WO2015033648A1 - 近赤外応力発光材料及び近赤外応力発光体並びに近赤外応力発光材料の製造方法 - Google Patents

近赤外応力発光材料及び近赤外応力発光体並びに近赤外応力発光材料の製造方法 Download PDF

Info

Publication number
WO2015033648A1
WO2015033648A1 PCT/JP2014/066725 JP2014066725W WO2015033648A1 WO 2015033648 A1 WO2015033648 A1 WO 2015033648A1 JP 2014066725 W JP2014066725 W JP 2014066725W WO 2015033648 A1 WO2015033648 A1 WO 2015033648A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
luminescent material
aluminate
stress luminescent
stress
Prior art date
Application number
PCT/JP2014/066725
Other languages
English (en)
French (fr)
Inventor
寺崎正
徐超男
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to US14/917,659 priority Critical patent/US20160222290A1/en
Priority to JP2015535353A priority patent/JP6345676B2/ja
Priority to EP14842748.7A priority patent/EP3045511A4/en
Publication of WO2015033648A1 publication Critical patent/WO2015033648A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • F21K2/04Non-electric light sources using luminescence; Light sources using electrochemiluminescence using triboluminescence; using thermoluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/248Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet using infrared
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/70Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light mechanically excited, e.g. triboluminescence

Definitions

  • the present invention relates to a near-infrared stress luminescent material and a near-infrared stress luminescent material that exhibit near-infrared luminescence due to deformation caused by applying a mechanical external force, and a method for producing a near-infrared stress luminescent material.
  • Such a substance that causes a fluorescent phenomenon is used as an illumination lamp such as a fluorescent lamp or a display such as a cathode ray tube (CRT) so-called cathode ray tube.
  • an illumination lamp such as a fluorescent lamp
  • a display such as a cathode ray tube (CRT) so-called cathode ray tube.
  • CRT cathode ray tube
  • External stimuli that cause this fluorescent phenomenon are usually given by ultraviolet rays, electron beams, X-rays, radiation, electric fields, chemical reactions, etc., but they can be deformed by applying stimuli such as mechanical external forces.
  • a material that emits intense light has not been known for a long time.
  • luminescent materials are later referred to as stress luminescent materials, and are now applied as new measurement technologies such as non-destructive inspection technology for maintaining existing civil engineering structures and visualization technology for stress distribution of structural members. There is a lot of research.
  • the light emission color of these stress-stimulated luminescent materials is mainly green with high human photopic sensitivity, and the power-light conversion efficiency satisfying practical needs is achieved with high brightness so as to be visible.
  • near-infrared light that is less likely to be optically affected by living tissue and is easy to transmit (mainly the biological transmission wavelength 650-1100 nm: living body It is desirable to use a window.
  • the ambient light having an overwhelming amount of light works as noise against stress luminescence, which causes a significant decrease in the S / N ratio.
  • the measurement environment was prepared by eliminating the ambient light in a dark room or a black curtain, but if the measurement location was a production site in a factory, for example, it was subject to space and environmental restrictions. In addition, for safety reasons, there are cases in which it is not possible to eliminate sufficient ambient light, for example, there is a rule that always turns on fluorescent lamps.
  • the present invention has been made in view of such circumstances, and provides a stress-stimulated luminescent material capable of emitting near-infrared light.
  • the present invention also provides a stress luminescent material capable of emitting near-infrared light and a method for producing a stress luminescent material.
  • the near-infrared stress luminescent material according to the present invention is also characterized by the following points.
  • the aluminate is an aluminate represented by the general formula MAl 2 O 4 (where M is any of Mg, Ca, Sr, and Ba).
  • M is any of Mg, Ca, Sr, and Ba.
  • Eu 2+ is co-added at a concentration that replaces 0.25 to 10% of M in the aluminate represented by the general formula MAl 2 O 4 .
  • the Cr 3+ is co-added at a concentration that replaces 0.25 to 10% of M of the aluminate represented by the general formula MAl 2 O 4 .
  • the rare earth metal ions or groups of ions are co-added at a concentration that replaces 0.25 to 10% of M in the aluminate represented by the general formula MAl 2 O 4 .
  • the rare earth metal element ion is Nd 3+ .
  • Nd 3+ is co-added at a concentration that replaces 0.25 to 10% of M in the aluminate represented by the general formula MAl 2 O 4 .
  • the near infrared stress luminescent material according to the present invention (9) the near infrared stress luminescent material described in any one of (1) to (8) above was dispersed in a predetermined matrix material.
  • an electromagnetic wave having a wavelength other than the near-infrared wavelength, which is excited by the electromagnetic wave emitted by the near-infrared stress luminescent material It also has a feature in that a wavelength converting substance that emits electromagnetic waves is added to the matrix material.
  • a matrix material constituting raw material constituting aluminate by passing through a post-calcination step, and Eu 2+ is supplied to the aluminate.
  • (12) Eu 2+ , Cr 3+ , Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb , Lu, or at least one rare earth metal element ion or group of ions is used in a co-added state as a near-infrared emission center of a stress-stimulated luminescent material in aluminate.
  • the near-infrared stress luminescent material described in any of (1) to (8) above is used as a near-infrared afterglow material.
  • the near-infrared stress luminescent material described in (9) or (10) is used as a near-infrared afterglow.
  • a stress luminescent material and a stress luminescent material capable of emitting near infrared light a method for producing a stress luminescent material, a near infrared afterglow material, and a near infrared afterglow.
  • the present invention relates to a stress luminescent material that emits near infrared light, a stress luminescent material, a method for using them, a use as a near infrared afterglow material / near infrared afterglow, and a method for producing a near infrared stress luminescent material. Is to provide.
  • stress-stimulated luminescent materials that emit near-infrared light at a practical intensity are used when measuring and diagnosing with stress-stimulated luminescent materials are expanded into the living body, or when it is difficult to eliminate sufficient ambient light. It is extremely useful in such cases.
  • in-vitro stress distribution applied to an artificial joint or implant, post-operative in-vivo stress distribution, temporal change, etc. can be measured quickly and with high reliability. This is thought to lead to an in-vivo dynamic distribution rapid evaluation system.
  • the near-infrared stress luminescent material according to the present embodiment is composed of aluminate, Eu2 + , Cr3 + , Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu. , Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and at least one rare earth metal element ion or ion group is co-added.
  • the near-infrared stress luminescent material when excited by light, electrons and holes (carriers) are trapped in trap levels caused by lattice defects due to Eu 2+ in aluminate as a base material. When stress or heat is applied to the base material, the trapped carriers are released and recombined. At this time, predetermined green light (510 to 530 nm, for example, 516 nm) is emitted, but a part of this light acts on Cr 3+ or ions of a predetermined rare earth metal element to emit near infrared light. It is considered a thing.
  • the non-stoichiometric composition is a composition having a chemical composition formula that deviates from the stoichiometric chemical composition formula.
  • the aluminate having such a non-stoichiometric composition is composed of an alkaline earth metal compound, for example, an alkaline earth metal oxide and an aluminum oxide, and the composition of the alkaline earth metal ion therein.
  • Alkaline earth metal deficient type in which the ratio is deficient and has the formula M x Al 2 O 3 + x [wherein M is Mg, Ca, Sr or Ba, respectively, x is 0.7 ⁇ x ⁇ 1
  • M is Mg, Ca, Sr or Ba
  • the luminescent center used in the near-infrared stress luminescent material is, for example, a divalent europium ion (Eu 2+ ), a trivalent chromium ion (Cr 3+ ), a predetermined rare earth metal element ion or
  • the ion group (Q) can be used in a co-added state.
  • the concentration of Eu 2+ in the near-infrared stress luminescent material should be such that M in the aluminate as a base material represented by the general formula MAl 2 O 4 is replaced by Eu 2+ by 0.25 to 10%. More preferably, the concentration can be changed to 0.5 to 1.5%.
  • the concentration of Cr 3+ in the near-infrared stress light-emitting material has a density of M in the aluminate as a host material represented by the general formula MAl 2 O 4 is replaced from 0.25 to 10% in Cr 3+ More preferably, the concentration can be replaced by 2 to 5%.
  • the concentration of ions or ions (Q) of the rare earth metal element in the near-infrared stress luminescent material is such that M in the aluminate as the base material represented by the general formula MAl 2 O 4 is a rare earth metal element.
  • the concentration can be 0.25 to 10% replaced by ions or ion groups (Q).
  • Examples of the predetermined rare earth metal element include scandium (Sc), yttrium (Y), and elements belonging to lanthanoids, that is, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and promethium.
  • Pm samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium At least one selected from (Lu) can be used.
  • luminescent centers may be adjusted in the number of co-added elements in accordance with the lattice structure of the base material, the desired luminescent color, etc., within the range of the above conditions. That is, the amount of the luminescent center to be added may be an amount less than the substitution of M or may be excessively added.
  • the rare earth metal element ion (Q) may be, for example, Nd 3+ .
  • the rare earth metal element ion (Q) is Nd 3+ , good near-infrared light emission can be performed.
  • the concentration of Nd 3+ in the near-infrared stress luminescent material shall be such that M in the aluminate as the base material represented by the general formula MAl 2 O 4 is replaced by 0.25 to 10% with Nd 3+ More preferably, the concentration can be changed to 0.5 to 2%.
  • M is Sr
  • the near-infrared stress luminescent material according to the present embodiment may be one in which Eu 2+ and Nd 3+ are co-added to the aluminate.
  • Such a near-infrared stress light-emitting material can also exhibit good near-infrared light emission.
  • the near infrared stress luminescent material described above may be dispersed in a predetermined matrix material to form a near infrared stress luminescent material.
  • a near-infrared stress of a desired shape having near-infrared luminescence can be obtained by using a curable resin as a matrix material and dispersing and curing a powdered near-infrared stress luminescent material in the resin before curing.
  • the light emitter can be easily formed.
  • the matrix material can transmit excitation light for exciting the near-infrared stress luminescent material mixed in the matrix material or near-infrared light emitted from the near-infrared stress luminescent material. Used.
  • it is a material that can transmit the force applied from the outside of the near-infrared stress luminescent material to the near-infrared stress luminescent material and give the near-infrared stress luminescent material a stress that causes near-infrared stress luminescence. It is desirable. However, this is not the case when the near-infrared stress luminescent material is used only as an afterglow.
  • the near-infrared stress luminescent material according to the present embodiment may also emit light other than near-infrared light (for example, 516 nm green light) depending on its composition.
  • a wavelength conversion substance may be added to a predetermined matrix material constituting the near infrared stress luminescent material.
  • a wavelength conversion substance that emits an electromagnetic wave having a wavelength other than the near-infrared wavelength and that is excited by the electromagnetic wave emitted by the near-infrared stress luminescent material and emits an electromagnetic wave having a near-infrared wavelength It may be added to a predetermined matrix material constituting the body.
  • the wavelength conversion material added to the matrix material includes dyes, fluorescent materials, and wavelength conversion materials that absorb Eu 2+ derived light (electromagnetic waves having wavelengths other than near infrared wavelengths) and can emit light in the near infrared region.
  • Eu 2+ derived light electrospray waves having wavelengths other than near infrared wavelengths
  • CdSe quantum dots, CdSeTe quantum dots, Cr complexes, Nd complexes, Alexa dyes, carbocyanine dyes (Cy3, Cy5, Cy7), and the like can be given.
  • the matrix material is at least Eu 2+ to excite the near-infrared stress luminescent material mixed in the matrix material, near-infrared light emitted from the near-infrared stress luminescent material, Eu 2+ What can transmit the derived light (electromagnetic wave having a wavelength other than near-infrared wavelength) is used.
  • a method for producing a near-infrared stress luminescent material is also provided. Specifically, Cr 3+ and maternal material constituting the raw material constituting the aluminate Through the later baking step, and Eu 2+ feedstock supplying Eu 2+ in the aluminate, the aluminate and Cr 3+ feedstock supplying, to said aluminate Sc, selected Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu A rare earth metal element ion supply material that supplies at least one rare earth metal element ion or ion group, and a raw material mixture produced in the mixing step is calcined.
  • a firing step for producing a near-infrared stress luminescent material in which Eu 2+ , Cr 3+, and ions or groups of ions of the rare earth metal element are co-added to the aluminate is provided.
  • a method for producing a featured near infrared stress luminescent material is provided.
  • the base material constituting raw material is not particularly limited as long as it is a raw material capable of constituting the aluminate as the base material in the firing step.
  • the base material is strontium aluminate
  • the base material is subjected to a firing process using strontium carbonate (SrCO 3 ), aluminum oxide ( ⁇ -Al 2 O 3 ) or the like as a base material constituting raw material in the mixing step.
  • strontium carbonate SrCO 3
