些实施例提供的直下式的背光模组结构图;
图3A为本公开一些实施例提供的一种液晶显示面板的结构图;
图3B为相关技术中液晶显示面板的结构图;
图4为本公开一些实施例提供的一种彩膜基板的结构图;
图5为本公开一些实施例提供的另一种彩膜基板的结构图;
图6为本公开一些实施例提供的一种第一金属线栅偏振层的结构图;
图7为本公开一些实施例提供的一种子像素单元的分布方式示意图;
图8为本公开一些实施例提供的液晶显示装置中蓝光的传播路径示意图;
图9为本公开一些实施例提供的另一种彩膜基板的结构图;
图10为本公开一些实施例提供的一种第一反射图案的结构图;
图11为本公开一些实施例提供的又一种彩膜基板的结构图;
图12为本公开一些实施例提供的又一种彩膜基板的结构图;
图13为本公开一些实施例提供的又一种彩膜基板的结构图;
图14为本公开实施例提供的又一种彩膜基板的结构图;
图15为本公开一些实施例提供的又一种彩膜基板的结构图;
图16为本公开一些实施例提供的液晶显示装置中第一波长范围的光的传播路径示意图;
图17为本公开一些实施例提供的又一种彩膜基板的结构图;
图18为本公开一些实施例提供的又一种彩膜基板的结构图;
图19为本公开一些实施例提供的又一种彩膜基板的结构图;和
图20为本公开一些实施例提供的一种阵列基板结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。然而,术语“连接”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
本公开的一些实施例提供一种液晶显示装置,如图1所示,该液晶显示装置主要包括液晶显示面板1、背光模组2、电路板3、框架4、盖板玻璃5以及其他电子配件。
其中,框架4的纵截面例如呈U型,液晶显示面板1、背光模组2、电路板3以及其他电子配件设置于框架4内。背光模组2设置于液晶显示面板1的下方,电路板3设置于背光模组2下方,盖板玻璃5设置于液晶显示面板1远离背光模组2的一侧。
电路板3被配置为向液晶显示面板1提供显示所需的信号。示例地,电路板3为PCBA,PCBA包括印刷电路板(Printed Circuit Board,PCB)和设置于PCB上的时序控制器(Timing Controller,TCON)、电源管理集成电路(Power Management IC,PMIC)以及其他IC或电路等。
如图2A和图2B所示,背光模组2包括至少一个光源21、导光板23以及设置于导光板23出光侧的至少一个光学膜片24等。至少一个光学膜片24例如包括扩散片和/或至少一个增光膜(Brightness Enhancement Film,BEF)。至少一个增光膜例如包括棱镜膜(Prism Sheet)和反射型偏光增亮膜(Dual Brightness Enhancement Film,DBEF)。
光源21例如包括发光二极管(Light-Emitting Diode,LED)。光源21发出的光为第一波长范围的光。背光模组2配置为向液晶显示面板1提供第一波长范围的光作为液晶显示面板1的入射光。示例地,第一波长范围的光可以为蓝光、紫光或紫外光中的任一种。
如图2A所示,光源21可以设置于导光板23的侧面,在此情况下,该背光模组2为侧入式背光模组。如图2B所示,光源21也可以设置于导光板23的远离出光侧的一侧,在此情况下,该背光模组2为直下式背光模组。图2A和图2B中的背光模组2的结构仅为示意,不做任何限定。
此外,如图2A和图2B所示,背光模组2还可以包括反射片22,对于侧入式背光模组,反射片22设置于导光板23的远离出光侧的一侧;对于直下式背光模组,反射片22设置于光源21远离导光板23的一侧。
如图1和图3A所示,液晶显示面板1包括阵列基板11、彩膜基板10,以及设置在阵列基板11和彩膜基板10之间的液晶层12。例如,阵列基板11和彩膜基板10可以通过封框胶对合在一起,从而将液晶层12中的液晶分子限定在封框胶围成的区域内。
如图4和图5所示,本公开一些实施例提供的彩膜基板10,包括:第一衬底101、设置于第一衬底101上的第一金属线栅偏振层102、以及设置于第一金属线栅偏振层102远离其第一表面一侧的多个子像素单元;其中,第一表面为第一金属线栅偏振层102远离第一衬底101的表面。
多个子像素单元包括多个第一子像素单元104、多个第二子像素单元105和多个第三子像素单元106。
多个第一子像素单元104中的一个第一子像素单元104包括层叠设置的第一光转换图案1041和第一反射图案1042。例如,多个第一子像素单元104中的每个第一子像素单元104包括层叠设置的第一光转换图案1041和第一反射图案1042。第一反射图案1042设置于第一光转换图案1041远离第一金属线栅偏振层102的一侧;第一光转换图案1041配置为在第一波长范围的入射光的激发下发出第二波长范围的光,第一反射图案1042配置为反射第一波长范围的光以及透射第二波长范围的光。
多个第二子像素单元105中的一个第二子像素单元105包括层叠设置的第二光转换图案1051和第二反射图案1052。例如,多个第二子像素单元105中的每个第二子像素单元105包括层叠设置的第二光转换图案1051和第二反射图案1052。第二反射图案1052设置于第二光转换图案1051远离第一金属线栅偏振层102的一侧;第二光转换图案1051配置为在第一波长范围的入射光的激发下发出第三波长范围的光,第二反射图案1052配置为反射第一波长范围的光以及透射第三波长范围的光。
第三子像素单元106配置为接收第一波长范围的光,并出射第四波长范围的光。
在一些实施例中,上述第一波长范围的光为第一颜色光,第二波长范围的光为第二颜色光,第三波长范围的光为第三颜色光,第四波长范围的光为第四颜色光。
其中,该第二颜色光、该第三颜色光和该第四颜色光为三基色光。
相关技术中,如图3B所示,彩膜基板10包括第一衬底、设置于第一衬底上的彩膜层,彩膜层包括红色滤光单元R、绿色滤光单元G和蓝色滤光单元B。红色滤光单元R、绿色滤光单元G和蓝色滤光单元B均由高分子材料和有机染料混合而成。相关技术中,背光模组向液晶显示面板提供白光,液晶显示面板的液晶层12控制该白光的透过率,白光透过液晶层12后经彩膜层的滤光作用,实现不同颜色的显示。然而,背光模组发出的白光在通过彩膜层的红色滤光单元R、绿色滤光单元G和蓝色滤光单元B进行颜色转换时,白光中只有红绿蓝三色中的一种颜色光会透过,其余颜色的光被吸收,所以透过率只有1/3,损失了至少2/3的光强,导致彩膜基板10对光线的利用率较低。
本公开一些实施例提供的彩膜基板10中,第一子像素单元104包括第一光转换图案1041和第一反射图案1042,第二子像素单元105包括第二光转换图案1051和第二反射图案1052;在背光模组提供的第一波长范围的光的激发下,第一光转换图案1041可以发出第二波长范围的光,第二光转换图案1051可以发出第三波长范围的光,将背光模组提供的背光直接转换成所需的光,使彩膜基板10对背光模组的光线的利用率提高,而且第一反射图案1042和第二反射图案1052均可反射第一波长范围的光,可以使未被转换的第一波长范围的光被反射并再次利用,从而进一步提高光线的利用率。此外,第三子像素105可以接收背光模组提供的第一波长范围的光,并出射第四波长范围的光,且第二波长范围的光、第三波长范围的光和第四波长范围的光为三基色光,因此,将本公开一些实施例提供的彩膜基板10应用于显示装置中,可以实现正常的显示。
在一些实施例中,第三子像素单元106包括透明填充图案1060,即第三子像素单元106可以透射第一波长范围的光,在此情况下,上述第四波长范围的光与第一波长范围的光为同一波长范围的光。
在此情况下,示例地,第一波长范围的光为蓝光,例如第一波长范围为421nm~505nm,中心波长为454nm,即第一颜色光为蓝色光。第二颜色光和第三颜色光分别为红色光和绿色光。
背光模组2的光源21例如可以为蓝光发光二极管(Light-Emitting Diode,简称LED)。相关技术中,白光一般都是来自于蓝光激发荧光粉发出的光,而在蓝光激发荧光粉过程中也会损失约40%能量。因此,本公开实施例将光源21设置为蓝光LED,即,直接采用蓝光LED发出的蓝光作为背光模组2的输出光,可避免上述能量的损失。
