WO2015033603A1 - 情報処理システム、情報処理方法及びプログラム - Google Patents

情報処理システム、情報処理方法及びプログラム Download PDF

Info

Publication number
WO2015033603A1
WO2015033603A1 PCT/JP2014/056334 JP2014056334W WO2015033603A1 WO 2015033603 A1 WO2015033603 A1 WO 2015033603A1 JP 2014056334 W JP2014056334 W JP 2014056334W WO 2015033603 A1 WO2015033603 A1 WO 2015033603A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency data
correlation
data
information processing
model
Prior art date
Application number
PCT/JP2014/056334
Other languages
English (en)
French (fr)
Inventor
梓司 笠原
勝博 落合
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP14842340.3A priority Critical patent/EP3045889B1/en
Priority to US14/916,007 priority patent/US10228994B2/en
Priority to JP2015535335A priority patent/JP6237774B2/ja
Publication of WO2015033603A1 publication Critical patent/WO2015033603A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/079Root cause analysis, i.e. error or fault diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • G06F11/0754Error or fault detection not based on redundancy by exceeding limits
    • G06F11/076Error or fault detection not based on redundancy by exceeding limits by exceeding a count or rate limit, e.g. word- or bit count limit

Definitions

  • Some aspects of the present invention relate to an information processing system, an information processing method, and a program.
  • Patent Document 1 acquires a plurality of performance information acquired from a plurality of managed devices constituting a system, and then performs a correlation function between performance series information indicating a time-series change of the performance information acquired at regular intervals.
  • a device is disclosed that can derive a coefficient and identify the location where an abnormality occurs in response to a change in the correlation function.
  • Patent Document 2 discloses that sound data generated from equipment is collected, a frequency spectrum of the collected data is determined, and the presence or absence of abnormality is determined based on a correlation coefficient of spectrum values.
  • Some aspects of the present invention are made in view of the above-mentioned subject, and make it an object to provide an information processing system, an information processing method, and a program which can perform data analysis suitably.
  • One information processing system includes conversion means for converting a plurality of time series data obtained respectively by detection by a plurality of sensors into first frequency data, and at least two of the plurality of sensors.
  • a first model generation unit that generates a first correlation model using first frequency data related to a sensor, a first operation unit that calculates the strength of the correlation of the first correlation model, and an abnormality based on the strength of the correlation
  • determination means for determining
  • One information processing system includes conversion means for converting a plurality of time series data obtained by detection by a plurality of sensors into first frequency data, and at least two of the plurality of sensors. Using the first frequency data according to a second model, and applying second frequency data obtained by converting another time series data obtained from a sensor according to the correlation model to the correlation model, And determining means for determining an abnormality based on a difference between a predicted value of the second frequency data obtained by performing the second frequency data and a measured value of the second frequency data.
  • One information processing method includes the steps of: converting a plurality of time series data obtained respectively by detection by a plurality of sensors into first frequency data; and at least two of the plurality of sensors Processing the step of generating a first correlation model using the first frequency data relating to the step, calculating the strength of the correlation of the first correlation model, and determining an abnormality based on the strength of the correlation. System does.
  • One information processing method includes the steps of: converting a plurality of time series data obtained by detection by a plurality of sensors into first frequency data; and at least two of the plurality of sensors. Step of generating a correlation model using the first frequency data, and applying, to the correlation model, second frequency data obtained by converting another time series data obtained from a sensor related to the correlation model.
  • the information processing system performs the step of determining abnormality based on the difference between the obtained predicted value of the second frequency data and the actually measured value of the second frequency data.
  • a program according to the present invention relates to processing of converting a plurality of time series data obtained respectively by detection by a plurality of sensors into first frequency data, and to at least two of the plurality of sensors. Allowing a computer to execute a process of generating a first correlation model using first frequency data, a process of calculating the strength of the correlation of the first correlation model, and a process of determining an abnormality based on the strength of the correlation .
  • a program according to the present invention includes a process of converting a plurality of time series data obtained by detection by a plurality of sensors into first frequency data, and a process related to at least two of the plurality of sensors. It is obtained by processing of generating a correlation model using one-frequency data, and applying, to the correlation model, second frequency data obtained by converting another time-series data obtained from a sensor related to the correlation model.
  • the computer is caused to execute a process of determining abnormality based on the difference between the predicted value of the second frequency data and the measured value of the second frequency data.
  • an information processing system an information processing method, and a program capable of preferably performing data analysis.
  • FIG. 2 is a diagram showing a specific example of the configuration of the information processing system according to the first embodiment.
  • FIG. 3 shows a specific example of the functional configuration of the information processing system. It is a flowchart which shows the flow of a process of the information processing system shown in FIG. It is a flowchart which shows the flow of a process of the information processing system shown in FIG. It is a flowchart which shows the flow of a process of the information processing system shown in FIG. It is a flowchart which shows the flow of a process of the information processing system shown in FIG.
  • (1 first embodiment) 1 to 10 are views for explaining the first embodiment.
  • the present embodiment will be described along the following flow with reference to these drawings.
  • an outline of the data analysis method in the present embodiment will be described in “1.1”.
  • the outline of the system configuration of the information processing system in this embodiment will be described in “1.2”
  • the outline of the functional configuration of the information processing system in this embodiment will be described in “1.3”.
  • the flow of processing will be described using a specific example.
  • “1.5” a specific example of a hardware configuration capable of realizing an information processing system will be described.
  • the effects and the like according to the present embodiment will be described in “1.6”.
  • the information processing system detects an abnormality of the system by acquiring data such as vibration, sound, light and the like by, for example, a sensor and analyzing these data.
  • data such as vibration, sound, light and the like
  • the information processing system in order to analyze data after performing pre-processing of frequency conversion on time series data obtained from a sensor, using data in which an essential change appears in frequency
  • the correlation between different sensors can be modeled.
  • the correlation between the data is specified not by the correlation coefficient but by the correlation model. As a result, regardless of whether the frequency data is in the increasing trend or the decreasing trend, it is possible to detect an abnormality according to the change in the correlation.
  • the present invention will be described more specifically with reference to FIGS. 1 and 2.
  • a correlation model between sensors is generated from frequency data obtained by converting time-series data obtained by detecting sound, light, vibration and the like by the sensors.
  • the correlation model can be expressed, for example, by the following equation.
  • f 0 to f n and f 0 to f m are respectively predetermined frequencies
  • s x (f) and s y (f) are frequency data obtained from sensor x and sensor y, respectively
  • the intensity at frequency f of (the time series data converted) is shown.
  • Each of a 0 to a n , b 0 to b m and C is a coefficient
  • the processing for obtaining the correlation model corresponds to the processing for determining the coefficients a 0 to a n , b 0 to b m and C.
  • s y (f m ) ' which is a predicted value of the intensity at the frequency fm.
  • the predicted values at the frequencies f 0 to f m-1 can be similarly calculated.
  • the strength of the correlation there is various indicators for determining the strength of the correlation (hereinafter, also referred to as the strength of the correlation). For example, with respect to normal data used for model generation, the prediction error between the generated predicted value and observed value It can be a value proportional to the sum. That is, the strength of the correlation can be expressed, for example, by the following equation.
  • s y (f) is an actual measurement value of the intensity of frequency data at frequency f
  • s y (f) ′ is a predicted value of the intensity of frequency data at frequency f calculated using a correlation model.
  • the correlation strength of the correlation model in normal data is compared with the correlation strength of the correlation model in observation data By doing this, it is determined whether or not an abnormality has occurred.
  • FIG. 2 shows the case where each sensor is observed individually, and the right side shows the case where the correlation between sensors is observed as in the present embodiment.
  • the observed value of the sensor indicates within the normal range (normal value) if the generated abnormality is a minor one, and as shown in the upper left of FIG.
  • the anomaly can not be detected.
  • the correlation between a certain sensor and another sensor may be broken, so that an abnormality may be detected.
  • the correlation between a particular sensor and another sensor it may be possible to detect that the observation target of the particular sensor is abnormal.
  • a correlation model indicating correlation is generated using frequency data obtained by converting time series data obtained from each sensor, and the correlation of the correlation model An abnormality is detected according to whether or not the relationship is broken.
  • Whether or not the correlation is broken can be determined using an index of the strength of the correlation in the correlation model between the sensors. If a large difference occurs between the strength of correlation in the correlation model generated using normal data and the strength of correlation in the correlation model generated using data of the observation target, the correlation is broken It can detect that it is in the state.
  • the correlation model used for anomaly detection can be generated even if the fluctuation trend of the data differs between the two data. Therefore, since the strength of the correlation does not depend on the fluctuation trend between the two data, it is possible to preferably generate a correlation model even between data of different sensors, and calculate the strength of the correlation. By comprehensively carrying out such processing between a plurality of sensors, sensor data in which abnormality occurrences are concentrated can be narrowed down as the root cause of the abnormality.
  • the information processing system 100 includes vibration sensors 101a to 101n (hereinafter, may be collectively referred to as vibration sensor 101), a signal conversion module 103, a personal computer, a server, etc. And a storage medium 109 and a display 111.
  • the vibration sensor 101 is, for example, a sensor installed at a different position, and observes time series data.
  • the vibration sensor 101 detects a signal here, it is not restricted to this, It is also considered to observe time series data of sound or light instead of vibration.
  • the signal conversion module 103 converts time-series analog data detected by the vibration sensor 101 into digital data that can be processed by the information processing apparatuses 105 and 107, and then converts the time-series digital data into frequency data. Do.
  • the frequency data after conversion is output to the information processing apparatuses 105 and 107.
  • the information processing apparatus 105 generates a correlation model from frequency data obtained by converting sensor data converted into a digital signal, and outputs the correlation model to the storage medium 109.
  • the storage medium 109 is, for example, a hard disk drive (HDD) or a flash memory, and stores the correlation model as described above.
  • the storage medium 109 may be built in the information processing apparatus 105 or the information processing apparatus 107.
  • the information processing apparatus 107 receives an input of frequency data obtained by converting sensor data newly detected by each vibration sensor 101, and detects an abnormality using the frequency data and model information stored in the storage medium 109. Do the processing.
  • the display 111 displays the abnormality detection result by the information processing apparatus 107.
  • the present invention is not limited to this, and mounting by one information processing apparatus or three or more information processing apparatuses Is also conceivable.
  • the display 111 may be built in the information processing apparatus 107.
  • sensing units 201 a to 201 n (hereinafter collectively referred to as sensing unit 201), noise filtering unit 203, frequency conversion unit 205, and storage It comprises a part 207 and 209, a model construction part 211 and 219, a storage part 212, a correlation strength average / maximum deviation calculation part 217, an abnormality detection part 221, and a notification part 223.
  • the sensing unit 201 corresponds to the vibration sensor 101 of FIG.
  • the noise filtering unit 203 and the frequency conversion unit 205 correspond to the signal conversion module 103 in FIG.
  • the storage unit 212 corresponds to the storage medium 109 in FIG. 1
  • the storage unit 209 and the abnormality detection unit 221 correspond to the information processing apparatus 107 in FIG. 1.
  • the notification unit 223 corresponds to the display 111.
  • the sensing unit 201 detects vibration, light, sound, and the like to generate and output time-series data.
  • the sensing unit 201 generates and outputs time-series data at least twice or more of a normal state and a state (a target of abnormality detection) in which it is unclear whether the state is normal or not.
  • the number n of the sensing units 201 may be any number as long as it is two or more.
  • the noise filtering unit 203 removes noise from the time series data output from the sensing unit 201.
  • the frequency conversion unit 205 detects time-series data detected by the sensing units 201a to 201n and from which noise has been removed, respectively, as frequency data 208a to 208n (hereinafter collectively referred to as frequency data 208) and frequency data 210a to Convert to 210 n (hereinafter collectively referred to as frequency data 210).
  • the frequency data 208 and 210 are, for example, data with different detection timing, and here, the frequency data 208 is normal data used to generate the correlation model 213, and the frequency data 210 is the correlation model 213. It is observation data for detecting abnormalities using.
  • the frequency data 208 and 210 are stored in the storage units 207 and 209, respectively.
  • the model construction unit 211 generates correlation models 213a to 213m (hereinafter collectively referred to as a correlation model 213) from two combinations of frequency data 208a to 208n which are normal data.
  • the generated correlation model 213 is stored in the storage unit 212.
  • the model construction unit 211 also causes the storage unit 212 to store the correlation strengths 214a to 214m of the correlation models 213a to 213m.
  • the model construction unit 211 When the frequency data 208 for a plurality of times is observed for each sensing unit 201, the model construction unit 211 performs the correlation model 213 related to the combination of each sensing unit 201 and the strength 214 of the correlation as the number of times. Only minutes can be generated.
  • the correlation strength average / maximum deviation calculation unit 217 calculates the maximum deviation while obtaining the average value of the correlation strengths 214 for a plurality of times related to each sensing unit 201.
  • the maximum deviation corresponds to the maximum value of the difference between the average value of the correlation strength 214 and the correlation strength 214 of each correlation model 213 used to calculate the average.
  • the said largest deviation can be memorize
  • the correlation strength average / maximum deviation calculation unit 217 is unnecessary.
  • the model construction unit 219 Similar to the model construction unit 211, the model construction unit 219 also generates correlation models from two combinations of frequency data 210a to 210n, which are observation data, and calculates the strength of the correlation of each correlation model.
  • the abnormality detection unit 221 determines the correlation strength 214 of the correlation model 213 generated based on the frequency data 208 which is normal data, and the correlation strength of the correlation model generated based on the frequency data 210 which is observation data.
  • the abnormality is detected by comparing More specifically, for example, the difference between the correlation strength 214 of the correlation model 213 generated based on the frequency data 208 and the correlation strength of the correlation model generated based on the frequency data 210 is determined as abnormal.
  • the threshold 215 is exceeded, it may be determined that the correlation is broken (an abnormality has occurred).
  • the strength of the correlation to be compared is the correlation models according to the combination of the same sensing unit 201.
  • the notification unit 223 notifies the user of the result of the abnormality detection by the abnormality detection unit 221.
  • a method of notification by the notification unit 223 for example, a method of displaying a message or the like on the display 111 can be considered.
  • FIGS. 5 to 9. 5 to 9 are flowcharts showing the process flow of the information processing system 100.
  • each processing step described below can be arbitrarily changed in order or executed in parallel as long as no contradiction occurs in the processing content, and even if another step is added between each processing step good. Furthermore, for convenience, the steps described as one step can be divided into a plurality of steps and executed, or the steps described separately as a plurality can be performed as one step. This point is the same as in the second and subsequent embodiments.
  • Normal time-series data detected (sensing) by the sensing unit 201 is converted into frequency data 208 by the frequency conversion unit 205 (S 501), and stored in the storage unit 207.
  • the model construction unit 211 generates the correlation model 213 for each combination of the frequency data 208a to 208n, and calculates the strength 214 of the correlation related to each correlation model 213 (S503).
  • the correlation strength average / maximum deviation calculation unit 217 calculates the average value and the maximum deviation of the correlation strengths 214 for the plurality of times
  • the abnormality determination threshold 215 may be calculated.
  • time-series data of the observation target newly detected by the sensing unit 201 is converted into frequency data 210 by the frequency conversion unit 205 (S505), and stored in the storage unit 209.
  • the model construction unit 219 obtains a correlation model for each combination of the frequency data 210a to 210n, and calculates the strength of the correlation related to each correlation model (S507).
  • the abnormality detection unit 221 performs abnormality detection processing by comparing the correlation model 213 generated from the frequency data 208 as normal data with the correlation model generated from the frequency data 210 as observation data (S509). The details of the processing of each of S501, S503, S507, and S509 will be described below with reference to FIGS.
  • the sensing units 201a to 201n perform state detection on a measurement target for a predetermined period (for example, 10 seconds) (S601).
  • the noise filtering unit 203 and the frequency conversion unit 205 sequentially process the time series data 1 to n obtained from the respective sensing units 201a to 201n.
  • the noise filtering unit 203 performs the i-th time-series data (i-th sensing unit After extracting the data 201) (S605), noise is removed from the time-series data (S607). At this time, it is conceivable that the noise filtering unit 203 removes noise by using a Butterworth filter on time-series data. If attention is paid to the frequency band around 1000 Hz, it is conceivable to apply a Butterworth filter so that a component of 10 to 10000 Hz remains.
  • the frequency conversion unit 205 converts the time-series data from which noise has been removed by the noise filtering unit 203 into frequency data 208 (S609), and stores the data in the storage unit 207 (S611).
  • a conversion method to the frequency data 208 by the frequency conversion unit 205 for example, a method using an AR (Auto-regressive) model (autocorrelation model) can be considered.
  • an autocorrelation model of the model order set with reference to the AIC is identified with respect to the filtered time series data, and an impulse response of the identified autocorrelation model is acquired, and then the impulse response A method of frequency conversion is conceivable.
  • the information processing system 100 repeats the processing of S603 to S611 until i> n (until there is no unprocessed data).
  • the above-described process is the same as in the generation of the frequency data 210 (target of observation data) for abnormality detection (corresponding to the process of S505 in FIG. 5).
  • FIG. 7 corresponds to the process of S503 in FIG.
  • time series data which is normal data is detected plural times (here, M times) by the sensing units 201a to 201n, and the correlation model 213 is detected with respect to the frequency data 208 corresponding to each time series data.
  • M times plural times
  • the model construction unit 211 calculates the correlation model 213 for each combination of the frequency data 208 with respect to the normal data detected at the k-th time, and calculates the strength 214 of the correlation of each correlation model 213 (S701). This process will be described in detail later with reference to FIG.
  • the sensing units 201i and 201j (0 ⁇ i, j ⁇ n) respectively M From the M pieces of frequency data 208i and 208j generated from the time-series data detected a number of times, M correlation strengths 213 of the correlation model 213 and the correlation model 213 are generated respectively. Therefore, the correlation strength average / maximum deviation calculation unit 217 obtains the average value of the M correlation strengths 214 for each combination of (i, j) (S705 to S711). Thereby, the average value of the strength of the correlation which concerns on each combination of the sensing part 201 can be calculated, respectively. Subsequently, the details of the process according to S701 will be described with reference to FIG.
  • the model construction unit 211 sets i and j to 1 and then sets frequency data 208i and 208j (frequency data 208 generated from time-series data detected by the i-th and j-th sensing units 201, respectively). Are extracted from the storage unit 207 (S801 and S803). If i and j are equal (Yes in S805), the value of j is incremented and then the frequency data 208j is extracted again (S803).
  • the correlation model 213 is generated using the frequency data 208i and the frequency data 208j (S807).
  • Specific examples of the correlation model 213 include, for example, an ARX (Auto-regressive exogeneous) model.
  • the model construction unit 211 applies the frequency data 208i and 208j used to generate the model to the generated correlation model 213 to calculate the prediction value at each frequency, and then calculates the prediction value and the observation value (measured
  • the strength 214 of the correlation related to the correlation model 213 is calculated from the difference with the value (S809). Further, the model construction unit 211 stores the calculated correlation model 213 and the correlation strength 214 in the storage unit 212 (S811).
  • the correlation model 213 used for abnormality detection it is also conceivable to limit the correlation model 213 used for abnormality detection to only one with high prediction accuracy. In this case, only the correlation strength 214 exceeding the threshold value is used for abnormality detection by the abnormality detection unit 221.
  • the model construction unit 211 performs the above-described process on all the combinations of frequency data 208 while appropriately incrementing i and j until the value becomes n.
  • the correlation model 213 is generated for two combinations of the combination of (frequency data 208i and frequency data 208j) and the combination of (frequency data 208j and frequency data 208i).
  • the model construction unit 211 adopts the one with higher prediction accuracy of the correlation model 213 (the one where the correlation strength 214 is larger).
  • the model construction unit 219 and the abnormality detection unit 221 perform processing on the frequency data 210 that is a target (observation data) of abnormality detection.
  • the model construction unit 219 sets i and j to 1 and then sets the frequency data 210i and 210j (frequency data generated from time-series data extracted by the i-th and j-th sensing units 201, respectively). 210) is extracted from the storage unit 209 (S901 and S903). If i and j are equal (Yes in S905), the value of j is incremented and then the frequency data 210j is extracted again (S903).
  • the model construction unit 219 When the values of i and j are different (No in S905), the model construction unit 219 generates a correlation model from the frequency data 210i and 210j related to the sensing units 201i and 201j (S907), and also correlates in the correlation model. The strength of is calculated (S909).
