WO2015037114A1 - リチウムイオン二次電池用負極材料 - Google Patents
リチウムイオン二次電池用負極材料 Download PDFInfo
- Publication number
- WO2015037114A1 WO2015037114A1 PCT/JP2013/074790 JP2013074790W WO2015037114A1 WO 2015037114 A1 WO2015037114 A1 WO 2015037114A1 JP 2013074790 W JP2013074790 W JP 2013074790W WO 2015037114 A1 WO2015037114 A1 WO 2015037114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- formula
- ion secondary
- lithium ion
- secondary battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode material for a lithium ion secondary battery.
- Patent Document 1 discloses a technique relating to a slurry composition for a negative electrode of a copolymer containing a fluorine-containing (meth) acrylate monomer unit and a phosphate group-containing monomer unit.
- an object of the present invention is to provide a novel negative electrode active material coating material that achieves both a reduction in irreversible capacity and a reduction in resistance.
- a negative electrode coating material for a lithium ion secondary battery represented by (formula 1).
- Z in (Formula 1) is any of a carboxyl group (—COOX), a sulfo group (—SO 3 X), and a phosphate group (—O—PO (OX) 2 ).
- X is composed of hydrogen, an alkali metal, or an alkaline earth metal.
- R 3 in (Formula 1) is composed of a functional group containing fluorine.
- R 1 and R 2 in (Formula 1) are composed of hydrogen or an alkyl group.
- m 1 is the number of repeating structural units.
- Optimized positions of fluorine and ionic functional groups can provide a novel negative electrode active material coating material with high lithium ion conductivity that achieves both reduced irreversible capacity and reduced resistance.
- a negative electrode having a small irreversible capacity and a low resistance can be provided.
- a lithium ion secondary battery having high capacity and excellent output characteristics can be provided.
- FIG. 1 is a diagram schematically showing the internal structure of a battery according to an embodiment of the present invention.
- a battery 1 according to an embodiment of the present invention shown in FIG. 1 includes a positive electrode 10, a separator 11, a negative electrode 12, a battery container (that is, a battery can) 13, a positive electrode current collecting tab 14, a negative electrode current collecting tab 15, an inner lid 16, It comprises an internal pressure release valve 17, a gasket 18, a positive temperature coefficient (PTC) resistance element 19, a battery lid 20, and an axis 21.
- the battery lid 20 is an integrated part composed of the inner lid 16, the internal pressure release valve 17, the gasket 18, and the PTC resistance element 19.
- a positive electrode 10, a separator 11, and a negative electrode 12 are wound around the shaft center 21.
- the separator 11 is inserted between the positive electrode 10 and the negative electrode 12 to produce an electrode group wound around the axis 21.
- the electrode group has various shapes such as a laminate of strip electrodes, or a positive electrode 10 and a negative electrode 12 wound in an arbitrary shape such as a flat shape. Can do.
- the shape of the battery case 13 may be selected from shapes such as a cylindrical shape, a flat oval shape, a flat oval shape, and a square shape according to the shape of the electrode group.
- the material of the battery container 13 is selected from materials that are corrosion resistant to non-aqueous electrolytes, such as aluminum, stainless steel, and nickel-plated steel. Further, when the battery container 13 is electrically connected to the positive electrode 10 or the negative electrode 12, the material is not deteriorated due to corrosion of the battery container 13 or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. Thus, the material of the battery container 13 is selected.
- the electrode group is housed in the battery container 13, the negative electrode current collecting tab 15 is connected to the inner wall of the battery container 13, and the positive electrode current collecting tab 14 is connected to the bottom surface of the battery lid 20.
- the electrolyte is injected into the battery container interior 13 before the battery is sealed.
- a method for injecting the electrolyte there are a method of adding directly to the electrode group in a state where the battery cover 20 is released, or a method of adding from an injection port installed in the battery cover 20.
- the battery lid 20 is brought into close contact with the battery container 13 to seal the entire battery. If there is an electrolyte inlet, seal it as well.
- a method for sealing the battery there are known techniques such as welding and caulking.
- the lithium ion battery according to an embodiment of the present invention can be manufactured, for example, by disposing a negative electrode and a positive electrode as described below with a separator interposed therebetween and injecting an electrolyte.
- the structure of the lithium ion battery according to an embodiment of the present invention is not particularly limited.
- the positive electrode and the negative electrode and the separator separating them are wound into a wound electrode group, or the positive electrode, the negative electrode, and the separator are combined.
- a stacked electrode group can be formed by stacking.
- the positive electrode 10 includes a positive electrode active material, a conductive agent, a binder, and a current collector.
- the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
- the particle size of the positive electrode active material is usually specified so as to be equal to or less than the thickness of the mixture layer formed of the positive electrode active material, the conductive agent, and the binder.
- the coarse particles can be removed in advance by sieving classification or wind classification to produce particles having a thickness of the mixture layer thickness or less. preferable.
- the positive electrode active material is generally oxide-based and has high electric resistance
- a conductive agent made of carbon powder for supplementing electric conductivity is used. Since both the positive electrode active material and the conductive agent are usually powders, a binder can be mixed with the powders, and the powders can be bonded together and simultaneously bonded to the current collector.
- an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used.
- materials such as stainless steel and titanium are also applicable.
- any current collector can be used without being limited by the material, shape, manufacturing method and the like.
- a positive electrode slurry in which a positive electrode active material, a conductive agent, a binder, and an organic solvent are mixed is attached to a current collector by a doctor blade method, a dipping method, or a spray method, and then the organic solvent is dried and applied by a roll press.
- the positive electrode 10 can be produced by pressure forming.
- a plurality of mixture layers can be laminated on the current collector by performing a plurality of times from application to drying.
- the negative electrode in the present invention comprises a negative electrode active material, a binder, and a current collector.
- the negative electrode active material an easily graphitized material obtained from natural graphite, petroleum coke, coal pitch coke, etc.
- mesophase carbon or amorphous carbon, carbon fiber, and lithium are alloyed.
- a metal or a material having a metal supported on the surface of carbon particles is used.
- the metal or an oxide of the metal can be used as a negative electrode active material.
- lithium titanate can also be used.
- the negative electrode active material is coated with the negative electrode coating material of the present invention.
- the coating amount is an important value for obtaining the effect of the present application.
- the coating amount is 0.01 wt% or more and 10 wt% or less with respect to the negative electrode active material, preferably 0.1 wt% or more and 5 wt% or less, particularly preferably 0.3 wt% or more and 3 wt% or less.
- the negative electrode active material can be coated with a coating material. By providing the covering material, contact between the negative electrode active material and the electrolyte can be prevented, so that an increase in resistance due to precipitation of the electrolyte component can be suppressed.
- the coating material preferably has ionicity to the extent that lithium ions are captured and dissociated.
- the lithium ion capturing power of the covering material is too strong, the lithium ion conductivity is increased and the output as a battery is inferior. Therefore, it is preferable that the bonding force between the coating material and the lithium ions be adjusted strictly.
- Z in (Formula 1) and (Formula 2) is composed of ionic functional groups such as carboxyl group (—COOX), sulfo group (—SO 3 X), and phosphate group (—O—PO (OX) 2 ).
