WO2015037482A1 - 電池用セルスタック、およびレドックスフロー電池 - Google Patents

電池用セルスタック、およびレドックスフロー電池 Download PDF

Info

Publication number
WO2015037482A1
WO2015037482A1 PCT/JP2014/073124 JP2014073124W WO2015037482A1 WO 2015037482 A1 WO2015037482 A1 WO 2015037482A1 JP 2014073124 W JP2014073124 W JP 2014073124W WO 2015037482 A1 WO2015037482 A1 WO 2015037482A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
collector plate
plate
cell stack
battery cell
Prior art date
Application number
PCT/JP2014/073124
Other languages
English (en)
French (fr)
Inventor
博之 中石
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP14844242.9A priority Critical patent/EP3046173B1/en
Priority to CN201480050255.7A priority patent/CN105531862B/zh
Priority to KR1020167002469A priority patent/KR20160055781A/ko
Priority to US14/913,861 priority patent/US9673474B2/en
Priority to AU2014319546A priority patent/AU2014319546B2/en
Publication of WO2015037482A1 publication Critical patent/WO2015037482A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • a redox flow battery is one of large-capacity storage batteries that store new energy such as solar power generation and wind power generation.
  • An RF battery is a battery that charges and discharges using a difference in oxidation-reduction potential between ions contained in a positive electrode electrolyte and ions contained in a negative electrode electrolyte.
  • the RF battery 1 includes a cell 100 separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 that transmits hydrogen ions.
  • a positive electrode 104 is built in the positive electrode cell 102, and a positive electrode electrolyte solution tank 106 for storing a positive electrode electrolyte is connected via conduits 108 and 110.
  • a negative electrode electrode 105 is built in the negative electrode cell 103, and a negative electrode electrolyte solution tank 107 that stores a negative electrode electrolyte is connected via conduits 109 and 111.
  • the electrolyte stored in the tanks 106 and 107 is circulated in the cells 102 and 103 by the pumps 112 and 113 during charging and discharging. When charging / discharging is not performed, the pumps 112 and 113 are stopped and the electrolytic solution is not circulated.
  • the cell 100 is usually formed inside a structure called a battery cell stack 200 as shown in FIG.
  • the battery cell stack 200 is configured such that a laminated structure called a sub stack 200 s is sandwiched between two end plates 210 and 220 from both sides and is tightened by a tightening mechanism 230 (in the illustrated configuration, a plurality of structures are illustrated.
  • Substack 200s is used).
  • the sub-stack 200s includes a cell frame 120 including a bipolar plate 121 integrated with a frame-shaped frame body 122, a positive electrode 104, a diaphragm 101, and a negative electrode 105 in this order.
  • the stacked body is sandwiched between supply / discharge plates 190 and 190 (see the lower diagram of FIG. 7).
  • one battery cell 100 is formed between the bipolar plates 121 of the adjacent cell frames 120.
  • the circulation of the electrolyte solution to the cell 100 via the supply / discharge plates 190, 190 in the sub stack 200s is performed by the supply manifolds 123, 124 formed in the frame body 122 and the discharge manifolds 125, 126.
  • the positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 via a groove formed on one surface side (the front side of the paper surface) of the frame body 122, and via the groove formed on the upper portion of the frame body 122.
  • the liquid is discharged to the drainage manifold 125.
  • the input / output of electric power between the battery cell 100 provided in the sub stack 200s and the external device is performed by a current collecting structure using a current collecting plate made of a conductive material.
  • a pair of current collecting plates is provided for each sub-stack 200s, and each current collecting plate is a bipolar plate (hereinafter, referred to as cell plate 120) of cell frames 120 positioned at both ends in the stacking direction among the plurality of cell frames 120 stacked. End bipolar plate) 121.
  • Patent Document 1 a cushion layer (cushion material) having a deformability in the thickness direction is provided between the current collector plate and the end bipolar plate 121, and the end portion A technique of providing a metal layer on the cushion material side surface of the bipolar plate 121 is disclosed.
  • a tin-plated copper mesh as a cushioning material and form a metal layer by thermal spraying of tin.
  • the resistance between the current collector plate and the end bipolar plate is difficult to increase even when charging and discharging are repeated.
  • FIG. 1 is a schematic configuration diagram of a battery cell stack according to Embodiment 1-1.
  • FIG. FIG. 3 is a schematic configuration diagram of a battery cell stack according to Embodiment 1-2.
  • FIG. 3 is a schematic configuration diagram of a battery cell stack according to Embodiment 2-1.
  • FIG. 3 is a schematic configuration diagram of a battery cell stack according to Embodiment 2-2.
  • 6 is a graph showing test results of an acceleration test shown in Test Example 1. It is an operation
  • the present inventor examined in detail the cause of the increase in resistance between the current collector plate and the end bipolar plate in the conventional battery cell stack. As a result, it was found that moisture was introduced from the external environment into the battery cell stack with repeated charging and discharging. Particularly in the case of RF batteries, when the circulation of the electrolyte is stopped and the pressure in the conventional battery cell stack decreases, moisture can easily enter the inside of the conventional battery cell stack from the external environment. all right.
  • a copper plate is used as a current collector plate, and a copper foil or a tin-plated copper mesh is used as a cushion material. The contact between the current collector plate and the cushion material is a contact of a different metal. . For this reason, if moisture enters the contact portion of this dissimilar metal, electrolytic corrosion (galvanic corrosion) occurs, which is one of the factors that increase the electrical resistance between the current collector plate and the end bipolar plate. It is thought that.
  • a cell stack for a battery that has been confirmed to be difficult to increase in electrical resistance between the current collector plate and the end bipolar plate by an accelerated test simulating repeated charge and discharge is a fluid flow type battery (typically a redox flow). When applied to a battery), it is possible to suppress a decrease in the performance of the fluid circulation type battery due to repeated charge and discharge.
  • a fluid flow type battery typically a redox flow
  • all of the corrosion potential differences between the two members in contact between the current collector plate and the end bipolar plate may be 0.35 V or less. it can.
  • the “corrosion potential difference between two members in contact between the current collector plate and the end bipolar plate” means that when the current collector plate and the end bipolar plate are in direct contact, the current collector plate and the end plate This is the difference in corrosion potential from the partial bipolar plate.
  • the above “corrosion potential difference” means the corrosion potential difference between the current collector plate and the cushion material, and the cushion material and the end bipolar plate. Corrosion potential difference between. That is, in the battery cell stack including the cushion material, both the corrosion potential difference between the current collector plate and the cushion material and the corrosion potential difference between the cushion material and the end bipolar plate are 0.35 V or less. Furthermore, when there are a plurality of cushion materials, the corrosion potential difference between the cushion materials is also 0.35 V or less.
  • the “corrosion potential difference between two members in contact” is a potential difference between the potential of one material and the potential of the other material in artificial seawater (JIS Z 0103 1057).
  • the potential of each material is a potential with respect to a standard hydrogen electrode. Examples of galvanic series in artificial seawater, which are representative materials that can be used for battery cell stacks, are given below. Among the materials exemplified below, the characteristics required for each member of the battery cell stack (mechanical strength, presence / absence of conductivity, size, etc.) are satisfied, and the corrosion potential difference between the members is all 0.35V. It is good to select the material which comprises each member so that it may become the following. Of course, the material to be used is not limited to the following examples. ⁇ Chrome ...
  • the corrosion potential difference between the two members in contact between the current collector plate and the end bipolar plate is suppressed to 0.35 V or less, so that the current between the current collector plate and the end bipolar plate is reduced. Eating can be made difficult.
  • the electric resistance between the current collector plate and the end bipolar plate due to the electrolytic corrosion portion is reduced by making it difficult for the current corrosion to occur between the current collector plate and the end bipolar plate. Can be suppressed.
  • the current collector plate includes a current collector plate coating layer formed on a portion thereof facing the end bipolar plate
  • the end bipolar plate includes: The form provided with the bipolar plate coating layer formed in the part which opposes the said current collecting plate in the surface can be mentioned.
  • the current collector plate coating layer and the bipolar plate coating layer are made of a material having a corrosion potential difference between both coating layers of 0.35 V or less, and the current collector plate and the end bipolar plate are respectively It is set as the form which is contacting through the coating layer.
  • the current collector plate and the end bipolar plate are each provided with a coating layer, and the current collector plate connected to the end bipolar plate is brought into contact with the bipolar plate through the both cover layers.
  • the corrosion potential difference between the current collector plate and the end bipolar plate can be 0.35 V or less.
  • each coating layer is in close contact with each plate, there is no gap for moisture to enter between the current collector plate and the current collector plate coating layer and between the end bipolar plate and the bipolar plate coating layer. Electrolytic corrosion does not substantially occur between the plate and the layer.
  • the corrosion potential difference between the current collector plate and the end bipolar plate (that is, the corrosion potential difference between the coating layers formed on each plate) can be kept very low. it can.
  • both coating layers are made of the same material, the corrosion potential difference between the current collector plate and the end bipolar plate can be substantially 0V.
  • tin is suitable for the coating layer of each plate because it has excellent conductivity and a low melting point.
  • the end bipolar plate is generally made of a plastic containing carbon material (the same applies to bipolar plates other than the end bipolar plate), so if the low melting point tin is used, the end bipolar plate is damaged.
  • the bipolar plate coating layer can be formed without this.
  • the battery cell stack according to the embodiment includes a conductive cushion material interposed between the current collector plate and the end bipolar plate and in contact with the current collector plate and the end bipolar plate.
  • the cushion material may be at least one selected from a mesh, foil, or felt made of a material having a corrosion potential difference with the end bipolar plate of 0.35 V or less.
  • the current collector plate includes a current collector plate coating layer formed on a portion of the surface facing the cushion material, and the current collector plate coating layer has a corrosion potential difference of 0 with the cushion material. The current collector plate and the cushion material are in contact with each other through the current collector plate coating layer.
  • the corrosion potential difference between the current collector plate and the end bipolar plate between the current collector plate and the member in contact with the current collector plate is 0.
  • the form which is 45V or more and 0.55V or less can be mentioned.
  • the said current collection board and the said edge part bipolar plate shall be the form comprised with the material from which the corrosion potential difference between these becomes 0.45V or more and 0.55V or less.
  • the above configuration since the cushioning material is not provided between the current collector plate and the end bipolar plate, and no covering layer is formed on the current collector plate and the end bipolar plate, the above configuration is excellent in productivity. .
  • the current collector plate is made of nickel, nickel alloy, copper, copper alloy, silver, silver alloy, The form comprised with titanium, a titanium alloy, or stainless steel can be mentioned.
  • the above element or alloy is preferable as a material for the current collector plate because it has predetermined conductivity.
  • An electrolytic corrosion-acceptable battery cell stack comprising at least one selected from mesh, foil, and felt, interposed between the current collector plate and the end bipolar plate,
  • the form provided with the conductive cushion material which contacts an electric board and the said edge part bipolar plate can be mentioned.
  • the said current collection board and the said cushion material shall be the form comprised with the material from which the corrosion potential difference between these becomes 0.45V or more and 0.55V or less.
  • the current collector plate is made of nickel, nickel alloy, copper, copper alloy, silver, silver alloy, titanium, titanium alloy, or stainless steel. Can be mentioned.
  • the above element or alloy is preferable as a material for the current collector plate because it has predetermined conductivity.
  • the redox flow battery of ⁇ 12> embodiment includes the battery cell stack of the above embodiment, the positive electrode circulation mechanism for circulating the positive electrode electrolyte in the battery cell stack, and the negative electrode electrolyte in the battery cell stack.
  • a negative electrode circulation mechanism for circulating the positive electrode electrolyte in the battery cell stack.
  • a redox flow battery is a battery that is charged and discharged by repeatedly circulating and non-circulating an electrolyte, and the internal pressure of the battery cell stack provided in the redox flow battery changes through the operation of the battery. And with the change of the internal pressure, there is a high possibility that moisture in the atmosphere will enter the inside of the battery cell stack (particularly in the vicinity of the current collector plate).
  • the battery cell stack of the embodiment provided in the redox flow battery of the embodiment is less likely to increase the electrical resistance value between the current collector plate and the end bipolar plate even when charging and discharging are repeated. This is a battery cell stack. Therefore, the redox flow battery using this battery cell stack is a redox flow battery in which the performance is not easily lowered even after repeated charge and discharge.
  • the RF battery according to this embodiment is characterized by a part of the battery cell stack provided in the RF battery.
  • Other configurations are the same as those of the conventional RF battery 1 described with reference to FIG. 6, and include a pump 112 for circulating the positive electrode electrolyte in the battery cell stack, conduits 108 and 110, and a tank 106.
  • a circulation mechanism, and a negative electrode circulation mechanism having a pump 113, conduits 109 and 111, and a tank 107 for circulating the negative electrode electrolyte in the battery cell stack. Therefore, in this embodiment, it demonstrates centering on difference with the conventional battery cell stack, about the structure similar to the past, the same code
  • the battery cell stack 2 shown in FIG. 1 includes cells 100 having positive electrodes 104, diaphragms 101, and negative electrodes 105, and cell frames 120 alternately, as in the conventional battery cell stack 200 with reference to FIG.
  • stacked on is provided. On both sides of the laminate, current collecting plates 10 and 10 for inputting and outputting electricity between the plurality of cells 100 and external devices are arranged, and on the outside thereof, supply / discharge plates 190 and 190 and end plates are arranged. 210 and 220 are provided.
  • the battery cell stack 2 is configured by tightening these laminates, current collector plates 10, 10, supply / discharge plates 190, 190, and end plates 210, 220 by a tightening mechanism 230.
  • the tightening mechanism 230 includes, for example, a tightening shaft 231, nuts 232 and 233 that are screwed to both ends of the tightening shaft 231, and a compression spring 234 that is interposed between the nut 232 and the end plate 210. Has been.
  • This battery cell stack 2 has the following two main differences. 1.
  • a current collector plate 10 s is formed on the current collector plate 10 that inputs and outputs electricity between the battery cell stack 2 and an external device, and is positioned at both ends in the stacking direction among a plurality of stacked bipolar plates 121.
  • a bipolar plate covering layer 11s is formed on the end bipolar plate 11b (see a circle in the figure). 2.
  • the material of both coating layers 10s and 11s is selected so that the corrosion potential difference between the current collector plate coating layer 10s and the bipolar plate coating layer 11s is 0.35 V or less.
  • the configurations of the current collector plate 10 including the current collector plate covering layer 10s and the end bipolar plate 11b including the bipolar plate cover layer 11s will be described in detail, and then the selection of the material of the both cover layers 10s and 11s will be referred to. .
  • the current collector plate 10 is a conductive member that inputs and outputs electricity between the external device and the cell 100 via the end bipolar plate 11b.