  • the abnormality detection unit 221 receives from the model construction unit 219 the strength of the correlation of the correlation model related to the sensing units 201i and 201j, and from the storage unit 212, frequency data 208i and 208j that are normal data And the correlation strength 214 of the correlation model 213 generated from the frequency data 208 generated from the time-series data extracted by the j-th sensing unit 201 (S911). If the correlation strength of the correlation model generated from the observation data and the correlation strength 214 of the correlation model 213 generated from the normal data approximate (for example, the difference is within the abnormality determination threshold 215) ) (Yes in S913), it can be determined that the observation data is normal.
  • the notification unit 223 notifies information indicating an abnormality together with information related to the sensing unit 201 in which the correlation is broken (S915).
  • the abnormality detection unit 221 notifies that there is an indication that an abnormality occurs in the frequency to be processed.
  • the model construction unit 219 and the abnormality detection unit 221 perform the above-described process on all the combinations of the frequency data 210 while appropriately incrementing i and j until the value becomes n.
  • the abnormality detection unit 221 lists up the sensing units 201 included in many combinations that are expected to be broken due to the occurrence of an abnormality after processing for all the combinations of frequency data 210 is completed. You may. As a result, it is possible to narrow down the sensing units 201 which may have an abnormality.
  • the average value of the correlation strength may be compared with the correlation strength of the correlation model generated from the frequency data 210 which is observation data related to the combination of the same sensing unit 201.
  • the computer 1000 includes a processor 1001, a memory 1003, a storage device 1005, an input interface (I / F) 1007, a data I / F 1009, a communication I / F 1011 and a display device 1013.
  • a processor 1001 a memory 1003, a storage device 1005, an input interface (I / F) 1007, a data I / F 1009, a communication I / F 1011 and a display device 1013.
  • the processor 1001 controls various processes in the computer 1000 by executing programs stored in the memory 1003. For example, the processing relating to the noise filtering unit 203, the frequency conversion unit 205, the model construction unit 211, the correlation strength average / maximum deviation calculation unit 217, the model construction unit 219, and the abnormality detection unit 221 described in FIG. It can be realized as a program which is temporarily stored and mainly operates on the processor 1001.
  • the memory 1003 is, for example, a storage medium such as a random access memory (RAM).
  • the memory 1003 temporarily stores program code of a program to be executed by the processor 1001 and data necessary for executing the program. For example, in a storage area of the memory 1003, a stack area required for program execution is secured.
  • the storage device 1005 is, for example, a non-volatile storage medium such as a hard disk or a flash memory.
  • the storage device 1005 includes an operating system, noise filtering unit 203, frequency conversion unit 205, model constructing unit 211, correlation strength average / maximum deviation calculating unit 217, model constructing unit 219, various types for realizing abnormality detection unit 221.
  • a program, various data including frequency data 208 and 210, correlation model 213, correlation strength 214, abnormality determination threshold 215, etc. are stored.
  • the program and data stored in the storage device 1005 are referred to by the processor 1001 by being loaded into the memory 1003 as necessary.
  • the input I / F 1007 is a device for receiving an input from a user.
  • a keyboard, a mouse, a touch panel etc. are mentioned as a specific example of input I / F1007.
  • the input I / F 1007 may be connected to the computer 1000 via an interface such as USB (Universal Serial Bus).
  • USB Universal Serial Bus
  • the data I / F 1009 is a device for inputting data from the outside of the computer 1000.
  • a specific example of the data I / F 1009 is a drive device for reading data stored in various storage media. It is also conceivable that the data I / F 1009 is provided outside the computer 1000. In that case, the data I / F 1009 is connected to the computer 1000 via an interface such as USB.
  • the communication I / F 1011 is a device for performing data communication with an external device of the computer 1000, for example, with the sensing unit 201 or the like in a wired or wireless manner.
  • the communication I / F 1011 may be provided outside the computer 1000. In that case, the communication I / F 1011 is connected to the computer 1000 via an interface such as USB.
  • the display device 1013 is a device for displaying various information.
  • the display 111 shown in FIG. 3 may be implemented as a display device 1013.
  • a display device 1013 for example, a liquid crystal display, an organic EL (Electro-Luminescence) display, etc. may be mentioned.
  • the display device 1013 may be provided outside the computer 1000. In that case, the display device 1013 is connected to the computer 1000 via, for example, a display cable or the like.
  • the information processing system 100 uses the frequency data 208 for the time-series data in which the feature of the change appears in the frequency detected by the sensing unit 201, and The correlation is modeled as a correlation model 213.
  • the correlation is specified as the correlation model 213 instead of the correlation coefficient, it is possible to determine whether the sensor data is normal or abnormal from the change in the correlation. . That is, in the information processing system 100 according to the present embodiment, data analysis can be suitably performed.
  • the entire configuration of the information processing system 100 whose specific example is shown in FIG. 2 and the configuration of the computer 1000 capable of realizing the signal conversion module 103, the information processing device 105, and the information processing device 107 are the same as those in the first embodiment. Therefore, the explanation is omitted.
  • the correlation model is generated from the frequency data 208 and 210 related to each sensing unit 201.
  • the average value of the frequency data 208 which is normal data detected by each sensing unit 201
  • This process will be described with reference to the specific example of FIG. 11. First, with respect to the frequency data 208 relating to the sensors A to D shown by the graph, average frequency data of broken lines shown at the center in the left part is generated. Then, a correlation model is generated between the average frequency data and the frequency data 208 of the sensors A to D, and the correlation strengths F A-Ave to F D-AVE are calculated.
  • the sensing unit 201 for acquiring normal data and the sensing unit 201 for acquiring observation data are the same, and the difference between normal data and observation data is time series data.
  • the sensing unit 201 for acquiring normal data and the sensing unit 201 for acquiring observation data are different.
  • normal data is frequency data obtained by converting time series data obtained from sensors A to D
  • observation data is frequency data obtained by converting time series data obtained from sensors E and F. is there.
  • a correlation model is generated with the average frequency data of the normal data, and the strength of the correlation is calculated (F E-AVE and F F-AVE in FIG. 11).
  • the correlation strengths F A-AVE to F D-AVE of the correlation model between the average frequency data and the frequency data relating to the normal data substantially match (for example, the difference is less than or equal to the threshold).
  • the correlation strength F E-AVE or F F-AVE of the correlation model between the average frequency data of normal data and the frequency data relating to observation data is largely different (for example, the difference exceeds a threshold)
  • the information processing system 100 determines that the sensor E or the sensor F is abnormal.
  • the system configuration can be the same as that of the first embodiment, so the description is omitted here.
  • the functional configuration of the information processing system 100 according to the present embodiment will be described with reference to FIG.
  • the information processing system 100 according to the present embodiment includes an average frequency data calculation unit 225 and average frequency data 228 in addition to the components included in the information processing system 100 according to the first embodiment.
  • the sensing unit 201 detects vibration, light, sound, and the like to generate and output time-series data.
  • the sensing units 201a to 201k are for detecting normal data
  • the sensing units 201k + 1 to 201n are for detecting observation data.
  • the number of sensing units 201 for detecting normal data may be any number as long as it is two or more
  • the number of sensing units 201 for detecting observation data may be any number as long as it is one or more. .
  • the noise filtering unit 203 removes noise from the time series data output from the sensing unit 201 as in the first embodiment.
  • the frequency conversion unit 205 converts the time-series data detected by the sensing units 201a to 201k and from which noises have been removed, respectively to frequency data 208a to 208k (collectively referred to as frequency data 208), and a storage unit. Output to 207. Further, the frequency conversion unit 205 converts time-series data, which are respectively detected by the sensing units 201k + 1 to 201n and from which noises have been removed, to frequency data 210a to 201n-k (generally referred to as frequency data 210). Output to the storage unit 209.
  • frequency data 208 is normal data indicating a normal state
  • frequency data 210 is observation data to be detected.
  • the average frequency data calculation unit 225 generates average frequency data 228 which is average data of normal data by calculating an average of the frequency data 208a to 208k for each frequency.
  • the calculated average frequency data 228 is stored in the storage unit 227.
  • the model construction unit 211 generates correlation models 213a to 213k (hereinafter collectively referred to as a correlation model 213) between the frequency data 208a to 208k, which are normal data, and the average frequency data 228, respectively. .
  • the generated correlation model 213 is stored in the storage unit 212.
  • the model construction unit 211 also calculates the correlation strengths 214a to 214k of the respective correlation models 213a to 213k, and also stores them in the storage unit 212.
  • the model construction unit 211 determines the correlation model 213 and the correlation strength relating to the combination of each sensing unit 201 and the average frequency data 228. 214 can be generated for the number of times.
  • the correlation strength average / maximum deviation calculation unit 217 calculates the maximum deviation while obtaining the average value of the correlation strengths 214 generated for a plurality of times.
  • the maximum deviation corresponds to the maximum value of the difference between the average value of the correlation strength 214 and the correlation strength 214 of each correlation model 213 used to calculate the average.
  • the said largest deviation can be memorize
  • the correlation strength average / maximum deviation calculation unit 217 is unnecessary.
  • the model construction unit 219 generates a correlation model between each of the frequency data 210a to 210n-k, which is observation data, and the average frequency data 228, and calculates the strength of the correlation of each correlation model.
  • the abnormality detection unit 221 determines the correlation strength 214 of the correlation model 213 generated based on the frequency data 208 which is normal data, and the correlation strength of the correlation model generated based on the frequency data 210 which is observation data. The abnormality is detected by comparing More specifically, for example, although the correlation strength 214 of each correlation of the correlation model 213 generated based on the frequency data 208 is similar (for example, within the threshold range), the frequency data 210 If the correlation strength of the correlation model generated based on is not within the approximation range (for example, the threshold range is exceeded), the abnormality detection unit 221 has broken the correlation (an abnormality has occurred) It can be considered to be determined.
  • the notification unit 223 notifies the user of the result of the abnormality detection by the abnormality detection unit 221.
  • a method of notification by the notification unit 223 for example, a method of displaying a message on the display 111 can be considered.
  • Normal time-series data detected (sensing) by the sensing unit 201 is converted into frequency data 208 by the frequency conversion unit 205 (S 1301), and the frequency data 208 is stored in the storage unit 207.
  • the average frequency data calculation unit 225 generates average frequency data 228 by averaging the frequency data 208 stored in the storage unit 207 for each frequency (S1303).
  • the model construction unit 211 generates the correlation model 213 between each frequency data 208 and the average frequency data 228, and calculates the strength 214 of the correlation related to each correlation model 213 (S1305).
  • the correlation strength average / maximum deviation calculating unit 217 determines the strength of the correlation for the plural times.
  • the average value of 214 and the maximum deviation (corresponding to the abnormality determination threshold 215) may be calculated.
  • time-series data of the observation target detected by the sensing units 201k + 1 to 201n is converted into frequency data 210 by the frequency conversion unit 205 (S1307), and stored in the storage unit 209.
  • the model construction unit 219 obtains a correlation model between each of the frequency data 210a to 219n-k and the average frequency data 228, and calculates the strength of the correlation of each correlation model (S1309).
  • the abnormality detection unit 221 performs abnormality detection processing by comparing the correlation model 213 generated from the frequency data 208 as normal data with the correlation model generated from the frequency data 210 as observation data (S1311).
  • each process of S1301 and S1307 is the same as S501 and S505 described with reference to FIG. 5 in the first embodiment.
  • the processes of S1305, S1309 and S1311 will be described below with reference to FIG.
  • time series data which is normal data is detected plural times (here, M times) by the sensing units 201a to 201k, and the correlation model 213 is detected with respect to the frequency data 208 corresponding to each time series data.
  • M times plural times
  • the model construction unit 211 generates the correlation model 213 described with reference to the equation 1 with the average frequency data 228 for the i-th detected normal data.
  • the model construction unit 211 uses the correlation model 213 to calculate the predicted value of the intensity at each frequency using the frequency data used for model generation, and obtains the difference between the predicted value and the actual measurement value. It stores as an abnormality determination threshold 215 used for detection.
  • the strength 214 of the correlation of the correlation model 213 is calculated based on Equation 2 (S1401). This process will be described in detail later with reference to FIG.
  • the model construction unit 211 reads the average frequency data 228 (1501). Further, the model construction unit 211 sets i to 1 and then extracts from the storage unit 207 frequency data 208 i (frequency data 208 generated from time-series data extracted from the i-th sensing unit 201) ( S1503).
  • the model construction unit 211 generates the correlation model 213 using the frequency data 208i and the average frequency data 228 (S1505).
  • Examples of the correlation model 213 include, for example, an ARX model.
  • the model construction unit 211 applies the generated correlation model 213 to the frequency data 208 used for model generation to calculate the prediction value of the frequency data at each frequency, and then the prediction value and the frequency data. From the difference between the measured value (observed value) of 208, the strength of the correlation related to the correlation model 213 is calculated (S1507). Further, the model construction unit 211 stores the calculated correlation model 213 and the correlation strength 214 in the storage unit 212 (S1509).
  • the correlation model 213 used for abnormality detection it is also conceivable to limit the correlation model 213 used for abnormality detection to only one with high prediction accuracy. In this case, only the correlation strength 214 exceeding the threshold value is used for abnormality detection by the abnormality detection unit 221.
  • the model construction unit 211 performs this on all the frequency data 208 of the above processing while appropriately incrementing the value of i until it becomes k which is the number of sensing units 201 that detect observation data.
  • the correlation model 214 can be generated for two combinations of the frequency data 208 and the average frequency data 228 and the combination of the average frequency data 228 and the frequency data 208, among which the correlation model 214 can be generated.
  • the model construction unit 211 can adopt one in which the strength 214 is larger. The same applies to the strength of the correlation of the correlation model between the later frequency data 210 and the average frequency data 228.
  • the model construction unit 219 performs processing on the frequency data 210 which is a target (observation data) of abnormality detection. First, the model construction unit 219 reads the average frequency data 228 (S 1601), sets i to 1 and then generates frequency data 210 i (frequency generated from time series data extracted by the k + i-th sensing unit 201 The data 210) is extracted from the storage unit 209 (S1603).
  • the model construction unit 211 generates the correlation model 213 using the frequency data 210i and the average frequency data 228 (S1605).
  • a specific example of the correlation model is the ARX model.
  • the model construction unit 211 also calculates the strength of the correlation in the generated correlation model (S1607).
  • the abnormality detection unit 221 receives the strength of the correlation of the correlation model according to the sensing unit 201i from the model construction unit 219, and from the storage unit 212, each correlation model 213 generated from the frequency data 208 which is normal data.
  • Each correlation strength 214 is read (S1609). If the correlation value 214 of each correlation related to the normal data and the average value of each correlation strength 214 are similar (for example, within the threshold range), and the correlation model of the frequency data 210i When the difference between the correlation strength and the average value of the correlation strength 214 is similar (for example, within the threshold range) (Yes in S1611), it can be determined that the observation data is normal.
  • the frequency data 210i When the difference between the correlation strength of the correlation model and the average value of the correlation strength 214 is not approximate (for example, outside the threshold range) (No in S1611), the correlation model relating to the correlation strength is It can be determined that the sensing unit 201i shown is indicating an abnormal value. Therefore, the notification unit 223 notifies the information indicating the above together with the information related to the sensing unit 201i in which the correlation is broken (S1613). For example, at this time, the abnormality detection unit 221 notifies that there is an indication that an abnormality occurs in the frequency to be processed.
  • standard of abnormality determination is not restricted to this.
  • the magnitude relationship between the average value of the correlation strength 214 of the correlation model 213 generated from the frequency data 208 which is normal data and the absolute value of the maximum value of the difference between the correlation strength 214 of each correlation model 213 good.
  • the model construction unit 219 and the abnormality detection unit 221 process all the frequency data 210 while appropriately incrementing i until the value becomes n.
  • the abnormality detection unit 221 may list up the sensing units 201 in which an abnormality has occurred after finishing the processing for all the frequency data 210. As a result, it is possible to narrow down the sensing units 201 which may have an abnormality.
  • the average value of the correlation strength may be compared with the correlation strength of the correlation model generated from the frequency data 210 which is observation data related to the combination of the same sensing unit 201.
  • the information processing system 100 uses the frequency data 208 to average the sensing unit 201 with time series data in which the characteristic of change appears in the frequency detected by the sensing unit 201.
  • the correlation with the frequency data 228 is modeled by the model construction unit 211 and the model construction unit 219.
  • the correlation since the correlation is specified not as a correlation coefficient but as a correlation model, it is possible to determine normality or abnormality of sensor data from a change in the correlation. That is, in the information processing system 100 according to the present embodiment, data analysis can be suitably performed.
  • the entire configuration of the information processing system 100 whose specific example is shown in FIG. 2 and the configuration of the computer 1000 capable of realizing the signal conversion module 103, the information processing device 105, and the information processing device 107 are the same as those in the first embodiment. Therefore, the explanation is omitted.
  • normal data is generated from time-series data acquired from the sensing units 201a to 201k
  • observation data is generated from time-series data acquired from the sensing units 201k + 1 to 201n.
  • normal data and observation data are acquired from the same sensing units 201a to 201n at different timings.
  • the correlation between the average value and each frequency data 208 is performed. Calculate the strength of the model and the correlation. This process will be described with reference to FIG. 17. First, for the frequency data relating to the sensors A to D shown by the graph, the average frequency data 228 of the broken line shown in the center of the left part is generated. Then, a correlation model 214 is generated between the average frequency data 228 and the frequency data 208 of the sensors A to D. Also, calculate the correlation strengths F A-Ave to F D-AVE regarding them.
  • the frequency data shown in the right part of FIG. 17 and the average frequency data 228 are generated based on the time series data detected by the sensors B and C at timing different from the time series data that is the origin of the frequency data.
  • a correlation model 214 is generated between them. Also, the correlation strengths F B '-Ave to F C'- AVE regarding them are calculated.
  • the correlation strengths F A-AVE to F D-AVE of the correlation model between the average frequency data and the frequency data relating to the normal data substantially match (for example, the difference is less than or equal to the threshold).
  • the correlation strength between the average frequency data 228 of normal data and the frequency data related to the observation data is significantly different (eg, the difference exceeds a threshold) FB'-AVE or F C'-AVE
  • the information processing system 100 determines that an abnormality has occurred with respect to the sensor B or the sensor C.
  • the system configuration can be the same as that of the first embodiment and the second embodiment, so the description will be omitted here.
  • the functional configuration of the information processing system 100 is shown in FIG. As shown in FIG. 18, the functional configuration of the information processing system 100 according to the present embodiment is basically the same as that of the second embodiment, but as described above, it is the frequency data 208 and observation data which are normal data. It differs from the second embodiment in that the frequency data 210 is acquired from the same sensing unit 201.
  • the sensing unit 201 detects vibration, light, sound, and the like to generate and output time-series data.
  • the sensing unit 201 detects data at least twice or more of a normal state and a state in which it is unclear whether the state is normal or not (error detection target).
  • the number of sensing units 201 may be any number as long as it is two or more.
  • the noise filtering unit 203 removes noise from the time series data output from the sensing unit 201 as in the first embodiment.
  • the frequency conversion unit 205 converts the time-series data, which are respectively detected by the sensing unit 201 and from which noises have been removed, into frequency data 208 and frequency data 210.
  • the frequency data 208 and 210 are, for example, data different in detection timing, and the frequency data 208 is normal data converted from time-series data in a normal state.
  • the frequency data 210 is observation data (data of an abnormality detection target) converted from time-series data in a state where it is unclear whether or not it is normal.
  • the frequency data 208 and 210 are stored in the storage units 207 and 209, respectively.
  • the average frequency data calculation unit 225 generates average frequency data 228 which is average data of normal data by calculating the average of the frequency data 208 for each frequency.
  • the generated average frequency data 228 is stored in the storage unit 227.
  • the model construction unit 211 generates correlation models 213a to 213n between the frequency data 208a to 208n which is normal data and the average frequency data 228, respectively.
  • the generated correlation model 213 is stored in the storage unit 212.
  • the model construction unit 211 also calculates the correlation strengths 214 a to 214 n of the respective correlation models 213, and also stores them in the storage unit 212.
  • the model construction unit 211 determines the correlation model 213 and the correlation strength relating to the combination of each sensing unit 201 and the average frequency data 228. 214 can be generated for the number of times.
  • the correlation strength average / maximum deviation calculation unit 217 calculates the maximum deviation while obtaining the average value of the correlation strengths 214 generated for a plurality of times.
  • the maximum deviation corresponds to the maximum value of the difference between the average value of the correlation strength 214 and the correlation strength of each correlation model 213 used to calculate the average.