- X is composed of hydrogen, an alkali metal, or an alkaline earth metal. From the viewpoint of battery performance, alkali metals are preferable, and sodium and lithium are particularly preferable.
- As the ionic functional group a carboxyl group or a sulfo group is preferably used.
- the ionic functional group in the polymer coating material captures and dissociates lithium ions and carries lithium ions.
- R 3 in (Equation 1) and (Equation 2) is important for expressing the effect of reducing the direct current resistance, which is the effect of the present invention.
- R 3 is composed of a functional group containing fluorine.
- the functional group containing fluorine fluorine, trifluoromethyl group, pentafluoroethyl group and the like are preferably used.
- a functional group containing fluorine adjacent to the ionic functional group By substituting a functional group containing fluorine adjacent to the ionic functional group, the electron withdrawing property is increased. As a result, the degree of dissociation of the ionic functional group is increased, and thus the effect of the present invention is considered to be enhanced.
- a trifluoromethyl group although the distance between fluorine and the ionic functional group is increased, three fluorine atoms can be provided, so that the lithium ion conductivity of the ionic functional group can be increased.
- R 1 and R 2 in (Formula 1) are composed of hydrogen or an alkyl group.
- M 1 (Equation 1) is the number of repetitions of the structural unit.
- the lithium ion capturing power of the ionic functional group varies depending on the position and number of fluorine, the distance from the ionic functional group, and the like. Lithium ions move between the electrolyte and the active material via the ionic functional group of the negative electrode active material coating material. Therefore, the coating material needs an ionic functional group that dissociates and captures / dissociates lithium ions. Moreover, in order to improve lithium ion conductivity, it is necessary to reduce the lithium ion capturing power of the ionic functional group, and fluorine needs to be present in the vicinity of the ionic functional group.
- the conductivity of lithium ions can be improved by disposing a functional group containing fluorine and an ionic functional group across a polymer main chain.
- a functional material containing fluorine and an ionic functional group are arranged across the polymer main chain, so that the ionic functional group can have sufficient dissociation properties and can be easily made from the viewpoint of synthesis. it can.
- m 1 is the number of repeating structural units.
- Equation 4 captures and dissociates lithium ions by OLi (O ⁇ when Li dissociates). Since the trifluoromethyl group separating the polymer main chain attracts electrons from the ionic functional group, the lithium capturing force is suppressed and smooth conduction of lithium ions is realized.
- the distance between the functional group containing fluorine and the ionic functional group is preferably close, but from the viewpoint of synthesis, a structure such as (Formula 1) and (Formula 4) in which the polymer main chain is separated is preferable.
- the coating material for a negative electrode active material according to the present invention is a copolymer such as (Formula 2) obtained by copolymerizing the first monomer (main monomer) represented by (Formula 1) and the other second monomer. It may be composed of a combination.
- As the second monomer ones represented by (Formula 5) to (Formula 9) can be used.
- Y represents an alkali metal or hydrogen.
- As the alkali metal for example, Na, Li or the like can be used.
- R 1 , R 2 , R 5, R 6 and R 7 in (Formula 2) are composed of hydrogen or an alkyl group.
- B in (Formula 2) is composed of one containing an ionic functional group.
- An improvement in irreversible capacity can be expected by using (Formula 5) to (Formula 9) as the second monomer. Possible reasons for this are as follows.
- the coating material with the polymer shown in Chemical Formula 1 may not necessarily have sufficient wettability with respect to the negative electrode active material (affinity between the negative electrode active material and the coating material). In such a case, the surface of the negative electrode active material It is considered that there is a part that cannot be covered with the coating material.
- the negative electrode active material and the electrolytic solution are in direct contact with each other and the electrolytic solution is decomposed.
- the wettability to the negative electrode active material is improved, and more part of the surface of the negative electrode active material is coated with the coating material Can be considered.
- the effect of reducing the irreversible capacity by suppressing the decomposition of the electrolytic solution can be expected.
- R 5 , R 6 , R 7 and B in (Formula 15) are the same as in (Formula 2).
- m 2 is the number of repeating structural units.
- the coating materials of (Formula 1) (Formula 2) and (Formula 8) can be produced by polymerizing monomers.
- the polymerization may be any of conventionally known bulk polymerization, solution polymerization, and emulsion polymerization.
- the polymerization method is not particularly limited, but radical polymerization is preferably used.
- a polymerization initiator may or may not be used, and a radical polymerization initiator is preferably used from the viewpoint of easy handling.
- the polymerization method using a radical polymerization initiator can be carried out in a temperature range and a polymerization time which are usually performed.
- the initiator content in the present invention is 0.1 wt% to 20 wt%, preferably 0.3 wt% or more and 5 wt% with respect to the polymerizable compound.
- the ratio x / (x + y) of x and y of the polymer of (Formula 2) is 0 ⁇ x / (x + y) ⁇ 1, preferably 0.01 ⁇ x / (x + y) ⁇ 1, particularly preferably 0.1 ⁇ x / (x + y) ⁇ 1.
- the number average molecular weight of the polymer used as the negative electrode coating material of the present invention is 1,000 or more and 5,000,000 or less. Preferably it is 1000 or more and 1,000,000 or less. By adjusting the number average molecular weight, aggregation of the negative electrode active material, which tends to occur when coating, can be suppressed.
- the method of coating the negative electrode active material with the coating material is not particularly limited as long as the negative electrode active material is coated with a polymer, but the polymer is dissolved in a solvent and the negative electrode active material is added to the solution. After stirring, it is preferable from the viewpoint of cost to dry and coat the solvent.
- the solvent is not particularly limited as long as the polymer dissolves, but a protic solvent such as water and ethanol, an aprotic solvent such as N-methylpyrrolidone, and a nonpolar solvent such as toluene and hexane are preferably used.
- the separator 11 is inserted between the positive electrode 10 and the negative electrode 12 produced by the above method to prevent a short circuit between the positive electrode 10 and the negative electrode 12.
- the separator 11 can be a polyolefin polymer sheet made of polyethylene, polypropylene, or the like, or a two-layer structure in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded. It is.
- a mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator 11 so that the separator 11 does not shrink when the battery temperature increases.
- these separators 11 need to allow lithium ions to pass through when charging and discharging the battery, they can be used for lithium ion batteries as long as the pore diameter is generally 0.01 to 10 ⁇ m and the porosity is 20 to 90%. .
- a solvent obtained by mixing ethylene carbonate with dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate, lithium hexafluorophosphate (LiPF 6 ) as an electrolyte Alternatively, there is a solution in which lithium borofluoride (LiBF 4 ) is dissolved.
- the present invention is not limited to the type of solvent and electrolyte, and the mixing ratio of solvents, and other electrolytes can be used.
- non-aqueous solvents examples include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, -Methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-
- non-aqueous solvents such as oxazolidinone, tetrahydrofuran, 1,2-diethoxyethane, chloroethylene carbonate, or chloropropylene carbonate.