示例地,第一衬底101为ITO(Indium-Tin Oxide,氧化铟锡)玻璃(表面沉积有ITO膜层的玻璃)。第一金属线栅偏振层(Wire grid polarizer,WGP)102包括多条平行布置的线栅,相邻两条线栅之间缝隙宽度相同。此处所谓的平行应当理解为实质平行,由于工艺的误差是难以避免的,因此应当遵循本领域技术人员的常规理解。第一金属线栅偏振层102的特点是反射平行于线栅方向的偏振光,并透射垂直于线栅方向的偏振光。
示例地,如图6所示,第一金属线栅偏振层102包括基底1021、设置在基底1021上的多条互相平行的金属线1022。其中,基底1021靠近第一衬底101设置。在制作彩膜基板10时,例如可将制作好的第一金属线栅偏振层102中的基底1021通过光学胶粘结在多个子像素单元远离第一衬底101的一侧表面上。
或者,在制作彩膜基板10时,直接在已经制作形成的多个子像素单元远离第一衬底101的一侧表面上,通过构图工艺制作多条互相平行的金属线1022。在此情况下,第一金属线栅偏振层102仅包括多条互相平行的金属线1022。
其中,金属线1022的厚度H例如为100nm~300nm、宽度W例如为20nm~100nm,相邻两条金属线1022之间的间距P例如为100~150nm。当从阵列基板11出射的偏振光进入第一金属线栅偏振层102时,平行于金属线1022方向的偏振光被反射,而垂直于金属线1022方向的偏振光被透射。
对于多个第一子像素单元104、多个第二子像素单元105和多个第三子像素单元106,其分布方式可以参考本领域的常规设置。
示例地,如图7所示,沿水平方向,多个第一子像素单元104、多个第二子像素单元105和多个第三子像素单元106周期性排布,沿竖直方向,同一列子像素单元的发光颜色相同。
对于第一子像素单元104而言,如图4所示,第一子像素单元104中的第一光转换图案1041和第一反射图案1042都可以位于第一衬底101和第一金属线栅偏振层102之间,即第一子像素单元104位于第一衬底101和第一金属线栅偏振层102之间。或者,如图5所示,第一子像素单元104中的第一光转换图案1041位于第一衬底101和第一金属线栅偏振层102之间,第一反射图案1042位于第一衬底101远离第一金属线栅偏振层102一侧。
示例地,第一光转换图案1041的材料可以包括第一量子点,该第一量子点在第一波长范围的光的激发下可发出第二波长范围的光。由于第一波长范围的光进入第一光转换图案1041后,第一光转换图案1041对第一波长范围的光的利用率可能不能达到100%,因此可能存在未被利用的第一波长范围的 光。在此情况下,第一反射图案1042可以将未被第一光转换图案1041利用的第一波长范围的光反射进入第一光转换图案1041中,再次用于激发第一光转换图案1041发光,同时第一反射图案1042还可以避免未被利用的第一波长范围的光从彩膜基板10出射。
对于第二子像素单元105而言,如图4所示,第二子像素单元105中的第二光转换图案1051和第二反射图案1052都可以位于第一衬底101和第一金属线栅偏振层102之间,即第二子像素单元105位于第一衬底101和第一金属线栅偏振层102之间。或者,如图5所示,第二子像素单元105中的第二光转换图案1051位于第一衬底101和第一金属线栅偏振层102之间,第二反射图案1052位于第一衬底101远离第一金属线栅偏振层102一侧。
示例地,第二光转换图案1051的材料包括第二量子点,该第二量子点在第一波长范围的光的激发下可发出第三波长范围的光。由于第一波长范围的光进入第二光转换图案1051后,第二光转换图案1051对第一波长范围的光的利用率可能不能达到100%,因此可能存在未被利用的第一波长范围的光。在此情况下,第二反射图案1052可以将未被第二光转换图案1051利用的第一波长范围的光反射进入第二光转换图案1051中,再次用于激发第二光转换图案1051发光,同时第二反射图案1052还可以避免未被利用的第一波长范围的光从彩膜基板10出射。
在一些实施例中,第一光转换图案1041的材料包括:第一量子点、光刻胶、偶联剂(例如第一量子点-光刻胶偶联剂)等物质的组合。第二光转换图案1051的材料包括:第二量子点、光刻胶、偶联剂(例如第二量子点-光刻胶偶联剂)等物质的组合。第一量子点和第二量子点的主要不同在于量子点的直径不同。例如,第一量子点的直径为2.4nm,第二量子点的直径为1.7nm。
第一量子点和第二量子点的材料可以包括InP(磷化铟)、InAs(砷化铟)、CdS(硫化镉)、CdSe(硒化镉)、CdTe(碲化镉)、ZnSe(硒化锌)、ZnS(硫化锌)中的至少一种。
在制备第一光转换图案1041和第二光转换图案1051时,可以将第一量子点和第二量子点分别溶于PMA(Phorbol-12-myristate-13-acetate,丙二醇甲醚醋酸酯)中,然后分别与光刻胶进行混合,再分别通过旋涂、前烘、光刻、显影、后烘等构图工艺步骤形成。
为了能使射入第一光转换图案1041和第二光转换图案1051的光线发生散射,以使屏幕的可视角度变大,第一光转换图案1041和第二光转换图案1051的材料中还可以包括光扩散粒子。示例地,该光扩散粒子的材料包括聚苯乙 烯树脂、聚甲基丙烯酸甲酯、聚碳酸酯、二氧化硅和二氧化钛中的至少一种。
对于第三子像素单元106而言,透明填充图案1060不包括量子点,第一波长范围的光射向透明填充图案1060后,可直接透过透明填充图案1060。如图4和图5所示,透明填充图案1060可直接设置在第一衬底101朝向第一金属线栅偏振层102一侧的表面上。透明填充图案1060的材料例如可以包括光刻胶。
如图5所示,由于第三子像素单元106中并未设置反射图案,因此在第一反射图案1042和第二反射图案1052设置于第一衬底101远离第一金属线栅偏振层102的一侧的情况下,需要对第一反射图案1042和第二反射图案1052所在层进行平坦化处理形成平坦图案1071,例如可以使用光刻胶形成平坦图案1071。
在一些实施例中,如图4所示,第一子像素单元104、第二子像素单元105和第三子像素单元106均设置于第一金属线栅偏振层102与第一衬底101之间。在此情况下,第一衬底101可以保护第一子像素单元104、第二子像素单元105和第三子像素单元106,避免各个子像素单元被损坏,提高液晶显示面板1的使用寿命。
当上述彩膜基板10应用于液晶显示装置中,如图8所示,从背光模组2出射的蓝色光(即第一波长范围的光,如图8中的箭头线所示)经阵列基板11,入射至第一金属线栅偏振层102,从第一金属线栅偏振层102出射后,分别进入第一子像素单元104、第二子像素单元105和第三子像素单元106。
如图8所示,在第一子像素单元104中,蓝色光(即第一波长范围的光)首先会朝着第一衬底101一侧传输,当入射至第一光转换图案1041时,部分蓝色光用于激发第一光转换图案1041发光,其余部分直接出射,从而使得从第一光转换图案1041出射的光既包括红色光(即第二波长范围的光)也包括蓝色光。之后,当从第一光转换图案1041出射的光入射至第一反射图案1042时,红色光穿过第一反射图案1042并经第一衬底101出射,而蓝色光被第一反射图案1042反射。被反射的蓝色光朝向远离第一衬底101的一侧传输,当传输至第一光转换图案1041时,部分蓝色光可再次激发第一光转换图案1041发光,而未被利用的蓝色光继续会传输至第一金属线栅偏振层102,使得部分蓝色光被反射,部分蓝色光向阵列基板11传输。被第一金属线栅偏振层102反射的蓝色光会再次按上述过程向第一衬底101一侧传输。其中,对于向阵列基板11传输的蓝色光,由于背光模组2中包括了反射片22,当蓝色光到达反射片22时会被反射片22反射,从而射入彩膜基板10中。
同理,如图8所示,在第二子像素单元105中,蓝色光首先会朝着第一衬底101一侧传输,当入射至第二光转换图案1051时,部分蓝色光用于激发第二光转换图案1051发光,其余部分直接出射,从而使得从第二光转换图案1051出射的光既包括绿色光(即第三波长范围的光)也包括蓝色光。之后,当从第二光转换图案1051出射的光入射至第二反射图案1052时,绿色光穿过第二反射图案1052并经第一衬底101出射,而蓝色光被第二反射图案1052反射。被反射的蓝色光朝向远离第一衬底101的一侧传输,当传输至第二光转换图案1051时,部分蓝色光可再次激发第二光转换图案1051发光,而未被利用的蓝色光继续会传输至第一金属线栅偏振层102,使得部分蓝色光被反射,部分蓝色光向阵列基板11传输。被第一金属线栅偏振层102反射的蓝色光会再次按上述过程向第一衬底101一侧传输。其中,对于向阵列基板11传输的蓝色光,由于背光模组2中包括了反射片22,当蓝色光到达反射片22时会被反射片22反射,从而射入彩膜基板10中。