  • the said largest deviation can be memorize
  • the correlation strength average / maximum deviation calculation unit 217 is unnecessary.
  • the model construction unit 219 generates a correlation model between each of the frequency data 210 to 210 n as observation data and the average frequency data 228, and calculates the strength of the correlation of each correlation model.
  • the abnormality detection unit 221 determines the correlation strength 214 of the correlation model 213 generated based on the frequency data 208 which is normal data, and the correlation strength of the correlation model generated based on the frequency data 210 which is observation data. To detect abnormalities by comparing More specifically, for example, although the correlation strength 214 of each correlation model 213 generated based on the frequency data 208 is similar, the correlation of the correlation model generated based on the frequency data 210 In the case where the strength of is not in the approximate range, the abnormality detection unit 221 may determine that an abnormality has occurred in the sensing unit 201 related to the correlation model.
  • the notification unit 223 notifies the user of the result of the abnormality detection by the abnormality detection unit 221.
  • a method of notification by the notification unit 223 for example, a method of displaying a message on the display 111 can be considered.
  • the frequency data 208 and 210 to be processed by the model construction unit 211 and the model construction unit 219 are data acquired from the same sensing unit 201 at different timings.
  • the point is different from the second embodiment. However, since the other points are almost the same as those of the second embodiment, the description will be omitted here.
  • the information processing system 100 uses the frequency data 208 to average the sensing unit 201 with time series data in which the characteristic of change appears in the frequency detected by the sensing unit 201.
  • the correlation with the frequency data 228 is modeled by the model construction unit 211 and the model construction unit 219.
  • the correlation since the correlation is specified not as a correlation coefficient but as a correlation model, it is possible to determine normality or abnormality of sensor data from a change in the correlation. That is, in the information processing system 100 according to the present embodiment, data analysis can be suitably performed.
  • the entire configuration of the information processing system 100 whose specific example is shown in FIG. 2 and the configuration of the computer 1000 capable of realizing the signal conversion module 103, the information processing device 105, and the information processing device 107 are the same as those in the first embodiment. Therefore, the explanation is omitted.
  • the abnormality is detected by comparing the strength of the correlation of the correlation model according to the normal data with the strength of the correlation of the correlation model according to the observation data.
  • No correlation model is generated for observed data.
  • a correlation model between each sensing unit 201 is generated from frequency data 208 which is normal data, and then observation values are applied to the correlation model to generate prediction values, and the prediction values and actual values of observation data It is detected whether it is abnormal or not by comparing. That is, an abnormality is detected using a prediction error.
  • a prediction error As in the information processing system according to the present embodiment, in the case of a method of detecting abnormality using a prediction error, not only the difference of the whole frequency data but also the prediction error is large by displaying the prediction error of each frequency band. It is also possible to specify a frequency band.
  • sensor data in which abnormality occurrences are concentrated can be narrowed down as the root cause of the abnormality.
  • the method of determining the abnormality determination by the prediction error it is possible to set the value of the prediction error used for the abnormality determination as a rule, with reference to the prediction error in the normal data.
  • the method of detecting abnormality with prediction errors related to multiple data can detect minute signs of abnormality as data with a larger range of increase and decrease in the normal state as compared to the case where abnormality is determined with a single data threshold. It is.
  • the information processing system 100 includes sensing units 201 a to 201 n, a noise filtering unit 203, a frequency conversion unit 205, storage units 207 and 209, a model construction unit 211, and a storage unit.
  • 212 includes an abnormality detection unit 221 and a notification unit 223.
  • the sensing unit 201 detects vibration, light, sound, and the like to generate and output time-series data.
  • the sensing unit 201 detects data at least twice or more of the normal state and the unknown state (state of abnormality detection target) as to whether the normal state or not.
  • the number of sensing units 201 may be any number as long as it is two or more.
  • the noise filtering unit 203 removes noise from time-series data output from the sensing unit 201 as in the first to third embodiments.
  • the frequency conversion unit 205 converts the time-series data, which are respectively detected by the sensing unit 201 and from which noises have been removed, to the frequency data 208 and the frequency data 210, respectively.
  • the frequency data 208 and 210 are, for example, data different in detection timing, and the frequency data 208 is normal data converted from time-series data in a normal state.
  • the frequency data 210 is observation data (data of an abnormality detection target) converted from time-series data in a state where it is unclear whether or not it is normal.
  • the frequency data 208 and 210 are stored in the storage units 207 and 209, respectively.
  • the model construction unit 211 generates correlation models 213a to 213m from two combinations of frequency data 208a to 208n which are normal data.
  • the generated correlation model 213 is stored in the storage unit 212.
  • the model construction unit 211 also causes the storage unit 212 to store the correlation strength 214 of each of the correlation models 213 as well.
  • the abnormality detection unit 221 is different from the frequency data 210 stored in the storage unit 209 (the frequency data 208 which is normal data has a different detection timing by the sensing unit 201 that detected the original data, and is an observation target for abnormality detection).
  • An abnormality is detected by applying the correlation model 213 stored in the storage unit 212 to data (corresponding to data). More specifically, for example, with respect to the correlation model 213 generated from the frequency data 208i and the frequency data 208j, the frequency data 210i, the value excluding the frequency f 0 and the value of each frequency of the frequency data 208j are input. Thus, the predicted value of the frequency data 208i at the frequency f 0 can be obtained.
  • the abnormality detection unit 221 can detect an abnormality according to whether the predicted value and the measured value at the frequency f 0 of the frequency data 208 i exceed the abnormality determination threshold 215 or the like. In addition, the said process can be performed with respect to all the frequencies of the frequency data 210, and the combination of all the frequency data 210. FIG.
  • the notification unit 223 notifies the user of the result of the abnormality detection by the abnormality detection unit 221.
  • a method of notification by the notification unit 223 for example, a method of displaying a message or the like on the display 111 can be considered.
  • FIGS. 20 and 21 are flowcharts showing the flow of processing of the information processing system 100.
  • the normal time-series data detected by the sensing unit 201 is converted into frequency data 208 by the frequency conversion unit 205 (S 2001), and the frequency data 208 is stored in the storage unit 207.
  • the model construction unit 211 generates a correlation model 213 for each combination of frequency data 208a to 208n (S2003).
  • the time-series data of the detection target newly detected by the sensing unit 201 is converted into frequency data 210 by the frequency conversion unit 205 (S2005), and stored in the storage unit 209.
  • the abnormality detection unit 221 calculates a prediction value by applying the correlation model 213 to the frequency data 210, and performs abnormality detection processing from the difference between the prediction value and the actual measurement value (frequency data 210) (S2007). .
  • each processing of S2001, S2003 and S2005 is similar to the processing of S501, S503 and S505 described with reference to FIG. 5 in the first embodiment.
  • the process of S2007 will be described with reference to FIG.
  • the abnormality detection unit 221 processes the frequency data 210 that is the target of abnormality detection. First, the abnormality detection unit 221 sets i and j to 1 and then sets the frequency data 210i and 210j (frequency data generated from time-series data extracted by the i-th and j-th sensing units 201, respectively). 210 is extracted from the storage unit 209 (S1201 and S2103) If i and j are equal (Yes in S2105), the value of j is incremented and the frequency data 210j is extracted again (S2103).
  • the correlation model 213 generated from the frequency data 208i and 208j related to the sensing units 201i and 201j is read from the storage unit 212 (S1207), and the correlation model 213 is used. Then, predicted values at each frequency are calculated (S2109). Further, the abnormality detection unit 221 calculates the difference R between the predicted value and the actual measurement value for each frequency (S2111). If the difference R exceeds the abnormality determination threshold 215 (Yes in S2113), the abnormality detection unit 221 notifies the notification unit 223 that there is an indication that an abnormality occurs in the frequency or a prediction error in each frequency band ( S2115).
  • the notification unit 223 displays a numerical value on the display 111 may be cited, or a histogram of an actual measurement value and a prediction value or a difference between them (that is, prediction error) It is also conceivable to display on the display 111 as a graph.
  • the abnormality detection unit 221 performs the above-described process on all the combinations of frequency data 210 while appropriately incrementing i and j until the value becomes n.
  • the abnormality detection unit 221 After the abnormality detection unit 221 has processed the combination of all the frequency data 210, it is assumed that the correlation where the difference R exceeds the abnormality determination threshold 215 (that is, the correlation is broken due to the occurrence of an abnormality). A large number of sensing units 201 included in the expected combination) may be listed. As a result, it is possible to narrow down the sensing units 201 which may have an abnormality.
  • the abnormality detection unit 221 may calculate, as an abnormality score, the sum total of the number of correlation models 213 determined to be abnormal for each frequency, and may notify the notification unit 223. With this function, the degree of abnormality determination for each frequency is clearly indicated in the entire sensing unit 201 used, so that it is possible to give the user information for checking the frequency and the abnormal phenomenon.
  • the information processing system 100 uses the frequency data 208 for the time-series data in which the feature of the change appears in the frequency detected by the sensing unit 201, and Model correlations.
  • the correlation is specified as the correlation model 213 instead of the correlation coefficient, it is possible to determine whether the sensor data is normal or abnormal from the change in the correlation. . That is, in the information processing system 100 according to the present embodiment, data analysis can be suitably performed.
  • the abnormality is detected by applying the frequency data 210 to the correlation model, but in the present embodiment, the frequency data is detected.
  • a correlation model 213 is generated between the average frequency data 228 and the frequency data 208.
  • the average frequency data 230 of the frequency data 210 which is observation data is generated, and then the average frequency data 230 and the frequency data 210 are applied to the correlation model 213 to generate a predicted value of the frequency data 210.
  • the abnormality detection unit 221 detects whether or not there is an abnormality based on the difference between the predicted value and the frequency data 210.
  • the information processing system 100 includes an average frequency data calculation unit 225 and an average frequency data calculation unit 229 in addition to the components included in the information processing system 100 according to the fourth embodiment. Furthermore, the storage units 207 and 209 store the average frequency data 228 and 229 calculated by the average frequency data calculation units 225 and 229, respectively.
  • the operations of the sensing unit 201, the noise filtering unit 203, the frequency conversion unit 205, and the notification unit 223 are the same as in the fourth embodiment, and thus the description thereof is omitted here.
  • the average frequency data calculation unit 225 generates average frequency data 228 which is average data of normal data by calculating the average of the frequency data 208 for each frequency.
  • the calculated average frequency data 228 is stored in the storage unit 207.
  • the model construction unit 211 generates correlation models 213a to 213n between the frequency data 208a to 208n which are normal data and the average frequency data 228, respectively.
  • the generated correlation model 213 is stored in the storage unit 212.
  • the average frequency data calculation unit 229 generates the average frequency data 230 which is the average data of the normal data by calculating the average of the frequency data 208 for each frequency in the same manner as the average frequency data 228.
  • the calculated average frequency data 230 is stored in the storage unit 209.
  • the abnormality detection unit 221 detects an abnormality by applying the frequency data 210 and the average frequency data 230 stored in the storage unit 209 to the correlation model 213. More specifically, for example, for the correlation model 213i generated from the frequency data 208i and the average frequency data 228, the value of each frequency of the average frequency data 230 and the value of the frequency data 208j excluding the frequency f 0 by entering, it is possible to find the prediction value of the frequency data 210i in the frequency f 0.
  • the abnormality detection unit 221 can detect an abnormality according to whether the predicted value and the measured value at the frequency f 0 of the frequency data 210i exceed the abnormality determination threshold 215 or the like.
  • the processing can be performed on all frequencies of the frequency data 210 and all frequency data 210.
  • the normal time series data detected by the sensing unit 201 is converted into frequency data 208 by the frequency conversion unit 205 (S 2301), and the frequency data 208 is stored in the storage unit 207.
  • the average frequency data calculation unit 225 calculates average frequency data 228 which is the average data of each frequency data 208 stored in the storage unit 207 (S2303).
  • the model construction unit 211 generates a correlation model 213 between each frequency data 208 and the average frequency data 228 (S2305).
  • the time-series data of the detection target newly detected by the sensing unit 201 is converted into frequency data 210 by the frequency conversion unit 205 (S2305), and stored in the storage unit 209.
  • the average frequency data calculation unit 229 calculates average frequency data 230 which is the average data of each frequency data 210 stored in the storage unit 209 (S2309).
  • the abnormality detection unit 221 applies the correlation model 213 to the combination of the frequency data 210 and the average frequency data 230 to calculate a predicted value, and from the difference between the predicted value and the actual measured value (frequency data 210), An abnormality detection process is performed (S2311).
  • processing of S2301 and S2307 is similar to the processing described with reference to FIG. 6 in the first embodiment. Also, the process of S2305 is similar to the process described with reference to FIG. 15 in the second embodiment.
  • the abnormality detection unit 221 sets i to 1 and reads the average frequency data 230 (S2401) and reads the frequency data 210i from the storage unit 209 (S2403). Further, the abnormality detection unit 221 reads a correlation model 213i generated from the frequency data 208i and the average frequency data 228 according to the same sensing unit 201i as the frequency data 210i (S2405). The abnormality detection unit 221 calculates the prediction value of the frequency data 210i at each frequency by applying the average frequency data 230 and the frequency data 210i to the read correlation model 213i (S2407). Further, the abnormality detection unit 221 calculates the difference R between the predicted value and the actual measurement value of the frequency data 210i for each frequency (S2409). If the difference R exceeds the abnormality determination threshold 215i (Yes in S2411), the abnormality detection unit 221 notifies the notification unit 223 that there is an indication that an abnormality occurs in the frequency or a prediction error in each frequency band ( S2415).
  • various methods can be considered as a notification method by the notification unit 223, for example, it is also conceivable to display a notification on the display 111, or a histogram of an actual measurement value and a prediction value or a difference between them (that is, prediction error). It is also conceivable to display on the display 111 as a graph.
  • the abnormality detection unit 221 performs the above-described process on all the frequency data 210 while appropriately incrementing the value of i until it matches n.
  • the abnormality detection unit 221 may calculate, as an abnormality score, the sum total of the number of correlation models 213 determined to be abnormal for each frequency, and may notify the notification unit 223. With this function, the degree of abnormality determination for each frequency is clearly indicated in the entire sensing unit 201 used, so that it is possible to give the user information for checking the frequency and the abnormal phenomenon. (5.4 Effects according to the present embodiment)
  • the information processing system 100 uses the frequency data 208 to average the sensing unit 201 with time series data in which the characteristic of change appears in the frequency detected by the sensing unit 201.
  • the correlation with frequency data 228 is modeled.
  • the correlation is specified as the correlation model 213 instead of the correlation coefficient, it is possible to determine whether the sensor data is normal or abnormal from the change in the correlation. . That is, in the information processing system 100 according to the present embodiment, data analysis can be suitably performed.
  • the program of the present invention may be a program that causes a computer to execute each operation described in each of the above embodiments.
  • Converting means for converting a plurality of time series data respectively obtained by detection by a plurality of sensors into first frequency data, and first frequency data relating to at least two of the plurality of sensors using the first frequency data
  • Information processing system comprising: first model generation means for generating a correlation model; first calculation means for calculating the strength of correlation of the first correlation model; and determination means for determining abnormality based on the strength of correlation .
  • the first model generation means uses the average frequency data which is an average of a plurality of first frequency data related to the plurality of sensors and the first frequency data of one of the plurality of first frequency data.
  • the second model generation unit generates the second correlation model using average frequency data which is an average of a plurality of first frequency data related to the plurality of sensors and one second frequency data. Information processing system as described.
  • Appendix 7 The information processing system according to any one of appendices 4 to 6, wherein time series data relating to the first frequency data and time series data relating to the second frequency data are different in detection timing by the plurality of sensors. .
  • Appendix 9 The information processing system according to any one of appendices 1 to 8, wherein a threshold value used for abnormality determination is generated by applying frequency data used for generation of the first correlation model to the first correlation model.
  • a conversion unit that converts a plurality of time series data obtained by detection by a plurality of sensors into first frequency data, and a correlation model using first frequency data relating to at least two of the plurality of sensors.
  • second frequency data obtained by applying, to the correlation model, second frequency data obtained by converting another time-series data obtained from the sensor according to the correlation model.
  • An information processing system comprising: determination means for determining abnormality based on a difference between a predicted value and an actual measurement value of the second frequency data.
  • model generation unit generates the correlation model using a combination of first frequency data of two sensors among the plurality of sensors.
  • the model generation means uses first average frequency data, which is an average of a plurality of first frequency data related to the plurality of sensors, and one first average frequency data of the plurality of first frequency data.
  • first average frequency data which is an average of a plurality of first frequency data related to the plurality of sensors, and one first average frequency data of the plurality of first frequency data.
  • the determination means is obtained by applying, to the correlation model, second frequency data relating to the correlation model and second average frequency data that is an average of a plurality of second frequency data relating to the plurality of sensors.
  • the first correlation model is generated using average frequency data that is an average of a plurality of first frequency data related to the plurality of sensors and first frequency data of one of the plurality of first frequency data.
  • Appendix 18 Converting time series data obtained by detection by the plurality of sensors into second frequency data, generating a second correlation model using the second frequency data, and strength of correlation of the second correlation model The method according to any one of Appendices 15 to 17, further comprising the step of: calculating the abnormality based on comparison between the strength of the correlation of the first correlation model and the strength of the correlation of the second correlation model.
  • Appendix 19 The information processing method according to appendix 18, wherein the second correlation model is generated using a combination of second frequency data relating to two of the plurality of sensors.
  • the correlation model is generated using first average frequency data which is an average of a plurality of first frequency data related to the plurality of sensors, and the first average frequency data of one of the plurality of first frequency data. , The information processing method according to appendix 24.
  • Appendix 28 The information processing method according to any one of appendices 24 to 27, wherein the threshold value used for abnormality determination is generated by applying the frequency data used for generating the correlation model to the correlation model.
  • the first correlation model is generated using average frequency data that is an average of a plurality of first frequency data related to the plurality of sensors and first frequency data of one of the plurality of first frequency data.
  • a process of converting time series data obtained by detection by the plurality of sensors into second frequency data, a process of generating a second correlation model using the second frequency data, and strength of correlation of the second correlation model The method according to any one of appendices 29 to 31, further comprising the step of: calculating the abnormality based on comparison between the strength of the correlation of the first correlation model and the strength of the correlation of the second correlation model. Section program.
  • Appendix 34 The program according to Appendix 32, wherein the second correlation model is generated using average frequency data that is an average of a plurality of first frequency data related to the plurality of sensors and one second frequency data.
  • Appendix 35 The program according to any one of Appendices 32 to 34, wherein the time series data relating to the first frequency data and the time series data relating to the second frequency data are different in detection timing by the plurality of sensors.
  • Appendix 37 The program according to any one of appendices 29 to 36, wherein a threshold value used for abnormality determination is generated by applying the frequency data used for generating the first correlation model to the first correlation model.
  • (Appendix 38) A process of converting a plurality of time series data obtained by detection by a plurality of sensors into first frequency data and a correlation model using first frequency data relating to at least two of the plurality of sensors. Generation processing, and a predicted value of the second frequency data obtained by applying, to the correlation model, second frequency data obtained by converting another time-series data obtained from a sensor related to the correlation model A program that causes a computer to execute processing for determining an abnormality based on a difference from an actual measurement value of the second frequency data.
  • the correlation model is generated using first average frequency data which is an average of a plurality of first frequency data related to the plurality of sensors, and the first average frequency data of one of the plurality of first frequency data. , The program according to appendix 38.
  • Appendix 42 The program according to any one of appendices 38 to 41, wherein a threshold value used for abnormality determination is generated by applying the frequency data used to generate the correlation model to the correlation model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】好適にデータ解析を行うことのできる情報処理システム、情報処理方法、及びプログラムを提供する。 【解決手段】複数のセンシング部201による検知によりそれぞれ得られる複数の時系列データを、それぞれ周波数データ208へと変換する周波数変換部205と、複数のセンシング部201のうちの少なくとも2つのセンシング部201に係る周波数データ208を用いて相関モデル213を生成すると共に、相関モデル213の相関の強さ214を算出するモデル構築部211と、相関の強さ214に基づき異常を判定する異常検出部221とを備える。

