WO2015029953A1 - 通信制御方法及びユーザ端末 - Google Patents

通信制御方法及びユーザ端末 Download PDF

Info

Publication number
WO2015029953A1
WO2015029953A1 PCT/JP2014/072178 JP2014072178W WO2015029953A1 WO 2015029953 A1 WO2015029953 A1 WO 2015029953A1 JP 2014072178 W JP2014072178 W JP 2014072178W WO 2015029953 A1 WO2015029953 A1 WO 2015029953A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
speed movement
rnti
communication
terminal group
Prior art date
Application number
PCT/JP2014/072178
Other languages
English (en)
French (fr)
Inventor
憲由 福田
空悟 守田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/914,377 priority Critical patent/US9538501B2/en
Priority to JP2015534204A priority patent/JP6154015B2/ja
Publication of WO2015029953A1 publication Critical patent/WO2015029953A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a communication control method and a user terminal used in a mobile communication system that supports D2D communication.
  • D2D communication direct inter-terminal communication is performed without going through a network within a terminal group composed of a plurality of adjacent user terminals.
  • cellular communication which is normal communication in a mobile communication system
  • user terminals communicate via a network.
  • D2D communication can perform wireless communication with low transmission power between adjacent user terminals, the power consumption of the user terminal and the load on the network can be reduced compared to cellular communication.
  • the base station that manages the serving cell in which the terminal group is located determines the allocated radio resource used for D2D communication, and notifies the determined allocated radio resource to the terminal group.
  • an object of the present invention is to provide a communication control method and a user terminal capable of enabling D2D communication without requiring complicated communication control even when a terminal group moves at high speed. .
  • the communication control method is a method for controlling D2D communication, which is direct inter-terminal communication performed in a terminal group composed of a plurality of user terminals in a mobile communication system.
  • the terminal group when the terminal group in a high-speed movement state is detected, the terminal group performs the D2D communication in a serving cell in which the terminal group is located and an adjacent cell adjacent to the serving cell.
  • a step of reserving a target radio resource which is a radio resource scheduled to be used, and a first user terminal included in the terminal group is a radio resource used for the D2D communication from the reserved target radio resources Performing terminal-initiated scheduling for determining a certain allocated radio resource.
  • the user terminal which concerns on 2nd characteristic is a user terminal contained in the said terminal group in the mobile communication system which supports D2D communication which is the direct inter-terminal communication performed within the terminal group which consists of a some user terminal. .
  • the user terminal when it is detected that the terminal group is in a high-speed movement state, from the serving radio resource reserved in the serving cell in which the terminal group is located and the neighboring cell adjacent to the serving cell, the user terminal A control unit that performs terminal-initiated scheduling for determining an assigned radio resource that is a radio resource used for D2D communication is provided.
  • the communication control method is a method for controlling D2D communication which is direct inter-terminal communication performed in a terminal group composed of a plurality of user terminals in a mobile communication system. is there.
  • the terminal group when the terminal group in a high-speed movement state is detected, the terminal group performs the D2D communication in a serving cell in which the terminal group is located and an adjacent cell adjacent to the serving cell.
  • a step of reserving a target radio resource which is a radio resource scheduled to be used, and a first user terminal included in the terminal group is a radio resource used for the D2D communication from the reserved target radio resources Performing terminal-initiated scheduling for determining a certain allocated radio resource.
  • a first base station that manages the serving cell in the network determines the allocated radio resource.
  • the method further includes a step of performing base station initiative scheduling.
  • the network when a radio resource is allocated to the terminal group that is not in the high-speed movement state, the network does not reserve the target radio resource in the neighboring cell. And further, reserving the target radio resource in the serving cell.
  • assignment of the target radio resource to a second user terminal that is not included in the terminal group is prohibited.
  • the target radio resource is allowed to be allocated to a second user terminal that is not included in the terminal group.
  • the network applies a modulation / code applied to the second user terminal based on a moving speed of the terminal group.
  • the method further includes a step of correcting the conversion method.
  • the target radio resource is allowed to be allocated to a second user terminal that is not included in the terminal group.
  • the communication control method further includes a step in which the network preferentially assigns the target radio resource to the second user terminal whose transmission power level is set low.
  • the communication control method transmits a first high-speed movement notification from the first user terminal to the serving cell in response to the first user terminal detecting the high-speed movement state. Further comprising the step of:
  • the first high-speed movement notification includes use resource information indicating a radio resource used for the D2D communication in the terminal group.
  • the network that has received the first high-speed movement notification transmits reservation resource information indicating the target radio resource to the first user terminal. It further has a step.
  • the first base station that manages the serving cell responds to the second base station that manages the neighboring cell in response to reception of the first high-speed movement notification.
  • the method further includes the step of transmitting a second high-speed movement notification.
  • the second high-speed movement notification includes reservation resource information indicating the target radio resource.
  • the communication control method is such that when a movable relay station manages the serving cell and the relay station moves together with the terminal group, the relay station And a step of discarding the first high-speed movement notification received from one user terminal.
  • the method when the relay station that is movable manages the serving cell and the relay station moves together with the terminal group, the first user terminal When the serving cell is changed, the method further includes a step of transmitting the first high-speed movement notification to the changed serving cell.
  • the network in response to the reception of the first high-speed movement notification, is configured so that the serving cell and the serving cell
  • the method further includes assigning a D2D radio network temporary identifier (D2D-RNTI) commonly used in an area including a neighboring cell.
  • D2D-RNTI D2D radio network temporary identifier
  • the D2D-RNTI includes a main body portion allocated one in the predetermined area and an extended portion different for each user terminal included in the terminal group.
  • the communication control method further includes a step in which a core network accommodating a plurality of base stations in the network manages the allocation of the D2D-RNTI.
  • the core network determines the D2D-RNTI assigned to the terminal group from among unassigned D2D-RNTIs, and the determined Notifying the terminal group of D2D-RNTI from the core network.
  • the communication control method further includes a step of omitting a handover procedure when the terminal group to which the D2D-RNTI is assigned changes the serving cell as it moves.
  • the communication control method further includes a step of terminating the D2D communication when the terminal group to which the D2D-RNTI is allocated moves outside the service area of the mobile communication system.
  • the D2D-RNTI when the terminal group to which the D2D-RNTI is allocated ends the D2D communication, the D2D-RNTI is released after a predetermined time has elapsed from the end of the D2D communication. It further has a step.
  • the first user terminal changes to the network.
  • the method further comprises the steps of: transmitting a tracking area update message; and the network that has received the tracking area update message assigns a new D2D-RNTI to the terminal group.
  • a first base station that manages the serving cell in the network is the first user Assigning a cell radio network temporary identifier (C-RNTI) used in the serving cell to the terminal, and when the terminal group transitions from the fast moving state to the non-fast moving state, the D2D-RNTI And a step of releasing.
  • C-RNTI cell radio network temporary identifier
  • the method further includes maintaining the D2D-RNTI without assigning the C-RNTI.
  • the network is used for status notification from the terminal group to the network in the serving cell and the neighboring cell in response to reception of the first high-speed movement notification.
  • User terminals are included in the terminal group in a mobile communication system that supports D2D communication that is direct inter-terminal communication performed within a terminal group including a plurality of user terminals.
  • User terminal When it is detected that the terminal group is in a high-speed movement state, from the serving radio resource reserved in the serving cell in which the terminal group is located and the neighboring cell adjacent to the serving cell, the user terminal A control unit that performs terminal-initiated scheduling for determining an assigned radio resource that is a radio resource used for D2D communication is provided.
  • FIG. 1 is a configuration diagram of an LTE system according to the first embodiment.
  • the LTE system according to the first embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • One tracking area is constituted by a plurality of cells. The tracking area is an area unit for the network to grasp the position of the UE 100 in the idle state.
  • the EPC 20 corresponds to a core network.
  • the LTE system network is configured by the E-UTRAN 10 and the EPC 20.
  • the EPC 20 accommodates a plurality of eNBs 200.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • the MME performs various mobility controls for the UE 100. Moreover, MME manages the information of the cell or tracking area where UE100 exists.
  • the S-GW controls user data transfer.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal (received signal) and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 converts the baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal (received signal) and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, user data and control signals are transmitted via a transport channel.
  • the MAC layer of the eNB 200 includes a uplink / downlink transport format (transport block size, modulation / coding scheme), resource blocks allocated to the UE 100, and a scheduler that determines (schedules) transmission power.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connection state (RRC connection state). Otherwise, the UE 100 is in an idle state (RRC idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • a resource element is composed of one subcarrier and one symbol.
  • frequency resources are configured by resource blocks, and time resources are configured by subframes (or slots).
  • the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting a downlink control signal.
  • the remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting downlink user data.
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • both ends in the frequency direction in each subframe are regions used mainly as physical uplink control channels (PUCCH) for transmitting uplink control signals.
  • the remaining part in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH) for transmitting uplink user data.
  • PUSCH physical uplink shared channel
  • D2D communication The LTE system according to the first embodiment supports D2D communication that is direct inter-terminal communication (UE-UE communication).
  • FIG. 6 is a diagram for explaining D2D communication according to the first embodiment.
  • D2D communication will be described in comparison with cellular communication, which is normal communication of the LTE system.
  • Cellular communication is a communication mode in which a data path passes through a network (E-UTRAN10, EPC20).
  • a data path is a communication path for user data.
  • D2D communication is a communication mode in which a data path set between UEs does not pass through a network.
  • a plurality of UEs 100 (UE 100-1 and UE 100-2) that are close to each other directly perform radio communication with low transmission power in the cell of the eNB 200.
  • the eNB 200 that manages the serving cell in which the D2D group (terminal group) including a plurality of UEs 100 that are close to each other is located determines the allocated radio resource used for the D2D communication, and the determined allocated radio resource is the D2D Notify the group.
  • the eNB 200 that performs D2D scheduling is associated with the movement of the D2D group. It is necessary to switch one after another. Therefore, complicated communication control is required to enable D2D communication.
  • FIG. 7 is a flowchart showing a schematic operation according to the first embodiment.
  • step S1 the moving speed (V) of the D2D group is measured.
  • the UE 100 included in the D2D group measures the moving speed (V).
  • step S2 the moving speed (V) of the D2D group is compared with a threshold value (Vth).
  • Vth a threshold value
  • the UE 100 included in the D2D group detects the high-speed movement state by comparing the movement speed (V) with the threshold value (Vth).
  • step S2 When the moving speed (V) of the D2D group is less than the threshold value (Vth) (step S2: No), the D2D group is not in the high speed moving state (non-high speed moving state). In this case, in step S3, the eNB 200 that manages the serving cell of the D2D group performs D2D scheduling (eNB initiated scheduling).
  • step S2 when the moving speed (V) of the D2D group is equal to or higher than the threshold (Vth) (step S2: Yes), the D2D group is in a high-speed moving state.
  • step S4 the UE 100 included in the D2D group performs D2D scheduling (UE initiated scheduling).
  • FIG. 8 is a flowchart showing the operation of the UE 100 according to the first embodiment.
  • the UE 100 included in the D2D group measures its own moving speed (V), that is, the moving speed (V) of the D2D group.
  • V moving speed
  • the UE 100 measures the moving speed (V) based on position information periodically obtained using the GNSS receiver 130.
  • the UE 100 may estimate the moving speed (V) from the number of handovers per unit time, the number of cell reselections per unit time, or the fading speed of the received signal.
  • the UE 100 included in the D2D group compares the moving speed (V) of the D2D group with a threshold (Vth).
  • the threshold value (Vth) may be stored in advance in the UE 100 or may be set in the UE 100 from the network.
  • the threshold value (Vth) can be set to a value of about 50 to 60 km / h, for example.
  • step S12 When the moving speed (V) of the D2D group is equal to or higher than the threshold (Vth) (step S12: Yes), the D2D group is in a high-speed moving state.
  • the UE 100 that has detected the high speed movement state transmits a high speed movement notification (first high speed movement notification) to the serving cell.
  • the high-speed movement notification includes use resource information indicating radio resources used for D2D communication in the D2D group.
  • FIG. 9 is a flowchart showing an operation of the eNB 200 according to the first embodiment when receiving a high-speed movement notification.
  • step S ⁇ b> 21 the eNB 200 that manages the serving cell of the UE 100 included in the D2D group (i) receives the high-speed movement notification from the UE 100.
  • step S22 the eNB 200 acquires the used resource information included in the high-speed movement notification.
  • the eNB 200 reserves the radio resource indicated by the use resource information as a target radio resource that is a radio resource that the D2D group (i) plans to use for D2D communication.
  • the target radio resource to be reserved is referred to as “reserved resource”.
  • the eNB 200 stores reservation resources.
  • step S24 the eNB 200 transmits a high-speed movement notification (second high-speed movement notification) to another eNB 200 (adjacent eNB 200) that manages the adjacent cell.
  • the high-speed movement notification includes reservation resource information indicating a reservation resource.
  • the neighboring eNB 200 that has received the high-speed movement notification from the eNB 200 stores the reservation resource indicated by the reservation resource information included in the high-speed movement notification.
  • FIG. 10 is a flowchart showing an operation during scheduling of the eNB 200 according to the first embodiment. The operation is performed by the eNB 200 that has received the high-speed movement notification (first high-speed movement notification) from the UE 100 and the neighboring eNB 200 that has received the high-speed movement notification (second high-speed movement notification) from the eNB 200.
  • first high-speed movement notification first high-speed movement notification
  • second high-speed movement notification high-speed movement notification
  • step S31 the eNB 200 reads a reservation resource for the D2D group.
  • step S33 the eNB 200 prohibits the allocation of the reservation resource. That is, the eNB 200 performs scheduling so that no reservation resource is allocated to the UE 100 that is not included in the D2D group.
  • FIG. 11 is a sequence diagram showing an operation according to the first embodiment.
  • the UE 100-1 and the UE 100-2 form a D2D group
  • the UE 100-2 is a UE that performs control related to D2D communication.
  • the eNB 200-1 manages the serving cell of the D2D group
  • the eNB 200-2 and the eNB 200-3 manage an adjacent cell adjacent to the serving cell.
  • each of UE 100-1 and UE 100-2 is in an RRC connection state
  • each of UE 100-1 and UE 100-2 is assigned a cell radio network temporary identifier (C-RNTI) from eNB 200-1. It has been.
  • C-RNTI cell radio network temporary identifier
  • the eNB 200-1 determines an assigned radio resource for the D2D group (UE 100-1 and UE 100-2), and notifies the assigned radio resource to the UE 100-2.
  • the UE 100-2 notifies the UE 100-1 of the allocated radio resource notified from the eNB 200-1, and performs D2D communication between the UE 100-1 and the UE 100-2 using the allocated radio resource (Step S102).
  • the eNB 200-1 may notify the UE 100-1 and the UE 100-2 of the allocated radio resource, and perform D2D communication with the UE 100-1 and the UE 100-2 using the allocated radio resource.
  • step S103 the UE 100-2 measures its own moving speed (V), that is, the moving speed (V) of the D2D group, and compares the measured moving speed (V) with a threshold value (Vth).
  • V the moving speed
  • Vth the threshold value
  • the UE 100 that has detected the high-speed movement state transmits a high-speed movement notification (first high-speed movement notification) to the eNB 200-1.
  • the high-speed movement notification includes use resource information indicating a radio resource (RB) used for D2D communication in the D2D group.
  • the fast movement notification further includes C-RNTI assigned to each of UE 100-1 and UE 100-2.
  • the high-speed movement notification may further include speed information indicating the measured movement speed (V).