- Other solvents may be used as long as they do not decompose on the positive electrode 10 or the negative electrode
- examples of the electrolyte LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, or imide salts such as lithium represented by lithium trifluoromethane sulfonimide, multi
- lithium salts A nonaqueous electrolytic solution obtained by dissolving these salts in the above-mentioned solvent can be used as a battery electrolytic solution.
- An electrolyte other than this may be used as long as it does not decompose on the positive electrode 10 and the negative electrode 12 included in the battery according to the present embodiment.
- ion conductive polymers such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, and polyethylene oxide can be used for the electrolyte.
- polyethylene oxide polyacrylonitrile
- polyvinylidene fluoride polymethyl methacrylate
- polyhexafluoropropylene polyethylene oxide
- an ionic liquid can be used.
- EMI-BF4 1-ethyl-3-methylimidazole tetrafluoroborate
- LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
- triglyme and tetraglyme a mixed salt of lithium salt LiN (SO 2 CF 3 ) 2
- LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
- triglyme and tetraglyme LiN (SO 2 CF 3 ) 2
- triglyme and tetraglyme LiN-methyl) -N-propylpyrrolidinium is exemplified
- imide anion exemplified by bis (fluorosulfonyl) imide
- a positive electrode active material LiCoO 2
- a conductive agent SP270: graphite manufactured by Nippon Graphite Co., Ltd.
- a polyvinylidene fluoride binder were mixed at a ratio of 85: 7.5: 7.5 wt%, and N-methyl-2-pyrrolidone was mixed.
- the mixture was charged and mixed to prepare a slurry solution.
- the slurry was applied to a 20 ⁇ m thick aluminum foil by a doctor blade method and dried.
- the mixture application amount was 200 g / m 2 . Then, it pressed and produced the positive electrode.
- ⁇ Method for producing negative electrode> Polyvinylidene fluoride was mixed with graphite at a weight ratio of 95: 5, and charged into N-methyl-2-pyrrolidone to prepare a slurry solution. The slurry was applied to a copper foil having a thickness of 10 ⁇ m by a doctor blade method and dried. The mixture was pressed so that the bulk density was 1.5 g / cm 3 to prepare a negative electrode.
- the evaluation cell was charged at a current density of 0.72 mA / cm 2 up to a preset lower limit voltage.
- the discharge was performed at a current density of 0.72 mA / cm 2 up to a preset upper limit voltage.
- the lower limit voltage was 0.01 V and the upper limit voltage was 1.5 V.
- the irreversible capacity was obtained from the difference between the charge capacity and the discharge capacity.
- ⁇ Evaluation method of DC resistance> The positive electrode and the negative electrode were punched into a circle having a diameter of 15 mm to prepare an electrode.
- the small battery was configured by inserting a separator between the positive electrode and the negative electrode, and adding an electrolytic solution thereto.
- the small battery was charged at a current density of 0.72 mA / cm 2 up to a preset upper limit voltage.
- the discharge was performed at a current density of 0.72 mA / cm 2 up to a preset lower limit voltage.
- the upper limit voltage was 4.2 V and the lower limit voltage was 3.0 V.
- the discharge capacity obtained in the first cycle was defined as the initial capacity of the battery. Thereafter, the battery was charged to 50% of the initial capacity, and the direct current resistance was measured.
- a polymer was synthesized using the monomer of (Formula 3) as the monomer A.
- the negative electrode active material was coat
- the synthesized polymer was polymer A, and the coating amount was 0.5 wt%.
- a negative electrode single electrode was prepared and the irreversible capacity was measured.
- the irreversible capacity was 24.5 mAhg- 1 .
- a small battery was produced, and DC resistance was measured.
- the DC resistance was 12.0 ⁇ .
- a polymer was synthesized using the monomer of (Formula 4) as the monomer A and the monomer of (Formula 16) as the monomer B.
- the composition ratio x (derived from monomer A) and y (derived from monomer B) of the polymer after synthesis were confirmed by 1 H-NMR.
- the polymer was used to coat the negative electrode active material.
- Graphite was used as the negative electrode active material.
- the synthesized polymer was polymer B, and the coating amount was 0.5 wt%.
- a negative electrode single electrode was prepared and the irreversible capacity was measured.
- the irreversible capacity was 23.0 mAhg- 1 .
- a small battery was produced, and DC resistance was measured.
- the DC resistance was 12.5 ⁇ .
- a polymer was synthesized using the monomer of (Formula 4) as the monomer A and the monomer of (Formula 17) as the monomer C.
- the polymer was used to coat the negative electrode active material.
- Graphite was used as the negative electrode active material.
- the synthesized polymer was polymer C, and the coating amount was 0.5 wt%.
- Example 4 A negative electrode single electrode was prepared and the irreversible capacity was measured. The irreversible capacity was 23.3 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The DC resistance was 11.7 ⁇ .
- Example 5 In Example 4, evaluation was performed in the same manner as in Example 4 except that the coating amount was 0.1 wt%. The irreversible capacity was 23.9 mAhg- 1 .
- Example 6 In Example 4, evaluation was performed in the same manner as in Example 4 except that the coating amount was 1.0 wt%. The irreversible capacity was 22.0 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The DC resistance was 11.6 ⁇ .
- Example 1 Example 1 was examined in the same manner as Example 1 except that no coating material was added. The irreversible capacity was 25.4 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The DC resistance was 11.5 ⁇ .
