WO2015031921A1 - Procédé de traitement de surface utilisant la projection de gaz à froid - Google Patents

Procédé de traitement de surface utilisant la projection de gaz à froid Download PDF

Info

Publication number
WO2015031921A1
WO2015031921A1 PCT/AT2014/000167 AT2014000167W WO2015031921A1 WO 2015031921 A1 WO2015031921 A1 WO 2015031921A1 AT 2014000167 W AT2014000167 W AT 2014000167W WO 2015031921 A1 WO2015031921 A1 WO 2015031921A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
blasting agent
blasting
process gas
refractory metal
Prior art date
Application number
PCT/AT2014/000167
Other languages
German (de)
English (en)
Inventor
Martin Kathrein
Dietmar Sprenger
Bernhard Lang
Original Assignee
Plansee Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee Se filed Critical Plansee Se
Publication of WO2015031921A1 publication Critical patent/WO2015031921A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials

Definitions

  • the invention relates to a method for surface treatment by means of cold gas spraying and the use of a cold gas spraying system for such a method.
  • Cold gas spraying systems are used for coating substrates such as
  • Advantageous embodiments are the subject of the sub-speech.
  • a method for surface treatment by means of cold gas spraying in which a blasting agent is accelerated toward the surface of a substrate by means of a process gas jet.
  • the process gas is thereby accelerated by expansion in a nozzle (for example Laval nozzle) to high speed, preferably at supersonic speed.
  • the injection of the blasting agent which is supplied by means of a carrier gas, preferably takes place in front of the nozzle.
  • the high velocity accelerated abrasive cleans, activates, textures, roughens, densifies, cures, and / or smooths (or at least part of) the substrate surface.
  • the described method of DE 102004 059 716 B3 is applied by the method claimed here by means of cold gas spraying no (or substantially no) material on the substrate.
  • the blasting agent is accelerated so that the substrate is not (continuously) coated with the blasting agent, ie the blasting agent does not adhere to the substrate and no (closed) blasting agent layer is formed on the substrate.
  • the claimed method is used for Surface treatment of a substrate, for example, before a coating or after a coating or for adjusting or generating desired properties.
  • the blasting agent provided is made of at least one of a refractory metal, a refractory metal-based alloy, or a refractory metal-based carbide, wherein the refractory metal is selected from tungsten (W), molybdenum (Mo), and chromium (Cr).
  • the blasting agent is made of Cr, Mo and / or W carbide.
  • An alloy or carbide based on refractory metal contains at least
  • the blasting agent contains a plurality of different refractory metals, which together form at least SO.sub.MA% of the alloy.
  • an alloy or a carbide based on refractory metal has a refractory metal content of greater than 80 ma%, preferably greater than 90 ma%, particularly preferably greater than 95 ma%.
  • the abovementioned materials have a combination of properties (for example based on yield strength, hardness and modulus of elasticity) when they impinge on the substrate surface, which surprisingly results in the cleaning, activation, structuring, roughening, blasting of a cold gas spraying installation.
  • blasting agents based on tungsten which is the highest energy input due to the very high density, are suitable here.
  • the blasting abrasive is abrasive.
  • the substrate surface can be activated by the cleaning, i. the reactivity of the substrate surface is through
  • the substrate surface can be roughened to improve the adhesion of a subsequently applied layer, for example, by the higher roughness.
  • a substrate may consist of a Refractory metal or a refractory metal-based alloy, such as a tungsten or molybdenum substrate, may be roughened before the substrate is coated with tantalum to provide a diffusion barrier.
  • a substrate after thawing with chromium, nickel or a chromium-nickel alloy for example by means of
  • PVD process can be coated as corrosion protection.
  • that can be
  • the thermal emission of the substrate can be increased.
  • Heaters and radiation shields are structured accordingly to the
  • the wetting of the substrate surface can be improved by structuring the surface.
  • the inner surface of the substrate surface can be improved by structuring the surface.
  • Evaporator crucibles are structured to improve the wetting with the material to be evaporated.
  • the surface of rolls used in extreme ultraviolet (EUV) radiation sources may be patterned to enhance wetting of the rolls with liquid tin.
  • EUV extreme ultraviolet
  • the substrate surface can be further compacted, hardened and smoothed by the blasting medium without the blasting agent adhering to the substrate. That with the method can
  • Residual porosity in near-surface areas to be greatly reduced or completely closed, whereby the susceptibility to fatigue cracks can be greatly reduced.
  • inventive method is also suitable for use in components by installation of
  • the blasting agent has a plurality of particles having a middle
  • Diameter of 5 microns to 2 mm, 10 microns to 500 microns, preferably less than 150 microns have.
  • the values 5 ⁇ m and 10 ⁇ m represent laser-optically measured d 50 values, while 2 mm, 500 ⁇ m and 150 ⁇ m represent the mesh size of sieves.
  • a blasting agent consisting of tungsten (Tungrit®) having an average particle size of less than or equal to 150 ⁇ m, a substrate made of molybdenum or
  • Molybdenum-lanthanum oxide are structured, for example, as a pretreatment for the subsequent deposition of a layer, sintered steel components post-compacted or hardened steel components (hardness increase via work hardening).
  • Exemplary parameters for this surface treatment are the provision of the process gas jet at a pressure of 30 bar, a flow rate of 60 m 3 / h and a process gas temperature of 800 ° C.
  • the substrate and the blasting agent are made of the same material.
  • both the substrate and the Strahlnüttel be made of a refractory metal or a refractory metal-based alloy, reference being made to metals or alloys having a melting point greater than or equal to 1772 ° C (corresponding to the melting point of platinum).
  • a tungsten substrate may be treated with a tungsten abrasive.
  • the substrate and abrasive are made of related materials, e.g. one