  • the current collector plate 10 is provided with a terminal (not shown) for connecting to an external device such as an inverter.
  • the material of the current collector plate 10 is preferably made of a metal material having a high conductivity, and specifically, copper or a copper alloy can be used.
  • the current collector plate 10 can be made of gold, silver, iron, nickel, chromium, tin, aluminum, titanium, or an alloy containing any of these elements as a main component. It is preferable to use copper for the current collector plate 10 that requires high electrical conductivity and high strength.
  • the current collector plate 10 is provided with a current collector plate covering layer 10 s on the surface of the current collector plate 10 facing the end bipolar plate 11 b (see a circle in the figure).
  • the current collector plate covering layer 10s is a conductive layer for reducing the corrosion potential difference between the current collector plate 10 and the end bipolar plate 11b to 0.35 V or less. This point will be described later.
  • the material for the current collector plate covering layer 10s a material having excellent conductivity is used.
  • the material for example, gold, silver, copper, iron, nickel, chromium, tin, aluminum, titanium, or an alloy mainly containing any one of these elements can be selected.
  • the current collector plate covering layer 10s can be formed of a carbon material such as graphite, carbon black, or diamond-like carbon.
  • these materials are enumerated focusing on conductivity, and cannot be selected in the battery cell stack 2 of this embodiment regardless of the material of the bipolar plate covering layer 11s described later. This will be described in detail in the section “Selecting materials for the current collector plate coating layer and bipolar plate coating layer”.
  • the thickness of the current collector plate covering layer 10s is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less, and more preferably 10 ⁇ m or more and 100 ⁇ m or less. If the thickness is 0.1 ⁇ m or more, it is easy to ensure conduction with the current collector plate 10. On the other hand, if the thickness is 1000 ⁇ m or less, the pressure change in the battery cell stack 2 due to repeated charging and discharging of the battery, the inward pressure tightened by the end plates 210 and 220, and the reaction of the inward pressure Peeling and cracking of the current collector plate covering layer 10s are unlikely to occur against the repulsive force generated.
  • the current collector plate covering layer 10s As a means for forming the current collector plate covering layer 10s, a method capable of forming the current collector plate covering layer 10s in close contact with the current collector plate 10 is preferable.
  • the current collector plate covering layer 10s can be formed by electroplating, electroless plating, thermal spraying, sputtering, or vacuum deposition. By using these methods, the conductive material of the current collector plate 10 and the current collector plate covering layer 10s can be firmly adhered to each other, and the current collector plate covering layer 10s is collected against repeated charging and discharging of the battery. Without peeling from the electric plate 10, it is possible to continue to secure the conduction between the two over a long period of time.
  • the end bipolar plate 11b is the bipolar plate 121 positioned at both ends in the stacking direction among the plurality of stacked bipolar plates 121, and is a member that is electrically connected to the current collector plate 10. That is, the end bipolar plate 11b is generally used in the form of an end cell frame 11 mounted inside a plastic frame 11f. The right side surface of the end bipolar plate 11b on the left side of the paper surface is in contact with the positive electrode 104 constituting the cell 100, and the left side surface of the end bipolar plate 11b is on the current collector plate 10 on the left side of the paper surface. Contact / conduction.
  • the left side surface of the end bipolar plate 11b on the right side of the paper surface is in contact with the negative electrode 105 constituting the cell 100, and the right side surface of the end bipolar plate 11b is the current collector plate on the right side of the paper surface. 10 and contact.
  • the material of the end bipolar plate 11b is preferably excellent in conductivity, and more preferably has acid resistance and flexibility.
  • it can be made of a conductive material containing a carbon material, specifically, a conductive plastic made of graphite and a chlorinated organic compound.
  • a conductive plastic in which a part of the graphite is replaced with at least one of carbon black and diamond-like carbon may be used.
  • the chlorinated organic compound include vinyl chloride, chlorinated polyethylene, and chlorinated paraffin.
  • the end bipolar plate 11b includes a bipolar plate covering layer 11s formed on a portion of the end bipolar plate 11b facing the current collector plate 10 (see a circle in the figure).
  • the bipolar plate covering layer 11s is a conductive layer for reducing the corrosion potential difference between the current collector plate 10 and the end bipolar plate 11b to 0.35 V or less. This point will be described later.
  • the bipolar plate covering layer 11s for example, gold, silver, copper, iron, nickel, chromium, tin, aluminum, titanium, or an alloy mainly containing any one of these elements can be selected. . However, in the selection, it is necessary to consider the material of the metal layer covering layer 10s as described later.
  • the thickness of the bipolar plate covering layer 11s is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less, and more preferably 10 ⁇ m or more and 100 ⁇ m or less. If thickness is 0.1 micrometer or more, it will be easy to ensure conduction
  • the bipolar plate covering layer 11s As a means for forming the bipolar plate covering layer 11s, a method capable of forming the bipolar plate covering layer 11s in close contact with the end bipolar plate 11b is preferable.
  • the bipolar plate coating layer 11s can be formed by electroplating, electroless plating, thermal spraying, sputtering, or vacuum deposition. By using these methods, the conductive material of the end bipolar plate 11b and the bipolar plate covering layer 11s can be firmly adhered to each other. Without peeling from the bipolar plate 11b, it is possible to keep the conduction between them for a long period of time.
  • the bipolar plate covering layer 11s is formed by a thermal spraying method, among the constituent materials of the end bipolar plate 11b, a conductive material such as graphite or carbon black contained in the end bipolar plate 11b and the bipolar plate covering layer 11s.
  • a thermal spraying method is suitable for forming a coating on a part of the member, it is suitable for forming the bipolar plate coating layer 11s formed only on one surface side of the end bipolar plate 11b.
  • the material of the current collector plate coating layer 10s and the material of the bipolar plate coating layer 11s have a corrosion potential difference between the coating layers 10s and 11s of 0.35 V or less, preferably 0.3 V or less, more preferably 0.2 V or less, most Preferably, the voltage is selected to be 0V.
  • the corrosion potential difference is a potential difference between the potential of one material and the potential of the other material in artificial seawater. The potential with respect to the standard hydrogen electrode in artificial seawater is illustrated below. ⁇ Chrome ...
  • the current collector plate coating layer 10s is formed by plating and the bipolar plate coating layer 11s is formed by thermal spraying in consideration of ease of formation and high adhesion. Is preferred.
  • the bipolar plate covering layer 11s can be formed without damaging the end bipolar plate 11b containing plastic.
  • the material of the current collector plate covering layer 10s and the material of the bipolar plate covering layer 11s may be different (the corrosion potential difference between the two covering layers 10s and 11s is 0.35 V or less).
  • one and the other of the covering layers 10s and 11s can be gold and silver, nickel and silver, respectively.
  • Condition 1 After pressurizing to a predetermined pressure over 1 minute, holding at the predetermined pressure for 1 minute and returning to atmospheric pressure over 1 minute is one cycle.
  • Condition 2 The predetermined pressure is atmospheric pressure + 0.1 MPa.
  • Condition 3 The number of cycles is 18.
  • the battery cell stack 3 of this embodiment differs from the battery cell stack 2 of Embodiment 1 in the following points.
  • a cushioning material 12 is provided.
  • the bipolar plate covering layer is not formed on the surface of the end bipolar plate 11b (the current collecting plate covering layer 10s is formed on the surface of the current collecting plate 10).
  • the materials of the cushion material 12 and the current collector plate covering layer 10 s are selected so that the corrosion potential difference between the cushion material 12 and the current collector plate covering layer 10 s is 0.35 V or less.
  • the materials of the cushion material 12 and the end bipolar plate 11b are selected so that the corrosion potential difference between the cushion material 12 and the end bipolar plate 11b is 0.35 V or less.
  • the configuration of the cushion material including the material will be described, and then the selection of the material of the cushion material 12 and the end bipolar plate 11b will be referred to.
  • the cushion material 12 is a member for maintaining good conduction between the current collector plate 10 and the end bipolar plate 11b even when the pressure in the battery cell stack 3 changes. And the end bipolar plate 11b.
  • the form of the cushion material 12 is preferably a mesh, foil, or felt, for example. Since the mesh, foil, or felt has elasticity against compression in the thickness direction, it has the above-described deformability. Of the mesh, foil, and felt, two or more may be combined to form the cushion material 12.
  • the thickness of the cushion material 12 is preferably 1 ⁇ m or more and 5000 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the thickness is 1 ⁇ m or more, the conduction area between the end bipolar plate 11b and the current collector plate 10 can be increased even under negative pressure.
  • the thickness is 5000 ⁇ m or less, sufficient conduction between the current collector plate 10 and the end bipolar plate 11b can be ensured.
  • an increase in the electrical resistance value between the current collector plate 10 and the end bipolar plate 11b due to repeated charge / discharge can be suppressed. That is, the corrosion potential difference between the current collector plate 10 and the cushion material 12 and between the cushion material 12 and the end bipolar plate 11b is 0.35 V or less. This is because electric corrosion that causes an increase in electrical resistance is less likely to occur between the plate 11b.
  • the corrosion potential difference between the members 10 and 11b is 0.35 V or less only by selecting materials for the current collector plate 10 and the end bipolar plate 11b without forming the coating layers 10s and 11s.
  • the corrosion potential difference between the members 10 and 12 is set to 0.35 V or less only by selecting the material of the current collector plate 10 and the cushion material 12 without forming the current collector plate covering layer 10s. May be.
  • Embodiment 2-1 a battery cell stack 4 in which the corrosion potential difference between the current collector plate 10 and the end bipolar plate 11b is 0.45 V or more and 0.55 V or less will be described with reference to FIG.
  • the current collector plate 10 provided in the battery cell stack 4 is made of the materials mentioned in the description of the current collector plate 10 of Embodiment 1-1, such as gold, silver, copper, iron, nickel, chromium, tin, aluminum, It can be composed of titanium or an alloy mainly containing any of these elements. However, the material cannot be selected regardless of the material of the end bipolar plate 11b. Details will be described in the section “Selecting materials for current collector and end bipolar plate”.
  • End bipolar plate The end bipolar plate 11b provided in the battery cell stack 4 can also be made of the materials mentioned in the description of the end bipolar plate 11b of Embodiment 1-1, for example, a conductive plastic containing a carbon material. .
  • the end bipolar plate 11b and the current collector plate 10 described above do not have a coating layer as shown in the enlarged circled view at the lower left of FIG.
  • the material of the current collector plate 10 and the material of the end bipolar plate 11b are materials in which the corrosion potential difference between the both plates 10 and 11b is 0.45V or more and 0.55V or less.
  • the end bipolar plate 11b is generally composed of a conductive plastic containing a carbon material, the material of the current collector plate 10 may be selected according to the potential of the carbon material in the artificial seawater. .
  • the potential of the carbon material in the artificial seawater is about 0.26 V ⁇ Since the voltage is about 0.32 V, the current collector plate 10 is preferably made of a material having a potential in the artificial seawater of about ⁇ 0.29 V to ⁇ 0.13 V, such as copper or a copper alloy. In addition, nickel, silver, titanium, alloys containing these, or stainless steel have a potential of about ⁇ 0.2 V in artificial seawater.
  • the cushion material 12 provided in the battery cell stack 5 can be composed of the materials mentioned in the description of the cushion material 12 of the embodiment 1-2, for example, a mesh, foil, or felt containing a carbon material. Since the end bipolar plate 11b is often made of a conductive plastic containing a carbon material, when the cushion material 12 is made of a carbon material, the corrosion potential difference between the cushion material 12 and the end bipolar plate 11b is substantially reduced. Therefore, it can be set to 0V.
  • the current collector plate 10 is made of a material having a corrosion potential difference with respect to the cushion material 12 of 0.45V or more and 0.55V or less.
  • the current collector plate 10 may be made of copper or a copper alloy having a potential of about ⁇ 0.2 V in artificial seawater.
  • nickel, silver, titanium, alloys containing these, and stainless steel have a potential of about ⁇ 0.2 V in artificial seawater.
  • Test Example 1 As Test Example 1, an embodiment type battery cell stack and a conventional type battery cell stack were produced, and an acceleration test simulating the operation state of the RF battery was performed on each battery cell stack.
  • the configuration of each battery cell stack is as follows.
  • the battery stack of the embodiment type I is a test cell stack having a single cell structure in which the current collector plate 10 and the end bipolar plate 11b have the same structure as the battery cell stack 2 shown in FIG. .
  • the positive electrode 104 and the negative electrode 105 are sandwiched one by one between the pair of end cell frames 11, 11 (no diaphragm 101 is provided), and the end cell frames 11, 11 are connected to the end plate 210. , 220.
  • the end frames 11 and 11 are sealed with a seal structure.
  • the current collector plate 10 of this type I battery cell stack is a copper plate
  • the end bipolar plate 11b is a conductive plastic plate containing a carbon material
  • the current collector plate covering layer 10s is a tin-plated layer
  • the bipolar plate covering layer 11s was a tin sprayed layer.
  • Nitrogen gas is fed into the electrolyte solution flow path of the battery cell stack having the above-described configuration, and the inside of the battery cell stack is pressurized with nitrogen gas, and the pressure is reduced from the pressurized state to atmospheric pressure alternately.
  • the circulation of the electrolyte solution to the battery cell stack and the stop of the circulation (that is, the operating state of the RF battery) were simulated. Specifically, pressurization was performed until atmospheric pressure plus 0.1 MPa over 1 minute, and after holding for 1 minute, returning to atmospheric pressure over 1 minute was one cycle, and this cycle was repeated 18 times. .
  • the horizontal axis represents the number of pressurizations and the vertical axis represents end resistance.
  • the “*” mark indicates the end resistance value of the battery cell stack of Embodiment Type I
  • the white triangle mark indicates the end resistance value of the battery cell stack of Embodiment Type II
  • the black circle mark indicates the conventional battery. The value of the end resistance in the cell stack is shown. Note that the end resistance in FIG. 5 indicates the end resistance of the battery cell stack of Embodiment type I before the acceleration test is started as “1”.
  • the end resistance value hardly increased even after repeated pressurization.
  • the rate of increase in the end resistance before and after the acceleration test is 5% or less, particularly in the battery cell stack of Embodiment Type I, the rate of increase in the end resistance is negative (after the pre-acceleration test). (The end resistance value is lower).
  • the end resistance value tends to increase each time the pressure increase / decrease is repeated, and the increase rate of the end resistance value before and after the acceleration test is 20% or more. there were. In response to such a result, each battery cell stack was disassembled.
  • the corrosion potential difference between the current collector plate 10 and the end bipolar plate 11b is 0.35 V or less, the electric corrosion near the current collector plate 10 can be effectively suppressed, As a result, it has been clarified that deterioration of the battery performance of the RF battery due to repeated charging and discharging can be suppressed. Further, from the test result of the embodiment type II, the corrosion potential difference between the current collector plate 10 and the end bipolar plate 11b (more precisely, the corrosion potential difference between the current collector plate 10 and the cushion material 12) is 0. It was found that when the voltage was .45 V or more and 0.55 V or less, the value of the end resistance hardly increased despite the occurrence of electrolytic corrosion in the vicinity of the current collector plate 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

