WO2015029689A1 - 光後硬化性樹脂組成物 - Google Patents

光後硬化性樹脂組成物 Download PDF

Info

Publication number
WO2015029689A1
WO2015029689A1 PCT/JP2014/070189 JP2014070189W WO2015029689A1 WO 2015029689 A1 WO2015029689 A1 WO 2015029689A1 JP 2014070189 W JP2014070189 W JP 2014070189W WO 2015029689 A1 WO2015029689 A1 WO 2015029689A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photo
post
weight
group
Prior art date
Application number
PCT/JP2014/070189
Other languages
English (en)
French (fr)
Inventor
康雄 渡邊
七里 徳重
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201480011850.XA priority Critical patent/CN105026456B/zh
Priority to KR1020157024550A priority patent/KR102226987B1/ko
Priority to JP2014539172A priority patent/JP5799177B2/ja
Publication of WO2015029689A1 publication Critical patent/WO2015029689A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/22Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the initiator used in polymerisation
    • C08G2650/24Polymeric initiators

Definitions

  • the present invention relates to a light post-curing resin composition that can suppress generation of outgas and is excellent in transparency and reliability.
  • organic electroluminescence (organic EL) display elements and organic thin film solar cell elements have been advanced.
  • the organic thin film element can be easily produced by vacuum deposition, solution coating, or the like, and thus has excellent productivity.
  • the organic EL display element has a thin film structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other. When electrons are injected from one electrode into the organic light emitting material layer and holes are injected from the other electrode, electrons and holes are combined in the organic light emitting material layer to perform self-light emission. Compared with a liquid crystal display element or the like that requires a backlight, the visibility is better, the thickness can be reduced, and direct current low voltage driving is possible.
  • an organic EL display element has a problem that when the organic light emitting material layer and the electrode are exposed to the outside air, the light emission characteristics thereof are rapidly deteriorated and the life is shortened. Therefore, for the purpose of improving the stability and durability of the organic EL display element, in the organic EL display element, a sealing technique for shielding the organic light emitting material layer and the electrode from moisture and oxygen in the atmosphere is indispensable. Yes.
  • Patent Document 1 discloses a method of filling a photocurable adhesive between organic EL display element substrates in a top emission organic EL display element or the like, and irradiating light to seal.
  • the photocurable adhesive is used in this way, there is a problem that outgas is generated during light irradiation and fills the element, thereby promoting deterioration of the element.
  • An object of the present invention is to provide an optical post-curing resin composition that can suppress the generation of outgas and is excellent in transparency and reliability.
  • the present invention is a photo post-curing resin composition
  • a photo post-curing resin composition comprising a cationic curable resin, a photo cationic polymerization initiator, and a compound having an amino group and a cationic polymerizable functional group.
  • the present invention is described in detail below.
  • the inventors of the present invention are the cause of outgassing when a photocurable adhesive is used for sealing an organic EL display element or the like, and particularly ethers such as crown ethers that are usually blended in a photopostcurable adhesive. It was thought that it exists in the hardening retarder which consists of a compound which has a coupling
  • the present inventors have used a compound having an amino group and a cationically polymerizable functional group in place of such a curing retarder, whereby the amino group exhibits a curing retardation effect, and the cationically polymerizable functional group. As a result, it was found that outgassing can be suppressed by being taken into the cured product, and the present invention has been completed.
  • the photo post-curing resin composition of the present invention contains a compound having an amino group and a cationic polymerizable functional group.
  • the compound having an amino group and a cationically polymerizable functional group can suppress the generation of outgas by being taken into the cured product by the cationically polymerizable functional group while the amino group exhibits a curing retardation effect.
  • the compound which has the said amino group and a cation polymerizable functional group has a cation polymerizable functional group, since it has an amino group, cation polymerizability is very low.
  • the amino group examples include a primary amino group, a secondary amino group, and a tertiary amino group.
  • the amino group has a secondary amino group or a tertiary amino group, it is preferable that the nitrogen atom of at least one amino group is bonded to the cationically polymerizable functional group directly or via an alkylene group.
  • the amino group is preferably a tertiary amino group from the viewpoint of exhibiting an appropriate effect delaying effect.
  • Examples of the cationic polymerizable functional group include an epoxy group, an oxetane group, a hydroxyl group, a vinyl ether group, an episulfide group, and an ethyleneimine group.
  • an epoxy group is preferred from the viewpoint of easy incorporation into a cured product.
  • the compound which has the said amino group and a cation polymerizable functional group has 2 or more of the said cation polymerizable functional groups in 1 molecule from a viewpoint made easy to be taken in into hardened
  • the compound having an amino group and a cationically polymerizable functional group is particularly excellent in compatibility between the effect of retarding curing and the effect of suppressing outgas by being incorporated into the cured product, and is therefore represented by the following formulas (1) to (7). It is preferably at least one selected from the group consisting of the following compounds.
  • R 1 represents an alkylene group having 1 to 3 carbon atoms. Each R 1 may be the same or different.
  • R 2 represents an alkylene group having 1 to 3 carbon atoms. Each R 2 may be the same or different.
  • R 3 represents an alkylene group having 1 to 3 carbon atoms. Each R 3 may be the same or different.
  • R 4 represents an alkylene group having 1 to 3 carbon atoms. Each R 4 may be the same or different.
  • R 5 is any one of a methyl group, an ethyl group, an ethylene group, and a propyl group.
  • R 6 represents an alkylene group having 1 to 3 carbon atoms. Each R 6 may be the same or different.
  • R 7 is any one of a methyl group, an ethyl group, an ethylene group, and a propyl group, and each R 7 may be the same or different.
  • R 8 represents an alkylene group having 1 to 3 carbon atoms. Each R 8 may be the same or different.
  • R 9 represents an alkylene group having 1 to 3 carbon atoms. Each R 9 may be the same or different.
  • R 1 is preferably a methylene group.
  • R 2 is preferably a methylene group.
  • R 3 is methylene.
  • R 4 is preferably a methylene group,
  • R 5 is preferably a propyl group, and in the formula (5),
  • R 6 is methylene.
  • R 7 is preferably a propyl group.
  • R 8 is preferably a methylene group.
  • R 9 is methylene. It is preferably a group.
  • the preferable lower limit of the weight average molecular weight of the compound having an amino group and a cationically polymerizable functional group is 200, and the preferable upper limit is 1000. If the compound having the amino group and the cationic polymerizable functional group has a weight average molecular weight of less than 200, the compound having the amino group and the cationic polymerizable functional group remaining without being incorporated into the cured product is a cause of outgassing. It may become. When the weight average molecular weight of the compound having an amino group and a cationic polymerizable functional group exceeds 1000, the viscosity of the resulting photo-curing resin composition becomes too high, and the coatability and the like may be deteriorated.
  • the more preferable lower limit of the weight average molecular weight of the compound having an amino group and a cationic polymerizable functional group is 300, and the more preferable upper limit is 800.
  • the said weight average molecular weight is a value calculated
  • Examples of commercially available compounds having the amino group and the cationic polymerizable functional group include TEPIC (manufactured by Nissan Chemical Industries), jER604, jER630 (all manufactured by Mitsubishi Chemical Corporation), and the like.
  • the content of the compound having an amino group and a cationic polymerizable functional group is preferably 0.01 parts by weight and preferably 20 parts by weight with respect to 100 parts by weight of the cationic curable resin.
  • the content of the compound having an amino group and a cationic polymerizable functional group is less than 0.01 parts by weight, the curing retardation effect may not be sufficiently exhibited.
  • the content of the compound having an amino group and a cationically polymerizable functional group exceeds 20 parts by weight, the resulting photo-curable resin composition may be inferior in curability.
  • the more preferred lower limit of the content of the compound having an amino group and a cationically polymerizable functional group is 0.05 parts by weight, the more preferred upper limit is 15 parts by weight, the still more preferred lower limit is 0.1 parts by weight, and the still more preferred upper limit is 10 parts. Parts by weight.
  • the photo post-curing resin composition of the present invention contains a cationic curable resin.
  • the cationic curable resin is not particularly limited as long as it is a compound having at least one cationic polymerizable functional group in the molecule and rich in cationic polymerizable properties.
  • the cationic polymerizable functional group include an epoxy group, an oxetane group, a hydroxyl group, a vinyl ether group, an episulfide group, and an ethyleneimine group.
  • the said cationic curable resin expresses high adhesiveness and durability after hardening, it is preferable to contain an epoxy resin.
  • the epoxy resin examples include aromatics such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, resorcinol type epoxy resin, and the like.
  • examples thereof include epoxy resins having a ring, epoxy resins having an aliphatic ring such as hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, and alicyclic epoxy resins.
  • These epoxy resins may be used independently and 2 or more types may be used together.
  • alicyclic epoxy resin examples include 1,2: 8,9-diepoxy limonene, 4-vinylcyclohexene monooxide, vinylcyclohexene dioxide, methylated vinylcyclohexene dioxide, (3,4-epoxycyclohexyl).
  • Methyl-3,4-epoxycyclohexylcarboxylate bis- (3,4-epoxycyclohexyl) adipate, bis- (3,4-epoxycyclohexylmethylene) adipate, bis- (2,3-epoxycyclopentyl) ether, (2 , 3-epoxy-6-methylcyclohexylmethyl) adipate, dicyclopentadiene dioxide and the like.
  • (3,4-epoxycyclohexyl) methyl-3,4-epoxycyclohexylcarboxylate is preferable.
  • These alicyclic epoxy resins may be used alone or in combination of two or more.
  • the photo post-curing resin composition of the present invention contains a photo cationic polymerization initiator.
  • the photocationic polymerization initiator is not particularly limited as long as it generates a protonic acid or a Lewis acid by light irradiation, and may be an ionic photoacid generating type or a nonionic photoacid generating type. May be.
  • Examples of the ionic photoacid-generating photocationic polymerization initiator include those having a cation moiety of aromatic sulfonium, aromatic iodonium, aromatic diazonium, aromatic ammonium, or (2,4-cyclopentadien-1-yl). ) ((1-methylethyl) benzene) -Fe cation, and the anion portion is BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , or (BX 4 ) ⁇ (where X is at least two fluorine atoms) Or an onium salt composed of a phenyl group substituted with a trifluoromethyl group).
  • aromatic sulfonium salt examples include bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluorophosphate, bis (4- (diphenylsulfonio) phenyl) sulfide bishexafluoroantimonate, and bis (4- ( Diphenylsulfonio) phenyl) sulfide bistetrafluoroborate, bis (4- (diphenylsulfonio) phenyl) sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl-4- ( Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetraflu
  • aromatic iodonium salt examples include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (Dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexa Fluorophosphate, 4-methylphenyl-4- (1-methylethy
  • aromatic diazonium salt examples include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, and phenyldiazonium tetrakis (pentafluorophenyl) borate.
  • aromatic ammonium salt examples include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl -2-Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl)
  • Examples include -2-cyanopyridinium tetrafluoroborate and 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate.
  • Examples of the (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene) -Fe salt include (2,4-cyclopentadien-1-yl) ((1-methylethyl) benzene.
  • nonionic photoacid-generating photocationic polymerization initiator examples include nitrobenzyl ester, sulfonic acid derivative, phosphoric ester, phenolsulfonic acid ester, diazonaphthoquinone, N-hydroxyimide sulfonate and the like.
  • photocationic polymerization initiators examples include, for example, DTS-200 (manufactured by Midori Chemical Co., Ltd.), UVI6990, UVI6974 (all manufactured by Union Carbide), SP-150, SP-170 (all ADEKA), FC-508, FC-512 (all from 3M), Irgacure 261 (BASF Japan), PI 2074 (Rhodia) and the like.
  • the content of the photo cationic polymerization initiator is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the cationic curable resin. If the content of the photocationic polymerization initiator is less than 0.1 parts by weight, the cationic polymerization may not proceed sufficiently or the curing reaction may become too slow. When the content of the photocationic polymerization initiator is more than 10 parts by weight, the curing reaction of the resulting photo-curing resin composition becomes too fast, and the workability is lowered, or the resulting photo-curing resin composition is obtained. The cured product may be non-uniform.
  • the minimum with more preferable content of the said photocationic polymerization initiator is 0.5 weight part, and a more preferable upper limit is 5 weight part.
  • the photo post-curing resin composition of the present invention may contain a sensitizer.
  • the sensitizer has a role of further improving the polymerization initiation efficiency of the cationic polymerization initiator and further promoting the curing reaction of the photo post-curing resin composition of the present invention.
  • sensitizer examples include thioxanthone compounds such as 2,4-diethylthioxanthone, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 2,4-dichlorobenzophenone, o- Examples include methyl benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4-benzoyl-4′methyldiphenyl sulfide, and the like.
  • thioxanthone compounds such as 2,4-diethylthioxanthone, 2,2-dimethoxy-1,2-diphenylethane-1-one, benzophenone, 2,4-dichlorobenzophenone, o- Examples include methyl benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4-benzoyl-4′methyldiphenyl sulfide, and the like.
  • the content of the sensitizer is preferably 0.05 parts by weight and preferably 3 parts by weight with respect to 100 parts by weight of the cationic curable resin.
  • the sensitizing effect may not be sufficiently obtained.
  • the content of the sensitizer exceeds 3 parts by weight, absorption may be excessively increased and light may not be transmitted to the deep part.
  • the minimum with more preferable content of the said sensitizer is 0.1 weight part, and a more preferable upper limit is 1 weight part.
  • the photo post-curing resin composition of the present invention may contain a silane coupling agent.
  • the said silane coupling agent has a role which improves the adhesiveness of the post-photocurable resin composition of this invention, a board
  • silane coupling agent examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -isocyanatopropyltrimethoxysilane. These silane coupling agents may be used independently and 2 or more types may be used together.
  • the content of the silane coupling agent is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the cation curable resin.
  • the content of the silane coupling agent is less than 0.1 parts by weight, the effect of improving the adhesiveness of the obtained photo post-curing resin composition may not be sufficiently exhibited.
  • content of the said silane coupling agent exceeds 10 weight part, an excess silane coupling agent may bleed out.
  • the minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 5 weight part.
  • the photo post-curing resin composition of the present invention may further contain a thermosetting agent as long as the object of the present invention is not impaired.
  • thermosetting agent By containing the said thermosetting agent, thermosetting property can be provided to the post-photocurable resin composition of this invention.
  • thermosetting agent is not particularly limited, and examples thereof include hydrazide compounds, imidazole derivatives, acid anhydrides, dicyandiamides, guanidine derivatives, modified aliphatic polyamines, addition products of various amines and epoxy resins, and the like.
  • hydrazide compound include 1,3-bis (hydrazinocarbonoethyl-5-isopropylhydantoin).
  • imidazole derivatives examples include 1-cyanoethyl-2-phenylimidazole, N- (2- (2-methyl-1-imidazolyl) ethyl) urea, 2,4-diamino-6- (2′-methylimidazolyl- (1 ′))-ethyl-s-triazine, N, N′-bis (2-methyl-1-imidazolylethyl) urea, N, N ′-(2-methyl-1-imidazolylethyl) -adipamide, 2- Examples include phenyl-4-methyl-5-hydroxymethylimidazole and 2-phenyl-4,5-dihydroxymethylimidazole.
  • acid anhydride examples include tetrahydrophthalic anhydride, ethylene glycol bis (anhydro trimellitate), and the like. These thermosetting agents may be used alone or in combination of two or more.
  • the content of the thermosetting agent is preferably 0.5 parts by weight and preferably 30 parts by weight with respect to 100 parts by weight of the cationic curable resin. If the content of the thermosetting agent is less than 0.5 parts by weight, sufficient thermosetting property may not be imparted to the obtained photo-curing resin composition. When the content of the thermosetting agent exceeds 30 parts by weight, the storage stability of the obtained photo post-curing resin composition becomes insufficient, or the moisture resistance of the cured product of the photo post-curing resin composition obtained. May get worse.
  • the minimum with more preferable content of the said thermosetting agent is 1 weight part, and a more preferable upper limit is 15 weight part.
  • the photo post-curing resin composition of the present invention may contain a surface modifier as long as the object of the present invention is not impaired.
  • a surface modifier By containing the surface modifier, the flatness of the coating film can be imparted to the photo post-curing resin composition of the present invention.
  • the surface modifier include surfactants and leveling agents.
  • surfactant and the leveling agent examples include silicon-based, acrylic-based, and fluorine-based ones.
  • examples of commercially available surfactants and leveling agents include BYK-345 (manufactured by BYK Japan), BYK-340 (manufactured by BYK Japan), Surflon S-611 (AGC Seimi Chemical). Etc.).
  • the photo-post-curing resin composition of the present invention is a compound that reacts with an acid generated in the photo-post-curing resin composition in order to improve the durability of the element electrode within a range that does not impair the transparency of the cured product. Or you may contain an ion exchange resin.
  • Examples of the compound that reacts with the generated acid include substances that neutralize the acid, for example, alkali metal carbonates or bicarbonates, or alkaline earth metal carbonates or bicarbonates.
  • alkali metal carbonates or bicarbonates or alkaline earth metal carbonates or bicarbonates.
  • calcium carbonate, calcium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate and the like are used.
  • any of a cation exchange type, an anion exchange type, and a both ion exchange type can be used, and in particular, a cation exchange type or a both ion exchange type capable of adsorbing chloride ions. Is preferred.
  • the photo post-curing resin composition of the present invention contains various known additives such as a reinforcing agent, a softening agent, a plasticizer, a viscosity modifier, an ultraviolet absorber, and an antioxidant as necessary. Also good.
  • a method for producing the photo post-curing resin composition of the present invention for example, using a mixer such as a homodisper, homomixer, universal mixer, planetary mixer, kneader, three rolls, And a method of mixing a photocationic polymerization initiator, a compound having an amino group and a cationically polymerizable functional group, and an additive such as a silane coupling agent to be added as necessary.
  • a mixer such as a homodisper, homomixer, universal mixer, planetary mixer, kneader, three rolls,
  • Example 1 As a cationic curable resin, 50 parts by weight of a bisphenol F type epoxy resin (manufactured by DIC, “EPICLON EXA-830LVP”), 25 parts by weight of a hydrogenated bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, “jER YL8034”), and 25 parts by weight of a hydrogenated bisphenol F type epoxy resin (Mitsubishi Chemical Co., Ltd., “jER YL6753”) and 1.0 weight of an aromatic sulfonium salt (Midori Chemical Co., Ltd., “DTS-200”) as a photocationic polymerization initiator 3 parts by weight of triglycidyl isocyanurate (manufactured by Nissan Chemical Co., “TEPIC”) as a compound having a tertiary amino group and a cationic polymerizable functional group, and 2,4-diethylthioxanthone (as a sensitizer) Nippon Kayaku
  • the mixture was uniformly stirred and mixed at a stirring speed of 3000 rpm by using a homodisper type stirring mixer (“Homodisper L type” manufactured by PRIMIX Co., Ltd.) to prepare a photo post-curing resin composition.
  • a homodisper type stirring mixer (“Homodisper L type” manufactured by PRIMIX Co., Ltd.) to prepare a photo post-curing resin composition.
  • Examples 2 to 6, Comparative Examples 1 to 3 Each material described in Table 1 was stirred and mixed in the same manner as in Example 1 in accordance with the blending ratio described in Table 1 to prepare a photo post-curing resin composition.
  • Reliability of organic EL display element production of a substrate on which a laminate having an organic light emitting material layer is disposed
  • a glass substrate (length 25 mm, width 25 mm, thickness 0.7 mm) on which an ITO electrode was formed to a thickness of 1000 mm was used as the substrate.
  • the substrate was ultrasonically washed with acetone, an aqueous alkali solution, ion-exchanged water, and isopropyl alcohol for 15 minutes, respectively, then washed with boiled isopropyl alcohol for 10 minutes, and a UV-ozone cleaner (manufactured by Nippon Laser Electronics Co., Ltd.). The last treatment was performed with “NL-UV253”).
  • this substrate is fixed to the substrate folder of the vacuum deposition apparatus, and 200 mg of N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine ( ⁇ -NPD) is put into an unglazed crucible and other different types.
  • 200 mg of tris (8-hydroxyquinola) aluminum (Alq 3 ) was put in an unglazed crucible, and the pressure in the vacuum chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa. Thereafter, the crucible containing ⁇ -NPD was heated, and ⁇ -NPD was deposited on the substrate at a deposition rate of 15 s / s to form a 600 ⁇ ⁇ hole transport layer.
  • the crucible containing Alq 3 was heated to form an organic light emitting material layer having a thickness of 600 ⁇ at a deposition rate of 15 ⁇ / s. Thereafter, the substrate on which the hole transport layer and the organic light emitting material layer are formed is transferred to another vacuum vapor deposition apparatus, and 200 mg of lithium fluoride is added to a tungsten resistance heating boat in the vacuum vapor deposition apparatus, and aluminum is added to another tungsten boat. 1.0 g of wire was added.
  • the inside of the vapor deposition unit of the vacuum vapor deposition apparatus is depressurized to 2 ⁇ 10 ⁇ 4 Pa to form a lithium fluoride film with a thickness of 5 mm at a deposition rate of 0.2 kg / s, and then aluminum with a film thickness of 1000 mm at a rate of 20 kg / s. did.
  • the inside of the vapor deposition unit was returned to normal pressure with nitrogen, and the substrate on which the laminate having the organic light emitting material layer of 10 mm ⁇ 10 mm was arranged was taken out.
  • a mask having an opening of 13 mm ⁇ 13 mm was placed so as to cover the entire laminated body of the substrate on which the obtained laminated body was arranged, and an inorganic material film A was formed by a plasma CVD method.
  • SiH 4 gas and nitrogen gas are used as source gases, the flow rates are 10 sccm and 200 sccm, RF power is 10 W (frequency: 2.45 GHz), chamber temperature is 100 ° C., and chamber pressure is 0.
  • the test was performed at 9 Torr.
  • the formed inorganic material film A had a thickness of about 1 ⁇ m.
  • ultraviolet light having a wavelength of 365 nm was irradiated using a high pressure mercury lamp in a vacuum environment so that the irradiation amount was 3000 mJ / cm 2 to cure the photo-curable resin composition, thereby forming a resin protective film.
  • a mask having an opening of 12 mm ⁇ 12 mm is installed so as to cover the entire resin protective film, and the inorganic material film B is formed by plasma CVD to form an organic EL display element. Obtained.
  • SiH 4 gas and nitrogen gas are used as source gases, the flow rates of each are SiH 4 gas 10 sccm, nitrogen gas 200 sccm, RF power 10 W (frequency 2.45 GHz), chamber temperature 100 ° C., chamber The test was performed under the condition that the internal pressure was 0.9 Torr.
  • the formed inorganic material film B had a thickness of about 1 ⁇ m.
  • the obtained organic EL display element is exposed for 100 hours in an environment of a temperature of 85 ° C. and a humidity of 85%, and then a voltage of 3 V is applied, and the light emission state of the organic EL display element (whether dark spots and pixel periphery quenching) was visually observed.
  • the reliability of the organic EL display element was evaluated with “ ⁇ ” when the light was emitted uniformly without dark spots or peripheral quenching, and “X” when the dark spot or peripheral quenching was observed even slightly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、アウトガスの発生を抑制することができ、透明性及び信頼性に優れる光後硬化性樹脂組成物を提供することを目的とする。 本発明は、カチオン硬化性樹脂、光カチオン重合開始剤、及び、アミノ基とカチオン重合性官能基とを有する化合物を含有する光後硬化性樹脂組成物である。

Description

光後硬化性樹脂組成物
本発明は、アウトガスの発生を抑制することができ、透明性及び信頼性に優れる光後硬化性樹脂組成物に関する。
近年、有機エレクトロルミネッセンス(有機EL)表示素子や有機薄膜太陽電池素子等の有機薄膜素子を用いた有機光デバイスの研究が進められている。有機薄膜素子は真空蒸着や溶液塗布等により簡便に作製できるため、生産性にも優れる。
有機EL表示素子は、互いに対向する一対の電極間に有機発光材料層が挟持された薄膜構造体を有する。この有機発光材料層に一方の電極から電子が注入されるとともに他方の電極から正孔が注入されることにより有機発光材料層内で電子と正孔とが結合して自己発光を行う。バックライトを必要とする液晶表示素子等と比較して視認性がよく、より薄型化が可能であり、かつ、直流低電圧駆動が可能であるという利点を有する。
ところが、このような有機EL表示素子は、有機発光材料層や電極が外気に曝されるとその発光特性が急激に劣化し寿命が短くなるという問題があった。従って、有機EL表示素子の安定性及び耐久性を高めることを目的として、有機EL表示素子においては、有機発光材料層や電極を大気中の水分や酸素から遮断する封止技術が不可欠となっている。
特許文献1には、上面発光型有機EL表示素子等において、有機EL表示素子基板の間に光硬化性接着剤を満たし、光を照射して封止する方法が開示されている。しかしながら、このように光硬化性接着剤を用いた場合には、光照射時にアウトガスが発生して素子内に充満し、素子の劣化を促進することがあるという問題があった。
特開2001-357973号公報
本発明は、アウトガスの発生を抑制することができ、透明性及び信頼性に優れる光後硬化性樹脂組成物を提供することを目的とする。
本発明は、カチオン硬化性樹脂、光カチオン重合開始剤、及び、アミノ基とカチオン重合性官能基とを有する化合物を含有する光後硬化性樹脂組成物である。
以下に本発明を詳述する。
本発明者らは、有機EL表示素子等の封止に光硬化性接着剤を用いた場合にアウトガスが発生する原因が、特に光後硬化性接着剤に通常配合されているクラウンエーテル等のエーテル結合を有する化合物からなる硬化遅延剤にあると考えた。即ち、該硬化遅延剤が光照射時に酸等により分解することにより、ジオキサン等がアウトガスとして発生していると考えた。
そこで本発明者らは、このような硬化遅延剤に代えて、アミノ基とカチオン重合性官能基とを有する化合物を用いることにより、アミノ基が硬化遅延効果を発揮しつつ、カチオン重合性官能基により硬化物に取り込まれることでアウトガスの発生を抑制することができることを見出し、本発明を完成させるに至った。
本発明の光後硬化性樹脂組成物は、アミノ基とカチオン重合性官能基とを有する化合物を含有する。上記アミノ基とカチオン重合性官能基とを有する化合物は、アミノ基が硬化遅延効果を発揮しつつ、カチオン重合性官能基により硬化物に取り込まれることでアウトガスの発生を抑制することができる。
なお、上記アミノ基とカチオン重合性官能基とを有する化合物は、カチオン重合性官能基を有するが、アミノ基を有するためカチオン重合性が極めて低い。
上記アミノ基としては、第一級アミノ基、第二級アミノ基、第三級アミノ基が挙げられる。上記アミノ基として第二級アミノ基又は第三級アミノ基を有する場合、少なくとも1つのアミノ基の窒素原子がカチオン重合性官能基と直接又はアルキレン基を介して結合していることが好ましい。
上記アミノ基は、適度な効果遅延効果を発揮する観点から、第三級アミノ基であることが好ましい。
上記カチオン重合性官能基としては、例えば、エポキシ基、オキセタン基、水酸基、ビニルエーテル基、エピスルフィド基、エチレンイミン基等が挙げられる。なかでも、硬化物に取り込まれやすくする観点から、エポキシ基が好ましい。
また、上記アミノ基とカチオン重合性官能基とを有する化合物は、硬化物に取り込まれやすくする観点から、1分子中に上記カチオン重合性官能基を2個以上有することが好ましい。
上記アミノ基とカチオン重合性官能基とを有する化合物は、硬化遅延効果と硬化物に取り込まれアウトガスを抑制する効果との両立性に特に優れるため、下記式(1)~(7)で表される化合物からなる群より選択される少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
式(1)中、Rは、炭素数1~3のアルキレン基を表す。各Rは、同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000002
式(2)中、Rは、炭素数1~3のアルキレン基を表す。各Rは、同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000003
式(3)中、Rは、炭素数1~3のアルキレン基を表す。各Rは、同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000004
式(4)中、Rは、炭素数1~3のアルキレン基を表す。各Rは、同一であってもよいし、異なっていてもよい。Rは、メチル基、エチル基、エチレン基、プロピル基のいずれかである。
Figure JPOXMLDOC01-appb-C000005
式(5)中、Rは、炭素数1~3のアルキレン基を表す。各Rは、同一であってもよいし、異なっていてもよい。Rは、メチル基、エチル基、エチレン基、プロピル基のいずれかであり、各Rは、同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000006
式(6)中、Rは、炭素数1~3のアルキレン基を表す。各Rは、同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000007
式(7)中、Rは、炭素数1~3のアルキレン基を表す。各Rは、同一であってもよいし、異なっていてもよい。
上記式(1)中、Rは、メチレン基であることが好ましく、上記式(2)中、Rは、メチレン基であることが好ましく、上記式(3)中、Rは、メチレン基であることが好ましく、上記式(4)中、Rは、メチレン基であることが好ましく、Rは、プロピル基であることが好ましく、上記式(5)中、Rは、メチレン基であることが好ましく、Rは、プロピル基であることが好ましく、上記式(6)中、Rは、メチレン基であることが好ましく、上記式(7)中、Rは、メチレン基であることが好ましい。
上記アミノ基とカチオン重合性官能基とを有する化合物の重量平均分子量の好ましい下限は200、好ましい上限は1000である。上記アミノ基とカチオン重合性官能基とを有する化合物の重量平均分子量が200未満であると、硬化物に取り込まれずに残った上記アミノ基とカチオン重合性官能基とを有する化合物がアウトガス発生の原因となることがある。上記アミノ基とカチオン重合性官能基とを有する化合物の重量平均分子量が1000を超えると、得られる光後硬化性樹脂組成物の粘度が高くなりすぎ、塗工性等が悪化することがある。上記アミノ基とカチオン重合性官能基とを有する化合物の重量平均分子量のより好ましい下限は300、より好ましい上限は800である。
なお、本明細書において、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
上記アミノ基とカチオン重合性官能基とを有する化合物のうち市販されているものとしては、例えば、TEPIC(日産化学社製)、jER604、jER630(いずれも三菱化学社製)等が挙げられる。
上記アミノ基とカチオン重合性官能基とを有する化合物の含有量は、カチオン硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が20重量部である。上記アミノ基とカチオン重合性官能基とを有する化合物の含有量が0.01重量部未満であると、硬化遅延効果が充分に発揮されないことがある。上記アミノ基とカチオン重合性官能基とを有する化合物の含有量が20重量部を超えると、得られる光後硬化性樹脂組成物が硬化性に劣るものとなることがある。上記アミノ基とカチオン重合性官能基とを有する化合物の含有量のより好ましい下限は0.05重量部、より好ましい上限は15重量部、更に好ましい下限は0.1重量部、更に好ましい上限は10重量部である。
本発明の光後硬化性樹脂組成物は、カチオン硬化性樹脂を含有する。
上記カチオン硬化性樹脂としては、分子内に少なくとも1個のカチオン重合性官能基を有し、かつ、カチオン重合性に富む化合物であれば特に限定されない。
上記カチオン重合性官能基としては、例えば、エポキシ基、オキセタン基、水酸基、ビニルエーテル基、エピスルフィド基、エチレンイミン基等が挙げられる。なかでも、上記カチオン硬化性樹脂は、硬化後に高い接着性と耐久性とを発現することから、エポキシ樹脂を含有することが好ましい。
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、レゾルシノール型エポキシ樹脂等の芳香族環を有するエポキシ樹脂や、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂等の脂肪族環を有するエポキシ樹脂や、脂環式エポキシ樹脂等が挙げられる。なかでも、アウトガス発生を抑制する観点から、脂環式エポキシ樹脂を含有することが好ましい。これらのエポキシ樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
上記脂環式エポキシ樹脂としては、例えば、1,2:8,9-ジエポキシリモネン、4-ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド、(3,4-エポキシシクロヘキシル)メチル-3,4-エポキシシクロヘキシルカルボキシレート、ビス-(3,4-エポキシシクロヘキシル)アジペート、ビス-(3,4-エポキシシクロヘキシルメチレン)アジペート、ビス-(2,3-エポキシシクロペンチル)エーテル、(2,3-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ジシクロペンタジエンジオキサイド等が挙げられる。なかでも、(3,4-エポキシシクロヘキシル)メチル-3,4-エポキシシクロヘキシルカルボキシレートが好ましい。これらの脂環式エポキシ樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
本発明の光後硬化性樹脂組成物は、光カチオン重合開始剤を含有する。
上記光カチオン重合開始剤は、光照射によりプロトン酸又はルイス酸を発生するものであれば特に限定されず、イオン性光酸発生型であってもよいし、非イオン性光酸発生型であってもよい。
上記イオン性光酸発生型の光カチオン重合開始剤としては、例えば、カチオン部分が芳香族スルホニウム、芳香族ヨードニウム、芳香族ジアゾニウム、芳香族アンモニウム、又は、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Feカチオンであり、アニオン部分がBF4-、PF6-、SbF6-、又は、(BX(但し、Xは、少なくとも2つ以上のフッ素又はトリフルオロメチル基で置換されたフェニル基を表す)で構成されるオニウム塩等が挙げられる。
上記芳香族スルホニウム塩としては、例えば、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジフェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロホスフェート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビスヘキサフルオロアンチモネート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドビステトラフルオロボレート、ビス(4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル)スルフィドテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族ヨードニウム塩としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族ジアゾニウム塩としては、例えば、フェニルジアゾニウムヘキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、フェニルジアゾニウムテトラフルオロボレート、フェニルジアゾニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記芳香族アンモニウム塩としては、例えば、1-ベンジル-2-シアノピリジニウムヘキサフルオロホスフェート、1-ベンジル-2-シアノピリジニウムヘキサフルオロアンチモネート、1-ベンジル-2-シアノピリジニウムテトラフルオロボレート、1-ベンジル-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロホスフェート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロアンチモネート、1-(ナフチルメチル)-2-シアノピリジニウムテトラフルオロボレート、1-(ナフチルメチル)-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe塩としては、例えば、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロホスフェート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)ヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラフルオロボレート、(2,4-シクロペンタジエン-1-イル)((1-メチルエチル)ベンゼン)-Fe(II)テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
上記非イオン性光酸発生型の光カチオン重合開始剤としては、例えば、ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N-ヒドロキシイミドスホナート等が挙げられる。
上記光カチオン重合開始剤のうち市販されているものとしては、例えば、DTS-200(みどり化学社製)、UVI6990、UVI6974(いずれもユニオンカーバイド社製)、SP-150、SP-170(いずれもADEKA社製)、FC-508、FC-512(いずれも3M社製)、イルガキュア261(BASF Japan社製)、PI2074(ローディア社製)等が挙げられる。
上記光カチオン重合開始剤の含有量は、上記カチオン硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記光カチオン重合開始剤の含有量が0.1重量部未満であると、カチオン重合が充分に進行しなかったり、硬化反応が遅くなりすぎたりすることがある。上記光カチオン重合開始剤の含有量が10重量部を超えると、得られる光後硬化性樹脂組成物の硬化反応が速くなりすぎて、作業性が低下したり、得られる光後硬化性樹脂組成物の硬化物が不均一となったりすることがある。上記光カチオン重合開始剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。
本発明の光後硬化性樹脂組成物は、増感剤を含有してもよい。上記増感剤は、上記カチオン重合開始剤の重合開始効率をより向上させて、本発明の光後硬化性樹脂組成物の硬化反応をより促進させる役割を有する。
上記増感剤としては、例えば、2,4-ジエチルチオキサントン等のチオキサントン系化合物や、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4-ベンゾイル-4’メチルジフェニルサルファイド等が挙げられる。
上記増感剤の含有量は、上記カチオン硬化性樹脂100重量部に対して、好ましい下限は0.05重量部、好ましい上限は3重量部である。上記増感剤の含有量が0.05重量部未満であると、増感効果が充分に得られないことがある。上記増感剤の含有量が3重量部を超えると、吸収が大きくなりすぎて深部まで光が伝わらないことがある。上記増感剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は1重量部である。
本発明の光後硬化性樹脂組成物は、シランカップリング剤を含有してもよい。上記シランカップリング剤は、本発明の光後硬化性樹脂組成物と基板等との接着性を向上させる役割を有する。
上記シランカップリング剤としては、例えば、γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-イソシアネートプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤は、単独で用いられてもよいし、2種以上が併用されてもよい。
上記シランカップリング剤の含有量は、上記カチオン硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記シランカップリング剤の含有量が0.1重量部未満であると、得られる光後硬化性樹脂組成物の接着性を向上させる効果が充分に発揮されないことがある。上記シランカップリング剤の含有量が10重量部を超えると、余剰のシランカップリング剤がブリードアウトすることがある。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。
本発明の光後硬化性樹脂組成物は、更に、本発明の目的を阻害しない範囲において、熱硬化剤を含有してもよい。上記熱硬化剤を含有することで、本発明の光後硬化性樹脂組成物に熱硬化性を付与することができる。
上記熱硬化剤は特に限定されず、例えば、ヒドラジド化合物、イミダゾール誘導体、酸無水物、ジシアンジアミド、グアニジン誘導体、変性脂肪族ポリアミン、各種アミンとエポキシ樹脂との付加生成物等が挙げられる。
上記ヒドラジド化合物としては、例えば、1,3-ビス(ヒドラジノカルボノエチル-5-イソプロピルヒダントイン)等が挙げられる。
上記イミダゾール誘導体としては、例えば、1-シアノエチル-2-フェニルイミダゾール、N-(2-(2-メチル-1-イミダゾリル)エチル)尿素、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、N,N’-ビス(2-メチル-1-イミダゾリルエチル)尿素、N,N’-(2-メチル-1-イミダゾリルエチル)-アジポアミド、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール等が挙げられる。
上記酸無水物としては、例えば、テトラヒドロ無水フタル酸、エチレングリコールービス(アンヒドロトリメリテート)等が挙げられる。
これらの熱硬化剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。
上記熱硬化剤の含有量は、上記カチオン硬化性樹脂100重量部に対して、好ましい下限が0.5重量部、好ましい上限が30重量部である。上記熱硬化剤の含有量が0.5重量部未満であると、得られる光後硬化性樹脂組成物に充分な熱硬化性を付与できないことがある。上記熱硬化剤の含有量が30重量部を超えると、得られる光後硬化性樹脂組成物の保存安定性が不充分となったり、得られる光後硬化性樹脂組成物の硬化物の耐湿性が悪くなったりすることがある。上記熱硬化剤の含有量のより好ましい下限は1重量部、より好ましい上限は15重量部である。
本発明の光後硬化性樹脂組成物は、本発明の目的を阻害しない範囲において、表面改質剤を含有してもよい。上記表面改質剤を含有することにより、本発明の光後硬化性樹脂組成物に塗膜の平坦性を付与することができる。
上記表面改質剤としては、例えば、界面活性剤やレベリング剤等が挙げられる。
上記界面活性剤や上記レベリング剤としては、例えば、シリコン系、アクリル系、フッ素系等のものが挙げられる。
上記界面活性剤や上記レベリング剤のうち市販されているものとしては、例えば、BYK-345(ビックケミー・ジャパン社製)、BYK-340(ビックケミー・ジャパン社製)、サーフロンS-611(AGCセイミケミカル社製)等が挙げられる。
本発明の光後硬化性樹脂組成物は、硬化物の透明性を阻害しない範囲で、素子電極の耐久性を向上させるために、光後硬化性樹脂組成物中に発生した酸と反応する化合物又はイオン交換樹脂を含有してもよい。
上記発生した酸と反応する化合物としては、酸と中和する物質、例えば、アルカリ金属の炭酸塩若しくは炭酸水素塩、又は、アルカリ土類金属の炭酸塩若しくは炭酸水素塩等が挙げられる。具体的には例えば、炭酸カルシウム、炭酸水素カルシウム、炭酸ナトリウム、炭酸水素ナトリウム等が用いられる。
上記イオン交換樹脂としては、陽イオン交換型、陰イオン交換型、両イオン交換型のいずれも使用することができるが、特に塩化物イオンを吸着することのできる陽イオン交換型又は両イオン交換型が好適である。
また、本発明の光後硬化性樹脂組成物は、必要に応じて、補強剤、軟化剤、可塑剤、粘度調整剤、紫外線吸収剤、酸化防止剤等の公知の各種添加剤を含有してもよい。
本発明の光後硬化性樹脂組成物を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、カチオン硬化性樹脂と、光カチオン重合開始剤と、アミノ基とカチオン重合性官能基とを有する化合物と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。
本発明によれば、アウトガスの発生を抑制することができ、透明性及び信頼性に優れる光後硬化性樹脂組成物を提供することができる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
カチオン硬化性樹脂として、ビスフェノールF型エポキシ樹脂(DIC社製、「EPICLON EXA-830LVP」)50重量部、水添ビスフェノールA型エポキシ樹脂(三菱化学社製、「jER YL8034」)25重量部、及び、水添ビスフェノールF型エポキシ樹脂(三菱化学社製、「jER YL6753」)25重量部と、光カチオン重合開始剤として芳香族スルホニウム塩(みどり化学社製、「DTS-200」)1.0重量部と、第三級アミノ基とカチオン重合性官能基とを有する化合物としてトリグリシジルイソシアヌラート(日産化学社製、「TEPIC」)5重量部と、増感剤として2,4-ジエチルチオキサントン(日本化薬社製、「DETX-S」)0.01重量部と、シランカップリング剤としてγ-グリシドキシプロピルトリメトキシシラン(信越シリコーン社製、「KBM-403」)1重量部と、フッ素系レベリング剤(AGCセイミケミカル社製、「サーフロンS-611」)1重量部とを混合し、80℃に加熱した後、ホモディスパー型撹拌混合機(プライミクス社製、「ホモディスパーL型」)を用い、撹拌速度3000rpmで均一に撹拌混合して、光後硬化性樹脂組成物を作製した。
(実施例2~6、比較例1~3)
表1に記載された各材料を、表1に記載された配合比に従い、実施例1と同様にして撹拌混合して、光後硬化性樹脂組成物を作製した。
<評価>
実施例及び比較例で得られた各光後硬化性樹脂組成物について以下の評価を行った。結果を表1に示した。
(1)粘度   
実施例及び比較例で得られた各光後硬化性樹脂組成物について、E型粘度計(東機産業社製、「VISCOMETER TV-22」)を用いて、25℃、100rpmの条件における粘度を測定した。
(2)硬化遅延性
実施例及び比較例で得られた各光後硬化性樹脂組成物の試験片に紫外線照射装置(オーク社製、「JL-4300-3S」)を用いて紫外線を1500mJ/cm照射した。10分後硬化性を確認し、更にその後100℃のオーブンで15分加熱を行い、硬化性を確認した。その結果、UV照射10分後未硬化、かつ、100℃加熱後硬化した場合を「○」、UV照射10分後増粘しており、かつ、100℃加熱後硬化した場合を「△」、UV照射10分以内に硬化した場合、又は、100℃加熱後も未硬化だった場合を「×」として硬化遅延性を評価した。
(3)硬化物の透明性
実施例及び比較例で得られた各光後硬化性樹脂組成物をそれぞれ75mm×25mm×1mmのガラス板2枚の間に10μmの厚みに形成し、真空環境下で高圧水銀灯を用いて波長365nmの紫外線を照射量が3000mJ/cmとなるように照射することにより硬化させて硬化物を得た。得られた硬化物について、分光光度計(日立ハイテクノロジーズ社製、「U-2900」)を用いて全光線透過率を測定した。その結果、透過率が95以上であった場合を「○」、90以上95未満であった場合を「△」、90未満であった場合を「×」として硬化物の透明性を評価した。
(4)アウトガス防止性
実施例及び比較例で得られた各光後硬化性樹脂組成物を、バイアル瓶中に300mg計量して封入した後、紫外線照射装置(オーク社製、「JL-4300-3S」)を用いて紫外線を1500mJ/cm照射し、その後100℃で15分間加熱を行うことで樹脂を硬化させた。更にこのバイアル瓶を85℃の恒温オーブンで100時間加熱し、バイアル瓶中の気化成分をガスクロマトグラフ質量分析計(日本電子社製、「JMS-k9」)を用いて測定した。
気化成分量が10ppm未満であった場合を「◎」、10ppm以上50ppm未満であった場合を「〇」、50ppm以上100ppm未満であった場合を「△」、100ppm以上であった場合を「×」としてアウトガス防止性を評価した。
(5)有機EL表示素子の信頼性
(有機発光材料層を有する積層体が配置された基板の作製)
ガラス基板(長さ25mm、幅25mm、厚さ0.7mm)にITO電極を1000Åの厚さで成膜したものを基板とした。上記基板をアセトン、アルカリ水溶液、イオン交換水、イソプロピルアルコールにてそれぞれ15分間超音波洗浄した後、煮沸させたイソプロピルアルコールにて10分間洗浄し、更に、UV-オゾンクリーナ(日本レーザー電子社製、「NL-UV253」)にて直前処理を行った。
次に、この基板を真空蒸着装置の基板フォルダに固定し、素焼きの坩堝にN,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(α-NPD)を200mg、他の異なる素焼き坩堝にトリス(8-ヒドロキシキノリラ)アルミニウム(Alq)を200mg入れ、真空チャンバー内を、1×10-4Paまで減圧した。その後、α-NPDの入った坩堝を加熱し、α-NPDを蒸着速度15Å/sで基板に堆積させ、膜厚600Åの正孔輸送層を成膜した。次いで、Alqの入った坩堝を加熱し、15Å/sの蒸着速度で膜厚600Åの有機発光材料層を成膜した。その後、正孔輸送層及び有機発光材料層が形成された基板を別の真空蒸着装置に移し、この真空蒸着装置内のタングステン製抵抗加熱ボートにフッ化リチウム200mgを、別のタングステン製ボートにアルミニウム線1.0gを入れた。その後、真空蒸着装置の蒸着器内を2×10-4Paまで減圧してフッ化リチウムを0.2Å/sの蒸着速度で5Å成膜した後、アルミニウムを20Å/sの速度で1000Å成膜した。窒素により蒸着器内を常圧に戻し、10mm×10mmの有機発光材料層を有する積層体が配置された基板を取り出した。
(無機材料膜Aによる被覆)
得られた積層体が配置された基板の、該積層体全体を覆うように、13mm×13mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Aを形成した。
プラズマCVD法は、原料ガスとしてSiHガス及び窒素ガスを用い、各々の流量を10sccm及び200sccmとし、RFパワーを10W(周波数2.45GHz)、チャンバー内温度を100℃、チャンバー内圧力を0.9Torrとする条件で行った。
形成された無機材料膜Aの厚さは、約1μmであった。
(樹脂保護膜の形成)
真空装置内に、無機材料膜Aで被覆された積層体が配置された基板を設置し、真空装置の中に設置された加熱ボートに実施例及び比較例で得られた各光後硬化性樹脂組成物を0.5g入れ、10Paに減圧して、積層体を含む11mm×11mmの四角形の部分に、光後硬化性樹脂組成物を200℃にて加熱し、厚さが0.5μmになるように真空蒸着を行った。その後、真空環境下で高圧水銀灯を用いて波長365nmの紫外線を照射量が3000mJ/cmとなるように照射して、光後硬化性樹脂組成物を硬化させて樹脂保護膜を形成した。
(無機材料膜Bによる被覆)
樹脂保護膜を形成した後、該樹脂保護膜の全体を覆うように、12mm×12mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Bを形成して有機EL表示素子を得た。
プラズマCVD法は、原料ガスとしてSiHガス及び窒素ガスを用い、各々の流量をSiHガス10sccm、窒素ガス200sccmとし、RFパワーを10W(周波数2.45GHz)、チャンバー内温度を100℃、チャンバー内圧力を0.9Torrとする条件で行った。
形成された無機材料膜Bの厚さは、約1μmであった。
(有機EL表示素子の発光状態の観察)
得られた有機EL表示素子を、温度85℃、湿度85%の環境下で100時間暴露した後、3Vの電圧を印加し、有機EL表示素子の発光状態(ダークスポット及び画素周辺消光の有無)を目視で観察した。ダークスポットや周辺消光が無く均一に発光した場合を「○」、僅かでもダークスポットや周辺消光が認められた場合を「×」として有機EL表示素子の信頼性を評価した。
Figure JPOXMLDOC01-appb-T000008
本発明によれば、アウトガスの発生を抑制することができ、透明性及び信頼性に優れる光後硬化性樹脂組成物を提供することができる。

Claims (7)

  1. カチオン硬化性樹脂、光カチオン重合開始剤、及び、アミノ基とカチオン重合性官能基とを有する化合物を含有することを特徴とする光後硬化性樹脂組成物。
  2. アミノ基は、第三級アミノ基であることを特徴とする請求項1記載の光後硬化性樹脂組成物。
  3. アミノ基とカチオン重合性官能基とを有する化合物の含有量が、カチオン硬化性樹脂100重量部に対して、0.01~20重量部であることを特徴とする請求項1又は2記載の光後硬化性樹脂組成物。
  4. アミノ基とカチオン重合性官能基とを有する化合物は、1分子中にカチオン重合性官能基を2個以上有することを特徴とする請求項1、2又は3記載の光後硬化性樹脂組成物。
  5. アミノ基とカチオン重合性官能基とを有する化合物は、重量平均分子量が200~1000であることを特徴とする請求項1、2、3又は4記載の光後硬化性樹脂組成物。
  6. カチオン硬化性樹脂は、エポキシ樹脂を含有することを特徴とする請求項1、2、3、4又は5記載の光後硬化性樹脂組成物。
  7. エポキシ樹脂として脂環式エポキシ樹脂を含有することを特徴とする請求項6記載の光後硬化性樹脂組成物。
PCT/JP2014/070189 2013-08-26 2014-07-31 光後硬化性樹脂組成物 WO2015029689A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480011850.XA CN105026456B (zh) 2013-08-26 2014-07-31 光后固化性树脂组合物
KR1020157024550A KR102226987B1 (ko) 2013-08-26 2014-07-31 광 후경화성 수지 조성물
JP2014539172A JP5799177B2 (ja) 2013-08-26 2014-07-31 光後硬化性樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-174579 2013-08-26
JP2013174579 2013-08-26

Publications (1)

Publication Number Publication Date
WO2015029689A1 true WO2015029689A1 (ja) 2015-03-05

Family

ID=52586263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070189 WO2015029689A1 (ja) 2013-08-26 2014-07-31 光後硬化性樹脂組成物

Country Status (5)

Country Link
JP (1) JP5799177B2 (ja)
KR (1) KR102226987B1 (ja)
CN (1) CN105026456B (ja)
TW (1) TWI641650B (ja)
WO (1) WO2015029689A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111635A1 (ja) * 2014-01-23 2015-07-30 電気化学工業株式会社 樹脂組成物
CN113166306A (zh) * 2018-12-18 2021-07-23 积水化学工业株式会社 固化性树脂组合物、固化物及有机el显示元件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6404494B2 (ja) * 2016-10-19 2018-10-10 積水化学工業株式会社 有機el表示素子用封止剤
JPWO2019146736A1 (ja) * 2018-01-26 2021-01-28 味の素株式会社 封止用硬化性樹脂組成物
CN112955488A (zh) * 2018-11-28 2021-06-11 积水化学工业株式会社 固化性树脂组合物、固化物及有机el显示元件
WO2020171186A1 (ja) * 2019-02-21 2020-08-27 デンカ株式会社 組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238148A (ja) * 1994-02-25 1995-09-12 Hitachi Chem Co Ltd 感光性ポリアミドエポキシ樹脂組成物
JP2005241977A (ja) * 2004-02-26 2005-09-08 Taiyo Ink Mfg Ltd 光硬化性・熱硬化性樹脂組成物及びそれを用いたプリント配線板
JP2006135128A (ja) * 2004-11-08 2006-05-25 Seiko Epson Corp 導電性材料用組成物、導電性材料、導電層、電子デバイスおよび電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357973A (ja) 2000-06-15 2001-12-26 Sony Corp 表示装置
WO2009116618A1 (ja) * 2008-03-21 2009-09-24 積水化学工業株式会社 硬化性組成物、異方性導電材料及び接続構造体
JP2012025935A (ja) * 2010-06-25 2012-02-09 Sumitomo Bakelite Co Ltd 樹脂組成物、透明複合基板および表示素子基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238148A (ja) * 1994-02-25 1995-09-12 Hitachi Chem Co Ltd 感光性ポリアミドエポキシ樹脂組成物
JP2005241977A (ja) * 2004-02-26 2005-09-08 Taiyo Ink Mfg Ltd 光硬化性・熱硬化性樹脂組成物及びそれを用いたプリント配線板
JP2006135128A (ja) * 2004-11-08 2006-05-25 Seiko Epson Corp 導電性材料用組成物、導電性材料、導電層、電子デバイスおよび電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111635A1 (ja) * 2014-01-23 2015-07-30 電気化学工業株式会社 樹脂組成物
JPWO2015111635A1 (ja) * 2014-01-23 2017-03-23 デンカ株式会社 樹脂組成物
US10683414B2 (en) 2014-01-23 2020-06-16 Denka Company Limited Resin composition
CN113166306A (zh) * 2018-12-18 2021-07-23 积水化学工业株式会社 固化性树脂组合物、固化物及有机el显示元件
CN113166306B (zh) * 2018-12-18 2023-11-10 积水化学工业株式会社 固化性树脂组合物、固化物及有机el显示元件

Also Published As

Publication number Publication date
KR20160047425A (ko) 2016-05-02
CN105026456A (zh) 2015-11-04
TWI641650B (zh) 2018-11-21
CN105026456B (zh) 2017-10-17
KR102226987B1 (ko) 2021-03-11
JP5799177B2 (ja) 2015-10-21
JPWO2015029689A1 (ja) 2017-03-02
TW201510056A (zh) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6200203B2 (ja) 有機エレクトロルミネッセンス表示素子用封止剤及び有機エレクトロルミネッセンス表示素子の製造方法
JP5799177B2 (ja) 光後硬化性樹脂組成物
JP5887467B1 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
KR102226349B1 (ko) 유기 el 표시 소자용 밀봉제
JP7025209B2 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP6378985B2 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP5966113B1 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP2017228414A (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP2019147963A (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP6247125B2 (ja) 有機光デバイスの製造方法
JP6609439B2 (ja) 硬化性組成物及び有機エレクトロルミネッセンス表示素子用封止剤
JP6378450B2 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
KR20220038275A (ko) 유기 el 표시 소자용 봉지제
JP7010824B2 (ja) 有機el表示素子用封止剤
JP2015044917A (ja) 光後硬化性樹脂組成物
JP5703429B1 (ja) 有機el表示素子用封止剤
KR102679291B1 (ko) 유기 일렉트로 루미네선스 표시 소자용 밀봉제
WO2020158776A1 (ja) 有機el表示素子用封止剤
WO2018221363A1 (ja) 有機el表示素子用封止剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011850.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014539172

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157024550

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839604

Country of ref document: EP

Kind code of ref document: A1