- Example 2 Evaluation was performed in the same manner as in Example 1 except that a homopolymer of monomer B was used as the covering material. The irreversible capacity was 22.0 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The DC resistance was 13.1 ⁇ .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
不可逆容量の低減と、抵抗の低減を両立した新規な負極活物質被覆材を提供することを目的とする。上記課題を解決するための本発明の特徴は以下の通りである。(式1)で表わされるリチウムイオン二次電池用負極被覆材。(式1)のZは、カルボキシル基(-COOX)、スルホ基(-SO3X)、リン酸基(-O-PO(OX)2)のいずれかである。Xは水素またはアルカリ金属、またはアルカリ土類金属から構成される。(式1)のR3は、フッ素を含む官能基から構成される。(式1)のR1、R2は、水素またはアルキル基から構成される。m1は構造単位の繰り返し数である。フッ素、イオン性官能基の位置を最適化することで、不可逆容量の低減と、抵抗の低減を両立したリチウムイオン伝導度の高い新規な負極活物質被覆材を提供することができる。
Description
本発明は、リチウムイオン二次電池用負極材料に関する。
近年、リチウムイオン二次電池に対する開発が盛んに進められている。リチウムイオン二次電池用の負極は、電解液の還元活性が高く不可逆容量が増加して、電池容量の低下などの問題を引き起こすことが知られている。そのため、負極活物質の表面をポリマーで被覆して電池性能を向上させる試みがされている。
特許文献1には、フッ素含有(メタ)アクリル酸エステル単量体単位及びリン酸基含有単量体単位を含む共重合体の負極用スラリー組成物に関する技術が開示されている。
しかし、特許文献1のポリマーで負極活物質を被覆すると、電池の抵抗が高くなり、出力特性が低下する問題がある。特許文献1に記載されたフッ素含有(メタ)アクリル酸エステル単量体単位及びリン酸基含有単量体単位を含む共重合体は、リチウムを捕捉し、放す役割を果たす官能基がないため、これらのポリマーは、イオン伝導性が低く、負極活物質界面でのイオン授受が阻害されるため電池の抵抗が増加すると推定できる。
そこで本発明では、不可逆容量の低減と、抵抗の低減を両立した新規な負極活物質被覆材を提供することを目的とする。
(式1)のZは、カルボキシル基(-COOX)、スルホ基(-SO3X)、リン酸基(-O-PO(OX)2)のいずれかである。Xは水素またはアルカリ金属、またはアルカリ土類金属から構成される。(式1)のR3は、フッ素を含む官能基から構成される。(式1)のR1、R2は、水素またはアルキル基から構成される。m1は構造単位の繰り返し数である。
フッ素、イオン性官能基の位置を最適化することで、不可逆容量の低減と、抵抗の低減を両立したリチウムイオン伝導度の高い新規な負極活物質被覆材を提供することができる。
本発明により、不可逆容量が小さく、抵抗が低い負極を提供できる。また、前記負極をリチウムイオン二次電池に適用することにより、高容量かつ出力特性に優れたリチウムイオン二次電池を提供できる。記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
図1は、本発明の一実施形態に係る電池の内部構造を模式的に表す図である。図1に示す本発明の一実施形態に係る電池1は、正極10、セパレータ11、負極12、電池容器(即ち電池缶)13、正極集電タブ14、負極集電タブ15、内蓋16、内圧開放弁17、ガスケット18、正温度係数(Positive temperature coefficient;PTC)抵抗素子19、及び電池蓋20、軸心21から構成される。電池蓋20は、内蓋16、内圧開放弁17、ガスケット18、及びPTC抵抗素子19からなる一体化部品である。また、軸心21には、正極10、セパレータ11及び負極12が捲回されている。
セパレータ11を正極10及び負極12の間に挿入し、軸心21に捲回した電極群を作製する。軸心21は、正極10、セパレータ11及び負極12を担持できるものであれば、公知の任意のものを用いることができる。電極群は、図1に示した円筒形状の他に、短冊状電極を積層したもの、又は正極10と負極12を扁平状等の任意の形状に捲回したもの等、種々の形状にすることができる。電池容器13の形状は、電極群の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状、角形等の形状を選択してもよい。
電池容器13の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製等、非水電解質に対し耐食性のある材料から選択される。また、電池容器13を正極10又は負極12に電気的に接続する場合は、非水電解質と接触している部分において、電池容器13の腐食やリチウムイオンとの合金化による材料の変質が起こらないように、電池容器13の材料の選定を行う。
電池容器13に電極群を収納し、電池容器13の内壁に負極集電タブ15を接続し、電池蓋20の底面に正極集電タブ14を接続する。電解液は、電池の密閉の前に電池容器内部13に注入する。電解液の注入方法は、電池蓋20を解放した状態にて電極群に直接添加する方法、又は電池蓋20に設置した注入口から添加する方法がある。
その後、電池蓋20を電池容器13に密着させ、電池全体を密閉する。電解液の注入口がある場合は、それも密封する。電池を密閉する方法には、溶接、かしめ等公知の技術がある。
本発明の一実施形態に係るリチウムイオン電池は、例えば、下記のような負極と正極とをセパレータを介して対向して配置し、電解質を注入することによって製造することができる。本発明の一実施形態に係るリチウムイオン電池の構造は特に限定されないが、通常、正極及び負極とそれらを隔てるセパレータとを捲回して捲回式電極群にするか、又は正極、負極及びセパレータを積層させて積層型の電極群とすることができる。
<正極>
正極10は、正極活物質、導電剤、バインダ、及び集電体から構成される。正極活物質を例示すると、LiCoO2、LiNiO2、及びLiMn2O4が代表例である。他に、LiMnO3、LiMn2O3、LiMnO2、Li4Mn5O12、LiMn2-xMxO2(ただし、M=Co、Ni、Fe、Cr、Zn、Tiからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Li2Mn3MO8(ただし、M=Fe、Co、Ni、Cu、Znからなる群から選ばれる少なくとも1種)、Li1-xAxMn2O4(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Caからなる群から選ばれる少なくとも1種、x=0.01~0.1)、LiNi1-xMxO2(ただし、M=Co、Fe、Gaからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiFeO2、Fe2(SO4)3、LiCo1-xMxO2(ただし、M=Ni、Fe、Mnからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiNi1-xMxO2(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mgからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Fe(MoO4)3、FeF3、LiFePO4、及びLiMnPO4等を列挙することができる。
正極10は、正極活物質、導電剤、バインダ、及び集電体から構成される。正極活物質を例示すると、LiCoO2、LiNiO2、及びLiMn2O4が代表例である。他に、LiMnO3、LiMn2O3、LiMnO2、Li4Mn5O12、LiMn2-xMxO2(ただし、M=Co、Ni、Fe、Cr、Zn、Tiからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Li2Mn3MO8(ただし、M=Fe、Co、Ni、Cu、Znからなる群から選ばれる少なくとも1種)、Li1-xAxMn2O4(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Caからなる群から選ばれる少なくとも1種、x=0.01~0.1)、LiNi1-xMxO2(ただし、M=Co、Fe、Gaからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiFeO2、Fe2(SO4)3、LiCo1-xMxO2(ただし、M=Ni、Fe、Mnからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiNi1-xMxO2(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mgからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Fe(MoO4)3、FeF3、LiFePO4、及びLiMnPO4等を列挙することができる。