  • Molybdenum substrate and a tungsten abrasive In the surface treatment can (unintentionally) isolated particles of the blasting agent in the substrate 'stuck', wherein the use of identical or similar materials for substrate and blasting agent, the substrate is not contaminated with application-critical foreign elements becomes. This is particularly advantageous for high-temperature applications or when inserting the substrate or the surface-treated component below
  • the particles of the blasting medium are granular or rounded, in particular spherical, formed.
  • edge-rounded, rounded, rounded or well-rounded particles are used for compacting, hardening and / or smoothing the substrate surface in order to obtain a uniformly compacted, hardened or smoothed surface. The smaller the particles, the finer the surface structure created.
  • the particles of the blasting medium are edged, in particular sharp-edged, formed.
  • the particles of the blasting medium can be roughened by this form of particles, a substrate surface more effective, structured or cleaned, since the edged particles remove more material than, for example, the above-described rounded particles.
  • the blasting agent is granules, i. a (fine-grained)
  • Starting material is removed by means of a granule production process (e.g.
  • a molybdenum blasting abrasive has a laser-optically measured particle size d 50 of 2 to 5 ⁇ m
  • a blasting abrasive of tungsten has a laser-optically measured particle size d 50 of 0.5 to 20 ⁇ m.
  • SprOhgranulierung using a binder such as paraffin the (fine-grained) starting material to particles with larger
  • the granules produced have a (mean) diameter of SO of up to 500 ⁇ m, preferably less than 150 ⁇ m.
  • a blasting agent beam is generated, which has a diameter of 2 mm to 10 mm, 4 mm to 8 mm, preferably 5 mm to 6 mm when hitting the substrate.
  • the diameter of the blasting agent jet can be adjusted via correspondingly adapted dimensions of a spray gun nozzle and / or a matched spray nozzle
  • Process gas flow can be adjusted. That is, by means of such a focused abrasive jet
  • the surface of a substrate may be partially treated, in particular, it is not necessary to mask substrate areas that do not need to be treated. Due to the focused use of the blasting medium and the high momentum transfer during cold gas spraying, a substrate surface can be treated precisely and efficiently in a short time and with little use of material.
  • the process gas jet is provided under a pressure between 10 bar to 100 bar, 20 bar to 60 bar, preferably 25 bar to 40 bar.
  • the process gas jet is accelerated to supersonic speed by means of a Laval nozzle, whereby the particles of the blasting medium have a correspondingly high
  • the temperature of the process gas is (far) below the melting point of the material of the abrasive used.
  • a cold gas spraying system is used for the surface treatment of a substrate, in particular according to a method as described above.
  • the cold gas spraying system has a spray gun with a Laval nozzle to accelerate a process gas to a high speed, such as supersonic speed, a process gas supply line into the gun and a blasting agent supply line into the gun.
  • the blasting agent is preferably supplied by means of a carrier gas.
  • a supply line may for example comprise: pipe (s), pump (s) or other conveying means such as e.g. a screw conveyor for transporting the abrasive towards the gun.
  • a heating system for heating the process gas may additionally be provided.
  • a blasting agent is accelerated by means of a process gas through the Laval nozzle to the surface of a substrate, wherein at least a part of the Substrate surface cleaned by the blasting agent, activated, roughened, structured, compacted, hardened and / or smoothed.
  • At least the spray gun of the cold gas spraying system and a substrate to be treated are arranged in a vacuum chamber. In this way, the amount of process gas needed for acceleration can be reduced because the
  • Process gas and thus the accelerated abrasive are no longer braked by the air resistance.
  • the process gas helium, nitrogen or a
  • Nitrogen-helium mixture used.
  • Kaltgasspritzstrom and features of the components described in the following embodiment and the method can be combined with each other in any way.
  • FIG. 1 is a schematic representation of a portion of a cold gas spray system
  • Fig. 3a-b a comparison of two treated substrate surfaces.
  • Fig. 1 shows a schematic representation of a part of a cold gas spraying system 2 for explaining the principle of cold gas spraying.
  • a spray gun housing 4 has a Laval nozzle 10 in order to accelerate a process gas T supplied through a process gas line 8 to the upper sound velocity.
  • a blasting agent S ie a large number of particles, is introduced into the process gas stream T via a blasting medium line 6 by means of a carrier gas, which particles are accelerated toward the substrate 14 by the process gas flow T and impact there.
  • the acceleration of the particles by the process gas stream and the particles are chosen so that the particles do not adhere to the substrate 14 upon impact.
  • the cold gas spray system 2 is operated so that on the one hand by means of the particles
  • Substrate material can be removed (cleaning, structuring, activation, thawing) or alternatively, the substrate surface can be compacted, hardened or smoothed.
  • the operating parameters of Appendix 2 can be adjusted accordingly, i. Speed, pressure and / or temperature of the
  • Process gas stream Process gas stream. Additionally or alternatively, the type of particles used or of the blasting medium S can be adapted. For example, for a stronger
  • Material removal larger and / or edged particles are selected and for a
  • Compaction or hardening can be used rounded or round particles.
  • the beam center is made of the same material or similar materials (for example, molybdenum and tungsten)
  • FIG. 2 shows a micrograph of individual particles or grains of an exemplary blasting agent produced from tungsten (Tungrit®) with a particle size (sieve fraction) between 36 and 150 ⁇ m.
  • FIGS. 3a-b each show a micrograph of two surface-treated substrates.
  • FIG. 3a shows a tungsten sheet which has been cleaned with the described cold gas method using tungsten as blasting medium, ie substrate material has been removed.
  • Fig. 3b shows a tungsten sheet which has been treated with a conventional sandblasting method using alumina (Al 2 O 3 ) as an abrasive.
  • the deposits 16a-d of foreign material or Al 2 O 3 can clearly be seen in FIG. 3b. This means that unintentionally individual particles or grains of the blasting medium remain stuck in the substrate during the blasting process. This contamination with foreign materials is particularly in the use of the corresponding substrate or component in