  • the speed information is used for MCS correction, for example. The correction of MCS will be described later in a second modification of the first embodiment.
  • step S105 the eNB 200-1 that has received the high-speed movement notification acquires the use resource information and the speed information included in the high-speed movement notification, and stores the radio resource indicated by the acquired use resource information as a reserved resource (RB). .
  • RB reserved resource
  • step S106 the eNB 200-1 transfers the high-speed movement notification received from the UE 100-2 to the EPC 20.
  • step S107 the EPC 20 that has received the high-speed movement notification, based on each C-RNTI included in the high-speed movement notification, identifies the D2D radio network temporary identifier (D2D-RNTI) for the D2D group (UE 100-1 and UE 100-2). ).
  • D2D-RNTI is an RNTI that is commonly used in a wide area including a serving cell and a neighboring cell.
  • the D2D-RNTI is for identifying a D2D group in a high-speed movement state, and is included in the case where one is allocated for each tracking area, the case where one is allocated for each D2D group, and the D2D group. There is a case where one is assigned to each UE 100 to be assigned.
  • the EPC 20 manages D2D-RNTI allocation. Specifically, the EPC 20 determines a D2D-RNTI to be assigned to the D2D group from among unassigned D2D-RNTIs among a plurality of D2D-RNTIs prepared in advance.
  • the EPC 20 may change the assigned D2D-RNTI after assigning the D2D-RNTI to the D2D group. In this case, the EPC 20 transmits a message including the changed D2D-RNTI to the D2D group via the eNB 200.
  • step S108 the EPC 20 transmits a fast movement notification response including the D2D-RNTI assigned to the D2D group to the eNB 200-1.
  • the high-speed movement notification response further includes each C-RNTI included in the high-speed movement notification from the eNB 200-1.
  • the eNB 200-1 that has received the high-speed movement notification response transmits (notifies) the high-speed movement notification (second high-speed movement notification) to the eNB 200-2 and the eNB 200-3.
  • the high-speed movement notification includes D2D-RNTI included in the high-speed movement notification response and reservation resource information indicating a reservation resource (RB) stored for the D2D group indicated by the D2DRNTI.
  • Each of the eNB 200-2 and the eNB 200-3 that has received the high-speed movement notification stores the reservation resource information (reservation resource) included in the high-speed movement notification.
  • the eNB 200-1 may include setting information related to the RRC connection with the UE 100 included in the D2D group (hereinafter, “RRC setting information”) in the high-speed movement notification (second high-speed movement notification).
  • RRC setting information setting information related to the RRC connection with the UE 100 included in the D2D group
  • each of the eNB 200-2 and the eNB 200-3 that have received the high-speed movement notification stores the RRC setting information included in the high-speed movement notification in association with the D2D-RNTI.
  • the eNB 200-1 transmits a high-speed movement notification response to the D2D group (UE 100-1 and UE 100-2).
  • the high-speed movement notification response includes D2D-RNTI assigned to the D2D group.
  • Each of the UE 100-1 and the UE 100-2 that has received the high-speed movement notification response stores the D2D-RNTI included in the high-speed movement notification response.
  • Each of UE 100-1 and UE 100-2 transitions from the RRC connected state to the RRC idle state after storing D2D-RNTI.
  • the D2D group (UE 100-1 and UE 100-2) performs D2D communication using the reservation resource (RB). Specifically, the UE 100-2 performs UE-initiated scheduling for determining an assigned radio resource that is a radio resource used for D2D communication from the reserved resources (RB). Then, UE 100-2 notifies UE 100-1 of the determined assigned radio resource, and performs D2D communication between UE 100-1 and UE 100-2 using the assigned radio resource.
  • the communication control method is a method for controlling D2D communication performed in a D2D group including a plurality of UEs 100 (UE 100-1 and UE 100-2).
  • the network detects a target radio resource that is a radio resource that the D2D group plans to use for D2D communication in a serving cell in which the D2D group is located and an adjacent cell adjacent to the serving cell Reserve (reservation resource).
  • the UE 100 included in the D2D group performs UE-initiated scheduling for determining an allocated radio resource that is a radio resource used for D2D communication from the reserved resources.
  • a reservation resource is set in a wide area for the D2D group in a high-speed movement state, and UE-initiated scheduling is performed within the range of the reservation resource.
  • the “wide area” is an area including at least a serving cell and an adjacent cell, for example, a tracking area.
  • the eNB 200 that performs D2D scheduling needs to be switched one after another as the D2D group moves. There is no. Accordingly, D2D communication can be performed without requiring complicated communication control.
  • the eNB 200 when radio resources are allocated to a D2D group that is not in a high-speed movement state, the eNB 200 that manages the serving cell of the D2D group performs D2D scheduling (eNB initiated scheduling). Therefore, for the D2D group that is not in the high-speed movement state, the allocated radio resources for the D2D communication can be finely controlled by the eNB 200 performing scheduling in the same manner as the cellular communication.
  • the reservation resource is prohibited from being assigned to the UE 100 that is not included in the D2D group. Therefore, it is possible to prevent interference between the UE 100 included in the D2D group and the UE 100 not included in the D2D group.
  • the UE 100 when the UE 100 detects the high speed movement state, the UE 100 transmits a high speed movement notification (first high speed movement notification) to the serving cell. Therefore, the network can grasp that the D2D group is in a high-speed movement state.
  • the high-speed movement notification (first high-speed movement notification) includes use resource information indicating radio resources used for D2D communication in the D2D group. Therefore, the network can continue to use the radio resource in the D2D group by setting the radio resource used for the D2D communication as the reserved resource.
  • the eNB 200 transmits a high-speed movement notification (second high-speed movement notification) to the neighboring eNB 200 in response to reception of the high-speed movement notification (first high-speed movement notification).
  • the second high-speed movement notification includes reservation resource information indicating the reservation resource. Therefore, the reservation resource can be set also in the adjacent eNB 200.
  • the EPC 20 assigns a D2D-RNTI that is commonly used in a tracking area including a serving cell and a neighboring cell to a D2D group in a high-speed movement state. Therefore, the D2D group in the high speed movement state can be identified in the tracking area.
  • the EPC 20 determines a D2D-RNTI to be assigned to the D2D group from among the unassigned D2D-RNTIs, and notifies the D2D group of the determined D2D-RNTI. Therefore, the D2D group in the high-speed movement state can be uniquely identified.
  • the network when a radio resource is allocated to a D2D group that is not in a high-speed movement state, the network (eNB 200) sets the reserved resource in the serving cell without setting the reserved resource in the adjacent cell. To do. And UE100 included in D2D group performs UE initiative scheduling which determines an allocation radio
  • UE-initiated scheduling is applied to a D2D group that is not in a high-speed movement state after limiting the resource reservation range to the serving cell. Therefore, the network load accompanying D2D scheduling can be reduced.
  • the reservation resource is prohibited from being allocated to the UE 100 that is not included in the D2D group.
  • the reservation resource may be allowed to be allocated to the UE 100 that is not included in the D2D group.
  • the reservation resource is allowed to be allocated to the UE 100 that is not included in the D2D group.
  • the network eNB 200
  • uses a modulation / coding scheme applied to the UEs 100 not included in the D2D group) based on the moving speed of the D2D group ( MCS) is corrected.
  • FIG. 12 is a diagram for explaining the MCS correction method according to the second modification of the first embodiment.
  • each eNB 200 shares speed information included in the high-speed movement notification.
  • the speed information is information indicating the moving speed (V) of the D2D group (i).
  • the eNB 200 when the eNB 200 allocates the reservation resource corresponding to the D2D group (i) to the UE 100 that is not included in the D2D group (i), the eNB 200 sets the moving speed (V) of the D2D group (i). Based on this, the MCS applied to the UE 100 is corrected.
  • the moving speed (V) of the D2D group (i) is “Vth1> V ⁇ Vth0”, and the candidate MCS of the UE 100 not included in the D2D group (i) is “mi2 ⁇ MCS”.
  • “correction MCS candidate MCS-2”. In other cases, allocation is prohibited.
  • a network eNB200 correct
  • the reservation resource is allowed to be allocated to the UE 100 that is not included in the D2D group.
  • the network preferentially allocates reservation resources to UEs 100 whose transmission power level is set low.
  • the transmission power level is, for example, a transmission power level in cellular communication.
  • the UE 100 whose transmission power level is set to be low is, for example, the UE 100 that exists in the vicinity of the eNB 200.
  • Such a UE 100 can perform good radio communication and has high interference tolerance.
  • the network sets the radio resource used in the D2D group as the reserved resource based on the use resource information indicating the radio resource used in the D2D group.
  • the reservation resource may be set without being based on the radio resource used in the D2D group.
  • FIG. 13 is a sequence diagram illustrating an operation according to the fourth modification of the first embodiment. Here, differences from the operation sequence according to the first embodiment described above will be described.
  • steps S101 to S103 are the same as those in the first embodiment described above.
  • step S104 ' the UE 100 that has detected the high-speed movement state transmits a high-speed movement notification (first high-speed movement notification) to the eNB 200-1.
  • the high-speed movement notification does not include used resource information.
  • step S105 ' the eNB 200-1 that has received the high-speed movement notification acquires the speed information included in the high-speed movement notification.
  • step S106 ' the eNB 200-1 transfers the high-speed movement notification received from the UE 100-2 to the EPC 20 (core network).
  • step S107 ' the EPC 20 that has received the high-speed movement notification assigns a D2D-RNTI to the D2D group (UE 100-1 and UE 100-2) based on each C-RNTI included in the high-speed movement notification.
  • the reservation resource is managed in the EPC 20, and the EPC 20 sets the reservation resource (RB).
  • step S108 ' the EPC 20 transmits a fast movement notification response including the D2D-RNTI assigned to the D2D group and the reserved resource (RB) to the eNB 200-1.
  • the eNB 200-1 that has received the high-speed movement notification response stores the reservation resource (RB) included in the high-speed movement notification response.
  • the eNB 200-1 that has received the high-speed movement notification response transmits a high-speed movement notification (second high-speed movement notification) to the eNB 200-2 and the eNB 200-3.
  • the high-speed movement notification includes D2D-RNTI included in the high-speed movement notification response and reservation resource information indicating the reservation resource stored for the D2D group indicated by the D2D-RNTI.
  • Each of the eNB 200-2 and the eNB 200-3 that has received the high-speed movement notification stores the reservation resource information (reservation resource) included in the high-speed movement notification.
  • the eNB 200-1 transmits a high-speed movement notification response to the D2D group (UE 100-1 and UE 100-2).
  • the high-speed movement notification response includes not only D2D-RNTI allocated to the D2D group but also reservation resource information indicating a reservation resource (RB) set on the network side.
  • step S111 the D2D group (UE 100-1 and UE 100-2) performs D2D communication using the reservation resource (RB) indicated by the reservation resource information.
  • the reservation resource (RB) is set by the network initiative.
  • the reservation resource (RB) can be set without duplication for a wide area such as a tracking area.
  • the mobile relay is a node that performs relay transmission between the eNB 200 and the UE 100, and is installed on a train or a bus.
  • the mobile relay that manages the serving cell of the D2D group moves together with the D2D group, the serving cell is not changed even if the D2D group is in a high-speed movement state. Therefore, the operation according to the first embodiment described above is performed. It is difficult to apply.
  • the mobile relay when the mobile relay manages the serving cell of the D2D group and the mobile relay moves together with the D2D group, the mobile relay moves from the UE 100 included in the D2D group.
  • the notification (first high-speed movement notification) is discarded.
  • the mobile relay discards the high-speed movement notification from the UE 100, the high-speed movement notification is not transmitted to the eNB 200, and an unintended operation can be prevented.
  • the UE 100 included in the D2D group changes when the serving cell is changed.
  • a high-speed movement notification (first high-speed movement notification) is transmitted to the serving cell after the change. Therefore, the operation according to the first embodiment described above can be applied.
  • FIG. 14 is a sequence diagram showing an operation when the D2D group changes the serving cell.
  • the D2D group changes the serving cell from the cell of eNB 200-4 to the cell of eNB 200-2.
  • the D2D groups (UE 100-1 and UE 100-2) in the high-speed movement state perform D2D communication while performing UE-initiated scheduling within the range of the reserved resources (step S201). Further, the D2D groups (UE 100-1 and UE 100-2) in the high-speed movement state transition to the RRC idle state in response to the D2D-RNTI being assigned.
  • each of the UE 100-1 and UE 100-2 omits the handover procedure.
  • Each of UE 100-1 and UE 100-2 may perform cell reselection instead of omitting the handover procedure. Then, even if the serving cell is changed, the D2D group (UE 100-1 and UE 100-2) continues D2D communication while performing UE-initiated scheduling within the range of reserved resources (step S202).
  • the eNB 200-4 performs eNB-initiated scheduling, and the allocated radio resource is notified from the eNB 200-4 to the D2D group (UE 100-1 and UE 100-2) (step S211). ). Then, D2D communication is performed by UE 100-1 and UE 100-2 using the allocated radio resource (step S212).
  • the D2D group in the non-high speed movement state is not assigned D2D-RNTI and is in the RRC connection state.
  • each of the UE 100-1 and UE 100-2 performs a handover procedure (step S213).
  • Each of UE 100-1 and UE 100-2 is assigned a new C-RNTI in the handover procedure.
  • the eNB 200-2 After the handover, the eNB 200-2 performs eNB-initiated scheduling, and notifies the allocated radio resources from the eNB 200-2 to the D2D group (UE 100-1 and UE 100-2) (step S214). Then, D2D communication is performed by UE 100-1 and UE 100-2 using the allocated radio resource (step S215).
  • FIG. 15 is a flowchart showing the operation when the D2D group in the high-speed movement state changes the tracking area.
  • the operation of the UE 100-2 included in the D2D group in the fast moving state will be described as an example, but the UE 100-1 included in the D2D group performs the same operation as the UE 100-2.
  • the UE 100-2 determines whether or not the cell ID of the serving cell is detected based on the radio signal received from the network.
  • the cell ID of the serving cell is not detected (step S41: No), that is, when it is outside the service area (that is, outside the service area), in step S44, the UE 100-2 ends the D2D communication. Even if the UE 100-2 ends the D2D communication, the UE 100-2 continues to hold the D2D-RNTI. Then, the UE 100-2 releases the D2D-RNTI after a predetermined time has elapsed since the end of the D2D communication.
  • step S42 the UE 100-2 determines whether the tracking area to which the serving cell belongs has been changed based on the cell ID.
  • step S43 the UE 100-2 performs tracking area update (TAU). Specifically, the UE 100-2 transmits a TAU message to the EPC 20 (MME) via the serving cell. In response to receiving the TAU message, the EPC 20 updates the D2D-RNTI assigned to the D2D group.
  • TAU tracking area update
  • the UE 100-2 suspends the D2D communication (however, the physical layer connection is maintained) until the new D2D-RNTI is assigned after detecting the tracking area change. Then, when a new D2D-RNTI is assigned, the UE 100-2 resumes D2D communication.
  • FIG. 16 is a sequence diagram showing an operation according to the third embodiment. First, the operation when the D2D group changes the serving cell from the cell of the eNB 200-4 to the cell of the eNB 200-2 will be described.
  • the cell of eNB 200-1 and the cell of eNB 200-2 belong to tracking area 1, and the cell of eNB 200-3 and the cell of eNB 200-4 belong to tracking area 2.
  • step S221 the D2D groups (UE 100-1 and UE 100-2) in the high-speed movement state perform D2D communication while performing UE-initiated scheduling within the range of the reserved resources. Further, the D2D groups (UE 100-1 and UE 100-2) in the high-speed movement state transition to the RRC idle state in response to the D2D-RNTI being assigned.
  • the D2D group (UE 100-1 and UE 100-2) detects a serving cell change based on the cell ID. Further, the D2D group (UE 100-1 and UE 100-2) detects that the tracking area to which the new serving cell belongs is different from the tracking area to which the serving cell before the change belongs.
  • step S222 the D2D group (UE 100-1 and UE 100-2) performs a random access procedure (RACH sequence) on the eNB 200-2 in order to establish an RRC connection with the cell of the eNB 200-2.
  • RACH sequence random access procedure
  • step S223 the D2D group (UE 100-1 and UE 100-2) that established the RRC connection with the cell of the eNB 200-2 performs tracking area update (TAU). Specifically, the D2D group (UE 100-1 and UE 100-2) transmits a TAU message to the EPC 20 (MME) via the eNB 200-2.
  • TAU tracking area update
  • step S224 the D2D group (UE 100-1 and UE 100-2) and the network set a reservation resource in each cell included in the new tracking area and perform a new tracking by the operation described in the first embodiment.
  • the EPC 20 updates the D2D-RNTI assigned to the D2D group in response to the reception of the TAU message.
  • step S225 the EPC 20 requests the eNB 200-3 and eNB 200-4 belonging to the tracking area before the change to release the D2D-RNTI.
  • each of the eNB 200-3 and the eNB 200-4 releases the D2D-RNTI in response to the D2D-RNTI release request from the EPC 20.
  • each of the eNB 200-3 and the eNB 200-4 releases the D2D-RNTI and releases the resource reservation corresponding to the D2D group (UE 100-1 and UE 100-2).
  • step S227 the D2D group (UE 100-1 and UE 100-2) performs D2D communication.
  • step S231 when the cell ID is not detected, the D2D group (UE 100-1 and UE 100-2) ends the D2D communication and releases the D2D-RNTI after a predetermined time has elapsed from the end of the D2D communication.
  • step S232 the EPC 20 detects that the D2D group (UE 100-1 and UE 100-2) has moved out of the service area, and releases the D2D-RNTI assigned to the D2D group (UE 100-1 and UE 100-2). To do.