正極活物質の粒径は、正極活物質、導電剤、及びバインダから形成される合剤層の厚さ以下になるように通常は規定される。正極活物質の粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、合剤層厚さ以下の粒子を作製することが好ましい。
また、正極活物質は、一般に酸化物系であるために電気抵抗が高いので、電気伝導性を補うための炭素粉末からなる導電剤を利用する。正極活物質及び導電剤はともに通常は粉末であるので、粉末にバインダを混合して、粉末同士を結合させると同時に集電体へ接着させることができる。
正極10の集電体には、厚さが10~100μmのアルミニウム箔、厚さが10~100μmで孔径が0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、又は発泡金属板等が用いられる。アルミニウムの他に、ステンレスやチタン等の材質も適用可能である。本発明では、材質、形状、製造方法等に制限されることなく、任意の集電体を使用することができる。
正極活物質、導電剤、バインダ、及び有機溶媒を混合した正極スラリーを、ドクターブレード法、ディッピング法、又はスプレー法等によって集電体へ付着させた後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、正極10を作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の合剤層を集電体に積層化させることも可能である。
<負極>
本発明における負極は、負極活物質とバインダおよび集電体からなる。負極活物質としては、天然黒鉛,石油コークスや石炭ピッチコークス等から得られる易黒鉛化材料を2500℃以上の高温で熱処理したもの,メソフェーズカーボン或いは非晶質炭素,炭素繊維,リチウムと合金化する金属,あるいは炭素粒子表面に金属を担持した材料が用いられる。例えばリチウム,銀,アルミニウム,スズ,ケイ素,インジウム,ガリウム,マグネシウムより選ばれた金属あるいは合金である。また,該金属または該金属の酸化物を負極活物質として利用できる。さらに、チタン酸リチウムを用いることもできる。
<負極>
本発明における負極は、負極活物質とバインダおよび集電体からなる。負極活物質としては、天然黒鉛,石油コークスや石炭ピッチコークス等から得られる易黒鉛化材料を2500℃以上の高温で熱処理したもの,メソフェーズカーボン或いは非晶質炭素,炭素繊維,リチウムと合金化する金属,あるいは炭素粒子表面に金属を担持した材料が用いられる。例えばリチウム,銀,アルミニウム,スズ,ケイ素,インジウム,ガリウム,マグネシウムより選ばれた金属あるいは合金である。また,該金属または該金属の酸化物を負極活物質として利用できる。さらに、チタン酸リチウムを用いることもできる。
前記負極活物質は、本発明の負極被覆材で被覆されている。被覆量は本願の効果を得るために重要な値である。被覆量は、負極活物質に対し0.01 wt%以上10 wt%以下であり、好ましくは0.1 wt%以上5 %以下であり、特に好ましくは0.3 wt%以上3 wt%以下である。
<被覆材>
負極活物質を、被覆材により被覆することができる。被覆材を設けることで、負極活物質と電解質との接触を防ぐことができるため、電解質成分の析出による抵抗上昇を抑制することができる。電池の充放電の際、リチウムイオンは、被覆材を通って電解質と負極活物質間を行き来するため、被覆材はリチウムイオンを補足、解離する程度にイオン性を有していることが好ましい。被覆材のリチウムイオン補足力が強すぎる場合、リチウムイオンの伝導度が上がり、電池としての出力が劣る。したがって、被覆材とリチウムイオンとの結合力は厳密に調節されることが好ましい。
<被覆材>
負極活物質を、被覆材により被覆することができる。被覆材を設けることで、負極活物質と電解質との接触を防ぐことができるため、電解質成分の析出による抵抗上昇を抑制することができる。電池の充放電の際、リチウムイオンは、被覆材を通って電解質と負極活物質間を行き来するため、被覆材はリチウムイオンを補足、解離する程度にイオン性を有していることが好ましい。被覆材のリチウムイオン補足力が強すぎる場合、リチウムイオンの伝導度が上がり、電池としての出力が劣る。したがって、被覆材とリチウムイオンとの結合力は厳密に調節されることが好ましい。
(式1)(式2)のZは、カルボキシル基(-COOX)、スルホ基(-SO3X)、リン酸基(-O-PO(OX)2)などのイオン性の官能基から構成される。Xは水素またはアルカリ金属、またはアルカリ土類金属から構成される。電池性能の観点からはアルカリ金属が好ましく、特に好ましくはナトリウム、リチウムである。イオン性の官能基としては、カルボキシル基、スルホ基が好適に用いられる。高分子被覆材の中のイオン性官能基はリチウムイオンを補足・解離し、リチウムイオンを運ぶ。
(式1)(式2)のR3は、本発明の効果である直流抵抗の低減効果を発現させるために重要である。R3は、フッ素を含む官能基から構成される。
(式1)(式2)のR3は、本発明の効果である直流抵抗の低減効果を発現させるために重要である。R3は、フッ素を含む官能基から構成される。
フッ素を含む官能基としては、フッ素、トリフルオロメチル基、ペンタフルオロエチル基などが好適に用いられる。イオン性の官能基の隣接に、フッ素を含む官能基を置換することで電子吸引性が高まり、その結果イオン性の官能基の解離度が高まるため、本発明の効果が高まると考えられる。トリフルオロメチル基を用いることで、フッ素とイオン性官能基との距離は広がるものの、フッ素を3つ設けることができるため、イオン性官能基のリチウムイオン伝導度を上げることができる。(式1)のR1、R2は、水素またはアルキル基から構成される。(式1)のm1は構造単位の繰り返し数である。フッ素を含む官能基をR1、R2ではなくR3に設けることで、イオン性官能基から効率的に電子を吸引することができる。
イオン性官能基のリチウムイオン補足力は、フッ素の位置、数、イオン性官能基との距離等によって変化する。リチウムイオンは、負極活物質被覆材のイオン性官能基を介して電解質-活物質間を移動する。したがって、被覆材には解離しリチウムイオンを補足・解離するイオン性官能基が必要である。また、リチウムイオン伝導性を高めるために、イオン性官能基のリチウムイオン補足力を下げる必要があり、イオン性官能基の近傍にフッ素が存在する必要がある。
本発明では、ポリマー主鎖を隔てて、フッ素を含む官能基とイオン性官能基を配置されることでリチウムイオンの伝導性を向上させることができることを見出した。ポリマー主鎖を隔ててフッ素を含む官能基とイオン性官能基を配置されることでイオン性官能基に十分な解離性を持たせ且つ、合成の観点からも作りやすい被覆材を実現することができる。
(式4)中m1は構造単位の繰り返し数である。
式4は、OLi(Liが解離した場合O-)によりリチウムイオンを補足・解離する。ポリマー主鎖を隔てたトリフルオロメチル基は、イオン性官能基から電子を吸引するため、リチウムの補足力を抑制し、リチウムイオンのスムーズな伝導を実現する。また、フッ素を含む官能基とイオン性官能基との距離は、近いことが好ましいが、合成の観点からポリマー主鎖を隔てた(式1)(式4)のような構造が好ましい。
本発明に係る負極活物質用被覆材は、(式1)に示した第一のモノマー(主モノマー)とそれ以外の第二のモノマーとを共重合させた(式2)のような共重合体からなるものとしてもよい。第二のモノマーとしては、(式5)~(式9)のようなものを用いることができる。Yはアルカリ金属または水素を表わす。アルカリ金属としては、例えばNa、Li等を用いることができる。
(式2)のR1、R2、R5、R6、R7は、水素またはアルキル基から構成される。(式2)のBは、イオン性官能基を含むものから構成される。(式5)~(式9)を第二のモノマーとして用いることで不可逆容量の改善が期待できる。その理由として考えられることは次の通りである。化学式1に示したポリマーによる被覆材は負極活物質に対する濡れ性(負極活物質と被覆材との親和性)が必ずしも十分とは言えない可能性があり、そのような場合、負極活物質の表面を被覆材が被覆しきれない部分が存在するものと考えられる。被覆しきれない部分においては、負極活物質と電解液が直接接触して、電解液の分解が起こることが考えられる。共重合した場合に負極活物質に対する濡れ性を向上させるようなモノマーを用いることで、負極活物質に対する濡れ性が向上し、負極活物質の表面のより多くの部分が被覆材で被覆されることが考えられる。その結果、電解液の分解が抑制されて不可逆容量をより小さくする効果が期待できる。(式5)~(式9)に示すモノマーの中で、負極活物質に対する濡れ性の改善効果は、式5、6に示すモノマーが相対的に大きく、化学式8、9に示すモノマーはこの効果は相対的に小さいと考えられる。化学式7に示すモノマーはこの効果が中間的であると考えられる。なお、第一のモノマーと式5~式9とを共重合させた場合、式2のポリマーのBは式10~14となる。