由此可知,对应第一子像素单元104,蓝色光可在第一金属线栅偏振层102、第一反射图案1042和反射片22形成的第一蓝色光谐振腔内来回传输;对应第二子像素单元105,蓝色光在第一金属线栅偏振层102、第二反射图案1052和反射片22形成的第二蓝色光谐振腔内来回传输。蓝色光分别在第一蓝色光谐振腔和第二蓝色光谐振腔内来回传输,多次激发第一光转换图案1041和第二光转换图案1051发光,因此,使蓝光的利用率得到了提高。
在第三子像素单元106中,如图8所示,蓝色光可直接通过透明填充图案1060向第一衬底101一侧传输,并通过第一衬底101出射。
第三子像素单元106包括透明填充图案1060,使得液晶显示面板1的结构较为简单,便于制作,同时使得蓝色光基本可以无阻碍的穿过,对蓝色光的透过率更高。
理想状况下,第一反射图案1042和第二反射图案1052对第一波长范围的光的反射率为100%,液晶层的效率为100%(即不吸收光),第一金属线栅偏振层102反射50%的光线、透射50%的光线。在第一光转换图案1041和第二光转换图案1051的材料包括量子点的情况下,假设量子点对蓝色光的吸收率为30%,则蓝色光一次激发量子点的光效为0.30EQE(External Quantum Efficiency,外量子效率),而经过多次反射重复激发量子点后的光效可以提升至1.34EQE;若量子点对第一波长范围的光的吸收率为50%,则蓝色光一次激发量子点的光效为0.50EQE,而经过多次反射重复利用后的光效可以提升至0.92EQE,从而对蓝色光的利用率得到了较大的提升。
本公开实施例提供了一种彩膜基板10,在第一子像素单元104中,设置第一光转换图案1041和第一反射图案1042,在第二子像素单元105中设置第二光转换图案1051和第二反射图案1052,在第三子像素单元106中设置透明填充图案1060。当该彩膜基板10应用于液晶显示装置中,在背光模组2提供蓝色背光的情况下,使第一子像素单元104发出红色光、第二子像素单元105发出绿色光、第三子像素单元106发出蓝色光。一方面,由于蓝色光可在第一金属线栅偏振层102与第一反射图案1042之间来回传输而激发第一光转换图案1041发光;以及在第一金属线栅偏振层102与第二反射图案1052之间来回传输而激发第二光转换图案1051中发光。因而,本公开实施例提供的彩膜基板10对蓝色光的利用率较高。另一方面,在第一光转换图案1041和第二光转换图案1051包括量子点的情况下,由于第一光转换图案1041和第二光转换图案1051分别基于激发量子点而发红色光和绿色光,量子点光致发光的效率较高,且在第三子像素单元106中设置透明填充图案1060时,可使得蓝色光基本无损耗的直接通过第三子像素单元106,使得第三子像素单元106对蓝色光的透过率较高,因而,本公开实施例提供的彩膜基板10可以明显提高液晶显示装置的出光率,降低液晶显示装置的功耗。再一方面,相对于相关技术中彩膜层由高分子材料和有机染料混合而成时,透光光谱比较宽、色纯度比较低,在第一光转换图案1041和第二光转换图案1051包括量子点的情况下,本公开实施例中的量子点的发光波长窄、色纯度高,因而,本公开实施例提供的彩膜基板10应用于液晶显示装置时,可提高显示色域,从72%NTSC(National Television Standards Committee,美国国家电视标准委员会制定的色域标准)提升到110%NTSC以上,可使显示色彩更丰富,画质更鲜艳。
在一些实施例中,如图9所示,第一子像素单元104还包括设置于第一反射图案1042远离第一光转换图案1041一侧的第一吸收图案1045,第一吸收图案1045配置为吸收第一波长范围的光以及透射第二波长范围的光。第二子像素单元105还包括设置于第二反射图案1052远离第二光转换图案1051一侧的第二吸收图案1053,第二吸收图案1053配置为吸收第一波长范围的光以及透射第三波长范围的光。
在一些示例中,第一吸收图案1045可以为红色滤光图案,其材料包括高分子材料和有机染料,红色滤光图案可吸收除红光外的其他的光。第二吸收图案1053可以为绿色滤光图案,其材料为包括高分子材料和有机染料,绿色滤光图案可吸收除绿光外的其他的光。
在另一些示例中,第一吸收图案1045和第二吸收图案1053的材料均包括蓝光吸收染料。蓝光吸收染料包括香豆素540和苯并三唑中的至少一种。香豆素540(Coumarin 540)的分子式为C 20H 18N 2O 2S,最大吸收波长为458nm。苯并三唑的分子式为C 6H 5N 3,最大吸收波长为385nm。在此基础上,第一吸收图案1045和第二吸收图案1053的材料可以相同,且相邻第一吸收图案1045和第二吸收图案1053为一体结构。其中,第一吸收图案1045和第二吸收图案1053的制备,可以通过将蓝光吸收染料溶于有机溶剂,然后掺入光刻胶中得到浆料,再通过旋涂的方式在第一衬底101上形成膜层,然后对该膜层进行前烘、光刻、后烘、显影等构图工艺步骤形成。
示例地,第一吸收图案1045和第二吸收图案1053的制备过程中,所使用的有机溶剂包括甲苯和四氢呋喃中的一种或多种。
第一吸收图案1045和第二吸收图案1053不仅用于吸收来自背光模组2的蓝色光,使蓝色光不能进入人眼;同时还可以吸收来自外界环境中的蓝色光,避免液晶显示面板1的显示画面出现偏蓝的问题,进一步降低蓝色光对眼睛的刺激。
在一些实施例中,如图10所示,第一反射图案1042和第二反射图案1052均包括:沿第一衬底101厚度方向层叠设置的至少一层第一反射子图案1043和至少一层第二反射子图案1044;该至少一层第一反射子图案1043和该至少一层第二反射子图案1044的材料均包括胆甾相液晶,且该至少一层第一反射子图案1043中的胆甾相液晶的螺旋方向为左旋,该至少一层第二反射子图案1044中的胆甾相液晶的螺旋方向为右旋。
示例地,第一反射图案1042和第二反射图案的反射波长的范围可以均为380nm~505nm。
需要说明的是,在第一反射子图案1043和第二反射子图案1044的总层数为两层以上的情况下,第一反射子图案1043和第二反射子图案1044可交替设置。例如,当第一反射子图案1043和第二反射子图案1044的总层数为四层时,可按第一反射子图案1043、第二反射子图案1044、第一反射子图案1043、第二反射子图案1044交替设置。
第一反射子图案1043和第二反射子图案1044可通过如下方式进行制备。将可聚合的胆甾相液晶单体、左旋可聚合手性单体和光引发剂等溶于有机溶剂中,再通过刮涂或者旋涂的方式涂覆,再经过烘干、退火、紫外固化等步骤形成2um~5um的第一层胆甾相液晶膜层。之后,在第一层胆甾相液晶膜层表面用同样方法制备第二层胆甾相液晶膜层,第二层胆甾相液晶膜层中的 手性单体为右旋可聚合手性单体。最后对第一层胆甾相液晶膜层和第二层胆甾相液晶膜层进行光刻、显影等工艺,得到第一反射子图案1043和第二反射子图案1044。
示例地,上述第一反射子图案1043和第二反射子图案1044的制备过程中,所使用的有机溶剂包括甲苯和四氢呋喃中的一种或多种。
胆甾相液晶是向列型液晶中的一种特殊形式。胆甾相液晶中的分子沿水平面的方向呈周期性螺旋排列。由于胆甾相液晶特殊的螺旋结构,其具有布拉格反射特性,即当入射光的波长满足λ=nP时,入射光将被反射,其中λ为反射光的波长,P为胆甾相液晶的螺距,n为液晶的平均折射率。由于n相对固定,因此可以通过调节螺距P来控制胆甾相液晶的反射光的波长。上述第一反射子图案1043中的胆甾相液晶的螺距和第二反射子图案1044中的胆甾相液晶的螺距的范围为380nm~480nm。胆甾相液晶对反射波段之外的光透过率可以达到90%甚至更高。所以通过使用胆甾相液晶对第一波长范围的光进行反射,可以提升第一反射图案1042和第二反射图案1052对第一波长范围的光的反射效率。
其中,在通过调节螺距P来控制胆甾相液晶的反射光的波长时,可以使第一反射子图案1043和第二反射子图案1044的胆甾相液晶使用同一螺距P,使得第一反射子图案1043和第二反射子图案1044的反射波长相等。