  • a method for grasping in the network that the D2D group has moved out of the service area there are a first method to a third method.
  • the first method is a method of periodically paging the D2D group from the network and confirming the presence or absence of a paging response (alive ack) from the D2D group.
  • the second method is a method in which the alive ack is periodically transmitted from the D2D group to the network without paging, and the presence or absence of the alive ack is confirmed.
  • the third method is a method in which the D2D group periodically performs a resynchronization procedure with the network and confirms the presence or absence of the resynchronization procedure.
  • the D2D group can be identified by D2D-RNTI.
  • step S233 the EPC 20 requests the eNB 200-3 and the eNB 200-4 to release the D2D-RNTI.
  • each of the eNB 200-3 and the eNB 200-4 releases the D2D-RNTI in response to the D2D-RNTI release request from the EPC 20.
  • each of the eNB 200-3 and the eNB 200-4 releases the D2D-RNTI and releases the resource reservation corresponding to the D2D group (UE 100-1 and UE 100-2).
  • the handover procedure is omitted when the D2D group to which the D2D-RNTI is assigned changes the serving cell as it moves. Since the D2D groups (UE 100-1 and UE 100-2) in the fast moving state are managed by the common D2D-RNTI in the tracking area, the handover procedure can be omitted.
  • the D2D communication is terminated. Therefore, it is possible to prevent D2D communication that cannot be managed by the network.
  • the D2D-RNTI when the D2D group to which the D2D-RNTI is allocated moves out of the service area and ends the D2D communication, the D2D-RNTI is released after a predetermined time has elapsed from the end of the D2D communication.
  • the D2D group to which the D2D-RNTI is assigned retains the D2D-RNTI until a predetermined time has elapsed even after the D2D communication is terminated. Therefore, D2D communication can be resumed when moving into the service area again within the predetermined time.
  • the D2D group to which the D2D-RNTI is assigned transmits a TAU message from the UE 100 to the network when the tracking area in which the D2D-RNTI is allocated changes.
  • the network that has received the TAU message assigns a new D2D-RNTI to the D2D group. Therefore, the D2D group can be managed in tracking area units. Note that resource reservation is also performed in units of tracking areas, and resource reservation is performed again in each cell in a new tracking area when TAU occurs.
  • the D2D-RNTI is for identifying a D2D group in a high-speed movement state, and one D2D-RNTI is assigned to each tracking area, one is assigned to each D2D group, and D2D There is a case where one UE 100 is assigned to each UE included in the group.
  • D2D-RNTI if one common part is provided in the tracking area and each UE 100 included in the D2D group can be identified by the remaining part, the D2D group that is in a high-speed movement state is one D2D-RNTI. And the UE 100 included in the D2D group can be identified.
  • the D2D-RNTI includes a main body part (common part) allocated one in the tracking area, and an extended part (lower extension number) that is different for each UE 100 included in the D2D group, including.
  • the UE 100 can be identified using the extended portion (lower extension number).
  • FIG. 17 is a sequence diagram showing an operation pattern 1 according to the third embodiment.
  • the D2D group is located in the cell of eNB 200-1.
  • the cell of eNB 200-1 and the cell of eNB 200-2 belong to the same tracking area.
  • step S301 the D2D groups (UE 100-1 and UE 100-2) in the high-speed movement state perform D2D communication while performing UE-initiated scheduling within the range of the reserved resources.
  • the D2D groups (UE 100-1 and UE 100-2) detect that they are no longer in a high-speed movement state. Specifically, it is detected that the moving speed (V) of the D2D group is less than the threshold value (Vth).
  • step S302 the D2D group (UE 100-1 and UE 100-2) performs a random access procedure (RACH sequence) on the eNB 200-1 in order to establish an RRC connection with the cell of the eNB 200-1.
  • RACH sequence a random access procedure
  • C-RNTI is not assigned to each of UE 100-1 and UE 100-2 in the random access procedure.
  • step S303 the UE 100-2 transmits to the serving cell (eNB 200-1) a high-speed movement release notification indicating that the UE 100-2 has transitioned to the non-high-speed movement state.
  • the fast movement release notification includes the D2D-RNTI assigned to the D2D group (UE 100-1 and UE 100-2).
  • step S304 the eNB 200-1 that has received the high-speed movement cancellation notification transfers the high-speed movement cancellation notification to the EPC 20.
  • step S305 the EPC 20 that has received the high-speed movement release notification releases the D2D-RNTI assigned to the D2D group (UE 100-1 and UE 100-2).
  • step S306 the EPC 20 transmits a D2D-RNTI release request to the eNB 200-1 and the eNB 200-2.
  • the release request includes the D2D-RNTI to be released.
  • each of the eNB 200-1 and the eNB 200-2 that has received the D2D-RNTI release request releases the D2D-RNTI assigned to the D2D group (UE 100-1 and UE 100-2).
  • step S308 the eNB 200-1 determines the C-RNTI assigned to each of the UE 100-1 and the UE 100-2.
  • C-RNTI is different for each of UE 100-1 and UE 100-2.
  • the eNB 200-1 transmits a fast movement release notification response to the UE 100-2.
  • the high-speed movement release notification response includes D2D-RNTI assigned to the D2D group (UE 100-1 and UE 100-2), C-RNTI (C-RNTI 1) assigned to the UE 100-2, and each of the D2D groups.
  • the eNB 200-1 transmits a fast movement release notification response to the UE 100-1.
  • the fast movement release notification response includes D2D-RNTI assigned to the D2D group (UE 100-1 and UE 100-2), C-RNTI (C-RNTI 2) assigned to the UE 100-1, and each of the D2D groups.
  • Each of the UE 100-1 and the UE 100-2 transitions to the RRC connection state and switches from UE-driven scheduling to eNB-driven scheduling.
  • step S311 the eNB 200-1 determines radio resources allocated to the D2D groups (UE 100-1 and UE 100-2), and notifies the radio resources allocated to the D2D groups (UE 100-1 and UE 100-2).
  • step S312 the D2D group (UE 100-1 and UE 100-2) performs D2D communication using the notified allocated radio resource.
  • FIG. 18 is a sequence diagram showing an operation pattern 2 according to the third embodiment. As described in the modification of the second embodiment, the operation pattern 2 is different from the operation pattern 1 in that an extension number (EX-ID) is set in D2D-RNTI.
  • EX-ID extension number
  • step S321 the D2D groups (UE 100-1 and UE 100-2) in the high-speed movement state perform D2D communication while performing UE-initiated scheduling within the range of the reserved resource.
  • the D2D groups (UE 100-1 and UE 100-2) detect that they are no longer in a high-speed movement state. Specifically, it is detected that the moving speed (V) of the D2D group is less than the threshold value (Vth).
  • step S322 the D2D group (UE 100-1 and UE 100-2) performs a random access procedure (RACH sequence) on the eNB 200-1 in order to establish an RRC connection with the cell of the eNB 200-1.
  • RACH sequence a random access procedure
  • C-RNTI is assigned to each of UE 100-1 and UE 100-2 in the random access procedure.
  • Each of the UE 100-1 and the UE 100-2 transitions to the RRC connection state and switches from UE-driven scheduling to eNB-driven scheduling.
  • the UE 100-2 transmits to the serving cell (eNB 200-1) a high-speed movement release notification indicating that the UE 100-2 has transitioned to the non-high-speed movement state.
  • the high-speed movement release notification is not only the D2D-RNTI assigned to the D2D group (UE 100-1 and UE 100-2) but also the C-RNTI (C-RNTI 1) assigned to the UE 100-2.
  • C-RNTI 1 assigned to the UE 100-2.
  • EXP-ID1 an extension number assigned to the UE 100-2.
  • the UE 100-1 transmits a high-speed movement release notification indicating that the UE 100-1 has transitioned to the non-high-speed movement state to the serving cell (eNB 200-1).
  • the fast movement release notification is sent not only to the D2D-RNTI assigned to the D2D group (UE 100-1 and UE 100-2), but also to the C-RNTI (C-RNTI 2) assigned to the UE 100-1 and the UE 100-2.
  • C-RNTI 2 assigned extension number assigned to the UE 100-1 and the UE 100-2.
  • EXP-ID2 an assigned extension number assigned extension number
  • step S324 the eNB 200-1 acquires the D2D-RNTI and the extension number (EXP-ID1) included in the high-speed movement release notification received from the UE 100-2, and acquires the D2D-RNTI and the extension number (EXP-ID1). A high-speed movement release notification including the same is transmitted to the EPC 20.
  • the eNB 200-1 acquires the D2D-RNTI and extension number (EXP-ID2) included in the high-speed movement release notification received from the UE 100-1, and performs high-speed processing including the D2D-RNTI and extension number (EXP-ID2). A movement release notification is transmitted to the EPC 20.
  • EXP-ID2 D2D-RNTI and extension number
  • step S325 the EPC 20 that has received the high-speed movement release notification releases the extension number (EXP-ID1) assigned to the UE 100-2 and the extension number (EXP-ID2) assigned to the UE 100-1.
  • step S326 the EPC 20 transmits a D2D-RNTI release request to the eNB 200-1 and the eNB 200-2.
  • the release request includes the D2D-RNTI to be released and the extension number (EXP-ID).
  • each of the eNB 200-1 and the eNB 200-2 that has received the D2D-RNTI release request allocates the D2D-RNTI assigned to the D2D group (UE 100-1 and UE 100-2) and the UE 100-2.
  • the assigned extension number (EXP-ID1) and the extension number assigned to the UE 100-1 (EXPID2) are released.
  • step S328 the eNB 200-1 determines radio resources allocated to the D2D groups (UE 100-1 and UE 100-2), and notifies the radio resources allocated to the D2D groups (UE 100-1 and UE 100-2).
  • step S329 the D2D group (UE 100-1 and UE 100-2) performs D2D communication using the notified allocated radio resource.
  • the eNB 200 that manages the serving cell of the D2D group performs control in the serving cell for each UE 100 included in the D2D group. Assign the C-RNTI to be used. Further, when the D2D group transitions from the high-speed movement state to the non-high-speed movement state, each UE 100 and the network included in the D2D group release D2D-RNTI. Therefore, when the D2D group transitions from the high-speed movement state to the non-high-speed movement state, the UE-initiated scheduling can be switched to the eNB-initiated scheduling.
  • the D2D group even when the D2D group has transitioned from the high speed movement state to the non-high speed movement state, it is determined that there is a high possibility that the D2D group will transition to the high speed movement state again. Maintains D2D-RNTI without assigning C-RNTI.
  • the case where it is determined that there is a high possibility that the D2D group will transition to the high-speed movement state again is, for example, a case where a high-speed movement notification / high-speed movement release notification is generated a certain number of times within a predetermined time. In such a case, the UE 100 and the network included in the D2D group set the intermittent mode.
  • FIG. 19 is a flowchart showing an operation at the time of releasing the high-speed movement according to the modified example of the third embodiment. This flow is performed by the UE 100 or the network included in the D2D group.
  • step S51 it is determined in step S51 whether or not the intermittent mode is set.
  • step S52 the D2D-RNTI is released according to the cancellation of the high-speed movement.
  • step S53 the timer T1 is started.
  • the timer T1 is a timer for determining whether or not the intermittent mode should be set.
  • step S54 the timer T2 is started and D2D-RNTI is not released.
  • the timer T2 is a timer that defines a period during which the intermittent mode should be maintained.
  • FIG. 20 is a flowchart showing an operation at the time of transition from the non-high speed movement state to the high speed movement state according to the modified example of the third embodiment. This flow is performed by the UE 100 or the network included in the D2D group.
  • step S61 it is determined in step S61 whether or not the intermittent mode is set.
  • step S61 When the intermittent mode is set (step S61: No), the timer T2 is stopped in step S62.
  • step S61 determines whether or not the timer T1 is being activated.
  • step S64 the intermittent mode is set and the timer T1 is stopped.
  • the intermittent mode is canceled and the timers T1 and T2 are stopped.
  • FIG. 21 is a sequence diagram showing an initial setting operation according to the fourth embodiment. Here, differences from the operation sequence according to the first embodiment described above will be described.
  • steps S401 to S403 are the same as those in the first embodiment described above.
  • step S404 the UE 100 that has detected the high-speed movement state transmits a high-speed movement notification (first high-speed movement notification) to the eNB 200-1.
  • the high-speed movement notification includes a movement speed (V) and C-RNTI.
  • step S405 the eNB 200-1 that has received the high-speed movement notification acquires the speed information included in the high-speed movement notification.
  • step S406 the eNB 200-1 transfers the high-speed movement notification received from the UE 100-2 to the EPC 20 (core network).
  • step S407 the EPC 20 that has received the high-speed movement notification assigns a D2D-RNTI to the D2D group (UE 100-1 and UE 100-2) based on each C-RNTI included in the high-speed movement notification.
  • the reservation resource is managed in the EPC 20, and the EPC 20 sets the reservation resource (RB).
  • the EPC 20 manages a status notification resource (UL-GRANT), which is an uplink radio resource for status notification, and the EPC 20 sets the status notification resource (UL-GRANT).
  • step S408 the EPC 20 transmits to the eNB 200-1 a high-speed movement notification response including the D2D-RNTI assigned to the D2D group, the reservation resource (RB), and the state notification resource (UL-GRANT).
  • the eNB 200-1 that has received the high-speed movement notification response stores the reservation resource (RB) and the state notification resource (UL-GRANT) included in the high-speed movement notification response.
  • the eNB 200-1 that has received the high-speed movement notification response transmits a high-speed movement notification (second high-speed movement notification) to the eNB 200-2 and the eNB 200-3.
  • the high-speed movement notification includes D2D-RNTI, movement speed (V) information, reservation resource information indicating a reservation resource (RB), and state notification resource information indicating a state notification resource (UL-GRANT).
  • V movement speed
  • RB reservation resource
  • UL-GRANT state notification resource
  • Each of the eNB 200-2 and the eNB 200-3 that has received the high-speed movement notification stores a reservation resource (RB) and a state notification resource (UL-GRANT) included in the high-speed movement notification.
  • the eNB 200-1 transmits a high-speed movement notification response to the D2D group (UE 100-1 and UE 100-2).
  • the high-speed movement notification response is set not only in the D2D-RNTI assigned to the D2D group, but also in the reserved resource information indicating the reserved resource (RB) set on the network side and the network side.
  • Status notification resource information indicating a status notification resource (UL-GRANT).
  • Each of the UE 100-1 and the UE 100-2 stores information included in the fast movement notification response.
  • step S411 the D2D group (UE 100-1 and UE 100-2) performs D2D communication using the reservation resource (RB) indicated by the reservation resource information.
  • FIG. 22 is a sequence diagram showing a state notification operation according to the fourth embodiment.
  • EX-ID extension number
  • step S421 the D2D group (UE 100-1 and UE 100-2) performs D2D communication using a reservation resource (RB).
  • RB reservation resource
  • the UE 100-2 detects that an event that should be reported to the network has occurred.
  • the UE 100-2 establishes synchronization with the serving cell (eNB 200-1).
  • downlink synchronization with the serving cell is established by cell search
  • uplink synchronization is established by a random access procedure.
  • the random access procedure includes a process of transmitting a random access preamble from the UE 100 to the eNB 200-1, and a process of transmitting a random access response from the eNB 200-1 to the UE 100.
  • the eNB 200-1 measures the uplink delay based on the random access preamble, and transmits a timing correction value for guaranteeing the uplink delay included in the random access response.
  • the procedure for establishing the RRC connection is not performed.
  • the UE 100-2 transmits a state notification message to the serving cell (eNB 200-1) using the state notification resource (UL-GRANT).
  • the state notification message includes D2D-RNTI assigned to the D2D group, an extension number (EX-ID1) assigned to the UE 100-2, and notification information indicating a state to be notified.
  • the notification information is, for example, location information, UE information in the D2D group (number of UEs), aliveack, or UE identification information. Note that the MCS applied to the transmission of the status notification message is specified in advance, and the UE 100-2 transmits the status notification message by applying the MCS specified in advance.
  • the eNB 200-1 that has received the status notification message transfers the status notification message to the EPC 20.
  • the eNB 200-1 acquires RRC setting information corresponding to the D2D-RNTI based on the D2DRNTI included in the state notification message, and processes the state notification message using the RRC setting information.
  • the network is used for status notification from the D2D group to the network in the serving cell and the neighboring cell in response to reception of the high-speed movement notification (first high-speed movement notification) from the UE 100 included in the D2D group.
  • Reserve a status notification resource (UL-GRANT).
  • the network transmits status notification resource information indicating the reserved status notification resource (UL-GRANT) to the D2D group.
  • the UE 100 included in the D2D group uses the state notification resource (UL-GRANT) to transmit the state notification information together with the D2D-RNTI to the network. Therefore, the UE 100 included in the D2D group in the high-speed movement state only needs to establish synchronization again, and can transmit the state notification information to the network without establishing the RRC connection.
  • moving speed (V) of D2D group was measured by UE100 contained in D2D group.
  • the moving speed (V) may be measured on the network side.
  • the moving speed (V) is measured based on the position information managed by the server device.
  • the number of handovers per unit time may be calculated from the serving cell information managed by the MME 300, and the moving speed (V) may be estimated from the number of handovers per unit time.
  • the moving speed (V) may be estimated from the fading speed of the received signal received by the eNB 200 from the UE 100 included in the D2D group.
  • the network detects the high-speed movement state by comparing the movement speed (V) of the D2D group with a threshold value (Vth).
  • the LTE system has been described as an example of a mobile communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • an operation performed by the eNB 200 (base station) in each of the above-described embodiments may be performed by a network device (for example, a base station control device) other than the base station.
  • the present invention is useful in the mobile communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Quality & Reliability (AREA)