(式15)のR5、R6、R7、Bは(式2)と同様である。m2は構造単位の繰り返し数である。
(式1)(式2)および(式8)の被覆材は、モノマーを重合させて作製することができる。重合は、従来から知られているバルク重合、溶液重合、乳化重合のいずれによっても良い。また、重合方法は特に限定はされないが、ラジカル重合が好適に用いられる。重合に際しては重合開始剤を用いても用いなくても良く、取り扱いの容易さの点からはラジカル重合開始剤を用いるのが好ましい。ラジカル重合開始剤を用いた重合方法は、通常行われている温度範囲および重合時間で行うことができる。本発明における開始剤配合量は、重合性化合物に対し0.1wt%から20wt%であり、好ましくは0.3wt%以上5wt%である。
本発明において、(式2)のポリマーのxとyの比率x/(x+y)は、0<x/(x+y)≦1であり、好ましくは0.01≦x/(x+y) ≦1であり、特に好ましくは0.1≦x/(x+y) ≦1である。x/(x+y)を制御することにより、ポリマーのイオンの移動度が高くなり、出力特性に優れたリチウムイオン二次電池が提供できる。
本発明において、Zを含むポリマーとBを含むポリマーを混合して用いることも可能である。
本発明の負極被覆材として用いるポリマーの数平均分子量は、1,000以上5,000,000以下である。好ましくは1000以上1,000,000以下である。数平均分子量を調整することにより被覆する際に起こりやすい、負極活物質の凝集を抑制することができる。
本発明の負極被覆材において、負極活物質に前記被覆材を被覆する方法は負極活物質にポリマーが被覆されれば特に問わないが、ポリマーを溶媒に溶解させその溶液中に負極活物質を加え撹拌後、溶媒を乾燥させ被覆することが、コストの観点からも好ましい。溶媒としては、ポリマーが溶解すれば特に問わないが、水、エタノールなどのプロトン性溶媒、N-メチルピロリドンなどの非プロトン性溶媒、トルエン、ヘキサンなどの非極性溶媒などが好適に用いられる。
<セパレータ>
上記の方法で作製した正極10及び負極12の間にセパレータ11を挿入し、正極10及び負極12の短絡を防止する。セパレータ11には、ポリエチレン、ポリプロピレン等からなるポリオレフィン系高分子シート、又はポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートを溶着させた2層構造等を使用することが可能である。電池温度が高くなったときにセパレータ11が収縮しないように、セパレータ11の表面にセラミックス及びバインダの混合物を薄層状に形成してもよい。これらのセパレータ11は、電池の充放電時にリチウムイオンを透過させる必要があるため、一般に細孔径が0.01~10μm、気孔率が20~90%であれば、リチウムイオン電池に使用可能である。
<電解質>
本発明の一実施形態で使用可能な電解液の代表例として、エチレンカーボネートにジメチルカーボネート、ジエチルカーボネート、又はエチルメチルカーボネート等を混合した溶媒に、電解質として六フッ化リン酸リチウム(LiPF6)、又はホウフッ化リチウム(LiBF4)を溶解させた溶液がある。本発明は、溶媒や電解質の種類、溶媒の混合比に制限されることなく、他の電解液も利用可能である。
上記の方法で作製した正極10及び負極12の間にセパレータ11を挿入し、正極10及び負極12の短絡を防止する。セパレータ11には、ポリエチレン、ポリプロピレン等からなるポリオレフィン系高分子シート、又はポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートを溶着させた2層構造等を使用することが可能である。電池温度が高くなったときにセパレータ11が収縮しないように、セパレータ11の表面にセラミックス及びバインダの混合物を薄層状に形成してもよい。これらのセパレータ11は、電池の充放電時にリチウムイオンを透過させる必要があるため、一般に細孔径が0.01~10μm、気孔率が20~90%であれば、リチウムイオン電池に使用可能である。
<電解質>
本発明の一実施形態で使用可能な電解液の代表例として、エチレンカーボネートにジメチルカーボネート、ジエチルカーボネート、又はエチルメチルカーボネート等を混合した溶媒に、電解質として六フッ化リン酸リチウム(LiPF6)、又はホウフッ化リチウム(LiBF4)を溶解させた溶液がある。本発明は、溶媒や電解質の種類、溶媒の混合比に制限されることなく、他の電解液も利用可能である。
なお、電解液に使用可能な非水溶媒の例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1、2-ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1、3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1、2-ジエトキシエタン、クロルエチレンカーボネート、又はクロルプロピレンカーボネート等の非水溶媒がある。本発明の電池に内蔵される正極10又は負極12上で分解しなければ、これ以外の溶媒を用いてもよい。
また、電解質の例としては、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、又はリチウムトリフルオロメタンスルホンイミドで代表されるリチウムのイミド塩等、多種類のリチウム塩がある。これらの塩を、上記の溶媒に溶解してできた非水電解液を電池用電解液として使用することができる。本実施形態に係る電池が有する正極10及び負極12上で分解しなければ、これ以外の電解質を用いてもよい。
固体高分子電解質(ポリマー電解質)を用いる場合には、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド等のイオン伝導性ポリマーを電解質に用いることができる。これらの固体高分子電解質を用いた場合、セパレータ11を省略することができる利点がある。
さらに、イオン性液体を用いることができる。例えば、1-ethyl-3-methylimidazolium tetrafluoroborate(EMI-BF4)、リチウム塩LiN(SO2CF3)2(LiTFSI)とトリグライムとテトラグライムとの混合錯体、環状四級アンモニウム系陽イオン(N-methyl-N-propylpyrrolidiniumが例示される。)、及びイミド系陰イオン(bis(fluorosulfonyl)imideが例示される。)より、正極10及び負極12にて分解しない組み合わせを選択して、本実施形態に係る電池に用いることができる。
以下,実施例を挙げて本発明をさらに具体的に説明するが,本発明はこれらの実施例に限定されるものではない。本実施例の結果を表1にまとめた。
<ポリマーの合成方法>
反応容器にモノマーと、反応溶媒として水を加えた。さらに、その溶液に重合開始剤としてAIBNを加えた。重合開始剤の濃度はモノマーの総量に対し4wt %になるように加えた。その後、反応溶液を60℃、3 h加熱することでポリマーを合成した。
<正極の作製方法>
正極活物質(LiCoO2)、導電剤(SP270:日本黒鉛社製黒鉛)、ポリフッ化ビニリデンバインダーを85:7.5:7.5重量%の割合で混合し、N-メチル-2-ピロリドンに投入混合して、スラリー状の溶液を作製した。該スラリーを厚さ20μmのアルミニウム箔にドクターブレード法で塗布し、乾燥した。合剤塗布量は、200g/m2 であった。その後、プレスして正極を作製した。
<負極の作製方法>
グラファイトにポリフッ化ビニリデンを95:5の重量%の比率で混合し、更にN-メチル-2-ピロリドンに投入混合して、スラリー状の溶液を作製した。該スラリーを厚さ10 μmの銅箔にドクターブレード法で塗布し、乾燥した。合剤かさ密度が1.5 g / cm3になるようにプレスして負極を作製した。
<負極単極の評価方法>
作製した負極を、直径15 mmの円形に打ち抜いて電極を準備した。評価セルは、負極と対極としてLi金属を用い、負極とLi金属の間にセパレータを挿入して、そこに電解液を加えることで構成した。評価セルの充電は、予め設定した下限電圧まで電流密度0.72 mA /cm2で充電した。放電は、予め設定した上限電圧まで、電流密度0.72 mA / cm2で放電した。下限電圧は0.01 V、上限電圧は1.5 Vであった。不可逆容量は、充電容量と放電容量の差分から求めた。