充放電の繰り返しに伴い集電板と端部双極板との間の電気抵抗が上昇し難い電池用セルスタックを提供する。積層方向の両端に位置する一対の端部双極板のそれぞれに導通される集電板を備える電池用セルスタックであって、集電板と端部双極板との間で接触する二つの部材は、下記条件1~3を満たす加速試験を行った後における前記集電板と前記端部双極板との間の電気抵抗値が、前記加速試験を行う前における前記集電板と前記端部双極板との間の電気抵抗値の1.05倍以下となる材料で構成される電池用セルスタックである。条件1…1分かけて所定圧力に加圧した後、その所定圧力で1分保持し、1分かけて大気圧に戻すことを1サイクルとする。条件2…前記所定圧力は、大気圧+0.1MPaとする。条件3…サイクル数は18とする。

Description

電池用セルスタック、およびレドックスフロー電池
 本発明は、双極板とセルとを複数積層することで構成される電池用セルスタック、および、その電池用セルスタックを利用したレドックスフロー電池に関するものである。
 太陽光発電や風力発電といった新エネルギーを蓄電する大容量の蓄電池の一つにレドックスフロー電池(RF電池)がある。RF電池は、正極用電解液に含まれるイオンと負極用電解液に含まれるイオンの酸化還元電位の差を利用して充放電を行う電池である。図6のRF電池1の動作原理図に示すように、RF電池1は、水素イオンを透過させる隔膜101で正極セル102と負極セル103とに分離されたセル100を備える。正極セル102には正極電極104が内蔵され、かつ正極用電解液を貯留する正極電解液用タンク106が導管108,110を介して接続されている。同様に、負極セル103には負極電極105が内蔵され、かつ負極用電解液を貯留する負極電解液用タンク107が導管109,111を介して接続されている。各タンク106,107に貯留される電解液は、充放電の際にポンプ112,113によりセル102,103内に循環される。充放電を行なわない場合、ポンプ112,113は停止され、電解液は循環されない。
 上記セル100は通常、図7に示すような、電池用セルスタック200と呼ばれる構造体の内部に形成される。電池用セルスタック200は、サブスタック200sと呼ばれる積層構造物をその両側から二枚のエンドプレート210,220で挟み込み、締付機構230で締め付けることが構成されている(図示する構成では、複数のサブスタック200sを用いている)。サブスタック200sは、図7の上図に示すように、額縁状の枠体122に一体化された双極板121を備えるセルフレーム120、正極電極104、隔膜101、および負極電極105を、この順番で積層し、その積層体を給排板190,190(図7の下図参照)で挟み込んだ構成を備える。この構成では、隣接する各セルフレーム120の双極板121の間に一つの電池セル100が形成されることになる。
 サブスタック200sにおける給排板190,190を介したセル100への電解液の流通は、枠体122に形成される給液用マニホールド123,124と、排液用マニホールド125,126により行われる。正極用電解液は、給液用マニホールド123から枠体122の一面側(紙面表側)に形成される溝を介して正極電極104に供給され、枠体122の上部に形成される溝を介して排液用マニホールド125に排出される。同様に、負極用電解液は、給液用マニホールド124から枠体122の他面側(紙面裏側)に形成される溝を介して負極電極105に供給され、枠体122の上部に形成される溝を介して排液用マニホールド126に排出される。各セルフレーム120間には、Oリングや平パッキンなどの環状のシール部材127が配置され、サブスタック200sからの電解液の漏れが抑制されている。
 サブスタック200sに備わる電池セル100と外部機器との間の電力の入出力は、導電性材料で構成された集電板を用いた集電構造によって行われる。集電板は、各サブスタック200sにつき一対設けられており、各集電板はそれぞれ、積層される複数のセルフレーム120のうち、積層方向の両端に位置するセルフレーム120の双極板(以下、端部双極板)121に導通されている。
 ここで、RF電池では、充放電の際には電解液を流通させるが、充放電を行わないときには電解液の流通を止める。そのため、電池セル100内の圧力が変化し、その圧力の変化によって集電板と端部双極板121との間の導通が不十分となる場合がある。この問題点を解決する技術として、例えば特許文献1には、集電板と端部双極板121との間に、厚み方向の変形能を持ったクッション層(クッション材)を設けると共に、端部双極板121のクッション材側の面に金属層を設ける技術が開示されている。この特許文献1では、クッション材として錫メッキした銅メッシュを利用し、金属層を錫の溶射によって形成することが好ましいとしている。
特開2012-119288号公報
 しかし、上述したクッション材を備える電池用セルスタックを用いた電池であっても、充放電の繰り返しに伴い集電板と端部双極板との間の電気抵抗が上昇し、電池の性能が低下する場合があった。
 本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、充放電の繰り返しに伴う集電板と端部双極板との間の電気抵抗の上昇を抑制することができる電池用セルスタックを提供することにある。また、本発明の別の目的は、上記電池用セルスタックを用いたレドックスフロー電池を提供することにある。
 本発明の一形態に係る電池用セルスタックは、積層される複数の双極板と、各双極板の間に配置される電池セルと、複数の双極板のうち、積層方向の両端に位置する一対の端部双極板のそれぞれに導通される集電板と、を備える。この電池用セルスタックにおける前記集電板と前記端部双極板との間で接触する二つの部材は、下記条件1~3を満たす加速試験を行った後における前記集電板と前記端部双極板との間の電気抵抗値が、前記加速試験を行う前における前記集電板と前記端部双極板との間の電気抵抗値の1.05倍以下となる材料で構成される。
  条件1…1分かけて所定圧力に加圧した後、その所定圧力で1分保持し、1分かけて大気圧に戻すことを1サイクルとする。
  条件2…前記所定圧力は、大気圧+0.1MPaとする。
  条件3…サイクル数は18とする。
 上記セルスタックによれば、充放電を繰り返しても集電板と端部双極板との間の抵抗が増加し難い。
実施形態1-1に係る電池用セルスタックの概略構成図である。 実施形態1-2に係る電池用セルスタックの概略構成図である。 実施形態2-1に係る電池用セルスタックの概略構成図である。 実施形態2-2に係る電池用セルスタックの概略構成図である。 試験例1に示す加速試験の試験結果を示すグラフである。 レドックスフロー電池の動作原理図である。 従来の電池用セルスタックの概略構成図である。
[本発明の実施形態の説明]
 最初に本発明の実施形態の内容を列記して説明する。
 まず、実施形態に係る電池用セルスタックの開発にあたり、本発明者が従来型の電池用セルスタックにおいて集電板と端部双極板との間の抵抗が増加する原因を詳細に調べた。
その結果、充放電の繰り返しに伴い、電池用セルスタックの内部に外部環境から水分が入り込むことが原因であることがわかった。特にRF電池では、電解液の循環を停止して、従来型の電池用セルスタック内の圧力が減少したときに、従来型の電池用セルスタックの内部に外部環境から水分が侵入し易いこともわかった。従来型の電池用セルスタックでは、集電板として銅板を、クッション材として銅箔もしくは錫メッキ銅メッシュを利用しており、集電板とクッション材との接触が異種金属の接触となっている。そのため、この異種金属の接触部分に水分が侵入すると、電食(ガルバニック腐食)が生じ、この電食部が集電板と端部双極板との間の電気抵抗を増加させている要因の一つと考えられる。
 上記問題点を解決するにあたり、電池用セルスタックにおける積層される部材間の密着性を高める、即ち電池用セルスタックの大気遮断性能を高め、集電板近傍への水分の侵入を抑制することが考えられる。しかし、部材間の密着性を高めることにも限界があるし、充放電の繰り返しによって部材が劣化したり変形したりすることもある。この点を踏まえて、本発明者は実施形態に係る電池用セルスタックを完成させた。
<1>実施形態に係る電池用セルスタックは、積層される複数の双極板と、前記各双極板の間に配置される電池セルと、前記複数の双極板のうち、積層方向の両端に位置する一対の端部双極板のそれぞれに導通される集電板と、を備える電池用セルスタックに係る。この電池用セルスタックにおける前記集電板と前記端部双極板との間で接触する二つの部材は、下記条件1~3を満たす加速試験を行った後における前記集電板と前記端部双極板との間の電気抵抗値が、前記加速試験を行う前における前記集電板と前記端部双極板との間の電気抵抗値の1.05倍以下となる材料で構成される。
  条件1…1分かけて所定圧力に加圧した後、その所定圧力で1分保持し、1分かけて大気圧に戻すことを1サイクルとする。
  条件2…前記所定圧力は、大気圧+0.1MPaとする。
  条件3…サイクル数は18とする。
 充放電の繰り返しを模した加速試験によって集電板と端部双極板との間の電気抵抗値が上昇し難いことを確認した電池用セルスタックは、流体流通型電池(代表的にはレドックスフロー電池)に適用した場合、充放電の繰り返しに伴う流体流通型電池の性能の低下を抑制することができる。
<2>実施形態に係る電池用セルスタックとして、前記集電板と前記端部双極板との間で接触する二つの部材間の腐食電位差が全て、0.35V以下である形態を挙げることができる。
 ここで、上記『集電板と端部双極板との間で接触する二つの部材間の腐食電位差』とは、集電板と端部双極板とが直接接触する場合、集電板と端部双極板との腐食電位差である。また、集電板と端部双極板との間にクッション材を備える場合、上記『腐食電位差』とは、集電板とクッション材との間の腐食電位差、およびクッション材と端部双極板との間の腐食電位差である。つまり、クッション材を備える電池用セルスタックでは、集電板とクッション材との間の腐食電位差、およびクッション材と端部双極板との間の腐食電位差の両方が、0.35V以下である。さらに、クッション材が複数存在する場合、各クッション材間の腐食電位差も0.35V以下である。
 上記『接触する二つの部材間の腐食電位差』は、人工海水中(JIS Z 0103 1057)における一方の材料の電位と他方の材料の電位との電位差である。各材料の電位は、標準水素電極に対する電位である。電池用セルスタックに用いられ得る代表的な材料の人工海水中での電位列(galvanic series)を以下に例示する。以下に例示される材料の中から、電池用セルスタックの各部材に要求される特性(機械的強度や導電性の有無・大小など)を満たし、かつ各部材間の腐食電位差が全て0.35V以下となるように、各部材を構成する材料を選択すると良い。もちろん、使用する材料は下記例示に限定されるわけではない。
・クロム…         約-0.91V~約-0.74V
・アルミニウム1100…  約-0.74V~約-0.72V
・錫…           約-0.58V
・ニッケル…        約-0.22V~約-0.17V
・銅110…        約-0.22V
・銀…           約-0.18V~約-0.14V
・チタン2…        約-0.18V~約-0.16V
・ステンレス304     約-0.17V~約-0.12V
・金…           約0.08V~約0.12V
・白金…          約0.18V~約0.24V
・黒鉛(炭素材)…     約0.26V~約0.32V