在一些实施例中,第一反射子图案1043的厚度为2um~5um,例如第一反射子图案1043的厚度为2um,3um,4um,5um;第二反射子图案1044的厚度为2um~5um,例如第二反射子图案1044的厚度为2um,3um,4um,5um。第一反射子图案1043和第二反射子图案1044的厚度可以相同,也可以不同。
将第一反射子图案1043和第二反射子图案1044的厚度设置在2um~5um的范围内,可以在保证对第一波长范围的光反射效果的前提下,尽可能的降低第一反射图案1042和第二反射图案1052的整体厚度,避免彩膜基板10的整体厚度过大。
在一些实施例中,如图11所示,上述的彩膜基板10还包括平坦层107,平坦层107设置于第一金属线栅偏振层102与第一光转换图案1041、第二光转换图案1051、透明填充图案1060之间;平坦层107与透明填充图案1060由同材料制成,且为一体结构。
其中,平坦层107与透明填充图案1060的材料例如为光刻胶。
平坦层107用于保证第一光转换图案1041、第二光转换图案1051表面的平坦性,以便在制作第一金属线栅偏振层102时,还可以不使用基底1021直 接在平坦层107远离第一衬底101的一侧表面制作金属线1022,以降低彩膜基板10整体的厚度。
在一些实施例中,如图3A、图4、图5、图8、图9、图11、以及图12所示,彩膜基板10还包括第一遮光图案108,第一遮光图案108呈网格结构。
示例地,如图3A、图4、图5、图8、图9、以及图11所示,第一光转换图案1041、第二光转换图案1051和透明填充图案1060设置于第一遮光图案108的多个网格中的各自一个中。例如,第一光转换图案1041设置于第一遮光图案108的多个网格中的一个中,第二光转换图案1051设置于第一遮光图案108的多个网格中的一个中,透明填充图案1060设置于第一遮光图案108的多个网格中的一个中,且第一光转换图案1041、第二光转换图案1051和透明填充图案1060设置于不同的网格中。
或者,如图12所示,每个子像素单元设置于第一遮光图案108的多个网格中的各自一个中。例如,每个子像素单元设置于第一遮光图案108的多个网格中的一个中,且不同的子像素单元设置于第一遮光图案108的多个网格中的不同网格中。
示例地,第一遮光图案108的材料可以为黑色树脂。
在一些实施例中,如图13所示,彩膜基板10还包括第二遮光图案109,第二遮光图案109呈网格结构;第一光转换图案1041、第二光转换图案1051以及透明填充图案1060设置于第二遮光图案109的多个网格中的各自一个中;任意相邻的第一反射图案1042、任意相邻的第二反射图案1052、以及任意相邻的第一反射图案1042和第二反射图案1052为一体结构。
示例地,第二遮光图案109的材料可以为黑色树脂。
在一些实施例中,第一金属线栅偏振层102还复用为公共电极。由于第一金属线栅偏振层102上设有金属线1022,因此其可以作为公共电极使用,有利于简化彩膜基板10的结构。
本公开的一些实施例还提供一种彩膜基板,如图14和图15所示,包括:第一衬底101、设置于第一衬底101上的第一金属线栅偏振层102、以及设置于第一金属线栅偏振层102远离其第一表面一侧的多个子像素单元;其中,第一表面为第一金属线栅偏振层102远离第一衬底101的表面。
多个子像素单元包括多个第一子像素单元104、多个第二子像素单元105和多个第三子像素单元106。
多个第一子像素单元104中的一个第一子像素单元104包括层叠设置的第一光转换图案1041和第一反射图案1042。例如多个第一子像素单元104中 的每个第一子像素单元104包括层叠设置的第一光转换图案1041和第一反射图案1042。第一反射图案1042设置于第一光转换图案1041远离第一金属线栅偏振层102的一侧;第一光转换图案1041配置为在第一波长范围的入射光的激发下发出第二波长范围的光,第一反射图案1042配置为反射第一波长范围的光以及透射第二波长范围的光。
多个第二子像素单元105中的一个第二子像素单元105包括层叠设置的第二光转换图案1051和第二反射图案1052。例如,多个第二子像素单元105中的每个第二子像素单元105包括层叠设置的第二光转换图案1051和第二反射图案1052。第二反射图案1052设置于第二光转换图案1051远离第一金属线栅偏振层102的一侧;第二光转换图案1051配置为在第一波长范围的入射光的激发下发出第三波长范围的光,第二反射图案1052配置为反射第一波长范围的光以及透射第三波长范围的光。
多个第三子像素单元106中的一个第三子像素单元106包括层叠设置的第三光转换图案1061和第三反射图案1062。例如,多个第三子像素单元106中的每个第三子像素单元106包括层叠设置的第三光转换图案1061和第三反射图案1062。第三反射图案1062设置于第三光转换图案1061远离第一金属线栅偏振层102的一侧;第三光转换图案1061配置为在第一波长范围的入射光的激发下发出第四波长范围的光,第三反射图案1062配置为反射第一波长范围的光以及透射第四波长范围的光。
在此情况下,示例地,第一波长范围的光为第一颜色光,该第一颜色光可以为紫光或紫外光;第二波长范围的光、第三波长范围的光和第四波长范围的光分别为第二颜色光、第三颜色光、第四颜色光,且该第二颜色光、该第三颜色光和该第四颜色光为三基色光。例如第二颜色光为红光、第三颜色光为绿光、第四颜色光为蓝光。又例如,第二颜色光为青光、第三颜色光为品红光、第四颜色光为黄光。
第一子像素单元104和第二子像素单元105的结构可参考上述描述的关于第一子像素单元104和第二子像素单元105的结构,在此不再赘述。以下重点描述第三子像素单元106的结构。
如图14所示,第三子像素单元106中的第三光转换图案1061和第三反射图案1062都可以设置于第一衬底101和第一金属线栅偏振层102之间,即第三子像素单元106设置于第一衬底101和第一金属线栅偏振层102之间。或者,如图15所示,第三子像素单元106中的第三光转换图案1061设置于第一衬底101和第一金属线栅偏振层102之间,第三反射图案1062设置于第 一衬底101远离第一金属线栅偏振层102一侧。
示例地,第三光转换图案1061的材料包括第三量子点,该第三量子点在第一波长范围的光的激发下可发出第四波长范围的光。由于第一波长范围的光进入第三光转换图案1061后,第三光转换图案1061对第一波长范围的光的利用率可能不能达到100%,因此可能存在未被利用的第一波长范围的光。在此情况下,第三反射图案1062可以将未被第三光转换图案1061利用的第一波长范围的光反射进入第三光转换图案1061中,再次用于激发第三光转换图案1061发光,同时第三反射图案1062还可以避免未被利用的第一波长范围的光从彩膜基板10出射。
示例地,第三光转换图案1061中第三量子点的尺寸为1.0nm。
第三量子点的材料包括InP(磷化铟)、InAs(砷化铟)、CdS(硫化镉)、CdSe(硒化镉)、CdTe(碲化镉)、ZnSe(硒化锌)、ZnS(硫化锌)中的至少一种。在制备第三光转换图案1061时,可以将第三量子点溶于PMA(Phorbol-12-myristate-13-acetate,丙二醇甲醚醋酸酯)中,然后与光刻胶进行混合,再通过旋涂、前烘、光刻、显影、后烘等构图工艺步骤形成。
需要说明的是,第一光转换图案1041、第二光转换图案1051、第三光转换图案1061的材料并不限于量子点。例如在第一波长范围的光为紫外光的情况下,第一光转换图案的材料可以包括Pyridine 1(吡啶1),其发光波长范围为665nm~725nm,峰值为698nm;第二光转换图案的材料可以包括Coumarin153(香豆素153),其发光波长的范围为515nm~570nm,峰值为540nm;第三光转换图案的材料可以包括Coumarin 120(香豆素120),其发光波长的范围为428nm~453nm,峰值为440nm;或者第三光转换图案的材料可以包括Stilbene 3(对称二苯代乙烯3),其发光波长的范围为414nm~445nm,峰值为425nm。
为了能使射入第三光转换图案1061的光线发生散射,以使屏幕的可视角度变大,第三光转换图案1061的材料中还可以包括光扩散粒子。示例地,该光扩散粒子的材料包括聚苯乙烯树脂、聚甲基丙烯酸甲酯、聚碳酸酯、二氧化硅和二氧化钛中的至少一种。
示例地,第三反射图案1062的结构可以和第一反射图案1042和第二反射图案1052的结构相同。