Abstract

 UE100は、複数のUE100(UE100-1及びUE100-2)からなるD2Dグループ(端末グループ)内で行われる直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、D2Dグループに含まれるUE100である。UE100は、D2Dグループが高速移動状態にあることが検知された場合に、D2Dグループが在圏するサービングセル及びサービングセルに隣接する隣接セルにおいて予約された対象無線リソースの中から、D2D通信に使用する無線リソースである割当無線リソースを決定するUE主導スケジューリングを行う。

Description

通信制御方法及びユーザ端末
 本発明は、D2D通信をサポートする移動通信システムにおいて用いられる通信制御方法及びユーザ端末に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降の新機能として、端末間(Device to Device:D2D)通信の導入が検討されている(非特許文献1参照)。
 D2D通信では、近接する複数のユーザ端末からなる端末グループ内で、ネットワークを介さずに直接的な端末間通信を行う。一方、移動通信システムの通常の通信であるセルラ通信では、ユーザ端末がネットワークを介して通信を行う。
 D2D通信は、近接するユーザ端末間で低送信電力の無線通信を行うことができるため、セルラ通信に比べて、ユーザ端末の消費電力及びネットワークの負荷を削減できる。
3GPP技術報告書 「TR 22.803 V12.1.0」 2013年3月
 ところで、D2D通信に使用する無線リソースの割り当て(D2Dスケジューリング)については、ネットワーク主導で行われることが想定されている。具体的には、端末グループが在圏するサービングセルを管理する基地局が、D2D通信に使用する割当無線リソースを決定し、決定した割当無線リソースを端末グループに通知する。
 しかしながら、このようなD2Dスケジューリングの手法では、端末グループが高速移動状態にある場合(例えば、電車又はバス内でD2D通信を行う場合)に、端末グループの移動に伴って、D2Dスケジューリングを行う基地局を次々と切り替えていく必要がある。従って、D2D通信を可能とするために煩雑な通信制御が必要になる問題がある。
 そこで、本発明は、端末グループが高速移動する場合であっても、煩雑な通信制御を必要とせずにD2D通信を可能とすることができる通信制御方法及びユーザ端末を提供することを目的とする。
 第1の特徴に係る通信制御方法は、移動通信システムにおいて、複数のユーザ端末からなる端末グループ内で行われる直接的な端末間通信であるD2D通信を制御するための方法である。前記通信制御方法は、高速移動状態にある前記端末グループが検知された場合に、ネットワークが、前記端末グループが在圏するサービングセル及び前記サービングセルに隣接する隣接セルにおいて、前記端末グループが前記D2D通信に使用する予定の無線リソースである対象無線リソースを予約するステップと、前記端末グループに含まれる第1のユーザ端末が、前記予約された対象無線リソースの中から、前記D2D通信に使用する無線リソースである割当無線リソースを決定する端末主導スケジューリングを行うステップと、を有する。
 第2の特徴に係るユーザ端末は、複数のユーザ端末からなる端末グループ内で行われる直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、前記端末グループに含まれるユーザ端末である。前記ユーザ端末は、前記端末グループが高速移動状態にあることが検知された場合に、前記端末グループが在圏するサービングセル及び前記サービングセルに隣接する隣接セルにおいて予約された対象無線リソースの中から、前記D2D通信に使用する無線リソースである割当無線リソースを決定する端末主導スケジューリングを行う制御部を備える。
第1実施形態乃至第4実施形態に係るLTEシステムの構成図である。 第1実施形態乃至第4実施形態に係るUEのブロック図である。 第1実施形態乃至第4実施形態に係るeNBのブロック図である。 第1実施形態乃至第4実施形態に係る無線インターフェイスのプロトコルスタック図である。 第1実施形態乃至第4実施形態に係る無線フレームの構成図である。 第1実施形態乃至第4実施形態に係るD2D通信を説明するための図である。 第1実施形態に係る概略動作を示すフロー図である。 第1実施形態に係るUEの動作を示すフロー図である。 第1実施形態に係るeNBの高速移動通知受信時における動作を示すフロー図である。 第1実施形態に係るeNBのスケジューリング時における動作を示すフロー図である。 第1実施形態に係る動作を示すシーケンス図である。 第1実施形態の変更例2に係るMCS補正方法を説明するための図である。 第1実施形態の変更例4に係る動作を示すシーケンス図である。 第2実施形態に係るD2Dグループがサービングセルを変更する際の動作を示すシーケンス図である。 第2実施形態に係る高速移動状態にあるD2Dグループがトラッキングエリアを変更する際の動作を示すフロー図である。 第3実施形態に係る動作を示すシーケンス図である。 第3実施形態に係る動作パターン1を示すシーケンス図である。 第3実施形態に係る動作パターン2を示すシーケンス図である。 第3実施形態の変更例に係る高速移動解除時における動作を示すフロー図である。 第3実施形態の変更例に係る非高速移動状態から高速移動状態への遷移時における動作を示すフロー図である。 第4実施形態に係る初期設定動作を示すシーケンス図である。 第4実施形態に係る状態通知動作を示すシーケンス図である。
 [実施形態の概要]
 第1実施形態乃至第4実施形態に係る通信制御方法は、移動通信システムにおいて、複数のユーザ端末からなる端末グループ内で行われる直接的な端末間通信であるD2D通信を制御するための方法である。前記通信制御方法は、高速移動状態にある前記端末グループが検知された場合に、ネットワークが、前記端末グループが在圏するサービングセル及び前記サービングセルに隣接する隣接セルにおいて、前記端末グループが前記D2D通信に使用する予定の無線リソースである対象無線リソースを予約するステップと、前記端末グループに含まれる第1のユーザ端末が、前記予約された対象無線リソースの中から、前記D2D通信に使用する無線リソースである割当無線リソースを決定する端末主導スケジューリングを行うステップと、を有する。
 第1実施形態に係る通信制御方法は、前記高速移動状態にない前記端末グループに対して無線リソースを割り当てる場合に、前記ネットワークにおいて前記サービングセルを管理する第1の基地局が前記割当無線リソースを決定する基地局主導スケジューリングを行うステップをさらに有する。
 第1実施形態の変更例1に係る通信制御方法は、前記高速移動状態にない前記端末グループに対して無線リソースを割り当てる場合に、前記ネットワークが、前記隣接セルにおいて前記対象無線リソースを予約せずに、前記サービングセルにおいて前記対象無線リソースを予約するステップをさらに有する。
 第1実施形態では、前記対象無線リソースは、前記端末グループに含まれない第2のユーザ端末に対する割り当てが禁止される。
 第1実施形態の変更例2では、前記対象無線リソースは、前記端末グループに含まれない第2のユーザ端末に対する割り当てが許容されている。前記通信制御方法は、前記対象無線リソースを前記第2のユーザ端末に割り当てる場合に、前記ネットワークが、前記端末グループの移動速度に基づいて、前記第2のユーザ端末に対して適用する変調・符号化方式を補正するステップをさらに有する。
 第1実施形態の変更例3では、前記対象無線リソースは、前記端末グループに含まれない第2のユーザ端末に対する割り当てが許容されている。前記通信制御方法は、前記ネットワークが、送信電力レベルが低く設定されている前記第2のユーザ端末に対して前記対象無線リソースを優先的に割り当てるステップをさらに有する。
 第1実施形態に係る通信制御方法は、前記第1のユーザ端末が前記高速移動状態を検知したことに応じて、前記第1のユーザ端末から前記サービングセルに対して第1の高速移動通知を送信するステップをさらに有する。
 第1実施形態では、前記第1の高速移動通知は、前記端末グループにおいて前記D2D通信に使用されている無線リソースを示す使用リソース情報を含む。
 第1実施形態の変更例4に係る通信制御方法は、前記第1の高速移動通知を受信した前記ネットワークが、前記対象無線リソースを示す予約リソース情報を前記第1のユーザ端末に対して送信するステップをさらに有する。
 第1実施形態に係る通信制御方法は、前記サービングセルを管理する第1の基地局が、前記第1の高速移動通知の受信に応じて、前記隣接セルを管理する第2の基地局に対して第2の高速移動通知を送信するステップをさらに有する。前記第2の高速移動通知は、前記対象無線リソースを示す予約リソース情報を含む。
 第1実施形態の変更例5に係る通信制御方法は、移動可能な中継局が前記サービングセルを管理しており、かつ前記端末グループと共に前記中継局が移動する場合に、前記中継局が、前記第1のユーザ端末から受信した前記第1の高速移動通知を破棄するステップをさらに有する。
 第1実施形態の変更例5に係る通信制御方法は、移動可能な中継局が前記サービングセルを管理しており、かつ前記端末グループと共に前記中継局が移動する場合に、前記第1のユーザ端末が、前記サービングセルが変更された際に、変更後のサービングセルに対して前記第1の高速移動通知を送信するステップをさらに有する。
 第1実施形態及び第2実施形態に係る通信制御方法は、前記ネットワークが、前記第1の高速移動通知の受信に応じて、前記高速移動状態にある前記端末グループに対して、前記サービングセル及び前記隣接セルを含むエリアにおいて共通に使用されるD2D無線ネットワーク一時識別子(D2D-RNTI)を割り当てるステップをさらに有する。
 第2実施形態の変更例では、前記D2D-RNTIは、前記所定エリア内で1つ割り当てられる本体部分と、前記端末グループに含まれるユーザ端末ごとに異なる拡張部分と、を含む。
 第1実施形態及び第2実施形態に係る通信制御方法は、前記ネットワークにおいて複数の基地局を収容するコアネットワークが、前記D2D-RNTIの割り当てを管理するステップをさらに有する。
 第1実施形態及び第2実施形態に係る通信制御方法は、前記コアネットワークが、未割り当てのD2D-RNTIの中から前記端末グループに対して割り当てる前記D2D-RNTIを決定するステップと、前記決定したD2D-RNTIを、前記コアネットワークから前記端末グループに対して通知するステップと、をさらに有する。
 第2実施形態に係る通信制御方法は、前記D2D-RNTIが割り当てられた前記端末グループが移動に伴って前記サービングセルを変更する場合に、ハンドオーバ手続を省略するステップをさらに有する。
 第2実施形態に係る通信制御方法は、前記D2D-RNTIが割り当てられた前記端末グループが前記移動通信システムのサービスエリア外に移動した場合に、前記D2D通信を終了するステップをさらに有する。
 第2実施形態に係る通信制御方法は、前記D2D-RNTIが割り当てられた前記端末グループが前記D2D通信を終了した場合に、前記D2D通信の終了から一定時間の経過後に前記D2D-RNTIを解放するステップをさらに有する。
 第2実施形態に係る通信制御方法は、前記D2D-RNTIが割り当てられた前記端末グループが、移動に伴って、在圏するトラッキングエリアを変更する場合に、前記第1のユーザ端末から前記ネットワークに対してトラッキングエリア更新メッセージを送信するステップと、前記トラッキングエリア更新メッセージを受信した前記ネットワークが、新たなD2D-RNTIを前記端末グループに割り当てるステップと、をさらに有する。
 第3実施形態に係る通信制御方法は、前記端末グループが前記高速移動状態から非高速移動状態に遷移した場合に、前記ネットワークにおいて前記サービングセルを管理する第1の基地局が、前記第1のユーザ端末に対して、前記サービングセルにおいて使用されるセル無線ネットワーク一時識別子(C-RNTI)を割り当てるステップと、前記端末グループが前記高速移動状態から前記非高速移動状態に遷移した場合に、前記D2D-RNTIを解放するステップと、をさらに有する。
 第3実施形態の変更例に係る通信制御方法は、前記端末グループが前記高速移動状態から前記非高速移動状態に遷移した場合であっても、前記端末グループが再び前記高速移動状態に遷移する可能性が高いと判断される場合には、前記C-RNTIを割り当てることなく前記D2D-RNTIを維持するステップをさらに有する。
 第4実施形態に係る通信制御方法は、前記ネットワークが、前記第1の高速移動通知の受信に応じて、前記サービングセル及び前記隣接セルにおいて、前記端末グループから前記ネットワークへの状態通知に使用される上りリンク無線リソースである状態通知リソースを予約するステップと、前記予約した状態通知リソースを示す状態通知リソース情報を前記ネットワークから前記端末グループに対して送信するステップと、前記第1のユーザ端末が、前記状態通知リソース情報により示される前記状態通知リソースを使用して、前記D2D-RNTIと共に状態通知情報を前記ネットワークに送信するステップと、をさらに有する。
 第1実施形態乃至第4実施形態に係るユーザ端末は、複数のユーザ端末からなる端末グループ内で行われる直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、前記端末グループに含まれるユーザ端末である。前記ユーザ端末は、前記端末グループが高速移動状態にあることが検知された場合に、前記端末グループが在圏するサービングセル及び前記サービングセルに隣接する隣接セルにおいて予約された対象無線リソースの中から、前記D2D通信に使用する無線リソースである割当無線リソースを決定する端末主導スケジューリングを行う制御部を備える。
 [第1実施形態]
 以下において、本発明をLTEシステムに適用する場合の実施形態を説明する。
 (システム構成)
 図1は、第1実施形態に係るLTEシステムの構成図である。図1に示すように、第1実施形態に係るLTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、接続先のセル(サービングセル)との無線通信を行う。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御・スケジューリングのための測定制御機能などを有する。
 「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。複数のセルにより、1つのトラッキングエリアが構成される。トラッキングエリアは、アイドル状態にあるUE100の位置をネットワークが把握するためのエリア単位である。
 EPC20は、コアネットワークに相当する。E-UTRAN10及びEPC20によりLTEシステムのネットワークが構成される。EPC20は、複数のeNB200を収容する。
 EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御などを行う。また、MMEは、UE100が在圏するセル又はトラッキングエリアの情報を管理する。S-GWは、ユーザデータの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101、無線送受信機110、ユーザインターフェイス120、GNSS(Global Navigation Satellite System)受信機130、バッテリ140、メモリ150、及びプロセッサ160を備える。メモリ150及びプロセッサ160は、制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160により実行されるプログラム、及びプロセッサ160による処理に使用される情報を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201、無線送受信機210、ネットワークインターフェイス220、メモリ230、及びプロセッサ240を備える。メモリ230及びプロセッサ240は、制御部を構成する。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240により実行されるプログラム、及びプロセッサ240による処理に使用される情報を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してユーザデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してユーザデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式)、UE100への割当リソースブロック、及び送信電力を決定(スケジューリング)するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してユーザデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100は接続状態(RRC接続状態)であり、そうでない場合、UE100はアイドル状態(RRCアイドル状態)である。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンク(DL)にはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンク(UL)にはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルによりリソースエレメントが構成される。
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより構成され、時間リソースはサブフレーム(又はスロット)により構成される。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用される領域である。また、各サブフレームの残りの部分は、主に下りリンクユーザデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できる領域である。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用される領域である。各サブフレームにおける残りの部分は、主に上りリンクユーザデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できる領域である。
 (D2D通信)
 第1実施形態に係るLTEシステムは、直接的な端末間通信(UE間通信)であるD2D通信をサポートする。図6は、第1実施形態に係るD2D通信を説明するための図である。
 ここでは、D2D通信を、LTEシステムの通常の通信であるセルラ通信と比較して説明する。セルラ通信は、データパスがネットワーク(E-UTRAN10、EPC20)を経由する通信モードである。データパスとは、ユーザデータの通信経路である。
 これに対し、図6に示すように、D2D通信は、UE間に設定されるデータパスがネットワークを経由しない通信モードである。相互に近接する複数のUE100(UE100-1及びUE100-2)は、eNB200のセルにおいて、低送信電力で直接的に無線通信を行う。
 このように、近接する複数のUE100が低送信電力で直接的に無線通信を行うことにより、セルラ通信と比べて、UE100の消費電力を削減し、かつ、隣接セルへの干渉を低減できる。
 D2D通信に使用する無線リソースの割り当て(D2Dスケジューリング)については、ネットワーク主導で行われることが想定されている。具体的には、相互に近接する複数のUE100からなるD2Dグループ(端末グループ)が在圏するサービングセルを管理するeNB200が、D2D通信に使用する割当無線リソースを決定し、決定した割当無線リソースをD2Dグループに通知する。
 しかしながら、このようなD2Dスケジューリングの手法では、D2Dグループが高速移動状態にある場合(例えば、電車又はバス内でD2D通信を行う場合)に、D2Dグループの移動に伴って、D2Dスケジューリングを行うeNB200を次々と切り替えていく必要がある。従って、D2D通信を可能とするために煩雑な通信制御が必要になる。
 (第1実施形態に係る通信制御方法)
 次に、第1実施形態に係る通信制御方法について説明する。具体的には、D2Dグループが高速移動する場合であっても煩雑な通信制御を必要とせずにD2D通信を可能とするための動作を説明する。
 (1)概略動作
 図7は、第1実施形態に係る概略動作を示すフロー図である。
 図7に示すように、ステップS1において、D2Dグループの移動速度(V)が計測される。第1実施形態では、D2Dグループに含まれるUE100が移動速度(V)を計測する。
 ステップS2において、D2Dグループの移動速度(V)が閾値(Vth)と比較される。第1実施形態では、D2Dグループに含まれるUE100が、移動速度(V)を閾値(Vth)と比較することにより、高速移動状態を検知する。
 D2Dグループの移動速度(V)が閾値(Vth)未満である場合(ステップS2:No)、D2Dグループは高速移動状態ではない(非高速移動状態)。この場合、ステップS3において、D2Dグループのサービングセルを管理するeNB200が、D2Dスケジューリング(eNB主導スケジューリング)を行う。
 これに対し、D2Dグループの移動速度(V)が閾値(Vth)以上である場合(ステップS2:Yes)、D2Dグループは高速移動状態である。この場合、ステップS4において、D2Dグループに含まれるUE100が、D2Dスケジューリング(UE主導スケジューリング)を行う。
 (2)UE100の動作
 図8は、第1実施形態に係るUE100の動作を示すフロー図である。
 図8に示すように、ステップS11において、D2Dグループに含まれるUE100は、自身の移動速度(V)、すなわちD2Dグループの移動速度(V)を計測する。例えば、UE100は、GNSS受信機130を用いて周期的に得られる位置情報に基づいて移動速度(V)を計測する。或いは、UE100は、単位時間当たりのハンドオーバ回数、単位時間当たりのセル再選択回数、又は受信信号のフェージング速度などから移動速度(V)を推定してもよい。
 ステップS12において、D2Dグループに含まれるUE100は、D2Dグループの移動速度(V)を閾値(Vth)と比較する。閾値(Vth)は、UE100が予め記憶していてもよく、ネットワークからUE100に設定してもよい。閾値(Vth)は、例えば50~60km/h程度の値とすることができる。
 D2Dグループの移動速度(V)が閾値(Vth)以上である場合(ステップS12:Yes)、D2Dグループは高速移動状態である。この場合、ステップS13において、高速移動状態を検知したUE100は、高速移動通知(第1の高速移動通知)をサービングセルに送信する。高速移動通知は、D2DグループにおいてD2D通信に使用されている無線リソースを示す使用リソース情報を含む。
 (3)eNB200の動作
 図9は、第1実施形態に係るeNB200の高速移動通知受信時における動作を示すフロー図である。
 図9に示すように、ステップS21において、D2Dグループ(i)に含まれるUE100のサービングセルを管理するeNB200は、当該UE100から高速移動通知を受信する。
 高速移動通知を受信した場合(ステップS21:Yes)、ステップS22において、eNB200は、当該高速移動通知に含まれる使用リソース情報を取得する。
 ステップS23において、eNB200は、使用リソース情報が示す無線リソースを、D2Dグループ(i)がD2D通信に使用する予定の無線リソースである対象無線リソースとして予約する。以下において、予約される対象無線リソースを「予約リソース」という。eNB200は、予約リソースを記憶する。
 ステップS24において、eNB200は、隣接セルを管理する他のeNB200(隣接eNB200)に対して高速移動通知(第2の高速移動通知)を送信する。高速移動通知は、予約リソースを示す予約リソース情報を含む。eNB200から高速移動通知を受信した隣接eNB200は、当該高速移動通知に含まれる予約リソース情報が示す予約リソースを記憶する。
 図10は、第1実施形態に係るeNB200のスケジューリング時における動作を示すフロー図である。当該動作は、UE100から高速移動通知(第1の高速移動通知)を受信したeNB200、及び当該eNB200から高速移動通知(第2の高速移動通知)を受信した隣接eNB200により実行される。
 図10に示すように、ステップS31において、eNB200は、D2Dグループへの予約リソースを読み出す。
 D2Dグループへの予約リソースが存在する場合(ステップS32:Yes)、ステップS33において、eNB200は、当該予約リソースの割り当てを禁止する。すなわち、eNB200は、当該D2Dグループに含まれないUE100に対して予約リソースを割り当てないようにスケジューリングを行う。
 (4)動作シーケンス
 図11は、第1実施形態に係る動作を示すシーケンス図である。ここでは、UE100-1及びUE100-2によりD2Dグループが構成されており、UE100-2がD2D通信に関する制御を行うUEであると仮定している。
 また、eNB200-1は、当該D2Dグループのサービングセルを管理しており、eNB200-2及びeNB200-3は当該サービングセルに隣接する隣接セルを管理する。本シーケンスの初期状態において、UE100-1及びUE100-2のそれぞれはRRC接続状態であり、UE100-1及びUE100-2のそれぞれにはeNB200-1からセル無線ネットワーク一時識別子(C-RNTI)が割り当てられている。
 図11に示すように、ステップS101において、eNB200-1は、D2Dグループ(UE100-1及びUE100-2)に対する割当無線リソースを決定し、割当無線リソースをUE100-2に通知する。UE100-2は、eNB200-1から通知された割当無線リソースをUE100-1に通知し、当該割当無線リソースを使用してUE100-1及びUE100-2によりD2D通信を行う(ステップS102)。或いは、eNB200-1は、割当無線リソースをUE100-1及びUE100-2に通知し、当該割当無線リソースを使用してUE100-1及びUE100-2によりD2D通信を行なってもよい。
 ステップS103において、UE100-2は、自身の移動速度(V)、すなわちD2Dグループの移動速度(V)を計測し、計測した移動速度(V)を閾値(Vth)と比較する。ここでは、移動速度(V)が閾値(Vth)以上であると仮定して、説明を進める。
 ステップS104において、高速移動状態を検知したUE100は、高速移動通知(第1の高速移動通知)をeNB200-1に送信する。高速移動通知は、D2DグループにおいてD2D通信に使用されている無線リソース(RB)を示す使用リソース情報を含む。高速移動通知は、UE100-1及びUE100-2のそれぞれに割り当てられているC-RNTIをさらに含む。高速移動通知は、計測された移動速度(V)を示す速度情報をさらに含んでもよい。速度情報は、例えばMCSの補正に利用される。MCSの補正については、第1実施形態の変更例2において後述する。
 ステップS105において、高速移動通知を受信したeNB200-1は、当該高速移動通知に含まれる使用リソース情報及び速度情報を取得し、取得した使用リソース情報が示す無線リソースを予約リソース(RB)として記憶する。
 ステップS106において、eNB200-1は、UE100-2から受信した高速移動通知をEPC20に転送する。
 ステップS107において、高速移動通知を受信したEPC20は、高速移動通知に含まれる各C-RNTIに基づいて、D2Dグループ(UE100-1及びUE100-2)に対してD2D無線ネットワーク一時識別子(D2D-RNTI)を割り当てる。D2D-RNTIは、サービングセル及び隣接セルを含む広いエリアにおいて共通に使用されるRNTIである。例えば、D2D-RNTIは、高速移動状態にあるD2Dグループを識別するためのものであって、トラッキングエリアごとに1つ割り当てられる場合と、D2Dグループごとに1つ割り当てられる場合と、D2Dグループに含まれるUE100ごとに1つ割り当てられる場合と、がある。EPC20は、D2D-RNTIの割り当てを管理する。具体的には、EPC20は、予め用意された複数のD2D-RNTIのうち未割り当てのD2D-RNTIの中から、D2Dグループに対して割り当てるD2D-RNTIを決定する。
 なお、EPC20は、D2Dグループに対してD2D-RNTIを割り当てた後、割り当てるD2D-RNTIを変更してもよい。この場合、EPC20は、eNB200を介して、変更後のD2D-RNTIを含むメッセージをD2Dグループに対して送信する。
 ステップS108において、EPC20は、D2Dグループに対して割り当てたD2D-RNTIを含む高速移動通知応答をeNB200-1に送信する。高速移動通知応答は、eNB200-1からの高速移動通知に含まれていた各C-RNTIをさらに含む。
 ステップS109において、高速移動通知応答を受信したeNB200-1は、高速移動通知(第2の高速移動通知)をeNB200-2及びeNB200-3に送信(報知)する。高速移動通知は、高速移動通知応答に含まれるD2D-RNTIと、当該D2DRNTIが示すD2Dグループについて記憶した予約リソース(RB)を示す予約リソース情報と、を含む。高速移動通知を受信したeNB200-2及びeNB200-3のそれぞれは、当該高速移動通知に含まれる予約リソース情報(予約リソース)を記憶する。さらに、eNB200-1は、D2Dグループに含まれるUE100とのRRC接続に関する設定情報(以下、「RRC設定情報」)を高速移動通知(第2の高速移動通知)に含めてもよい。この場合、高速移動通知を受信したeNB200-2及びeNB200-3のそれぞれは、当該高速移動通知に含まれるRRC設定情報をD2D-RNTIと対応付けて記憶する。
 ステップS110において、eNB200-1は、高速移動通知応答をD2Dグループ(UE100-1及びUE100-2)に送信する。高速移動通知応答は、当該D2Dグループに対して割り当てられたD2D-RNTIを含む。高速移動通知応答を受信したUE100-1及びUE100-2のそれぞれは、当該高速移動通知応答に含まれるD2D-RNTIを記憶する。UE100-1及びUE100-2のそれぞれは、D2D-RNTIを記憶した後、RRC接続状態からRRCアイドル状態に遷移する。
 ステップS111において、D2Dグループ(UE100-1及びUE100-2)は、予約リソース(RB)を使用してD2D通信を行う。具体的には、UE100-2は、予約リソース(RB)の中から、D2D通信に使用する無線リソースである割当無線リソースを決定するUE主導スケジューリングを行う。そして、UE100-2は、決定した割当無線リソースをUE100-1に通知し、当該割当無線リソースを使用してUE100-1及びUE100-2によりD2D通信を行う。
 (第1実施形態のまとめ)
 上述したように、第1実施形態に係る通信制御方法は、複数のUE100(UE100-1及びUE100-2)からなるD2Dグループ内で行われるD2D通信を制御するための方法である。高速移動状態にあるD2Dグループが検知された場合に、ネットワークは、D2Dグループが在圏するサービングセル及びサービングセルに隣接する隣接セルにおいて、D2DグループがD2D通信に使用する予定の無線リソースである対象無線リソース(予約リソース)を予約する。D2Dグループに含まれるUE100は、予約リソースの中から、D2D通信に使用する無線リソースである割当無線リソースを決定するUE主導スケジューリングを行う。
 このように、第1実施形態では、高速移動状態にあるD2Dグループについて、広いエリアで予約リソースを設定し、予約リソースの範囲内でUE主導スケジューリングを行う。ここで「広いエリア」とは、少なくともサービングセル及び隣接セルを含むエリアであって、例えばトラッキングエリアである。
 よって、D2Dグループが高速移動状態にある場合(例えば、電車又はバス内でD2D通信を行う場合)であっても、D2Dグループの移動に伴って、D2Dスケジューリングを行うeNB200を次々と切り替えていく必要がない。従って、煩雑な通信制御を必要とせずにD2D通信を可能とすることができる。
 第1実施形態では、高速移動状態にないD2Dグループに対して無線リソースを割り当てる場合に、D2Dグループのサービングセルを管理するeNB200がD2Dスケジューリング(eNB主導スケジューリング)を行う。よって、高速移動状態にないD2Dグループについては、セルラ通信と同様にeNB200がスケジューリングを行うことにより、D2D通信に対する割当無線リソースをきめ細かに制御できる。
 第1実施形態では、予約リソースは、D2Dグループに含まれないUE100に対する割り当てが禁止される。よって、D2Dグループに含まれるUE100とD2Dグループに含まれないUE100との間で干渉が生じることを防止できる。
 第1実施形態では、UE100が高速移動状態を検知したことに応じて、UE100からサービングセルに対して高速移動通知(第1の高速移動通知)を送信する。よって、ネットワークは、D2Dグループが高速移動状態にあることを把握できる。
 第1実施形態では、高速移動通知(第1の高速移動通知)は、D2DグループにおいてD2D通信に使用されている無線リソースを示す使用リソース情報を含む。よって、ネットワークは、D2D通信に使用されている無線リソースを予約リソースとして設定することにより、D2Dグループにおいて当該無線リソースの使用を継続可能になる。
 第1実施形態では、eNB200は、高速移動通知(第1の高速移動通知)の受信に応じて、隣接eNB200に対して高速移動通知(第2の高速移動通知)を送信する。第2の高速移動通知は、予約リソースを示す予約リソース情報を含む。よって、隣接eNB200においても予約リソースを設定可能になる。
 第1実施形態では、EPC20は、高速移動状態にあるD2Dグループに対して、サービングセル及び隣接セルを含むトラッキングエリアにおいて共通に使用されるD2D-RNTIを割り当てる。よって、高速移動状態にあるD2Dグループをトラッキングエリア内で識別できる。
 第1実施形態では、EPC20は、未割り当てのD2D-RNTIの中からD2Dグループに対して割り当てるD2D-RNTIを決定し、決定したD2D-RNTIをD2Dグループに対して通知する。よって、高速移動状態にあるD2Dグループを一意に識別できる。
 [第1実施形態の変更例1]
 上述した第1実施形態では、高速移動状態にないD2Dグループに対してeNB主導スケジューリングを適用していた。しかしながら、高速移動状態にないD2Dグループに対してUE主導スケジューリングを適用してもよい。
 第1実施形態の変更例1では、高速移動状態にないD2Dグループに対して無線リソースを割り当てる場合に、ネットワーク(eNB200)が、隣接セルにおいて予約リソースを設定せずに、サービングセルにおいて予約リソースを設定する。そして、D2Dグループに含まれるUE100は、予約リソースの中から割当無線リソースを決定するUE主導スケジューリングを行う。
 このように、第1実施形態の変更例1では、高速移動状態にないD2Dグループについては、リソース予約を行う範囲をサービングセルに限定した上で、UE主導スケジューリングを適用する。よって、D2Dスケジューリングに伴うネットワークの負荷を削減できる。
 [第1実施形態の変更例2]
 上述した第1実施形態では、予約リソースは、D2Dグループに含まれないUE100に対する割り当てが禁止されていた。しかしながら、無線リソースの利用効率を高めるために、予約リソースは、D2Dグループに含まれないUE100に対する割り当てが許容されていてもよい。
 第1実施形態の変更例2では、予約リソースは、D2Dグループに含まれないUE100に対する割り当てが許容されている。D2Dグループに含まれないUE100に対して予約リソースを割り当てる場合に、ネットワーク(eNB200)は、D2Dグループの移動速度に基づいて、D2Dグループに含まれないUE100に対して適用する変調・符号化方式(MCS)を補正する。
 図12は、第1実施形態の変更例2に係るMCS補正方法を説明するための図である。第1実施形態で説明したように、各eNB200は、高速移動通知に含まれる速度情報を共有している。速度情報は、D2Dグループ(i)の移動速度(V)を示す情報である。
 図12に示すように、eNB200は、D2Dグループ(i)に対応する予約リソースをD2Dグループ(i)に含まれないUE100に対して割り当てる場合に、D2Dグループ(i)の移動速度(V)に基づいて、当該UE100に対して適用するMCSを補正する。本変更例では、D2Dグループ(i)の移動速度(V)が低い程、D2Dグループ(i)からの干渉の影響が大きいとみなして、誤り耐性を向上するようにMCSを補正する。すなわち、本来適用すべき候補MCSよりも誤り耐性の高いMCS(低速なMCS)に補正する。さらに、D2Dグループ(i)の移動速度(V)が低い場合で、本来適用すべき候補MCSの補正が不能である場合には、予約リソースを割当て禁止とする。
 図12の例では、D2Dグループ(i)の移動速度(V)が“Vth1>V≧Vth0”の場合であって、D2Dグループ(i)に含まれないUE100の候補MCSが“mi2<MCS”の場合、“補正MCS=候補MCS-2”とする。その他の場合、割当禁止とする。
 また、D2Dグループ(i)の移動速度(V)が“Vth2>V≧Vth1”の場合であって、D2Dグループ(i)に含まれないUE100の候補MCSが“mi1<MCS”の場合、“補正MCS=候補MCS-1”とする。その他の場合、割当禁止とする。
 さらに、D2Dグループ(i)の移動速度(V)が“V>Vth2”の場合、“補正MCS=候補MCS”とする。
 このように、D2Dグループに含まれないUE100に予約リソースを割り当てる場合に、ネットワーク(eNB200)は、D2Dグループの移動速度に基づいて、D2Dグループに含まれないUE100に対して適用するMCSを補正する。よって、無線リソースの利用効率を高めつつ、D2Dグループからの干渉の影響を抑圧できる。