 上記構成のように集電板と端部双極板との間で接触する二つの部材間の腐食電位差を全て0.35V以下に抑えることで、集電板と端部双極板との間で電食が生じ難くすることができる。つまり、上記構成によれば、集電板と端部双極板との間で電食を生じ難くすることで、電食部に起因する集電板と端部双極板との間の電気抵抗値の上昇を抑制することができる。
<3>実施形態に係る電池用セルスタックとして、前記集電板は、その表面における前記端部双極板に対向する部分に形成される集電板被覆層を備え、前記端部双極板は、その表面における前記集電板に対向する部分に形成される双極板被覆層を備える形態を挙げることができる。その場合、前記集電板被覆層と前記双極板被覆層は、両被覆層間の腐食電位差が0.35V以下となる材料で構成されており、前記集電板と前記端部双極板とがそれぞれの被覆層を介して接触している形態とする。
 集電板と端部双極板のそれぞれに被覆層を設け、端部双極板に導通される集電板を、両被覆層を介して双極板に接触させる上記構成であれば、集電板と端部双極板の材料によらず、集電板と端部双極板との間の腐食電位差(即ち、各板に形成される被覆層間の腐食電位差)を0.35V以下とすることができる。
 なお、各被覆層は各板に密着しているため、集電板と集電板被覆層との間、および端部双極板と双極板被覆層との間には水分の入り込む隙間がないので、当該板と層との間に実質的に電食は生じない。
<4>前記集電板と前記端部双極板とが接触する電池用セルスタックとして、前記集電板被覆層は、錫または錫合金の層であり、前記双極板被覆層は、錫または錫合金の層である形態を挙げることができる。
 両被覆層を錫または錫合金で構成することで、集電板と端部双極板との間の腐食電位差(即ち、各板に形成される被覆層間の腐食電位差)を非常に低く抑えることができる。特に、両被覆層が同じ材料で構成されていれば、集電板と端部双極板との間の腐食電位差を実質的に0Vとすることができる。また、錫は、導電性に優れかつ低融点である点で、各板の被覆層に好適である。特に、端部双極板は炭素材を含むプラスチックで形成されることが一般的であるため(端部双極板以外の双極板も同様)、低融点の錫であれば、端部双極板を損傷することなく双極板被覆層を形成することができる。
<5>実施形態に係る電池用セルスタックとして、前記集電板と前記端部双極板との間に介在され、前記集電板と前記端部双極板に接触する導電性のクッション材を備え、前記クッション材は、前記端部双極板との間の腐食電位差が0.35V以下となる材料で構成されたメッシュ、箔、またはフェルトから選択される少なくとも一つである形態を挙げることができる。その場合、前記集電板は、その表面における前記クッション材に対向する部分に形成される集電板被覆層を備え、前記集電板被覆層は、前記クッション材との間の腐食電位差が0.35V以下となる材料で構成されており、前記集電板と前記クッション材とが前記集電板被覆層を介して接触している形態とする。
 メッシュ、箔、またはフェルトであるクッション材は、変形能を備える。そのため、電池用セルスタックの内部の圧力が変化しても、端部双極板に対する集電板の導通を確保し易い。それは、内部圧力の変化によって集電板と端部双極板との間の距離が開いても、変形能を有する導電性のクッション材が端部双極板と集電板との間の導通を確保するからである。
 また、上記構成では、クッション材と端部双極板との間の腐食電位差が0.35V以下となるようにクッション材の材料を端部双極板の材料に応じて選択し、クッション材と集電板被覆層との間の腐食電位差が0.35V以下となるように集電板被覆層の材料をクッション材の材料に応じて選択している。その結果、集電板と端部双極板との間における二つの部材間の腐食電位差を全て0.35V以下とすることができる。
<6>前記クッション材を備える電池用セルスタックとして、前記クッション材は、導電材として炭素材を含み、前記集電板被覆層は、炭素材の層である形態を挙げることができる。
 炭素材としては、黒鉛、カーボンブラック、導電性のダイヤモンドライクカーボンなどを挙げることができる。上記構成とすることで、集電板とクッション材との間の腐食電位差(即ち、集電板被覆層とクッション材との間の腐食電位差)を実質的に0Vとすることができる。また、クッション材が炭素材を主成分とすることで、同じく炭素材を導電材として含むことが多い端部双極板と、クッション材と、の間の腐食電位差を0Vに近づけることができる。
<7>実施形態に係る電池用セルスタックとして、前記集電板と前記端部双極板との間で、前記集電板と前記集電板に接触する部材との間の腐食電位差が0.45V以上0.55V以下である形態を挙げることができる。
 接触する二つの部材間の腐食電位差が大きい場合、両部材間に電食が生じ易いため、常識的には集電板と端部双極板との間の電気抵抗値が上昇し易いと考えられる。しかし、本発明者の検討によれば、集電板と集電板に接触する部材との間の腐食電位差が0.45V以上0.55V以下である場合、接触する二つの部材間に電食が生じるものの、集電板と端部双極板との間の電気抵抗値が上昇し難いことが分かった。以降、このような電池用セルスタックを、電食許容型の電池用セルスタックと呼ぶ場合がある。
<8>電食許容型の電池用セルスタックとして、前記集電板と前記端部双極板とが直接接触している形態を挙げることができる。その場合、前記集電板と前記端部双極板は、これらの間の腐食電位差が0.45V以上0.55V以下となる材料で構成される形態とする。
 上記構成では、集電板と端部双極板との間にクッション材を設けることなく、また集電板と端部双極板に被覆層を形成することもないため、上記構成は生産性に優れる。
<9>前記集電板と前記端部双極板とが直接接触する電食許容型の電池用セルスタックとして、前記集電板は、ニッケル、ニッケル合金、銅、銅合金、銀、銀合金、チタン、チタン合金、またはステンレスで構成される形態を挙げることができる。
 上記元素または合金は、所定の導電性を有するため、集電板の材料として好ましい。
<10>電食許容型の電池用セルスタックとして、メッシュ、箔、およびフェルトから選択される少なくとも一つで構成され、前記集電板と前記端部双極板との間に介在され、前記集電板と前記端部双極板に接触する導電性のクッション材を備える形態を挙げることができる。その場合、前記集電板と前記クッション材は、これらの間の腐食電位差が0.45V以上0.55V以下となる材料で構成される形態とする。
 メッシュ、箔、またはフェルトで構成され、変形能を備えるクッション材を用いることで、端部双極板に対する集電板の導通を確保し易い。それは、内部圧力の変化によって集電板と端部双極板との間の距離が開いても、変形能を有する導電性のクッション材が端部双極板と集電板との間の導通を確保するからである。
<11>前記クッション材を備える電食許容型の電池用セルスタックとして、前記集電板は、ニッケル、ニッケル合金、銅、銅合金、銀、銀合金、チタン、チタン合金、またはステンレスで構成される形態を挙げることができる。
 上記元素または合金は、所定の導電性を有するため、集電板の材料として好ましい。
<12>実施形態のレドックスフロー電池は、上記実施形態の電池用セルスタックと、電池用セルスタックに正極用電解液を循環させる正極用循環機構と、電池用セルスタックに負極用電解液を循環させる負極用循環機構と、を備える。
 レドックスフロー電池は、電解液の循環・非循環を繰り返して充放電を行う電池であり、レドックスフロー電池に備わる電池用セルスタックの内部の圧力が、電池の運転を通じて変化する。そして、その内部圧力の変化に伴い、電池用セルスタックの内部(特に、集電板近傍)に、大気中の水分が侵入する可能性が高い。ここで、実施形態のレドックスフロー電池に備わる実施形態の電池用セルスタックは、上述したように、充放電を繰り返しても集電板と端部双極板との間の電気抵抗値が上昇し難い電池用セルスタックである。そのため、この電池用セルスタックを用いたレドックスフロー電池は、充放電を繰り返しても性能の低下が生じ難いレドックスフロー電池となる。
[本発明の実施形態の詳細]
 以下、実施形態に係るレドックスフロー電池(RF電池)の実施形態を説明する。なお、本発明は実施形態に示される構成に限定されるわけではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
<実施形態1-1>
 本実施形態に係るRF電池は、RF電池に備わる電池用セルスタックの一部に特徴がある。それ以外の構成は、図6を用いて説明した従来型のRF電池1と同様、電池用セルスタックに正極用電解液を循環させるためのポンプ112、導管108、110、タンク106を有する正極用循環機構と、電池用セルスタックに負極用電解液を循環させるためのポンプ113、導管109、111、タンク107を有する負極用循環機構とを備える。
従って、本実施形態では、従来型の電池用セルスタックとの相違点を中心に説明し、従来と同様の構成については、図6,7と同一符号を付してその説明を省略する。
 ≪セルスタック≫
 図1に示す電池用セルスタック2は、図7を参照した従来の電池用セルスタック200と同様に、正極電極104と隔膜101と負極電極105を備えるセル100と、セルフレーム120と、を交互に積層した積層体を備える。その積層体の両側には、複数のセル100と外部機器との間で電気を入出力するための集電板10,10が配され、さらにその外側には給排板190,190とエンドプレート210,220が設けられている。これら積層体と、集電板10,10と、給排板190,190と、エンドプレート210,220と、が締付機構230で締め付けられることで、電池用セルスタック2が構成される。締付機構230は、例えば、締付軸231と、締付軸231の両端に螺合されるナット232,233と、ナット232とエンドプレート210の間に介在される圧縮バネ234と、で構成されている。
 この電池用セルスタック2における従来との主な相違点は、次の二つである。
 1.電池用セルスタック2と外部機器との間で電気の入出力を行なう集電板10に集電板被覆層10sが形成され、積層される複数の双極板121のうち、積層方向の両端に位置する端部双極板11bに双極板被覆層11sが形成されている(図中の丸囲みを参照)。
 2.集電板被覆層10sと双極板被覆層11sとの間の腐食電位差が0.35V以下となるように、両被覆層10s,11sの材料が選択されていること。
 以下、集電板被覆層10sを含む集電板10、および双極板被覆層11sを含む端部双極板11bの構成を詳細に説明し、次いで両被覆層10s,11sの材料の選択について言及する。
 [集電板]
 集電板10は、端部双極板11bを介して外部機器とセル100との間の電気の入出力を行う導電部材である。この集電板10には、例えばインバータなどの外部機器に接続するための端子(図示せず)が備えられている。集電板10の材料は、導電率の高い金属材料からなることが好ましく、具体的には、銅あるいは銅合金が挙げられる。その他、集電板10は、金、銀、鉄、ニッケル、クロム、錫、アルミニウム、チタンあるいはこれらのいずれかの元素を主成分とする合金で構成することもできる。高い導電率と高い強度とが求められる集電板10には銅を用いることが好ましい。
  [[集電板被覆層]]
 集電板10は、その表面における端部双極板11bに対向する部分に集電板被覆層10sを備える(図中の丸囲みを参照)。集電板被覆層10sは、集電板10と端部双極板11bとの間の腐食電位差を0.35V以下にするための導電性の層である。この点については後述する。
