WO2015025913A1 - 内燃機関の点火装置及び内燃機関 - Google Patents

内燃機関の点火装置及び内燃機関 Download PDF

Info

Publication number
WO2015025913A1
WO2015025913A1 PCT/JP2014/071856 JP2014071856W WO2015025913A1 WO 2015025913 A1 WO2015025913 A1 WO 2015025913A1 JP 2014071856 W JP2014071856 W JP 2014071856W WO 2015025913 A1 WO2015025913 A1 WO 2015025913A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
internal combustion
combustion engine
plasma generator
plasma
Prior art date
Application number
PCT/JP2014/071856
Other languages
English (en)
French (fr)
Inventor
池田 裕二
實 牧田
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to US14/912,994 priority Critical patent/US10132286B2/en
Priority to EP14837353.3A priority patent/EP3037651A4/en
Priority to JP2015532891A priority patent/JP6082881B2/ja
Publication of WO2015025913A1 publication Critical patent/WO2015025913A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/02Arrangements having two or more sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/463Microwave discharges using antennas or applicators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition

Definitions

  • the present invention relates to an ignition device for an internal combustion engine and an internal combustion engine equipped with the ignition device.
  • an ignition device for ignition of an internal combustion engine an ignition device using a plasma generation device that generates electromagnetic wave plasma by radiating electromagnetic waves into a combustion chamber of the internal combustion engine has been proposed.
  • Japanese Unexamined Patent Application Publication Nos. 2009-38025 and 2006-132518 describe an ignition device for an internal combustion engine using this type of plasma generation apparatus.
  • Japanese Patent Application Laid-Open No. 2009-38025 describes a plasma generation apparatus that generates a spark discharge in a discharge gap of a spark plug and radiates a microwave toward the discharge gap to expand the plasma.
  • plasma generated by spark discharge receives energy from a microwave pulse. This accelerates electrons in the plasma region, promotes ionization, and increases the volume of the plasma.
  • Japanese Patent Laid-Open No. 2006-132518 discloses an ignition device for an internal combustion engine that generates a plasma discharge by radiating electromagnetic waves from an electromagnetic wave radiator into a combustion chamber.
  • An ignition electrode insulated from the piston is provided on the upper surface of the piston. The ignition electrode serves to locally increase the electric field strength of the electromagnetic wave in the combustion chamber in the vicinity thereof.
  • the internal combustion engine ignition device generates plasma discharge in the vicinity of the ignition electrode.
  • the plasma generating apparatus described in Japanese Patent Application Laid-Open No. 2009-38025 requires at least two power sources: a high voltage power source for causing discharge in the spark plug and a high frequency power source for emitting microwaves.
  • a high voltage power source for causing discharge in the spark plug
  • a high frequency power source for emitting microwaves.
  • the plasma generator is used in a combustion chamber of an automobile engine or the like, the installation space is limited, and thus there is a disadvantage that it is difficult to secure an installation place in such a plasma generator that requires a plurality of power sources.
  • both a high voltage distribution system and an electromagnetic wave distribution system for a conventional spark plug are required, which makes it highly complicated and requires only an electromagnetic wave for ignition.
  • An ignition device for an internal combustion engine An electromagnetic wave oscillator that oscillates electromagnetic waves; A control device for controlling the electromagnetic wave oscillator; A booster circuit including a resonance circuit capacitively coupled to the electromagnetic wave oscillator, and a plasma generator integrally formed with a discharge electrode for discharging a high voltage generated by the booster circuit; An ignition device for an internal combustion engine, wherein a plurality of the plasma generators are arranged so that the discharge electrode is exposed to a combustion chamber of the internal combustion engine.
  • the ignition device of the present invention can generate, expand, and maintain plasma only by electromagnetic waves, a single power source is sufficient. Further, the plasma generating apparatus can generate a high voltage by including a booster circuit that resonates electromagnetic waves, and can efficiently generate sparks and generate plasma with only electromagnetic waves.
  • the electromagnetic wave used in the ignition device of the present invention is a relatively high frequency electromagnetic wave
  • the resonance circuit of the plasma generator can be reduced in size, and compared with a known spark plug, The outer shape of the part to be attached can be a small diameter. For this reason, a plurality of plasma generators can be easily arranged without changing the structure and size of the intake / exhaust valves and the shape of the cylinder head.
  • the plasma generator is preferably arranged at the center of the combustion chamber ceiling surface of the internal combustion engine and between the intake ports, between the exhaust ports, and between the intake port and the exhaust port formed on the ceiling surface.
  • the combustion chamber ceiling surface of the internal combustion engine means a surface exposed to the combustion chamber in the cylinder head, and includes a surface parallel to the piston.
  • the plasma generator can be arranged along the outer periphery of the ceiling surface of the combustion chamber of the internal combustion engine.
  • the fire type plasma generated by the electromagnetic wave
  • the flame propagates from the center toward the outer periphery, and heat is transmitted to the cylinder wall surface at the outermost temperature, which is inefficient.
  • the present configuration in which the flame propagates from the outer periphery of the cylinder toward the center is excellent in thermal efficiency.
  • control device can control the supply of electromagnetic waves to each plasma generator so as to perform with a time difference.
  • the plasma generation by electromagnetic waves with a time difference it is possible to control the flame propagation in the cylinder, the position of the flame, and the like.
  • control device can control the oscillation of the electromagnetic wave oscillator so that the discharge from the discharge electrode of each plasma generator draws a circle or a semicircle.
  • the control device can control the oscillation of the electromagnetic wave oscillator so that the discharge from the discharge electrode of each plasma generator draws a circle or a semicircle.
  • the resonance circuits of the plurality of plasma generators are configured to resonate with different frequency characteristics, and the control device controls the oscillation of the electromagnetic wave oscillator by designating a frequency at which each resonance circuit resonates. Can be. Only by controlling the frequency of the oscillating electromagnetic wave, the plasma generation position by the electromagnetic wave can be controlled.
  • An ignition device for an internal combustion engine An electromagnetic wave oscillator that oscillates electromagnetic waves; A control device for controlling the electromagnetic wave oscillator; A booster circuit including a resonant circuit capacitively coupled to the electromagnetic wave oscillator, and a plasma generator integrally formed with a discharge electrode for discharging a high voltage generated by the booster circuit; An electromagnetic radiation antenna that emits electromagnetic waves that assist the electromagnetic plasma generated by the plasma generator, and The plasma generator is disposed such that the discharge electrode is exposed to a combustion chamber of an internal combustion engine; An ignition device for an internal combustion engine in which at least one electromagnetic radiation antenna is disposed at a position where the electromagnetic wave plasma generated by the plasma generator is moved in a direction away from the electromagnetic radiation antenna.
  • the ignition device of the second invention can generate, expand, and maintain plasma only with electromagnetic waves, so only one power source is sufficient.
  • the plasma generating apparatus can generate a high voltage by including a booster circuit that resonates electromagnetic waves, and can efficiently generate sparks and generate plasma with only electromagnetic waves.
  • at least one plasma generator for causing spark discharge and the plasma generated by the plasma generator are expanded and maintained while moving in the cylinder in the other direction. The combustion efficiency of the internal combustion engine can be further improved by the provided electromagnetic radiation antenna.
  • the reflected wave from the plasma generator can be used to supply the electromagnetic wave to the electromagnetic wave radiation antenna.
  • the impedances of the electromagnetic wave oscillator and the plasma generator are not matched, and a reflected wave is generated.
  • the electromagnetic wave oscillator can be reduced in size.
  • the electromagnetic wave oscillator, the plasma generator and the electromagnetic wave radiation antenna are connected to the connection terminal of the circulator so that the traveling wave of the electromagnetic wave oscillator flows to the plasma generator and the reflected wave from the plasma generator flows to the electromagnetic wave radiation antenna. It is preferable to do.
  • the circulator By using the circulator, the reflected wave can be effectively utilized with a simple circuit.
  • the present invention also includes an internal combustion engine including the above-described ignition device of the present invention and an internal combustion engine body in which a combustion chamber is formed.
  • the internal combustion engine of the present invention is superior in combustion efficiency because it includes the above-described ignition device that can efficiently generate, maintain, and expand plasma with only electromagnetic waves.
  • the plasma generation apparatus of the present invention can generate a high voltage by including a booster circuit that resonates electromagnetic waves, and can generate sparks only by electromagnetic waves. For this reason, the plasma generating apparatus requires only one power source, and does not require a complicated transmission line.
  • the plasma generating apparatus uses a predetermined oscillation pattern including an electromagnetic wave pulse under a condition for causing a spark discharge and an electromagnetic wave pulse under a condition for causing a discharge for expanding and maintaining the generated plasma. Therefore, generation, expansion, and maintenance of plasma can be efficiently performed only by electromagnetic waves, power consumption can be reduced, and combustion efficiency can be improved.
  • FIG. 1 is a block diagram of an internal combustion engine ignition device according to Embodiment 1.
  • FIG. It is sectional drawing of the plasma generator used for the ignition device. 2 shows different embodiments of discharge electrodes of a plasma generator, (a1) to (a2) are examples in which the discharge gap is partially reduced, and (b1) to (b2) are used to generate creeping discharge. (C1) to (c2) show examples in which creeping discharge is generated and the discharge gap is partially reduced. It is the schematic explaining the method of selecting the plasma generator to discharge, and shows the example set up so that each frequency of the resonance circuit contained in a booster circuit may differ.
  • FIG. 3 is another block diagram of the internal combustion engine ignition device of the first embodiment. It is an equivalent circuit of the booster circuit of the plasma generator.
  • FIG. 6 is a block diagram of an ignition device for an internal combustion engine according to Embodiment 2.
  • FIG. 6 is another block diagram of an internal combustion engine ignition device according to Embodiment 2.
  • FIG. 6 is a plan view of a cylinder head of an internal combustion engine according to a second embodiment as viewed from the combustion chamber side.
  • FIG. 6 is a front sectional view showing an internal combustion engine of a third embodiment. It is the top view which looked at the cylinder head of the internal combustion engine from the combustion chamber side. It is the top view which looked at the cylinder head of the internal combustion engine from the combustion chamber side.
  • Ignition device for internal combustion engine is an ignition device for an internal combustion engine according to the present invention.
  • the ignition device 1 includes an electromagnetic wave power source 2, an electromagnetic wave oscillator 3, a booster circuit 5, a discharge electrode 6, and a control device 4.
  • the booster circuit 5 and the discharge electrode 6 are integrally formed to constitute the plasma generator 10.
  • the resonance circuit included in the booster circuit 5 includes a first resonance portion Re1 and a second resonance portion Re2 which will be described later.
  • the electromagnetic wave power source 2 When receiving an electromagnetic wave oscillation signal (for example, a TTL signal) from the control device 4, the electromagnetic wave power source 2 outputs a pulse current to the electromagnetic wave oscillator 3 in a pattern in which a predetermined duty ratio, a pulse time, and the like are set.
  • an electromagnetic wave oscillation signal for example, a TTL signal
  • the electromagnetic wave oscillator 3 is, for example, a semiconductor oscillator.
  • the electromagnetic wave oscillator 3 is electrically connected to the electromagnetic wave power source 2.
  • the electromagnetic wave oscillator 3 When receiving a pulse current from the electromagnetic wave power source 2, the electromagnetic wave oscillator 3 outputs a microwave pulse to the booster circuit 5.
  • a distribution function such as a switch is incorporated in the electromagnetic wave oscillator 3 in order to specify the plasma generator 10 that oscillates.
  • the electromagnetic wave oscillator 3 includes an amplifier such as a power amplifier. This amplifier receives an ON / OFF command from the control device 4 and oscillates an electromagnetic wave from the electromagnetic wave oscillator 3 to the plasma generator 10.
  • the plasma generator 10 is integrally formed with a booster circuit 5 and a discharge electrode 6.
  • the booster circuit 5 includes a center electrode 53 of the input unit, a center electrode 55 of the output unit, an electrode 54 of the coupling unit, and an insulator 59 (dielectric).
  • the center electrode 53, the center electrode 55, the electrode 54, and the insulator 59 are accommodated coaxially in the case 51, but are not limited thereto.
  • the central electrode 53 of the input unit is connected from the electromagnetic wave oscillator 3 through the input unit 52 and is installed in the case 51 of the plasma generator 10.
  • the center electrode 53 is capacitively coupled to the coupling portion electrode 54 via an insulator 59.
  • the electrode 54 in the coupling portion is a bottomed cylinder, the inner diameter of the cylindrical portion of the electrode 54, the outer diameter of the center electrode 53, and the degree of coupling between the tip of the center electrode 53 and the cylindrical portion of the electrode 54 (distance L1). Determines the coupling capacitance C1.
  • the center electrode 53 is arranged so as to be movable in the axial direction, for example, so that the screw can be adjusted. Further, the coupling capacitor C1 can be easily adjusted by cutting the open end of the electrode 54 obliquely.
  • the resonance capacitance C2 is a ground capacitance (floating capacitance) due to the first resonance portion Re1 of the resonance circuit formed by the electrode 54 and the case 51 of the coupling portion.
  • the resonant capacitance C2 includes the cylindrical length of the electrode 54, the outer diameter, the inner diameter of the case 51 (the inner diameter of the portion covering the electrode 54), the gap between the electrode 54 and the case 51 (the gap of the portion covering the electrode 54), and the insulator. It is determined by the dielectric constant of 59 (dielectric).
  • the frequency at which the first resonance portion Re1 resonates is designed to resonate with the frequency of the electromagnetic wave (microwave) oscillated from the electromagnetic wave oscillator 3.
  • the resonance capacitance C3 is a discharge side capacitance (floating capacitance) by the resonance circuit Re2 formed by a portion covering the center electrode 55 of the output part and the center electrode 55 of the case 51.
  • the center electrode 55 includes a shaft portion 55b extending from the center of the bottom plate of the electrode 54 and a discharge portion 55a formed at the tip of the shaft portion 55b.
  • the discharge part 55a has a larger diameter than the shaft part 55b.
  • the resonant capacitance C3 includes the length of the discharge portion 55a and the shaft portion 55b, the outer diameter, the inner diameter of the case 51 (the inner diameter of the portion covering the center electrode 55), and the gap between the center electrode 55 and the case 51 (the tip 51a of the case 51).
  • the area of the annular portion formed by the gap between the outer peripheral surface of the discharge portion 55a and the inner peripheral surface of the tip portion 51a and the distance between the outer peripheral surface of the discharge portion 55a and the inner peripheral surface of the tip portion 51a are resonant. Since it becomes an important factor in determining the frequency, it is calculated and determined in detail.
  • the discharge part 55a is arranged so as to be movable in the axial direction with respect to the shaft part 55b, and the discharge part 55a prepares a plurality of types having different outer diameters to adjust the resonance capacitance C3. Specifically, a male screw portion is formed at the tip of the shaft portion 55b, and a female screw portion corresponding to the male screw portion of the shaft portion 55b is formed on the bottom surface of the discharge portion 55a.
  • the shape of the peripheral surface of the discharge portion 55a is formed in a waveform so that the distance between the discharge portion 55a and the inner surface of the tip portion 51a of the case 51 is different in the axial direction, or the shape of the discharge portion 55a is a spherical body, A hemispherical shape or a spheroid shape can also be used.
  • the discharge portion 55a and the inner surface (ground electrode) of the tip portion 51a of the case 51 constitute the discharge electrode 6, and discharge occurs in the gap between the discharge portion 55a and the inner surface (ground electrode) of the tip portion 51a of the case 51.
  • the end portion of the insulator 59 that covers the shaft portion 55b has a length that does not reach the discharge portion 55a. Thereby, the discharge at the discharge electrode 6 is a spatial discharge.
  • the discharge part 55a constituting the discharge electrode 6 has a teardrop shape or an elliptical shape as shown in FIGS. It can be attached eccentrically. As a result, a discharge is surely generated between the inner peripheral surface of the tip 51a and the tip of the discharge part 55a.
  • the area of the annular portion formed by the gap between the outer peripheral surface of the discharge portion 55a and the inner peripheral surface of the tip portion 51a and the inner portion of the tip portion 51a with the outer peripheral surface of the discharge portion 55a Since the distance to the peripheral surface is an important factor in determining the resonance frequency, the area of the annular portion and the distance between the outer peripheral surface of the discharge portion 55a and the inner peripheral surface of the tip portion 51a are calculated in detail.
  • the discharge part 55a is cylindrical and coaxial with the case 51, it discharges at 840 W at 8 atmospheres. It was confirmed that the discharge was not performed even at 1 kW at 9 atmospheres, but the discharge was performed at 500 W even at 15 atmospheres when the discharge gap was partially shortened.
  • the front end 51a of the case 51 is formed with a thread (male thread) on the outer peripheral surface so that it can be screwed into a mounting port formed in a cylinder head of an internal combustion engine, which will be described later.
  • the male screw portion may be provided on the entire tip portion 51a, but is formed only at the root portion, and the discharge electrode 6 is made smaller in diameter than the screw thread portion, so that a large number are provided in the cylinder head of the internal combustion engine. It becomes possible.
  • electromagnetic waves can be simultaneously oscillated from the electromagnetic wave oscillator 3 to a plurality of plasma generators 10, in this embodiment, an oscillation signal is transmitted from the control device 4 to each plasma generator 10 with a time difference. Like to do. Thereby, the capacity
  • the electromagnetic wave is oscillated by the oscillation signal from the control device 4 with a time difference, and the discharge electrodes 6 are discharged.
  • the electromagnetic wave oscillator 3 is provided with the distributing means including the switching circuit and the control device 4. Can be controlled from.
  • the resonance circuits of the plurality of plasma generators 10 are configured to resonate with different frequency characteristics, and the control device 4 designates the frequency at which each resonance circuit resonates.
  • the oscillation control of the electromagnetic wave oscillator can be performed. Specifically, as shown in FIG. 4, the resonance frequencies of the plurality of plasma generators 10A, 10B, 10C, 10D,... , Fb, fc, fd...
  • the control device 4 controls the frequency of the electromagnetic wave oscillated from the electromagnetic wave oscillator 3 to be fa.
  • the setting of resonance frequencies fa, fb, fc, fd..., Especially the frequency interval, is determined by the Q value determined by the structure of the resonance circuit.
  • FIG. 4 shows the plasma generators 10A, 10B, and 10C when the electromagnetic wave oscillator 3 outputs the switching signal to the fa, fb, and fc and the ON / OFF signal to the amplifier by the control device 4.
  • 4 is a graph showing a voltage discharged from the discharge electrode 6.
  • the equivalent circuit of the booster circuit 5 is shown in FIG.
  • the booster circuit 5 includes a resonance circuit including a capacitor C2 that is capacitively coupled to the electromagnetic wave oscillator 3 and a capacitor C3 that includes a discharge electrode portion.
  • the control device 4 In a specific plasma generation operation, first, the control device 4 outputs an electromagnetic wave oscillation signal having a predetermined frequency fa.
  • the electromagnetic wave power source 2 When receiving the electromagnetic wave oscillation signal from the control device 4, the electromagnetic wave power source 2 outputs a pulse current with a predetermined duty ratio over a predetermined set time.
  • the electromagnetic wave oscillator 3 outputs an electromagnetic wave pulse having a frequency fa at a predetermined duty ratio over a set time.
  • the electromagnetic wave pulse output from the electromagnetic wave oscillator 3 becomes a high voltage by the booster circuit 5 of the plasma generator 10A having a resonance frequency fa.
  • the mechanism for achieving a high voltage is that the stray capacitance between the center electrode 55 and the case 51 and the stray capacitance between the electrode 54 and the case 51 in the coupling portion resonate with the coil (corresponding to the shaft portion 55b). Then, a discharge occurs from the discharge part 55a toward the inner surface (ground electrode) of the tip part 51a of the case 51, and a spark is generated. By this spark, electrons are emitted from gas molecules near the discharge electrode 6 of the plasma generator 10A, and plasma is generated.
  • the control device 4 outputs an electromagnetic wave oscillation signal having a predetermined frequency fb.
  • the booster circuit 5 of the plasma generator 10B having a resonance frequency of fb causes a high voltage to generate sparks. By this spark, electrons are emitted from gas molecules near the discharge electrode 6 of the plasma generator 10B, and plasma is generated.
  • the frequency of the electromagnetic wave oscillation signal to be output is changed, and plasma is generated from each plasma generator 10.
  • the selection method of the plasma generator 10 for generating plasma is performed by arranging a switch in the electromagnetic wave oscillator 3 and controlling the switch by the control device 4, and various methods are adopted.
  • the frequency change is not limited to using the frequency of the resonance circuit.
  • the plasma generator 10 of the ignition device 1 includes a booster circuit 5 including a resonance circuit composed of a first resonance portion Re1 and a second resonance portion Re2 that resonate electromagnetic waves. It can be generated and spark can be generated only by electromagnetic waves. Therefore, it is possible to generate, maintain, and expand plasma from the plurality of plasma generators 10 only with electromagnetic waves in the target space, and only the power source 2 for electromagnetic waves is required, and no complicated transmission line or the like is required. Furthermore, the order and intensity of discharge from a plurality of plasma generators 10 can be easily set by a control device, and control of flame direction and flame propagation determined from the relationship between tumble, turbulence, and valve timing.
  • the firing order (ignition location) can be easily controlled.
  • the temperature in the combustion chamber can be easily controlled by controlling the output of the electromagnetic wave.
  • the electrodes and the like constituting the booster circuit 5 of the output unit are coaxially included in the case 51, the diameter of the tip of the plasma generator 10 can be further reduced. .
  • the plasma generator 10 of the ignition device 1 it is possible to effectively prevent knocking of the internal combustion engine by controlling the ignition location of the flame. In this case, it is possible to more reliably suppress knocking by using a knock sensor in combination and performing ignition control according to the location where knocking occurs.
  • the plasma generator 10 is the same as the first embodiment except that the configuration of the discharge electrode 6 is different.
  • the discharge electrode 6 is configured to cause creeping discharge between the inner surface (ground electrode) of the tip 51a of the case 51 and the discharge portion 55a.
  • a dielectric is interposed between the electrodes, and discharge is performed along the dielectric, whereby the voltage required for the discharge can be kept low.
  • a ring-shaped dielectric 57 that contacts the inner surface of the tip 51a is attached to the shaft 55b.
  • the discharge portion 55a is attached to the shaft portion 55b so as to be in contact with the surface of the dielectric 57.
  • the shape of the discharge portion 55a can be a teardrop shape or an elliptical shape, and can be attached eccentrically to the shaft portion 55b.
  • the discharge is surely generated on the surface of the dielectric 57 between the inner peripheral surface of the tip portion 51a and the tip of the discharge portion 55a.
  • the ignition device 1 includes an electromagnetic wave power source 2, an electromagnetic wave oscillator 3, a booster circuit 5, a discharge electrode 6, and a control device 4, as in the first embodiment.
  • the ignition device 1 includes an electromagnetic wave power source 2, an electromagnetic wave oscillator 3, a booster circuit 5, a discharge electrode 6, and a control device 4, as in the first embodiment.
  • at least one plasma generator 10 in which the booster circuit 5 and the discharge electrode 6 are integrally formed is provided, and electromagnetic wave radiation for radiating an electromagnetic wave pulse from the electromagnetic wave oscillator 3 to the combustion chamber of the internal combustion engine without passing through the booster circuit.
  • At least one antenna 7 is provided.
  • the plasma generator 10 plays a role of generating plasma that serves as a seed for igniting the air-fuel mixture in the combustion chamber.
  • the ceiling surface 20A of the combustion chamber 20 (in the cylinder head 22).
  • One unit is arranged at the approximate center of the surface exposed to the combustion chamber 20.
  • the electromagnetic wave radiation antenna 7 is moved between the ports formed on the ceiling surface 20A (as shown in FIG. 9A) to move the electromagnetic wave plasma generated by the plasma generator in the away direction. It is arranged on the outer periphery side of the cylinder head 22.
  • the configuration of the block diagram shown in FIG. 7 is such that electromagnetic waves are simultaneously output to a plurality of antennas 7 for radiating electromagnetic waves, but the present invention is not limited to this, and a distributor is provided in the electromagnetic wave oscillator 3.
  • the control device 4 is preferably configured to select the electromagnetic wave radiation antenna 7 that outputs an electromagnetic wave pulse.
  • the plasma generator 10 can be disposed between the suction ports of the ceiling surface 20A, and the electromagnetic wave radiation antenna 7 can be disposed along the swirl flow generated in the combustion chamber.
  • the arrangement along the flow of the swirl flow means that a plurality of electromagnetic wave radiation antennas 7 are arranged along the outer periphery of the cylinder head, and the electromagnetic waves are sequentially transmitted from the electromagnetic wave oscillator 3 along the flow of the swirl flow with a time difference.
  • the control device 4 controls the pulse voltage so as to output an electromagnetic wave pulse to the radiation antenna 7.
  • the resonance circuit included in the booster circuit 5 includes the first resonance portion Re1 and the second resonance portion Re2, as in the first embodiment.
  • the electromagnetic wave irradiated from the electromagnetic wave radiation antenna 7 outputs an electromagnetic wave pulse that maintains and expands the plasma discharged from the plasma generator 10. Therefore, the pulse voltage output to the electromagnetic wave radiation antenna 7 does not need to pass from the electromagnetic wave oscillator 3 via the booster circuit, and does not need to go through the amplifier disposed inside the electromagnetic wave oscillator 3.
  • a plasma generator 10 using a high voltage, and an electromagnetic wave radiation antenna 7 for irradiating an electromagnetic wave for maintaining and expanding the plasma discharged from the plasma generator 10 The electromagnetic wave emitted from the electromagnetic wave radiation antenna 7 may be at a low voltage, and the necessary power can be suppressed as a whole.
  • the reflected wave from the plasma generator 10 is used for the electromagnetic wave output to the electromagnetic wave radiation antenna 7.
  • the plasma generator 10 a high voltage is generated by the booster circuit 5, and at the moment when the discharge electrode 6 discharges, the matching of the internal impedance is lost, and the reflected wave increases rapidly.
  • the reflected wave is guided to the electromagnetic wave radiation antenna 7 so that the reflected wave is effectively utilized.
  • the electromagnetic wave oscillator 3 As means for guiding the reflected wave from the plasma generator 10 to the electromagnetic wave radiation antenna 7, the electromagnetic wave oscillator 3, the plasma generator 10 and the electromagnetic wave radiation antenna 7 are used, and the traveling wave of the electromagnetic wave oscillator 3 is the plasma generator 10 and the plasma generator.
  • the reflected wave from 10 can be performed by connecting to the connection terminal of the circulator so as to flow to the electromagnetic wave radiation antenna 7.
  • the configuration of the circulator is not particularly limited, but in the present embodiment, a 3-port circulator (3-terminal circulator) is used.
  • a signal input from port 1 is output to port 2
  • a signal input from port 2 is output to port 3
  • a signal input from port 33 is output to port 1.
  • the electromagnetic wave oscillator 3 and the port 1, the plasma generator 10 and the port 2, and the electromagnetic wave radiation antenna 7 and the port 3 are connected.
  • the port 3 is connected to the input terminal of the distributor 8, and the plurality of output terminals of the distributor 8 are connected to the electromagnetic wave radiation antenna 7. Then, by controlling the distributor 8 by the control device 4, the reflected wave from the plasma generator 10 can be guided to an arbitrary electromagnetic wave radiation antenna 7.
  • the plasma generator 10 and the electromagnetic wave radiation antenna 7 can be paired without using the distributor 8.
  • the use of the pair of plasma generators 10 and the electromagnetic wave radiation antenna 7 is not limited.
  • FIG. 9 (b) when using four pairs of plasma generators 10 and electromagnetic radiation antennas 7, connect the pair of plasma generators 10 and electromagnetic radiation antennas 7 between the intake ports of the cylinder head.
  • the plasma generator 10 is disposed in the vicinity of the outer periphery of the antenna, and the antenna 7 for electromagnetic wave radiation is disposed in the vicinity of the center portion.
  • the remaining three pairs of the plasma generator 10 and the electromagnetic wave radiation antenna 7 can be disposed at the same position between the exhaust ports of the cylinder head and between the intake port and the exhaust port (two locations).
  • the flame temperature is as low as about 800 ° C near the center, and as high as about 2000 ° C near the outer periphery of the cylinder, heat is transferred to the cylinder wall surface and large heat loss occurs. It has become.
  • the plasma generator 10 and the electromagnetic wave radiation antenna 7 in this way, the propagation of flame flows from the outside to the inside in the cylinder, and heat loss can be greatly reduced.
  • the third embodiment is an internal combustion engine 30 including the ignition device 1 according to the first embodiment.
  • the ignition device 1 generates microwave plasma using the combustion chamber 20 as a target space.
  • the internal combustion engine 30 is a reciprocating type gasoline engine, but is not limited thereto.
  • the internal combustion engine 30 includes an internal combustion engine main body 31 and the ignition device 1 of the first embodiment.
  • the internal combustion engine main body 31 includes a cylinder block 21, a cylinder head 22, and a piston 23.
  • the cylinder block 21 is formed with a plurality of cylinders having a circular cross section.
  • a piston 23 is provided in each cylinder 24 so as to reciprocate.
  • the piston 23 is connected to the crankshaft via a connecting rod (not shown).
  • the crankshaft is rotatably supported by the cylinder block 21.
  • the cylinder head 22 is placed on the cylinder block 21 with the gasket 18 in between.
  • the cylinder head 22 defines the combustion chamber 20 together with the cylinder 24 and the piston 23.
  • a plurality of tip portions of the plasma generator 10 of the ignition device 1 are provided for each cylinder 24 so as to be exposed to the combustion chamber 20 of the internal combustion engine body 31.
  • the tip of the plasma generator 10 functions as the discharge electrode 6.
  • the plasma generator 10 can be reduced in size by reducing its outer diameter as compared with a conventional spark plug of an automobile engine. Therefore, it is possible to arrange a plurality of plasma generators 10 in the cylinder head 22 where the arrangement space is limited due to the relationship of forming the intake and exhaust ports.
  • the cylinder head 22 has an intake port 25 and an exhaust port 26 with respect to the cylinder 24.
  • the intake port 25 is provided with an intake valve 27 that opens and closes the intake port 25.
  • the exhaust port 26 is provided with an exhaust valve 28 for opening and closing the exhaust port 26.
  • One injector 29 for fuel injection is provided for each cylinder 24.
  • the injector 29 forms an injection hole on the upstream side of at least one of the two intake ports 25 and sprays fuel into the combustion chamber together with the intake air.
  • the injector 29 may protrude from the opening of the two intake ports 25 into the combustion chamber 20 and may be configured as a so-called direct injection injector. In this case, the injector 29 injects fuel from a plurality of injection ports in different directions. When a direct injection injector is used, fuel is injected toward the top surface of the piston 23.
  • the injector 29 can also be a twin injector system provided in both the intake port and the combustion chamber.
  • the plasma generator 10 of the ignition device 1 includes the center of the ceiling surface 20A of the combustion chamber 20 (the surface exposed to the combustion chamber 20 in the cylinder head 22) and the intake air of the cylinder head 22. They are arranged between the ports 25 and 25, between the exhaust ports 26 and 26, and between the intake port 25 and the exhaust port 26.
  • each plasma generator 10 The discharge from the discharge electrode 6 of each plasma generator 10 is preferably controlled by the control device 4 so that the electromagnetic wave is supplied to each plasma generator 10 with a time difference and discharged at different timings.
  • This facilitates the miniaturization of the electromagnetic wave power source 2 for supplying a pulse current to the electromagnetic wave oscillator 3 and the reduction in the capacity of the electromagnetic wave oscillation semiconductor chip of the electromagnetic wave oscillator 3.
  • the pulse current supplied to the plasma generator 10 to be discharged after that can be set to a lower output than the pulse current supplied to the plasma generator 10 to be discharged first.
  • the plasma generator 10 that discharges first is the plasma generator 10 disposed in the center of the ceiling surface 20A, and forms a seed that ignites the air-fuel mixture by the discharge (spark discharge) from the plasma generator 10.
  • the discharge from the plasma generator 10 that is discharged thereafter is effective for the purpose of maintaining and expanding the plasma generated by the first discharge, and can reduce the total power consumption. .
  • the plasma generator 10 of the ignition device 1 can be disposed along the outer periphery of the ceiling surface 20A of the combustion chamber 20, as shown in FIG.
  • the timing of discharge in this case can be controlled so that the discharge from each plasma generator 10 is sequentially discharged so as to draw a circle or a semicircle.
  • eight plasma generators from the plasma generator 10A to the plasma generator 10H are set so that the resonance frequency of each resonance circuit is different
  • the discharge order becomes a circle.
  • These controls are performed by the control device 4 by controlling the frequency at which the electromagnetic wave oscillator 3 oscillates.
  • Plasma generator 10A Plasma generator 10B and plasma generator 10H simultaneously (3) Plasma generator 10C and plasma generator 10G simultaneously (4) Plasma generator 10E
  • the discharge order becomes anti-circular.
  • the resonance frequencies of the resonance circuits of the plasma generator 10B and the plasma generator 10H, the plasma generator 10C and the plasma generator 10G, and the plasma generator 10D and the plasma generator 10F are set to the same frequency.
  • the plasma generator 10A, the plasma generator 10C, the plasma generator 10E, and the plasma generator 10G are discharged simultaneously, and then the remaining plasma generator 10B, plasma generator 10D, plasma generator 10F, and plasma generator 10H are discharged. It can also be made to discharge.
  • the discharge order in this case can be selected from various patterns such as determining the discharge order so that the discharge order is in line or in a semicircle.
  • a plasma generator 10 may be provided.
  • the pulse current output to the plasma generator 10 disposed in the vicinity of the center of the ceiling surface 20A can be set to a lower output than the pulse current output to the plasma generator 10 disposed on the outer peripheral side.
  • the internal combustion engine of the second embodiment by using the ignition device similar to that of the first embodiment, an internal combustion engine having a conventional plasma generation device including a spark plug using a high voltage and a microwave radiation antenna is used. Thus, a plurality of power supplies are not required, and complicated transmission lines are not required. Furthermore, in the internal combustion engine of the present embodiment, the tip portion that becomes the discharge electrode 6 of the plasma generator 10 has a smaller outer diameter than the discharge portion of the spark plug of the conventional automobile engine, and a plurality of them are arranged in the cylinder head. be able to. In addition, the degree of freedom of the arrangement position is high, and the ignition position (heat generation position) can be easily set.
  • a premixed compression ignition system (HCCI (homogeneous-charge compression ignition)) can be adopted.
  • the premixed compression ignition method is a method in which gasoline is self-ignited like a diesel engine, but it is difficult to control because the ignition timing depends on the temperature in the combustion chamber. Therefore, by using the plasma generator 10 of the ignition device 1 of the present invention, it is possible to easily control the temperature in the combustion chamber by controlling the output of electromagnetic waves and the like, and compensate for the disadvantages of the premixed compression ignition system. be able to.
  • the third embodiment is an internal combustion engine 30 including the ignition device 1 according to the second embodiment.
  • the ignition device 1 generates microwave plasma using the combustion chamber 20 as a target space.
  • the internal combustion engine 30 is a reciprocating gasoline engine as shown in FIG. 2, but is not limited thereto.
  • the internal combustion engine 30 includes an internal combustion engine main body 31 and the ignition device 1 of the second embodiment.
  • the configuration of the internal combustion engine main body 31 is the same as that of the third embodiment, and a description thereof will be omitted.
  • At least one plasma generator 10 and at least one electromagnetic wave radiation antenna 7 are disposed on the ceiling surface 20 A of the combustion chamber 20.
  • the arrangement position of the plasma generator 10 and the electromagnetic wave radiation antenna 7 is not particularly limited, but is arranged at the position shown in FIG.
  • the plasma generator 10 disposed approximately at the center of the ceiling surface 20 ⁇ / b> A of the combustion chamber 20 serves as a seed fire for igniting the air-fuel mixture in the combustion chamber 20. Plays a role in generating plasma.
  • the electromagnetic wave irradiated from the electromagnetic wave radiation antenna 7 outputs an electromagnetic wave pulse that maintains and expands the plasma discharged from the plasma generator 10. Therefore, the pulse voltage output to the electromagnetic wave radiation antenna 7 does not need to pass from the electromagnetic wave oscillator 3 via the booster circuit, and does not need to go through the amplifier disposed inside the electromagnetic wave oscillator 3.
  • a high voltage is used to emit a plasma generator 10 that discharges plasma that ignites an air-fuel mixture, and an electromagnetic wave that is used to maintain and expand the plasma discharged from the plasma generator 10 is irradiated.
  • the electromagnetic wave radiating antenna 7 is provided, and the electromagnetic wave radiated from the electromagnetic wave radiating antenna 7 may be at a low voltage, and the necessary power can be suppressed as a whole.
  • the first modification of the fourth embodiment includes an ignition device for an internal combustion engine similar to the first modification of the second embodiment.
  • the details of such an ignition device have been described in detail in the first modification of the second embodiment, and a description thereof will be omitted here.
  • the internal combustion engine of this modification by providing such an ignition device, it is possible to effectively use the reflected wave from the plasma generator 10 and reduce the total amount of necessary power.
  • the internal combustion engine of the present embodiment causes the propagation of flame to flow from the outside to the inside in the cylinder 24 and is transmitted to the cylinder wall surface.
  • the amount of heat can be reduced, and heat loss can be greatly reduced.
  • the ignition device of the present invention can generate, expand, and maintain plasma only with electromagnetic waves, only one power source is required, and no complicated transmission line or the like is required. Furthermore, the plasma generator used in the ignition device of the present invention can have a smaller outer dimension of the mounting portion to the cylinder head compared to a general spark plug, so that the degree of freedom of the arrangement position can be reduced. High and easy to install multiple plasma generators, can generate, expand and maintain plasma efficiently only by electromagnetic waves, can reduce the total amount of power consumption and combustion efficiency of internal combustion engine Can be improved. Therefore, the ignition device of the present invention is suitably used for an internal combustion engine such as an automobile engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Plasma Technology (AREA)

Abstract

 本発明は、内燃機関の点火装置であって、高電圧によって放電するスパークプラグや複雑なシステム等を必要とせず、電磁波のみを使って、プラズマの発生、拡大及び維持を効率よく行うことができる小型の内燃機関の点火装置及び内燃機関を供給することであって、電磁波を発振する電磁波発振器(3)と、前記電磁波発振器(3)を制御する制御装置(4)と、前記電磁波発振器(3)と容量結合した共振回路を含む昇圧回路(5)及び該昇圧回路(5)により発生した高電圧を放電させる放電電極(6)を一体的に形成したプラズマ生成器(10)とを備え、前記プラズマ生成器(10)を、前記放電電極(6)が内燃機関の燃焼室に露出するように複数配設ことを特徴とする。

Description

内燃機関の点火装置及び内燃機関
 本発明は、内燃機関の点火装置及びその点火装置を備えた内燃機関に関する。
 従来から、内燃機関の着火のための点火装置として、内燃機関の燃焼室内に電磁波を放射して電磁波プラズマを生成するプラズマ生成装置を用いた点火装置が提案されている。例えば特開2009-38025号公報及び特開2006-132518号公報には、この種のプラズマ生成装置を用いた内燃機関の点火装置が記載されている。
 特開2009-38025号公報には、スパークプラグの放電ギャップでスパーク放電を生じさせるとともに、その放電ギャップに向けてマイクロ波を放射してプラズマを拡大するプラズマ生成装置が記載されている。このプラズマ生成装置では、スパーク放電により生成されたプラズマがマイクロ波パルスからエネルギーを受ける。これにより、プラズマ領域の電子が加速され、電離が促進されて、プラズマの体積が増大する。
 また、特開2006-132518号公報には、電磁波放射器から燃焼室内に電磁波を放射することによりプラズマ放電を発生させる内燃機関の点火装置が開示されている。ピストンの上面には、ピストンから絶縁された点火用電極が設けられている。点火用電極は、その近傍にて燃焼室内の電磁波の電界強度を局所的に高める役割を果たす。これにより点火用電極の近傍にてプラズマ放電が生成される内燃機関の点火装置である。
特開2009-38025号公報 特開2006-132518号公報
 しかし、特開2009-38025号公報に記載のプラズマ生成装置では、スパークプラグにおいて放電を起こさせるための高電圧電源、及びマイクロ波を放射するための高周波電源の少なくとも2つの電源が必要となる。例えばプラズマ生成装置を自動車エンジン等の燃焼室に用いる場合には設置スペースに限界があるため、このように複数の電源を要するプラズマ生成装置では設置場所を確保することが難しいという不都合がある。また、このようなプラズマ生成装置における伝送システムとしては、従来のスパークプラグに対する高電圧配送システムと電磁波配送システムの双方が必要とされるため、高度に複雑化されるとともに、電磁波のみでは着火に必要なプラズマを発生することは困難であり、火種としてスパークプラグによる放電が必要不可欠であった。一方、特開2006-132518号公報に記載のプラズマ生成装置は、電磁波のみを用いてプラズマを生成するため、電源は1つしか必要ないものの電磁波のみで着火及び燃焼反応を起こさせるためには、高周波電源から多量の電力を供給する必要がある。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、内燃機関の点火装置であって、高電圧によって放電するスパークプラグや複雑なシステム等を必要とせず、電磁波のみを使って、プラズマの発生、拡大及び維持を効率よく行うことができる小型の内燃機関の点火装置及び内燃機関を供給することである。
 内燃機関の点火装置であって、
 電磁波を発振する電磁波発振器と、
 前記電磁波発振器を制御する制御装置と、
 前記電磁波発振器と容量結合した共振回路を含む昇圧回路及び該昇圧回路により発生した高電圧を放電させる放電電極を一体的に形成したプラズマ生成器と
 を備え、
 前記プラズマ生成器を、前記放電電極が内燃機関の燃焼室に露出するように複数配設した内燃機関の点火装置である。
 本発明の点火装置は、電磁波のみでプラズマを生成、拡大、維持させることができるため、電源は一つで足りる。さらに当該プラズマ生成装置は、電磁波を共振させる昇圧回路を含むことで高電圧を発生させることができ、電磁波のみで効率よくスパークを起こしプラズマを発生させることができる。また、本発明の点火装置に用いる電磁波は、比較的高周波の電磁波を用いるようにしているから、プラズマ生成器の共振回路を小型化することができ、周知のスパークプラグに比べて、シリンダヘッドに取り付ける部分の外形を小径とすることができる。このため、吸排気弁の構造や大きさ、シリンダヘッドの形状を変更することなく容易に複数のプラズマ生成器を配設することができる。
 また、前記プラズマ生成器を、内燃機関の燃焼室天井面の中心並びに該天井面に形成される吸気ポート間、排気ポート間及び吸気ポートと排気ポートとの間に配設することが好ましい。このように配設することで、電磁波によって生成されるプラズマを効果的に維持、拡大することができる。ここで、内燃機関の燃焼室天井面とは、シリンダヘッドにおける燃焼室に露出する面をいい、ピストンと平行となる面も含む。
 また、前記プラズマ生成器を、内燃機関の燃焼室天井面の外周に沿うように配設することができる。このように配設することで、シリンダ内に発生する火種(電磁波によって生成されるプラズマ)が、シリンダ外周からシリンダ中心に向かって伝播する。シリンダヘッドの略中心にスパークプラグを備えた内燃機関の場合、火炎の伝播は中心から外周に向かい、最も高温となる外周でシリンダ壁面に熱が伝達され熱効率が悪い。一方、シリンダの外周から中心に向かって火炎が伝播する本構成では熱効率に優れる。
 さらに、前記制御装置が、各プラズマ生成器への電磁波の供給を、時間差をもって行うように制御することができる。時間差をもって、電磁波によるプラズマ生成を制御することで、シリンダ内での火炎伝播、火炎の位置等を制御することができる。
 またこの場合において、前記制御装置が、各プラズマ生成器の放電電極からの放電が円又は半円を描くように電磁波発振器の発振制御を行うようにすることができる。このように制御することで、吸気弁からのスワール流に沿って電磁波によるプラズマを生成することができる。
 また、前記複数のプラズマ生成器の共振回路は、それぞれ異なる周波数特性で共振するように構成し、前記制御装置が、それぞれの共振回路が共振する周波数を指定して電磁波発振器の発振制御を行うようにすることができる。発振する電磁波の周波数を制御するだけで、電磁波によるプラズマ生成位置を制御することができる。
 また、上記課題を解決するためになされた第2の発明は、
 内燃機関の点火装置であって、
 電磁波を発振する電磁波発振器と、
 前記電磁波発振器を制御する制御装置と、
 前記電磁波発振器と容量結合した共振回路を含む昇圧回路及び該昇圧回路により発生した高電圧を放電させる放電電極を一体的に形成したプラズマ生成器と、
 該プラズマ生成器によって生成した電磁波プラズマをアシストする電磁波を放射する電磁波放射アンテナと
 を備え、
 前記プラズマ生成器を、前記放電電極が内燃機関の燃焼室に露出するように配設し、
 前記電磁波放射アンテナを、前記プラズマ生成器によって生成した電磁波プラズマを離れた方向に向かって移動させる位置に、少なくとも1基配設した内燃機関の点火装置である。
 第2の発明の点火装置は、第1の発明と同様、電磁波のみでプラズマを生成、拡大、維持させることができるため、電源は一つで足りる。さらに当該プラズマ生成装置は、電磁波を共振させる昇圧回路を含むことで高電圧を発生させることができ、電磁波のみで効率よくスパークを起こしプラズマを発生させることができる。また、本発明の点火装置では、スパーク放電を起こすための少なくとも1つのプラズマ生成器と、プラズマ生成器によって生成したプラズマを拡大維持させながら、他の方向に向かってシリンダ内を移動させるように配設した電磁波放射アンテナによって、内燃機関の燃焼効率をより向上させることができる。
 この場合、前記電磁波放射アンテナへの電磁波の供給を、プラズマ生成器からの反射波を利用することができる。昇圧回路によって昇圧され高電圧となって放電された瞬間、電磁波発振器とプラズマ生成器とのインピーダンスが整合しなくなり、反射波が生じる。この反射波を有効に活用することで、電磁波発振器の小型化を図ることができる。
 さらに、この場合、前記電磁波発振器、プラズマ生成器及び電磁波放射アンテナを、電磁波発振器の進行波はプラズマ生成器、プラズマ生成器からの反射波は電磁波放射用アンテナに流れるようにサーキュレータの接続端子に接続することが好ましい。サーキュレータを用いることで簡単な回路で反射波を有効に活用することができる。
 本発明は、上述の本発明の点火装置と、燃焼室が形成された内燃機関本体とを備える内燃機関も含む。
 本発明の内燃機関は、電磁波のみで効率良くプラズマを生成、維持、拡大する事ができる上述の点火装置を備えているため、燃焼効率により優れる。
 本発明のプラズマ生成装置は、電磁波を共振させる昇圧回路を含むことで高電圧を発生させることができ、電磁波のみでスパークを起こすことができる。そのため、当該プラズマ生成装置においては、電源が一つで足り、複雑な伝送線路等を必要としない。また、当該プラズマ生成装置は、スパーク放電を起こす条件の電磁波パルスと、生じたプラズマを拡大・維持させるための放電を起こす条件の電磁波パルスとを含む所定の発振パターンを用いる。そのため、電磁波のみによってもプラズマの生成、拡大、維持を効率よく行うことができ、消費電力を低減することができるとともに、燃焼効率を向上させることができる。
実施形態1の内燃機関の点火装置のブロック図である。 同点火装置に使用するプラズマ生成器の断面図である。 プラズマ生成器の放電電極の異なる実施形態を示し、(a1)~(a2)は放電ギャップを部分的に小さくした例を、(b1)~(b2)は沿面放電を生じさせるために、電極間に誘電体を介在させた例を、(c1)~(c2)は沿面放電を生じさせるとともに、放電ギャップを部分的に小さくした例を示す。 放電させるプラズマ生成器を選択する方法を説明する概略図で、昇圧回路に含まれる共振回路の周波数それぞれ異なるように設定した例を示す。 実施形態1の内燃機関の点火装置の別のブロック図である。 同プラズマ生成器の昇圧回路の等価回路である。 実施形態2の内燃機関の点火装置のブロック図である。 実施形態2の内燃機関の点火装置の別のブロック図である。 実施形態2の内燃機関のシリンダヘッドを燃焼室側から見た平面図である。 実施形態3の内燃機関を示す正面断面図である。 同内燃機関のシリンダヘッドを燃焼室側から見た平面図である。 同内燃機関のシリンダヘッドを燃焼室側から見た平面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
<実施形態1>内燃機関の点火装置
 本実施形態1は、本発明に係る内燃機関の点火装置である。当該点火装置1は、図1に示すように、電磁波用電源2、電磁波発振器3、昇圧回路5、放電電極6及び制御装置4を備えている。そして、昇圧回路5及び放電電極6を一体に形成し、プラズマ生成器10を構成している。昇圧回路5に含まれる共振回路は、後述する第一共振部分Re1、第二共振部分Re2から構成されている。
 電磁波用電源2は、制御装置4から電磁波発振信号(例えばTTL信号)を受けると、所定のデューティー比、パルス時間等を設定したパターンで電磁波発振器3にパルス電流を出力する。
 電磁波発振器3は、例えば半導体発振器である。電磁波発振器3は、電磁波用電源2に電気的に接続されている。電磁波発振器3は、電磁波用電源2からパルス電流を受けると、昇圧回路5にマイクロ波パルスを出力する。半導体発振器を使用することで、照射する電磁波の出力、周波数、位相、デューティー比、パルス時間、発振するプラズマ生成器10の特定を容易に制御し、変更することができる。本実施例においては、発振するプラズマ生成器10を特定するために、電磁波発振器3にスイッチ等の分配機能を内蔵するようにしている。また、電磁波発振器3には、パワーアンプ等の増幅器を内蔵する。この増幅器は、制御装置4からのON・OFF指令を受け、電磁波発振器3からプラズマ生成器10へ電磁波を発振する。
 プラズマ生成器10は、昇圧回路5及び放電電極6を一体に形成している。昇圧回路5は、入力部の中心電極53、出力部の中心電極55、結合部の電極54及び絶縁体59(誘電体)を備える。中心電極53、中心電極55、電極54及び絶縁体59は、ケース51内に同軸状に収納されているが、これに限定されるものではない。入力部の中心電極53は、電磁波発振器3から入力部52を介して接続され、プラズマ生成器10のケース51内に設置される。そして、中心電極53は、結合部の電極54と絶縁体59を介して容量結合されている。
 結合部の電極54は有底の筒状で、電極54の筒状部分の内径、中心電極53の外径及び中心電極53の先端部と電極54の筒状部分との結合度(距離L1)によって結合容量C1が決定される。結合容量C1の調整のため、中心電極53は軸芯方向に移動可能に、例えば、ねじ調整可能なように配設される。また、電極54の開放端部を斜めに切断することで結合容量C1の調節を容易に行うこともできる
 共振容量C2は、結合部の電極54とケース51によって形成される共振回路の第一共振部分Re1による接地容量(浮遊容量)である。共振容量C2は、電極54の筒状長さ、外径、ケース51の内径(電極54を覆う部分の内径)、電極54とケース51との間隙(電極54を覆う部分の間隙)及び絶縁体59(誘電体)の誘電率によって決定される。第一共振部分Re1が共振する周波数は、電磁波発振器3から発振される電磁波(マイクロ波)の周波数に共振するように設計される。
 共振容量C3は、出力部の中心電極55とケース51の中心電極55を覆う部分によって形成される共振回路Re2による放電側容量(浮遊容量)である。中心電極55は、電極54の底板中央から延設される軸部55bと軸部55bの先端に形成される放電部55aとを備えている。放電部55aは、軸部55bよりも大径である。共振容量C3は、放電部55a及び軸部55bの長さ、外径、ケース51の内径(中心電極55を覆う部分の内径)、中心電極55とケース51との間隙(ケース51の先端部51aが中心電極55を覆う部分の間隙)の絶縁体(誘電体)の誘電率によって決定される。特に、放電部55aの外周面との先端部51aの内周面との間隙によって形成される環状部分の面積及び放電部55aの外周面との先端部51aの内周面との距離が、共振周波数を決定する際の重要な要素となるため、詳細に計算され決定される。
 放電部55aは軸部55bに対して、軸方向に移動可能に配設するとともに、放電部55aは外径の異なる複数種類を用意して共振容量C3を調整する。具体的には、軸部55bの先端に雄ねじ部を形成し、放電部55aの底面に、軸部55bの雄ねじ部に対応した雌ねじ部を形成する。また、放電部55aとケース51の先端部51a内面との距離を軸方向長さで異なるように、放電部55aの周面の形状を波形に構成したり、放電部55aの形状を球状体、半球状体又は回転楕円体形状としたりすることもできる。この放電部55a及びケース51の先端部51a内面(接地電極)が放電電極6を構成し、放電部55aとケース51の先端部51a内面(接地電極)とのギャップで放電が生じる。本実施形態では、図2に示すように軸部55bを覆う絶縁体59の端部は放電部55aに到達しない長さとしている。これにより、放電電極6での放電は、空間放電となる。
 放電電極6を構成する放電部55aは、放電を確実に行うようにするために、図3(a1)、(a2)に示すように、ティアドロップ形状や楕円形状とし、軸部55bに対して偏芯して取り付けるようにすることができる。これによって、先端部51aの内周面と放電部55aの尖頭部との間で確実に放電が生じる。なお、この様な形状としたときも放電部55aの外周面との先端部51aの内周面との間隙によって形成される環状部分の面積及び放電部55aの外周面との先端部51aの内周面との距離が、共振周波数を決定する際の重要な要素となるため、環状部分の面積及び放電部55aの外周面との先端部51aの内周面との距離は、詳細に計算される。
 このように、放電ギャップを部分的に短くすることで、高気圧下において、低電力で放電が可能となる。本発明者らの実験によると、放電部55aが円筒形でケース51と同軸の場合、8気圧において840Wで放電するものの。9気圧では1kWでも放電しなかったものが、放電ギャップを部分的に短くした形状の場合、15気圧でも500Wで放電することが確認できた。
 ケース51の先端部51aは、後述する内燃機関のシリンダヘッドに形成した取付口に螺合することができるように、外周面にねじ山(雄ねじ部)を形成する。この雄ねじ部は、先端部51a全体に設けてもよいが、根元部分にのみ形成し、放電電極6の部分をねじ山部分よりも小径とすることで、内燃機関のシリンダヘッドに多数配設することが可能となる。
 複数のプラズマ生成器10に対して、電磁波発振器3から同時に電磁波を発振することもできるが、本実施例においては、それぞれのプラズマ生成器10に対して、時間差をもって制御装置4から発振信号を送信するようにしている。これにより、電磁波用電源2の容量を小型化することができる。
 時間差をもって制御装置4からの発振信号によって電磁波を発振し、各放電電極6から放電させる方法は、電磁波発振器3内に上述したように、スイッチング回路等からなる分配手段を配設し、制御装置4から制御することができる。また、図4~図5に示すように、複数のプラズマ生成器10の共振回路を、それぞれ異なる周波数特性で共振するように構成し、制御装置4が、それぞれの共振回路が共振する周波数を指定して電磁波発振器の発振制御を行うようにすることができる。具体的には、図4に示すように、複数のプラズマ生成器10A、10B、10C、10D・・・それぞれの共振回路を含む昇圧回路5A、5B、5C、5D・・・の共振周波数をfa、fb、fc、fd・・・とする。プラズマ生成器10Aの放電電極6から昇圧した電磁波を放電させる場合には、制御装置4は、電磁波発振器3から発振する電磁波の周波数をfaとなるように制御する。共振周波数fa、fb、fc、fd・・・の設定、特に周波数の間隔は、共振回路の構造により定まるQ値によって決定される。Q値は、共振回路の共振周波数w、共振周波数wを挟んで、エネルギーが1/2になる周波数w、w(w<w)とした場合に、
/(w-w
で表される値である。本実施形態においては、例えば、wが2.45GHzの場合、Q値が約81~122.5(w-wが20~30MHz)となるように設定している。Q値がこの値の場合、共振周波数wが2.45GHzの場合、w=2.460~2.465GHz、w=2.435~2.440GHzとなる。従って、周波数の間隔は、約0.05GHzとすることが好ましい。具体的には、中心の周波数が2.45GHzとなるように、3種類の設定を行う場合は、fa=2.40GHz、fb=2.45GHz、fc=2.50GHzの設定とすることが好ましい。
 図4は、電磁波発振器3から制御装置4によって、電磁波の周波数をfa、fb、fcへの切り替え信号の出力及び増幅器へのON・OFF信号を出力したとき、プラズマ生成器10A、10B、10Cの放電電極6から放電される電圧を示すグラフである。高いQ値の共振回路を構成することで、各周波数fa、fb、fcの差を大きく異なるように設定しなくても、放電させるプラズマ生成器10を選択することができる。
 昇圧回路5の等価回路を図3に示す。昇圧回路5は、電磁波発振器3と容量結合したコンデンサC2及び放電電極部分で構成されるコンデンサC3からなる共振回路を含んでいる。
-点火装置の動作-
 点火装置1のプラズマ生成動作について説明する。プラズマ生成動作では、放電電極6からの放電により、放電電極6の近傍にプラズマが生じる。
 具体的なプラズマ生成動作は、まず制御装置4が、所定周波数faの電磁波発振信号を出力する。電磁波用電源2は、制御装置4からこのような電磁波発振信号を受けると、所定のデューティー比で所定の設定時間に亘ってパルス電流を出力する。電磁波発振器3は、設定時間に亘って周波数faの電磁波パルスを所定のデューティー比で出力する。電磁波発振器3から出力された電磁波パルスは、共振周波数がfaであるプラズマ生成器10Aの昇圧回路5により、高電圧となる。高電圧になる仕組みは、中心電極55とケース51との浮遊容量及び結合部の電極54とケース51との浮遊容量が、コイル(軸部55bが相当する)と共振するためである。そして、放電部55aからケース51の先端部51a内面(接地電極)に向かって放電が起こり、スパークが生じる。このスパークにより、プラズマ生成器10Aの放電電極6の近傍のガス分子から電子が放出され、プラズマが生成される。
 引き続き制御装置4は、所定周波数fbの電磁波発振信号を出力する。上記と同様の手順で、共振周波数がfbであるプラズマ生成器10Bの昇圧回路5により、高電圧となり、スパークが生じる。このスパークにより、プラズマ生成器10Bの放電電極6の近傍のガス分子から電子が放出され、プラズマが生成される。引き続き、出力する電磁波発振信号の周波数を変化させ、各プラズマ生成器10からプラズマを生成する。なお、プラズマを生成するプラズマ生成器10の選択方法は、上述したとおり、電磁波発振器3内部に切替器を配設し、切替器を制御装置4によって制御することで行う他、種々の方法が採用され、共振回路の周波数を利用した周波数変更に限られない。
-実施形態1の効果-
 本実施形態1の点火装置1のプラズマ生成器10は、電磁波を共振させる第一共振部分Re1、第二共振部分Re2から構成される共振回路を含む昇圧回路5を備えていることで高電圧を発生させることができ、電磁波のみでスパークを起こすことができる。そのため、対象空間において、電磁波のみで複数のプラズマ生成器10からプラズマを生成、維持、拡大させることができ、電源は電磁波用電源2のみで足り、複雑な伝送線路等を必要としない。さらには、複数のプラズマ生成器10から、放電させる順番、強さ等を制御装置によって簡単に設定することができ、タンブル、タービレンス、バルブタイミングの関係から決定される火炎の向きや火炎伝播のコントロール、着火順(着火場所)のコントロールを容易に行うことができる。また、電磁波の出力等を制御することで、燃焼室内の温度を容易にコントロールすることができる。さらに、出力部の昇圧回路5を構成する各電極等がケース51内に同軸状に内包された構造となっていることで、プラズマ生成器10の先端の径をより細くすることも可能となる。
 また、当該点火装置1のプラズマ生成器10を用いることにより、火炎の着火場所をコントロールすることで、効果的に内燃機関のノッキングを有効に防止することができる。この場合、ノックセンサーを併用し、ノッキング発生箇所に応じた着火コントロールを行ってより確実にノッキングを抑制することが可能となる。
-実施形態1の変形例1-
 実施形態1の変形例1では、プラズマ生成器10が、放電電極6の構成が異なる以外の点は実施形態1と同様である。
 この放電電極6は、ケース51の先端部51a内面(接地電極)と放電部55aとの間で沿面放電するように構成されている。沿面放電は、電極間に誘電体を介在させ、誘電体に沿うように放電させることで、放電のために要する電圧を低く抑えることができる。具体的には、図3(b)に示すように、軸部55bに、先端部51a内面に当接する環状の誘電体57を取り付ける。そして、放電部55aを、この誘電体57の表面に接するようにして軸部55bに取り付ける。
 この際、放電部55aの形状は、ティアドロップ形状や楕円形状とし、軸部55bに対して偏芯して取り付けるようにすることができる。これによって、先端部51aの内周面と放電部55aの尖頭部との間の誘電体57表面で、確実に放電が生じる。
<実施形態2>内燃機関の点火装置
 本実施形態2は、本第2発明に係る内燃機関の点火装置である。当該点火装置1は、図8に示すように、電磁波用電源2、電磁波発振器3、昇圧回路5、放電電極6及び制御装置4を備えている点は、実施形態1同様である。そして、昇圧回路5及び放電電極6を一体に形成したプラズマ生成器10を少なくとも1基備えるとともに、電磁波発振器3からの電磁波パルスを、昇圧回路を介することなく内燃機関の燃焼室に放射する電磁波放射用アンテナ7を少なくとも1基備えている。このプラズマ生成器10は燃焼室内で混合気に点火するための種火となるプラズマを生成する役割を果たし、図9(a)に示すように、燃焼室20の天井面20A(シリンダヘッド22における燃焼室20に露出する面)の略中心に1基配設するようにしている。そして、電磁波放射用アンテナ7は、プラズマ生成器によって生成した電磁波プラズマを離れた方向に向かって移動させる位置(図9(a)に示すように、天井面20Aに形成される各ポートの間でシリンダヘッド22の外周側)に配設するようにしている。
 図7に示すブロック図の構成は、複数の電磁波放射用アンテナ7に対して、同時に電磁波を出力するようにしているが、これに限られるものではなく、電磁波発振器3内に分配器を配設し、制御装置4によって、電磁波パルスを出力する電磁波放射用アンテナ7を選択するように構成することが好ましい。
 また、プラズマ生成器10を、天井面20Aの吸入ポート間に配設し、電磁波放射用アンテナ7を、燃焼室内で生じるスワール流に沿うように配設することもできる。このスワール流の流れ沿うように配設とは、シリンダヘッドの外周に沿うように複数の電磁波放射用アンテナ7を配設し、電磁波発振器3からスワール流の流れに沿うように時間差をもって、順次電磁波放射用アンテナ7に電磁波パルスを出力するよう制御装置4によってパルス電圧を制御することをいう。
 昇圧回路5に含まれる共振回路は、実施形態1と同様に、第一共振部分Re1、第二共振部分Re2から構成されている。
 そして、電磁波放射用アンテナ7から照射される電磁波は、プラズマ生成器10から放電されるプラズマを、維持・拡大させる電磁波パルスを出力する。そのため、電磁波放射用アンテナ7に出力するパルス電圧は、電磁波発振器3から昇圧回路を介する必要はなく、また電磁波発振器3内部に配設される増幅器を介する必要もない。
-実施形態2の効果-
 本実施形態2の内燃機関の点火装置においては、高電圧を利用したプラズマ生成器10と、このプラズマ生成器10から放電したプラズマを維持・拡大させるための電磁波を照射する電磁波放射用アンテナ7とを備え、電磁波放射用アンテナ7から照射する電磁波は低い電圧でよく、全体として必要な電力を抑えることができる。
-実施形態2の変形例1-
 実施形態2の変形例1においては、図8のブロック図に示すように、電磁波放射用アンテナ7に出力される電磁波を、プラズマ生成器10からの反射波を利用するようにしている。プラズマ生成器10において、昇圧回路5によって高電圧となり、放電電極6で放電された瞬間に内部インピーダンスの整合が崩れ、反射波は急激に増加する。本変形例ではこの反射波を電磁波放射用アンテナ7に導き、反射波を有効に活用するようにしたものである。
 プラズマ生成器10からの反射波を電磁波放射用アンテナ7に導く手段としては、電磁波発振器3、プラズマ生成器10及び電磁波放射アンテナ7を、電磁波発振器3の進行波はプラズマ生成器10、プラズマ生成器10からの反射波は電磁波放射用アンテナ7に流れるようにサーキュレータの接続端子に接続することによって行うことができる。
 サーキュレータの構成は特に限定するものではないが、本実施形態においては、3ポートサーキュレータ(3端子サーキュレータ)を使用する。3ポートサーキュレータは、ポート1から入力された信号はポート2に、ポート2から入力された信号はポート3に、ポー33から入力された信号はポート1へ出力される。本実施形態においては、電磁波発振器3とポート1、プラズマ生成器10とポート2、電磁波放射用アンテナ7とポート3を接続する。電磁波放射用アンテナ7が複数ある場合、ポート3と分配器8の入力端子を接続し、分配器8の複数の出力端子と電磁波放射用アンテナ7とを接続する。そして、分配器8を制御装置4によって制御することで、プラズマ生成器10からの反射波を、任意の電磁波放射用アンテナ7に導くことができる。
 また、プラズマ生成器10及び電磁波放射用アンテナ7を一対として、分配器8を用いることなく構成することもできる。
 この場合、一対のプラズマ生成器10及び電磁波放射用アンテナ7の使用に限られない。例えば、図9(b)に示すように、四対のプラズマ生成器10及び電磁波放射用アンテナ7を使用する場合、一対のプラズマ生成器10及び電磁波放射用アンテナ7を、シリンダヘッドの吸気ポート間の外周側近傍にプラズマ生成器10、中心部側近傍に電磁波放射用アンテナ7に配設する。そして、残り三対のプラズマ生成器10及び電磁波放射用アンテナ7を、シリンダヘッドの排気ポート間、吸気ポートと排気ポートの間(2箇所)に対して同様の位置に配設することもできる。通常の内燃機関では、中心に点火プラグを設けることで火炎温度は中心付近が約800℃程度の低温で、シリンダの外周付近で約2000℃の高温となりシリンダ壁面に熱が伝達して大きな熱損失となっている。この様にプラズマ生成器10及び電磁波放射用アンテナ7を配設することで、火炎の伝播はシリンダ内で外側から内側に流れ熱損失を大幅に低減することができる。
<実施形態3>内燃機関
 本実施形態3は、実施形態1に係る点火装置1を備えた内燃機関30である。点火装置1は、燃焼室20を対象空間としてマイクロ波プラズマを生成する。内燃機関30は、図2に示すように、レシプロタイプのガソリンエンジンであるがこれに限定するものではない。内燃機関30は、内燃機関本体31と実施形態1の点火装置1とを備えている。
 内燃機関本体31は、シリンダブロック21とシリンダヘッド22とピストン23とを備えている。シリンダブロック21には、横断面が円形のシリンダが複数形成されている。各シリンダ24内には、ピストン23が往復自在に設けられている。ピストン23は、コネクティングロッドを介して、クランクシャフトに連結されている(図示省略)。クランクシャフトは、シリンダブロック21に回転自在に支持されている。各シリンダ24内においてシリンダ24の軸方向にピストン23が往復運動すると、コネクティングロッドがピストン23の往復運動をクランクシャフトの回転運動に変換する。
 シリンダヘッド22は、ガスケット18を挟んで、シリンダブロック21上に載置されている。シリンダヘッド22は、シリンダ24及びピストン23と共に、燃焼室20を区画している。
 シリンダヘッド22には、各シリンダ24に対して、点火装置1のプラズマ生成器10の先端部が内燃機関本体31の燃焼室20に露出するように複数設けられている。プラズマ生成器10の先端部は、放電電極6として機能する。本実施形態では、プラズマ生成器10は、従来の自動車エンジンのスパークプラグと比べて、その外径を小径かし、小型化することができる。そのため、吸排気ポートを形成する関係から、配設スペースが限られたシリンダヘッド22に、複数のプラズマ生成器10を配設することが可能となる。
 シリンダヘッド22には、シリンダ24に対して、吸気ポート25及び排気ポート26が形成されている。吸気ポート25には、吸気ポート25を開閉する吸気バルブ27が設けられている。一方、排気ポート26には、排気ポート26を開閉する排気バルブ28が設けられている。
 シリンダ24に対して、燃料噴射用のインジェクター29が1つずつ設けられている。インジェクター29は、2つの吸気ポート25の少なくとも一方の上流側に噴出孔を形成し、吸気とともに燃焼室内に燃料を噴霧する。また、インジェクター29は、2つの吸気ポート25の開口の間から燃焼室20に突出させ、所謂直噴型インジェクターとして構成しても構わない。この場合、インジェクター29は、複数の噴射口から互いに異なる方向へ燃料を噴射する。直噴型インジェクターとしたときは、ピストン23の頂面に向かって燃料を噴射する。また、インジェクター29は、吸気ポート及び燃焼室の両方に設けるツインインジェクター方式とすることもできる。
 そして、点火装置1のプラズマ生成器10は、図11(a)に示すように、燃焼室20の天井面20A(シリンダヘッド22における燃焼室20に露出する面)の中心並びにシリンダヘッド22の吸気ポート25、25間、排気ポート26、26間及び吸気ポート25と排気ポート26との間に配設するようにしている。
 各プラズマ生成器10の放電電極6からの放電は、制御装置4によって、各プラズマ生成器10への電磁波の供給を、時間差をもって行い、それぞれが異なるタイミングで放電するように制御することが好ましい。これによって、電磁波発振器3にパルス電流を供給する電磁波用電源2の小型化及び電磁波発振器3の電磁波発振用半導体チップの低容量化を促進する。また、最初に放電するプラズマ生成器10へ供給するパルス電流よりもそれ以降に放電するプラズマ生成器10へ供給するパルス電流を低出力とすることができる。これは、最初に放電するプラズマ生成器10を天井面20Aの中心に配設したプラズマ生成器10とし、このプラズマ生成器10からの放電(スパーク放電)によって混合気に着火する種火を形成し、それ以降に放電するプラズマ生成器10からの放電は、最初の放電によって生成されたプラズマを維持・拡大させることを目的とする場合に有効であり、トータルの消費電力の低減を図ることができる。
 また、点火装置1のプラズマ生成器10は、図11(b)に示すように、燃焼室20の天井面20Aの外周に沿うように配設することができる。この場合の放電のタイミングは、各プラズマ生成器10からの放電が円又は半円を描くように順に放電するように制御することができる。具体的には、図に示すように、プラズマ生成器10Aからプラズマ生成器10Hの8基のプラズマ生成器(各共振回路の共振周波数を異なる周波数となるように設定する。)を配設した場合、プラズマ生成器10A~プラズマ生成器10Hの順に放電させることで放電の順番が円を描くようになる。これらの制御は制御装置4によって、電磁波発振器3の発振する周波数の制御によって行う。また、
(1) プラズマ生成器10A
(2) プラズマ生成器10B及びプラズマ生成器10Hを同時
(3) プラズマ生成器10C及びプラズマ生成器10Gを同時
(4) プラズマ生成器10E
の順に放電することで放電の順番が反円を描くようになる。この場合、プラズマ生成器10Bとプラズマ生成器10H、プラズマ生成器10Cとプラズマ生成器10G、プラズマ生成器10Dとプラズマ生成器10Fそれぞれの共振回路の共振周波数を同じ周波数に設定する。
 さらに、プラズマ生成器10A、プラズマ生成器10C、プラズマ生成器10E及びプラズマ生成器10Gを同時に放電させ、次いで、残りのプラズマ生成器10B、プラズマ生成器10D、プラズマ生成器10F及びプラズマ生成器10Hを放電させるようにすることもできる。
 また、図12(a)に示すように、燃焼室20の天井面20Aの外周に沿うように配設するプラズマ生成器10を、プラズマ生成器10Aからプラズマ生成器10Lまでの12基配設することもできる。この場合の放電の順番も上述した場合と同様、放電の順番が沿又は半円を描くように放電の順番を決定する等、種々のパターンを選択することができる。さらに、図12(b)に示すように、プラズマ生成器10を配設することもできる。この場合、天井面20Aの中心近傍に配設するプラズマ生成器10に出力するパルス電流を外周側に配設する、プラズマ生成器10に出力するパルス電流よりも低出力に設定することもできる。
 図11及び図12に示すように、特に図11(b)及び図12(a)に示すように、燃焼室20の天井面20A外周にプラズマ生成器10を複数配設するときは、火炎の伝播は、シリンダ24内で外側から内側に流れることとなり、シリンダ壁面に伝達する熱量を低減させ、熱損失を大幅に低減することができる。このように、本実施形態の内燃機関30においては、混合気に着火した後、熱損失を下げるとともに、熱発生位置をプラズマ生成器10からの放電開始時期を調整することでコントロールすることができる。これらのコントロール(放電出力、放電位置、放電タイミングのコントロール)は、電磁波発振器3として半導体チップ(RFチップ)を利用することで、nsec(ナノ秒)オーダーで制御することが可能である。
-実施形態3の効果-
 本実施形態2の内燃機関においては、実施形態1と同様の点火装置を用いていることで、高電圧を利用した点火プラグとマイクロ波放射アンテナとを備える従来のプラズマ生成装置を備える内燃機関のように複数の電源を必要とせず、複雑な伝送線路等も必要としない。さらに、本実施形態の内燃機関においては、プラズマ生成器10の放電電極6となる先端部は、従来の自動車エンジンのスパークプラグの放電部よりも外形が小径であり、シリンダヘッドに複数配設することができる。また、配設位置の自由度も高く、着火位置(熱発生位置)を容易に設定することができる。
 また、内燃機関として、予混合圧縮着火方式(HCCI(Homogeneous-Charge Compression Ignition))を採用することができる。予混合圧縮着火方式は、ガソリンをディーゼルエンジンのように自己着火させる方式であるが、着火時期が燃焼室内の温度に依存するため、そのコントロールが困難である。そのため、本発明の点火装置1のプラズマ生成器10を用いることにより、電磁波の出力等を制御することで、燃焼室内の温度を容易にコントロールすることができ、予混合圧縮着火方式の欠点を補うことができる。
<実施形態4>内燃機関
 本実施形態3は、実施形態2に係る点火装置1を備えた内燃機関30である。点火装置1は、燃焼室20を対象空間としてマイクロ波プラズマを生成する。内燃機関30は、実施形態3と同様、図2に示すように、レシプロタイプのガソリンエンジンであるがこれに限定するものではない。内燃機関30は、内燃機関本体31と実施形態2の点火装置1とを備えている。
 内燃機関本体31の構成は、実施形態3と同様であり、説明を省略する。
 そして、この内燃機関30は、燃焼室20の天井面20Aに、少なくとも1基のプラズマ生成器10及び少なくとも1基の電磁波放射用アンテナ7を配設するようにしている。
 プラズマ生成器10及び電磁波放射用アンテナ7の配設位置は、特に限定されないが、図9(a)に示す位置に配設する。
 燃焼室20の天井面20A(シリンダヘッド22における燃焼室20に露出する面)の略中心に配設されるプラズマ生成器10は、燃焼室20内で混合気に点火するための種火となるプラズマを生成する役割を果たす。そして、電磁波放射用アンテナ7から照射される電磁波は、プラズマ生成器10から放電されるプラズマを、維持・拡大させる電磁波パルスを出力する。そのため、電磁波放射用アンテナ7に出力するパルス電圧は、電磁波発振器3から昇圧回路を介する必要はなく、また電磁波発振器3内部に配設される増幅器を介する必要もない。
-実施形態4の効果-
 本実施形態4の内燃機関においては、高電圧を利用し、混合気に着火するプラズマを放電するプラズマ生成器10と、このプラズマ生成器10から放電したプラズマを維持・拡大させるための電磁波を照射する電磁波放射用アンテナ7とを備え、電磁波放射用アンテナ7から照射する電磁波は低い電圧でよく、全体として必要な電力を抑えることができる。
-実施形態4の変形例1-
 実施形態4の変形例1においては、実施形態2の変形例1と同様の内燃機関の点火装置を備えている。このような点火装置の詳細については、実施形態2の変形例1において詳細に説明したので、ここでの説明を省略する。本変形例の内燃機関においては、このような点火装置を備えていることで、プラズマ生成器10からの反射波を有効に利用し、必要な電力の合計量を低減させることができる。
 このようにプラズマ生成器10及び電磁波放射用アンテナ7の配設することで、本実施形態の内燃機関は、火炎の伝播が、シリンダ24内で外側から内側に流れることとなり、シリンダ壁面に伝達する熱量を低減させ、熱損失を大幅に低減することができる。
 以上説明したように、本発明の点火装置は、電磁波のみでプラズマを生成、拡大、維持させることができるため、電源は一つで足り、複雑な伝送線路等を必要としない。さらには、本発明の点火装置に使用されるプラズマ生成器は、一般的なスパークプラグと比べてシリンダヘッドへの取付部の外形寸法を小径とすることができるので、配設位置の自由度が高く、容易に複数のプラズマ生成器を取り付けることができ、電磁波のみによってもプラズマの生成、拡大、維持を効率よく行うことができ、消費電力の合計量を低減することができ内燃機関の燃焼効率の向上を図ることができる。そのため、本発明の点火装置は、自動車エンジン等の内燃機関等に好適に用いられる。
 1   点火装置
 2   電磁波用電源
 3   電磁波発振器
 4   制御装置
 5   昇圧回路
 6   放電電極
 7   電磁波放射用アンテナ
 8   分配器
 10  プラズマ生成器
 20  燃焼室
 20A 天井面
 30  内燃機関
 51  ケース
 51  外ケース
 51a 先端部
 52  入力部
 53  中心電極
 54  電極
 55  中心電極
 55a 放電部
 55b 軸部
 57  誘電体
 59  絶縁体

Claims (10)

  1.  内燃機関の点火装置であって、
     電磁波を発振する電磁波発振器と、
     前記電磁波発振器を制御する制御装置と、
     前記電磁波発振器と容量結合した共振回路を含む昇圧回路及び該昇圧回路により発生した高電圧を放電させる放電電極を一体的に形成したプラズマ生成器と
     を備え、
     前記プラズマ生成器を、前記放電電極が内燃機関の燃焼室に露出するように複数配設した内燃機関の点火装置。
  2.  前記プラズマ生成器を、内燃機関の燃焼室天井面の中心並びに該天井面に形成される吸気ポート間、排気ポート間及び吸気ポートと排気ポートとの間に配設した請求項1に記載の内燃機関の点火装置。
  3.  前記プラズマ生成器を、内燃機関の燃焼室天井面の外周に沿うように配設した請求項1に記載の内燃機関の点火装置。
  4.  前記制御装置が、各プラズマ生成器への電磁波の供給を、時間差をもって行うように制御する請求項1、2又は3に記載の内燃機関の点火装置。
  5.  前記制御装置が、各プラズマ生成器の放電電極からの放電が円又は半円を描くように電磁波発振器の発振制御を行うようにした請求項4記載の内燃機関の点火装置。
  6.  前記複数のプラズマ生成器の共振回路は、それぞれ異なる周波数特性で共振するように構成し、前記制御装置が、それぞれの共振回路が共振する周波数を指定して電磁波発振器の発振制御を行うようにした請求項1、2又は3に記載の内燃機関の点火装置。
  7.  内燃機関の点火装置であって、
     電磁波を発振する電磁波発振器と、
     前記電磁波発振器を制御する制御装置と、
     前記電磁波発振器と容量結合した共振回路を含む昇圧回路及び該昇圧回路により発生した高電圧を放電させる放電電極を一体的に形成したプラズマ生成器と、
     該プラズマ生成器によって生成した電磁波プラズマをアシストする電磁波を放射する電磁波放射アンテナと
     を備え、
     前記プラズマ生成器を、前記放電電極が内燃機関の燃焼室に露出するように配設し、
     前記電磁波放射アンテナを、前記プラズマ生成器によって生成した電磁波プラズマを離れた方向に向かって移動させる位置に、少なくとも1基配設した内燃機関の点火装置。
  8.  前記電磁波放射アンテナへの電磁波の供給を、プラズマ生成器からの反射波を利用するようにした請求項7記載の内燃機関の点火装置。
  9.  前記電磁波発振器、プラズマ生成器及び電磁波放射アンテナを、電磁波発振器の進行波はプラズマ生成器、プラズマ生成器からの反射波は電磁波放射用アンテナに流れるようにサーキュレータの接続端子に接続した請求項8記載の点火装置。
  10.  請求項1から請求項9のいずれか1項に記載の点火装置と、燃焼室が形成された内燃機関本体とを備える内燃機関。
PCT/JP2014/071856 2013-08-21 2014-08-21 内燃機関の点火装置及び内燃機関 WO2015025913A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/912,994 US10132286B2 (en) 2013-08-21 2014-08-21 Ignition system for internal combustion engine, and internal combustion engine
EP14837353.3A EP3037651A4 (en) 2013-08-21 2014-08-21 Ignition system for internal combustion engine, and internal combustion engine
JP2015532891A JP6082881B2 (ja) 2013-08-21 2014-08-21 内燃機関の点火装置及び内燃機関

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-171781 2013-08-21
JP2013171781 2013-08-21

Publications (1)

Publication Number Publication Date
WO2015025913A1 true WO2015025913A1 (ja) 2015-02-26

Family

ID=52483684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071856 WO2015025913A1 (ja) 2013-08-21 2014-08-21 内燃機関の点火装置及び内燃機関

Country Status (4)

Country Link
US (1) US10132286B2 (ja)
EP (1) EP3037651A4 (ja)
JP (1) JP6082881B2 (ja)
WO (1) WO2015025913A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186683A1 (ja) * 2014-06-02 2015-12-10 イマジニアリング株式会社 インジェクタユニット
JP2017031945A (ja) * 2015-08-05 2017-02-09 三菱電機株式会社 内燃機関点火装置
JPWO2015182774A1 (ja) * 2014-05-29 2017-06-01 イマジニアリング株式会社 点火装置内蔵インジェクタ
JP2018073558A (ja) * 2016-10-26 2018-05-10 イマジニアリング株式会社 昇降圧回路を含む電磁波発振装置
EP3364509A4 (en) * 2015-10-16 2018-10-10 Imagineering, Inc. Ignition device
JP2020041508A (ja) * 2018-09-12 2020-03-19 株式会社Soken 点火装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170306918A1 (en) * 2014-08-21 2017-10-26 Imagineering, Inc. Compression-ignition type internal combustion engine, and internal combustion engine
EP3225832A4 (en) * 2014-11-24 2017-12-13 Imagineering, Inc. Ignition unit, ignition system, and internal combustion engine
JP7058084B2 (ja) * 2017-06-14 2022-04-21 株式会社Soken 点火装置
US11621146B2 (en) * 2019-10-18 2023-04-04 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Plasma impedance tomography for plasma parameter imaging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132518A (ja) 2004-10-07 2006-05-25 Toyota Central Res & Dev Lab Inc 内燃機関及びその点火装置
JP2009038025A (ja) 2007-07-12 2009-02-19 Imagineering Kk プラズマ形成領域の制御装置及びプラズマ処理装置
JP2010507206A (ja) * 2006-10-17 2010-03-04 ルノー・エス・アー・エス 高周波プラズマ生成装置
JP2010096109A (ja) * 2008-10-17 2010-04-30 Denso Corp 点火装置
JP2011150830A (ja) * 2010-01-20 2011-08-04 Denso Corp 高周波プラズマ点火装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361737A (en) * 1992-09-30 1994-11-08 West Virginia University Radio frequency coaxial cavity resonator as an ignition source and associated method
WO2003042533A1 (de) * 2001-11-16 2003-05-22 Bayerische Motoren Werke Aktiengesellschaft Zündsystem und verfahren für eine brennkraftmaschine mit mikrowellen-quellen
DE10239411B4 (de) * 2002-08-28 2004-09-09 Robert Bosch Gmbh Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
KR20080054395A (ko) * 2005-09-09 2008-06-17 비티유 인터내셔날, 인코포레이티드 내연기관을 위한 마이크로파 연소 시스템
US20120097140A1 (en) * 2009-06-29 2012-04-26 Daihatsu Motor Co., Ltd. Control method and spark plug for spark -ignited internal combustion engine
WO2012005201A1 (ja) * 2010-07-07 2012-01-12 イマジニアリング株式会社 プラズマ生成装置
US9534558B2 (en) * 2011-01-28 2017-01-03 Imagineering, Inc. Control device for internal combustion engine
US9677534B2 (en) * 2011-03-14 2017-06-13 Imagineering, Inc. Internal combustion engine
US9909552B2 (en) * 2011-07-16 2018-03-06 Imagineering, Inc. Plasma generating device, and internal combustion engine
JP5888948B2 (ja) * 2011-11-28 2016-03-22 ダイハツ工業株式会社 内燃機関の燃焼状態判定装置
JP6446627B2 (ja) * 2012-08-28 2019-01-09 イマジニアリング株式会社 プラズマ発生装置
WO2014084341A1 (ja) * 2012-11-30 2014-06-05 イマジニアリング株式会社 プラズマ生成装置
EP2950621A4 (en) * 2013-01-22 2017-01-25 Imagineering, Inc. Plasma generating device, and internal combustion engine
US9991680B2 (en) * 2013-06-18 2018-06-05 Imagineering, Inc. Ignition plug and plasma generation device
EP3029784A4 (en) * 2013-08-01 2017-11-15 Imagineering, Inc. Spark plug and plasma generating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132518A (ja) 2004-10-07 2006-05-25 Toyota Central Res & Dev Lab Inc 内燃機関及びその点火装置
JP2010507206A (ja) * 2006-10-17 2010-03-04 ルノー・エス・アー・エス 高周波プラズマ生成装置
JP2009038025A (ja) 2007-07-12 2009-02-19 Imagineering Kk プラズマ形成領域の制御装置及びプラズマ処理装置
JP2010096109A (ja) * 2008-10-17 2010-04-30 Denso Corp 点火装置
JP2011150830A (ja) * 2010-01-20 2011-08-04 Denso Corp 高周波プラズマ点火装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3037651A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015182774A1 (ja) * 2014-05-29 2017-06-01 イマジニアリング株式会社 点火装置内蔵インジェクタ
WO2015186683A1 (ja) * 2014-06-02 2015-12-10 イマジニアリング株式会社 インジェクタユニット
JP2017031945A (ja) * 2015-08-05 2017-02-09 三菱電機株式会社 内燃機関点火装置
EP3364509A4 (en) * 2015-10-16 2018-10-10 Imagineering, Inc. Ignition device
JP2018073558A (ja) * 2016-10-26 2018-05-10 イマジニアリング株式会社 昇降圧回路を含む電磁波発振装置
JP2020041508A (ja) * 2018-09-12 2020-03-19 株式会社Soken 点火装置
JP7186041B2 (ja) 2018-09-12 2022-12-08 株式会社Soken 点火装置

Also Published As

Publication number Publication date
EP3037651A1 (en) 2016-06-29
JP6082881B2 (ja) 2017-02-22
US20160281670A1 (en) 2016-09-29
JPWO2015025913A1 (ja) 2017-03-02
EP3037651A4 (en) 2017-04-26
US10132286B2 (en) 2018-11-20

Similar Documents

Publication Publication Date Title
JP6082881B2 (ja) 内燃機関の点火装置及び内燃機関
JP6446628B2 (ja) プラズマ生成装置、及び内燃機関
US9677534B2 (en) Internal combustion engine
JP6229121B2 (ja) 内燃機関
US20140216381A1 (en) Internal combustion engine
WO2015030247A2 (ja) プラズマ発生装置及び内燃機関
JP6082880B2 (ja) 高周波放射用プラグ
US9599089B2 (en) Internal combustion engine and plasma generation provision
WO2016084772A1 (ja) 点火ユニット、点火システム、及び内燃機関
WO2014069337A1 (ja) 電磁波放射装置
KR101537763B1 (ko) 점화 플러그 및 내연 기관
JP6023966B2 (ja) 内燃機関
JP2012149608A (ja) 内燃機関の点火装置
JP5294960B2 (ja) 火花点火式内燃機関
JP6145759B2 (ja) アンテナ構造、高周波放射用プラグ、及び内燃機関
JP6145760B2 (ja) 高周波放射用プラグ及び内燃機関
WO2017022710A1 (ja) 電磁波放電放射装置
JP2013194717A (ja) アンテナ構造体、高周波放射用プラグ、内燃機関
JP2014234743A (ja) 内燃機関の点火装置
JP2010249028A (ja) 火花点火式内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014837353

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14912994

Country of ref document: US