当上述彩膜基板10应用于液晶显示装置中,如图16所示,从背光模组2出射的第一波长范围的光经阵列基板11,入射至第一金属线栅偏振层102,从第一金属线栅偏振层102出射后,分别进入第一子像素单元104、第二子像 素单元105和第三子像素单元106。
第一波长范围的光在第一子像素单元104和第二子像素单元105中的传播路径可参考上述对蓝色光在第一子像素单元104和第二子像素单元105中的传播路径的描述,在此不再赘述。
当第一波长范围的光进入第三子像素单元106时,首先会朝着第一衬底101一侧传输,当入射至第三光转换图案1061时,部分第一波长范围的光用于激发第三光转换图案1061发光,其余部分直接出射,从而使得从第三光转换图案1061出射的光既包括第四波长范围的光,也包括第一波长范围的光。之后,当从第三光转换图案1061出射的光入射至第三反射图案1062时,第四波长范围的光透过第三反射图案1062并经第一衬底101后出射,而第一波长范围的光被第三反射图案1062反射。被反射的第一波长范围的光朝向远离第一衬底101的一侧传输,当传输至第三光转换图案1061时,可再次激发第三光转换图案1061发光,而未被利用的第一波长范围的光会继续传输至第一金属线栅偏振层102,使得部分第一波长范围的光被第一金属线栅偏振层102反射,部分第一波长范围的光向阵列基板11一侧传输。被第一金属线栅偏振层102反射的第一波长范围的光会再次按上述过程向第一衬底101一侧传输。其中,对于向阵列基板11传输的第一波长范围的光,由于背光模组2中包括反射片22,当第一波长范围的光到达反射片22时会被反射片22反射,从而射入彩膜基板10中。
由此可知,在对应第三子像素单元106时,第一波长范围的光可在第一金属线栅偏振层102、第三反射图案1062和反射片22形成的谐振腔内来回传输;第一波长范围的光在谐振腔内来回传输,多次激发第三光转换图案1061发出第四波长范围的光,因此,第一波长范围的光的利用率得到了提高。
本公开一些实施例提供了一种彩膜基板10,在第一子像素单元104中,设置第一光转换图案1041和第一反射图案1042,在第二子像素单元105中设置第二光转换图案1051和第二反射图案1052,在第三子像素单元106中设置第三光转换图案1061和第三反射图案1062。当该彩膜基板10应用于液晶显示装置中,在背光模组2提供第一波长范围的光的情况下,使第一子像素单元104发出第二波长范围的光、第二子像素单元105发出第三波长范围的光、第三子像素单元106发出第四波长范围的光。一方面,由于对应第一子像素单元104,第一波长范围的光可在第一金属线栅偏振层102与第一反射图案1042之间来回传输而激发第一光转换图案1041发光,对应第二子像素单元105,第一波长范围的光可在第一金属线栅偏振层102与第二反射图案1052 之间来回传输而激发第二光转换图案1051中发光,对应第三子像素单元106,第一波长范围的光可在第一金属线栅偏振层102与第三反射图案1062之间来回传输而激发第三光转换图案1061中发光,因而,本公开一些实施例提供的彩膜基板10对第一波长范围的光的利用率较高。另一方面,在第一光转换图案1041、第二光转换图案1051和第三光转换图案1061包括量子点的情况下,由于第一光转换图案1041、第二光转换图案1051和第三光转换图案1061分别基于激发量子点而发出第二波长范围的光、第三波长范围的光和第四波长范围的光,量子点光致发光的效率较高,因而,本公开实施例提供的彩膜基板10可以明显提高液晶显示装置的出光率,降低液晶显示装置的功耗。再一方面,相对于相关技术中彩膜由高分子材料和有机染料混合而成时,透光光谱比较宽、色纯度比较低,在第一光转换图案1041、第二光转换图案1051和第三光转换图案1061包括量子点的情况下,本公开实施例中的量子点的发光波长窄、色纯度高,因而,本公开实施例提供的彩膜基板10应用于液晶显示装置时,使显示色域从72%NTSC(National Television Standards Committee,美国国家电视标准委员会制定的色域标准)提升到110%NTSC以上,可使显示色彩更丰富,画质更鲜艳。
在一些实施例中,如图17-图19所示,第三子像素单元106还包括设置于第三反射图案1062远离第三光转换图案1061一侧的第三吸收图案1063。
在第三反射图案1062设置于第三光转换图案1061与第一衬底101之间的情况下,如图17所示,第三吸收图案1063可设置于第三反射图案1062与第一衬底101之间;或者,如图18所示,第三吸收图案1063设置于第一衬底101远离第一金属线栅偏振层102的一侧。如图19所示,在第三反射图案1062设置于第一衬底101远离第一金属线栅偏振层102的一侧的情况下,第三吸收图案1063设置于第三反射图案1062远离第一衬底101的一侧。
第三吸收图案1063配置为吸收第一波长范围的光以及透射第四波长范围的光。
示例地,在第四波长范围的光为蓝光的情况下,第三吸收图案1063可以为蓝色滤光图案,蓝色滤光图案包括高分子材料和有机染料。
本公开的一些实施例还提供了一种彩膜基板的制备方法,包括S11~S12。
S11、如图4所示,在第一衬底101上形成多个子像素单元;多个子像素单元包括多个第一子像素单元104、多个第二子像素单元105和多个第三子像素单元106。
S12、如图4所示,在多个子像素单元远离第一衬底101的一侧形成第一 金属线栅偏振层102。
其中,在第一衬底101上形成第一子像素单元104、第二子像素单元105和第三子像素单元106,包括S111~S112。
S111、在第一衬底101上的第一子像素区域、第二子像素区域分别形成第一反射图案1042和第二反射图案1052。
S112、在第一子像素区域且在第一反射图案1042上形成第一光转换图案1041、在第二子像素区域且在第二反射图案1052上形成第二光转换图案1051,并且,在第一衬底101上的第三子像素区域形成透明填充图案1060。示例地,在第一反射图案1042上形成第一光转换图案1041包括在第一反射图案1042的远离第一衬底101的一侧形成第一光转换图案1041;在第二反射图案1052上形成第二光转换图案1051是指在第二反射图案1052的远离第一衬底101的一侧形成第二光转换图案1051。
第一光转换图案1041配置为在第一波长范围的入射光的激发下发出第二波长范围的光,第一反射图案1042配置为反射第一波长范围的光以及透射第二波长范围的光;第二光转换图案1051配置为在第一波长范围的入射光的激发下发出第三波长范围的光,第二反射图案1052配置为反射第一波长范围的光以及透射第三波长范围的光。示例地,该第一波长范围的光、该第二波长范围的光和该第三波长范围的光分别为第一颜色光、第二颜色光和第三颜色光,且该第一颜色光、该第二颜色光和该第三颜色光为三基色光。
在第一子像素单元104包括第一吸收图案1045,第二子像素单元105包括第二吸收图案1053的情况下,在形成第一反射图案1042、第二反射图案1052之前,如图9所示,上述彩膜基板的制备方法还包括:
S10、在第一衬底101上的第一子像素区域、第二子像素区域分别形成第一吸收图案1045和第二吸收图案1053。
第一吸收图案1045配置为吸收第一波长范围的光以及透射第二波长范围的光。第二吸收图案1053配置为吸收第一波长范围的光以及透射第三波长范围的光。
本公开的一些实施例还提供了另一种彩膜基板10的制备方法,包括S21~S22。
S21、如图14所示,在第一衬底101上形成多个子像素单元;多个子像素单元包括多个第一子像素单元104、多个第二子像素单元105和多个第三子像素单元106。
S22、如图14所示,在多个子像素单元远离第一衬底101的一侧形成第 一金属线栅偏振层102。
其中,在第一衬底101上形成第一子像素单元104、第二子像素单元105和第三子像素单元106,包括S211~S212。
S211、在第一衬底101上的第一子像素区域、第二子像素区域和第三子像素区域分别形成第一反射图案1042、第二反射图案1052和第三反射图案1062。
S212、在第一子像素区域且在第一反射图案1042上形成第一光转换图案1041,在第二子像素区域且在第二反射图案1052上形成第二光转换图案1051,以及在第三子像素区域且在第三反射图案1062上形成第三光转换图案1061。示例地,在第一反射图案1042上形成第一光转换图案1041包括在第一反射图案1042的远离第一衬底101的一侧形成第一光转换图案1041;在第二反射图案1052上形成第二光转换图案1051包括在第二反射图案1052的远离第一衬底101的一侧形成第二光转换图案1051;在第三反射图案1062上形成第三光转换图案1061包括在第三反射图案1062的远离第一衬底101的一侧形成第三光转换图案1061。