<直流抵抗の評価方法>
正極および負極を直径15 mmの円形に打ち抜いて電極を準備した。小型電池は、正極および負極間にセパレータを挿入して、そこに電解液を加えることで構成した。小型電池の充電は、予め設定した上限電圧まで電流密度0.72 mA /cm2で充電した。放電は、予め設定した下限電圧まで、電流密度0.72 mA / cm2で放電した。上限電圧は4.2 V、下限電圧は3.0 Vであった。1サイクル目に得られた放電容量を、電池の初期容量とした。その後、初期容量の50%まで充電して直流抵抗を測定した。
(実施例1)
モノマーAとして、(式3) のモノマーを使用してポリマーを合成した。また、前記ポリマーを使用して、負極活物質を被覆した。負極活物質には、グラファイトを用いた。なお合成したポリマーは、ポリマーAとし、被覆量は0.5 wt%にした。
<ポリマーの合成方法>
反応容器にモノマーと、反応溶媒として水を加えた。さらに、その溶液に重合開始剤としてAIBNを加えた。重合開始剤の濃度はモノマーの総量に対し4wt %になるように加えた。その後、反応溶液を60℃、3 h加熱することでポリマーを合成した。
<正極の作製方法>
正極活物質(LiCoO2)、導電剤(SP270:日本黒鉛社製黒鉛)、ポリフッ化ビニリデンバインダーを85:7.5:7.5重量%の割合で混合し、N-メチル-2-ピロリドンに投入混合して、スラリー状の溶液を作製した。該スラリーを厚さ20μmのアルミニウム箔にドクターブレード法で塗布し、乾燥した。合剤塗布量は、200g/m2 であった。その後、プレスして正極を作製した。
<負極の作製方法>
グラファイトにポリフッ化ビニリデンを95:5の重量%の比率で混合し、更にN-メチル-2-ピロリドンに投入混合して、スラリー状の溶液を作製した。該スラリーを厚さ10 μmの銅箔にドクターブレード法で塗布し、乾燥した。合剤かさ密度が1.5 g / cm3になるようにプレスして負極を作製した。
<負極単極の評価方法>
作製した負極を、直径15 mmの円形に打ち抜いて電極を準備した。評価セルは、負極と対極としてLi金属を用い、負極とLi金属の間にセパレータを挿入して、そこに電解液を加えることで構成した。評価セルの充電は、予め設定した下限電圧まで電流密度0.72 mA /cm2で充電した。放電は、予め設定した上限電圧まで、電流密度0.72 mA / cm2で放電した。下限電圧は0.01 V、上限電圧は1.5 Vであった。不可逆容量は、充電容量と放電容量の差分から求めた。
<直流抵抗の評価方法>
正極および負極を直径15 mmの円形に打ち抜いて電極を準備した。小型電池は、正極および負極間にセパレータを挿入して、そこに電解液を加えることで構成した。小型電池の充電は、予め設定した上限電圧まで電流密度0.72 mA /cm2で充電した。放電は、予め設定した下限電圧まで、電流密度0.72 mA / cm2で放電した。上限電圧は4.2 V、下限電圧は3.0 Vであった。1サイクル目に得られた放電容量を、電池の初期容量とした。その後、初期容量の50%まで充電して直流抵抗を測定した。
(実施例1)
モノマーAとして、(式3) のモノマーを使用してポリマーを合成した。また、前記ポリマーを使用して、負極活物質を被覆した。負極活物質には、グラファイトを用いた。なお合成したポリマーは、ポリマーAとし、被覆量は0.5 wt%にした。
負極単極を作製して不可逆容量を測定した。不可逆容量は24.5 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は12.0 Ωであった。
(実施例2)
モノマーAとして(式4) のモノマーを、モノマーBとして(式16)のモノマーを使用してポリマーを合成した。合成後のポリマーの組成比x(モノマーA由来),y(モノマーB由来)を1H-NMRで確認した。その結果、x=50、y=50であった。前記ポリマーを使用して、負極活物質を被覆した。負極活物質には、グラファイトを用いた。なお合成したポリマーは、ポリマーBとし、被覆量は0.5 wt%にした。
(実施例2)
モノマーAとして(式4) のモノマーを、モノマーBとして(式16)のモノマーを使用してポリマーを合成した。合成後のポリマーの組成比x(モノマーA由来),y(モノマーB由来)を1H-NMRで確認した。その結果、x=50、y=50であった。前記ポリマーを使用して、負極活物質を被覆した。負極活物質には、グラファイトを用いた。なお合成したポリマーは、ポリマーBとし、被覆量は0.5 wt%にした。
負極単極を作製して不可逆容量を測定した。不可逆容量は23.0 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は12.5 Ωであった。
(実施例3)
モノマーAとして(式4) のモノマーを、モノマーCとして(式17)のモノマーを使用してポリマーを合成した。合成後のポリマーの組成比x(モノマーA由来),y(モノマーC由来)を1H-NMRで確認した。その結果、x=50、y=50であった。前記ポリマーを使用して、負極活物質を被覆した。負極活物質には、グラファイトを用いた。なお合成したポリマーは、ポリマーCとし、被覆量は0.5 wt%にした。
(実施例3)
モノマーAとして(式4) のモノマーを、モノマーCとして(式17)のモノマーを使用してポリマーを合成した。合成後のポリマーの組成比x(モノマーA由来),y(モノマーC由来)を1H-NMRで確認した。その結果、x=50、y=50であった。前記ポリマーを使用して、負極活物質を被覆した。負極活物質には、グラファイトを用いた。なお合成したポリマーは、ポリマーCとし、被覆量は0.5 wt%にした。
負極単極を作製して不可逆容量を測定した。不可逆容量は23.3 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は11.7 Ωであった。
(実施例4)
実施例3において、組成比をx=10、y=90にすること以外は、実施例3と同様に評価した。なお、合成したポリマーはポリマーDとした。不可逆容量は23.3 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は11.4 Ωであった。
(実施例5)
実施例4において、被覆量を0.1 wt%にすること以外は実施例4と同様に評価した。不可逆容量は23.9 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は11.3 Ωであった。
(実施例6)
実施例4において、被覆量を1.0 wt%にすること以外は実施例4と同様に評価した。不可逆容量は22.0 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は11.6 Ωであった。
(比較例1)
実施例1において、被覆材を加えないこと以外は実施例1と同様に検討した。不可逆容量は25.4 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は11.5 Ωであった。
(比較例2)
被覆材として、モノマーBの単独重合体を用いること以外は、実施例1と同様に評価した。不可逆容量は22.0 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は13.1 Ωであった。
(実施例4)
実施例3において、組成比をx=10、y=90にすること以外は、実施例3と同様に評価した。なお、合成したポリマーはポリマーDとした。不可逆容量は23.3 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は11.4 Ωであった。
(実施例5)
実施例4において、被覆量を0.1 wt%にすること以外は実施例4と同様に評価した。不可逆容量は23.9 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は11.3 Ωであった。
(実施例6)
実施例4において、被覆量を1.0 wt%にすること以外は実施例4と同様に評価した。不可逆容量は22.0 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は11.6 Ωであった。
(比較例1)
実施例1において、被覆材を加えないこと以外は実施例1と同様に検討した。不可逆容量は25.4 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は11.5 Ωであった。
(比較例2)
被覆材として、モノマーBの単独重合体を用いること以外は、実施例1と同様に評価した。不可逆容量は22.0 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は13.1 Ωであった。