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

L'invention concerne un procédé de traitement de surface utilisant la projection de gaz à froid, et l'utilisation d'un système de projection de gaz à froid pour un procédé de ce type. Ledit procédé consiste à préparer une grenaille constituée d'au moins un métal réfractaire, d'un alliage à base de métal réfractaire ou d'un carbure à base de métal réfractaire, le métal réfractaire étant sélectionné parmi le tungstène, le molybdène, le chrome, et à accélérer la grenaille (S) au moyen d'un jet de gaz industriel (T) en direction de la surface d'un substrat (14), au moins une partie de la surface du substrat étant nettoyée, activée, rugosifiée, structurée, comprimée, durcie ou lissée par la grenaille (S).
PCT/AT2014/000167 2013-09-06 2014-09-04 Procédé de traitement de surface utilisant la projection de gaz à froid WO2015031921A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATGM289/2013 2013-09-06
ATGM289/2013U AT14202U1 (de) 2013-09-06 2013-09-06 Verfahren zur Oberflächenbehandlung mittels Kaltgasspritzen

Publications (1)

Publication Number Publication Date
WO2015031921A1 true WO2015031921A1 (fr) 2015-03-12

Family

ID=52627597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2014/000167 WO2015031921A1 (fr) 2013-09-06 2014-09-04 Procédé de traitement de surface utilisant la projection de gaz à froid

Country Status (2)