第一光转换图案1041配置为在第一波长范围的入射光的激发下发出第二波长范围的光,第一反射图案1042配置为反射第一波长范围的光以及透射第二波长范围的光;第二光转换图案1051配置为在第一波长范围的入射光的激发下发出第三波长范围的光,第二反射图案1052配置为反射第一波长范围的光以及透射第三波长范围的光;第三光转换图案1061配置为在第一波长范围的入射光的激发下发出第四波长范围的光,第三反射图案1062配置为反射第一波长范围的光以及透射第四波长范围的光。示例地,该第一波长范围的光、该第二波长范围的光、该第三波长范围的光和该第四波长范围的光分别为第一颜色光、第二颜色光、第三颜色光和第四颜色光,且该第二颜色光、该第三颜色光和该第四颜色光为三基色光。
如图17所示,在第一子像素单元104包括第一吸收图案1045,第二子像素单元105包括第二吸收图案1053、第三子像素单元106包括第三吸收图案1063的情况下,在形成第一反射图案1042、第二反射图案1052、第三反射图案1062之前,如图17所示,上述彩膜基板的制备方法还包括:
S20、在第一衬底101上的第一子像素区域、第二子像素区域和第三子像素区域分别形成第一吸收图案1045、第二吸收图案1053和第三吸收图案1062。
第一吸收图案1045配置为吸收第一波长范围的光以及透射第二波长范围的光。第二吸收图案1053配置为吸收第一波长范围的光以及透射第三波长范 围的光,第三吸收图案1062配置为吸收第一波长范围的光以及透射第四波长范围的光。
上述彩膜基板10的制备方法与上述彩膜基板10具有相同的有益效果,因此不再赘述。
在一些实施例中,如图20所示,阵列基板11包括第二衬底110。阵列基板11在彩膜基板10上的每个子像素单元对应区域均设置有位于第二衬底110上的薄膜晶体管111和像素电极112。薄膜晶体管111包括有源层、源极、漏极、栅极及栅绝缘层,源极和漏极分别与有源层接触,像素电极112与薄膜晶体管111的漏极电连接,薄膜晶体管111的源极与数据线电连接。
在一些实施例中,在彩膜基板10不包括公共电极的情况下,如图20所示,阵列基板11还包括设置在第二衬底110上的公共电极113。像素电极112和公共电极113可以设置在同一层,在此情况下,像素电极112和公共电极113均为包括多个条状子电极的梳齿结构。像素电极112和公共电极113也可以设置在不同层,在此情况下,如图20所示,像素电极112和公共电极113之间设置有第一绝缘层114。在公共电极113设置在薄膜晶体管111和像素电极112之间的情况下,如图20所示,公共电极113与薄膜晶体管111之间还设置有第二绝缘层115。
在一些实施例中,阵列基板11还包括偏振层,第一金属线栅偏振层102的偏振方向与偏振层的偏振方向平行或垂直。
在一些实施例中,偏振层为第二金属线栅偏振层116。第二金属线栅偏振层116设置于阵列基板11的第二衬底110靠近彩膜基板10一侧或者远离彩膜基板10一侧。
示例地,如图20所示,第二金属线栅偏振层116设置于阵列基板11的第二衬底110远离彩膜基板10一侧。
在阵列基板11上设置有第二金属线栅偏振层116的情况下,从第一金属线栅偏振层102向靠近背光模组2的一侧透过的第一波长范围的光(偏振光),在到达第二金属线栅偏振层116时,第一波长范围的光将透过第二金属线栅偏振层116继续向背光模组2传播,并被背光模组2中的反射片22反射,再次透过第二金属线栅偏振层116和第一金属线栅偏振层102,到达子像素单元,用于激发子像素单元发光。进一步提高了液晶显示面板1对第一颜色光的利用率。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内, 想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种彩膜基板,包括:
    第一衬底;
    设置于所述第一衬底上的第一金属线栅偏振层;以及
    设置于所述第一金属线栅偏振层远离其第一表面一侧的多个子像素单元;其中,所述第一表面为所述第一金属线栅偏振层远离所述第一衬底的表面;
    所述多个子像素单元包括多个第一子像素单元、多个第二子像素单元和多个第三子像素单元;
    所述多个第一子像素单元中的一个第一子像素单元包括层叠设置的第一光转换图案和第一反射图案,所述第一反射图案设置于所述第一光转换图案远离所述第一金属线栅偏振层的一侧;所述第一光转换图案配置为在第一颜色入射光的激发下发出第二颜色光,所述第一反射图案配置为反射所述第一颜色光以及透射所述第二颜色光;
    所述多个第二子像素单元中的一个第二子像素单元包括层叠设置的第二光转换图案和第二反射图案,所述第二反射图案设置于所述第二光转换图案远离所述第一金属线栅偏振层的一侧;所述第二光转换图案配置为在所述第一颜色入射光的激发下发出第三颜色光,所述第二反射图案配置为反射所述第一颜色光以及透射所述第三颜色光;
    第三子像素单元配置为接收所述第一颜色光,并出射第四颜色光;
    所述第二颜色光、所述第三颜色光和所述第四颜色光为三基色光。
  2. 根据权利要求1所述的彩膜基板,其中,
    所述第三子像素单元包括透明填充图案,所述第四颜色光与所述第一颜色光为同一波长范围的光;第一颜色光为蓝色光,第二颜色光和第三颜色光分别为红色光和绿色光。
  3. 根据权利要求1所述的彩膜基板,其中,
    所述多个第三子像素单元中的一个第三子像素单元包括层叠设置的第三光转换图案和第三反射图案,所述第三反射图案设置于所述第三光转换图案远离所述第一金属线栅偏振层的一侧;所述第三光转换图案配置为在所述第一颜色入射光的激发下发出第四颜色光,所述第三反射图案配置为反射第一颜色光以及透射所述第四颜色光。
  4. 根据权利要求2所述的彩膜基板,其中,
    所述第一光转换图案的材料包括第一量子点;
    所述第二光转换图案的材料包括第二量子点;
    第一量子点和第二量子点的材料包括:磷化铟、砷化铟、硫化镉、硒化镉、碲化镉、硒化锌、硫化锌中的至少一种;
    所述第一量子点和所述第二量子点的直径不同。
  5. 根据权利要求2所述的彩膜基板,其中,
    所述第一子像素单元还包括设置于所述第一反射图案远离所述第一光转换图案一侧的第一吸收图案,所述第一吸收图案配置为吸收第一颜色光以及透射第二颜色光;
    所述第二子像素单元还包括设置于所述第二反射图案远离所述第二光转换图案一侧的第二吸收图案,所述第二吸收图案配置为吸收第一颜色光以及透射第三颜色光。
  6. 根据权利要求2所述的彩膜基板,其中,
    所述第一反射图案和所述第二反射图案均包括:沿所述第一衬底厚度方向层叠设置的至少一层第一反射子图案和至少一层第二反射子图案;
    所述至少一层第一反射子图案和所述至少一层第二反射子图案的材料均包括胆甾相液晶,且所述至少一层第一反射子图案中的胆甾相液晶的螺旋方向为左旋,所述至少一层第二反射子图案中的胆甾相液晶的螺旋方向为右旋。
  7. 根据权利要求6所述的彩膜基板,其中,所述第一反射子图案的厚度为2um~5um;所述第二反射子图案的厚度为2um~5um。
  8. 根据权利要求5所述的彩膜基板,其中,
    所述第一吸收图案和所述第二吸收图案的材料均包括蓝光吸收染料;所述蓝光吸收染料包括香豆素和苯并三唑中的至少一种。
  9. 根据权利要求8所述的彩膜基板,其中,
    所述第一吸收图案和所述第二吸收图案的材料相同,相邻的第一吸收图案和第二吸收图案为一体结构。
  10. 根据权利要求5所述的彩膜基板,其中,
    所述第一吸收图案为红色滤光图案,所述第二吸收图案为绿色滤光图案;
    所述红色滤光图案和所述绿色滤光图案均包括高分子材料和有机染料。
  11. 根据权利要求2所述的彩膜基板,还包括:
    平坦层,设置于所述第一金属线栅偏振层与所述第一光转换图案、所述第二光转换图案、所述透明填充图案之间;
    所述平坦层与所述透明填充图案同材料,且为一体结构。
  12. 根据权利要求1-11任一项所述的彩膜基板,其中,