Description

情報処理システム、情報処理方法及びプログラム
 本発明に係るいくつかの態様は、情報処理システム、情報処理方法及びプログラムに関する。
 近年、例えばコンピュータ等の情報処理システムの発達により、音や振動などの各種データを収集した上で、それらのデータを解析するシステムが増えつつある。例えば特許文献1は、システムを構成する複数の被管理装置から取得する複数の性能情報を取得した上で、一定間隔で取得される性能情報の時系列変化を示す性能系列情報間の相関関数の係数を導出し、当該相関関数の変化に応じて、異常の発生場所を特定できる装置を開示している。また、特許文献2は、設備から発生する音データを収集し、当該収集したデータの周波数スペクトルを求め、スペクトル値の相関係数にもとづいて異常の有無を判定することを開示している。
特許第4872944号公報 特開2010-066244号公報
 しかしながら、振動や光、音といったデータに対して、所定のサンプリングレートで取得した時系列データ同士の相関関係の抽出を特許文献1記載の手法で行うと、データ取得期間が異なるだけで、算出する相関関数の係数や相関モデルの相関の強さが変化してしまうことが多く、結果として、有意なモデルを生成するのが困難である。
 また、特許文献2に記載のデータを周波数解析する手法では、相関係数を使って異常を検知しているものの、相関係数は値の変化方向が増加であるか減少であるかで符号が異なるため、増加や減少のトレンドが同一となるセンサデータや周波数帯を選定しなければ、好適な分析が難しいという課題がある。
 本発明のいくつかの態様は前述の課題に鑑みてなされたものであり、好適にデータ解析を行うことのできる情報処理システム、情報処理方法、及びプログラムを提供することを目的の1つとする。
 本発明に係る1の情報処理システムは、複数のセンサによる検知によりそれぞれ得られる複数の時系列データを、それぞれ第1周波数データへと変換する変換手段と、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて第1相関モデルを生成する第1モデル生成手段と、前記第1相関モデルの相関の強さを算出する第1演算手段と、相関の強さに基づき異常を判定する判定手段とを備える。
 本発明に係る1の情報処理システムは、複数のセンサによる検知により得られる複数の時系列データを、それぞれ第1周波数データへと変換する変換手段と、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて相関モデルを生成するモデル生成手段と、前記相関モデルに、当該相関モデルに係るセンサから得られる別の時系列データを変換して得られる第2周波数データを適用することにより得られる当該第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定する判定手段とを備える。
 本発明に係る1の情報処理方法は、複数のセンサによる検知によりそれぞれ得られる複数の時系列データを、それぞれ第1周波数データへと変換するステップと、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて第1相関モデルを生成するステップと、前記第1相関モデルの相関の強さを算出するステップと、相関の強さに基づき異常を判定するステップとを情報処理システムが行う。
 本発明に係る1の情報処理方法は、複数のセンサによる検知により得られる複数の時系列データを、それぞれ第1周波数データへと変換するステップと、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて相関モデルを生成するステップと、前記相関モデルに、当該相関モデルに係るセンサから得られる別の時系列データを変換して得られる第2周波数データを適用することにより得られる当該第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定するステップとを情報処理システムが行う。
 本発明に係る1のプログラムは、複数のセンサによる検知によりそれぞれ得られる複数の時系列データを、それぞれ第1周波数データへと変換する処理と、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて第1相関モデルを生成する処理と、前記第1相関モデルの相関の強さを算出する処理と、相関の強さに基づき異常を判定する処理とをコンピュータに実行させる。
 本発明に係る1のプログラムは、複数のセンサによる検知により得られる複数の時系列データを、それぞれ第1周波数データへと変換する処理と、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて相関モデルを生成する処理と、前記相関モデルに、当該相関モデルに係るセンサから得られる別の時系列データを変換して得られる第2周波数データを適用することにより得られる当該第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定する処理とをコンピュータに実行させる。
 なお、本発明において、「部」や「手段」、「装置」、「システム」とは、単に物理的手段を意味するものではなく、その「部」や「手段」、「装置」、「システム」が有する機能をソフトウェアによって実現する場合も含む。また、1つの「部」や「手段」、「装置」、「システム」が有する機能が2つ以上の物理的手段や装置により実現されても、2つ以上の「部」や「手段」、「装置」、「システム」の機能が1つの物理的手段や装置により実現されても良い。
 本発明によれば、好適にデータ解析を行うことのできる情報処理システム、情報処理方法、及びプログラムを提供することができる。
第1実施形態に係る情報処理システムの処理の概要の具体例を説明するための図である。 第1実施形態に係る情報処理システムの処理の概要の具体例を説明するための図である。 実施形態1に係る情報処理システムの構成の具体例を示す図である。 図3に情報処理システムの機能構成の具体例を示す図である。 図3に示す情報処理システムの処理の流れを示すフローチャートである。 図3に示す情報処理システムの処理の流れを示すフローチャートである。 図3に示す情報処理システムの処理の流れを示すフローチャートである。 図3に示す情報処理システムの処理の流れを示すフローチャートである。 図3に示す情報処理システムの処理の流れを示すフローチャートである。 図3に示す情報処理システムを実行可能なコンピュータのハードウェア構成を示すブロック図である。 第2実施形態に係る情報処理システムの処理の概要の具体例を説明するための図である。 第2実施形態に係る情報処理システムの機能構成の具体例を示す図である。 図12に示す情報処理システムの処理の流れを示すフローチャートである。 図12に示す情報処理システムの処理の流れを示すフローチャートである。 図12に示す情報処理システムの処理の流れを示すフローチャートである。 図12に示す情報処理システムの処理の流れを示すフローチャートである。 第3実施形態に係る情報処理システムの処理の概要の具体例を説明するための図である。 第3実施形態に係る情報処理システムの機能構成の具体例を示す図である。 第4実施形態に係る情報処理システムの機能構成の具体例を示す図である。 図19に示す情報処理システムの処理の流れを示すフローチャートである。 図19に示す情報処理システムの処理の流れを示すフローチャートである。 第5実施形態に係る情報処理システムの機能構成の具体例を示す図である。 図22に示す情報処理システムの処理の流れを示すフローチャートである。 図22に示す情報処理システムの処理の流れを示すフローチャートである。
 以下に本発明の実施形態を説明する。以下の説明及び参照する図面の記載において、同一又は類似の構成には、それぞれ同一又は類似の符号が付されている。
 (1 第1実施形態)
 図1乃至図10は、第1実施形態を説明するための図である。以下、これらの図を参照しながら、以下の流れに沿って本実施形態を説明する。まず、「1.1」で本実施形態におけるデータの解析方法の概要を説明する。その後、「1.2」で本実施形態における情報処理システムのシステム構成等の概要を、「1.3」で本実施形態における情報処理システムの機能構成の概要を説明する。「1.4」では、処理の流れを、具体例を交えながら説明する。「1.5」では、情報処理システムを実現可能なハードウェア構成の具体例を説明する。最後に、「1.6」で、本実施形態に係る効果などを説明する。
 (1.1 システム構成及び概要)
 (1.1.1 概要)
 企業情報システムやデータセンタ等の比較的大規模なシステムにおいては、種々のシステムの監視、制御、運用のための統合運用管理システムが提供されている。ITシステムの大規模化や、地震などの災害時の事故対策としての監視強化に伴い、物理データを扱うプラントや、製造現場における状態監視システムも規模が大きくなってきている。このようなシステムは、従来は管理者が手作業でルールを決めて運用してきたが、このように大規模化、複雑化が進むシステムや装置の運用は、日々困難さを増している。つまり、異常を検知するシステムの必要性が高まっている。
 そこで本実施形態に係る情報処理システムは、例えばセンサ等で振動や音、光などのデータを取得した上で、これらのデータを解析することにより、システムの異常を検知する。特に、本実施形態に係る情報処理システムでは、センサから得られる時系列データに対して周波数変換の前処理を行った上でデータを解析するため、本質的な変化が周波数に現れるデータを用いて、異なるセンサ間の相関関係をモデル化することができる。また、本実施形態に係る情報処理システムでは、解析対象のデータを周波数変換した上で、データ間の相関関係を、相関係数ではなく、相関モデルにより特定する。これにより周波数データが増加トレンドにあるか減少トレンドにあるかに関わりなく、相関関係の変化に応じて、異常を検知することができる。
 以下、図1や図2を参照しながら、より具体的に説明する。
 まず、相関関係について説明する。2つ以上のセンサで同時にデータを計測している時、正常な状態では、あるセンサと別のセンサとで計測するデータには、強弱の違いはあるものの、通常は何らかの関連性が見出される。一方が増加すれば他方も増加する、或いは、他方が減少すれば他方も減少するような関係を、本実施形態では相関関係と呼ぶ。
 前述の通り、本実施形態に係る情報処理システムでは、音や光、振動等をセンサで検知することにより得られる時系列データを変換した周波数データから、センサ間の相関モデルを生成する。相関モデルは、例えば以下のような式で表現することができる。
式1
Figure JPOXMLDOC01-appb-I000001
 ここで、f~f、f~fは、それぞれ予め定められた周波数であり、s(f)及びs(f)は、それぞれセンサx、センサyから得られた周波数データ(時系列データを変換したもの)の、周波数fにおける強度を示す。a~a、b~b、Cは、それぞれ係数であり、相関モデルを求める処理は、係数a~a、b~b、Cを定める処理に相当する。
 相関モデルが求まった後は、例えばセンサxの周波数データにおける強度であるs(f)~s(f)、及びセンサyの周波数f~fm-1の強度であるs(f)~s(fm-1)を入力することにより、周波数fmにおける強度の予測値であるs(f)’を求めることができる。周波数f~fm-1における予測値も同様にして算出することができる。
 また、相関関係には強弱がある。相関関係の強弱(以下、相関の強さともいう。)を定める指標としては種々考えられるが、例えば、モデル生成に用いた正常データに対して、生成した予測値と観測値との予測誤差の総和に比例する値とすることができる。つまり、相関の強さは、例えば以下のような数式で表現できる。
式2
Figure JPOXMLDOC01-appb-I000002
 ここで、s(f)は周波数fにおける周波数データの強度の実測値であり、s(f)’は相関モデルを用いて算出した、周波数fにおける周波数データの強度の予測値である。本実施形態に係る情報処理システムでは、正常データ及び観測データに対してそれぞれ相関モデルを生成した上で、正常データにおける相関モデルの相関の強さを、観測データにおける相関モデルの相関の強さと比較することにより、異常発生の有無を判定する。
 このような相関の強さという指標を考えると、例えば、振動センサA及びセンサBで時系列データを取得した場合に、図1上部に示すように、各時刻tにおける振動加速度の相関が弱い場合であったとしても、各データを周波数データに変換した場合には、図1下部に示すように、各周波数における相関が強い場合も考えられる。そこで本実施形態では、時系列データを周波数データに変換した上で、各センサに係る周波数データ間の相関関係を示す相関モデルを生成する。そして、相関関係が崩れたか否かに応じて異常を検知する。
 図2に具体例を示す。図2の左側は、各センサを個々に観察する場合、右側は本実施形態のようにセンサ間の相関を観察する場合を示した図である。各センサを個々に観察する場合には、発生した異常が微小なものであると、センサの観測値が正常範囲内(正常値)を示す場合が多く、図2左上に示すように、どのセンサでも異常を検出できない可能性が高い。
 一方、センサ間の相関関係を見る場合には、図2右上に示すように、あるセンサと他のセンサとの相関関係が崩れる場合があるので、異常を検知できる場合がある。特に、ある特定のセンサと他のセンサとの間の相関関係ばかりが崩れている場合には、当該特定のセンサの観測対象が異常であることを検出できる場合がある。
 また、各センサを個々に観察する場合には、発生した異常が大きいと、図2左下に示すように、多数のセンサで正常範囲外(異常値)を示すことが多い。この場合には、どこに根本的な異常発生箇所があるのかを特定することが困難である。
 一方、センサ間のデータの相関の強さを観察する場合には、図2右下に示すように、一定範囲内のセンサ間は相関の強さに大きな変化を示さない場合もある。そのような場合には、相関の崩れた部分に囲まれた領域が異常発生原因の存在箇所であるものと推測できる。
 上述したように、本実施形態に係る情報処理システムでは、各センサから得られる時系列データを変換して得られる周波数データを用いて、相関関係を示す相関モデルを生成し、当該相関モデルの相関関係が崩れているか否かに応じて異常を検知する。
 相関関係が崩れているか否かは、各センサ間の相関モデルにおける相関の強さという指標を用いて判断できる。正常データを用いて生成した相関モデルにおける相関の強さと、観測対象のデータを用いて生成した相関モデルにおける相関の強さとの間に大きな差異が生じた場合には、相関関係が崩れた異常な状態にあることを検出することができる。
 異常検知に用いる相関モデルは、データの変動トレンドが2つのデータ間で異なっていたとしても生成可能である。よって、相関の強さも2つのデータ間で変動トレンドに依存しないため、異なるセンサのデータ間でも、好適に相関モデルを生成し、また、相関の強さを算出することができる。このような処理を複数のセンサ間に対して網羅的に実施することで、異常発生が集中しているセンサデータを、異常の根本原因として絞り込むことができる。
 (1.1.2 システム構成)
 まず、本実施形態に係る情報処理システム100のシステム構成の具体例を、図3を参照しながら説明する。図3に示す通り、具体例に係る情報処理システム100は、振動センサ101a乃至101n(以下、総称して振動センサ101と呼ぶこともある)と、信号変換モジュール103と、例えばパーソナルコンピュータやサーバ等のコンピュータである情報処理装置105及び107と、記憶媒体109と、ディスプレイ111とから構成される。
 振動センサ101は、例えばそれぞれ異なる位置に設置されるセンサであって、時系列データを観測する。なお、ここでは振動センサ101は信号を検知するがこれに限られるものではなく、振動の代わりに音や光の時系列データを観測することも考えられる。
 信号変換モジュール103は、振動センサ101で検知した時系列のアナログデータを、情報処理装置105及び107で処理可能なデジタルデータへと変換した上で、当該時系列のデジタルデータを周波数データへと変換する。変換後の周波数データは、情報処理装置105及び107へと出力される。
 情報処理装置105は、デジタル信号となったセンサデータが変換された周波数データから相関モデルを生成し、記憶媒体109へと出力する。
 記憶媒体109は、例えばHDD(Hard Disk Drive)やフラッシュメモリ等であり、前述の通り、相関モデルを記憶する。なお、記憶媒体109は情報処理装置105又は情報処理装置107に内蔵されていても良い。
 情報処理装置107は、各振動センサ101によって新たに検知されたセンサデータが変換された周波数データの入力を受け、当該周波数データと、記憶媒体109に記憶されたモデル情報とを用いて、異常検知処理を行う。ディスプレイ111は、情報処理装置107による異常検知結果を表示する。
 なお、本実施形態では、情報処理装置105及び107の2台のシステムを有しているがこれに限られるものではなく、1台の情報処理装置や3台以上の情報処理装置で実装することも考えられる。また、ディスプレイ111は、情報処理装置107に内蔵されていても良い。
 (1.2 機能構成)
 続いて、図4を参照しながら、情報処理システム100の機能構成を説明する。図4に示す通り、本実施形態に係る情報処理システム100は、センシング部201a乃至201n(以下、総称してセンシング部201とも呼ぶ。)と、ノイズフィルタリング部203と、周波数変換部205と、記憶部207及び209と、モデル構築部211及び219と、記憶部212と、相関強さ平均・最大偏差算出部217と、異常検出部221と、通知部223とから構成される。ここで、センシング部201は図3の振動センサ101に相当する。ノイズフィルタリング部203及び周波数変換部205は図1の信号変換モジュール103に対応し、記憶部207及びモデル構築部211、相関強さ平均・最大偏差算出部217は図1の情報処理装置105に対応する。記憶部212は図1の記憶媒体109に相当し、記憶部209、異常検出部221は図1の情報処理装置107に相当する。通知部223は、ディスプレイ111に相当する。
 センシング部201は、振動や光、音などを検知して時系列データを生成及び出力する。なお、本実施形態では、センシング部201は正常な状態と正常であるか否かが不明な状態(異常検知対象)との少なくとも2回以上のタイミングで時系列データを生成及び出力する。なお、本実施形態では、センシング部201の数nは、2以上であればいくつでも良い。
 ノイズフィルタリング部203は、センシング部201から出力された時系列データからノイズを除去する。周波数変換部205は、センシング部201a乃至201nでそれぞれ検知され、ノイズが除かれた時系列データを、それぞれ周波数データ208a乃至208n(以下、総称して周波数データ208とも呼ぶ。)及び周波数データ210a乃至210n(以下、総称して周波数データ210とも呼ぶ。)へと変換する。なおここで、周波数データ208及び210は、例えば、検知のタイミングの異なるデータであり、ここでは、周波数データ208は、相関モデル213を生成するために使用する正常データ、周波数データ210は相関モデル213を用いて異常を検知するための観察データであるものとする。周波数データ208及び210は、それぞれ記憶部207及び209へと記憶される。
 モデル構築部211は、正常データである周波数データ208a乃至208nのうち2つの組み合わせから、それぞれ相関モデル213a乃至213m(以下、総称して相関モデル213とも呼ぶ。)を生成する。生成された相関モデル213は、記憶部212に記憶される。また、モデル構築部211は、それぞれの相関モデル213a乃至213mの相関の強さ214a乃至214mも、併せて記憶部212に記憶させる。
 それぞれのセンシング部201に対して複数回分の周波数データ208が観測されている場合には、モデル構築部211は、各センシング部201の組み合わせに係る相関モデル213及びその相関の強さ214を当該回数分だけ生成することができる。相関強さ平均・最大偏差算出部217は、各センシング部201に係る複数回分の相関の強さ214の平均値をそれぞれ求めるとともに、最大偏差を算出する。この最大偏差は、相関の強さ214の平均値と、当該平均の算出に用いた各相関モデル213に係る相関の強さ214との差の最大値に相当する。当該最大偏差は、異常判定に用いられる異常判定閾値215として記憶部212に記憶させることができる。
 なお、各センシング部201の組み合わせに対して複数回の相関モデル213の作成及び相関の強さ214の算出を行わない場合には、相関強さ平均・最大偏差算出部217は不要である。
 モデル構築部219も、モデル構築部211と同様に、観察データである周波数データ210a乃至210nのうち2つの組み合わせから、それぞれ相関モデルを生成すると共に、各相関モデルの相関の強さを算出する。
 異常検出部221は、正常データである周波数データ208を元に生成された相関モデル213の相関の強さ214と、観察データである周波数データ210を元に生成された相関モデルの相関の強さとを比較することにより、異常を検知する。より具体的には、例えば、周波数データ208を元に生成された相関モデル213の相関の強さ214と、周波数データ210を元に生成された相関モデルの相関の強さとの差異が、異常判定閾値215を超過した場合に、相関関係が崩れている(異常が発生している)ものと判定することが考えられる。なお、ここで比較対象となる相関の強さは、同一のセンシング部201の組み合わせに係る相関モデル同士である。
 通知部223は、異常検出部221による異常検知の結果をユーザへ報知する。通知部223による報知の方法としては、例えばディスプレイ111上にメッセージなどを表示する方法が考えられる。
 (1.3 処理の流れ)
 以下、図5乃至図9を参照しながら、本実施形態に係る情報処理システム100の処理の流れを説明する。図5乃至図9は、情報処理システム100の処理の流れを示すフローチャートである。
 なお、後述の各処理ステップは、処理内容に矛盾を生じない範囲で、任意に順番を変更して若しくは並列に実行することができ、また、各処理ステップ間に他のステップを追加しても良い。更に、便宜上1つのステップとして記載されているステップは複数のステップに分けて実行することもでき、便宜上複数に分けて記載されているステップを1ステップとして実行することもできる。この点、実施形態2以降も同様である。
 (1.3.1 全体の処理の流れ)
 まず、全体の処理の流れを、図5を参照しながら説明する。
 センシング部201により検知(センシング)された正常な時系列データは、周波数変換部205によって周波数データ208へと変換され(S501)、記憶部207へと記憶される。モデル構築部211は、周波数データ208a乃至208nのそれぞれの組み合わせに対して相関モデル213を生成すると共に、各相関モデル213に係る相関の強さ214を算出する(S503)。このとき、センシング部201が複数回分の時系列データを生成している場合には、相関強さ平均・最大偏差算出部217が、当該複数回分の相関の強さ214の平均値及び最大偏差(異常判定閾値215に相当)を算出しても良い。