  • aluminum oxide ⁇ -Al 2 O 3
  • it is possible to configure the material not only carbonates and oxides, but also raw material compounds capable of forming a desired base material such as nitrates, chlorides, hydroxides, and organic salts can be used.
  • supplies Cr 3+ Cr 3+ feedstocks, in particular also for the rare earth metal element ions feedstock supplying ions or ions of a rare earth metal element (Q) is not limited, for example if the Eu 2+, it is possible to supply the Eu 2+ in the base material by europium oxide Eu 2 O 3, not limited to the oxides, nitrates, chlorides, water Raw materials such as oxides, organic salts, carbonates, etc. that can supply Eu 2+ , Cr 3+ , rare earth metal element ions or ion groups (Q) to the base material through a firing step can be used. .
  • the stress-stimulated luminescent material may be manufactured using a solid phase synthesis method, a sol-gel method, a hydrothermal synthesis method, an evaporation to dryness method, an explosion method, a spray method, an ultrasonic spray method, or the like.
  • the near infrared stress luminescent material in the near infrared stress luminescent material according to this embodiment, Eu 2+ , Cr 3+ , Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy , Ho, Er, Tm, Yb, Lu, or at least one rare earth metal element ion or group of ions is used as a near-infrared emission center of a stress luminescent material in aluminate in a co-doped state
  • the near-infrared stress luminescent material which has the outstanding near-infrared luminescent property can be provided.
  • a near infrared afterglow material having excellent near infrared luminescence can be provided.
  • a near-infrared afterglow having excellent near-infrared luminescence can be provided by using the above-mentioned near-infrared stress illuminant as an afterglow.
  • the present invention is a near-infrared stress luminescent material, a near-infrared stress luminescent material, a near-infrared afterglow material, a near-infrared afterglow, and a near-infrared stress luminescent material exhibiting an emission intensity of 1 nW / cm 2 or more. It can also be considered that the manufacturing method is provided. According to the earnest study of the present inventors, in order to permeate the living body and observe the mechanical distribution inside the living body from the outside of the living body, at least 1 nW / cm 2 in a wavelength range of 650 to 1100 nm called a living body window.
  • the above emission intensity is necessary, and the near-infrared stress luminescent material, near-infrared stress luminescent material, near-infrared afterglow material, near-infrared afterglow, and near-infrared according to this embodiment.
  • a near-infrared stress-stimulated luminescent material a near-infrared stress luminescent material, a near-infrared stress luminescent material, a near-infrared afterglow material, a near-red light exhibiting an emission intensity of 1 nW / cm 2 or more in the wavelength range of 650 to 1100 nm It is possible to provide a method for producing an afterglow and a near infrared stress luminescent material.
  • Nd 2 O 3 is a rare earth metal element ions feedstock and (manufactured by Kojundo Chemical Laboratory), respectively at a molar ratio 0.97 : 2: 0.01: 0.01 were weighed so as to be 0.01, while adding 1-10% H 3 BO 3 (manufactured by Wako Pure Chemical Industries, Ltd.) in a molar ratio, and sufficiently mixed using a mortar in ethanol It was.
  • ethanol was sufficiently evaporated from this mixture, and the obtained powder was placed in a crucible and pre-baked by heating in air at 800 ° C. for 2 hours using a muffle furnace manufactured by Yamato Scientific Co., Ltd. After that, firing in a reducing atmosphere carbon electric furnace at 1100-1500 ° C. in a reducing atmosphere of 5% H 2 / Ar for 2-8 hours, for example, 6 hours (main firing), and the obtained powder is near-infrared A stress luminescent material was obtained.
  • the preliminary baking is performed prior to the main baking, but the main baking may be performed without performing the temporary baking.
  • the near-infrared stress-stimulated luminescent material prepared by the near-infrared stress light-emitting material has a near-infrared stress compared to the case where the main-firing is performed after the pre-firing. The knowledge that the emission intensity in the region is remarkably improved has been obtained.
  • the main baking is performed at 1100 to 1500 ° C., but the temperature of the main baking is preferably in the range of 1300 to 1500 ° C. Findings that the emission intensity in the near-infrared region of the near-infrared stress luminescent material prepared when firing at a temperature of 1300 ° C or higher and 1500 ° C or lower is significantly improved compared to the case of baking at a temperature of 1100 ° C or higher and lower than 1300 ° C Is obtained.
  • H 3 BO 3 as a sintering aid is added in a molar ratio of 1 to 10%, more preferably in a molar ratio of 2 to 4%.
  • a near-infrared stress luminescent material prepared by adjusting the amount of H 3 BO 3 to 2% or more and 4% or less, compared to 1% or more and less than 2%, or more than 4% and 10% or less. Knowledge has been obtained that the emission intensity in the near infrared region is remarkably improved.
  • strontium aluminate as a base material, Eu 2+ , Cr 3+ , Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Near-infrared stress luminescent material (SrAl 2 O 4 : Eu 0.01 Cr 0.01 Q 0.01 ) prepared by co-addition with ions (Q) of at least one rare earth metal element selected from Er, Tm, Yb, and Lu ) was measured to determine what kind of luminescence was exhibited. The concentration of each metal ion added in this experiment is 1 mol%. The result is shown in FIG.
  • the stress luminescence measurement is performed by applying a load to the stress-stimulated luminescent material that emits afterglow, and the measurement data is a graph of luminescence intensity shown in FIG. 7B described later. It shows the following behavior.
  • the intensity of afterglow in FIG. 2 and FIG. 3 to be described later is, for example, a value (elapsed time 0 seconds) immediately before applying a load in the emission curve of FIG. 7B, and the stress in FIG. 2 and FIG.
  • the intensity of light emission corresponds to, for example, a peak value in the light emission curve of FIG.
  • Nd 3+ neodymium relatively high near-infrared stress luminescence and afterglow were observed for Nd 3+ neodymium, Dy 3+ dysprosium, Ho 3+ holmium, and Er 3+ erbium, among which Nd 3+ neodymium For the compound with Dy 3+ dysprosium added, extremely high near-infrared stress luminescence and afterglow were observed.
  • Eu 2+ , Cr 3+, and ions (Q) of at least one rare earth metal element selected from La, Nd, Gd, Tb, Dy, Ho, Er, and Tm are mixed with strontium aluminate ( Co-addition to SrAl 2 O 4 ) has been shown to be an effective means of obtaining higher near infrared stress luminescence / afterglow materials.
  • At least three of Eu 2+ , Nd 3+ and Cr 3+ , or at least three of Eu 2+ , Dy 3+ and Cr 3+ should be co-added to strontium aluminate (SrAl 2 O 4 ) Has been shown to be an effective means of obtaining a very high near-infrared stress luminescence / afterglow material.
  • Eu 2+, Cr 3+, compounds codoped simultaneously strontium aluminate the Nd 3+ (SrAl 2 O 4) (SrAl 2 O 4: Eu 2+, Cr 3+, Nd 3+, Abbreviation SAOEuCrNd), Eu 2+ , Nd 3+ , Cr 3+ metal ion-free compound (SrAl 2 O 4 , abbreviated SAO), compound with only one added (SrAl 2 O 4 : Eu 2+ , Abbreviation SAOEu, SrAl 2 O 4 : Cr 3+ , abbreviation SAOCr, SrAl 2 O 4 : Nd 3+ , abbreviation SAONd), a compound to which only two types are added (SrAl 2 O 4 : Eu 2+ , Cr 3+ , The near infrared stress emission and afterglow intensity of abbreviations SAOEuCr, SrAl 2 O 4 : Eu 2+ , Nd 3+ (S
  • the concentration range of Eu 2+ may be 0.25 to 10%, but more desirably 0.5 to 3.0% (the range of the bar on the concentration axis). It was shown that.
  • the concentration range of Nd 3+ may be 0.25 to 10%, but more preferably 0.5 to 2% (the range of the bar on the concentration axis). It has been shown.
  • the Cr 3+ concentration range should be 0.25 to 10%, but more preferably 2 to 5% (the range of the bar on the concentration axis). It has been shown.
  • the near-infrared stress luminescent material or afterglow material according to the present embodiment emits light in the near-infrared light region (biologically transmitted light wavelength: 650 to 1100 nm, wavelength region not included in the fluorescent lamp: 850 nm or more). Confirmed to have. The result is shown in FIG.
  • the near-infrared stress luminescent material which concerns on this embodiment functions as a near-infrared afterglow material. That is, it is confirmed that the near-infrared stress luminescent material according to the present embodiment has afterglow in the near-infrared light region (biologically transmitted light wavelength: 650 to 1100 nm, wavelength region not included in the fluorescent lamp: 850 nm or more). Went.
  • the afterglow from Eu 2+ (510 measured at ⁇ 8 nm filter, FIG. 5 (i) Measurement wavelength range including the peak), the wavelength range 650 ⁇ 1100 nm window of the optical bio Is afterglow derived from Cr 3+ (measured with 690 ⁇ 8 nm filter, Figure 5 (ii), (iii) measurement wavelength range including peak), afterglow derived from Nd 3+ (> 760 nm filter) Measurement, Fig. 5 (iv), (v) Measurement wavelength range including peak) was observed. From this, it was shown that the near-infrared stress luminescent material which concerns on this embodiment is a near-infrared afterglow material.
  • the near-infrared stress illuminant (near-infrared afterglow) according to the present embodiment is a near-infrared light region (biologically transmitted light wavelength: 650 to 1100 nm, wavelength region not included in a fluorescent lamp: 850 nm or more) ) was confirmed to have stress luminescence.
  • SAOEuCrNd near-infrared stress luminescent material
  • the obtained light is transmitted through a near-infrared light CCD camera (SV) using a short-wavelength cut filter to transmit only near-infrared light of 760 nm or more, which matches the wavelength range of optical biological window 650-1100 nm. -200i, manufactured by photron).
  • SV near-infrared light CCD camera
  • a short-wavelength cut filter to transmit only near-infrared light of 760 nm or more, which matches the wavelength range of optical biological window 650-1100 nm. -200i, manufactured by photron.
  • numerical analysis was performed on the light emission intensity near the contact point between the pellet and the material testing machine. The result is shown in FIG.
  • FIG. 7 a specific stress light emission pattern (FIG. 7 (a): the contact point between the pellet and the material testing machine emits light) and a light emission response corresponding to the load signal were obtained (FIG. 7). 7 (b)). From this, it was shown that the near-infrared stress luminescent material according to the present embodiment has near-infrared stress luminescence. Moreover, it was shown that the near-infrared afterglow according to this embodiment has a near-infrared afterglow.
  • the pellet was excited with ultraviolet light (365 nm, 0.7 mW / cm 2 ) for 1 minute, and immediately after that, the pellet was covered with a palm. From the bright field image at this time, it can be confirmed that the back of the hand illuminated by bright ambient light is reflected (FIG. 8b).
  • this dark field image means that afterglow (near infrared light) from the pellet is detected through the palm (living tissue). This phenomenon is not observed with conventional stress luminescent materials that do not have near-infrared emission.
  • the near-infrared stress luminescent material according to this embodiment and the near-infrared stress luminescent material according to this embodiment emit near-infrared light having high biological permeability as afterglow. It was shown that it can be used as a near-infrared afterglow material or a near-infrared afterglow that can solve the problems of conventional stress-stimulated luminescence / afterglow materials that emit light at a low wavelength.
  • the stress luminescence derived from the near-infrared stress luminescence and the afterglow derived from the near-infrared afterglow can realize living body transmission. It verified about.
  • biomechanical information here, masticatory force
  • biomechanical information here, masticatory force
  • Went The appearance and results are shown in FIG.
  • a cylindrical pellet with a slightly reduced size of the above-mentioned near-infrared stress luminescent material was used as a sample (Fig. 9a), and all images were the same CCD camera (near-infrared light compatible, SV-200i, photron) Manufactured)-recorded in the same field of view.
  • this pellet was excited with ultraviolet rays (365 nm, 0.7 mW / cm 2 ) for 1 minute, placed in a transparent pack in consideration of the hygienic aspect of chewing, and then sandwiched between the back teeth with the light emitting surface facing outward .
  • the right cheek of the examiner illuminated by bright ambient light is moved (FIG. 9b).
  • the arrow in the figure means a position where there is a pellet sandwiched between the back teeth.
  • the near-infrared stress luminescent material (near-infrared stress luminescent material) according to the present embodiment emits near-infrared light having high biological permeability, and the problem of conventional stress luminescence / afterglow materials (low biological permeable emission wavelength) ).
  • the near-infrared stress luminescent material near-infrared stress luminescent material
  • the conventional problem of low bioluminescence of stress luminescence is solved, and mechanical information in the body (tooth, bone) , Including implants, artificial joints, etc.) can be detected from outside the body.
  • a cylindrical pellet obtained by slightly increasing the size of the aforementioned near-infrared stress luminescent material was used as a sample.
  • this pellet was excited with ultraviolet rays (365 nm, 0.7 mW / cm 2 ) for 1 minute and sandwiched in a vise (FIG. 10 a).
  • a compressive load was applied to the pellets using a vise with the fluorescent lamp lit and the green LED lit immediately beside it.
  • FIG. 10b shows a camera recording of the situation at that time.
  • a short wavelength cut filter for cutting light of 830 nm or less contained in the fluorescent lamp is installed in front of the camera.
  • the near-infrared stress luminescent material near-infrared stress luminescent material
  • the problem that a conventional dark room is required can be solved, and stress luminescence measurement can be performed even in a bright place. It has been shown.
  • the near-infrared stress luminescent material As described above, according to the near-infrared stress luminescent material according to the present embodiment, Eu 2+ , Cr 3+ , Sc, Y, La, Ce, Pr, Nd, Pm, Because it was decided to be co-doped with at least one rare earth metal element ion or group of ions selected from Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • a stress-stimulated luminescent material capable of emitting light can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Luminescent Compositions (AREA)

Abstract

近赤外光を放射可能な応力発光材料を提供する。アルミン酸塩に、Eu2+と、Cr3+と、Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン又はイオン群と、が共添加されてなることとした。また、前記アルミン酸塩は、一般式MAl2O4で表されるアルミン酸塩(ただし、MはMg、Ca、Sr、Baのいずれか)であることや、前記Eu2+、Cr3+、希土類金属元素のイオン又はイオン群は、前記アルミン酸塩のMの0.25~10%を置換する濃度で共添加されていることにも特徴を有する。

Description

近赤外応力発光材料及び近赤外応力発光体並びに近赤外応力発光材料の製造方法
 本発明は、機械的な外力が加えられることにより生じる変形によって近赤外発光を示す近赤外応力発光材料及び近赤外応力発光体、並びに近赤外応力発光材料の製造方法に関する。
 従来、物質が外部からの刺激を与えられることによって、室温付近で可視光を発する現象は、いわゆる蛍光現象としてよく知られている。
 このような蛍光現象を生じる物質、すなわち蛍光体は、蛍光ランプなどの照明灯や、CRT(Cathode Ray Tube)いわゆるブラウン管などのディスプレイなどとして用いられている。
 この蛍光現象を生じさせる外部からの刺激は、通常、紫外線、電子線、X線、放射線、電界、化学反応などによって与えられているが、機械的な外力などの刺激を加えて変形させることによって強く発光する材料については、長らく知られていなかった。
 そこで、本発明者が所属する研究機関において鋭意研究が行われた結果、機械的な外力により生じる変形によって発光する、これまでに知られていない新規な発光材料が提案された(例えば、特許文献1~6参照。)。
 このような発光材料は、その後応力発光材料と称され、現在では、新規な計測技術として、既設土木構造物の維持管理における非破壊検査技術や構造物の部材の応力分布の可視化技術などの応用研究が盛んに行われている。
 また、これら応力発光材料の発光色は主に、人間の明所比視感度が高い緑色であり、目視可能な程に高輝度で実用のニーズを満たす力-光変換効率が達成されている。
 また、紫外~可視~赤色領域に発光を有する応力発光材料についての報告もなされており、またこれらの応力発光材料は、同時に室温程度の熱にも応じて同色の残光を発する残光材料である事も報告されている。
特開2001-049251号公報 特開2000-119647号公報 特開2000-313878号公報 特開2003-165973号公報 特開2003-292949号公報 特開2004-043656号公報
 ところで、応力発光材料による計測・診断対象を生体内等へと拡張する際には、生体組織による光学的影響が少なく透過しやすい近赤外光(主に生体透過波長である650-1100nm:生体の窓)を使用する事が望ましい。
 しかしながら、上記従来の応力発光材料は、紫外~可視~赤色光を放射するものであったため、水や血液、生体組織等による吸収や散乱の影響を強く受けることとなり、透過性が著しく低下してしまうという問題があった。
 加えて、従来の紫外~可視~赤色光を用いた応力発光計測・診断においては、環境光(室内蛍光灯等、850nm以下)と応力発光材料から放射される光との波長範囲が被っている。
 つまり圧倒的な光量を持つ環境光が応力発光に対するノイズとして働くため、著しいSN比の低下を招くといった問題もあった。
 それゆえ従来は、暗室や暗幕等で環境光を排除して計測環境を整えていたが、測定を行う場所が例えば工場内の生産現場等であった場合、スペースや環境的な制限を受けることも多く、また、安全上の理由から蛍光灯は常時点灯とする規則が存在するなど、十分な環境光の排除ができない場合もあった。
 これらのことから、周囲の環境光に影響を受けずに応力計測が可能な発光色を有する応力発光材料が望まれていた。
 本発明は、斯かる事情に鑑みてなされたものであって、近赤外光を放射可能な応力発光材料を提供する。
 また、本発明では、近赤外光を放射可能な応力発光体や、応力発光材料の製造方法についても提供する。
 上記従来の課題を解決するために、本発明に係る近赤外応力発光材料では、(1)アルミン酸塩に、Eu2+と、Cr3+と、Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン又はイオン群とが共添加されてなることとした。
 また、本発明に係る近赤外応力発光材料では、下記の点にも特徴を有する。
(2)前記アルミン酸塩は、一般式MAl2O4で表されるアルミン酸塩(ただし、MはMg、Ca、Sr、Baのいずれか)であること。
(3)前記Eu2+は、前記一般式MAl2O4で表されるアルミン酸塩のMの0.25~10%を置換する濃度で共添加されていること。
(4)前記Cr3+は、前記一般式MAl2O4で表されるアルミン酸塩のMの0.25~10%を置換する濃度で共添加されていること。
(5)前記希土類金属元素のイオン又はイオン群は、前記一般式MAl2O4で表されるアルミン酸塩のMの0.25~10%を置換する濃度で共添加されていること。
(6)前記希土類金属元素のイオンがNd3+であること。
(7)前記Nd3+は、前記一般式MAl2O4で表されるアルミン酸塩のMの0.25~10%を置換する濃度で共添加されていること。
 また、本発明に係る近赤外応力発光材料では、(8)アルミン酸塩に、Eu2+と、Nd3+とが共添加されてなることとした。
 また、本発明に係る近赤外応力発光体では、(9)上記(1)~(8)いずれかに記載の近赤外応力発光材料を所定のマトリクス材料中に分散させて形成した。
 また、本発明に係る近赤外応力発光体では、(10)近赤外波長以外の波長を有する電磁波であって前記近赤外応力発光材料が放射する電磁波により励起され、近赤外波長を有する電磁波を放射する波長変換物質が、前記マトリクス材料中に添加されていること、にも特徴を有する。
 また、本発明に係る近赤外応力発光材料の製造方法では、(11)後記焼成工程を経ることによりアルミン酸塩を構成する母体材料構成原料と、前記アルミン酸塩にEu2+を供給するEu2+供給原料と、前記アルミン酸塩にCr3+を供給するCr3+供給原料と、前記アルミン酸塩にSc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン又はイオン群を供給する希土類金属元素イオン供給原料と、を混合して原料混合物を生成する混合工程と、前記混合工程にて生成した原料混合物を焼成してアルミン酸塩に、Eu2+と、Cr3+と、前記希土類金属元素のイオン又はイオン群と、が共添加されてなる近赤外応力発光材料を生成する焼成工程と、を有することを特徴とする。
 また、本発明では、(12)Eu2+と、Cr3+と、Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン又はイオン群とを、アルミン酸塩中における応力発光材料の近赤外線発光中心として共添加状態で使用することとした。
 また、本発明では、(13)上記(1)~(8)いずれかに記載の近赤外応力発光材料を近赤外残光材料として使用することとした。
 また、本発明では、(14)上記(9)又は(10)に記載の近赤外応力発光体を近赤外残光体として使用することとした。
 本発明によれば、近赤外光を放射可能な応力発光材料や応力発光体、応力発光材料の製造方法、近赤外残光材料、近赤外残光体を提供することができる。
本実施形態に係る近赤外応力発光材料の応用例を示した説明図である。 添加金属イオン種の依存性確認試験の結果を示す説明図である。 添加金属イオン種の依存性確認試験の結果を示す説明図である。 金属イオン添加濃度依存性確認試験の結果を示す説明図である。 近赤外応力発光材料の発光スペクトルを示した説明図である。 近赤外応力発光材料の残光材料としての各波長における残光減衰曲線を示した説明図である。 近赤外応力発光体の応力発光計測試験の結果を示した説明図である。 近赤外応力発光体の残光体としての残光による生体透過像取得実験結果を示した説明図である。 近赤外応力発光体及び残光体としての生体力学情報可視化実験の結果を示した説明図である。 明環境での応力発光計測試験の結果を示した説明図である。
 本発明は、近赤外光を発する応力発光材料や、応力発光体、これらの使用方法や近赤外残光材料・近赤外残光体としての使用、近赤外応力発光材料の製造方法を提供するものである。
 まず、本発明の理解を容易とするために、本実施形態に係る近赤外応力発光材料の応用について一例を述べ、その後、本実施形態に係る近赤外応力発光材料等の具体的な構成について説明する。
 前述したように、近赤外光を実用的な強度で発する応力発光材料は、応力発光材料による計測・診断対象を生体内等へと拡張した際や、十分な環境光の排除が困難な場合などにおいて極めて有用である。
 特に、生体関連分野においては、例えば図1に示すように、人工関節やインプラントにかかるin-vitroな応力分布、術後のin-vivo応力分布・経時変化等を迅速且つ高い信頼性をもって計測できるin-vivo力学分布迅速評価システム等に繋がるものと考えられる。
 これは例えば医療現場での正確な診断を可能とし、インプラントの術後劣化、周辺骨への影響の実測を基にしたテーラーメイド医療、先制医療、術式改善に繋がると思われる。また、力学分布迅速評価法の確立がもたらす開発コスト抑制、高信頼デザイン製品は国内関連企業の国際競争力の強化に繋がり、ひいては患者の負担(痛み・費用両面の)軽減が期待できる。
 また、特に図示しないが、環境光の存在する条件下でも応力発光材料を利用した力学的なデータの取得を行うことが可能であることから、社会インフラ・構造物・生産部品・機械・工場の定期検査、安全診断、保全に利用する事が期待できる。
 次に、本実施形態に係る近赤外応力発光材料の構成について説明する。本実施形態に係る近赤外応力発光材料は、具体的には、アルミン酸塩に、Eu2+と、Cr3+と、Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン又はイオン群と、が共添加されてなるものである。
 本実施形態に係る近赤外応力発光材料は、光によって励起させると母体材料としてのアルミン酸塩中のEu2+による格子欠陥に起因するトラップ準位に電子や正孔(キャリア)が捕捉された状態となり、この母体材料に応力や熱が加わるとこの捕捉されたキャリアが放出されて再結合することとなる。このとき所定の緑色光(510~530nm、例えば516nm)の光が放射されるが、この光の一部がCr3+や所定の希土類金属元素のイオンに作用して近赤外光を放射するものと考えられる。
 このような格子欠陥をもつ母体材料には、非化学量論的組成を有するアルミン酸塩の少なくとも1種が用いられる。ここで、非化学量論的組成とは、化学量論的化学組成式から逸脱する化学組成式を有する組成のことである。
 このような非化学量論的組成を有するアルミン酸塩としては、アルカリ土類金属化合物、例えばアルカリ土類金属酸化物とアルミニウム酸化物とから構成され、且つこの中のアルカリ土類金属イオンの組成比を欠損させたアルカリ土類金属欠損型であって、式MxAl2O3+x[式中のMは、それぞれMg、Ca、Sr又はBaであり、xは0.7≦x<1を満たす数である]で表わされるものを主成分とするものを挙げることができる。
 また、近赤外応力発光材料に使用される発光中心は、例えば、2価のユウロピウムイオン(Eu2+)と、3価のクロムイオン(Cr3+)と、所定の希土類金属元素のイオン又はイオン群(Q)とを共添加状態で用いることができる。
 近赤外応力発光材料中のEu2+の濃度は、一般式MAl2O4で表される母体材料としてのアルミン酸塩中のMがEu2+に0.25~10%置き換えられる濃度とすることができ、より好ましくは、0.5~1.5%置き換えられる濃度とすることができる。
 また、近赤外応力発光材料中のCr3+の濃度は、一般式MAl2O4で表される母体材料としてのアルミン酸塩中のMがCr3+に0.25~10%置き換えられる濃度とすることができ、より好ましくは、2~5%置き換えられる濃度とすることができる。
 また、近赤外応力発光材料中の希土類金属元素のイオン又はイオン群(Q)の濃度は、一般式MAl2O4で表される母体材料としてのアルミン酸塩中のMが希土類金属元素のイオン又はイオン群(Q)に0.25~10%置き換えられる濃度とすることができる。
 この所定の希土類金属元素としては、例えば、スカンジウム(Sc)、イットリウム(Y)や、ランタノイドに属する元素、すなわち、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)から選ばれる少なくともいずれか1つを用いることができる。
 これらの発光中心は、上述の条件の範囲内で、母体材料の格子構造や、所望する発光色等に合わせて、共添加する元素の数を調整しても良い。すなわち、添加する発光中心の量は、Mの置換に満たない量であっても良く、過剰添加であっても良い。
 また、希土類金属元素のイオン(Q)は、例えばNd3+であることとしても良い。希土類金属元素のイオン(Q)をNd3+とすることにより、良好な近赤外発光を行わせることができる。
 近赤外応力発光材料中のNd3+の濃度は、一般式MAl2O4で表される母体材料としてのアルミン酸塩中のMがNd3+に0.25~10%置き換えられる濃度とすることができ、より好ましくは、0.5~2%置き換えられる濃度とすることができる。具体的には、例えばMをSrとした場合、一般式Sr{1-(2x+3y+3z)/2}Al2O4:xEu2+, yCr3+, zNd3+ (ただし、x, y, z は、0.25~10mol%、好ましくは0.5~2mol%)で表される。なお、以下の説明や図中において、例えば母体材料としてのSrAl2O4中のSrが、Eu2+に0.01%、Cr3+に0.01%、Nd3+に0.01%置き換えられた材料を、SrAl2O4:Eu0.01Cr0.01Nd0.01のように示す場合もある。
 また、本実施形態に係る近赤外応力発光材料は、アルミン酸塩に、Eu2+と、Nd3+とが共添加されたものとしても良い。このような近赤外応力発光材料においても、良好な近赤外発光を示すことができる。
 また、上述した近赤外応力発光材料は、所定のマトリクス材料中に分散させて近赤外応力発光体を形成させても良い。例えば、硬化性を有する樹脂をマトリクス材料とし、硬化前の樹脂中に粉末状の近赤外応力発光材料を分散させ硬化させることにより、近赤外発光性を有する所望の形状の近赤外応力発光体を容易に形成することができる。なお、マトリクス材料は少なくとも、同マトリクス材料中に混在させた近赤外応力発光材料を励起させるための励起光や、近赤外応力発光材料から放射される近赤外光を透過可能なものが用いられる。また、近赤外応力発光体の外部より加えられた力を近赤外応力発光材料に伝達し、近赤外応力発光材料において近赤外応力発光が惹起される程度の応力を付与できる材料であるのが望ましい。但し、近赤外応力発光体を残光体としてのみ使用する場合には、この限りでない。
 ところで、本実施形態に係る近赤外応力発光材料は、先にも述べたようにその組成によっては近赤外光以外の光(例えば、516nmの緑色光)も放射する場合がある。
 そこで、このような近赤外光以外の光を利用して近赤外光を放射させるべく、近赤外応力発光体を構成する所定のマトリクス材料中に波長変換物質を添加しても良い。
 すなわち、近赤外波長以外の波長を有する電磁波であって前記近赤外応力発光材料が放射する電磁波により励起され、近赤外波長を有する電磁波を放射する波長変換物質を、近赤外応力発光体を構成する所定のマトリクス材料中に添加しても良い。
 マトリクス材料中に添加する波長変換物質としては、Eu2+由来の光(近赤外波長以外の波長を有する電磁波)を吸収し、近赤外領域に発光可能な色素、蛍光材料、波長変換材料とすることができ、一例を挙げるならば、CdSe系量子ドット、CdSeTe系量子ドット、Cr錯体、Nd錯体, Alexa系色素、カルボシアニン系色素(Cy3, Cy5, Cy7)等とすることができる。
 このような構成とすることにより、所望の形に容易に成型でき、しかもより高い近赤外発光性を有する応力発光体を提供することができる。なお、マトリクス材料は少なくとも、同マトリクス材料中に混在させた近赤外応力発光材料を励起させるための励起光や、近赤外応力発光材料から放射される近赤外光の他、Eu2+由来の光(近赤外波長以外の波長を有する電磁波)を透過可能なものが用いられる。
 また、本実施形態では、近赤外応力発光材料の製造方法についても提供する。具体的には、後記焼成工程を経ることによりアルミン酸塩を構成する母体材料構成原料と、前記アルミン酸塩にEu2+を供給するEu2+供給原料と、前記アルミン酸塩にCr3+を供給するCr3+供給原料と、前記アルミン酸塩にSc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン又はイオン群を供給する希土類金属元素イオン供給原料と、を混合して原料混合物を生成する混合工程と、前記混合工程にて生成した原料混合物を焼成してアルミン酸塩に、Eu2+と、Cr3+と、前記希土類金属元素のイオン又はイオン群と、が共添加されてなる近赤外応力発光材料を生成する焼成工程と、を有することを特徴とする近赤外応力発光材料の製造方法を提供する。
 ここで母体材料構成原料は、上記焼成工程にて母体材料としてのアルミン酸塩を構成することのできる原料であれば特に限定されるものではない。例えば、母体材料をアルミン酸ストロンチウムとする場合には、混合工程における母体材料構成原料として炭酸ストロンチウム(SrCO3)や酸化アルミニウム(α-Al2O3)等を用いて焼成工程を経ることにより母体材料を構成することが可能であるが、炭酸塩や酸化物に限らず、硝酸塩、塩化物、水酸化物、有機塩等、所望する母体材料を形成可能な原料化合物を利用することができる。
 また、Eu2+を供給するEu2+供給原料や、Cr3+を供給するCr3+供給原料、希土類金属元素のイオン又はイオン群(Q)を供給する希土類金属元素イオン供給原料についても特に限定されるものではなく、例えばEu2+であれば、酸化ユウロピウムEu2O3により母体材料にEu2+を供給することが可能であるが、酸化物に限らず、硝酸塩、塩化物、水酸化物、有機塩、炭酸塩等、焼成工程を経ることにより母体材料にEu2+や、Cr3+、希土類金属元素のイオン又はイオン群(Q)を供給できる原料化合物を利用することができる。
 また、応力発光材料の製造は、固相合成法、ゾルゲル法、水熱合成法、蒸発乾固法、爆発法、噴霧法、超音波噴霧法等を利用して行うようにしても良い。
 このように、本実施形態に係る近赤外応力発光材料では、Eu2+と、Cr3+と、Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン又はイオン群とを、アルミン酸塩中における応力発光材料の近赤外線発光中心として、共添加状態で使用することで、優れた近赤外発光性を有する近赤外応力発光材料を提供することができる。
 また、上述の近赤外応力発光材料を残光材料として使用することで、優れた近赤外発光性を有する近赤外残光材料を提供することができる。
 併せて、上述の近赤外応力発光体を残光体として使用することで、優れた近赤外発光性を有する近赤外残光体を提供することができる。
 なお、本発明は、1nW/cm2以上の発光強度を示す近赤外応力発光材料、近赤外応力発光体、近赤外残光材料、近赤外残光体、近赤外応力発光材料の製造方法を提供するものであると考えることもできる。本発明者らの鋭意研究によれば、生体を透過させて生体内部における力学的分布を生体外部より観察するためには、生体の窓とよばれる650~1100nmの波長範囲において少なくとも1nW/cm2以上の発光強度が必要であることが分かっており、本実施形態に係る近赤外応力発光材料、近赤外応力発光体、近赤外残光材料、近赤外残光体、近赤外応力発光材料の製造方法によれば、650~1100nmの波長範囲において1nW/cm2以上の発光強度を示す近赤外応力発光材料、近赤外応力発光体、近赤外残光材料、近赤外残光体、近赤外応力発光材料の製造方法を提供することができる。
 以下、本実施形態に係る近赤外応力発光材料や近赤外応力発光体、及びこれらの残光材料や残光体としての使用、並びに近赤外応力発光材料の製造方法について、図面や実験データを参照しながら更に詳細に説明する。なお、以下の説明では母体材料をSrAl2O4とした場合を例として示すが、先に述べたとおり母体材料の組成はこれに限定されるものではない。
〔近赤外応力発光材料(SrAl2O4:Eu0.01Cr0.01Nd0.01)の調製〕
 まず、近赤外応力発光材料の調製について説明する。ここではSrAl2O4:Eu0.01Cr0.01Nd0.01の調製を一例として示すが、その他の組成についても以下に示す調製方法と略同様にして調製可能である。
 母体材料構成原料としてのSrCO3(関東化学製)及びα-Al2O3(高純度化学研究所製)と、Eu2+供給原料としてのEu2O3(高純度化学研究所製)と、Cr3+供給原料としてのCr2O3(高純度化学研究所製)と、希土類金属元素イオン供給原料であるNd2O3(高純度化学研究所製)とを、モル比でそれぞれ0.97:2:0.01:0.01:0.01となるように秤量し、モル比で1~10%のH3BO3(和光純薬工業製)を添加した状態で、エタノール中で乳鉢を用いて十分混合させた。
 次に、この混合物からエタノールを十分に蒸発させ、得られた粉末をるつぼに収容し、ヤマト科学社製マッフル炉を用いて、空気中で800℃にて2時間加熱して仮焼成を行った後、還元雰囲気カーボン電気炉を用い、5%H2/Arの還元雰囲気下1100~1500℃にて2~8時間、例えば6時間焼成(本焼成)を行い、得られた粉末を近赤外応力発光材料とした。
 なお、本調製例では本焼成に先だって仮焼成を行うこととしているが、仮焼成を行うことなく本焼成を行うようにしても良い。本発明者らの試験によれば、仮焼成を経ずに本焼成を行った場合、仮焼成を経て本焼成を行った場合に比して、調製した近赤外応力発光材料の近赤外領域における発光強度が著しく向上する知見が得られている。
 また、本調製例では、本焼成を1100~1500℃で行うようにしているが、この本焼成の温度を1300~1500℃の範囲とするのが好ましい。1300℃以上1500℃以下の温度で焼成した場合、1100℃以上1300℃未満の温度で焼成した場合に比して調製した近赤外応力発光材料の近赤外領域における発光強度が著しく向上する知見が得られている。
 また、本調製例では、焼結助剤としてのH3BO3を、モル比で1~10%添加することとしているが、モル比で2~4%とするのが更に好ましい。H3BO3の添加量を2%以上4%以下とすることにより、1%以上2%未満、又は4%を越え10%以下とした場合に比して調製した近赤外応力発光材料の近赤外領域における発光強度が著しく向上する知見が得られている。
〔近赤外応力発光材料の添加金属イオン種の依存性確認試験〕
 本試験では、Eu2+(2価のユウロピウム)及びCr3+(3価のクロム)に加え、どのような希土類金属イオン(Q)をアルミン酸ストロンチウム(SrAl2O4)に共添加するのが有効かについて、前述の製造方法に従って種々試験サンプルを作成し、荷重を付与して検討を行った。
 具体的には、母体材料としてのアルミン酸ストロンチウムに、Eu2+と、Cr3+と、Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン(Q)と、を共添加して調製した近赤外応力発光材料(SrAl2O4:Eu0.01Cr0.01Q0.01)の発光強度を測定し、どのような発光性を示すかについて検討した。この実験における各金属イオンの添加濃度は全て1mol%としている。その結果を図2に示す。なお、応力発光測定は、残光を放っている励起後の応力発光材料に対して荷重を付与して行われるものであり、その測定データは後述の図7(b)に示す発光強度のグラフのような挙動を示す。図2や後述の図3における残光の強度は、例えば図7(b)の発光曲線において荷重を付加する直前の値(経過時間0秒の値)であり、図2や図3のおける応力発光の強度は、例えば図7(b)の発光曲線におけるピークの値に相当する。
 図2から分かるように、Eu2+、Cr3+以外にアルミン酸ストロンチウム(SrAl2O4)に共添加する希土類金属イオンの種類、有無に関わらずいずれの系でも近赤外応力発光・残光を観測できた。
 また注目すべきことに、Nd3+ネオジム、Dy3+ジスプロシウム, Ho3+ホルミウム、Er3+エルビウムに関しては比較的高い近赤外応力発光・残光が観測され、その中でも特にNd3+ネオジム、Dy3+ジスプロシウムを添加した化合物に関しては、極めて高い近赤外応力発光・残光が観測された。
 これらのことから、Eu2+と、Cr3+と、Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン(Q)と、をアルミン酸ストロンチウム(SrAl2O4)に共添加することは、高い近赤外応力発光・残光材料を得る有効な手段であることが示された。
 また、Eu2+と、Cr3+と、La, Nd, Gd, Tb, Dy, Ho, Er, Tmから選ばれる少なくともいずれか1つの希土類金属元素のイオン(Q)と、をアルミン酸ストロンチウム(SrAl2O4)に共添加することは、より高い近赤外応力発光・残光材料を得る有効な手段であることが示された。
 特に、少なくともEu2+、Nd3+、Cr3+の3種、若しくは、少なくともEu2+、Dy3+、Cr3+の3種をアルミン酸ストロンチウム(SrAl2O4)に共添加することは、極めて高い近赤外応力発光・残光材料を得る有効な手段であることが示された。
〔Eu2+、Cr3+、Nd3+の組合せを違えたアルミン酸ストロンチウム(SrAl2O4)の近赤外応力発光・残光強度に関する添加金属イオン種の依存性確認試験〕
 次に、先の試験にて近赤外発光性を示したSc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, LuのうちNdに着目し、Eu2+、Cr3+、Nd3+の組合せにおける近赤外発光性の違いについて検証を行った。
 具体的には、Eu2+、Cr3+、Nd3+を同時にアルミン酸ストロンチウム(SrAl2O4)に共添加した化合物(SrAl2O4: Eu2+, Cr3+, Nd3+、略称SAOEuCrNd)や、Eu2+、Nd3+、Cr3+の金属イオンが無添加の化合物(SrAl2O4、略称SAO)、1種類のみを添加した化合物(SrAl2O4: Eu2+、略称SAOEu、SrAl2O4: Cr3+、略称SAOCr、SrAl2O4: Nd3+、略称SAONd)、2種類のみを添加した化合物(SrAl2O4: Eu2+, Cr3+、略称SAOEuCr、SrAl2O4: Eu2+, Nd3+、略称SAOEuNd、SrAl2O4: Cr3+, Nd3+、略称SAOCrNd)の近赤外応力発光・残光強度を比較した。なお、この実験における各金属イオンの添加濃度は全て各1mol%としている。その結果を図3に示す。
 図3から分かるように、SAOEuCrや、SAOEuNd、SAOEuCrNdにおいて顕著な近赤外応力発光が認められた。中でも、Eu2+、Cr3+、Nd3+の3種類を同時にアルミン酸ストロンチウム(SrAl2O4)に共添加した化合物は、著しく高い近赤外応力発光・残光が得られた。
 このことより、アルミン酸塩にEu2+、Cr3+が共添加されたり、アルミン酸塩にEu2+、Nd3+が共添加されたり、Eu2+、Cr3+、Nd3+が共添加されることで、応力により近赤外光を発する近赤外応力発光材料となることが示された。
 また特に、Eu2+、Cr3+、Nd3+の3種類を同時にアルミン酸ストロンチウム(SrAl2O4
に共添加することが、高い近赤外応力発光・残光材料を得る有効な手段であることが示された。
〔近赤外応力発光・残光強度の金属イオン添加濃度依存性確認試験〕
 次に、SAOEuCrNdに着目し、Eu2+、Cr3+、Nd3+の濃度をそれぞれ変化させた際の近赤外発光性及び残光性の違いについて検討を行った。その結果を図4に示す。
 本試験の結果、図4(a)からも分かるように、Eu2+の濃度範囲は0.25~10%であれば良いが、より望ましくは0.5~3.0%(濃度軸上の棒線の範囲)であることが示された。
 また、図4(b)からも分かるように、Nd3+の濃度範囲は0.25~10%であれば良いが、より望ましくは0.5~2%(濃度軸上の棒線の範囲)であることが示された。
 また、図4(c)からも分かるように、Cr3+の濃度範囲は0.25~10%であれば良いが、より望ましくは2~5%(濃度軸上の棒線の範囲)であることが示された。
〔近赤外応力発光材料・残光材料SAOEuCrNdの発光スペクトル確認試験〕
 次に、本実施形態に係る近赤外応力発光材料や残光材料が、近赤外光領域(生体透過光波長:650~1100nm、蛍光灯に含まれない波長領域:850nm以上)に発光を持つことについて確認を行った。その結果を図5に示す。
 本試験の結果、Eu2+からの発光(i)以外に、光学的な生体の窓である650~1100 nmの領域に、Cr3+に由来する発光ピーク(ii, iii)、Nd3+に由来する発光ピーク(iv, v)が観測された。このことより、本実施形態に係る近赤外応力発光材料や残光材料は、近赤外発光材料であることが示された。
〔近赤外応力発光材料のSAOEuCrNdの各波長での残光減衰曲線〕
 次に、本実施形態に係る近赤外応力発光材料が、近赤外残光材料として機能するものであるか確認を行った。すなわち、本実施形態に係る近赤外応力発光材料が、近赤外光領域(生体透過光波長:650~1100nm、蛍光灯に含まれない波長領域:850nm以上)に残光を持つことについて確認を行った。
 具体的には、紫外線(365nm、0.7mW/cm2)で一分間励起後からの残光を、近赤外光対応のCCDカメラ(SV-200i, photron社製)を用いて計測・記録し、数値解析を行った。励起波長については、紫外線、可視光ともに使用可能であるが、実験の簡便性の為、紫外線ランプを用いた。その結果を図6に示す。
 図6に示すように、Eu2+由来の残光(510±8 nmフィルターで計測、図5(i)ピークを含む計測波長範囲)、光学的な生体の窓の波長領域650~1100 nmには、Cr3+に由来する残光(690±8 nmフィルターで計測、図5(ii)、(iii)ピークを含む計測波長範囲)、Nd3+に由来する残光(>760 nmフィルターで計測、図5(iv)、(v)ピークを含む計測波長範囲)が観測された。このことから、本実施形態に係る近赤外応力発光材料は、近赤外残光材料であることが示された。
〔近赤外応力発光体・残光体の近赤外応力発光計測試験〕
 次に、本実施形態に係る近赤外応力発光体(近赤外残光体)が、近赤外光領域(生体透過光波長:650~1100nm、蛍光灯に含まれない波長領域:850nm以上)に応力発光を持つことについて確認を行った。
 試験には、近赤外応力発光材料(SAOEuCrNd)をマトリクス材料としてのエポキシ樹脂に添加し、硬化させて成型した円柱状のペレットを本実施形態に係る近赤外応力発光体、及び、近赤外残光体として用いた。先ず、本ペレットを紫外線(365nm、0.7mW/cm2)で1分間励起し、30秒後、材料試験機を用いて圧縮荷重(1000Nまで、3 mm/分)を印加した。
 得られた発光は、短波長カットフィルターを用いて光学的な生体の窓の波長領域650~1100 nmに合う、 760nm以上の近赤外光のみ透過させ、近赤外光対応のCCDカメラ(SV-200i, photron社製)を用いて記録した。また、ペレットと材料試験機の接点付近の発光強度について数値解析を行った。その結果を図7に示す。
 図7から分かるように、荷重印可に伴う特異的な応力発光パターン(図7(a):ペレットと材料試験機の接点が強く発光)、並びに荷重信号に対応した発光応答が得られた(図7(b))。このことから、本実施形態に係る近赤外応力発光体は、近赤外応力発光性を有することが示された。また、本実施形態に係る近赤外残光体は、近赤外残光性を有することが示された。併せて、これらの試験結果から、マトリクス材料中に波長変換物質を添加することで、より近赤外応力発光性の高い近赤外応力発光体や、より近赤外残光性の高い近赤外残光体を形成可能であることが示唆された。
〔近赤外応力発光体からの残光による生体透過像取得実験〕
 次に、本実施形態に係る近赤外応力発光体(近赤外残光体)を用いる事で、その残光が、生体を透過可能であるかについて検証を行った。その様子及び結果を図8に示す。
 本試験では、前述の近赤外応力発光体(SAOEuCrNd)のペレットを用い、全ての映像は同じカメラ(近赤外光対応、BU-51LN 、 BITRAN Co.)・同じ視野で記録した(図8a)。
 先ず、本ペレットを紫外線(365nm、0.7mW/cm2)で1分間励起し、直後にペレットを掌で覆い隠した。この時の明視野像からは、明るい環境光に照らされた手の甲が映し出されていることが確認できる(図8b)。
 その状態で部屋を暗転させると、掌のペレットがある位置(円の部分)周辺のみ、発光で明るくなったのが確認できた(図8c)。また、血管が黒い線として映っている事も確認できる。これは、血液は他の生体組織と比較して近赤外光の吸収率が高いためである。
 以上から鑑みて、本暗視野像は、ペレットからの残光(近赤外光)が、掌(生体組織)越しに検出されている事を意味している。この現象は、近赤外発光を持たない従来の応力発光材料では観測されない。
 以上のことより、本実施形態に係る近赤外応力発光材料や本実施形態に係る近赤外応力発光体は、生体透過性の高い近赤外光を残光として発するものであり、生体透過性の低い波長で発光する従来の応力発光・残光材料の課題を解決可能な近赤外残光材料や近赤外残光体として使用できることが示された。
〔近赤外応力発光体を用いた生体力学情報可視化実験〕
 次に、本実施形態に係る近赤外応力発光体を用い、その近赤外応力発光性に由来する応力発光や、近赤外残光性に由来する残光が生体透過を実現しうることについて検証を行った。
 具体的には、生体力学情報(ここでは咀嚼力)を、本実施形態に係る近赤外応力発光体からの近赤外応力発光や近赤外残光を介して、体外から検知できることについて実験を行った。その様子及び結果を図9に示す。
 試験は、前述の近赤外応力発光体をやや小型化した円柱状のペレットを試料として用い(図9a)、全ての映像は同じのCCDカメラ(近赤外光対応、SV-200i、 photron社製)・同じ視野で記録した。
 先ず、本ペレットを紫外線(365nm、0.7mW/cm2)で1分間励起し、咀嚼する衛生面を考慮して透明のパックに入れた後、発光面が外を向くようにして奥歯に挟んだ。この時の明視野像には、明るい環境光に照らされた試験者の右頬が移っている(図9b)。図中の矢印は、奥歯に挟まれた状態のペレットがある位置を意味している。
 その状態で部屋を暗転させると、矢印の付近に微かな発光が確認できる(図9c)。これはペレットからの近赤外残光が頬(生体組織)越しに検出されている事を意味している。
 更にこの状態で、ペレットを挟んでいる奥歯で噛む(咀嚼する)と、上述の位置の発光が強くなる事が確認できた(図9d)。これはペレットからの近赤外応力発光が頬(生体組織)越しに検出されている事を意味している。この現象は、近赤外発光を持たない従来の応力発光材料では観測されない。本実施形態に係る近赤外応力発光体(近赤外応力発光材料)が生体透過性の高い近赤外光を発し、従来の応力発光・残光材料の課題(低い生体透過性の発光波長)を解決した結果と言える。
 これらより、本実施形態に係る近赤外応力発光体(近赤外応力発光材料)を用いることで、従来の応力発光の低い生体透過性という課題を解決し、体内の力学情報(歯、骨、インプラント、人工関節等を含む)を、体外から検知できることが示された。
〔明環境での応力発光計測試験〕
 本試験では、本実施形態に係る近赤外応力発光体(近赤外応力発光材料)からの近赤外応力発光が、暗室・暗幕が必要という従来の課題を解決し、蛍光灯下・緑色光源下(約500 ルクス)の明環境でも計測できることについて検証を行った。その様子及び結果を図10に示す。
 試験は、前述の近赤外応力発光体をやや大型化した円柱状のペレットを試料として用いた。先ず、本ペレットを紫外線(365nm、0.7mW/cm2)で1分間励起し、万力に挟んだ(図10a)。あえて計測環境を明環境にする為に、蛍光灯を点灯し、かつすぐ横に緑色LEDを点灯した状態で、万力をもちいてペレットに圧縮荷重を印加した。その時の様子をカメラ記録したものを図10bに示す。なお、カメラの前には、蛍光灯に含まれる830nm以下の光をカットする短波長カットフィルターを設置している。
 その結果、蛍光灯、緑色LEDの光には全く影響されず、近赤外応力発光体・残光材料からの応力発光・残光のみが検出された。
 このことから、本実施形態に係る近赤外応力発光体(近赤外応力発光材料)を用いることにより、従来の暗室が必要という課題を解決し、明所でも応力発光計測が可能であることが示された。
 上述してきたように、本実施形態に係る近赤外応力発光材料によれば、アルミン酸塩に、Eu2+と、Cr3+と、Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン又はイオン群と、が共添加されてなることとしたため、近赤外光を放射可能な応力発光材料を提供することができる。
 最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。

Claims (14)

  1.  アルミン酸塩に、Eu2+と、Cr3+と、Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン又はイオン群と、が共添加されてなる近赤外応力発光材料。
  2.  前記アルミン酸塩は、一般式MAl2O4で表されるアルミン酸塩(ただし、MはMg、Ca、Sr、Baのいずれか)であることを特徴とする請求項1に記載の近赤外応力発光材料。
  3.  前記Eu2+は、前記一般式MAl2O4で表されるアルミン酸塩のMの0.25~10%を置換する濃度で共添加されていることを特徴とする請求項2に記載の近赤外応力発光材料。
  4.  前記Cr3+は、前記一般式MAl2O4で表されるアルミン酸塩のMの0.25~10%を置換する濃度で共添加されていることを特徴とする請求項2又は請求項3に記載の近赤外応力発光材料。
  5.  前記希土類金属元素のイオン又はイオン群は、前記一般式MAl2O4で表されるアルミン酸塩のMの0.25~10%を置換する濃度で共添加されていることを特徴とする請求項2~4いずれか1項に記載の近赤外応力発光材料。
  6.  前記希土類金属元素のイオンがNd3+であることを特徴とする請求項1~5いずれか1項に記載の近赤外応力発光材料。
  7.  前記Nd3+は、前記一般式MAl2O4で表されるアルミン酸塩のMの0.25~10%を置換する濃度で共添加されていることを特徴とする請求項6に記載の近赤外応力発光材料。
  8.  アルミン酸塩に、Eu2+と、Nd3+とが共添加されてなる近赤外応力発光材料。
  9.  請求項1~8いずれか1項に記載の近赤外応力発光材料を所定のマトリクス材料中に分散させて形成した近赤外応力発光体。
  10.  近赤外波長以外の波長を有する電磁波であって前記近赤外応力発光材料が放射する電磁波により励起され、近赤外波長を有する電磁波を放射する波長変換物質が、前記マトリクス材料中に添加されていることを特徴とする請求項9に記載の近赤外応力発光体。
  11.  後記焼成工程を経ることによりアルミン酸塩を構成する母体材料構成原料と、前記アルミン酸塩にEu2+を供給するEu2+供給原料と、前記アルミン酸塩にCr3+を供給するCr3+供給原料と、前記アルミン酸塩にSc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン又はイオン群を供給する希土類金属元素イオン供給原料と、を混合して原料混合物を生成する混合工程と、
     前記混合工程にて生成した原料混合物を焼成してアルミン酸塩に、Eu2+と、Cr3+と、前記希土類金属元素のイオン又はイオン群と、が共添加されてなる近赤外応力発光材料を生成する焼成工程と、を有することを特徴とする近赤外応力発光材料の製造方法。
  12.  Eu2+と、Cr3+と、Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luから選ばれる少なくともいずれか1つの希土類金属元素のイオン又はイオン群との、アルミン酸塩中における応力発光材料の近赤外線発光中心としての共添加状態での使用。
  13.  請求項1~8いずれか1項に記載の近赤外応力発光材料の残光材料としての使用。
  14.  請求項9又は10に記載の近赤外応力発光体の残光体としての使用。
PCT/JP2014/066725 2013-09-09 2014-06-24 近赤外応力発光材料及び近赤外応力発光体並びに近赤外応力発光材料の製造方法 WO2015033648A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/917,659 US20160222290A1 (en) 2013-09-09 2014-06-24 Near-infrared mechanoluminescent material, near-infrared mechanoluminescent body, and method for manufacturing near-infrared mechanoluminescent material
JP2015535353A JP6345676B2 (ja) 2013-09-09 2014-06-24 近赤外応力発光材料及び近赤外応力発光体並びに近赤外応力発光材料の製造方法
EP14842748.7A EP3045511A4 (en) 2013-09-09 2014-06-24 Near-infrared mechanoluminescent material, near-infrared mechanoluminescent object, and process for producing near-infrared mechanoluminescent material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013186698 2013-09-09
JP2013-186698 2013-09-09

Publications (1)

Publication Number Publication Date
WO2015033648A1 true WO2015033648A1 (ja) 2015-03-12

Family

ID=52628137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066725 WO2015033648A1 (ja) 2013-09-09 2014-06-24 近赤外応力発光材料及び近赤外応力発光体並びに近赤外応力発光材料の製造方法

Country Status (4)

Country Link
US (1) US20160222290A1 (ja)
EP (1) EP3045511A4 (ja)
JP (1) JP6345676B2 (ja)
WO (1) WO2015033648A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086327A (ja) * 2013-10-31 2015-05-07 独立行政法人産業技術総合研究所 応力発光材料、応力発光体、及び、応力発光材料の製造方法
CN106167703A (zh) * 2016-07-11 2016-11-30 华南理工大学 一种具有力致发光性能的发光材料及其制备方法
KR20190098126A (ko) * 2018-02-12 2019-08-21 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 질화물발광재료 및 그것을 포함하는 발광장치
JP2020093848A (ja) * 2018-11-30 2020-06-18 株式会社ベルグリーンワイズ 青果物の鮮度保持用収納袋
CN112779004A (zh) * 2019-11-08 2021-05-11 厦门稀土材料研究所 一种近红外长余辉发光纳米材料及其制备方法与应用
JPWO2020226109A1 (ja) * 2019-05-09 2021-12-09 株式会社島津製作所 応力測定方法及びシステム、並びに応力測定用プログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105349141B (zh) * 2015-11-30 2017-11-28 青岛大学 一种具有弹性应力发光性能的铌酸盐发光材料及其制备方法
EP3572481B1 (en) * 2017-01-19 2021-12-15 National Institute of Advanced Industrial Science and Technology Mechanoluminescent material, coating containing mechanoluminescent material, mechanoluminescent body, and method for producing mechanoluminescent material
WO2019153742A1 (zh) * 2018-02-12 2019-08-15 有研稀土新材料股份有限公司 一种近红外发光材料及由该材料制备的发光装置
JP7282307B2 (ja) * 2019-05-20 2023-05-29 株式会社島津製作所 応力発光データ処理装置、応力発光データ処理方法、応力発光測定装置および応力発光試験システム
EP3763688A1 (en) * 2019-07-10 2021-01-13 SASOL Germany GmbH Strontium aluminate mixed oxide and method for producing same
KR102636145B1 (ko) 2021-12-23 2024-02-08 서울시립대학교 산학협력단 축광체 입자 및 이의 제조방법
CN115340865B (zh) * 2022-08-24 2024-04-26 唐山学院 一种可见近红外发光材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119647A (ja) 1997-11-28 2000-04-25 Agency Of Ind Science & Technol 発光材料、その製造方法及びそれを用いた発光方法
JP2000313878A (ja) 1999-03-04 2000-11-14 Agency Of Ind Science & Technol 発光材料、その製造方法及びそれを用いた発光方法
JP2001049251A (ja) 1999-08-06 2001-02-20 Agency Of Ind Science & Technol 高輝度応力発光材料、その製造方法及びそれを用いた発光方法
JP2003165973A (ja) 2001-11-30 2003-06-10 National Institute Of Advanced Industrial & Technology メカノルミネッセンス材料
JP2003292949A (ja) 2002-03-29 2003-10-15 Japan Science & Technology Corp 高輝度発光材料とその製造方法
JP2004043656A (ja) 2002-07-12 2004-02-12 Japan Science & Technology Corp 高輝度メカノルミネッセンス材料及びその製造方法
JP2010169536A (ja) * 2009-01-22 2010-08-05 National Institute Of Advanced Industrial Science & Technology 応力発光粒子、及び当該粒子を備えた検査装置、並びに当該粒子を用いた検査方法
JP2011149943A (ja) * 2005-01-21 2011-08-04 National Institute Of Advanced Industrial Science & Technology 生体骨若しくは模擬骨又はそれらに装着する部材の応力分布測定方法及び測定部材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146346A (ja) * 2000-11-13 2002-05-22 Minolta Co Ltd 希土類元素を含むアルミン酸塩の薄膜およびその作製方法ならびに蓄光性光学素子
US8128839B2 (en) * 2004-04-09 2012-03-06 National Institute Of Advanced Industrial Science & Technology High-luminosity stress-stimulated luminescent material, manufacturing method thereof, and use thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119647A (ja) 1997-11-28 2000-04-25 Agency Of Ind Science & Technol 発光材料、その製造方法及びそれを用いた発光方法
JP2000313878A (ja) 1999-03-04 2000-11-14 Agency Of Ind Science & Technol 発光材料、その製造方法及びそれを用いた発光方法
JP2001049251A (ja) 1999-08-06 2001-02-20 Agency Of Ind Science & Technol 高輝度応力発光材料、その製造方法及びそれを用いた発光方法
JP2003165973A (ja) 2001-11-30 2003-06-10 National Institute Of Advanced Industrial & Technology メカノルミネッセンス材料
JP2003292949A (ja) 2002-03-29 2003-10-15 Japan Science & Technology Corp 高輝度発光材料とその製造方法
JP2004043656A (ja) 2002-07-12 2004-02-12 Japan Science & Technology Corp 高輝度メカノルミネッセンス材料及びその製造方法
JP2011149943A (ja) * 2005-01-21 2011-08-04 National Institute Of Advanced Industrial Science & Technology 生体骨若しくは模擬骨又はそれらに装着する部材の応力分布測定方法及び測定部材
JP2010169536A (ja) * 2009-01-22 2010-08-05 National Institute Of Advanced Industrial Science & Technology 応力発光粒子、及び当該粒子を備えた検査装置、並びに当該粒子を用いた検査方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
See also references of EP3045511A4
TATSUAKI SHINODA ET AL.: "CaAl2O4:Eu2+, Nd3+ ni Okeru Kinsekigai Chozanko to Photochromism Tokusei", PROCEEDINGS OF THE 25TH FALL MEETING OF THE CERAMIC SOCIETY OF JAPAN, 12 September 2012 (2012-09-12) *
YU TENG ET AL.: "Persistent Near Infrared Phosphorescence from Rare Earth Ions Co-doped Strontium Aluminate Phosphors", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 158, no. 2, 2011, pages K17 - K19, XP055327921 *
YUJIN TERASAWA ET AL.: "Down-conversion Kinsekigai Oryoku Hakkotai no Kaihatsu Shishin no Teian", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 79 KAI TAIKAI KOEN YOSHISHU, 29 March 2012 (2012-03-29), pages 479, XP008183050 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086327A (ja) * 2013-10-31 2015-05-07 独立行政法人産業技術総合研究所 応力発光材料、応力発光体、及び、応力発光材料の製造方法
CN106167703A (zh) * 2016-07-11 2016-11-30 华南理工大学 一种具有力致发光性能的发光材料及其制备方法
KR20190098126A (ko) * 2018-02-12 2019-08-21 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 질화물발광재료 및 그것을 포함하는 발광장치
JP2020510706A (ja) * 2018-02-12 2020-04-09 有研稀土新材料股▲フン▼有限公司 窒化物発光材料およびそれを含む発光装置
KR102236624B1 (ko) 2018-02-12 2021-04-05 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 질화물발광재료 및 그것을 포함하는 발광장치
JP6821813B6 (ja) 2018-02-12 2022-06-07 有研稀土新材料股▲フン▼有限公司 窒化物発光材料およびそれを含む発光装置
DE112018000135B4 (de) 2018-02-12 2022-10-06 Grirem Advanced Materials Co., Ltd. Nitrid-Lumineszenzmaterial und lumineszierende Vorrichtung mit diesem Nitrid-Lumineszenzmaterial
JP2020093848A (ja) * 2018-11-30 2020-06-18 株式会社ベルグリーンワイズ 青果物の鮮度保持用収納袋
JP2021046260A (ja) * 2018-11-30 2021-03-25 株式会社ベルグリーンワイズ 青果物の鮮度保持用収納袋
JP2021046259A (ja) * 2018-11-30 2021-03-25 株式会社ベルグリーンワイズ 青果物の鮮度保持用収納袋
JPWO2020226109A1 (ja) * 2019-05-09 2021-12-09 株式会社島津製作所 応力測定方法及びシステム、並びに応力測定用プログラム
CN112779004A (zh) * 2019-11-08 2021-05-11 厦门稀土材料研究所 一种近红外长余辉发光纳米材料及其制备方法与应用

Also Published As

Publication number Publication date
US20160222290A1 (en) 2016-08-04
EP3045511A4 (en) 2017-05-24
EP3045511A1 (en) 2016-07-20
JPWO2015033648A1 (ja) 2017-03-02
JP6345676B2 (ja) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6345676B2 (ja) 近赤外応力発光材料及び近赤外応力発光体並びに近赤外応力発光材料の製造方法
Wang et al. Energy transfer enhanced broadband near-infrared phosphors: Cr 3+/Ni 2+ activated ZnGa 2 O 4–Zn 2 SnO 4 solid solutions for the second NIR window imaging
Pandey et al. Improved luminescence and temperature sensing performance of Ho 3+–Yb 3+–Zn 2+: Y 2 O 3 phosphor
Zhang et al. Long-lasting ultraviolet-A persistent luminescence and photostimulated persistent luminescence in Bi 3+-doped LiScGeO 4 phosphor
Du et al. Thermoluminescence and near-infrared persistent luminescence in LaAlO3: Mn4+, R (R= Na+, Ca2+, Sr2+, Ba2+) ceramics
DE102004048041B4 (de) Verwendung eines Glases oder einer Glaskeramik zur Lichtwellenkonversion
Du et al. Near-infrared persistent luminescence in Mn4+ doped perovskite type solid solutions
Pardhi et al. Investigation of thermoluminescence and electron-vibrational interaction parameters in SrAl2O4: Eu2+, Dy3+ phosphors
Lecointre et al. Thermally stimulated luminescence of Ca3 (PO4) 2 and Ca9Ln (PO4) 7 (Ln= Pr, Eu, Tb, Dy, Ho, Er, Lu)
Boiko et al. Persistent luminescence from Y3Al2Ga3O12 doped with Ce3+ and Cr3+ after X-ray and blue light irradiation
JP2021529240A (ja) 赤色光・近赤外発光材料、その調製方法、および発光デバイス
WO2010105456A1 (zh) 一种碱土金属硼酸盐荧光体及其制备方法和应用
CN110093155A (zh) 一种近红外二区宽带发射荧光粉及其制备方法
Chen et al. Design, synthesis and characterization of near-infrared long persistent phosphors Ca 4 (PO 4) 2 O: Eu 2+, R 3+(R= Lu, La, Gd, Ce, Tm, Y)
CN106221697B (zh) 一种Fe3+离子激活铝酸盐近红外长余辉材料及其制备方法和应用
Aimi et al. Afterglow properties and trap-depth control in ZrO2: Ti, M (M= Ca2+, Y3+, Nb5+, W6+)
Wang et al. Conversion of Bi3+ to Bi2+ in Bi-doped CaSnO3 ceramic phosphors and trap energy-upconversion of Bi2+-doped CaSnO3 for bio-imaging
CN106701079A (zh) 一种近红外区力致发光荧光粉及其制备方法
CN106978172B (zh) 一种近红外长余辉发光材料及其制备方法
CN106701074B (zh) 一种钛酸盐基红色上转换发光材料及其制备方法
CN106566547B (zh) 一类上转换长余辉荧光材料及其制备方法与应用
CN105713601B (zh) 一种硫化物近红外长余辉发光材料及其制备方法和应用
JP6249477B2 (ja) 応力発光材料、応力発光体、及び、応力発光材料の製造方法
RU2614688C2 (ru) ЛЮМИНОФОР КОМПЛЕКСНОГО ПРИНЦИПА ДЕЙСТВИЯ НА ОСНОВЕ ОКСИСУЛЬФИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ, АКТИВИРОВАННЫЙ ИОНАМИ Ho3+ И Yb3+
CN107033889B (zh) 一种红光-近红外长余辉发光材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14917659

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014842748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842748

Country of ref document: EP