    所述第一子像素单元、所述第二子像素单元和所述第三子像素单元均设置于所述第一金属线栅偏振层与所述第一衬底之间。
  13. 根据权利要求12所述的彩膜基板,还包括第一遮光图案,所述第一遮光图案呈网格结构;
    每个子像素单元设置于所述第一遮光图案的多个网格中的各自一个中。
  14. 根据权利要求2所述的彩膜基板,还包括第二遮光图案,所述第二遮光图案呈网格结构;
    所述第一光转换图案、所述第二光转换图案以及所述透明填充图案设置于所述第二遮光图案的多个网格中的各自一个中;
    任意相邻的所述第一反射图案、任意相邻的所述第二反射图案以及任意相邻的所述第一反射图案和所述第二反射图案为一体结构。
  15. 根据权利要求1-14任一项所述的彩膜基板,其中,
    所述第一金属线栅偏振层还复用为公共电极。
  16. 一种液晶显示面板,包括阵列基板以及如权利要求1-15任一项所述的彩膜基板;
    所述阵列基板上设置有偏振层;所述第一金属线栅偏振层的偏振方向与所述偏振层的偏振方向平行或垂直。
  17. 根据权利要求16所述的液晶显示面板,其中,
    所述阵列基板包括第二衬底;所述偏振层为第二金属线栅偏振层,所述第二金属线栅偏振层设置于所述第二衬底靠近所述彩膜基板一侧或者远离所述彩膜基板一侧。
  18. 一种液晶显示装置,包括权利要求16或17所述的液晶显示面板、以及背光模组;
    其中,背光模组包括光源、反射片,所述光源发出的光为第一颜色光。
  19. 一种彩膜基板的制备方法,包括:
    在第一衬底上形成多个子像素单元;所述多个子像素单元包括多个第一子像素单元、多个第二子像素单元和多个第三子像素单元;
    在所述多个子像素单元远离所述第一衬底的一侧形成第一金属线栅偏振层;
    其中,在第一衬底上形成第一子像素单元、第二子像素单元和第三子像素单元,包括:
    在所述第一衬底上的第一子像素区域、第二子像素区域分别形成第一反射图案和第二反射图案;
    在所述第一子像素区域且在所述第一反射图案上形成第一光转换图案、在所述第二子像素区域且在所述第二反射图案上形成第二光转换图案,并且,在所述第一衬底上的第三子像素区域形成透明填充图案;
    所述第一光转换图案配置为在第一颜色入射光的激发下发出第二颜色光,所述第一反射图案配置为反射第一颜色光以及透射第二颜色光;所述第二光转换图案配置为在第一颜色入射光的激发下发出第三颜色光,所述第二反射图案配置为反射第一颜色光以及透射第三颜色光;
    所述第一颜色光、所述第二颜色光和所述第三颜色光为三基色光。
  20. 一种彩膜基板的制备方法,包括:
    在第一衬底上形成多个子像素单元;所述多个子像素单元包括多个第一子像素单元、多个第二子像素单元和多个第三子像素单元;
    在所述多个子像素单元远离所述第一衬底的一侧形成第一金属线栅偏振层;
    其中,在第一衬底上形成第一子像素单元、第二子像素单元和第三子像素单元,包括:
    在所述第一衬底上的第一子像素区域、第二子像素区域和第三子像素区域分别形成第一反射图案、第二反射图案和第三反射图案;
    在所述第一子像素区域且在所述第一反射图案上形成第一光转换图案,在所述第二子像素区域且在所述第二反射图案上形成第二光转换图案,以及在所述第三子像素区域且在所述第三反射图案上形成第三光转换图案;
    所述第一光转换图案配置为在第一颜色入射光的激发下发出第二颜色光,所述第一反射图案配置为反射第一颜色光以及透射第二颜色光;所述第二光转换图案配置为在第一颜色入射光的激发下发出第三颜色光,所述第二反射图案配置为反射第一颜色光以及透射第三颜色光;所述第三光转换图案配置为在第一颜色入射光的激发下发出第四颜色光,所述第三反射图案配置为反射第一颜色光以及透射第四颜色光;
    所述第二颜色光、所述第三颜色光和所述第四颜色光为三基色光。
PCT/CN2020/096609 2019-06-21 2020-06-17 彩膜基板及其制备方法、液晶显示面板及液晶显示装置 WO2020253731A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/264,530 US11320690B2 (en) 2019-06-21 2020-06-17 Color filter substrate and method of manufacturing the same, liquid crystal display panel, and liquid crystal display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910545071.2 2019-06-21
CN201910545071.2A CN110187551A (zh) 2019-06-21 2019-06-21 彩膜基板及其制备方法、液晶显示面板及液晶显示装置

Publications (1)

Publication Number Publication Date
WO2020253731A1 true WO2020253731A1 (zh) 2020-12-24

Family

ID=67722765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096609 WO2020253731A1 (zh) 2019-06-21 2020-06-17 彩膜基板及其制备方法、液晶显示面板及液晶显示装置

Country Status (3)

Country Link
US (1) US11320690B2 (zh)
CN (1) CN110187551A (zh)
WO (1) WO2020253731A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326206A (zh) * 2021-11-15 2022-04-12 友达光电股份有限公司 显示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187551A (zh) * 2019-06-21 2019-08-30 京东方科技集团股份有限公司 彩膜基板及其制备方法、液晶显示面板及液晶显示装置
CN111341939A (zh) 2020-03-16 2020-06-26 京东方科技集团股份有限公司 一种阵列基板、其制作方法、显示面板及显示装置
CN112070066B (zh) * 2020-10-09 2023-09-29 武汉华星光电技术有限公司 一种显示装置及其指纹识别方法
CN112363344B (zh) * 2020-11-06 2022-10-25 京东方科技集团股份有限公司 显示基板及显示面板
CN112631021B (zh) * 2020-12-25 2023-06-30 深圳扑浪创新科技有限公司 一种量子点显示面板及其自组装制备方法
CN112631024A (zh) * 2020-12-25 2021-04-09 舟山扑浪实业有限公司 量子点彩膜基板、量子点液晶显示面板和量子点显示装置
CN112666748A (zh) * 2020-12-25 2021-04-16 舟山扑浪实业有限公司 一种量子点显示面板的制备方法及量子点显示面板
CN113311616A (zh) * 2021-06-30 2021-08-27 上海耕岩智能科技有限公司 液晶显示单元和液晶显示模组
CN113589580B (zh) * 2021-07-29 2023-03-10 惠科股份有限公司 显示面板及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793392A (zh) * 2015-04-24 2015-07-22 武汉华星光电技术有限公司 液晶显示面板和液晶显示器
CN105044974A (zh) * 2015-08-28 2015-11-11 京东方科技集团股份有限公司 彩色滤光层、显示基板及显示装置
CN107065293A (zh) * 2017-06-28 2017-08-18 京东方科技集团股份有限公司 一种分光结构、显示面板及分光结构的制备方法
US20170242292A1 (en) * 2016-02-22 2017-08-24 Samsung Display Co., Ltd. Quantum dot color filter and display device including the same
CN107918223A (zh) * 2016-10-11 2018-04-17 三星显示有限公司 滤色器以及包括该滤色器的显示设备
CN109212813A (zh) * 2017-06-30 2019-01-15 京东方科技集团股份有限公司 彩膜基板、显示装置
CN109283750A (zh) * 2017-07-21 2019-01-29 三星显示有限公司 显示设备及其制造方法
CN110187551A (zh) * 2019-06-21 2019-08-30 京东方科技集团股份有限公司 彩膜基板及其制备方法、液晶显示面板及液晶显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034511A1 (ja) * 2012-08-30 2014-03-06 シャープ株式会社 液晶表示装置
US10545378B2 (en) * 2015-02-04 2020-01-28 Merck Patent Gmbh Electro-optical switching element and display device
CN105093643B (zh) * 2015-08-04 2019-03-12 深圳市华星光电技术有限公司 彩色发光元件及液晶显示装置
KR20180030289A (ko) * 2016-09-12 2018-03-22 삼성디스플레이 주식회사 편광 부재를 갖는 표시장치
KR20180120301A (ko) * 2017-04-26 2018-11-06 삼성디스플레이 주식회사 색변환 표시판 및 이를 포함하는 표시 장치
US11624953B2 (en) * 2017-07-05 2023-04-11 Samsung Display Co., Ltd. Display apparatus comprising a color conversion pattern and a light blocking pattern disposed on a data pattern of a thin film transistor
CN107797333A (zh) 2017-12-04 2018-03-13 福州大学 一种适用于多基色和超高分辨率的量子点彩膜结构
CN110133909A (zh) * 2019-04-23 2019-08-16 华为技术有限公司 3d显示装置和终端设备
CN110187751A (zh) 2019-05-31 2019-08-30 中国联合网络通信集团有限公司 云服务器装置及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793392A (zh) * 2015-04-24 2015-07-22 武汉华星光电技术有限公司 液晶显示面板和液晶显示器
CN105044974A (zh) * 2015-08-28 2015-11-11 京东方科技集团股份有限公司 彩色滤光层、显示基板及显示装置
US20170242292A1 (en) * 2016-02-22 2017-08-24 Samsung Display Co., Ltd. Quantum dot color filter and display device including the same
CN107918223A (zh) * 2016-10-11 2018-04-17 三星显示有限公司 滤色器以及包括该滤色器的显示设备
CN107065293A (zh) * 2017-06-28 2017-08-18 京东方科技集团股份有限公司 一种分光结构、显示面板及分光结构的制备方法
CN109212813A (zh) * 2017-06-30 2019-01-15 京东方科技集团股份有限公司 彩膜基板、显示装置
CN109283750A (zh) * 2017-07-21 2019-01-29 三星显示有限公司 显示设备及其制造方法
CN110187551A (zh) * 2019-06-21 2019-08-30 京东方科技集团股份有限公司 彩膜基板及其制备方法、液晶显示面板及液晶显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326206A (zh) * 2021-11-15 2022-04-12 友达光电股份有限公司 显示装置
CN114326206B (zh) * 2021-11-15 2023-06-27 友达光电股份有限公司 显示装置

Also Published As

Publication number Publication date
US20210294152A1 (en) 2021-09-23
US11320690B2 (en) 2022-05-03
CN110187551A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2020253731A1 (zh) 彩膜基板及其制备方法、液晶显示面板及液晶显示装置
US9170453B2 (en) Liquid crystal display panel including photo conversion layer and liquid crystal display device
WO2014176818A1 (zh) 液晶显示装置
EP2487529B1 (en) Display panel comprising metal grid color selective polarizer
US11520174B2 (en) Photonic crystal, display panel, light conversion device and glasses
JPH08320480A (ja) カラー表示装置
TW201234085A (en) Display panel
JP5692909B2 (ja) 反射型カラーフィルタ及びこれを備えるディスプレイ装置
KR100491257B1 (ko) 반투과형 액정표시장치
US10571735B2 (en) Display device
US10761362B2 (en) Display panel and display device
US20150338675A1 (en) Color filter and preparation method thereof, and display device
CN109445176A (zh) 液晶显示面板及其制备方法、液晶显示装置
JP4844804B2 (ja) 液晶表示装置
KR20120075142A (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
JP2019159098A (ja) 表示装置
CN112748605A (zh) 一种液晶显示组件及液晶显示器
KR100404988B1 (ko) 콜레스테릭 액정 컬러필터 및 그의 제조 방법
TW539894B (en) Planar display device
US20170139111A1 (en) Liquid crystal display device
JP2003149632A (ja) 液晶表示装置、及び、そのカラーフィルタ
CN109597246B (zh) 背光模组及液晶显示装置
KR100357956B1 (ko) 반사형 칼라 액정표시소자의 칼라 필터 및 제조방법
JP2010025968A (ja) 画像表示装置
JP2003140135A (ja) 液晶表示装置用カラーフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827878

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20827878

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20827878

Country of ref document: EP

Kind code of ref document: A1