 更に、センシング部201により新たに検知された観察対象の時系列データは、周波数変換部205によって周波数データ210へと変換され(S505)、記憶部209へと記憶される。モデル構築部219は、周波数データ210a乃至210nのそれぞれの組み合わせに対して相関モデルを求めるとともに、各相関モデルに係る相関の強さを算出する(S507)。異常検出部221は、正常データである周波数データ208から作成した相関モデル213と、観察データである周波数データ210から作成した相関モデルとを比較することにより、異常検知処理を行う(S509)。
 以下、S501、S503、S507及びS509のそれぞれの処理の詳細を、図6乃至図9を参照しながら説明する。
 (1.3.2 データ変換処理)
 図6を参照しながら、センシング部201が検知した時系列データの変換処理の流れを説明する。なお、図6に係るフローチャートは、図5のS501の処理に対応する。
 正常状態において、一定期間(例えば10秒間)センシング部201a乃至201nが計測対象に対する状態検知を行う(S601)。その結果、それぞれのセンシング部201a乃至201nからそれぞれ得られる時系列データ1~nに対して、ノイズフィルタリング部203及び周波数変換部205は順次処理を行う。
 より具体的には、まずi=1とした上で、iがセンシング部201の数nよりも小さい場合には(S603)、ノイズフィルタリング部203はi番目の時系列データ(i番目のセンシング部201のデータ)を抽出した上で(S605)、当該時系列データからノイズを除去する(S607)。このとき、ノイズフィルタリング部203は時系列データに対してバターワースフィルタを用いることにより、ノイズを除去することが考えられる。もし、1000Hz近辺の周波数帯に注目する場合には、10乃至10000Hzの成分が残るようにバターワースフィルタを適用することが考えられる。
 周波数変換部205は、ノイズフィルタリング部203がノイズを除去した時系列データを周波数データ208へと変換して(S609)、記憶部207に記憶させる(S611)。周波数変換部205による周波数データ208への変換方法としては、例えば、AR(Auto-regressive)モデル(自己相関モデル)を用いる方法が考えられる。その場合には、フィルタリングされた時系列データに対して、AICを参照して設定されたモデル次数の自己相関モデルを同定し、同定した自己相関モデルのインパルス応答を取得した上で、当該インパルス応答を周波数変換する手法が考えられる。
 情報処理システム100はiの値をインクリメントした上で、S603乃至S611の処理をi>nとなるまで(未処理のデータがなくなるまで)繰り返す。
 なお、上述の処理は、異常検知の対象(観察データ)となる周波数データ210の生成時(図5のS505の処理に対応。)においても、同様となる。
 (1.3.3 モデル構築処理)
 続いて、図7及び図8を参照しながら、モデル構築に係る処理の流れを説明する。なお、図7に示すフローチャートは、図5のS503の処理に対応する。
 図7は、センシング部201a乃至201nでそれぞれ複数回(ここではM回とする。)正常データである時系列データを検知し、それぞれの時系列データに対応する周波数データ208に対して相関モデル213を生成する場合の処理の流れを示す図である。
 k回目に検出した正常データに対して、モデル構築部211は周波数データ208の各組み合わせに対する相関モデル213をそれぞれ算出するとともに、各相関モデル213の相関の強さ214をそれぞれ算出する(S701)。この処理は、図8を参照しながら後に詳述する。
 M回目に検出した正常データである周波数データ208に対する相関モデル213及び相関の強さ214の算出が終わると(S703のYes)、センシング部201i、201j(0<i,j≦n)でそれぞれM回検出された時系列データから作成された各M個の周波数データ208i、208jから、相関モデル213及び当該相関モデル213の相関の強さ214がそれぞれM個生成される。そこで相関強さ平均・最大偏差算出部217は、当該M個の相関の強さ214の平均値を、各(i,j)の組み合わせに対して求める(S705~S711)。これにより、センシング部201の各組み合わせに係る相関の強さの平均値がそれぞれ算出できる。
 続いて、S701に係る処理の詳細を、図8を参照しながら説明する。
 モデル構築部211は、i,jをそれぞれ1に設定した上で、周波数データ208i及び208j(それぞれ、i番目及びj番目のセンシング部201で検知された時系列データから生成された周波数データ208)を記憶部207から抽出する(S801及びS803)。もし、iとjとが等しければ(S805のYes)、jの値をインクリメントした上で、再度周波数データ208jを抽出し直す(S803)。
 i及びjの値が異なる場合には(S805のNo)、周波数データ208iと周波数データ208jとを用いて相関モデル213を生成する(S807)。相関モデル213の具体例としては、例えば、ARX(Auto-regressive exogeneous)モデルが挙げられる。
 更にモデル構築部211は、生成した相関モデル213に、当該モデルの生成に用いた周波数データ208i、208jを適用することにより、各周波数における予測値を算出した上で、予測値と観測値(実測値)との差分から当該相関モデル213に係る相関の強さ214を算出する(S809)。また、モデル構築部211は、算出した相関モデル213及び相関の強さ214を記憶部212へと格納する(S811)。
 なおこの時、異常検知に用いる相関モデル213を、予測精度の高いもののみに限定することも考えられる。その場合、閾値を超える相関の強さ214のみを、異常検出部221による異常検出に用いることになる。
 モデル構築部211は、i及びjを、値がnとなるまで適宜インクリメントしつつ、上述の処理を全ての周波数データ208の組み合わせに対して行う。
 なお、図8の処理を実行すると、(周波数データ208i,周波数データ208j)の組み合わせと(周波数データ208j,周波数データ208i)の組み合わせとの二通りに対して相関モデル213が生成されるが、このうち相関モデル213の予測精度が高い方(相関の強さ214が大きい方)を、モデル構築部211は採用する。
 (1.3.4 異常検知処理)
 図9を参照しながら、異常検知処理の流れを説明する。なお、図9に示すフローチャートは、図5のS507及びS509の処理に対応する。
 モデル構築部219及び異常検出部221は、異常検知の対象(観察データ)である周波数データ210に対して処理を行う。まず、モデル構築部219は、i,jをそれぞれ1に設定した上で、周波数データ210i及び210j(それぞれ、i番目及びj番目のセンシング部201で抽出された時系列データから生成された周波数データ210)を記憶部209から抽出する(S901及びS903)。もし、iとjとが等しければ(S905のYes)、jの値をインクリメントした上で、再度周波数データ210jを抽出し直す(S903)。
 i及びjの値が異なる場合には(S905のNo)、モデル構築部219は、センシング部201i及び201jに係る周波数データ210i及び210jから相関モデルを生成すると共に(S907)、当該相関モデルにおける相関の強さを算出する(S909)。
 異常検出部221は、モデル構築部219からセンシング部201i及び201jに係る相関モデルの相関の強さを受け取ると共に、記憶部212から、正常データである周波数データである208i及び208j(それぞれ、i番目及びj番目のセンシング部201で抽出された時系列データから生成された周波数データ208)から生成された相関モデル213の相関の強さ214を読込む(S911)。もし、観察データから生成した相関モデルの相関の強さと正常データから生成した相関モデル213の相関の強さ214の値が近似する場合には(例えば、差異が異常判定閾値215以内である場合には)(S913のYes)、観察データは正常であると判断できる。一方、正常データに係る相関の強さと観察データの相関の強さとの差異が大きい場合には(S913のYes)、当該相関の強さに係る相関モデルが示すセンシング部201i及び201jの間の相関関係が崩れている(異常である)と判断できる。そこで通知部223は、当該相関関係が崩れているセンシング部201に係る情報等と共に、異常を示す情報を通知する(S915)。例えばこの時、異常検出部221は、処理対象の周波数において異常を起こす兆候がある旨等を通知する。
 モデル構築部219及び異常検出部221は、i及びjを値がnとなるまで適宜インクリメントしつつ、上述の処理を全ての周波数データ210の組み合わせに対して行う。
 なお、異常検出部221は、全ての周波数データ210の組み合わせに対する処理を終えた後、異常が発生していることにより相関が崩れていると予想される組み合わせに多く含まれるセンシング部201をリストアップしても良い。これにより、異常発生の可能性のあるセンシング部201を絞り込むことが可能となる。
 なお、ここでの説明では正常データに係る相関モデル213を複数回算出する場合について説明しなかったが、相関モデル213及び当該相関モデル213の相関の強さ214を複数回算出する場合には、当該相関の強さの平均値と、同じセンシング部201の組み合わせに係る観察データである周波数データ210から生成した相関モデルの相関の強さとを比較すれば良い。
 (1.4 ハードウェア構成)
 以下、図10を参照しながら、上述してきた信号変換モジュール103や情報処理装置105、情報処理装置107をコンピュータ1000により実現する場合のハードウェア構成の一例を説明する。信号変換モジュール103や情報処理装置105、情報処理装置107の機能は、それぞれ別々のコンピュータとしても実現しても良いし、1台のコンピュータにより実現しても良い。また、4台以上のコンピュータにより実現することも可能である。
 図10に示すように、コンピュータ1000は、プロセッサ1001、メモリ1003、記憶装置1005、入力インタフェース(I/F)1007、データI/F1009、通信I/F1011、表示装置1013を含む。
 プロセッサ1001は、メモリ1003に記憶されているプログラムを実行することによりコンピュータ1000における様々な処理を制御する。例えば、図4で説明したノイズフィルタリング部203や周波数変換部205、モデル構築部211や相関強さ平均・最大偏差算出部217、モデル構築部219、異常検出部221に係る処理は、メモリ1003に一時記憶された上で主にプロセッサ1001上で動作するプログラムとして実現可能である。
 メモリ1003は、例えばRAM(Random Access Memory)等の記憶媒体である。メモリ1003は、プロセッサ1001によって実行されるプログラムのプログラムコードや、プログラムの実行時に必要となるデータを一時的に記憶する。例えば、メモリ1003の記憶領域には、プログラム実行時に必要となるスタック領域が確保される。
 記憶装置1005は、例えばハードディスクやフラッシュメモリ等の不揮発性の記憶媒体である。記憶装置1005は、オペレーティングシステムや、ノイズフィルタリング部203や周波数変換部205、モデル構築部211や相関強さ平均・最大偏差算出部217、モデル構築部219、異常検出部221を実現するための各種プログラムや、周波数データ208及び210、相関モデル213、相関の強さ214、異常判定閾値215を含む各種データ等を記憶する。記憶装置1005に記憶されているプログラムやデータは、必要に応じてメモリ1003にロードされることにより、プロセッサ1001から参照される。
 入力I/F1007は、ユーザからの入力を受け付けるためのデバイスである。入力I/F1007の具体例としては、キーボードやマウス、タッチパネル等が挙げられる。入力I/F1007は、例えばUSB(Universal Serial Bus)等のインタフェースを介してコンピュータ1000に接続されても良い。
 データI/F1009は、コンピュータ1000の外部からデータを入力するためのデバイスである。データI/F1009の具体例としては、各種記憶媒体に記憶されているデータを読み取るためのドライブ装置等がある。データI/F1009は、コンピュータ1000の外部に設けられることも考えられる。その場合、データI/F1009は、例えばUSB等のインタフェースを介してコンピュータ1000へと接続される。
 通信I/F1011は、コンピュータ1000の外部の装置、例えばセンシング部201等との間で有線又は無線によりデータ通信するためのデバイスである。通信I/F1011はコンピュータ1000の外部に設けられることも考えられる。その場合、通信I/F1011は、例えばUSB等のインタフェースを介してコンピュータ1000に接続される。
 表示装置1013は、各種情報を表示するためのデバイスである。図3に示したディスプレイ111は、表示装置1013として実装することも考えられる。表示装置1013の具体例としては、例えば液晶ディスプレイや有機EL(Electro-Luminescence)ディスプレイ等が挙げられる。表示装置1013は、コンピュータ1000の外部に設けられても良い。その場合、表示装置1013は、例えばディスプレイケーブル等を介してコンピュータ1000に接続される。
 (1.5 本実施形態に係る効果)
 以上説明したように、本実施形態に係る情報処理システム100は、センシング部201で検知された周波数に変化の特徴が現れる時系列データに対して、周波数データ208を用いて、センシング部201間の相関関係を相関モデル213としてモデル化する。このように本実施形態に係る情報処理システム100では、相関関係を相関係数ではなく相関モデル213として特定しているため、相関関係の変化から、センサデータの正常又は異常を判定することができる。
 つまり、本実施形態に係る情報処理システム100では、好適にデータ解析を行うことができる。
 (2 第2実施形態)
 以下、第2実施形態について説明する。以下の説明において、第1実施形態と同一若しくは類似の構成に対しては同一の符号を付与するとともに、必要に応じて説明を省略する。また、第1実施形態と同一若しくは類似する作用効果を得られる場合にも、説明を省略する場合がある。
 特に、図2に具体例を示した情報処理システム100全体の構成や、信号変換モジュール103や情報処理装置105、情報処理装置107を実現可能なコンピュータ1000の構成は第1実施形態と同様であるため、説明を省略する。
 (2.1 概要)
 以下、図11を参照しながら、本実施形態に係る情報処理システム100の処理の概要を簡単に説明する。
 第1実施形態では、それぞれのセンシング部201に係る周波数データ208及び210から相関モデルを生成していたが、本実施形態では、各センシング部201で検出した正常データである周波数データ208の平均値を求めた上で、当該平均値と各周波数データ208との間で相関モデル及び相関の強さを生成する。この処理を図11の具体例を参照しながら説明すると、まず、グラフで示されたセンサA乃至センサDに係る周波数データ208に対し、左部中央に示す破線の平均周波数データを生成する。その上で、当該平均周波数データと、センサA乃至センサDの周波数データ208との間で相関モデルを生成し、更に、それらの相関の強さFA-Ave~FD-AVEを算出する。
 また、第1実施形態では、正常データを取得するセンシング部201と観察データ(異常判定対象のデータ)を取得するセンシング部201とは同一であり、正常データと観察データの違いは、時系列データを取得するタイミングであったが、本実施形態においては、正常データを取得するためのセンシング部201と観察データを取得するためのセンシング部201とが異なる。図11を例に説明すると、正常データはセンサA~センサDから取得した時系列データを変換した周波数データであり、観察データはセンサE及びセンサFから取得した時系列データを変換した周波数データである。観察データに対しても、上記正常データの平均周波数データとの間で相関モデルを生成し、更に、その相関の強さを算出する(図11中、FE-AVE及びFF-AVE)。
 その結果、平均周波数データと正常データに係る周波数データとの相関モデルの相関の強さFA-AVE~FD-AVEがそれぞれ略一致している(例えば差異が閾値以下である)にもかかわらず、正常データの平均周波数データと観察データに係る周波数データとの相関モデルの相関の強さFE-AVE又はFF-AVEが大きく相違する(例えば差異が閾値を超過する)場合には、当該センサE又はセンサFに対して、情報処理システム100は異常であるものと判定する。
 (2.2 機能構成)
 システム構成は、第1実施形態と同様とすることができるので、ここでは説明を省略する。以下、図12を参照しながら、本実施形態に係る情報処理システム100の機能構成を説明する。図12に示す通り、本実施形態に係る情報処理システム100は、第1実施形態に係る情報処理システム100が有していた各構成に加えて、平均周波数データ算出部225と、平均周波数データ228を記憶する記憶部227とを更に有する。
 センシング部201は第1実施形態と同様、振動や光、音などを検知して時系列データを生成及び出力する。なお、本実施形態では、センシング部201a乃至201kは正常データを検知するためのものであり、センシング部201k+1~201nが観察データを検知するためのものである。本実施形態において、正常データを検知するためのセンシング部201の数は2以上であればいくつでもよく、また、観察データを検知するためのセンシング部201の数は1以上であればいくつでも良い。
 ノイズフィルタリング部203は、第1実施形態と同様、センシング部201から出力された時系列データからノイズを除去する。周波数変換部205は、センシング部201a乃至201kでそれぞれ検知され、ノイズが除かれた時系列データを、それぞれ周波数データ208a乃至208k(総称して周波数データ208とも呼ぶ。)へと変換し、記憶部207へと出力する。また、周波数変換部205は、センシング部201k+1乃至201nでそれぞれ検知され、ノイズが除かれた時系列データを、それぞれ周波数データ210a乃至201n-k(総称して周波数データ210とも呼ぶ。)へと変換し、記憶部209へと出力する。ここでは、周波数データ208は、正常な状態を示す正常データ、周波数データ210は以上を検知する対象である観察データであるものとする。
 平均周波数データ算出部225は、各周波数毎に周波数データ208a乃至208kの平均を算出することにより、正常データの平均データである平均周波数データ228を生成する。算出した平均周波数データ228は、記憶部227へと格納される。
 モデル構築部211は、正常データである周波数データ208a乃至208kのそれぞれと、平均周波数データ228との間で、それぞれ相関モデル213a乃至213k(以下、総称して相関モデル213とも呼ぶ。)を生成する。生成された相関モデル213は、記憶部212に記憶される。また、モデル構築部211は、それぞれの相関モデル213a乃至213kの相関の強さ214a乃至214kも算出し、併せて記憶部212へと記憶させる。
 それぞれのセンシング部201に対して複数回分の周波数データ208が観測されている場合には、モデル構築部211は、各センシング部201と平均周波数データ228との組み合わせに係る相関モデル213及び相関の強さ214を、当該回数分だけ生成することができる。相関強さ平均・最大偏差算出部217は、複数回分生成された相関の強さ214の平均値を求めるとともに、最大偏差を算出する。この最大偏差は、相関の強さ214の平均値と、当該平均の算出に用いた各相関モデル213に係る相関の強さ214との差の最大値に相当する。当該最大偏差は、異常判定に用いられる異常判定閾値215として記憶部212に記憶させることができる。
 なお、センシング部201において複数回の観察を行わない場合には、相関強さ平均・最大偏差算出部217は不要である。
 モデル構築部219は、観察データである周波数データ210a乃至210n-kのそれぞれと、平均周波数データ228との間で、それぞれ相関モデルを生成するとともに、各相関モデルの相関の強さを算出する。
 異常検出部221は、正常データである周波数データ208を元に生成された相関モデル213の相関の強さ214と、観察データである周波数データ210を元に生成された相関モデルの相関の強さとを比較することにより、異常を検知する。より具体的には、例えば、周波数データ208を元に生成された相関モデル213の各相関の強さ214が近似している(例えば閾値範囲以内に収まっている)にもかかわらず、周波数データ210を元に生成された相関モデルの相関の強さが近似範囲にない場合(例えば閾値範囲を超えている場合)に、異常検出部221は相関関係が崩れている(異常が発生している)ものと判定することが考えられる。
 通知部223は、異常検出部221による異常検知の結果をユーザへ報知する。通知部223による報知の方法としては、例えばディスプレイ111上にメッセージを表示する方法等が考えられる。
 (2.3 処理の流れ)
 以下、本実施形態に係る情報処理システム100の処理の流れを説明する。
 (2.3.1 全体の処理の流れ)
 まず、全体の処理の流れを、図5を参照しながら説明する。
 センシング部201により検知(センシング)された正常な時系列データは、周波数変換部205によって周波数データ208へと変換され(S1301)、周波数データ208は記憶部207に記憶される。平均周波数データ算出部225は、記憶部207に記憶された各周波数データ208から周波数ごとに平均をとることにより平均周波数データ228を生成する(S1303)。モデル構築部211は、各周波数データ208と平均周波数データ228との間で相関モデル213を生成するとともに、各相関モデル213に係る相関の強さ214を算出する(S1305)。このとき、センシング部201が複数回検出した時系列データからそれぞれ生成された周波数データ208が複数回分ある場合には、相関強さ平均・最大偏差算出部217が、当該複数回分の相関の強さ214の平均値及び最大偏差(異常判定閾値215に相当)を算出してもよい。
 更に、センシング部201k+1乃至センシング部201nにより検知された観察対象の時系列データは、周波数変換部205によって周波数データ210へと変換され(S1307)、記憶部209へと記憶される。モデル構築部219は、周波数データ210a乃至219n-kのそれぞれと平均周波数データ228との間で相関モデルを求めるとともに、各相関モデルの相関の強さを算出する(S1309)。異常検出部221は、正常データである周波数データ208から生成した相関モデル213と、観察データである周波数データ210から作成した相関モデルとを比較することにより、異常検知処理を行う(S1311)。
 ここで、S1301、S1307の各処理は、第1実施形態で図5を参照しながら説明したS501、S505と同様となる。以下、S1305、S1309及びS1311の処理を、図14を参照しながら説明する。
 (2.3.2 相関モデルの生成)
 図14及び図15を参照しながら、モデル構築に係る処理の流れを参照する。なお、図14に示すフローチャートは、図13のS1305に対応する。