 集電板被覆層10sの材料には、導電性に優れる材料を用いる。その材料としては、例えば、金、銀、銅、鉄、ニッケル、クロム、錫、アルミニウム、チタン、あるいはこれらのいずれかの元素を主成分とする合金などを選択することができる。あるいは、黒鉛、カーボンブラック、ダイヤモンドライクカーボンなどの炭素材で集電板被覆層10sを形成することもできる。但し、これらの材料は導電性に着目して列挙されたものであり、本実施形態の電池用セルスタック2では、後述する双極板被覆層11sの材料と無関係に選択することはできない。詳しくは、『集電板被覆層と双極板被覆層の材料選択』の項目で説明する。
 集電板被覆層10sの厚さは、0.1μm以上1000μm以下であることが好ましく、10μm以上100μm以下であればより好ましい。厚さが0.1μm以上あれば、集電板10との導通を確保し易い。一方、厚さが1000μm以下であれば、電池の充放電の繰り返しに伴う電池用セルスタック2内の圧力変化や、エンドプレート210,220による締め付ける内向きの圧力、および内向きの圧力の反作用として生じる反発力に対して、集電板被覆層10sの剥離や割れが生じ難い。
 集電板被覆層10sの形成手段として、集電板10に密着した集電板被覆層10sを形成できる方法が好ましい。例えば、電気メッキ法、無電解メッキ法、溶射法、スパッタリング、または真空蒸着法によって集電板被覆層10sを形成することができる。これらの方法を用いることで、集電板10の導電性材料と集電板被覆層10sとを強固に密着させることができ、電池の繰り返し充放電に対して、集電板被覆層10sが集電板10から剥離することなく、両者の導通を長期に亘って確保し続けることができる。特に、集電板被覆層10sをメッキ法で形成すると、集電板10と集電板被覆層10sとの密着性が高く、好ましい。
 [端部双極板]
 端部双極板11bは、既に述べたように、積層される複数の双極板121のうち、積層方向の両端に位置する双極板121であり、上記集電板10に導通される部材である。即ち、端部双極板11bはプラスチック製の枠体11fの内側に装着された端部セルフレーム11の形態で用いられることが一般的である。紙面左側にある端部双極板11bの紙面右側の面は、セル100を構成する正極電極104に接触し、その端部双極板11bの紙面左側の面は、紙面左側にある集電板10に接触・導通されている。また、紙面右側にある端部双極板11bの紙面左側の面は、セル100を構成する負極電極105に接触し、その端部双極板11bの紙面右側の面は、紙面右側にある集電板10に接触・導通されている。
 端部双極板11bの材料は、導電性に優れることが好ましく、加えて耐酸性および可撓性を有することがより好ましい。例えば、炭素材を含有する導電性材料からなることが挙げられ、具体的には、黒鉛と塩素化有機化合物とからなる導電性プラスチックが挙げられる。その黒鉛の一部をカーボンブラックとダイヤモンドライクカーボンの少なくとも一方に置換した導電性プラスチックでもよい。この塩素化有機化合物には、塩化ビニル、塩素化ポリエチレン、塩素化パラフィンなどが挙げられる。このような材料から端部双極板11bを構成することで、電気抵抗を小さく、かつ耐酸性および可撓性に優れる端部双極板11bとすることができる。
  [[双極板被覆層]]
 端部双極板11bは、その表面における集電板10に対向する部分に形成される双極板被覆層11sを備える(図中の丸囲みを参照)。双極板被覆層11sは、集電板10と端部双極板11bとの間の腐食電位差を0.35V以下にするための導電性の層である。この点については後述する。
 双極板被覆層11sの材料としては、例えば、金、銀、銅、鉄、ニッケル、クロム、錫、アルミニウム、チタン、あるいはこれらのいずれかの元素を主成分とする合金などを選択することができる。但し、その選択にあたっては、後述するように、金属層被覆層10sの材料を考慮する必要がある。
 双極板被覆層11sの厚さは、0.1μm以上1000μm以下であることが好ましく、10μm以上100μm以下であればより好ましい。厚さが0.1μm以上あれば、双極板11bとの導通を確保し易い。一方、厚さが1000μm以下であれば、電池の繰り返し充放電や、エンドプレート210、220による締め付ける内向きの圧力、および内向きの圧力の反作用として生じる反発力に対して、双極板被覆層11sの剥離や割れが生じ難い。
 双極板被覆層11sの形成手段として、端部双極板11bに密着した双極板被覆層11sを形成できる方法が好ましい。例えば、電気メッキ法、無電解メッキ法、溶射法、スパッタリング、または真空蒸着法によって双極板被覆層11sを形成することができる。これらの方法を用いることで、端部双極板11bの導電性材料と双極板被覆層11sとを強固に密着させることができ、電池の繰り返し充放電に対して、双極板被覆層11sが端部双極板11bから剥離することなく、両者の導通を長期に亘って確保し続けることができる。特に、双極板被覆層11sを溶射法で形成すると、端部双極板11bの構成材料のうち、端部双極板11bに含まれる黒鉛やカーボンブラックなどの導電性材料と双極板被覆層11sとがより密着し易いという利点がある。また、溶射法は、部材の一部分に被覆を形成することに向いているため、端部双極板11bの一面側にのみ形成される双極板被覆層11sの形成に好適である。
 [集電板被覆層と双極板被覆層の材料選択]
 集電板被覆層10sの材料と双極板被覆層11sの材料は、両被覆層10s,11s間の腐食電位差が0.35V以下、好ましくは0.3V以下、より好ましくは0.2V以下、最も好ましくは0Vとなるように選択する。腐食電位差とは、人工海水中における一方の材料の電位と他方の材料の電位との電位差である。人工海水中における標準水素電極に対する電位を以下に例示する。
・クロム…         約-0.91V~約-0.74V
・アルミニウム1100…  約-0.74V~約-0.72V
・錫…           約-0.58V
・ニッケル…        約-0.22V~約-0.17V
・銅110…        約-0.22V
・銀…           約-0.18V~約-0.14V
・チタン2…        約-0.18V~約-0.16V
・ステンレス304     約-0.17V~約-0.12V
・金…           約0.08V~約0.12V
・白金…          約0.18V~約0.24V
・黒鉛(炭素材)…     約0.26V~約0.32V
 ここで、集電板被覆層10sの材料と双極板被覆層11sの材料とを同じにすれば、両被覆層10s,11s間の腐食電位差を実質的に0Vとすることができる。特に、集電板被覆層10sの材料と双極板被覆層11sの材料を共に錫とすることが好ましい。錫は、導電性に優れ、集電板10と端部双極板11bとの間の導通を良好に維持することができる。
 被覆層10s,11sを錫で構成する場合、形成の容易さ、密着性の高さを考慮して、集電板被覆層10sはメッキによって形成し、双極板被覆層11sは溶射によって形成することが好ましい。ここで、錫は低融点であるため、プラスチックを含む端部双極板11bを損傷することなく、双極板被覆層11sを形成することができる。
 もちろん、集電板被覆層10sの材料と、双極板被覆層11sの材料とは、異なっていても良い(両被覆層10s,11s間の腐食電位差は0.35V以下)。例えば、両被覆層10s,11sの一方と他方をそれぞれ、金と銀、ニッケルと銀等とすることができる。
 [効果]
 以上説明した電池用セルスタック2によれば、集電板10と端部双極板11bとの間に外部環境から水分が侵入しても、集電板10と端部双極板11bに電食が生じ難い。それは、集電板10に形成される集電板被覆層10sと、端部双極板11bに形成される双極板被覆層11sと、の間の腐食電位差が0.35V以下であるからである。特に、両層10s,11sを錫とした場合、実質的に電食が発生することを回避することができる。
 また、電池用セルスタック2によれば、集電板10と端部双極板11bとの間に電食が発生し難くなっているため、電食に起因する集電板10と端部双極板11bとの間の電気抵抗値の上昇が生じ難い。例えば、電池用セルスタック2を用いて下記条件1~3を満たす加速試験を行った場合、加速試験を行った後における集電板10と端部双極板11bとの間の電気抵抗値を、同加速試験を行う前における集電板10と端部双極板11bとの間の電気抵抗値の1.05倍以下に抑えることができる。即ち、加速試験の前後で両板10,11b間の電気抵抗値の上昇率を5%以下とすることができる。このような電池用セルスタック2であれば、充放電の繰り返しに伴うRF電池の性能の低下を抑制できる。
  条件1…1分かけて所定圧力に加圧した後、その所定圧力で1分保持し、1分かけて大気圧に戻すことを1サイクルとする。
  条件2…上記所定圧力は、大気圧+0.1MPaとする。
  条件3…サイクル数は18とする。
<実施形態1-2>
 実施形態1-2では、集電板10と端部双極板11bとの間にさらにクッション材12を備える電池用セルスタック3を図2に基づいて説明する。
 ≪電池用セルスタック≫
 本実施形態の電池用セルスタック3は、実施形態1の電池用セルスタック2とは次の点で異なる。
・クッション材12を備える。
・端部双極板11bの表面には双極板被覆層が形成されていない(なお、集電板10の表面には集電板被覆層10sが形成されている)。
 また、電池用セルスタック3では、クッション材12と集電板被覆層10sとの間の腐食電位差が0.35V以下となるようにクッション材12と集電板被覆層10sの材料が選択されると共に、クッション材12と端部双極板11bとの間の腐食電位差が0.35V以下となるようにクッション材12と端部双極板11bの材料が選択されている。以下、材料を含むクッション材の構成を説明し、次いでクッション材12と端部双極板11bの材料の選択にも言及する。
 [クッション材]
 クッション材12は、電池用セルスタック3内の圧力が変化した場合でも、集電板10と端部双極板11bとの間の導通を良好に維持するための部材であって、集電板10と端部双極板11bとの間に介在されている。
 このクッション材12は、集電板10と端部双極板11bとの間の導通を良好に維持するための変形能を有する。この変形能とは、セル100内が負圧となった場合でも、クッション材12が集電板10と端部双極板11bの両者に接触するように両者の動きに追従する変形が可能な弾性を有することを指す。なお、ここでいう負圧は、大気圧(≒0.1MPa)を基準(0)としたとき、-0.02MPa(≒0.08MPa)程度である。
 このクッション材12の形態としては、例えば、メッシュ、箔、またはフェルトであることが好ましい。メッシュ、箔、またはフェルトは、厚み方向への圧縮に対して弾性を有するため、上述した変形能を備える。メッシュ、箔、およびフェルトのうち、二つ以上を組み合わせてクッション材12とすることもできる。
 クッション材12は、導電材として炭素材を含有することが好ましい。本実施形態ではクッション材12は、端部双極板11bに直接接触する構成であるからである。既に述べたように、端部双極板11bは、炭素材を含む導電性プラスチックで構成されることが多い。そのため、クッション材12の導電材を炭素材とすることが、クッション材12と端部双極板11bとの間の腐食電位差を0.35V以下とすることに有効である。
 クッション材12の厚さは、1μm以上5000μm以下であることが好ましく、5μm以上100μm以下であることが特に好ましい。この厚さが、1μm以上あることで、負圧下においても端部双極板11bと集電板10との導通面積を多くすることができる。
一方、この厚さが、5000μm以下であることで、集電板10と端部双極板11bとの導通を十分確保することができる。
 [集電板被覆層とクッション材の材料選択]