 [第1実施形態の変更例3]
 第1実施形態の変更例3では、第1実施形態の変更例2と同様に、予約リソースは、D2Dグループに含まれないUE100に対する割り当てが許容されている。
 また、D2Dグループに含まれないUE100に対して予約リソースを割り当てる場合に、ネットワーク(eNB200)は、送信電力レベルが低く設定されているUE100に対して、予約リソースを優先的に割り当てる。ここで送信電力レベルとは、例えばセルラ通信における送信電力レベルである。また、送信電力レベルが低く設定されているUE100とは、例えばeNB200の近傍に存在するUE100である。そのようなUE100は、良好な無線通信を行うことが可能であり、干渉耐性が高い。
 よって、送信電力レベルが低く設定されているUE100に対して予約リソースを優先的に割り当てることにより、無線リソースの利用効率を高めつつ、D2Dグループからの干渉の影響を抑圧できる。
 さらに、第1実施形態の変更例3を、第1実施形態の変更例2と併用することにより、D2Dグループからの干渉の影響をより一層抑圧できる。
 [第1実施形態の変更例4]
 上述した第1実施形態では、ネットワーク(eNB200)は、D2Dグループで使用している無線リソースを示す使用リソース情報に基づいて、D2Dグループで使用している無線リソースを予約リソースとして設定していた。しかしながら、D2Dグループで使用している無線リソースに基づくことなく予約リソースを設定してもよい。
 図13は、第1実施形態の変更例4に係る動作を示すシーケンス図である。ここでは、上述した第1実施形態に係る動作シーケンスとの相違点を説明する。
 図13に示すように、ステップS101乃至S103は、上述した第1実施形態と同様である。
 ステップS104’において、高速移動状態を検知したUE100は、高速移動通知(第1の高速移動通知)をeNB200-1に送信する。本変更例では、高速移動通知は、使用リソース情報を含まない。
 ステップS105’において、高速移動通知を受信したeNB200-1は、当該高速移動通知に含まれる速度情報を取得する。
 ステップS106’において、eNB200-1は、UE100-2から受信した高速移動通知をEPC20(コアネットワーク)に転送する。
 ステップS107’において、高速移動通知を受信したEPC20は、高速移動通知に含まれる各C-RNTIに基づいて、D2Dグループ(UE100-1及びUE100-2)に対してD2D-RNTIを割り当てる。本変更例では、EPC20において予約リソースが管理されており、EPC20が予約リソース(RB)を設定する。
 ステップS108’において、EPC20は、D2Dグループに対して割り当てたD2D-RNTI及び予約リソース(RB)を含む高速移動通知応答をeNB200-1に送信する。高速移動通知応答を受信したeNB200-1は、当該高速移動通知応答に含まれる予約リソース(RB)を記憶する。
 ステップS109において、高速移動通知応答を受信したeNB200-1は、高速移動通知(第2の高速移動通知)をeNB200-2及びeNB200-3に送信する。高速移動通知は、高速移動通知応答に含まれるD2D-RNTIと、当該D2D-RNTIが示すD2Dグループについて記憶した予約リソースを示す予約リソース情報と、を含む。高速移動通知を受信したeNB200-2及びeNB200-3のそれぞれは、当該高速移動通知に含まれる予約リソース情報(予約リソース)を記憶する。
 ステップS110’において、eNB200-1は、高速移動通知応答をD2Dグループ(UE100-1及びUE100-2)に送信する。本変更例では、高速移動通知応答は、当該D2Dグループに対して割り当てられたD2D-RNTIだけでなく、ネットワーク側で設定した予約リソース(RB)を示す予約リソース情報を含む。
 ステップS111において、D2Dグループ(UE100-1及びUE100-2)は、予約リソース情報が示す予約リソース(RB)を使用してD2D通信を行う。
 このように、第1実施形態の変更例4では、予約リソース(RB)をネットワーク主導で設定する。特に、EPC20で予約リソース(RB)を管理・設定することにより、トラッキングエリアなどの広いエリアについて、予約リソース(RB)を重複なく設定できる。
 [第1実施形態の変更例5]
 上述した第1実施形態では、移動可能な中継局(以下、「モバイルリレー」という)の存在を考慮していなかった。モバイルリレーは、eNB200とUE100との間で中継伝送を行うノードであって、電車又はバスなどに設置される。
 しかしながら、D2Dグループのサービングセルを管理しているモバイルリレーが当該D2Dグループと共に移動する場合には、D2Dグループが高速移動状態であってもサービングセルは変更されないため、上述した第1実施形態に係る動作を適用困難である。
 第1実施形態の変更例5では、モバイルリレーがD2Dグループのサービングセルを管理しており、かつD2Dグループと共にモバイルリレーが移動する場合に、モバイルリレーは、D2Dグループに含まれるUE100から受信した高速移動通知(第1の高速移動通知)を破棄する。モバイルリレーがUE100からの高速移動通知を破棄することにより、高速移動通知がeNB200に伝送されなくなり、意図しない動作を防止できる。
 但し、D2Dグループがモバイルリレーの配下ではなくなった場合には、上述した第1実施形態に係る動作を適用可能にすることが望まれる。
 そこで、第1実施形態の変更例5では、モバイルリレーがサービングセルを管理しており、かつD2Dグループと共にモバイルリレーが移動する場合に、D2Dグループに含まれるUE100は、サービングセルが変更された際に、変更後のサービングセルに対して高速移動通知(第1の高速移動通知)を送信する。よって、上述した第1実施形態に係る動作を適用可能とすることができる。
 [第2実施形態]
 第2実施形態について、第1実施形態との相違点を主として説明する。第2実施形態は、システム構成については第1実施形態と同様である。
 (第2実施形態に係る通信制御方法)
 第2実施形態では、高速移動状態にあるD2Dグループがサービングセル及び/又はトラッキングエリアを変更する際の動作を主として説明する。
 図14は、D2Dグループがサービングセルを変更する際の動作を示すシーケンス図である。ここでは、D2DグループがeNB200-4のセルからeNB200-2のセルへサービングセルを変更すると仮定している。
 図14に示すように、高速移動状態にあるD2Dグループ(UE100-1及びUE100-2)は、予約リソースの範囲内でUE主導スケジューリングを行いながらD2D通信を行う(ステップS201)。また、高速移動状態にあるD2Dグループ(UE100-1及びUE100-2)は、D2D-RNTIが割り当てられたことに応じてRRCアイドル状態に遷移している。
 D2D-RNTIが割り当てられたD2Dグループ(UE100-1及びUE100-2)が移動に伴ってサービングセルを変更する場合に、UE100-1及びUE100-2のそれぞれは、ハンドオーバ手続を省略する。UE100-1及びUE100-2のそれぞれは、ハンドオーバ手続を省略する代わりに、セル再選択を行なってもよい。そして、D2Dグループ(UE100-1及びUE100-2)は、サービングセルが変更されても、予約リソースの範囲内でUE主導スケジューリングを行いながらD2D通信を継続する(ステップS202)。
 一方、非高速移動状態にあるD2Dグループについては、eNB200-4がeNB主導スケジューリングを行っており、割当無線リソースをeNB200-4からD2Dグループ(UE100-1及びUE100-2)に通知する(ステップS211)。そして、当該割当無線リソースを使用してUE100-1及びUE100-2によりD2D通信を行う(ステップS212)。非高速移動状態にあるD2Dグループは、D2D-RNTIが割り当てられておらず、RRC接続状態である。
 D2D-RNTIが割り当てられていないD2Dグループ(UE100-1及びUE100-2)が移動に伴ってサービングセルを変更する場合に、UE100-1及びUE100-2のそれぞれは、ハンドオーバ手続を行う(ステップS213)。UE100-1及びUE100-2のそれぞれは、ハンドオーバ手続において新たなC-RNTIが割り当てられる。
 ハンドオーバ後において、eNB200-2がeNB主導スケジューリングを行い、割当無線リソースをeNB200-2からD2Dグループ(UE100-1及びUE100-2)に通知する(ステップS214)。そして、当該割当無線リソースを使用してUE100-1及びUE100-2によりD2D通信を行う(ステップS215)。
 図15は、高速移動状態にあるD2Dグループがトラッキングエリアを変更する際の動作を示すフロー図である。ここでは、高速移動状態にあるD2Dグループに含まれるUE100-2の動作を例に説明するが、当該D2Dグループに含まれるUE100-1もUE100-2と同様の動作を行う。
 図15に示すように、UE100-2は、ネットワークから受信する無線信号に基づいて、サービングセルのセルIDが検知されたか否かを判定する。サービングセルのセルIDが検知されない場合(ステップS41:No)、すなわち、サービスエリア外(すなわち、圏外)である場合、ステップS44において、UE100-2は、D2D通信を終了する。UE100-2は、D2D通信を終了しても、D2D-RNTIを保持し続ける。そして、UE100-2は、D2D通信の終了から一定時間の経過後にD2D-RNTIを解放する。
 一方、サービングセルのセルIDが検知された場合(ステップS41:Yes)、ステップS42において、UE100-2は、当該セルIDに基づいて、サービングセルの属するトラッキングエリアが変更されているか否かを判定する。
 サービングセルの属するトラッキングエリアが変更されている場合(ステップS42:Yes)、ステップS43において、UE100-2は、トラッキングエリア更新(TAU)を行う。具体的には、UE100-2は、サービングセルを介してEPC20(MME)に対してTAUメッセージを送信する。EPC20は、TAUメッセージの受信に応じて、D2Dグループに割り当てるD2D-RNTIを更新する。
 UE100-2は、トラッキングエリアの変更を検知してから、新たなD2D-RNTIが割り当てられるまでは、D2D通信を一時中断(但し、物理層の接続は維持)する。そして、UE100-2は、新たなD2D-RNTIが割り当てられると、D2D通信を再開する。
 図16は、第3実施形態に係る動作を示すシーケンス図である。先ず、D2DグループがeNB200-4のセルからeNB200-2のセルへサービングセルを変更する場合の動作を説明する。eNB200-1のセル及びeNB200-2のセルはトラッキングエリア1に属しており、eNB200-3のセル及びeNB200-4のセルはトラッキングエリア2に属している。
 図16に示すように、ステップS221において、高速移動状態にあるD2Dグループ(UE100-1及びUE100-2)は、予約リソースの範囲内でUE主導スケジューリングを行いながらD2D通信を行う。また、高速移動状態にあるD2Dグループ(UE100-1及びUE100-2)は、D2D-RNTIが割り当てられたことに応じてRRCアイドル状態に遷移している。
 ここで、D2Dグループ(UE100-1及びUE100-2)は、セルIDに基づいてサービングセルの変更を検知する。また、D2Dグループ(UE100-1及びUE100-2)は、新たなサービングセルが属するトラッキングエリアが、変更前のサービングセルが属するトラッキングエリアとは異なることを検知する。
 ステップS222において、D2Dグループ(UE100-1及びUE100-2)は、eNB200-2のセルとのRRC接続を確立するために、eNB200-2に対してランダムアクセス手続(RACHシーケンス)を行う。
 ステップS223において、eNB200-2のセルとのRRC接続を確立したD2Dグループ(UE100-1及びUE100-2)は、トラッキングエリア更新(TAU)を行う。具体的には、D2Dグループ(UE100-1及びUE100-2)は、eNB200-2を介してEPC20(MME)に対してTAUメッセージを送信する。
 ステップS224において、D2Dグループ(UE100-1及びUE100-2)及びネットワークは、第1実施形態で説明した動作により、新たなトラッキングエリアに含まれる各セルおいて予約リソースを設定し、かつ新たなトラッキングエリアで共通に使用されるD2D-RNTIを設定(更新)する。ここで、EPC20は、TAUメッセージの受信に応じて、D2Dグループに割り当てるD2D-RNTIを更新する。
 ステップS225において、EPC20は、変更前のトラッキングエリアに属するeNB200-3及びeNB200-4に対して、D2D-RNTIの解放を要求する。
 ステップS226において、eNB200-3及びeNB200-4のそれぞれは、EPC20からのD2D-RNTI解放要求に応じて、D2D-RNTIを解放する。また、eNB200-3及びeNB200-4のそれぞれは、D2D-RNTIを解放するとともに、D2Dグループ(UE100-1及びUE100-2)に対応するリソース予約を解放する。
 なお、トラッキングエリアの変更が生じない場合には、ステップS222乃至S226の処理は行われない。
 ステップS227において、D2Dグループ(UE100-1及びUE100-2)は、D2D通信を行う。
 次に、セルIDが検知されない場合、すなわち、高速移動状態にあるD2Dグループがサービスエリア外(圏外)に移動した場合の動作を説明する。
 ステップS231において、D2Dグループ(UE100-1及びUE100-2)は、セルIDが検知されない場合に、D2D通信を終了し、D2D通信の終了から一定時間の経過後にD2D-RNTIを解放する。
 ステップS232において、EPC20は、D2Dグループ(UE100-1及びUE100-2)がサービスエリア外に移動したことを検知し、D2Dグループ(UE100-1及びUE100-2)に割り当てていたD2D-RNTIを解放する。D2Dグループがサービスエリア外に移動したことをネットワークにおいて把握するための方法としては、第1の方法乃至第3の方法がある。第1の方法は、周期的にネットワークからD2Dグループに対してページングを行い、D2Dグループからのページング応答(alive ack)の有無を確認する方法である。第2の方法は、ページングなしでD2Dグループからネットワークに対して周期的にalive ackを送信し、alive ackの有無を確認する方法である。第3の方法は、D2Dグループが周期的にネットワークとの再同期手順を行い、再同期手順の有無を確認する方法である。なお、第1の方法乃至第3の方法の何れにおいてもD2D-RNTIによりD2Dグループを識別可能である。
 ステップS233において、EPC20は、eNB200-3及びeNB200-4に対して、D2D-RNTIの解放を要求する。
 ステップS234において、eNB200-3及びeNB200-4のそれぞれは、EPC20からのD2D-RNTI解放要求に応じて、D2D-RNTIを解放する。また、eNB200-3及びeNB200-4のそれぞれは、D2D-RNTIを解放するとともに、D2Dグループ(UE100-1及びUE100-2)に対応するリソース予約を解放する。
 (第2実施形態のまとめ)
 上述したように、第2実施形態では、D2D-RNTIが割り当てられたD2Dグループが移動に伴ってサービングセルを変更する場合に、ハンドオーバ手続を省略する。高速移動状態にあるD2Dグループ(UE100-1及びUE100-2)は、トラッキングエリアで共通のD2D-RNTIにより管理されているため、ハンドオーバ手続を省略可能である。
 第2実施形態では、D2D-RNTIが割り当てられたD2Dグループは、サービスエリア外に移動した場合に、D2D通信を終了する。よって、ネットワークにより管理不能なD2D通信が行われることを防止できる。
 第2実施形態では、D2D-RNTIが割り当てられたD2Dグループは、サービスエリア外に移動してD2D通信を終了した場合に、D2D通信の終了から一定時間の経過後にD2D-RNTIを解放する。換言すると、D2D-RNTIが割り当てられたD2Dグループは、D2D通信を終了しても一定時間が経過するまではD2D-RNTIを保持する。よって、当該一定時間内に再びサービスエリア内に移動した場合には、D2D通信を再開できる。
 第2実施形態では、D2D-RNTIが割り当てられたD2Dグループは、移動に伴って、在圏するトラッキングエリアを変更する場合に、UE100からネットワークに対してTAUメッセージを送信する。TAUメッセージを受信したネットワークは、新たなD2D-RNTIをD2Dグループに割り当てる。よって、トラッキングエリア単位でD2Dグループを管理できる。なお、リソース予約もトラッキングエリア単位で行われており、TAUが発生した際に新たなトラッキングエリア内の各セルにおいてリソース予約が改めて行われる。
 [第2実施形態の変更例]
 上述したように、D2D-RNTIは、高速移動状態にあるD2Dグループを識別するためのものであって、トラッキングエリアごとに1つ割り当てられる場合と、D2Dグループごとに1つ割り当てられる場合と、D2Dグループに含まれるUE100ごとに1つ割り当てられる場合と、がある。
 ここで、D2D-RNTIにおいて、トラッキングエリアで1つの共通部分を設け、残りの部分でD2Dグループに含まれる各UE100を識別できれば、ネットワークは、1つのD2D-RNTIで、高速移動状態にあるD2Dグループであることを識別できるとともに、当該D2Dグループに含まれるUE100を識別できる。
 そこで、第2実施形態の変更例では、D2D-RNTIは、トラッキングエリア内で1つ割り当てられる本体部分(共通部分)と、D2Dグループに含まれるUE100ごとに異なる拡張部分(下位拡張番号)と、を含む。このようにD2D-RNTIを拡張することにより、拡張部分(下位拡張番号)を使用してUE100を識別できる。
 [第3実施形態]
 第3実施形態について、第1実施形態との相違点を主として説明する。第3実施形態は、システム構成については第1実施形態と同様である。
 (第3実施形態に係る通信制御方法)
 第3実施形態では、高速移動状態にあるD2Dグループが非高速移動状態に遷移する際の動作を主として説明する。
 図17は、第3実施形態に係る動作パターン1を示すシーケンス図である。ここでは、D2DグループがeNB200-1のセルに在圏すると仮定している。eNB200-1のセル及びeNB200-2のセルは同一のトラッキングエリアに属する。
 図17に示すように、ステップS301において、高速移動状態にあるD2Dグループ(UE100-1及びUE100-2)は、予約リソースの範囲内でUE主導スケジューリングを行いながらD2D通信を行う。
 ここで、D2Dグループ(UE100-1及びUE100-2)は、高速移動状態でなくなったことを検知する。具体的には、D2Dグループの移動速度(V)が閾値(Vth)未満になったことを検知する。
 ステップS302において、D2Dグループ(UE100-1及びUE100-2)は、eNB200-1のセルとのRRC接続を確立するために、eNB200-1に対してランダムアクセス手続(RACHシーケンス)を行う。動作パターン1では、当該ランダムアクセス手続においては、UE100-1及びUE100-2のそれぞれにC-RNTIは割り当てられない。
 ステップS303において、UE100-2は、非高速移動状態に遷移したことを示す高速移動解除通知をサービングセル(eNB200-1)に送信する。高速移動解除通知は、D2Dグループ(UE100-1及びUE100-2)に割り当てられているD2D-RNTIを含む。
 ステップS304において、高速移動解除通知を受信したeNB200-1は、当該高速移動解除通知をEPC20に転送する。
 ステップS305において、高速移動解除通知を受信したEPC20は、D2Dグループ(UE100-1及びUE100-2)に割り当てられているD2D-RNTIを解放する。
 ステップS306において、EPC20は、D2D-RNTIの解放要求をeNB200-1及びeNB200-2に送信する。当該解放要求は、解放対象のD2D-RNTIを含む。
 ステップS307において、D2D-RNTIの解放要求を受信したeNB200-1及びeNB200-2のそれぞれは、D2Dグループ(UE100-1及びUE100-2)に割り当てられているD2D-RNTIを解放する。
 ステップS308において、eNB200-1は、UE100-1及びUE100-2のそれぞれに割り当てるC-RNTIを決定する。C-RNTIは、UE100-1及びUE100-2のそれぞれで異なる。
 ステップS309において、eNB200-1は、高速移動解除通知応答をUE100-2に送信する。当該高速移動解除通知応答は、D2Dグループ(UE100-1及びUE100-2)に割り当てられていたD2D-RNTIと、UE100-2に割り当てるC-RNTI(C-RNTI1)と、D2Dグループに含まれる各UE100に割り当てるC-RNTI(C-RNTI群)と、を含む。
 ステップS310において、eNB200-1は、高速移動解除通知応答をUE100-1に送信する。当該高速移動解除通知応答は、D2Dグループ(UE100-1及びUE100-2)に割り当てられていたD2D-RNTIと、UE100-1に割り当てるC-RNTI(C-RNTI2)と、D2Dグループに含まれる各UE100に割り当てるC-RNTI(C-RNTI群)と、を含む。
 UE100-1及びUE100-2のそれぞれはRRC接続状態に遷移し、UE主導スケジューリングからeNB主導スケジューリングに切り替わる。
 ステップS311において、eNB200-1は、D2Dグループ(UE100-1及びUE100-2)への割当無線リソースを決定し、割当無線リソースをD2Dグループ(UE100-1及びUE100-2)に通知する。
 ステップS312において、D2Dグループ(UE100-1及びUE100-2)は、通知された割当無線リソースを使用してD2D通信を行う。
 図18は、第3実施形態に係る動作パターン2を示すシーケンス図である。動作パターン2では、第2実施形態の変更例で説明したように、D2D-RNTIに拡張番号(EX-ID)が設定されている点で動作パターン1とは異なる。
 図18に示すように、ステップS321において、高速移動状態にあるD2Dグループ(UE100-1及びUE100-2)は、予約リソースの範囲内でUE主導スケジューリングを行いながらD2D通信を行う。
 ここで、D2Dグループ(UE100-1及びUE100-2)は、高速移動状態でなくなったことを検知する。具体的には、D2Dグループの移動速度(V)が閾値(Vth)未満になったことを検知する。
 ステップS322において、D2Dグループ(UE100-1及びUE100-2)は、eNB200-1のセルとのRRC接続を確立するために、eNB200-1に対してランダムアクセス手続(RACHシーケンス)を行う。動作パターン2では、当該ランダムアクセス手続において、UE100-1及びUE100-2のそれぞれにC-RNTIが割り当てられる。
 UE100-1及びUE100-2のそれぞれはRRC接続状態に遷移し、UE主導スケジューリングからeNB主導スケジューリングに切り替わる。
 ステップS323において、UE100-2は、非高速移動状態に遷移したことを示す高速移動解除通知をサービングセル(eNB200-1)に送信する。動作パターン2では、高速移動解除通知は、D2Dグループ(UE100-1及びUE100-2)に割り当てられているD2D-RNTIだけでなく、UE100-2に割り当てられたC-RNTI(C-RNTI1)と、UE100-2に割り当てられている拡張番号(EXP-ID1)と、を含む。
 また、UE100-1は、非高速移動状態に遷移したことを示す高速移動解除通知をサービングセル(eNB200-1)に送信する。高速移動解除通知は、D2Dグループ(UE100-1及びUE100-2)に割り当てられているD2D-RNTIだけでなく、UE100-1に割り当てられたC-RNTI(C-RNTI2)と、UE100-2に割り当てられている拡張番号(EXP-ID2)と、を含む。
 ステップS324において、eNB200-1は、UE100-2から受信した高速移動解除通知に含まれるD2D-RNTI及び拡張番号(EXP-ID1)を取得し、当該D2D-RNTI及び拡張番号(EXP-ID1)を含む高速移動解除通知をEPC20に送信する。
 また、eNB200-1は、UE100-1から受信した高速移動解除通知に含まれるD2D-RNTI及び拡張番号(EXP-ID2)を取得し、当該D2D-RNTI及び拡張番号(EXP-ID2)を含む高速移動解除通知をEPC20に送信する。
 ステップS325において、高速移動解除通知を受信したEPC20は、UE100-2に割り当てられている拡張番号(EXP-ID1)及びUE100-1に割り当てられている拡張番号(EXP-ID2)を解放する。
 ステップS326において、EPC20は、D2D-RNTIの解放要求をeNB200-1及びeNB200-2に送信する。当該解放要求は、解放対象のD2D-RNTI及び拡張番号(EXP-ID)を含む。
 ステップS327において、D2D-RNTIの解放要求を受信したeNB200-1及びeNB200-2のそれぞれは、D2Dグループ(UE100-1及びUE100-2)に割り当てられているD2D-RNTIと、UE100-2に割り当てられている拡張番号(EXP-ID1)と、UE100-1に割り当てられている拡張番号(EXPID2)と、を解放する。
 ステップS328において、eNB200-1は、D2Dグループ(UE100-1及びUE100-2)への割当無線リソースを決定し、割当無線リソースをD2Dグループ(UE100-1及びUE100-2)に通知する。
 ステップS329において、D2Dグループ(UE100-1及びUE100-2)は、通知された割当無線リソースを使用してD2D通信を行う。
 なお、一つの予約リソースを複数のD2Dグループで共用可能な場合において、その内の一つのD2Dグループが解放され、かつ他に同一リソースを使用している他のD2Dグループが存在する場合、そのリソースは、予約から削除されない。これに対し、他に同一リソースを使用しているD2Dグループが存在しない場合、そのリソースは、予約から削除される。
 (第3実施形態のまとめ)
 上述したように、D2Dグループが高速移動状態から非高速移動状態に遷移した場合に、D2Dグループのサービングセルを管理するeNB200は、D2Dグループに含まれる各UE100に対して、当該サービングセルにおいて制御のために使用されるC-RNTIを割り当てる。また、D2Dグループが高速移動状態から非高速移動状態に遷移した場合に、D2Dグループに含まれる各UE100及びネットワークは、D2D-RNTIを解放する。よって、D2Dグループが高速移動状態から非高速移動状態に遷移した場合には、UE主導スケジューリングからeNB主導スケジューリングに切り替えることができる。
 [第3実施形態の変更例]
 上述した第3実施形態では、D2Dグループが高速移動状態から非高速移動状態に遷移した場合に、C-RNTIの割り当てを行うとともに、D2D-RNTIを解放していた。しかしながら、D2Dグループが一時的に非高速移動状に遷移し、再び高速移動状態に遷移(復帰)する場合には、C-RNTIを割り当てずに、D2D-RNTIを維持することが望ましい。このような断続的な高速移動状態は、例えば電車が一時的に駅に停車する又はバスが一時的に停留所に停車するような状況下で生じ得る。
 そこで、第3実施形態の変更例では、D2Dグループが高速移動状態から非高速移動状態に遷移した場合であっても、D2Dグループが再び高速移動状態に遷移する可能性が高いと判断される場合には、C-RNTIを割り当てることなくD2D-RNTIを維持する。ここで、D2Dグループが再び高速移動状態に遷移する可能性が高いと判断される場合とは、例えば、高速移動通知/高速移動解除通知が一定時間内に一定回数発生するような場合である。このような場合、D2Dグループに含まれるUE100、及びネットワークは、断続モードを設定する。
 図19は、第3実施形態の変更例に係る高速移動解除時における動作を示すフロー図である。本フローは、D2Dグループに含まれるUE100、又はネットワークにより行われる。
 図19に示すように、ステップS51において、断続モードが設定されているか否かを判定する。
 断続モードが設定されていない場合(ステップS51:No)、ステップS52において、高速移動解除に応じてD2D-RNTIを解放する。そして、ステップS53において、タイマT1を起動する。タイマT1は、断続モードを設定すべきか否かを判定するためのタイマである。
 これに対し、断続モードが設定されている場合(ステップS51:Yes)、ステップS54において、タイマT2を起動し、D2D-RNTIを解放しない。タイマT2は、断続モードを維持すべき期間を規定するタイマである。
 図20は、第3実施形態の変更例に係る非高速移動状態から高速移動状態への遷移時における動作を示すフロー図である。本フローは、D2Dグループに含まれるUE100、又はネットワークにより行われる。
 図20に示すように、ステップS61において、断続モードが設定されているか否かを判定する。
 断続モードが設定されている場合(ステップS61:No)、ステップS62において、タイマT2を停止する。
 これに対し、断続モードが設定されていない場合(ステップS61:Yes)、ステップS63において、タイマT1が起動中であるか否かを判定する。
 タイマT1が起動中である場合(ステップS63:Yes)、ステップS64において、断続モードを設定し、タイマT1を停止する。
 なお、D2DグループにおいてD2D通信を終了する場合には、断続的モードを解除し、タイマT1及びT2を停止する。
 [第4実施形態]
 第4実施形態について、第1実施形態との相違点を主として説明する。第4実施形態は、システム構成については第1実施形態と同様である。
 (第4実施形態に係る通信制御方法)
 上述したように、高速移動状態にあるD2DグループはRRCアイドル状態であるため、通常、ランダムアクセス手続によりRRC接続を確立しなければ、ネットワークに対して情報を送信できない。しかしながら、状態通知などの少量のデータ送信を行うためだけにRRC接続を確立することは非効率である。そこで、第4実施形態では、高速移動状態にあるD2Dグループが効率的にネットワークに対して状態通知を行うための動作を主として説明する。
 図21は、第4実施形態に係る初期設定動作を示すシーケンス図である。ここでは、上述した第1実施形態に係る動作シーケンスとの相違点を説明する。
 図21に示すように、ステップS401乃至S403は、上述した第1実施形態と同様である。
 ステップS404において、高速移動状態を検知したUE100は、高速移動通知(第1の高速移動通知)をeNB200-1に送信する。高速移動通知は、移動速度(V)及びC-RNTIを含む。
 ステップS405において、高速移動通知を受信したeNB200-1は、当該高速移動通知に含まれる速度情報を取得する。
 ステップS406において、eNB200-1は、UE100-2から受信した高速移動通知をEPC20(コアネットワーク)に転送する。
 ステップS407において、高速移動通知を受信したEPC20は、高速移動通知に含まれる各C-RNTIに基づいて、D2Dグループ(UE100-1及びUE100-2)に対してD2D-RNTIを割り当てる。第4実施形態では、EPC20において予約リソースが管理されており、EPC20が予約リソース(RB)を設定する。さらに、EPC20において状態通知用の上りリンク無線リソースである状態通知用リソース(UL-GRANT)が管理されており、EPC20が状態通知用リソース(UL-GRANT)を設定する。
 ステップS408において、EPC20は、D2Dグループに対して割り当てたD2D-RNTI、予約リソース(RB)、及び状態通知用リソース(UL-GRANT)を含む高速移動通知応答をeNB200-1に送信する。高速移動通知応答を受信したeNB200-1は、当該高速移動通知応答に含まれる予約リソース(RB)及び状態通知用リソース(UL-GRANT)を記憶する。
 ステップS409において、高速移動通知応答を受信したeNB200-1は、高速移動通知(第2の高速移動通知)をeNB200-2及びeNB200-3に送信する。高速移動通知は、D2D-RNTIと、移動速度(V)情報と、予約リソース(RB)を示す予約リソース情報と、状態通知用リソース(UL-GRANT)を示す状態通知用リソース情報と、を含む。高速移動通知を受信したeNB200-2及びeNB200-3のそれぞれは、当該高速移動通知に含まれる予約リソース(RB)及び状態通知用リソース(UL-GRANT)を記憶する。
 ステップS410において、eNB200-1は、高速移動通知応答をD2Dグループ(UE100-1及びUE100-2)に送信する。第4実施形態では、高速移動通知応答は、当該D2Dグループに対して割り当てられたD2D-RNTIだけでなく、ネットワーク側で設定した予約リソース(RB)を示す予約リソース情報と、ネットワーク側で設定した状態通知用リソース(UL-GRANT)を示す状態通知用リソース情報と、を含む。UE100-1及びUE100-2のそれぞれは、高速移動通知応答に含まれる情報を記憶する。
 ステップS411において、D2Dグループ(UE100-1及びUE100-2)は、予約リソース情報が示す予約リソース(RB)を使用してD2D通信を行う。
 図22は、第4実施形態に係る状態通知動作を示すシーケンス図である。ここでは、第2実施形態の変更例で説明したように、D2D-RNTIに拡張番号(EX-ID)が設定されるケースを想定する。
 図22に示すように、ステップS421において、D2Dグループ(UE100-1及びUE100-2)は、予約リソース(RB)を使用してD2D通信を行う。
 UE100-2は、ネットワークに対して状態通知を行うべきイベントが発生したことを検知する。
 ステップS422において、UE100-2は、サービングセル(eNB200-1)との同期を確立する。ここで、セルサーチによりサービングセルとの下りリンクの同期を確立し、ランダムアクセス手続により上りリンクの同期を確立する。ランダムアクセス手続は、UE100からeNB200-1に対してランダムアクセスプリアンブルを送信する処理と、eNB200-1からUE100に対してランダムアクセス応答を送信する処理と、からなる。eNB200-1は、ランダムアクセスプリアンブルに基づき上りリンクの遅延を測定し、上りリンクの遅延を保証するためのタイミング補正値をランダムアクセス応答に含めて送信する。但し、ランダムアクセス手続を行うものの、RRC接続を確立する手続は行わない。
 ステップS423において、UE100-2は、状態通知用リソース(UL-GRANT)を使用して、状態通知メッセージをサービングセル(eNB200-1)に送信する。状態通知メッセージは、D2Dグループに割り当てられているD2D-RNTIと、UE100-2に割り当てられている拡張番号(EX-ID1)と、通知すべき状態を示す通知情報と、を含む。通知情報は、例えば、位置情報、D2Dグループ内UE情報(UE数)、alive ack、又はUEの識別情報などである。なお、状態通知メッセージの送信に適用されるMCSは予め規定されており、UE100-2は、予め規定されたMCSを適用して状態通知メッセージを送信する。
 状態通知メッセージを受信したeNB200-1は、当該状態通知メッセージをEPC20に転送する。ここで、eNB200-1は、状態通知メッセージに含まれるD2DRNTIに基づいて、当該D2D-RNTIに対応するRRC設定情報を取得し、当該RRC設定情報を使用して状態通知メッセージを処理する。
 (第4実施形態のまとめ)
 上述したように、ネットワークは、D2Dグループに含まれるUE100からの高速移動通知(第1の高速移動通知)の受信に応じて、サービングセル及び隣接セルにおいて、D2Dグループからネットワークへの状態通知に使用される状態通知リソース(UL-GRANT)を予約する。ネットワークは、予約した状態通知リソース(UL-GRANT)を示す状態通知リソース情報をD2Dグループに対して送信する。そして、D2Dグループに含まれるUE100は、状態通知リソース(UL-GRANT)を使用して、D2D-RNTIと共に状態通知情報をネットワークに送信する。よって、高速移動状態にあるD2Dグループに含まれるUE100は、同期を改めて確立すればよく、RRC接続を確立しなくても状態通知情報をネットワークに送信できる。
 [その他の実施形態]
 上述した各実施形態では、D2Dグループの移動速度(V)は、D2Dグループに含まれるUE100により計測されていた。しかしながら、移動速度(V)は、ネットワーク側で計測されてもよい。例えば、UE100の位置情報を管理するサーバ装置が存在する場合に、サーバ装置が管理する位置情報に基づいて移動速度(V)を計測する。或いは、MME300が管理する在圏セル情報から単位時間当たりのハンドオーバ回数を算出し、単位時間当たりのハンドオーバ回数から移動速度(V)を推定してもよい。或いは、D2Dグループに含まれるUE100からeNB200が受信する受信信号のフェージング速度から移動速度(V)を推定してもよい。そして、ネットワークは、D2Dグループの移動速度(V)を閾値(Vth)と比較することにより高速移動状態を検知する。
 上述した各実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。LTEシステム以外のシステムでは、上述した各実施形態においてeNB200(基地局)が行っていた動作を、基地局以外のネットワーク装置(例えば、基地局制御装置)が行なってもよい。
 日本国特許出願第2013-175715号(2013年8月27日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明は、移動通信分野において有用である。

Claims (24)

  1.  移動通信システムにおいて、複数のユーザ端末からなる端末グループ内で行われる直接的な端末間通信であるD2D通信を制御するための通信制御方法であって、
     高速移動状態にある前記端末グループが検知された場合に、ネットワークが、前記端末グループが在圏するサービングセル及び前記サービングセルに隣接する隣接セルにおいて、前記端末グループが前記D2D通信に使用する予定の無線リソースである対象無線リソースを予約するステップと、
     前記端末グループに含まれる第1のユーザ端末が、前記予約された対象無線リソースの中から、前記D2D通信に使用する無線リソースである割当無線リソースを決定する端末主導スケジューリングを行うステップと、
    を有することを特徴とする通信制御方法。
  2.  前記高速移動状態にない前記端末グループに対して無線リソースを割り当てる場合に、前記ネットワークにおいて前記サービングセルを管理する第1の基地局が前記割当無線リソースを決定する基地局主導スケジューリングを行うステップをさらに有することを特徴とする請求項1に記載の通信制御方法。
  3.  前記高速移動状態にない前記端末グループに対して無線リソースを割り当てる場合に、前記ネットワークが、前記隣接セルにおいて前記対象無線リソースを予約せずに、前記サービングセルにおいて前記対象無線リソースを予約するステップをさらに有することを特徴とする請求項1に記載の通信制御方法。
  4.  前記対象無線リソースは、前記端末グループに含まれない第2のユーザ端末に対する割り当てが禁止されることを特徴とする請求項1に記載の通信制御方法。
  5.  前記対象無線リソースは、前記端末グループに含まれない第2のユーザ端末に対する割り当てが許容されており、
     前記通信制御方法は、前記対象無線リソースを前記第2のユーザ端末に割り当てる場合に、前記ネットワークが、前記端末グループの移動速度に基づいて、前記第2のユーザ端末に対して適用する変調・符号化方式を補正するステップをさらに有することを特徴とする請求項1に記載の通信制御方法。
  6.  前記対象無線リソースは、前記端末グループに含まれない第2のユーザ端末に対する割り当てが許容されており、
     前記通信制御方法は、前記ネットワークが、送信電力レベルが低く設定されている前記第2のユーザ端末に対して前記対象無線リソースを優先的に割り当てるステップをさらに有することを特徴とする請求項1に記載の通信制御方法。
  7.  前記第1のユーザ端末が前記高速移動状態を検知したことに応じて、前記第1のユーザ端末から前記サービングセルに対して第1の高速移動通知を送信するステップをさらに有することを特徴とする請求項1に記載の通信制御方法。
  8.  前記第1の高速移動通知は、前記端末グループにおいて前記D2D通信に使用されている無線リソースを示す使用リソース情報を含むことを特徴とする請求項7に記載の通信制御方法。
  9.  前記第1の高速移動通知を受信した前記ネットワークが、前記対象無線リソースを示す予約リソース情報を前記第1のユーザ端末に対して送信するステップをさらに有することを特徴とする請求項7に記載の通信制御方法。
  10.  前記サービングセルを管理する第1の基地局が、前記第1の高速移動通知の受信に応じて、前記隣接セルを管理する第2の基地局に対して第2の高速移動通知を送信するステップをさらに有し、
     前記第2の高速移動通知は、前記対象無線リソースを示す予約リソース情報を含むことを特徴とする請求項7に記載の通信制御方法。
  11.  移動可能な中継局が前記サービングセルを管理しており、かつ前記端末グループと共に前記中継局が移動する場合に、前記中継局が、前記第1のユーザ端末から受信した前記第1の高速移動通知を破棄するステップをさらに有することを特徴とする請求項7に記載の通信制御方法。
  12.  移動可能な中継局が前記サービングセルを管理しており、かつ前記端末グループと共に前記中継局が移動する場合に、前記第1のユーザ端末が、前記サービングセルが変更された際に、変更後のサービングセルに対して前記第1の高速移動通知を送信するステップをさらに有することを特徴とする請求項7に記載の通信制御方法。
  13.  前記ネットワークが、前記第1の高速移動通知の受信に応じて、前記高速移動状態にある前記端末グループに対して、前記サービングセル及び前記隣接セルを含むエリアにおいて共通に使用されるD2D無線ネットワーク一時識別子(D2D-RNTI)を割り当てるステップをさらに有することを特徴とする請求項7に記載の通信制御方法。
  14.  前記D2D-RNTIは、前記所定エリア内で1つ割り当てられる本体部分と、前記端末グループに含まれるユーザ端末ごとに異なる拡張部分と、を含むことを特徴とする請求項13に記載の通信制御方法。
  15.  前記ネットワークにおいて複数の基地局を収容するコアネットワークが、前記D2DRNTIの割り当てを管理するステップをさらに有することを特徴とする請求項13に記載の通信制御方法。
  16.  前記コアネットワークが、未割り当てのD2D-RNTIの中から前記端末グループに対して割り当てる前記D2D-RNTIを決定するステップと、
     前記決定したD2D-RNTIを、前記コアネットワークから前記端末グループに対して通知するステップと、をさらに有することを特徴とする請求項15に記載の通信制御方法。
  17.  前記D2D-RNTIが割り当てられた前記端末グループが移動に伴って前記サービングセルを変更する場合に、ハンドオーバ手続を省略するステップをさらに有することを特徴とする請求項13に記載の通信制御方法。
  18.  前記D2D-RNTIが割り当てられた前記端末グループが前記移動通信システムのサービスエリア外に移動した場合に、前記D2D通信を終了するステップをさらに有することを特徴とする請求項13に記載の通信制御方法。
  19.  前記D2D-RNTIが割り当てられた前記端末グループが前記D2D通信を終了した場合に、前記D2D通信の終了から一定時間の経過後に前記D2D-RNTIを解放するステップをさらに有することを特徴とする請求項18に記載の通信制御方法。
  20.  前記D2D-RNTIが割り当てられた前記端末グループが、移動に伴って、在圏するトラッキングエリアを変更する場合に、前記第1のユーザ端末から前記ネットワークに対してトラッキングエリア更新メッセージを送信するステップと、
     前記トラッキングエリア更新メッセージを受信した前記ネットワークが、新たなD2D-RNTIを前記端末グループに割り当てるステップと、
    をさらに有することを特徴とする請求項13に記載の通信制御方法。
  21.  前記端末グループが前記高速移動状態から非高速移動状態に遷移した場合に、前記ネットワークにおいて前記サービングセルを管理する第1の基地局が、前記第1のユーザ端末に対して、前記サービングセルにおいて使用されるセル無線ネットワーク一時識別子(C-RNTI)を割り当てるステップと、
     前記端末グループが前記高速移動状態から前記非高速移動状態に遷移した場合に、前記D2D-RNTIを解放するステップと、
    をさらに有することを特徴とする請求項13に記載の通信制御方法。
  22.  前記端末グループが前記高速移動状態から前記非高速移動状態に遷移した場合であっても、前記端末グループが再び前記高速移動状態に遷移する可能性が高いと判断される場合には、前記C-RNTIを割り当てることなく前記D2D-RNTIを維持するステップをさらに有することを特徴とする請求項21に記載の通信制御方法。
  23.  前記ネットワークが、前記第1の高速移動通知の受信に応じて、前記サービングセル及び前記隣接セルにおいて、前記端末グループから前記ネットワークへの状態通知に使用される上りリンク無線リソースである状態通知リソースを予約するステップと、
     前記予約した状態通知リソースを示す状態通知リソース情報を前記ネットワークから前記端末グループに対して送信するステップと、
     前記第1のユーザ端末が、前記状態通知リソース情報により示される前記状態通知リソースを使用して、前記D2D-RNTIと共に状態通知情報を前記ネットワークに送信するステップと、
    をさらに有することを特徴とする請求項13に記載の通信制御方法。
  24.  複数のユーザ端末からなる端末グループ内で行われる直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、前記端末グループに含まれるユーザ端末であって、
     前記端末グループが高速移動状態にあることが検知された場合に、前記端末グループが在圏するサービングセル及び前記サービングセルに隣接する隣接セルにおいて予約された対象無線リソースの中から、前記D2D通信に使用する無線リソースである割当無線リソースを決定する端末主導スケジューリングを行う制御部を備えることを特徴とするユーザ端末。
PCT/JP2014/072178 2013-08-27 2014-08-25 通信制御方法及びユーザ端末 WO2015029953A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/914,377 US9538501B2 (en) 2013-08-27 2014-08-25 Communication control method and user terminal
JP2015534204A JP6154015B2 (ja) 2013-08-27 2014-08-25 通信制御方法及びユーザ端末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013175715 2013-08-27
JP2013-175715 2013-08-27

Publications (1)

Publication Number Publication Date
WO2015029953A1 true WO2015029953A1 (ja) 2015-03-05

Family

ID=52586510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072178 WO2015029953A1 (ja) 2013-08-27 2014-08-25 通信制御方法及びユーザ端末

Country Status (3)

Country Link
US (1) US9538501B2 (ja)
JP (3) JP6154015B2 (ja)
WO (1) WO2015029953A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076954A1 (en) * 2015-11-05 2017-05-11 Sony Corporation Terminal device, base station, system and methods
WO2017195538A1 (ja) * 2016-05-12 2017-11-16 株式会社Nttドコモ ユーザ装置及び信号送信方法
CN108029022A (zh) * 2015-09-25 2018-05-11 索尼公司 无线电信

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9538501B2 (en) * 2013-08-27 2017-01-03 Kyocera Corporation Communication control method and user terminal
EP3042524B1 (en) * 2013-09-06 2018-12-26 Telefonaktiebolaget LM Ericsson (publ) Cluster-based resource allocation for vehicle-to-vehicle communication
CN105407532B (zh) * 2014-09-12 2020-03-24 电信科学技术研究院 一种d2d通信方法及装置
CN106211026B (zh) * 2014-12-22 2019-05-24 中兴通讯股份有限公司 一种实现设备直通中继选择的方法、网络控制节点及用户设备
US10644848B2 (en) * 2015-08-13 2020-05-05 Electronics And Telecommunications Research Institute Operation method of communication node supporting direct communication in network
US10321353B2 (en) * 2015-09-23 2019-06-11 Electronics And Telecommunications Research Institute Operation methods of communication node supporting direct communications in network
CN108401246A (zh) 2017-02-08 2018-08-14 财团法人工业技术研究院 移动装置群组的连线管理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022309A (ja) * 2006-07-13 2008-01-31 Fujitsu Ltd 移動通信システム
JP2010263641A (ja) * 2007-06-18 2010-11-18 Mitsubishi Electric Corp 無線通信システムおよび基地局
JP2013529032A (ja) * 2010-05-12 2013-07-11 クアルコム,インコーポレイテッド 分散型のネゴシエーションを通じたピアツーピアグループのためのリソースの調整

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172098B2 (ja) * 1999-02-25 2008-10-29 松下電工株式会社 セルラー式通信システム
JP2008017318A (ja) * 2006-07-07 2008-01-24 Fujitsu Ltd 移動局装置、無線基地局装置及び無線通信システム
EP2550832B1 (en) * 2010-03-23 2017-07-19 Nokia Solutions and Networks Oy Resource allocation for direct terminal-to-terminal communication in a cellular system
US9271320B2 (en) * 2011-06-21 2016-02-23 Lg Electronics Inc. Method for performing communication between devices in a wireless access system, and device for same
US20140204847A1 (en) * 2013-01-18 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Network-assisted d2d communication using d2d capability information
US9538501B2 (en) * 2013-08-27 2017-01-03 Kyocera Corporation Communication control method and user terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022309A (ja) * 2006-07-13 2008-01-31 Fujitsu Ltd 移動通信システム
JP2010263641A (ja) * 2007-06-18 2010-11-18 Mitsubishi Electric Corp 無線通信システムおよび基地局
JP2013529032A (ja) * 2010-05-12 2013-07-11 クアルコム,インコーポレイテッド 分散型のネゴシエーションを通じたピアツーピアグループのためのリソースの調整

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108029022A (zh) * 2015-09-25 2018-05-11 索尼公司 无线电信
US10951353B2 (en) 2015-09-25 2021-03-16 Sony Corporation Wireless telecommunications
CN108029022B (zh) * 2015-09-25 2021-08-27 索尼公司 无线电信
WO2017076954A1 (en) * 2015-11-05 2017-05-11 Sony Corporation Terminal device, base station, system and methods
US10536947B2 (en) 2015-11-05 2020-01-14 Sony Corporation Terminal, device, base station, system and methods for speed estimation techniques
EP3809729A1 (en) * 2015-11-05 2021-04-21 Sony Corporation Infrastructure equipment apparatus and method
US11006426B2 (en) 2015-11-05 2021-05-11 Sony Corporation Terminal, device, base station, system and methods for speed estimation techniques
WO2017195538A1 (ja) * 2016-05-12 2017-11-16 株式会社Nttドコモ ユーザ装置及び信号送信方法

Also Published As

Publication number Publication date
JP2017175651A (ja) 2017-09-28
JP6154015B2 (ja) 2017-06-28
US9538501B2 (en) 2017-01-03
US20160205665A1 (en) 2016-07-14
JPWO2015029953A1 (ja) 2017-03-02
JP6549639B2 (ja) 2019-07-24
JP2019198099A (ja) 2019-11-14
JP6926150B2 (ja) 2021-08-25

Similar Documents

Publication Publication Date Title
JP6926150B2 (ja) 通信制御方法、ユーザ装置、プロセッサ、及び基地局
US9820111B2 (en) Communication control method and user terminal for selecting synchronization reference of device-to-device (D2D)
JP6310169B1 (ja) 基地局、ユーザ端末、プロセッサ、及び方法
JP6475887B2 (ja) 通信方法、無線端末、及びプロセッサ
JP6687452B2 (ja) 移動通信システム、ユーザ端末、プロセッサ、記憶媒体及びプログラム
JP6169442B2 (ja) 移動通信システム及びユーザ端末
JP2017103797A (ja) 制御方法、ユーザ端末、プロセッサ、及び基地局
JP6169167B2 (ja) 基地局、プロセッサ、及び移動通信システム
WO2014129465A1 (ja) 通信制御方法、ユーザ端末及び基地局
WO2014157398A1 (ja) 通信制御方法及びプロセッサ
US20150189487A1 (en) Communication control method, user terminal, processor, and storage medium
JPWO2018143416A1 (ja) 通信方法、無線端末、プロセッサ、及び基地局
JP6475745B2 (ja) 基地局及びユーザ端末
WO2015020034A1 (ja) 基地局及び通信制御方法
JP6106286B2 (ja) ユーザ端末及びプロセッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534204

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914377

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839770

Country of ref document: EP

Kind code of ref document: A1