Claims (8)
- 請求項1において、
前記R1、前記R2は、水素であり、R3はフッ素、トリフルオロメチル基、ペンタフルオロエチル基のいずれかであるリチウムイオン二次電池用負極被覆材。
- 請求項1ないし請求項3のいずれかにおいて、
前記リチウムイオン二次電池用負極被覆材は、化学式1で表されるポリマーの構造単位に相当する第1のモノマーと、
(式5)~(式9)に示す第2のモノマーのうちの少なくとも1種と、を共重合させた共重合体であり、(式2)で表わされるリチウムイオン二次電池用負極被覆材。
((式2)のZは、カルボキシル基(-COOX)、スルホ基(-SO3X2)、リン酸基(-O-PO(OX)2)のいずれかである。Xは水素またはアルカリ金属、またはアルカリ土類金属から構成される。R3は、フッ素を含む官能基から構成される。(式2)のR1、R2、R5、R6、R7は、水素またはアルキル基から構成される。Bは、イオン性官能基を含むものから構成される。x、yは第1のモノマーと第二のモノマーのモル比率であり、0<x/(x+y)≦1である。)
- リチウムイオンを吸蔵・放出可能な正極と、
リチウムイオンを吸蔵・放出可能な負極と、を有するリチウムイオン二次電池において、前記負極は、負極活物質を有し、前記負極活物質は、被覆材により被覆されており、
前記被覆材は請求項1ないし請求項5のいずれかに記載された被覆材であるリチウムイオン二次電池。
- 請求項1において、
前記被覆材の数平均分子量が1,000以上5,000,000以下であるリチウムイオン二次電池用負極被覆材。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/074790 WO2015037114A1 (ja) | 2013-09-13 | 2013-09-13 | リチウムイオン二次電池用負極材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/074790 WO2015037114A1 (ja) | 2013-09-13 | 2013-09-13 | リチウムイオン二次電池用負極材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015037114A1 true WO2015037114A1 (ja) | 2015-03-19 |
Family
ID=52665256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/074790 WO2015037114A1 (ja) | 2013-09-13 | 2013-09-13 | リチウムイオン二次電池用負極材料 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015037114A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011138732A (ja) * | 2010-01-04 | 2011-07-14 | Hitachi Maxell Ltd | 非水二次電池 |
JP2011159550A (ja) * | 2010-02-03 | 2011-08-18 | Hitachi Ltd | 過充電抑制剤並びにこれを用いた非水電解液及び二次電池 |
JP2012138314A (ja) * | 2010-12-28 | 2012-07-19 | Hitachi Ltd | 非水電解液及び二次電池 |
JP2012138327A (ja) * | 2010-12-28 | 2012-07-19 | Hitachi Ltd | 非水電解液及びこれを用いた非水二次電池 |
JP2013152879A (ja) * | 2012-01-26 | 2013-08-08 | Hitachi Ltd | 負極活物質、リチウムイオン二次電池負極、リチウムイオン二次電池およびそれらの製造方法 |
-
2013
- 2013-09-13 WO PCT/JP2013/074790 patent/WO2015037114A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011138732A (ja) * | 2010-01-04 | 2011-07-14 | Hitachi Maxell Ltd | 非水二次電池 |
JP2011159550A (ja) * | 2010-02-03 | 2011-08-18 | Hitachi Ltd | 過充電抑制剤並びにこれを用いた非水電解液及び二次電池 |
JP2012138314A (ja) * | 2010-12-28 | 2012-07-19 | Hitachi Ltd | 非水電解液及び二次電池 |
JP2012138327A (ja) * | 2010-12-28 | 2012-07-19 | Hitachi Ltd | 非水電解液及びこれを用いた非水二次電池 |
JP2013152879A (ja) * | 2012-01-26 | 2013-08-08 | Hitachi Ltd | 負極活物質、リチウムイオン二次電池負極、リチウムイオン二次電池およびそれらの製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6110951B2 (ja) | リチウムイオン二次電池用負極材料、及びそれを用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、電池システム | |
CN107431183B (zh) | 非水电解质二次电池 | |
WO2014010526A1 (ja) | 非水電解質二次電池 | |
US20220344712A1 (en) | In-situ polymerized polymer electrolyte for lithium ion batteries | |
KR20200089182A (ko) | 에너지 밀도가 우수한 Si계 화합물을 포함하는 리튬 이차전지 | |
US9831526B2 (en) | Lithium secondary battery | |
JP6812827B2 (ja) | 非水電解液およびそれを用いた非水電解液電池 | |
WO2015029248A1 (ja) | 負極活物質被覆材並びにこれを用いた負極材料、負極、リチウムイオン二次電池及び電池システム並びにモノマー及びその合成方法 | |
CN111052486B (zh) | 非水电解质二次电池 | |
JP6933260B2 (ja) | リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池 | |
JP2015159050A (ja) | Li電池用材料 | |
JP2017016905A (ja) | リチウム二次電池の充放電方法 | |
WO2015037115A1 (ja) | リチウムイオン二次電池用負極材料 | |
JP2019169346A (ja) | リチウムイオン二次電池 | |
JP6258180B2 (ja) | リチウム二次電池用電解液の添加剤及びそれを用いたリチウム二次電池用電解液、リチウム二次電池 | |
JP2018133284A (ja) | 非水電解液およびそれを用いた非水電解液電池 | |
JP2019061826A (ja) | リチウムイオン二次電池 | |
WO2015015598A1 (ja) | リチウムイオン二次電池負極活物質用被覆材、前記被覆材で被覆されたリチウムイオン二次電池負極活物質、および、前記負極活物質を負極に用いたリチウムイオン二次電池 | |
JP7199157B2 (ja) | ヨウ化リチウムを含む電解液、及びそれを用いたリチウムイオン電池 | |
JP6222389B1 (ja) | 非水電解液およびそれを用いた非水電解液電池 | |
JP6023222B2 (ja) | リチウムイオン二次電池用負極材料 | |
JP2017117686A (ja) | リチウムイオン二次電池 | |
JP2013239356A (ja) | リチウムイオン二次電池用負極保護剤、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法 | |
WO2015118676A1 (ja) | Li電池用材料 | |
JP2018133335A (ja) | 非水電解液電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13893412 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13893412 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |