WO2015029868A1 - ワイヤーグリッド装置 - Google Patents
ワイヤーグリッド装置 Download PDFInfo
- Publication number
- WO2015029868A1 WO2015029868A1 PCT/JP2014/071866 JP2014071866W WO2015029868A1 WO 2015029868 A1 WO2015029868 A1 WO 2015029868A1 JP 2014071866 W JP2014071866 W JP 2014071866W WO 2015029868 A1 WO2015029868 A1 WO 2015029868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire grid
- thz
- grid device
- film
- film substrate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3058—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/24—Polarising devices; Polarisation filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/006—Filter holders
Definitions
- the present invention relates to a wire grid device mainly used for polarization of terahertz electromagnetic waves or light detection.
- the terahertz electromagnetic wave is an electromagnetic wave having a frequency of 0.1 to 10 THz (wavelength of 30 ⁇ m to 3000 ⁇ m), and the wavelength is almost the same as the far infrared to millimeter wave region. Since terahertz electromagnetic waves exist in a frequency region between “light” and “millimeter wave”, they have the ability to distinguish at high spatial resolution as well as light and the ability to transmit substances similar to millimeter waves. Have both.
- the terahertz wave band has been an undeveloped electromagnetic wave so far, and its application to characterization of materials by time-domain spectroscopy, imaging and tomography utilizing the characteristics of electromagnetic waves in this frequency band has been studied. When terahertz electromagnetic waves are used, both material permeability and straightness can be achieved, enabling safe and innovative imaging instead of X-rays and ultra-high-speed wireless communication of several hundred Gbps.
- a wire grid mainly for polarization and analysis of terahertz electromagnetic waves Conventionally, it has been proposed to use a wire grid mainly for polarization and analysis of terahertz electromagnetic waves, and research is being carried out toward the realization of this wire grid.
- An example of a conventional self-supporting wire grid is formed by arranging metal thin wires having a diameter of about 5 ⁇ m to 50 ⁇ m in parallel at a set interval and attaching them to a metal frame with an adhesive.
- This self-supporting wire grid has a limit in applicable frequency, and a structure applicable to a terahertz electromagnetic wave polarizer of approximately 1.5 THz or more is considered to be difficult to realize because it has a fine structure. ing.
- FIG. 14 is a plan view showing the configuration of the wire grid metal plate 101.
- FIG. 15 is a partially enlarged plan view
- FIG. 16A is a plan view showing a part of FIG. 15 further enlarged
- FIG. 16B is a cross-sectional view taken along the line AA.
- the wire grid metal plate 101 is, for example, a nickel disk having a diameter of about 20 mm to 100 mm.
- a plurality of vertical beam portions 111 extending in the shape of a beam (thin line) in the vertical direction;
- the vertical crosspieces 111 and the horizontal crosspieces 112 have at least one horizontal crosspiece 112 that is substantially orthogonal to each vertical crosspiece 111, and both ends of the vertical crosspiece 111 and the horizontal crosspiece 112 are connected to a circular or rectangular flange 113.
- the width (wire width) and interval of the vertical crosspiece 111 are parameters that determine the performance of the wire grid metal plate 101 and are determined according to the frequency of light to be applied.
- the wire grid metal plate 101 can have a structure applicable to terahertz electromagnetic waves of 1.5 THz or more, and the width Wa of the vertical beam portion 111 can be 1.5 ⁇ m to 50 ⁇ m.
- the horizontal rail 112 is at least a predetermined width and wider than the vertical rail 111.
- the vertical beam portion 111 having a thin wire structure with a width Wa of 1.5 ⁇ m to 50 ⁇ m.
- the thickness of the wire grid metal plate 101 needs to be determined in consideration of physical strength in peeling off from the substrate or the like and deterioration of transmitted light characteristics, and the thickness is set to 10 ⁇ m.
- the width Wa of the vertical beam 111 is uniquely determined as a parameter for determining the performance of the wire grid metal plate 101.
- the width Wb and interval (number) of the horizontal beam 112 are mainly used for the wire grid metal. It is determined from the viewpoint of securing the strength of the plate 101.
- the width Wb of the horizontal rail portion 112 is formed wider than the width of the vertical rail portion 111.
- the width Wa of the vertical beam portion 111 is set to 1.5 ⁇ m to 50 ⁇ m, and the horizontal beam portion 112 is formed to be 15 ⁇ m or more wider than the vertical beam portion 111.
- FIG. 17 shows a wire grid in which the width Wa of the vertical beam portions 111 is 20 ⁇ m, the interval between the vertical beam portions 111 is 60 ⁇ m, the width Wb of the horizontal beam portions 112 is 20 ⁇ m, the interval between the horizontal beam portions 112 is 5 mm, and the thickness is 50 ⁇ m.
- the characteristic at the time of using the metal plate 101 for an object is shown. From the characteristic line ⁇ 2 of the transmissive arrangement and the characteristic line ⁇ 2 of the blocking arrangement shown in FIG. 17, it can be seen that it operates as a polarizer for terahertz light having a frequency of 0.1 to 1.5 THz.
- the transmission arrangement is provided, and the vertical direction in which the amplitude direction of the electric field of the terahertz light is the extending direction of the vertical beam portion 111
- the blocking arrangement is used.
- an object of the present invention is to provide a wire grid device that can easily realize an extinction ratio of about 10 ⁇ 6 class with one element with an intensity transmittance that could not be realized with a conventional wire grid device.
- the wire grid device of the present invention is configured by laminating a plurality of film substrates made of a rectangular film in which elongated rectangular metal thin plates are formed on one surface, In a state where a plurality of film substrates are laminated, the metal thin plates are arranged so as to overlap each other, and a wire that operates as a terahertz light polarizer by a parallel plate composed of the metal thin plates formed on each film substrate.
- the main feature is that the grid is constructed.
- the wire grid device of the present invention is a wire that operates as a terahertz light polarizer, which is formed by laminating a plurality of film substrates made of a rectangular film on which a long and thin rectangular metal thin plate is formed. Has a grid.
- the interval between the metal thin plates that are parallel plates constituting the wire grid is a parameter that determines the performance of the wire grid device, but this interval is uniquely determined by the thickness of the film substrate. That is, the wire grid device of the present invention can stably maintain the above-mentioned interval even when mass-produced, and can improve the yield of the wire grid device. Further, the performance of the wire grid device can be changed only by changing the thickness of the film substrate.
- the thickness a of the metal thin plate is about 1.0 mm, the length l of the metal thin plate is about 12.0 mm, and the thickness d of the film substrate is about 0.5 ⁇ m to about 50 ⁇ m, thereby transmitting the intensity in the terahertz wave band.
- An extinction ratio of about 10 ⁇ 6 class can be easily realized with one element.
- FIG. 10 is another partial cross-sectional view taken along line AA showing the configuration of a conventional metal plate for wire grid. It is a figure which shows the characteristic of the metal plate for conventional wire grids.
- a wire grid device 1 includes a conductive frame 1a having a rectangular parallelepiped shape having a predetermined depth as shown in FIGS. 1A and 1B, and a frame in the vertical direction of the frame 1a.
- a plurality of slits 1b formed so as to penetrate the body 1a.
- the frame 1a is made of metal or the like, and the depth of the frame 1a is a.
- the lengths of the plurality of slits 1b in the vertical direction are set to l (lower case el), and the slits 1b are arranged in parallel to each other.
- a grid 1c is formed by the region of the frame 1a between the slits 1b.
- the slit 1b has a width d
- the grid 1c has a width w.
- a large number of slits 1b are formed in the frame body 1a, so that a large number of grids 1c that are parallel plates are formed and function as a wire grid device.
- l is also the length of the grid 1c and is the dimension of the opening of the wire grid device 1.
- FIG. 2 An analysis model for analyzing the transmittance and extinction ratio of the wire grid device 1 of the first embodiment is shown in FIG.
- the terahertz light traveling in the z-axis direction and incident on the wire grid device 1 of the first embodiment is incident on the frame 1a formed with the slit 1b, and the grid 1c formed on the frame 1a having the depth a.
- the light is emitted after passing through.
- FIG. 2 is connected to the region of the periodic boundary wall 1e that is a virtual region in front of the frame 1a up to the incident and the periodic boundary wall 1e by the step structure # 1.
- the first step structure # 1 and the second step structure # 2 are connected to the scattering matrix S1 at a distance a, and a step of height w / 2 at which the periodic boundary wall 1e and the electrical wall 1d are connected.
- Analyze by mode matching method In the analysis by the mode matching method, it divides
- the incident wave is TM mode (Transverse Magnetic mode), and the incident wave H i y , reflected wave H r y , and transmitted wave H t y of the magnetic field H (vector) are You can.
- I m , I n , and I l represent basis functions, It can be expressed. Further, It is.
- a m , B n , and C l represent excitation functions.
- the electric field E (vector) is uniquely determined from the magnetic field H (vector), and a boundary condition between the electric field and the magnetic field is established on the opening surface.
- the boundary condition is multiplied by three kinds of basis functions I m , I n , and I l for weighting, and integrated on the boundary surface to derive a determinant.
- the scattering matrix of the first step structure # 1 can be derived by the excitation functions A m , B n , and C l , and connected to the scattering matrix of the second step structure # 2 by the distance (depth) a, so that The transmission and reflection characteristics when the TM mode terahertz light is incident on the entire structure of the wire grid device 1 shown in FIG. 1A are obtained.
- the extinction ratio can be obtained in consideration of the propagation constant of TE mode (Transverse ElectroMagnetic mode).
- the width 1d of the slit 1b is about 50 ⁇ m
- the depth a of the frame is about 2.0 mm
- the length 1 of the slit 1b is about 18 mm
- the dimensions shown in FIG. FIG. 2 shows an analysis when terahertz light having a frequency of 0.1 THz to 2.98 THz is incident on the wire grid device 1 of the first embodiment, with the width w of the laser beam being about 20 ⁇ m, about 30 ⁇ m, and about 50 ⁇ m. Analysis is performed using a model, and graphs of the analysis results are shown in FIGS. 3A, 3B, and 3C.
- the horizontal axis represents the frequency of 0.1 THz to 2.98 THz
- the vertical axis represents the transmission power [%] expressed as a percentage (hereinafter referred to as “transmitted power%”) or the intensity transmittance.
- the extinction ratio When the amplitude direction of the incident terahertz light electric field is orthogonal to the y-axis direction, which is the vertical direction of the grid 1c, the transmission arrangement is obtained.
- the transmitted power% is indicated by a solid line, and the amplitude direction of the terahertz light electric field is indicated by the grid 1c.
- the extinction ratio is indicated by a broken line.
- FIG. 3A is an analysis result when the width w of the grid 1c is about 20 ⁇ m.
- the transmission power% of the transmission arrangement vibrates up and down as the frequency increases from 0.1 THz to 2.98 THz.
- a good transmitted power% of about 85% or more is obtained.
- a good extinction ratio of 10 ⁇ 12 or less is obtained in the blocking arrangement at 0.1 THz to 2.98 THz.
- FIG. 3B shows an analysis result when the width w of the grid 1c is about 30 ⁇ m.
- the transmission characteristic of the transmission arrangement vibrates up and down as the frequency increases from 0.1 THz to 2.98 THz.
- good transmitted power% of about 70% or more is obtained.
- FIG. 3C shows an analysis result when the width w of the grid 1c is about 50 ⁇ m.
- the transmission power% of the transmission arrangement vibrates up and down as the frequency increases from 0.1 THz to 2.98 THz.
- good transmission power% of about 60% or more is obtained up to about 1.50 THz, and transmission power% gradually decreases after 1.5 THz, but transmission power% of 20% or more is obtained.
- a good extinction ratio of 10 ⁇ 12 or less is obtained in the blocking arrangement at 0.1 THz to 2.98 THz.
- the transmission power% is improved as the width w of the grid 1c is narrowed, and the width w of the grid 1c is preferably about 50 ⁇ m or less.
- FIG. 4A is a perspective view showing the configuration of the wire grid device 2 of the second embodiment of the present invention
- FIG. 4B is a perspective view showing the configuration of the film substrate 10 of the wire grid device 2 of the second embodiment of the present invention
- FIG. 4C is a chart showing an example of the dimensions of each part of the wire grid device 2 of the second embodiment of the present invention.
- the wire grid device 2 according to the second embodiment of the present invention is a film substrate made of a rectangular polymer film 11 in which an elongated rectangular thin metal plate 12 is formed at substantially the center of one surface as shown in FIGS. 4A and 4B. It is configured by laminating a plurality of 10a, 10b, 10c, 10d, 10e,.
- the polymer film 11 is, for example, a low-loss cycloolefin polymer film in the terahertz wave band and has a thickness d.
- the metal thin plate 12 is formed by vapor deposition or sticking on one surface of the polymer film 11 or etching a Cu metal thin film formed on the entire surface of the polymer film 11.
- the metal thin plate 12 has a length of l (lower case el), a width of a, and a thickness of t, and the metal thin plate 12 is disposed at the approximate center of the polymer film 11. In this case, the length from the long side of the polymer film 11 to the long side of the metal thin plate 12 is b on both sides.
- the thickness d of the polymer film 11 is the thickness d of the film substrate 10.
- the wire grid device 2 of the second embodiment is configured by laminating a plurality of film substrates 10a, 10b, 10c, 10d, 10e,... As shown in FIG. Each of 10a to 10e,... Has the same configuration as the film substrate 10 shown in FIG. 4B. Further, when the plurality of film substrates 10a to 10e,... Are laminated, the metal thin plates 12 formed on the film substrates 10a to 10e are arranged so as to overlap each other. In this case, the distance between adjacent thin metal plates 12 is d, which is the thickness of the polymer film 11. Thereby, the some thin metal plate 12 accumulated over the upper and lower sides comprises a parallel plate, and can comprise a wire grid.
- the interval between the thin metal plates 12 that are parallel plates is a parameter that determines the performance of the wire grid device 2, but this interval is uniquely determined by the thickness of the film substrate 10. That is, the wire grid device 2 of the second embodiment can stably maintain the interval at a constant value even when mass-produced, and can improve the yield of the wire grid device 2.
- the example of the dimension of each part of the wire grid apparatus 2 of 2nd Example is shown to FIG. 4C. As shown in the chart of FIG. 4C, the width a of the metal thin plate 12 is about 1.0 mm, the thickness t is about 0.5 ⁇ m, and the length l is about 12.0 mm.
- the length b from the long side of the polymer film 11 to the long side of the metal thin plate 12 is about 2.0 mm, and the thickness d of the polymer film 11 is about 50 ⁇ m.
- the number of film substrates 10 to be laminated is the number of times that the dimensions of the film substrate 10 laminated are the height of the opening required for the wire grid device 1.
- FIG. 1 An analysis model for analyzing the transmittance and extinction ratio of the wire grid device 2 of the second embodiment is shown in FIG.
- the terahertz light traveling in the z-axis direction incident on the wire grid device 2 of the second embodiment is first incident on the polymer film 11 and reaches the metal thin plate 12 after passing through the polymer film 11 for a length b.
- the metal thin plate 12 After passing through the polymer film 11 for a length b.
- FIG. 1 An analysis model for analyzing the transmittance and extinction ratio of the wire grid device 2 of the second embodiment is shown in FIG.
- Region C corresponds to a region composed of the metal thin plates 12 facing each other with a width a, a thickness t, and a distance d.
- the step height of the step in which the region B and the region C are connected is also t / 2.
- the scattering matrix S2 is connected, and the step of height t / 2 where the region A and the region B are connected is analyzed by the mode matching method.
- the scattering matrix s3 is connected, and the step of height t / 2 where the region B and the region C are connected is analyzed by the mode matching method.
- the scattering matrix S3 is connected. Since the analysis of the mode matching method is performed in the same manner as the analysis of the wire grid device 1 of the first embodiment, the description thereof is omitted.
- the width a, the length l and the thickness t of the thin metal plate 12 and the thickness d of the film substrate 10 are the dimensions shown in FIG.
- the second terahertz light having a frequency of 0.1 THz to 1.92 THz when the rate is 1.53 + j0.0064 and the length b is about 0 mm, about 1.0 mm, about 2.0 mm, and about 3.0 mm.
- the analysis at the time of making it inject into the wire grid apparatus 2 of an Example is analyzed with the analysis model shown in FIG. 5, The graph of the analysis result is shown in FIG. In FIG.
- the horizontal axis represents the frequency of 0.1 THz to 1.92 THz
- the vertical axis represents the transmission power% (Transmission Power [%]) or the extinction ratio represented by the intensity transmittance.
- the transmission arrangement is obtained, and the transmitted power% is indicated by a solid line.
- the amplitude direction of the electric field of light is parallel to the y-axis direction (TE mode) which is the longitudinal direction of the wire grid made of the thin metal plate 12, a blocking arrangement is obtained, and the extinction ratio is indicated by a broken line.
- the transmission power% in the transmission arrangement decreases with a slight vibration up and down as the frequency increases from 0.1 THz.
- the transmission power% is the best when the length b is 0 mm, and the transmission power% is about 94% to about 40% at 0.1 THz to 1.92 THz, and 0.1 THz when the length b is about 1.0 mm.
- a transmission power% of about 83% to about 10% is obtained at ⁇ 1.92 THz, and a transmission power% of about 78% to about 2% is obtained at 0.1 THz to 1.92 THz at about 2.0 mm.
- the extinction ratio of the blocking arrangement has a good extinction ratio of 10 ⁇ 12 or less at 0.1 THz to 1.92 THz, and the extinction ratio is substantially the same even when the length b is changed from 0 mm to 3.0 mm. .
- the width a and length l of the thin metal plate 12 and the thickness d and length b of the film substrate 10 are the dimensions shown in FIG.
- the rate is 1.53 + j0.0064 and the thickness t of the thin metal plate 12 is about 0.5 ⁇ m, about 10 ⁇ m, and about 50 ⁇ m
- terahertz light with a frequency of 0.1 THz to 1.92 THz is used in the second embodiment.
- the analysis at the time of entering the wire grid device 2 is analyzed by the analysis model shown in FIG. 5, and the graph of the analysis result is shown in FIG. In FIG.
- the horizontal axis represents the frequency of 0.1 THz to 1.92 THz
- the vertical axis represents the transmission power% (Transmission Power [%]) or the extinction ratio represented by the intensity transmittance.
- the transmission power% of the transmissive arrangement is indicated by a solid line
- the extinction ratio of the blocking arrangement is indicated by a broken line.
- the transmission power% in the transmission arrangement decreases with a slight vibration up and down as the frequency increases from 0.1 THz. At this time, when the thickness t is about 0.5 ⁇ m, a transmission power% of about 94% to about 42% is obtained at 0.1 THz to 1.92 THz, and when the thickness t is about 10 ⁇ m, 0.1 THz to 1.2.
- a transmission power% of about 94% to about 38% is obtained at 92 THz, and a transmission power% of about 94% to about 19% is obtained at 0.1 THz to 1.92 THz at about 50 ⁇ m.
- the transmitted power% deteriorates.
- a good extinction ratio with an intensity transmittance of 10 ⁇ 12 or less can be obtained when the extinction ratio of the blocking arrangement is 0.1 THz to 1.92 THz, even if the thickness t changes from 0.5 ⁇ m to 50 ⁇ m. It will be almost the same.
- the worst value of the transmitted power% is 1%, but the extinction ratio at that time is 10 ⁇ 12 or less, so for terahertz light with a frequency of 0.1 to 1.92 THz It can be seen that it operates as a polarizer having good characteristics that could not be obtained conventionally.
- FIGS. 8A to 12B are a front view and a plan view showing the configuration of the wire grid device 3 of the third embodiment
- FIG. 9 is an exploded view showing the configuration of the wire grid device 3 of the third embodiment
- 10A and 10B are perspective views showing configurations of a film substrate and a film substrate laminate in the wire grid device 3 of the third embodiment
- FIGS. 11A and 11B are views of a base in the wire grid device 3 of the third embodiment.
- FIG. 12A and FIG. 12B are a plan view and a front view showing a structure of a pressing plate in the wire grid device 3 of the third embodiment.
- the wire grid device 3 of the third embodiment includes a base 50, a film substrate laminate 30 in which a plurality of film substrates 20 are laminated, and a pressing plate 40.
- the base 50 shown in FIGS. 11A and 11B is made of a metal such as an aluminum alloy, and has a bottom 51 that is a rectangular horizontally long flat plate, and predetermined three corners on the upper surface of the bottom 51 except for one corner.
- the first upright column 52, the second upright column 53, and the third upright column 54 are provided.
- the cross section of the first upright column 52 to the third upright column 54 is a horizontally long rectangular shape, and an R portion is formed at the corner facing the center of the base 50 and is rounded.
- four screw holes 55 are formed in the bottom portion 51.
- 12A and 12B is made of a metal such as an aluminum alloy, and includes a flat plate portion 41 having a horizontally long flat plate shape, and includes three plates excluding one corner of the flat plate portion 41.
- a first notch 42, a second notch 43, and a third notch 44 having substantially the same cross-sectional shape as each of the first standing column 52 to the third standing column 54 are formed at the corners. .
- the flat plate portion 41 has four insertion holes 46 at the same positions as the screw holes 55 provided in the base 50. The four insertion holes 46 are countersunk.
- the film substrate 20 in the wire grid device 3 of the third embodiment includes a polymer film 21 whose outer shape is substantially the same as the pressing plate 40, and a horizontally elongated metal thin plate 22 provided on the polymer film 21. It is composed of The polymer film 21 has a horizontally long rectangular flat plate shape, the mounting portion 21b and the mounting portion 21c are formed on both sides, and the rectangular cutout portion 26 is formed between the mounting portion 21b and the mounting portion 21c.
- a horizontally elongated holding portion 21 a that holds 22 is formed on one side of the central portion.
- One corner of the mounting portion 21b and two corners of the mounting portion 21c corresponding to the positions of the first standing column 52 to the third standing column 54 are provided on the first standing column 52 to the third standing column 54, respectively.
- a first notch 23, a second notch 24, and a third notch 25 having the same shape as the cross-sectional shape are formed.
- a horizontally long rectangular metal plate 22 is formed by vapor deposition or sticking, or etching a Cu metal thin film formed on one surface of the polymer film 21.
- the length of the metal thin plate 22 is 1 (lower case L), the width is a, and the thickness is t. In this case, the length from the edge of the holding part 21a to the long side of the thin metal plate 22 is b on both sides.
- four holes 27 are formed in the mounting portion 21 b and the mounting portion 21 c at positions corresponding to the four screw holes 55 formed in the base 50.
- the thickness of the polymer film 21 is d.
- a film substrate laminate 30 is constructed by laminating a plurality of film substrates 20 having such a configuration while aligning them as shown in FIG. 10B.
- the film substrates 20a, 20b, 20c, 20d, 20e, and 20f shown in FIG. 10B have the same configuration as the film substrate 20 shown in FIG. 10A.
- the film substrate laminate 30 is composed of six film substrates 20a to 20f in FIG. 10B, but FIG. 10B is a diagram schematically showing that several tens or more film substrates 20 are actually laminated.
- a film substrate laminate 30 is configured.
- the thin metal plates 22 a to 22 f formed on the film substrates 20 a to 20 f are stacked at the same position, and the distance between the adjacent thin metal plates 22 is the thickness of the polymer film 21. It becomes a certain d.
- the some thin metal plate 22 accumulated over the upper and lower sides comprises a parallel plate, and a wire grid is comprised.
- the film substrate laminate 30 thus configured is placed on the base 50 and stored in the base 50 as shown in FIG.
- the first upright column 52 through the third upright column 54 of the base 50 are fitted into the first cutout portion 23 through the third cutout portion 25 of each film substrate 20 in the film substrate laminate 30.
- each film substrate 20 in the film substrate laminate 30 is aligned and stored with respect to the base 50.
- the four hole portions 27 of each film substrate 20 in the film substrate laminate 30 are aligned with the four screw holes 55 of the base 50.
- the pressing plate 40 is disposed on the base 50 and placed on the film substrate stack 30 stored in the base 50.
- the first upright column 52 through the third upright column 54 of the base 50 are fitted into the first cutout portion 42 through the third cutout portion 44 of the holding plate 40, respectively.
- the holding plate 40 is aligned.
- the four insertion holes 46 of the pressing plate 40 are aligned with the four hole portions 27 of each film substrate 20 and the four screw holes 55 of the base 50 in the film substrate laminate 30.
- the mounting screws 60 are respectively inserted into the four insertion holes 46 of the holding plate 40, and the four mounting screws 60 penetrating through the hole portions 27 of the film substrates 20 in the film substrate laminate 30 are respectively mounted on the base 50.
- the screw hole 55 is screwed.
- the film substrates 20 are brought into close contact with each other, and the wire grid device 3 of the third embodiment shown in FIGS. 8A and 8B is assembled.
- the wire grid device 3 of the third embodiment the holding portion 21a of the film substrate 20 on which the thin metal plate 22 is formed is pressed by the flat plate portion 41 of the pressing plate 40, and the interval between the thin metal plates 22 is stabilized. Will be held.
- FIG. 8A and 8B the wire grid device 3 of the third embodiment
- substrate laminated body 30 is arrange
- the interval between the thin metal plates 22 that are parallel flat plates is a parameter that determines the performance of the wire grid device 3, but this interval is uniquely determined by the thickness of the film substrate 20. That is, in the wire grid device 3 of the third embodiment, the film substrate laminate 30 including the metal thin plate 22 that is a parallel plate between the base 50 and the pressing plate 40 fixed by the four mounting screws 60. Since the gap between the thin metal plates 22 that are parallel plates is extremely stabilized, the gap can be stably maintained at a constant value even in mass production. The yield of 3 can be improved.
- the four mounting screws 60 are countersunk screws, and the heads can be accommodated in the four countersunk insertion holes 46 of the presser plate 40, and the mounting screws 60 are screwed in to form the base.
- the base 50, the film substrate laminate 30 and the pressing plate 40 are aligned and fixed.
- the transmittance and extinction ratio of the wire grid device 3 of the third embodiment can be analyzed using the analysis model shown in FIG.
- the width a of the metal thin plate 22 is about 1.0 mm
- the length l is about 30.0 mm
- the thickness t is about 0.5 ⁇ m
- the thickness d of the film substrate 20 is about
- FIG. 13A shows a graph of the analysis results analyzed using the analysis model shown in FIG. 5 and the experimental results in the case where 50 ⁇ m, the length b is about 0 mm, and the complex refractive index of the polymer film 21 is 1.53 + j0.0064. Show.
- FIG. 13A shows a graph of the analysis results analyzed using the analysis model shown in FIG. 5 and the experimental results in the case where 50 ⁇ m, the length b is about 0 mm, and the complex refractive index of the polymer film 21 is 1.53 + j0.0064. Show.
- FIG. 13A shows a graph of the analysis results analyzed using the analysis model shown in
- the horizontal axis represents the frequency of 0.1 THz to 1.92 THz
- the vertical axis represents the transmission power in TM mode (Transmission power of TM mode [%]), or the extinction ratio represented by the intensity transmittance ( Extinction Ratio).
- An analysis result indicated by a broken line in FIG. 13A is an analysis result in the case of a transmission arrangement in which the amplitude direction of the electric field of incident terahertz light is orthogonal to the y-axis direction that is the vertical direction of the wire grid made of the thin metal plate 22.
- the frequency decreases while slightly vibrating up and down as the frequency increases from 0.1 THz, and the transmission is about 94% to 40% at 0.1 THz to 1.92 THz.
- Electric power% is obtained.
- the incident terahertz light is TM mode and the amplitude direction of the electric field is orthogonal to the y-axis direction which is the vertical direction of the wire grid made of the thin metal plate 22 (transmission arrangement), Measurement results) is shown by the solid line in the upper part.
- the experimental result of the extinction ratio when the incident terahertz light is in the TE mode and the amplitude direction of the electric field is parallel to the y-axis direction which is the vertical direction of the wire grid made of the thin metal plate 22 (blocking arrangement) ( Measurement results) are shown as a solid line at the bottom.
- the extinction ratio is about 10 ⁇ 4 at a frequency of 0.1 THz, but the extinction ratio increases to about 10 ⁇ 7 or less when the frequency increases to about 0.75 THz. It can be seen that an extinction ratio of approximately 10 ⁇ 6 is obtained up to about 1.92 THz beyond the vicinity of .5 THz.
- the transmission power% of the transmission arrangement shown in FIG. 13A and the extinction ratio of the blocking arrangement for the terahertz light having a frequency of 0.1 to 1.92 THz ( (Intensity transmittance)
- the worst value of transmitted power% is 60% and a good value is obtained, and the extinction ratio at that time is 10 ⁇ 4 or less. Therefore, terahertz with a frequency of 0.1 to 1.92 THz It can be seen that it operates as a polarizer with good characteristics that could not be obtained with light.
- the width a of the metal thin plate 22 is about 1.0 mm
- the length l is about 12.0 mm
- the thickness t is about 0.5 ⁇ m
- the thickness d of the film substrate 20 Is a graph of an analysis result analyzed using the analysis model shown in FIG. 5 and an experimental result when the length is about 50 ⁇ m, the length b is about 2.0 mm, and the complex refractive index of the polymer film 21 is 1.53 + j0.0064 Is shown in FIG. 13B. Also in FIG.
- the horizontal axis represents the frequency of 0.1 THz to 1.92 THz
- the vertical axis represents the transmission power in TM mode (Transmission power of TM mode [%]), or the extinction ratio expressed by the intensity transmittance ( Extinction Ratio).
- An analysis result indicated by a broken line in FIG. 13B is an analysis result in the case of a transmission arrangement in which the amplitude direction of the electric field of the incident terahertz light is orthogonal to the y-axis direction that is the vertical direction of the wire grid made of the thin metal plate 22.
- the frequency decreases while slightly vibrating up and down as the frequency increases from 0.1 THz, and is about 78% to about 2% at 0.1 THz to 1.92 THz.
- the transmitted power% is obtained.
- the incident terahertz light is TM mode and the amplitude direction of the electric field is orthogonal to the y-axis direction which is the vertical direction of the wire grid made of the thin metal plate 22 (transmission arrangement)
- Measurement results are shown as solid lines with left arrows.
- the frequency decreases with a slight vibration as the frequency increases from 0.1 THz, and a transmission power% of about 80% to 2% is obtained at 0.1 THz to 1.92 THz.
- the experimental result of the extinction ratio when the incident terahertz light is in the TE mode and the amplitude direction of the electric field is parallel to the y-axis direction which is the vertical direction of the wire grid made of the thin metal plate 22 (blocking arrangement) ( Measurement results) are shown as a solid line with a right arrow.
- the extinction ratio is about 10 ⁇ 4 at a frequency of 0.1 THz, but the extinction ratio is improved to about 10 ⁇ 7 class when the frequency is increased to about 1.15 THz. It can be seen that an extinction ratio of about 10 ⁇ 5 to about 10 ⁇ 6 is obtained from near .15 THz to 1.92 THz.
- the transmission power% of the transmission arrangement shown in FIG. 13B and the extinction ratio of the blocking arrangement (with respect to terahertz light having a frequency of 0.1 to 1.92 THz ( (Intensity transmittance), the worst value of the transmitted power% is 2%, and the extinction ratio at that time is about 10 ⁇ 4, so that the terahertz light with a frequency of 0.1 to 1.92 THz is obtained. It can be seen that it operates as a polarizer having good characteristics that could not be obtained conventionally.
- the wire grid device according to the present invention described above good transmittance can be obtained in the terahertz wave band, and a high extinction ratio of about 10 ⁇ 6 class can be obtained.
- the number of film substrates laminated in the wire grid device of the second and third embodiments is such that the dimension obtained by laminating the film substrate is the number of openings required for the wire grid device. Is done.
- the width of the metal thin plate is about 1.0 mm
- the length of the metal thin plate is about 12.0 mm to about 30 mm
- the thickness of the film substrate The thickness d is preferably about 0.5 ⁇ m to about 50 ⁇ m.
- the interval between the thin metal plates that are parallel plates constituting the wire grid in the wire grid device of the second and third embodiments is a parameter that determines the performance of the wire grid device, but this interval is the thickness of the film substrate.
- the cycloolefin polymer film is used as the polymer film
- the present invention is not limited to this, and any film made of any material can be used as long as it has a small dielectric loss tangent in the terahertz wave band.
- it may replace with a film and may form a film-form substance on the surface of a metal thin plate.
- the metal thin plates may be opposed to each other at a predetermined interval by applying or sticking an insulating substance such as a resin having a predetermined thickness on the surface of the metal thin plate.
- the slit is formed in the vertical direction, but it is natural that the slit may be formed in the horizontal direction, and the slit is parallel to the side of the frame body. It suffices to form it in almost the entire region.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
従来の自立型ワイヤーグリッドの一例は、直径5μm~50μm程度の金属細線を、1本づつ設定された間隔で平行に並べ、金属枠に接着剤で貼り付けて作成されている。この自立型ワイヤーグリッドは、適用可能な周波数に限界があり、概ね1.5THz以上のテラヘルツ電磁波の偏光子に適用可能な構造のものは、微細な構造となることから実現することが困難とされている。
縦桟部111の幅(ワイヤー幅)や間隔は、ワイヤーグリッド用金属板101の性能を決定するパラメータであり、適用する光の周波数に応じて定まる。そして、ワイヤーグリッド用金属板101は、1.5THz以上のテラヘルツ電磁波にも適用可能な構造とすることができ、縦桟部111の幅Waは1.5μm~50μmとすることができる。
なお、縦桟部111の幅Waはワイヤーグリッド用金属板101の性能を決定するパラメータとして一義的に定まるが、横桟部112の幅Wbや間隔(個数)等は、主にワイヤーグリッド用金属板101の強度を確保する観点から定まる。このため、横桟部112の幅Wbは、縦桟部111の幅以上の幅広に形成されている。具体的には、縦桟部111の幅Waを1.5μm~50μmとし、横桟部112を15μm以上であって縦桟部111より幅広に形成する。
そこで、本発明は、従来のワイヤーグリッド装置では実現不可能であった強度透過率で約10-6クラスの消光比を1素子で簡易に実現できるワイヤーグリッド装置を提供することを目的としている。
本発明の第1実施例のワイヤーグリッド装置1は、図1A、図1Bに示すように所定の奥行きを有する直方体状とされた導電性の枠体1aと、枠体1aの縦方向に、枠体1aを貫通するよう多数形成されたスリット1bとから構成されている。枠体1aは金属製等の導電性とされ、枠体1aの奥行きはaとされる。多数のスリット1bの縦方向の長さはl(小文字のエル)とされ、スリット1bは互いに平行に配置されている。スリット1b間の枠体1aの領域によりグリッド1cが形成される。スリット1bの幅はd、グリッド1cの幅はwとされている。第1実施例のワイヤーグリッド装置1では、枠体1aに多数のスリット1bが形成されることにより、平行平板とされる多数のグリッド1cが形成されて、ワイヤーグリッド装置として機能するようになる。なお、lはグリッド1cの長さでもあって、ワイヤーグリッド装置1の開口の寸法ともされている。
第1実施例のワイヤーグリッド装置1に入射したz軸方向に進行するテラヘルツ光は、スリット1bが形成された枠体1aに入射し、奥行きaとされた枠体1aに形成されているグリッド1c間を通過して出射されるようになる。これをモデル化したのが図2に示す解析モデルであり、入射するまでの枠体1aの前の領域を仮想した周期境界壁1eの領域と、周期境界壁1eにステップ構造#1で連結された間隔dで対向すると共に奥行きaとされた電気壁1dの領域と、この領域にステップ構造#2で連結された枠体1aの後の領域を仮想した周期境界壁1eの領域とからなる。なお、電気壁1dは奥行きa、幅wとされたグリッド1cにより構成されることから、ステップ構造#1,#2のステップ高さはw/2とグリッド1cの幅wの1/2となる。
入射波はTMモード(Transverse Magnetic mode)であり、磁界H(ベクトル)の入射波Hi y、反射波Hr y、透過波Ht yは、
1つ目のステップ構造#1の散乱行列は励振関数Am、Bn、Clにより導出でき、2つ目のステップ構造#2の散乱行列と距離(奥行き)aで接続することにより、図1Aに示すワイヤーグリッド装置1の全体構造でのTMモードのテラヘルツ光を入射した際の透過、反射特性が求まる。また、消光比はTEモード(Transverse ElectroMagnetic mode)の伝搬定数を考慮して求めることができる。これは、テラヘルツ光の電場の振幅方向がグリッド1cの延伸方向である縦方向と直交する(TMモード)場合に透過配置となり、テラヘルツ光の電場の振幅方向がグリッド1cの延伸方向である縦方向(TEモード)の場合に阻止配置となるからである。
本発明の第2実施例のワイヤーグリッド装置2は、図4A、図4Bに示すように細長い矩形状の金属薄板12が一面のほぼ中央に形成されている矩形状のポリマーフィルム11からなるフィルム基板10a,10b,10c,10d,10e・・・・を複数枚積層することにより構成されている。ポリマーフィルム11は、例えばテラヘルツ波帯において低損失なシクロオレフィンポリマーフィルムとされ、厚さがdとされている。金属薄板12は、ポリマーフィルム11の一面に蒸着あるいは貼着したり、ポリマーフィルム11の全面に成膜したCuの金属薄膜をエッチングすることにより形成されている。金属薄板12の長さはl(小文字のエル)、幅はa、厚さはtとされ、ポリマーフィルム11のほぼ中央に金属薄板12が配置されている。この場合、ポリマーフィルム11の長辺から金属薄板12の長辺までの長さが両辺ともbとされている。なお、ポリマーフィルム11の厚さdはフィルム基板10の厚さdとなる。
ここで、第2実施例のワイヤーグリッド装置2の各部の寸法の例を図4Cに示す。図4Cに示す図表のように、金属薄板12の幅aは約1.0mmとされ、厚さtは約0.5μmとされ、長さlは約12.0mmとされる。また、ポリマーフィルム11の長辺から金属薄板12の長辺までの長さbは約2.0mmとされ、ポリマーフィルム11の厚さdは約50μmとされる。なお、フィルム基板10を積層する枚数は、フィルム基板10を積層していった寸法が、ワイヤーグリッド装置1に必要とされる開口の高さの寸法になる枚数とされる。
第2実施例のワイヤーグリッド装置2に入射したz軸方向に進行するテラヘルツ光は、まずポリマーフィルム11に入射し、ポリマーフィルム11を長さbだけ通過すると金属薄板12に達する。次いで、幅aとされた金属薄板12の間を通過すると再びポリマーフィルム11に達し、ポリマーフィルム11を長さbだけ通過すると出射されるようになる。これをモデル化したのが図5に示す解析モデルであり、ポリマーフィルム11の領域を仮想した長さbの周期境界壁15の領域Aと、周期境界壁15の領域Aにステップ状に連結された間隔dで対向すると共に幅(長さ)aとされた電気壁16aの領域Bと、この領域Bにステップ状に連結されたポリマーフィルム11の領域を仮想した長さbの周期境界壁17の領域Cとからなる。なお、領域Bは幅a、厚さt、間隔dで対向する金属薄板12からなる領域に相当することから、領域Aと領域Bとが接続されるステップのステップ高さは金属薄板12の厚さtの1/2であるt/2となると共に、領域Bと領域Cとが接続されるステップのステップ高さもt/2となる。
このように、第2実施例のワイヤーグリッド装置2において上記したパラメータ値とすると、周波数0.1~1.92THzのテラヘルツ光に対する図6,7に示す透過配置の透過電力%、阻止配置の消光比(強度透過率)において、透過電力%の最悪値が1%とされるが、その際の消光比は10-12以下となるから、周波数0.1~1.92THzのテラヘルツ光に対して従来得ることができなかった良好な特性の偏光子として動作することが分かる。
これらの図に示すように、第3実施例のワイヤーグリッド装置3は、基台50と、複数のフィルム基板20を積層したフィルム基板積層体30と、押さえ板40を備えている。図11A、図11Bに示す基台50はアルミニウム合金等の金属製とされており、矩形の横長の平板状とされた底部51と、底部51の上面において1つの隅を除く3つの隅から所定の高さで立設された第1立設柱52、第2立設柱53、第3立設柱54とを備えている。第1立設柱52~第3立設柱54の断面は、横長の矩形状とされており、基台50の中心に面している角にはR部が形成されて丸みを帯びている。また、底部51には4つのネジ孔55が形成されている。
フィルム基板積層体30を基台50に収納した後に、基台50上に押さえ板40を配置して基台50に収納したフィルム基板積層体30の上に載置する。この時、押さえ板40の第1切欠部42~第3切欠部44に、基台50の第1立設柱52~第3立設柱54がそれぞれ嵌合されて、基台50に対して押さえ板40が位置合わせされるようになる。また、押さえ板40の4つの挿通孔46が、フィルム基板積層体30における各フィルム基板20の4つの孔部27および基台50の4つのネジ孔55に位置合わせされる。
また、入射されたテラヘルツ光がTMモードであって、電場の振幅方向が金属薄板22からなるワイヤーグリッドの縦方向であるy軸方向と直交する場合(透過配置)の透過電力%の実験結果(Measurement results)が上段の実線で示されている。この実験結果を参照すると、周波数が0.1THzから高くなるに従い最大30%の幅で上下に振動しながら若干低下していくが、0.1THz~1.92THzにおいて約100%~60%の透過電力%が得られ、解析結果の透過電力%と近似しているがより良好な透過電力%が得られていることが分かる。
このように、第3実施例のワイヤーグリッド装置3において上記したパラメータ値とすると、周波数0.1~1.92THzのテラヘルツ光に対する図13Aに示す透過配置の透過電力%、阻止配置の消光比(強度透過率)において、透過電力%の最悪値が60%と良好な値が得られると共に、その際の消光比は10-4以下が得られることから、周波数0.1~1.92THzのテラヘルツ光に対して従来得ることができなかった良好な特性の偏光子として動作することが分かる。
また、入射されたテラヘルツ光がTMモードであって、電場の振幅方向が金属薄板22からなるワイヤーグリッドの縦方向であるy軸方向と直交する場合(透過配置)の透過電力%の実験結果(Measurement results)が左矢印で示す実線で示されている。この実験結果を参照すると、周波数が0.1THzから高くなるに従い若干振動しながら低下していき、0.1THz~1.92THzにおいて約80%~2%の透過電力%が得られ、解析結果の透過電力%と近似しているがより良好な透過電力%が得られていることが分かる。
このように、第3実施例のワイヤーグリッド装置3において上記したパラメータ値とすると、周波数0.1~1.92THzのテラヘルツ光に対する図13Bに示す透過配置の透過電力%、阻止配置の消光比(強度透過率)において、透過電力%の最悪値が2%とされるが、その際の消光比は10-4程度が得られることから、周波数0.1~1.92THzのテラヘルツ光に対して従来得ることができなかった良好な特性の偏光子として動作することが分かる。
この場合、第2,3実施例のワイヤーグリッド装置におけるワイヤーグリッドを構成する平行平板とされる金属薄板の間隔は、ワイヤーグリッド装置の性能を決定するパラメータであるが、この間隔はフィルム基板の厚さで一義的に決定される。すなわち、本発明の第2,3実施例のワイヤーグリッド装置では、大量生産した場合にも上記間隔を安定して一定の値に保つことができ、当該ワイヤーグリッド装置の歩留まりを向上することができる。また、フィルム基板の厚さを変更するだけで、適用される周波数帯を変更することができるようになる。さらに、ポリマーフィルムは、シクロオレフィンポリマーフィルムを用いるようにしたが、これに限ることはなくテラヘルツ波帯において誘電正接の小さいフィルムならばいずれの材料からなるフィルムでも用いることができる。また、フィルムに替えてフィルム状の物質を金属薄板の面に形成しても良い。例えば、金属薄板の面に所定の厚さになる樹脂等の絶縁性の物質を塗布あるいは貼着することにより、金属薄板を所定間隔で対向させるようにしても良い。
なお、第1実施例のワイヤーグリッド装置において、スリットを縦方向に形成したが、横方向に形成するようにしても良いことは当然のことであり、スリットは枠体の辺に平行に枠体のほぼ全領域に形成すればよい。
Claims (4)
- 細長い矩形状の金属薄板が一面に形成されている矩形状のフィルムからなるフィルム基板を複数枚積層することにより構成されており、
前記フィルム基板が複数枚積層された状態において、前記金属薄板が相互に重なるように配置され、各フィルム基板に形成された前記金属薄板により構成された平行平板により、テラヘルツ光の偏光子として動作するワイヤーグリッドが構成されていることを特徴とするワイヤーグリッド装置。 - テラヘルツ光の偏光子として動作する前記ワイヤーグリッドにおいて、前記金属薄板の短辺の幅aが1.0mm、前記フィルム基板の厚さdが0.5μm~50μmとされることを特徴とする請求項1記載のワイヤーグリッド装置。
- 平板状の底部と、該底部の上面から立設した複数本の立設柱とを有する基台と、
前記基台の前記立設柱の位置が切り欠かれた前記フィルム基板を複数枚積層したフィルム基板積層体と、
平板状の平板部と、該平板部において前記基台の前記立設柱の位置が切り欠かれている押さえ板とを備え、
前記フィルム基板積層体が前記複数本の立設柱により位置合わせされて前記基台に収納され、該フィルム基板積層体の上に前記押さえ板が載置され、該押さえ板に挿通されたネジが前記基台に螺着されていることを特徴とする請求項1または2記載のワイヤーグリッド装置。 - 所定の奥行きを有する直方体状とされた導電性の枠体と、該枠体の一辺に平行に前記枠体を貫通するよう多数形成されたスリットとから構成されるテラヘルツ光の偏光子として動作するワイヤーグリッド装置であって、
前記スリットが多数形成されることにより、前記スリット間に多数のグリッドが形成され、前記スリットの幅dが50μm、前記枠体の奥行きaが2.0mm、前記グリッドの幅wが50μm以下とされることを特徴とするワイヤーグリッド装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167006851A KR102169837B1 (ko) | 2013-08-30 | 2014-08-21 | 와이어 그리드 장치 |
EP14839656.7A EP3040748A4 (en) | 2013-08-30 | 2014-08-21 | WIRE GRID DEVICE |
CN201480047527.8A CN105492937B (zh) | 2013-08-30 | 2014-08-21 | 线栅装置 |
US14/914,912 US9964678B2 (en) | 2013-08-30 | 2014-08-21 | Wire grid device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-179151 | 2013-08-30 | ||
JP2013179151A JP5626740B1 (ja) | 2013-08-30 | 2013-08-30 | ワイヤーグリッド装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015029868A1 true WO2015029868A1 (ja) | 2015-03-05 |
Family
ID=52136327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/071866 WO2015029868A1 (ja) | 2013-08-30 | 2014-08-21 | ワイヤーグリッド装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9964678B2 (ja) |
EP (1) | EP3040748A4 (ja) |
JP (1) | JP5626740B1 (ja) |
KR (1) | KR102169837B1 (ja) |
CN (1) | CN105492937B (ja) |
WO (1) | WO2015029868A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6590194B2 (ja) * | 2014-08-25 | 2019-10-16 | 国立大学法人茨城大学 | ワイヤーグリッド装置 |
WO2018107142A1 (en) * | 2016-12-09 | 2018-06-14 | Brown University | Polarizing beam splitter for thz radiation |
CN109212651A (zh) * | 2018-09-21 | 2019-01-15 | 上海大学 | 一种基于Mylar的太赫兹波段的半波片 |
KR102313006B1 (ko) | 2019-12-16 | 2021-10-14 | 재단법인 한국탄소산업진흥원 | 테라헤르츠파 탄소섬유 편광자 및 이를 제조하는 장치 |
WO2023042737A1 (ja) * | 2021-09-16 | 2023-03-23 | 富士フイルム株式会社 | 積層体、積層体の製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009223010A (ja) * | 2008-03-17 | 2009-10-01 | Murata Mfg Co Ltd | ワイヤーグリッド用金属板、自立型ワイヤーグリッド及びワイヤーグリッド用金属板の製造方法 |
JP2011180568A (ja) * | 2010-02-05 | 2011-09-15 | Asahi Kasei E-Materials Corp | テラヘルツ帯光学素子用ワイヤグリッド偏光板及び電磁波処理装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2154362B1 (ja) | 1971-10-01 | 1976-03-26 | Thomson Csf | |
FR2450508A1 (fr) | 1979-03-02 | 1980-09-26 | Thomson Csf | Reflecteur a lames paralleles pour antennes microondes et procede de fabrication d'un tel reflecteur |
JP2003249198A (ja) * | 2002-02-22 | 2003-09-05 | Hitachi Maxell Ltd | 電 池 |
DE10355599B4 (de) * | 2003-11-28 | 2009-05-14 | Qimonda Ag | Verfahren zur Durchführung einer lithographischen Belichtung mithilfe polarisierter elektromagnetischer Strahlung in einer lithographischen Belichtungseinrichtung |
JP2006058615A (ja) * | 2004-08-20 | 2006-03-02 | Sumitomo Chemical Co Ltd | 金属細線が埋め込まれた偏光分離素子 |
WO2007138813A1 (ja) * | 2006-05-31 | 2007-12-06 | Murata Manufacturing Co., Ltd. | ワイヤーグリッド用金属板、ワイヤーグリッド、およびワイヤーグリッド用金属板の製造方法 |
US20110019189A1 (en) * | 2008-08-06 | 2011-01-27 | Research Foundation Of The City University Of New York | Sub-wavelength structures, devices and methods for light control in material composites |
US9030286B2 (en) * | 2009-04-08 | 2015-05-12 | New Jersey Institute Of Technology | Metamaterials with terahertz response and methods of making same |
KR20120080801A (ko) * | 2011-01-10 | 2012-07-18 | 동우 화인켐 주식회사 | 패턴화 리타더의 제조방법 |
US9308713B2 (en) * | 2011-10-07 | 2016-04-12 | Hughes Network Systems, Llc | Method and apparatus for assembly of a satellite antenna |
JP2013178303A (ja) * | 2012-02-28 | 2013-09-09 | Kobe Univ | テラヘルツ波用ワイヤーグリッド偏光子及びその作製方法 |
JP5933358B2 (ja) * | 2012-06-14 | 2016-06-08 | 三菱電機株式会社 | 電子キーシステム、電子キー位置検出装置、および電子キー位置検出方法 |
JP2015135414A (ja) * | 2014-01-17 | 2015-07-27 | アイシン精機株式会社 | テラヘルツ帯波長板、及びテラヘルツ波測定装置 |
JP6590194B2 (ja) | 2014-08-25 | 2019-10-16 | 国立大学法人茨城大学 | ワイヤーグリッド装置 |
-
2013
- 2013-08-30 JP JP2013179151A patent/JP5626740B1/ja active Active
-
2014
- 2014-08-21 US US14/914,912 patent/US9964678B2/en active Active
- 2014-08-21 WO PCT/JP2014/071866 patent/WO2015029868A1/ja active Application Filing
- 2014-08-21 EP EP14839656.7A patent/EP3040748A4/en not_active Withdrawn
- 2014-08-21 KR KR1020167006851A patent/KR102169837B1/ko active IP Right Grant
- 2014-08-21 CN CN201480047527.8A patent/CN105492937B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009223010A (ja) * | 2008-03-17 | 2009-10-01 | Murata Mfg Co Ltd | ワイヤーグリッド用金属板、自立型ワイヤーグリッド及びワイヤーグリッド用金属板の製造方法 |
JP5141320B2 (ja) | 2008-03-17 | 2013-02-13 | 株式会社村田製作所 | ワイヤーグリッド用金属板、自立型ワイヤーグリッド及びワイヤーグリッド用金属板の製造方法 |
JP2011180568A (ja) * | 2010-02-05 | 2011-09-15 | Asahi Kasei E-Materials Corp | テラヘルツ帯光学素子用ワイヤグリッド偏光板及び電磁波処理装置 |
Non-Patent Citations (3)
Title |
---|
See also references of EP3040748A4 * |
TAKASHI FUJII ET AL.: "Kinzoku Kako ni yoru Wire Grid no Kozo Zaishitsu ni yoru THz Tokusei eno Eikyo", DAI 68 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, vol. 3, 4 September 2007 (2007-09-04), pages 1128, XP008179813 * |
TAKASHI FUJII ET AL.: "Thz Taiiki ni Okeru Wire Grid no Kinzoku Atsumi ni yoru Soshi Tokusei eno Eikyo", DAI 70 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, VOL. 3 , THE JAPAN SOCIETY OF APPLIED PHYSICS, 8 September 2009 (2009-09-08), pages 1022, XP008179812 * |
Also Published As
Publication number | Publication date |
---|---|
KR102169837B1 (ko) | 2020-10-26 |
JP2015049277A (ja) | 2015-03-16 |
EP3040748A1 (en) | 2016-07-06 |
CN105492937B (zh) | 2018-10-19 |
KR20160048831A (ko) | 2016-05-04 |
US20160209567A1 (en) | 2016-07-21 |
EP3040748A4 (en) | 2016-08-17 |
JP5626740B1 (ja) | 2014-11-19 |
CN105492937A (zh) | 2016-04-13 |
US9964678B2 (en) | 2018-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015029868A1 (ja) | ワイヤーグリッド装置 | |
US10288977B2 (en) | Electromagnetic waveguide transmission modulation device | |
US7486247B2 (en) | Millimeter and sub-millimeter wave detection | |
JP6112708B2 (ja) | メタマテリアル | |
Dincer et al. | Dual-band polarization independent metamaterial absorber based on omega resoanator and octa-star strip configuration | |
US20130128132A1 (en) | Tunable terahertz metamaterial filter | |
JP6590194B2 (ja) | ワイヤーグリッド装置 | |
JP2008541425A (ja) | 負の指数のメタ材料(nim)を使用するスミス−パーセル放射源 | |
WO2012154209A1 (en) | Highly unidirectional microcavity resonators | |
Kaipa et al. | Characterization of negative refraction with multilayered mushroom-type metamaterials at microwaves | |
JP2015135414A (ja) | テラヘルツ帯波長板、及びテラヘルツ波測定装置 | |
KR20130140327A (ko) | 이상광투과현상을 이용한 테라헤르츠 파 편광자 및 그 제조방법 | |
Hickmann et al. | Microwave measurements of the photonic band gap in a two-dimensional photonic crystal slab | |
Fu et al. | Actively programmable MEMS-based racetrack-shaped terahertz metamaterial | |
WO2018221486A1 (ja) | フィルタ装置及びフィルタ | |
JP2017040803A (ja) | テラヘルツ波帯用の偏光子 | |
KR101337545B1 (ko) | 복수의 박막을 구비하는 극초단 테라헤르츠파 발생장치 | |
Tokuda et al. | Remarkable transmission characteristics of optical waves through modulated double-layered metallic slit arrays | |
CN111200190B (zh) | 一种电磁波极化及滤波系统及方法 | |
CA2401509C (en) | A grating for electromagnetic radiation | |
JP2006178209A (ja) | 導波路 | |
Pal et al. | Optimizing the polarization and antireflection characteristics of metallic wire grid structures in the Terahertz frequency range | |
Ahmadi-Boroujeni | Parallel-plate waveguide integrated filters and lenses realized by metallic posts for terahertz applications | |
Reynolds et al. | Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures | |
Young et al. | Analysis of a linear slot array comprised of tilted edge slots cut in the narrow wall of a rectangular waveguide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480047527.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14839656 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14914912 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014839656 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014839656 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167006851 Country of ref document: KR Kind code of ref document: A |