 集電板被覆層10sの材料とクッション材12の材料とは、両者10s,12間の腐食電位差が0.35V以下となるように選択する。例えば、集電板被覆層10sを炭素材で構成することで、集電板被覆層10sとクッション材12との間の腐食電位差を実質的に0Vにすることができる。その場合、炭素材で構成される集電板被覆層10sは、メッキや気相法を利用して形成することが好ましい。
 [効果]
 以上説明した電池用セルスタック3によれば、集電板10とクッション材12との間、クッション材12と端部双極板11bとの間に外部環境から水分が侵入しても、これらの間に電食が生じ難い。特に、集電板被覆層10sとクッション材12を炭素材とした場合、実質的に電食が発生することを回避することができる。
 また、電池用セルスタック3の構成でも、充放電の繰り返しに伴う集電板10と端部双極板11bとの間の電気抵抗値の上昇を抑制することができる。それは、集電板10とクッション材12との間、およびクッション材12と端部双極板11bとの間の腐食電位差がいずれも0.35V以下となっており、集電板10と端部双極板11bとの間で、電気抵抗値の上昇の原因となる電食が発生し難くなっているからである。
<実施形態1-3>
 実施形態1-1において被覆層10s,11sを形成することなく、集電板10と端部双極板11bの材料の選択のみで、部材10,11b間の腐食電位差が0.35V以下となるようにしても良い。また、実施形態2において集電板被覆層10sを形成することなく、集電板10とクッション材12の材料の選択のみで、部材10,12間の腐食電位差が0.35V以下となるようにしても良い。
<実施形態2-1>
 実施形態2-1では、集電板10と端部双極板11bとの腐食電位差が0.45V以上0.55V以下である電池用セルスタック4を、図3に基づいて説明する。
 [集電板]
 電池用セルスタック4に備わる集電板10は、実施形態1-1の集電板10の説明の際に挙げた材料、例えば、金、銀、銅、鉄、ニッケル、クロム、錫、アルミニウム、チタンあるいはこれらのいずれかの元素を主成分とする合金で構成することができる。但し、材料の選択にあたっては、端部双極板11bの材料と無関係に選択することはできない。詳しくは、『集電板と端部双極板の材料選択』の項目で説明する。
 [端部双極板]
 電池用セルスタック4に備わる端部双極板11bも、実施形態1-1の端部双極板11bの説明に際に挙げた材料、例えば、炭素材を含む導電性プラスチックなどで構成することができる。この端部双極板11bと、上述した集電板10は、図3の左下の丸囲み拡大図に示すように、被覆層を有していない。
 [集電板と端部双極板の材料選択]
 集電板10の材料と端部双極板11bの材料は、両者10,11b間の腐食電位差が0.45V以上0.55V以下となる材料とする。ここで、端部双極板11bは、炭素材を含む導電性プラスチックで構成することが一般的なため、炭素材の人工海水中での電位に応じて、集電板10の材料を選択すると良い。実施形態1-1の『集電板被覆層と双極板被覆層の材料選択』に示す人工海水中での電位列を参照すれば、炭素材の人工海水中での電位は約0.26V~約0.32Vであるので、集電板10は、その人工海水中での電位が約-0.29V~-0.13Vの材料、例えば銅または銅合金で構成すると良い。その他、ニッケル、銀、チタンあるいはこれらを含む合金、またはステンレスなども、人工海水中での電位は-0.2V前後である。
 [効果]
 以上説明した電池用セルスタック4では、腐食電位差が大きい集電板10と端部双極板11bとの間に電食が発生する。しかし、理由は定かではないが、その電食部は、集電板10と端部双極板11bとの間の電気抵抗値を殆ど上昇させることがない。実際、電池用セルスタック4を用いて、実施形態1-1の『効果』の欄に示す加速試験を行った場合、集電板10と端部双極板11bとの間の電気抵抗値の上昇率が5%以下になる。このような電池用セルスタック4を適用したRF電池は、充放電の繰り返しによって性能が低下し難いRF電池となる。
<実施形態2-2>
 実施形態2-1の構成に加えてさらに集電板10と端部双極板11bとの間にクッション材12を設けた電池用セルスタック5を、図4に基づいて説明する。
 [クッション材]
 電池用セルスタック5に備わるクッション材12は、実施形態1-2のクッション材12の説明の際に挙げた材料、例えば、炭素材を含有するメッシュ、箔、あるいはフェルトで構成することができる。端部双極板11bは、炭素材を含む導電性プラスチックで構成されることが多いため、クッション材12を炭素材で構成すると、クッション材12と端部双極板11bとの間の腐食電位差を実質的に0Vとすることができる。
 [集電板の材料選択]
 上記クッション材12に対して、集電板10は、クッション材12との間の腐食電位差が0.45V以上0.55V以下となる材料で構成する。例えば、集電板10は、人工海水中での電位が-0.2V前後である銅または銅合金で構成すると良い。その他、ニッケル、銀、チタンあるいはこれらを含む合金、またはステンレスなども人工海水中での電位が-0.2V前後である。
 [効果]
 以上説明した電池用セルスタック5では、腐食電位差は実質的に0Vであるクッション材12と端部双極板11bとの間に電食が発生しないものの、腐食電位差が大きい集電板10とクッション材12との間には電食が発生する。しかし、その電食部は、集電板10と端部双極板11bとの間の電気抵抗値を殆ど上昇させることがない。実際、電池用セルスタック5を用いて、実施形態1-1の『効果』の欄に示す加速試験を行った場合、集電板10と端部双極板11bとの間の電気抵抗値の上昇率が5%以下になる。このような電池用セルスタック5を適用したRF電池は、充放電の繰り返しによって性能が低下し難いRF電池となる。
<試験例1>
 試験例1として、実施形態型の電池用セルスタックと従来型の電池用セルスタックとを作製し、各電池用セルスタックに対してRF電池の運転状態を模した加速試験を行なった。各電池用セルスタックの構成は以下の通りである。
 ≪実施形態型I≫
 実施形態型Iの電池用セルスタックは、集電板10と端部双極板11bの構造が図1に示す電池用セルスタック2と同様の構造を備える単セル構造の試験用のセルスタックである。単セル構造とは、一対の端部セルフレーム11,11の間に正極電極104と負極電極105とを一つずつ挟み込み(隔膜101は設けず)、両端部セルフレーム11,11をエンドプレート210,220で締め付けた構造である。端部フレーム11,11間は、シール構造で封止されている。この実施形態型Iの電池用セルスタックの集電板10は銅板、端部双極板11bは炭素材を含む導電性プラスチック板とし、集電板被覆層10sは錫メッキ層、双極板被覆層11sは錫溶射層とした。
 ≪実施形態型II≫
 実施形態型IIの電池用セルスタックは、図4に示す電池用セルスタック5と同様に、集電板10と端部双極板11bとの間にクッション材12を配置した単セル構造の試験用のセルスタックである。この実施形態型IIの電池用セルスタックの集電板10は銅板、端部双極板11b(および中間双極板121)はカーボンを含む導電性プラスチック板、クッション材12はカーボンフェルトとした。集電板10および端部双極板11bはいずれも被覆層を有していない。
 ≪従来型≫
 従来型の電池用セルスタックは、図2に示す電池用セルスタック3の構成に類似する構成、即ち集電板10と端部双極板11bとの間にクッション材12を設けた単セル構造の試験用のセルスタックである。但し、従来型の電池用セルスタックにおける集電板10は銅板、端部双極板11b(中間双極板121)はカーボンを含む導電性プラスチック板、クッション材12はカーボンフェルト、集電板10の集電板被覆層10sは錫メッキ層であり、端部双極板11bの表面には錫の溶射層を設けた。
 ≪加速試験≫
 上記構成を備える電池用セルスタックの電解液の流路に窒素ガスを送り込み、電池用セルスタックの内部を窒素ガスで加圧することと、加圧状態から大気圧に減圧することと、を交互に繰り返し、電池用セルスタックへの電解液の循環と循環の停止(即ち、RF電池の運転状態)を模した。具体的には、1分かけて大気圧プラス0.1MPaとなるまで加圧を行ない、1分保持した後、1分かけて大気圧に戻すことを一サイクルとし、このサイクルを18回繰り返した。また、各サイクルの終わりに、集電板10と端部双極板11bとの間の単位面積当たりの電気抵抗(以下、端部抵抗)を測定した。端部抵抗は、集電板10と端部双極板11bとに端子を接続し、両端子間の抵抗を測定することで得た。加速試験の結果を、図5のグラフに示す。
 図5のグラフの横軸は加減圧の回数、縦軸は端部抵抗を示す。『*』印は実施形態型Iの電池用セルスタックの端部抵抗の値を、白三角印は実施形態型IIの電池用セルスタックの端部抵抗の値を、黒丸印は従来型の電池用セルスタックにおける端部抵抗の値を示す。なお、図5における端部抵抗は、加速試験を開始する前の実施形態型Iの電池用セルスタックの端部抵抗を『1』として示している。
 ≪結果≫
 以上の加速試験を行った結果、実施形態型I,IIの電池用セルスタックでは、加減圧を繰り返しても端部抵抗の値がほとんど上昇しなかった。具体的には加速試験の前後で端部抵抗の値の上昇率が5%以下、特に実施形態型Iの電池用セルスタックでは端部抵抗の値の上昇率がマイナス(加速試験前よりも後の方が端部抵抗の値が低い)であった。これに対して、従来型の電池用セルスタックでは、加減圧を繰り返すたびに端部抵抗の値が上昇する傾向にあり、加速試験の前後で端部抵抗の値の上昇率は20%以上であった。このような結果を受けて、各電池用セルスタックを分解したところ、実施形態型Iの電池用セルスタックでは、集電板10と端部双極板11bのいずれにも電食が生じていないことが確認された。一方、実施形態型IIの電池用セルスタックと従来型の電池用セルスタックでは、集電板10に電食が生じていることが確認された。
 上記実施形態型Iの試験結果から、集電板10と端部双極板11bとの間の腐食電位差が0.35V以下であれば、集電板10近傍の電食を効果的に抑制でき、その結果として充放電の繰り返しに伴うRF電池の電池性能の低下を抑制できることが明らかになった。
また、上記実施形態型IIの試験結果から、集電板10と端部双極板11bとの間の腐食電位差(正確には、集電板10とクッション材12との間の腐食電位差)が0.45V以上0.55V以下である場合、集電板10の近傍に電食が生じるにも関わらず、端部抵抗の値が殆ど上昇しないことが分かった。
 本発明の電池用セルスタックは、RF電池の構築に好適に利用可能である。その他、本発明の電池用セルスタックは、燃料電池や鉛蓄電池などの他の電池の構築にも利用可能である。また、本発明のRF電池は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした蓄電池として利用できる他、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても利用することができる。
 1 レドックスフロー電池(RF電池)
 2,3,4,5 電池用セルスタック
 10 集電板
  10s 集電板被覆層
 11 端部セルフレーム 11b 端部双極板 11f 枠体
  11s 双極板被覆層
 12 クッション材
 100 セル 101 隔膜 102 正極セル 103 負極セル
 104 正極電極 105 負極電極 106 正極電解液用タンク
 107 負極電解液用タンク 108,109,110,111 導管
 112,113 ポンプ
 120 セルフレーム 121 双極板 122 枠体
 123,124 給液用マニホールド 125,126 排液用マニホールド
 127 シール部材
 190 給排板 210,220 エンドプレート
 200 従来の電池用セルスタック 200s サブスタック
 230 締付機構 231 締付軸 232、233 ナット 234 圧縮バネ

Claims (12)

  1.  積層される複数の双極板と、
     前記各双極板の間に配置される電池セルと、
     前記複数の双極板のうち、積層方向の両端に位置する一対の端部双極板のそれぞれに導通される集電板と、
     を備える電池用セルスタックであって、
     前記集電板と前記端部双極板との間で接触する二つの部材は、下記条件1~3を満たす加速試験を行った後における前記集電板と前記端部双極板との間の電気抵抗値が、前記加速試験を行う前における前記集電板と前記端部双極板との間の電気抵抗値の1.05倍以下となる材料で構成される電池用セルスタック。
      条件1…1分かけて所定圧力に加圧した後、その所定圧力で1分保持し、1分かけて大気圧に戻すことを1サイクルとする。
      条件2…前記所定圧力は、大気圧+0.1MPaとする。
      条件3…サイクル数は18とする。
  2.  前記集電板と前記端部双極板との間で接触する二つの部材間の腐食電位差が全て、0.35V以下である請求項1に記載の電池用セルスタック。
  3.  前記集電板は、その表面における前記端部双極板に対向する部分に形成される集電板被覆層を備え、
     前記端部双極板は、その表面における前記集電板に対向する部分に形成される双極板被覆層を備え、
     前記集電板被覆層と前記双極板被覆層は、両被覆層間の腐食電位差が0.35V以下となる材料で構成されており、
     前記集電板と前記端部双極板とがそれぞれの被覆層を介して接触している請求項2に記載の電池用セルスタック。
  4.  前記集電板被覆層は、錫または錫合金の層であり、
     前記双極板被覆層は、錫または錫合金の層である請求項3に記載の電池用セルスタック。
  5.  前記集電板と前記端部双極板との間に介在され、前記集電板と前記端部双極板に接触する導電性のクッション材を備え、
     前記クッション材は、前記端部双極板との間の腐食電位差が0.35V以下となる材料で構成されたメッシュ、箔、およびフェルトから選択される少なくとも一つであり、
     前記集電板は、その表面における前記クッション材に対向する部分に形成される集電板被覆層を備え、
     前記集電板被覆層は、前記クッション材との間の腐食電位差が0.35V以下となる材料で構成されており、
     前記集電板と前記クッション材とが前記集電板被覆層を介して接触している請求項2に記載の電池用セルスタック。
  6.  前記クッション材は、導電材として炭素材を含み、
     前記集電板被覆層は、炭素材の層である請求項5に記載の電池用セルスタック。
  7.  前記集電板と前記端部双極板との間で、前記集電板と前記集電板に接触する部材との間の腐食電位差が0.45V以上0.55V以下である請求項1に記載の電池用セルスタック。
  8.  前記集電板と前記端部双極板とが直接接触し、
     前記集電板と前記端部双極板は、これらの間の腐食電位差が0.45V以上0.55V以下となる材料で構成される請求項7に記載の電池用セルスタック。
  9.  前記集電板は、ニッケル、ニッケル合金、銅、銅合金、銀、銀合金、チタン、チタン合金、またはステンレスで構成される請求項8に記載の電池用セルスタック。
  10.  メッシュ、箔、およびフェルトから選択される少なくとも一つで構成され、前記集電板と前記端部双極板との間に介在され、前記集電板と前記端部双極板に接触する導電性のクッション材を備え、
     前記集電板と前記クッション材は、これらの間の腐食電位差が0.45V以上0.55V以下となる材料で構成される請求項7に記載の電池用セルスタック。
  11.  前記集電板は、ニッケル、ニッケル合金、銅、銅合金、銀、銀合金、チタン、チタン合金、またはステンレスで構成される請求項10に記載の電池用セルスタック。
  12.  請求項1に記載の電池用セルスタックと、
     前記電池用セルスタックに正極用電解液を循環させる正極用循環機構と、
     前記電池用セルスタックに負極用電解液を循環させる負極用循環機構と、
     を備えるレドックスフロー電池。
PCT/JP2014/073124 2013-09-12 2014-09-03 電池用セルスタック、およびレドックスフロー電池 WO2015037482A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14844242.9A EP3046173B1 (en) 2013-09-12 2014-09-03 Battery cell stack and redox flow battery
CN201480050255.7A CN105531862B (zh) 2013-09-12 2014-09-03 电池单元堆和氧化还原液流电池
KR1020167002469A KR20160055781A (ko) 2013-09-12 2014-09-03 전지용 셀 스택 및 레독스 플로우 전지
US14/913,861 US9673474B2 (en) 2013-09-12 2014-09-03 Battery cell stack and redox flow battery
AU2014319546A AU2014319546B2 (en) 2013-09-12 2014-09-03 Battery cell stack and redox flow battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-189506 2013-09-12
JP2013189506 2013-09-12
JP2014159339A JP6098998B2 (ja) 2013-09-12 2014-08-05 電池用セルスタック、およびレドックスフロー電池
JP2014-159339 2014-08-05