Country Link
AT (1) AT14202U1 (fr)
WO (1) WO2015031921A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060430A1 (fr) * 2016-12-20 2018-06-22 Institut National Des Sciences Appliquees De Lyon (Insa Lyon) Procede de traitement mecanique d'une paroi reduisant la formation de coke.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1464855A (en) * 1974-02-06 1977-02-16 Isc Smelting Abrasive cleaning of metal surfaces
US5681206A (en) * 1994-03-01 1997-10-28 Mesher; Terry Method of accelerating fluidized particulate matter
DE10261302C1 (de) * 2002-12-27 2003-11-20 Klaus Frohne Strahlgerät
WO2004009292A1 (fr) * 2002-07-23 2004-01-29 Oleg Ivanovich Grechishkin Dispositif de projection de matieres abrasives
DE102004059716B3 (de) 2004-12-08 2006-04-06 Siemens Ag Verfahren zum Kaltgasspritzen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005018618A1 (de) * 2005-04-21 2006-10-26 Rheinmetall Waffe Munition Gmbh Waffenrohr und Verfahren zur Beschichtung der inneren Oberfläche des Waffenrohres
WO2008037237A1 (fr) * 2006-09-29 2008-04-03 Siemens Aktiengesellschaft procédé et dispositif de dépôt d'un revêtement non métallique par projection À gaz froid
DE102008036070A1 (de) * 2008-08-04 2010-05-27 H.C. Starck Gmbh Formkörper
DE102009037893A1 (de) * 2009-08-18 2011-02-24 Mtu Aero Engines Gmbh Herstellung von Hohlkörpern oder Schichten mit Hohlräumen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1464855A (en) * 1974-02-06 1977-02-16 Isc Smelting Abrasive cleaning of metal surfaces
US5681206A (en) * 1994-03-01 1997-10-28 Mesher; Terry Method of accelerating fluidized particulate matter
WO2004009292A1 (fr) * 2002-07-23 2004-01-29 Oleg Ivanovich Grechishkin Dispositif de projection de matieres abrasives
DE10261302C1 (de) * 2002-12-27 2003-11-20 Klaus Frohne Strahlgerät
DE102004059716B3 (de) 2004-12-08 2006-04-06 Siemens Ag Verfahren zum Kaltgasspritzen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060430A1 (fr) * 2016-12-20 2018-06-22 Institut National Des Sciences Appliquees De Lyon (Insa Lyon) Procede de traitement mecanique d'une paroi reduisant la formation de coke.
WO2018114960A1 (fr) * 2016-12-20 2018-06-28 Total Raffinage Chimie Procede de traitement mecanique d'une paroi reduisant la formation de coke et procédé de traitement d'hydrocarbures

Also Published As

Publication number Publication date
AT14202U1 (de) 2015-05-15

Similar Documents

Publication Publication Date Title
DE69730245T2 (de) Verfahren zur behandlung von metallteilen
EP0776985B1 (fr) Procédé de disposition d'une couche métallique d'adhérence pour des couches isolantes sur articles métalliques
DE60111658T2 (de) Beschichtung auf faserverstärkte Verbundmaterialien
DE112004002500T5 (de) Kaltspritzvorrichtung mit Pulvervorheizeinrichtung
EP2560789B1 (fr) Procédé de traitement d'une surface d'un composant
EP1926841A1 (fr) Procede de pulverisation de gaz froid
DE102016200951A1 (de) Verfahren zum Erzeugen einer verschleiß- und/oder korrosionsfesten Beschichtung auf einer Reibfläche eines Bremskörpers sowie nach dem Verfahren herstellbarer Bremskörper
DE102009037894A1 (de) Dünnwandiges Strukturbauteil und Verfahren zu seiner Herstellung
EP2298962A1 (fr) Pulverisation à froid de revêtements contenant des oxydes
EP2576863B1 (fr) Procédé de réalisation d'une couche par injection de gaz froid et utilisation d'une telle couche
DE102006023483A1 (de) Vorrichtung zum Kaltgasspritzen
DE202018102703U1 (de) Bremskörper für ein Fahrzeug
EP2499279A1 (fr) Enduction de pièces en plastique par projection dynamique à froid
DE102005018618A1 (de) Waffenrohr und Verfahren zur Beschichtung der inneren Oberfläche des Waffenrohres
DE102009052946A1 (de) Verfahren und Vorrichtung zur Bauteilbeschichtung
WO2018024763A1 (fr) Alliage ferreux destiné à la réalisation de couches protectrices anti-usure appliquées par voie thermique
DE102006029070B3 (de) Verfahren zum Beschichten eines Bauteils, in dessen Oberfläche Löcher vorgesehen sind
WO2015031921A1 (fr) Procédé de traitement de surface utilisant la projection de gaz à froid
DE102018113643A1 (de) Vorrichtung zur Beschichtung einer Oberfläche
DE102017222182A1 (de) Verfahren zum Aufbringen einer Titanaluminidlegierung, Titanaluminidlegierung und Substrat umfassend eine Titanaluminidlegierung
DE3715327C2 (fr)
DE102006002371A1 (de) Verfahren zur Beschichtung eines Hartmetall- oder Cermetsubstratkörpers und beschichteter Hartmetall- oder Cermetkörper
DE10240160A1 (de) Korrosionsgeschütztes Bauteil und Verfahren zu seiner Herstellung und Einrichtung zur Durchführung des Verfahrens
EP2503026A1 (fr) Procédé de réparation d'une couche sur un substrat
WO2010088879A1 (fr) Procédé de fabrication d'un revêtement résistant à l'usure sur un élément de construction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14789766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14789766

Country of ref document: EP

Kind code of ref document: A1