 図14は、センシング部201a乃至201kでそれぞれ複数回(ここではM回とする。)正常データである時系列データを検知し、それぞれの時系列データに対応する周波数データ208に対して相関モデル213を生成する場合の処理の流れを示す図である。
 i回目に検出した正常データに対して、モデル構築部211は平均周波数データ228との間で、式1を参照しながら説明した相関モデル213を生成する。また、モデル構築部211は当該相関モデル213を用いて、モデル生成に用いた周波数データを用いて、各周波数における強度の予測値を算出し、当該予測値と実測値との差分を求め、異常検知に用いる異常判定閾値215として格納する。また、式2に基づいて、相関モデル213の相関の強さ214を算出する(S1401)。この処理は、図15を参照しながら後に詳述する。
 M回目に検出した正常データである周波数データ208に対する相関モデル213及び相関の強さ214の算出が終わると(S1403のYes)、各センシング部201iと平均周波数データ228との間でM個ずつ生成された相関モデル213に係る相関の強さ214の平均値を求める(S1405)。また、当該平均値と、M個の相関の強さ214との間の差の最大値を算出する。この最大値を異常検出のための異常判定閾値215とすることができ、当該異常判定閾値215は記憶部212に記憶させることができる。
 続いて、S1401かかる処理の詳細を、図15を参照しながら説明する。
 まずモデル構築部211は、平均周波数データ228を読みこむ(1501)。また、モデル構築部211は、iを1に設定した上で、周波数データ208i(i番目のセンシング部201から抽出された時系列データから生成された周波数データ208)を記憶部207から抽出する(S1503)。
 モデル構築部211は、周波数データ208iと平均周波数データ228とを用いて相関モデル213を生成する(S1505)。相関モデル213の具体例としては、例えば、ARXモデルが挙げられる。
 更にモデル構築部211は、生成した相関モデル213をモデル生成に用いた周波数データ208に対して適用することにより、各周波数における周波数データの予測値を算出した上で、当該予測値と、周波数データ208の実測値(観測値)との差分から、当該相関モデル213に係る相関の強さを算出する(S1507)。また、モデル構築部211は、算出した相関モデル213及び相関の強さ214を記憶部212へと格納する(S1509)。
 なおこの時、異常検知に用いる相関モデル213を、予測精度の高いもののみに限定することも考えられる。その場合、閾値を超える相関の強さ214のみを、異常検出部221による異常検出に用いることになる。
 モデル構築部211は、iの値が、観察データを検出するセンシング部201の数であるkとなるまで適宜インクリメントしつつ、上記処理の全ての周波数データ208に対して行う。
 なお、当該処理を実行すると、周波数データ208と平均周波数データ228との組み合わせと、平均周波数データ228と周波数データ208との組み合わせの2通りに対して相関モデル214を生成できるが、このうち相関の強さ214が大きい方をモデル構築部211は採用することができる。この点、後の周波数データ210と平均周波数データ228との相関モデルの相関の強さについても同様である。
 (2.3.3 異常検知処理)
 図16を参照しながら、異常検知処理の流れを説明する。なお、図16に示すフローチャートは、図13のS1309及びS1311の処理に対応する。
 モデル構築部219は、異常検知の対象(観察データ)である周波数データ210に対して処理を行う。まず、モデル構築部219は、平均周波数データ228を読み込むと共に(S1601)、iを1に設定した上で、周波数データ210i(k+i番目のセンシング部201で抽出された時系列データから生成された周波数データ210)を記憶部209から抽出する(S1603)。
 モデル構築部211は、周波数データ210iと平均周波数データ228とを用いて相関モデル213を生成する(S1605)。相関モデルの具体例としては、ARXモデルが挙げられる。そしてモデル構築部211は、生成した相関モデルに相関の強さも算出する(S1607)。
 異常検出部221は、モデル構築部219からセンシング部201iに係る相関モデルの相関の強さを受け取るとともに、記憶部212から、正常データである周波数データである208から生成された各相関モデル213の各相関の強さ214を読み込む(S1609)。もし、正常データに係る各相関の強さ214と、各相関の強さ214の平均値がそれぞれ近似しており(例えば閾値範囲内に収まっており)、且つ、周波数データ210iに係る相関モデルの相関の強さと相関の強さ214の平均値との差異も近似している(例えば閾値範囲内にある)場合には(S1611のYes)、観察データは正常であると判断できる。一方、正常データに係る各相関の強さ214と各相関の強さ214の平均値との差異が近似している(例えば閾値範囲内に収まっており)にもかかわらず、周波数データ210iに係る相関モデルの相関の強さと相関の強さ214の平均値との差異が近似していない(例えば閾値範囲外にある)場合には(S1611のNo)、当該相関の強さに係る相関モデルが示すセンシング部201iは異常値を示していると判断できる。そこで通知部223は、当該相関関係が崩れているセンシング部201iに係る情報と共に、以上を示す情報を通知する(S1613)。例えばこの時、異常検出部221は、処理対象の周波数において異常を起こす兆候がある旨等を通知する。
 なお、異常判定の基準はこれに限られない。例えば、判定対象である周波数データ210から生成した相関モデルの相関の強さと、正常データである周波数データ208から生成した相関モデル213の相関の強さ214の平均値との差分の絶対値、並びに、正常データである周波数データ208から生成した相関モデル213の相関の強さ214の平均値と、各相関モデル213の相関の強さ214との差分の最大値の絶対値、の大小関係としても良い。
 モデル構築部219及び異常検出部221は、iを値がnとなるまで適宜インクリメントしつつ、全ての周波数データ210に対して処理を行う。
 なお、異常検出部221は、全ての周波数データ210に対する処理を終えた後、異常が発生しているセンシング部201をリストアップしても良い。これにより、異常発生の可能性のあるセンシング部201を絞り込むことが可能となる。
 なお、ここでの説明では正常データに係る相関モデル213を複数回算出する場合について説明しなかったが、相関モデル213及び当該相関モデル213の相関の強さ214を複数回算出する場合には、当該相関の強さの平均値と、同じセンシング部201の組み合わせに係る観察データである周波数データ210から生成した相関モデルの相関の強さとを比較すれば良い。
 (2.4 本実施形態に係る効果)
 以上説明したように、本実施形態に係る情報処理システム100は、センシング部201で検知された周波数に変化の特徴が現れる時系列データに対して、周波数データ208を用いて、センシング部201と平均周波数データ228との間の相関関係をモデル構築部211やモデル構築部219でモデル化する。このように本実施形態に係る情報処理システム100では、相関関係を相関係数ではなく相関モデルとして特定しているため、相関関係の変化から、センサデータの正常又は異常を判定することができる。
 つまり、本実施形態に係る情報処理システム100では、好適にデータ解析を行うことができる。
 (3 第3実施形態)
 以下、第3実施形態について説明する。以下の説明において、第1実施形態や第2実施形態と同一若しくは類似の構成に対しては同一の符号を付すとともに、必要に応じて説明を省略する。また、第1実施形態や第2実施形態と同一若しくは類似する作用効果を得られる場合にも、説明を省略する場合がある。
 特に、図2に具体例を示した情報処理システム100全体の構成や、信号変換モジュール103や情報処理装置105、情報処理装置107を実現可能なコンピュータ1000の構成は第1実施形態と同様であるため、説明を省略する。
 (3.1 概要)
 以下、図17を参照しながら、本実施形態に係る情報処理システム100の処理の概要を簡単に説明する。
 第2実施形態では、正常データをセンシング部201a乃至201kから取得した時系列データから生成し、と観察データをセンシング部201k+1乃至201nから取得した時系列データから生成していたが、本実施形態では、第1実施形態と同様に、正常データ及び観察データを、同一のセンシング部201a乃至201nから異なるタイミングで取得する。
 また、本実施形態では、第2実施形態と同様に、各センシング部201に係る正常データである周波数データ208の平均値を求めた上で、当該平均値と各周波数データ208との間で相関モデル及び相関の強さを算出する。この処理を図17を参照しながら説明すると、まず、グラフで示されたセンサA乃至センサDに係る周波数データに対し、左部中央に示す破線の平均周波数データ228を生成する。その上で、当該平均周波数データ228と、センサA乃至センサDの周波数データ208との間で相関モデル214を生成する。また、それらに関する相関の強さFA-Ave~FD-AVEを算出する。
 また、周波数データの元となる時系列データとは異なるタイミングでセンサB及びセンサCで検出した時系列データを元に生成された、図17右部に示す周波数データと、平均周波数データ228との間で相関モデル214を生成する。また、それらに関する相関の強さFB’-Ave~FC’-AVEを算出する。
 その結果、平均周波数データと正常データに係る周波数データとの相関モデルの相関の強さFA-AVE~FD-AVEがそれぞれ略一致している(例えば差異が閾値以下である)にもかかわらず、正常データの平均周波数データ228と観察データに係る周波数データとの相関モデルの相関の強さFB’-AVE又はFC’-AVEが大きく相違する(例えば差異が閾値を超過する)場合には、当該センサB又はセンサCに対して、情報処理システム100は異常が発生しているものと判定する。
 (3.2 機能構成)
 システム構成は、第1実施形態及び第2実施形態と同様とすることができるので、ここでは説明を省略する。情報処理システム100の機能構成を図18に示す。図18に示す通り、本実施形態に係る情報処理システム100の機能構成は、基本的には第2実施形態と同様であるが、前述の通り、正常データである周波数データ208及び観察データである周波数データ210が、同一のセンシング部201から取得している点で第2実施形態と異なる。
 センシング部201は第1実施形態及び第2実施形態と同様、振動や光、音などを検知して時系列データを生成及び出力する。なお、本実施形態では、センシング部201は正常な状態と正常であるか否かが不明な状態(異常検知対象)との少なくとも2回以上のタイミングでデータを検知する。本実施形態において、センシング部201の数は2以上であればいくつでもよい。
 ノイズフィルタリング部203は、第1実施形態と同様、センシング部201から出力された時系列データからノイズを除去する。周波数変換部205は、センシング部201でそれぞれ検知され、ノイズが除かれた時系列データを、それぞれ周波数データ208及び周波数データ210へと変換する。なおここで、周波数データ208及び210は、例えば、検知タイミングの異なるデータであり、周波数データ208は正常状態の時系列データから変換された正常データである。周波数データ210は、正常であるか否かが不明な状態の時系列データから変換された観察データ(異常検知対象のデータ)である。周波数データ208及び210は、それぞれ記憶部207及び209へと記憶される。
 平均周波数データ算出部225は、各周波数毎に周波数データ208の平均を算出することにより、正常データの平均データである平均周波数データ228を生成する。生成した平均周波数データ228は、記憶部227へと格納される。
 モデル構築部211は、正常データである周波数データ208a乃至208nと平均周波数データ228との間で、それぞれ相関モデル213a乃至213nを生成する。生成された相関モデル213は、記憶部212に記憶される。また、モデル構築部211は、それぞれの相関モデル213の相関の強さ214a乃至214nも算出し、併せて記憶部212へと記憶させる。
 それぞれのセンシング部201に対して複数回分の周波数データ208が観測されている場合には、モデル構築部211は、各センシング部201と平均周波数データ228との組み合わせに係る相関モデル213及び相関の強さ214を、当該回数分だけ生成することができる。相関強さ平均・最大偏差算出部217は、複数回分生成された相関の強さ214の平均値をそれぞれ求めるととともに、最大偏差を算出する。この最大偏差は、相関の強さ214の平均値と、当該平均の算出に用いた各相関モデル213に係る相関の強さとの差の最大値に相当する。当該最大偏差は、異常判定に用いられる異常判定閾値215として記憶部212に記憶させることができる。
 なお、センシング部201において複数回の観察を行わない場合には、相関強さ平均・最大偏差算出部217は不要である。
 モデル構築部219は、観察データである周波数データ210乃至210nのそれぞれと平均周波数データ228との間で、それぞれ相関モデルを生成するとともに、各相関モデルの相関の強さを算出する。
 異常検出部221は、正常データである周波数データ208を元に生成された相関モデル213の相関の強さ214と、観察データである周波数データ210を元に生成された相関モデルの相関の強さとを比較することにより異常を検知する。より具体的には、例えば、周波数データ208を元に生成された相関モデル213の各相関の強さ214が近似しているにもかかわらず、周波数データ210を元に生成された相関モデルの相関の強さが近似範囲にない場合に、異常検出部221は当該相関モデルに係るセンシング部201に異常が生じているものと判定すればよい。
 通知部223は、異常検出部221による異常検知の結果をユーザへ報知する。通知部223による報知の方法としては、例えばディスプレイ111上にメッセージを表示する方法などが考えられる。
 (3.3 処理の流れ)
 本実施形態に係る情報処理システム100では上述の通り、モデル構築部211及びモデル構築部219の処理対象となる周波数データ208及び210が、それぞれ同一のセンシング部201から異なるタイミングで取得したデータである点が第2実施形態と異なる。しかしながらその他の点はほぼ第2実施形態と同様であるため、ここでは説明を省略する。
 (3.4 本実施形態に係る効果)
 以上説明したように、本実施形態に係る情報処理システム100は、センシング部201で検知された周波数に変化の特徴が現れる時系列データに対して、周波数データ208を用いて、センシング部201と平均周波数データ228との間の相関関係をモデル構築部211やモデル構築部219でモデル化する。このように本実施形態に係る情報処理システム100では、相関関係を相関係数ではなく相関モデルとして特定しているため、相関関係の変化から、センサデータの正常又は異常を判定することができる。
 つまり、本実施形態に係る情報処理システム100では、好適にデータ解析を行うことができる。
 (4 第4実施形態)
 以下、第4実施形態について説明する。以下の説明において、第1乃至第3実施形態と同一若しくは類似の構成に対しては同一の符号を付すと共に、必要に応じて説明を省略する。また、第1乃至第3実施形態と同一若しくは類似する作用効果を得られる場合にも、説明を省略する場合がある。
 特に、図2に具体例を示した情報処理システム100全体の構成や、信号変換モジュール103や情報処理装置105、情報処理装置107を実現可能なコンピュータ1000の構成は第1実施形態と同様であるため、説明を省略する。
 (4.1 概要)
 第1実施形態乃至第3実施形態では正常データに係る相関モデルの相関の強さと観察データに係る相関モデルの相関の強さとを比較することにより異常を検知していたが、本実施形態では、観察データに対しては相関モデルを生成しない。正常データである周波数データ208から、各センシング部201間の相関モデルを生成した上で、当該相関モデルに観察データを適用することにより予測値を生成し、当該予測値と観察データの実測値とを比較することにより、異常であるか否かを検知する。即ち、予測誤差を用いて異常を検知する。本実施形態に係る情報処理システムのように、予測誤差を用いて異常検知する方法であれば、各周波数帯の予測誤差を表示することにより、周波数データ全体の相違のみならず、予測誤差の大きい周波数帯を明示することも可能である。また、このような処理を複数のセンサ間に対して網羅的に実施することで、異常発生が集中しているセンサデータを、異常の根本原因として絞り込むことができる。
 加えて、異常判定を予測誤差で判定する手法では、正常データにおける予測誤差を参考に、異常判定に用いる予測誤差の値をルールとして設定することが可能である。複数のデータに係る予測誤差で異常検知する手法は、単一データを閾値で異常判定する場合と比較すると、正常状態における増減の幅が大きいデータほど、異常の微小な兆候を検知することが可能である。
 (4.2 システム構成)
 本実施形態に係る情報処理システム100のシステム構成を、図19を参照しながら説明する。図19に示す通り、具体例に係る情報処理システム100は、センシング部201a乃至201nと、ノイズフィルタリング部203と、周波数変換部205と、記憶部207及び209と、モデル構築部211と、記憶部212と、異常検出部221と通知部223とを含む。
 センシング部201は、第1乃至第3実施形態と同様、振動や光、音などを検知して時系列データを生成及び出力する。なお、本実施形態では、センシング部201は正常な状態と正常であるか否かが不明な状態(異常検知対象の状態)との少なくとも2回以上のタイミングでデータを検知する。本実施形態において、センシング部201の数は2以上であればいくつでも良い。
 ノイズフィルタリング部203は、第1乃至第3実施形態と同様、センシング部201から出力された時系列データからノイズを除去する。周波数変換部205は、センシング部201でそれぞれ検知され、ノイズが除かれた時系列データを、それぞれ周波数データ208及び周波数データ210へと変換する。なおここで、周波数データ208及び210は、例えば、検知タイミングの異なるデータであり、周波数データ208は正常状態の時系列データから変換された正常データである。周波数データ210は、正常であるか否かが不明な状態の時系列データから変換された観察データ(異常検知対象のデータ)である。周波数データ208及び210は、それぞれ記憶部207及び209へと記憶される。
 モデル構築部211は、第1実施形態と同様に、正常データである周波数データ208a乃至208nのうち2つの組み合わせから、それぞれ相関モデル213a乃至213mを生成する。生成された相関モデル213は、記憶部212に記憶される。また、モデル構築部211は、それぞれの相関モデル213の相関の強さ214も、併せて記憶部212に記憶させる。
 異常検出部221は、記憶部209に記憶された周波数データ210(正常データである周波数データ208とは、その元データを検出したセンシング部201による検知のタイミングが異なり、異常検知の対象となる観察データに相当する)に対し、記憶部212に記憶された相関モデル213を適用することにより異常を検知する。より具体的には、例えば、周波数データ208iと周波数データ208jとから生成された相関モデル213に対して、周波数データ210iと周波数fを除く値と周波数データ208jの各周波数の値とを入力することにより、周波数fにおける周波数データ208iの予測値を求めることができる。当該予測値と、周波数データ208iの周波数fにおける実測値とが、異常判定閾値215を超過しているか否か等に応じて、異常検出部221は異常を検出することができる。なお、当該処理は周波数データ210の全ての周波数、及び全ての周波数データ210の組み合わせに対して行うことができる。
 通知部223は、異常検出部221による異常検知の結果をユーザへ報知する。通知部223による報知の方法としては、例えばディスプレイ111上にメッセージ等を表示する方法が考えられる。
 (4.3 処理の流れ)
 以下、図20及び図21を参照しながら、本実施形態に係る情報処理システム100の処理の流れを説明する。図20及び図21は、情報処理システム100の処理の流れを示すフローチャートである。
 (4.3.1 全体の処理の流れ)
 まず、全体の処理の流れを、図20を参照しながら説明する。
 センシング部201により検知された正常な時系列データは、周波数変換部205によって周波数データ208へと変換され(S2001)、周波数データ208は記憶部207に記憶される。モデル構築部211は、周波数データ208a乃至208nの各組み合わせに対して相関モデル213を生成する(S2003)。
 更に、センシング部201により新たに検知された検知対象の時系列データは、周波数変換部205によって周波数データ210へと変換され(S2005)、記憶部209へと記憶される。異常検出部221は、周波数データ210に対して相関モデル213を適用することにより予測値を算出し、当該予測値と実測値(周波数データ210)との差分から、異常検知処理を行う(S2007)。
 ここで、S2001、S2003及びS2005の各処理は、第1実施形態で図5を参照しながら説明したS501、S503及びS505の処理と同様となる。以下、S2007の処理を、図21を参照しながら説明する。
 (4.3.2 異常検知処理)
 図21を参照しながら、異常検知処理の流れを説明する。なお、図21に示すフローチャートは、図20のS2007の処理に対応する。
 異常検出部221は、異常検知の対象である周波数データ210に対して処理を行う。まず、異常検出部221は、i,jをそれぞれ1に設定した上で、周波数データ210i及び210j(それぞれ、i番目及びj番目のセンシング部201で抽出された時系列データから生成された周波数データ210を記憶部209から抽出する(S1201及びS2103)。もし、iとjとが等しければ(S2105のYes)、jの値をインクリメントした上で、再度周波数データ210jを抽出し直す(S2103)。
 i及びjの値が異なる場合には(S1205のNo)、センシング部201i及び201jに係る周波数データ208i及び208jから生成した相関モデル213を記憶部212から読込み(S1207)、当該相関モデル213を用いて、各周波数における予測値を算出する(S2109)。更に異常検出部221は、当該予測値と実測値との差異Rを各周波数に対して算出する(S2111)。差異Rが異常判定閾値215を超えていれば(S2113のYes)、異常検出部221は、その周波数において異常を起こす兆候がある旨や、各周波数帯における予測誤差を通知部223により通知する(S2115)。
 なお、通知部223による通知方法としては種々考えられるが、例えば、ディスプレイ111上に数値を表示することも間挙げられるし、或いは、実測値及び予測値のヒストグラムや両者の差分(すなわち予測誤差)をグラフとしてディスプレイ111上に表示することも考えられる。
 異常検出部221は、i及びjを値がnとなるまで適宜インクリメントしつつ、上述の処理を全ての周波数データ210の組み合わせに対して行う。
 なお、異常検出部221は、全ての周波数データ210の組み合わせに対する処理を終えた後、差異Rが異常判定閾値215を超える相関関係(すなわち、異常が発生していることにより相関が崩れていると予想される組み合わせ)に多く含まれるセンシング部201をリストアップしても良い。これにより、異常発生の可能性のあるセンシング部201を絞り込むことが可能となる。
 或いは、異常検出部221は、各周波数に対し、異常判定した相関モデル213の数の総和を異常スコアとして算出し、通知部223に通知させても良い。この機能により、使用するセンシング部201全体において、周波数ごとの異常判定の多少が明示されるため、周波数と異常現象との照合のための情報をユーザに与えることができる。
 (4.4 本実施形態に係る効果)
 以上説明したように、本実施形態に係る情報処理システム100は、センシング部201で検知された周波数に変化の特徴が現れる時系列データに対して、周波数データ208を用いて、センシング部201間の相関関係をモデル化する。このように本実施形態に係る情報処理システム100では、相関関係を相関係数ではなく相関モデル213として特定しているため、相関関係の変化から、センサデータの正常又は異常を判定することができる。
 つまり、本実施形態に係る情報処理システム100では、好適にデータ解析を行うことができる。
 (5 第5実施形態)
 以下、第5実施形態について説明する。以下の説明において、第1乃至第4実施形態と同一若しくは類似の構成に対しては同一の符号を付すとともに、必要に応じて説明を省略する。また、第1乃至第4実施形態と同一又は類似する作用効果を得られる場合にも、説明を省略する場合がある。
 特に、図2に具体例を示した情報処理システム100全体の処理や、信号変換モジュール103や情報処理装置105、情報処理装置107を実現可能なコンピュータ1000の構成は第1実施形態と同様であるため、説明を省略する。
 (5.1 概要)
 第4実施形態では、周波数データ208の各組み合わせに対して相関モデルを生成した上で、当該相関モデルに周波数データ210を適用することにより異常を検知していたが、本実施形態では、周波数データ208の平均周波数データ228を生成した上で、当該平均周波数データ228と周波数データ208との間で相関モデル213を生成する。更に、観察データである周波数データ210の平均周波数データ230を生成した上で、当該平均周波数データ230と周波数データ210とを相関モデル213に適用することにより、周波数データ210の予測値を生成する。異常検出部221は、当該予測値と周波数データ210との差異に基づき、異常であるか否かを検知する。
 (5.2 システム構成)
 本実施形態に係る情報処理システム100のシステム構成を、図22を参照しながら説明する。図22に示す通り、具体例に係る情報処理システム100は、実施形態4に係る情報処理システム100が有する各構成に加えて、平均周波数データ算出部225及び平均周波数データ算出部229を有する。更に、記憶部207及び209は、それぞれ、平均周波数データ算出部225及び229が算出する平均周波数データ228及び229を記憶する。
 センシング部201、ノイズフィルタリング部203、周波数変換部205、及び通知部223の動作に関しては、実施形態4と同様であるため、ここでは説明を省略する。
 平均周波数データ算出部225は、各周波数毎に周波数データ208の平均を算出することにより、正常データの平均データである平均周波数データ228を生成する。算出した平均周波数データ228は、記憶部207へ格納される。
 モデル構築部211は、正常データである各周波数データ208a乃至208nと、平均周波数データ228との間で、それぞれ相関モデル213a乃至213nを生成する。生成された相関モデル213は、記憶部212に記憶される。
 平均周波数データ算出部229は、平均周波数データ228と同様に、各周波数毎に周波数データ208の平均を算出することにより、正常データの平均データである平均周波数データ230を生成する。算出した平均周波数データ230は、記憶部209へと格納される。
 異常検出部221は、記憶部209に記憶された周波数データ210と平均周波数データ230とを相関モデル213に適用することにより異常を検知する。より具体的には、例えば、周波数データ208iと平均周波数データ228とから生成された相関モデル213iに対して、平均周波数データ230の各周波数の値と、周波数fを除く周波数データ208jの値とを入力することにより、周波数fにおける周波数データ210iの予測値を求めることができる。当該予測値と、周波数データ210iの周波数fにおける実測値とが、異常判定閾値215を超過しているか否か等に応じて、異常検出部221は異常を検出することができる。なお、当該処理は、周波数データ210の全ての周波数、及び全ての周波数データ210に対して行うことができる。
 (5.3 処理の流れ)
 以下、図23及び図24を参照しながら、本実施形態に係る情報処理システム100の処理の流れを説明する。図23及び図24は、情報処理システム100の処理の流れを示すフローチャートである。
 (5.3.1 全体の処理の流れ)
 まず、全体の処理の流れを、図23を参照しながら説明する。
 センシング部201により検知された正常な時系列データは、周波数変換部205によって周波数データ208へと変換され(S2301)、周波数データ208は記憶部207に記憶される。平均周波数データ算出部225は、記憶部207に記憶された各周波数データ208の平均データである平均周波数データ228を算出する(S2303)。モデル構築部211は、各周波数データ208と平均周波数データ228との間で相関モデル213を生成する(S2305)。
 更に、センシング部201により新たに検知された検知対象の時系列データは、周波数変換部205によって周波数データ210へと変換され(S2305)、記憶部209へと記憶される。平均周波数データ算出部229は、記憶部209に記憶された各周波数データ210の平均データである平均周波数データ230を算出する(S2309)。異常検出部221は、周波数データ210と平均周波数データ230との組み合わせに対して相関モデル213を適用することにより予測値を算出し、当該予測値と実測値(周波数データ210)との差分から、異常検知処理を行う(S2311)。
 ここで、S2301及びS2307の処理は第1実施形態で図6を参照しながら説明した処理と同様となる。また、S2305の処理は、第2実施形態で図15を参照しながら説明した処理と同様となる。
 (5.3.2 異常検知処理)
 図24を参照しなら、異常検知処理の流れを説明する。なお、図24に示すフローチャートは、図23のS2311の処理に対応する。
 まず、異常検出部221は、iを1に設定した上で、平均周波数データ230を読みこむとともに(S2401)、周波数データ210iを記憶部209から読み込む(S2403)。また、異常検出部221は、周波数データ210iと同一のセンシング部201iに係る周波数データ208iと平均周波数データ228とから生成された相関モデル213iを読み込む(S2405)。異常検出部221は、読み込んだ相関モデル213iに平均周波数データ230と周波数データ210iとを適用することにより、各周波数における周波数データ210iの予測値を算出する(S2407)。更に異常検出部221は、当該予測値と、周波数データ210iの実測値との差異Rを各周波数に対して算出する(S2409)。差異Rが異常判定閾値215iを超えていれば(S2411のYes)、異常検出部221は、その周波数において異常を起こす兆候がある旨や、各周波数帯における予測誤差を通知部223により通知する(S2415)。
 なお、通知部223による通知方法としては種々考えられるが、例えば、ディスプレイ111上に通知を表示することも考えられるし、或いは、実測値及び予測値のヒストグラムや両者の差分(すなわち予測誤差)をグラフとしてディスプレイ111上に表示することも考えられる。
 異常検出部221は、iの値をnと一致するまで適宜インクリメントしながら上述の処理を全ての周波数データ210に対して行う。
 或いは、異常検出部221は、各周波数に対し、異常判定した相関モデル213の数の総和を異常スコアとして算出し、通知部223に通知させても良い。この機能により、使用するセンシング部201全体において、周波数ごとの異常判定の多少が明示されるため、周波数と異常現象との照合のための情報をユーザに与えることができる。
 (5.4 本実施形態に係る効果)
 以上説明したように、本実施形態に係る情報処理システム100は、センシング部201で検知された周波数に変化の特徴が現れる時系列データに対して、周波数データ208を用いて、センシング部201と平均周波数データ228との相関関係をモデル化する。このように本実施形態に係る情報処理システム100では、相関関係を相関係数ではなく相関モデル213として特定しているため、相関関係の変化から、センサデータの正常又は異常を判定することができる。
 つまり、本実施形態に係る情報処理システム100では、好適にデータ解析を行うことができる。
 (6 付記事項)
 なお、前述の実施形態の構成は、組み合わせたり或いは一部の構成部分を入れ替えたりしてもよい。また、本発明の構成は前述の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。
 なお、前述の各実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。また、本発明のプログラムは、上記の各実施形態で説明した各動作を、コンピュータに実行させるプログラムであれば良い。
 (付記1)
 複数のセンサによる検知によりそれぞれ得られる複数の時系列データを、それぞれ第1周波数データへと変換する変換手段と、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて第1相関モデルを生成する第1モデル生成手段と、前記第1相関モデルの相関の強さを算出する第1演算手段と、相関の強さに基づき異常を判定する判定手段とを備える情報処理システム。
 (付記2)
 前記第1モデル生成手段は、前記複数のセンサのうち2つのセンサに係る第1周波数データの組み合わせを用いて前記第1相関モデルを生成する、付記1記載の情報処理システム。
 (付記3)
 前記第1モデル生成手段は、前記複数のセンサに係る複数の第1周波数データの平均である平均周波数データと、当該複数の第1周波数データのうちの1つの第1周波数データとを用いて前記第1相関モデルを生成する、付記1記載の情報処理システム。
 (付記4)
 前記複数のセンサによる検知により得られる時系列データを第2周波数データへ変換する変換手段と、第2周波数データを用いて第2相関モデルを生成する第2モデル生成手段と、前記第2相関モデルの相関の強さを算出する第2演算手段と、をさらに備え、前記判定手段は、前記第1相関モデルの相関の強さと、前記第2相関モデルの相関の強さとの比較に基づき、異常を判定する、付記1乃至3のいずれか1項記載の情報処理システム。
 (付記5)
 前記第2モデル生成手段は、前記複数のセンサのうちの2つのセンサに係る第2周波数データの組み合わせを用いて前記第2相関モデルを生成する、付記4記載の情報処理システム。
 (付記6)
 前記第2モデル生成手段は、前記複数のセンサに係る複数の第1周波数データの平均である平均周波数データと、1つの第2周波数データとを用いて前記第2相関モデルを生成する、付記4記載の情報処理システム。
 (付記7)
 前記第1周波数データに係る時系列データと、前記第2周波数データに係る時系列データとは、前記複数のセンサによる検知タイミングが異なる、付記4乃至付記6のいずれか1項記載の情報処理システム。
 (付記8)
 前記第1周波数データに係る時系列データと、前記第2周波数データに係る時系列データとは、検知するセンサが異なる、付記4乃至付記6のいずれか1項記載の情報処理システム。
 (付記9)
 前記第1相関モデルに、当該第1相関モデルの生成に用いた周波数データを適用することにより、異常判定に用いる閾値を生成する、付記1乃至付記8のいずれか1項記載の情報処理システム。
 (付記10)
 複数のセンサによる検知により得られる複数の時系列データを、それぞれ第1周波数データへと変換する変換手段と、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて相関モデルを生成するモデル生成手段と、前記相関モデルに、当該相関モデルに係るセンサから得られる別の時系列データを変換して得られる第2周波数データを適用することにより得られる当該第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定する判定手段とを備える情報処理システム。
 (付記11)
 前記モデル生成手段は、前記複数のセンサのうち2つのセンサに係る第1周波数データの組み合わせを用いて前記相関モデルを生成する、付記10記載の情報処理システム。
 (付記12)
 前記モデル生成手段は、前記複数のセンサに係る複数の第1周波数データの平均である第1平均周波数データと、当該複数の第1周波数データのうちの1つの第1平均周波数データとを用いて前記相関モデルを生成する、付記10記載の情報処理システム。
 (付記13)
 前記判定手段は、前記相関モデルに、当該相関モデルに係る第2周波数データと、前記複数のセンサに係る複数の第2周波数データの平均である第2平均周波数データとを適用することにより得られる第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定する、付記12記載の情報処理システム。
 (付記14)
 前記相関モデルに、当該相関モデルの生成に用いた周波数データを適用することにより、異常判定に用いる閾値を生成する、付記10乃至請求項13のいずれか1項記載の情報処理システム。
 (付記15)
 複数のセンサによる検知によりそれぞれ得られる複数の時系列データを、それぞれ第1周波数データへと変換するステップと、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて第1相関モデルを生成するステップと、前記第1相関モデルの相関の強さを算出するステップと、相関の強さに基づき異常を判定するステップとを情報処理システムが行う情報処理方法。
 (付記16)
 前記複数のセンサのうち2つのセンサに係る第1周波数データの組み合わせを用いて前記第1相関モデルを生成する、付記15記載の情報処理方法。
 (付記17)
 前記複数のセンサに係る複数の第1周波数データの平均である平均周波数データと、当該複数の第1周波数データのうちの1つの第1周波数データとを用いて前記第1相関モデルを生成する、付記15記載の情報処理方法。
 (付記18)
 前記複数のセンサによる検知により得られる時系列データを第2周波数データへ変換するステップと、第2周波数データを用いて第2相関モデルを生成するステップと、前記第2相関モデルの相関の強さを算出するステップと、をさらに備え、前記第1相関モデルの相関の強さと、前記第2相関モデルの相関の強さとの比較に基づき、異常を判定する、付記15乃至付記17のいずれか1項記載の情報処理方法。
 (付記19)
 前記複数のセンサのうちの2つのセンサに係る第2周波数データの組み合わせを用いて前記第2相関モデルを生成する、付記18記載の情報処理方法。
 (付記20)
 前記複数のセンサに係る複数の第1周波数データの平均である平均周波数データと、1つの第2周波数データとを用いて前記第2相関モデルを生成する、付記18記載の情報処理方法。
 (付記21)
 前記第1周波数データに係る時系列データと、前記第2周波数データに係る時系列データとは、前記複数のセンサによる検知タイミングが異なる、付記18乃至付記20のいずれか1項記載の情報処理方法。
 (付記22)
 前記第1周波数データに係る時系列データと、前記第2周波数データに係る時系列データとは、検知するセンサが異なる、付記18乃至付記20のいずれか1項記載の情報処理方法。
 (付記23)
 前記第1相関モデルに、当該第1相関モデルの生成に用いた周波数データを適用することにより、異常判定に用いる閾値を生成する、付記15乃至付記22のいずれか1項記載の情報処理方法。
 (付記24)
 複数のセンサによる検知により得られる複数の時系列データを、それぞれ第1周波数データへと変換するステップと、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて相関モデルを生成するステップと、前記相関モデルに、当該相関モデルに係るセンサから得られる別の時系列データを変換して得られる第2周波数データを適用することにより得られる当該第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定するステップとを情報処理システムが行う情報処理方法。
 (付記25)
 前記複数のセンサのうち2つのセンサに係る第1周波数データの組み合わせを用いて前記相関モデルを生成する、付記24記載の情報処理方法。
 (付記26)
 前記複数のセンサに係る複数の第1周波数データの平均である第1平均周波数データと、当該複数の第1周波数データのうちの1つの第1平均周波数データとを用いて前記相関モデルを生成する、付記24記載の情報処理方法。
 (付記27)
 前記相関モデルに、当該相関モデルに係る第2周波数データと、前記複数のセンサに係る複数の第2周波数データの平均である第2平均周波数データとを適用することにより得られる第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定する、付記26記載の情報処理方法。
 (付記28)
 前記相関モデルに、当該相関モデルの生成に用いた周波数データを適用することにより、異常判定に用いる閾値を生成する、付記24乃至請求項27のいずれか1項記載の情報処理方法。
 (付記29)
 複数のセンサによる検知によりそれぞれ得られる複数の時系列データを、それぞれ第1周波数データへと変換する処理と、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて第1相関モデルを生成する処理と、前記第1相関モデルの相関の強さを算出する処理と、相関の強さに基づき異常を判定する処理とをコンピュータに実行させるプログラム。
 (付記30)
 前記複数のセンサのうち2つのセンサに係る第1周波数データの組み合わせを用いて前記第1相関モデルを生成する、付記29記載のプログラム。
 (付記31)
 前記複数のセンサに係る複数の第1周波数データの平均である平均周波数データと、当該複数の第1周波数データのうちの1つの第1周波数データとを用いて前記第1相関モデルを生成する、付記29記載の情報処理方法。
 (付記32)
 前記複数のセンサによる検知により得られる時系列データを第2周波数データへ変換する処理と、第2周波数データを用いて第2相関モデルを生成する処理と、前記第2相関モデルの相関の強さを算出する処理と、をさらに備え、前記第1相関モデルの相関の強さと、前記第2相関モデルの相関の強さとの比較に基づき、異常を判定する、付記29乃至付記31のいずれか1項記載のプログラム。
 (付記33)
 前記複数のセンサのうちの2つのセンサに係る第2周波数データの組み合わせを用いて前記第2相関モデルを生成する、付記32記載のプログラム。
 (付記34)
 前記複数のセンサに係る複数の第1周波数データの平均である平均周波数データと、1つの第2周波数データとを用いて前記第2相関モデルを生成する、付記32記載のプログラム。
 (付記35)
 前記第1周波数データに係る時系列データと、前記第2周波数データに係る時系列データとは、前記複数のセンサによる検知タイミングが異なる、付記32乃至付記34のいずれか1項記載のプログラム。
 (付記36)
 前記第1周波数データに係る時系列データと、前記第2周波数データに係る時系列データとは、検知するセンサが異なる、付記32乃至付記34のいずれか1項記載のプログラム。
 (付記37)
 前記第1相関モデルに、当該第1相関モデルの生成に用いた周波数データを適用することにより、異常判定に用いる閾値を生成する、付記29乃至付記36のいずれか1項記載のプログラム。
 (付記38)
 複数のセンサによる検知により得られる複数の時系列データを、それぞれ第1周波数データへと変換する処理と、前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて相関モデルを生成する処理と、前記相関モデルに、当該相関モデルに係るセンサから得られる別の時系列データを変換して得られる第2周波数データを適用することにより得られる当該第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定する処理とをコンピュータに実行させるプログラム。
 (付記39)
 前記複数のセンサのうち2つのセンサに係る第1周波数データの組み合わせを用いて前記相関モデルを生成する、付記38記載のプログラム。
 (付記40)
 前記複数のセンサに係る複数の第1周波数データの平均である第1平均周波数データと、当該複数の第1周波数データのうちの1つの第1平均周波数データとを用いて前記相関モデルを生成する、付記38記載のプログラム。
 (付記41)
 前記相関モデルに、当該相関モデルに係る第2周波数データと、前記複数のセンサに係る複数の第2周波数データの平均である第2平均周波数データとを適用することにより得られる第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定する、付記40記載のプログラム。
 (付記42)
 前記相関モデルに、当該相関モデルの生成に用いた周波数データを適用することにより、異常判定に用いる閾値を生成する、付記38乃至請求項41のいずれか1項記載のプログラム。
 この出願は、2013年9月9日に出願された日本出願特願2013-185947を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100  :情報処理システム
101  :振動センサ
103  :信号変換モジュール
105  :情報処理装置
107  :情報処理装置
109  :記憶媒体
111  :ディスプレイ
201  :センシング部
203  :ノイズフィルタリング部
205  :周波数変換部
207  :記憶部
208  :周波数データ
209  :記憶部
210  :周波数データ
211  :モデル構築部
212  :記憶部
213  :相関モデル
214  :相関モデル
215  :異常判定閾値
217  :相関強さ平均・最大偏差算出部
219  :モデル構築部
221  :異常検出部
223  :通知部
225  :平均周波数データ算出部
227  :記憶部
228  :平均周波数データ
229  :平均周波数データ算出部
230  :平均周波数データ
1000 :コンピュータ
1001 :プロセッサ
1003 :メモリ
1005 :記憶装置
1007 :入力インタフェース
1009 :データインタフェース
1011 :通信インタフェース
1013 :表示装置

Claims (18)

  1.  複数のセンサによる検知によりそれぞれ得られる複数の時系列データを、それぞれ第1周波数データへと変換する変換手段と、
     前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて第1相関モデルを生成する第1モデル生成手段と、
     前記第1相関モデルの相関の強さを算出する第1演算手段と、
     相関の強さに基づき異常を判定する判定手段と
    を備える情報処理システム。
  2.  前記第1モデル生成手段は、前記複数のセンサのうち2つのセンサに係る第1周波数データの組み合わせを用いて前記第1相関モデルを生成する、
    請求項1記載の情報処理システム。
  3.  前記第1モデル生成手段は、前記複数のセンサに係る複数の第1周波数データの平均である平均周波数データと、当該複数の第1周波数データのうちの1つの第1周波数データとを用いて前記第1相関モデルを生成する、
    請求項1記載の情報処理システム。
  4.  前記複数のセンサによる検知により得られる時系列データを第2周波数データへ変換する変換手段と、
     第2周波数データを用いて第2相関モデルを生成する第2モデル生成手段と、
     前記第2相関モデルの相関の強さを算出する第2演算手段と、
    を更に備え、
     前記判定手段は、前記第1相関モデルの相関の強さと、前記第2相関モデルの相関の強さとの比較に基づき、異常を判定する、
    請求項1乃至請求項3のいずれか1項記載の情報処理システム。
  5.  前記第2モデル生成手段は、前記複数のセンサのうちの2つのセンサに係る第2周波数データの組み合わせを用いて前記第2相関モデルを生成する、
    請求項4記載の情報処理システム。
  6.  前記第2モデル生成手段は、前記複数のセンサに係る複数の第1周波数データの平均である平均周波数データと、1つの第2周波数データとを用いて前記第2相関モデルを生成する、
    請求項4記載の情報処理システム。
  7.  前記第1周波数データに係る時系列データと、前記第2周波数データに係る時系列データとは、前記複数のセンサによる検知タイミングが異なる、
    請求項4乃至請求項6のいずれか1項記載の情報処理システム。
  8.  前記第1周波数データに係る時系列データと、前記第2周波数データに係る時系列データとは、検知するセンサが異なる、
    請求項4乃至請求項6のいずれか1項記載の情報処理システム。
  9.  前記第1相関モデルに、当該第1相関モデルの生成に用いた周波数データを適用することにより、異常判定に用いる閾値を生成する、
    請求項1乃至請求項8のいずれか1項記載の情報処理システム。
  10.  複数のセンサによる検知により得られる複数の時系列データを、それぞれ第1周波数データへと変換する変換手段と、
     前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて相関モデルを生成するモデル生成手段と、
     前記相関モデルに、当該相関モデルに係るセンサから得られる別の時系列データを変換して得られる第2周波数データを適用することにより得られる当該第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定する判定手段と
    を備える情報処理システム。
  11.  前記モデル生成手段は、前記複数のセンサのうち2つのセンサに係る第1周波数データの組み合わせを用いて前記相関モデルを生成する、
    請求項10記載の情報処理システム。
  12.  前記モデル生成手段は、前記複数のセンサに係る複数の第1周波数データの平均である第1平均周波数データと、当該複数の第1周波数データのうちの1つの第1平均周波数データとを用いて前記相関モデルを生成する、
    請求項10記載の情報処理システム。
  13.  前記判定手段は、前記相関モデルに、当該相関モデルに係る第2周波数データと、前記複数のセンサに係る複数の第2周波数データの平均である第2平均周波数データとを適用することにより得られる第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定する、
    請求項12記載の情報処理システム。
  14.  前記相関モデルに、当該相関モデルの生成に用いた周波数データを適用することにより、異常判定に用いる閾値を生成する、
    請求項10乃至請求項13のいずれか1項記載の情報処理システム。
  15.  複数のセンサによる検知によりそれぞれ得られる複数の時系列データを、それぞれ第1周波数データへと変換するステップと、
     前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて第1相関モデルを生成するステップと、
     前記第1相関モデルの相関の強さを算出するステップと、
     相関の強さに基づき異常を判定するステップと
    を情報処理システムが行う情報処理方法。
  16.  複数のセンサによる検知により得られる複数の時系列データを、それぞれ第1周波数データへと変換するステップと、
     前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて相関モデルを生成するステップと、
     前記相関モデルに、当該相関モデルに係るセンサから得られる別の時系列データを変換して得られる第2周波数データを適用することにより得られる当該第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定するステップと
    を情報処理システムが行う情報処理方法。
  17.  複数のセンサによる検知によりそれぞれ得られる複数の時系列データを、それぞれ第1周波数データへと変換する処理と、
     前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて第1相関モデルを生成する処理と、
     前記第1相関モデルの相関の強さを算出する処理と、
     相関の強さに基づき異常を判定する処理と
    をコンピュータに実行させるプログラム。
  18.  複数のセンサによる検知により得られる複数の時系列データを、それぞれ第1周波数データへと変換する処理と、
     前記複数のセンサのうちの少なくとも2つのセンサに係る第1周波数データを用いて相関モデルを生成する処理と、
     前記相関モデルに、当該相関モデルに係るセンサから得られる別の時系列データを変換して得られる第2周波数データを適用することにより得られる当該第2周波数データの予測値と、当該第2周波数データの実測値との差分に基づき異常を判定する処理と
    をコンピュータに実行させるプログラム。
PCT/JP2014/056334 2013-09-09 2014-03-11 情報処理システム、情報処理方法及びプログラム WO2015033603A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14842340.3A EP3045889B1 (en) 2013-09-09 2014-03-11 Information processing system, information processing method, and program
US14/916,007 US10228994B2 (en) 2013-09-09 2014-03-11 Information processing system, information processing method, and program
JP2015535335A JP6237774B2 (ja) 2013-09-09 2014-03-11 情報処理システム、情報処理方法及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013185947 2013-09-09
JP2013-185947 2013-09-09

Publications (1)

Publication Number Publication Date
WO2015033603A1 true WO2015033603A1 (ja) 2015-03-12

Family

ID=52628098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056334 WO2015033603A1 (ja) 2013-09-09 2014-03-11 情報処理システム、情報処理方法及びプログラム

Country Status (4)

Country Link
US (1) US10228994B2 (ja)
EP (1) EP3045889B1 (ja)
JP (1) JP6237774B2 (ja)
WO (1) WO2015033603A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017064855A1 (ja) * 2015-10-13 2017-04-20 日本電気株式会社 構造物異常検知システム、構造物異常検知方法及び記録した記録媒体
WO2017064854A1 (ja) * 2015-10-13 2017-04-20 日本電気株式会社 構造物異常検知装置、構造物異常検知方法、記録媒体及び構造物異常検知システム
WO2019054433A1 (ja) * 2017-09-14 2019-03-21 日本電気株式会社 診断装置、診断方法及びプログラム記憶媒体
JP2019098515A (ja) * 2017-11-28 2019-06-24 先馳精密儀器(東莞)有限公司Techmark Precision Instrument Co.Ltd. 刃具状態検査システム及び方法
WO2020166072A1 (ja) * 2019-02-15 2020-08-20 日本電気株式会社 時系列データ処理方法
JP7358791B2 (ja) 2019-06-11 2023-10-11 中国電力株式会社 プラント監視システムおよびプラント監視方法
JP7391765B2 (ja) 2020-05-29 2023-12-05 株式会社東芝 プラント監視支援装置、方法及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10228994B2 (en) 2013-09-09 2019-03-12 Nec Corporation Information processing system, information processing method, and program
US10419877B2 (en) * 2015-10-07 2019-09-17 Samsung Electronics Co., Ltd. Electronic apparatus and IoT device controlling method thereof
US10191799B2 (en) * 2016-12-29 2019-01-29 Sandisk Technologies Llc BER model evaluation
US10585739B2 (en) * 2017-04-28 2020-03-10 International Business Machines Corporation Input data correction
US10769007B2 (en) * 2018-06-08 2020-09-08 Microsoft Technology Licensing, Llc Computing node failure and health prediction for cloud-based data center
JP7481897B2 (ja) * 2020-05-12 2024-05-13 株式会社東芝 監視装置、監視方法、プログラムおよびモデル訓練装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281547A (ja) * 1993-03-26 1994-10-07 Hitachi Ltd 機器の異常監視方法および装置
JPH076882B2 (ja) * 1990-10-31 1995-01-30 旭化成工業株式会社 異常検出方法および装置
JP3780299B1 (ja) * 2005-06-24 2006-05-31 独立行政法人科学技術振興機構 対象設備の診断方法、コンピュータプログラム、及び、対象設備を診断するための装置
JP2010066244A (ja) 2008-09-13 2010-03-25 Chugoku Electric Power Co Inc:The 設備異常診断方法およびシステム
JP4872944B2 (ja) 2008-02-25 2012-02-08 日本電気株式会社 運用管理装置、運用管理システム、情報処理方法、及び運用管理プログラム
JP2012098149A (ja) * 2010-11-02 2012-05-24 Jfe Mechanical Co Ltd 携帯型振動診断装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812347B2 (ja) * 1992-02-17 1998-10-22 日本電気株式会社 再同期復調装置
US5623609A (en) * 1993-06-14 1997-04-22 Hal Trust, L.L.C. Computer system and computer-implemented process for phonology-based automatic speech recognition
JP3321487B2 (ja) 1993-10-20 2002-09-03 株式会社日立製作所 機器/設備診断方法およびシステム
JP2000125177A (ja) * 1998-10-12 2000-04-28 Ricoh Co Ltd 自動合焦装置
JP2001198498A (ja) * 1999-11-08 2001-07-24 Nissan Motor Co Ltd 塗装ガンの異常検出装置およびその方法
US6594595B2 (en) * 2001-04-03 2003-07-15 Advantest Corporation Apparatus for and method of measuring cross-correlation coefficient between signals
JP3864722B2 (ja) * 2001-04-26 2007-01-10 日産自動車株式会社 塗装ガンの異常検出装置およびその方法
US6909808B2 (en) * 2002-03-08 2005-06-21 Anzus, Inc. Image compression to enhance optical correlation
JP4942353B2 (ja) * 2006-02-01 2012-05-30 株式会社ジェイテクト 音又は振動の解析方法及び音又は振動の解析装置
KR100829870B1 (ko) * 2006-02-03 2008-05-19 한국전자통신연구원 멀티채널 오디오 압축 코덱의 음질 평가 장치 및 그 방법
JP2008033532A (ja) 2006-07-27 2008-02-14 Denso Corp 可動部を備えた設備の異常を検出する方法及び異常検出装置
US8107631B2 (en) * 2007-10-04 2012-01-31 Creative Technology Ltd Correlation-based method for ambience extraction from two-channel audio signals
JP2009187293A (ja) * 2008-02-06 2009-08-20 Nec Corp 時系列データ解析システム、方法およびプログラム
US20100149073A1 (en) * 2008-11-02 2010-06-17 David Chaum Near to Eye Display System and Appliance
WO2011046228A1 (ja) 2009-10-15 2011-04-21 日本電気株式会社 システム運用管理装置、システム運用管理方法、及びプログラム記憶媒体
US8909641B2 (en) 2011-11-16 2014-12-09 Ptc Inc. Method for analyzing time series activity streams and devices thereof
US10228994B2 (en) * 2013-09-09 2019-03-12 Nec Corporation Information processing system, information processing method, and program
US20160161339A1 (en) * 2014-12-05 2016-06-09 Intel Corporation Human motion detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076882B2 (ja) * 1990-10-31 1995-01-30 旭化成工業株式会社 異常検出方法および装置
JPH06281547A (ja) * 1993-03-26 1994-10-07 Hitachi Ltd 機器の異常監視方法および装置
JP3780299B1 (ja) * 2005-06-24 2006-05-31 独立行政法人科学技術振興機構 対象設備の診断方法、コンピュータプログラム、及び、対象設備を診断するための装置
JP4872944B2 (ja) 2008-02-25 2012-02-08 日本電気株式会社 運用管理装置、運用管理システム、情報処理方法、及び運用管理プログラム
JP2010066244A (ja) 2008-09-13 2010-03-25 Chugoku Electric Power Co Inc:The 設備異常診断方法およびシステム
JP2012098149A (ja) * 2010-11-02 2012-05-24 Jfe Mechanical Co Ltd 携帯型振動診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3045889A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10641681B2 (en) 2015-10-13 2020-05-05 Nec Corporation Structure abnormality detection system, structure abnormality detection method, and storage medium
WO2017064854A1 (ja) * 2015-10-13 2017-04-20 日本電気株式会社 構造物異常検知装置、構造物異常検知方法、記録媒体及び構造物異常検知システム
JPWO2017064855A1 (ja) * 2015-10-13 2018-08-02 日本電気株式会社 構造物異常検知システム、構造物異常検知方法及び記録した記録媒体
JPWO2017064854A1 (ja) * 2015-10-13 2018-08-09 日本電気株式会社 構造物異常検知装置、構造物異常検知方法、記録媒体及び構造物異常検知システム
WO2017064855A1 (ja) * 2015-10-13 2017-04-20 日本電気株式会社 構造物異常検知システム、構造物異常検知方法及び記録した記録媒体
US10697861B2 (en) 2015-10-13 2020-06-30 Nec Corporation Structure abnormality detection device, structure abnormality detection method, storage medium, and structure abnormality detection system
WO2019054433A1 (ja) * 2017-09-14 2019-03-21 日本電気株式会社 診断装置、診断方法及びプログラム記憶媒体
JP2019098515A (ja) * 2017-11-28 2019-06-24 先馳精密儀器(東莞)有限公司Techmark Precision Instrument Co.Ltd. 刃具状態検査システム及び方法
WO2020166072A1 (ja) * 2019-02-15 2020-08-20 日本電気株式会社 時系列データ処理方法
JPWO2020166072A1 (ja) * 2019-02-15 2021-12-02 日本電気株式会社 時系列データ処理方法
JP7218765B2 (ja) 2019-02-15 2023-02-07 日本電気株式会社 時系列データ処理方法
JP7358791B2 (ja) 2019-06-11 2023-10-11 中国電力株式会社 プラント監視システムおよびプラント監視方法
JP7391765B2 (ja) 2020-05-29 2023-12-05 株式会社東芝 プラント監視支援装置、方法及びプログラム

Also Published As

Publication number Publication date
US10228994B2 (en) 2019-03-12
US20160196175A1 (en) 2016-07-07
JPWO2015033603A1 (ja) 2017-03-02
EP3045889B1 (en) 2021-08-11
JP6237774B2 (ja) 2017-11-29
EP3045889A1 (en) 2016-07-20
EP3045889A4 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6237774B2 (ja) 情報処理システム、情報処理方法及びプログラム
JP6835251B2 (ja) 損傷診断装置、損傷診断方法、及び、損傷診断プログラム
US20200259725A1 (en) Methods and systems for online monitoring using a variable data
WO2015045319A1 (ja) 情報処理装置、及び、分析方法
JP2013140135A (ja) 周期的駆動系の異常検知装置、周期的駆動系を有する処理装置、周期的駆動系の異常検知方法、およびコンピュータプログラム
KR20200043196A (ko) 진동 신호를 이용하여 설비 또는 부품의 잔여 수명을 예측하는 딥러닝 기반의 분석 장치 및 방법
KR20190025474A (ko) 플랜트 데이터 예측 장치 및 방법
WO2018008708A1 (ja) 震央距離推定装置、震央距離推定方法、及びコンピュータ読み取り可能な記録媒体
CN103090895A (zh) 用于将来自传感器的数据与可视显示相关的检验系统和方法
Tran et al. Automated and model-free bridge damage indicators with simultaneous multiparameter modal anomaly detection
JP6904418B2 (ja) 情報処理装置、情報処理システム、情報処理方法、及び、プログラム
WO2021127646A1 (en) Device and method for monitoring a system
JP5283607B2 (ja) コンクリート構造物の耐力評価方法及びコンピュータプログラム
JP2022082277A (ja) 検知プログラム、検知装置、および検知方法
Sadeqi et al. Automated operational modal analysis based on long‐term records: A case study of Milad Tower structural health monitoring
US10866163B2 (en) Anomaly monitoring device and method for producing anomaly signs according to combinations of sensors based on relationship of sensor fluctuations
Yang et al. Strain modal-based damage identification method and its application to crane girder without original model
US20230123872A1 (en) Method for detection of anomolous operation of a system
Staffa et al. Development and Validation of a Low-Cost Device for Real-Time Detection of Fatigue Damage of Structures Subjected to Vibrations
JP6247777B2 (ja) 異常診断装置および異常診断方法
CN111596619B (zh) 计算机系统及设施的监视方法
JP6932467B2 (ja) 状態変動検出装置、状態変動検出システム及び状態変動検出用プログラム
KR101972879B1 (ko) 임베디드 환경에서 메모리 사용량 최소화 방법 및 그 장치
JP2017150887A (ja) 構造物診断装置、構造物診断方法及びプログラム
TW202303417A (zh) 用於設置感測器於設備的電子裝置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535335

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14916007

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014842340

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842340

Country of ref document: EP