Publications (1)

Publication Number Publication Date
WO2015037482A1 true WO2015037482A1 (ja) 2015-03-19

Family

ID=52665589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073124 WO2015037482A1 (ja) 2013-09-12 2014-09-03 電池用セルスタック、およびレドックスフロー電池

Country Status (8)

Country Link
US (1) US9673474B2 (ja)
EP (1) EP3046173B1 (ja)
JP (1) JP6098998B2 (ja)
KR (1) KR20160055781A (ja)
CN (1) CN105531862B (ja)
AU (1) AU2014319546B2 (ja)
TW (1) TWI611615B (ja)
WO (1) WO2015037482A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192255A (ja) * 2015-03-30 2016-11-10 古河電池株式会社 バナジウムレドックス電池
JP2018170231A (ja) * 2017-03-30 2018-11-01 京セラ株式会社 フロー電池
WO2022249543A1 (ja) * 2021-05-27 2022-12-01 住友電気工業株式会社 レドックスフロー電池用集電構造、レドックスフロー電池セル、及びレドックスフロー電池システム

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
WO2010016881A1 (en) 2008-08-05 2010-02-11 Sion Power Corporation Application of force in electrochemical cells
EP2721665B1 (en) 2011-06-17 2021-10-27 Sion Power Corporation Plating technique for electrode
EP3447835A4 (en) * 2016-04-20 2019-05-08 Sumitomo Electric Industries, Ltd. TRANSPORT STRUCTURE OF A REDOX FLUX BATTERY, METHOD FOR TRANSPORTING A REDOX FLUX BATTERY AND REDOX FLUX BATTERY
KR101877968B1 (ko) * 2016-04-20 2018-07-13 한국에너지기술연구원 레독스 흐름 전지용 가속 수명 테스트 장치
WO2018026005A1 (ja) * 2016-08-04 2018-02-08 昭和電工株式会社 レドックスフロー電池
JP6731167B2 (ja) 2016-10-05 2020-07-29 住友電気工業株式会社 枠体、セルフレーム、セルスタック、およびレドックスフロー電池
AU2016420289B2 (en) 2016-10-05 2022-05-12 Sumitomo Electric Industries, Ltd. Frame body, cell frame, cell stack, and redox flow battery
US10868306B2 (en) 2017-05-19 2020-12-15 Sion Power Corporation Passivating agents for electrochemical cells
JP7210475B2 (ja) 2017-05-19 2023-01-23 シオン・パワー・コーポレーション 電気化学セルの不動態化剤
US20180375128A1 (en) * 2017-06-27 2018-12-27 Primus Power Corporation Flow battery stack compression assembly
US10930949B2 (en) 2018-10-05 2021-02-23 Ess Tech, Inc. Power delivery system and method
JP2023502993A (ja) 2019-11-19 2023-01-26 シオン・パワー・コーポレーション 電池ならびに関連するシステムおよび方法
US11791511B2 (en) 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
US11984575B2 (en) 2019-11-19 2024-05-14 Sion Power Corporation Battery alignment, and associated systems and methods
US11978917B2 (en) 2019-11-19 2024-05-07 Sion Power Corporation Batteries with components including carbon fiber, and associated systems and methods
US11532827B2 (en) * 2019-11-25 2022-12-20 Robert Bosch Gmbh Fuel cell bipolar plate alloys
CN111025152B (zh) * 2019-11-27 2022-02-18 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种锂离子电池的耐压电性能测试方法
US11923495B2 (en) 2020-03-13 2024-03-05 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems
DE102021205458A1 (de) 2021-05-28 2022-12-01 Robert Bosch Gesellschaft mit beschränkter Haftung Elektrolyseur, Bipolarplatte und Verfahren zu ihrer Herstellung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183071A (ja) * 1988-01-11 1989-07-20 Meidensha Corp 電解液循環形積層二次電池
JP2005228617A (ja) * 2004-02-13 2005-08-25 Sumitomo Electric Ind Ltd レドックスフロー電池セルスタック用両面端子板
JP2012119288A (ja) 2010-12-03 2012-06-21 Sumitomo Electric Ind Ltd 電池の集電構造、電池用セルスタック、およびレドックスフロー電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657538B2 (ja) * 2001-06-12 2005-06-08 住友電気工業株式会社 レドックスフロー電池用セルスタック
CN100483812C (zh) * 2006-01-25 2009-04-29 中国科学院大连化学物理研究所 氧化还原液流储能电池用一体化电极双极板及其制备
KR20100033618A (ko) * 2008-09-22 2010-03-31 삼성전기주식회사 전류집전체 및 연료전지용 스택
US8906579B2 (en) * 2009-05-14 2014-12-09 GM Global Technology Operations LLC Low contact resistance coated stainless steel bipolar plates for fuel cells
CN102468490B (zh) * 2010-11-19 2014-04-16 中国科学院金属研究所 全钒液流电池不锈钢双极板表面碳化铬/石墨复合涂层
JP5477672B2 (ja) * 2011-03-31 2014-04-23 住友電気工業株式会社 電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183071A (ja) * 1988-01-11 1989-07-20 Meidensha Corp 電解液循環形積層二次電池
JP2005228617A (ja) * 2004-02-13 2005-08-25 Sumitomo Electric Ind Ltd レドックスフロー電池セルスタック用両面端子板
JP2012119288A (ja) 2010-12-03 2012-06-21 Sumitomo Electric Ind Ltd 電池の集電構造、電池用セルスタック、およびレドックスフロー電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3046173A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192255A (ja) * 2015-03-30 2016-11-10 古河電池株式会社 バナジウムレドックス電池
JP2018170231A (ja) * 2017-03-30 2018-11-01 京セラ株式会社 フロー電池
WO2022249543A1 (ja) * 2021-05-27 2022-12-01 住友電気工業株式会社 レドックスフロー電池用集電構造、レドックスフロー電池セル、及びレドックスフロー電池システム

Also Published As

Publication number Publication date
AU2014319546A1 (en) 2016-02-25
EP3046173A1 (en) 2016-07-20
CN105531862B (zh) 2017-09-12
EP3046173A4 (en) 2016-08-24
TW201511386A (zh) 2015-03-16
AU2014319546B2 (en) 2018-03-29
KR20160055781A (ko) 2016-05-18
US20160359188A1 (en) 2016-12-08
JP2015079738A (ja) 2015-04-23
CN105531862A (zh) 2016-04-27
JP6098998B2 (ja) 2017-03-22
EP3046173B1 (en) 2022-09-21
TWI611615B (zh) 2018-01-11
US9673474B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
JP6098998B2 (ja) 電池用セルスタック、およびレドックスフロー電池
Evanko et al. Stackable bipolar pouch cells with corrosion-resistant current collectors enable high-power aqueous electrochemical energy storage
Uchino et al. Relationship between the redox reactions on a bipolar plate and reverse current after alkaline water electrolysis
FI2823079T3 (fi) Korrosiota kestävä ja sähköä johtava metallin pinta
RU2016139354A (ru) Устройство батареи топливных элементов
US20160036060A1 (en) Composite electrode for flow battery
Urbain et al. Solar vanadium redox-flow battery powered by thin-film silicon photovoltaics for efficient photoelectrochemical energy storage
JP2007087859A5 (ja)
JP2015122229A (ja) 電極、およびレドックスフロー電池
US10622638B2 (en) Electrode for redox flow battery, and redox flow battery
WO2015060099A1 (ja) 電解液循環型電池、及び電解液循環型電池の給排板
KR101163996B1 (ko) 메탈 폼 전극을 가지는 레독스 플로우 이차 전지
JP5488434B2 (ja) 電池の集電構造、電池用セルスタック、およびレドックスフロー電池
US20180175402A1 (en) Bipolar Plate of A Flow Battery or a Fuel Cell
CN105449221A (zh) 集流体的制备方法
JP6091012B2 (ja) 差圧式高圧水電解装置
KR101595225B1 (ko) 금속 분리판과 공기극 집전체 간 접촉 저항이 저감된 고체산화물 연료전지
Dowd et al. A study of alkaline-based H2-Br2 and H2-I2 reversible fuel cells
US20210025062A1 (en) Photoelectrochemical device, monolithic water splitting device and methods of production
JP6710827B2 (ja) レドックスフロー電池の正・負極の過電圧測定方法およびその方法を行うための装置
JP5026137B2 (ja) 電極材料及び該材料を用いた導電性フィルム、及び太陽電池並びに光電極
JP2013004351A (ja) レドックスフロー電池用電極材及びそれを備えたレドックスフロー電池
JP6654321B2 (ja) レドックスフロー電池の電極材料寿命試験装置および電極材料寿命試験方法
US20180102553A1 (en) Portable solar energy storage system using ionic polymer metal composite enhanced water electrolysis
CN106784948A (zh) 一种基于静电吸附的聚合物电解质膜燃料电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050255.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167002469

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014844242

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844242

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14913861

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014319546

Country of ref document: AU

Date of ref document: 20140903

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE