WO2015025861A1 - 芳香族ポリエステル分解酵素及び該酵素を用いた芳香族ポリエステル分解方法 - Google Patents

芳香族ポリエステル分解酵素及び該酵素を用いた芳香族ポリエステル分解方法 Download PDF

Info

Publication number
WO2015025861A1
WO2015025861A1 PCT/JP2014/071701 JP2014071701W WO2015025861A1 WO 2015025861 A1 WO2015025861 A1 WO 2015025861A1 JP 2014071701 W JP2014071701 W JP 2014071701W WO 2015025861 A1 WO2015025861 A1 WO 2015025861A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyester
enzyme
seq
activity
mhet
Prior art date
Application number
PCT/JP2014/071701
Other languages
English (en)
French (fr)
Inventor
憲二 宮本
昭介 吉田
耕平 小田
木村 良晴
和三 平賀
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2015532867A priority Critical patent/JP6599767B2/ja
Publication of WO2015025861A1 publication Critical patent/WO2015025861A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids

Definitions

  • the present invention relates to an enzyme that hydrolyzes an aromatic polyester such as polyethylene terephthalate (hereinafter referred to as PET), which is a synthetic polymer widely used in beverage bottles and the like.
  • PET polyethylene terephthalate
  • ⁇ PET resin has been widely used for bottles because of its high transparency and excellent strength. However, because it is stable and does not decompose in nature, there was a garbage problem. Therefore, recycling has been carried out, and chemical recycling is now widely performed.
  • PET is treated with a catalyst and excess water at a high temperature of 150 ° C to 250 ° C, it is depolymerized to terephthalic acid (TPA) and ethylene glycol (EG).
  • TPA terephthalic acid
  • EG ethylene glycol
  • an acid such as sulfuric acid or a base such as sodium hydroxide is used.
  • An object of the present invention is to provide an enzyme that hydrolyzes an aromatic polyester resin such as a PET resin, and a method for decomposing an aromatic polyester resin such as a PET resin using the enzyme.
  • the No. 201-F6 strain a strain that completely degrades PET into carbon dioxide and water, is the only bacterium that degrades and assimilates PET.
  • the present inventors considered that the PET hydrolase of the present bacterium is different from cutinase and is likely to be a novel enzyme using PET as an original substrate.
  • attempts have been made to identify PET-degrading enzymes using the activity of PET films and PET-like low molecular weight compounds as an index, but no genes have been identified.
  • the present inventors newly performed genome analysis and attempted an approach for searching for a target gene. So far, Oda et al.
  • the present inventors carried out heterologous expression and purification of the protein by E. coli of the ORF2645 predicted to be a PET-degrading enzyme gene found on the genome of the amorphous PET-utilizing bacterium Ideonella sp. No.201-F6. Attempted functional identification.
  • ORF2645 protein When purified ORF2645 protein was allowed to act on a tere-PET film, which is an amorphous PET resin, whitening and cracking of the film surface could be confirmed by observation with a stereomicroscope, and decomposition grooves were observed by observation with a scanning electron microscope (SEM). It could be confirmed. In analysis of the degradation product of the tere-PET film by HPLC, monohydroxyethyl terephthalate (MHET) and terephthalic acid (TPA), which are partial structures of tere-PET, were detected. Based on the above results, ORF2645 protein was identified as a PET-degrading enzyme.
  • MHET monohydroxyethyl terephthalate
  • TPA terephthalic acid
  • the present inventors newly identified a PET-degrading enzyme and MHET-hydrolyzing enzyme, and completed the present invention.
  • the present invention is as follows.
  • aromatic polyester-degrading enzyme (a) or (b): (a) an aromatic polyester degrading enzyme comprising the amino acid sequence represented by SEQ ID NO: 2 or 4 in the sequence listing; or (b) Aromatic polyester degradation comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2 or 4 in the sequence listing and having aromatic polyester degradation activity enzyme.
  • DNA encoding the following aromatic polyester degrading enzyme (c) or (d): (c) a DNA comprising the nucleotide sequence represented by SEQ ID NO: 1 in the sequence listing, the nucleotide sequence from the 82nd to the 873rd nucleotide sequence of SEQ ID NO: 1, or the nucleotide sequence represented by SEQ ID NO: 3; or (d) a stringent sequence with a base sequence represented by SEQ ID NO: 1 in the sequence listing, a base sequence of positions 82 to 873 of the base sequence represented by SEQ ID NO: 1, or a complementary strand of the base sequence represented by SEQ ID NO: 3 DNA encoding an aromatic polyester-degrading enzyme that can hybridize under conditions and has an aromatic polyester-degrading activity.
  • a method for decomposing an aromatic polyester comprising allowing the aromatic polyester degrading enzyme according to [1] or [2] to act on the aromatic polyester.
  • An enzyme having monohydroxyethyl terephthalate (MHET) hydrolyzing activity having an enzymatic activity.
  • a DNA encoding an enzyme having a monohydroxyethyl terephthalate (MHET) hydrolysis activity which can hybridize under conditions and has an enzyme activity having a monohydroxyethyl terephthalate (MHET) hydrolysis activity.
  • the host cell of [14] is cultured under conditions capable of expressing DNA to produce an enzyme having monohydroxyethyl terephthalate (MHET) hydrolyzing activity, and the monohydroxyethyl terephthalate (MHET) hydrolyzing activity
  • MHET monohydroxyethyl terephthalate
  • a method for producing an enzyme having monohydroxyethyl terephthalate (MHET) hydrolyzing activity which comprises recovering an enzyme having a hydrolytic activity.
  • a method for decomposing an aromatic polyester which comprises acting on the aromatic polyester-degrading enzyme according to [1] or [2] and the enzyme having monohydroxyethyl terephthalate (MHET) hydrolyzing activity according to [10].
  • MHET monohydroxyethyl terephthalate
  • the aromatic polyester degrading enzyme ORF2645 protein of the present invention can be decomposed into monomers by causing the aromatic polyester degrading enzyme ORF2645 protein of the present invention to act on an aromatic polyester resin such as a PET resin. Therefore, by using the aromatic polyester degrading enzyme of the present invention, waste such as PET bottles can be appropriately treated, and the PET resin can be recycled and effectively used. Furthermore, by allowing the aromatic polyester-degrading enzyme of the present invention to act on the surface of the PET fiber to expose the hydrophilic group, it is possible to improve dyeability and flexibility.
  • aromatic polyester degrading enzyme ORF2645 protein of the present invention and the enzyme ORF3352 protein having monohydroxyethyl terephthalate (MHET) hydrolyzing activity are allowed to act on an aromatic polyester resin such as a PET resin to completely convert it into a monomer. Can be disassembled.
  • FIG. 6A is quantified and illustrated. It is a figure which shows the observation photograph by the stereomicroscope of the tere-PET film processed with ORF2645 protein. It is a figure which shows the surface observation photograph image by SEM which shows the activity with respect to the tere-PET film of ORF2645 protein.
  • the present invention is a novel aromatic polyester-degrading enzyme (ORF2645 protein that hydrolyzes polyethylene terephthalate (PET) or its partial structure, bis (2-hydroxyethyl) terephthalate (BHET)).
  • ORF2645 protein that hydrolyzes polyethylene terephthalate (PET) or its partial structure, bis (2-hydroxyethyl) terephthalate (BHET)).
  • the present invention is an enzyme having the above-described novel aromatic polyester decomposing ability and an aromatic polyester decomposing method using the enzyme.
  • an enzyme having an aromatic polyester decomposability is sometimes referred to as a PET degrading enzyme taking the name of a representative substrate.
  • the aromatic polyester-degrading enzyme of the present invention can be isolated from Ideonella sp. No. 201-F6, which is a Gram-negative bacilli belonging to the genus Ideonella isolated from soil. Isolation of microorganisms belonging to the genus Ideonella can be performed by a known method.
  • the Ideonella sp. No. 201-F6 strain is described in JP-A-2008-199957.
  • the base sequence of DNA encoding the aromatic polyester-degrading enzyme isolated from Ideonella sp. No. 201-F6 strain is shown in FIG.
  • the amino acid sequence of the enzyme is shown in SEQ ID NO: 2.
  • the gene encoding the aromatic polyester PET-degrading enzyme is referred to as ORF2645 gene.
  • the base sequence shown in FIG. 1 and SEQ ID NO: 1 also includes the base sequence of DNA encoding the signal sequence (the sequence consisting of the 1st to 81st bases encodes the signal sequence), and the amino acid sequence shown in SEQ ID NO: 2 is It also includes a signal sequence (the sequence consisting of amino acids 1 to 27 is a signal sequence).
  • the aromatic polyester degrading enzyme of the present invention includes those containing a signal sequence and those not containing a signal sequence.
  • the DNA encoding the aromatic polyester-degrading enzyme of the present invention includes those that contain a nucleotide sequence that encodes a signal sequence and those that do not. Examples of DNA not containing a signal sequence include DNA consisting of the 82nd to 873rd bases of the base sequence shown in SEQ ID NO: 1.
  • the aromatic polyester-degrading enzyme of the present invention can be produced by culturing the above-mentioned Ideonella sp. No. 201-F6 strain, and producing and purifying the strain, and transforming a host microorganism with a gene encoding the enzyme of the present invention. It can also be obtained by culturing the transformed microorganism.
  • the aromatic polyester-degrading enzyme of the present invention when produced as a recombinant enzyme using Escherichia coli as a host, the base sequence whose codon is optimized is shown in SEQ ID NO: 3.
  • the gene comprising this sequence is referred to as optORF2645 gene.
  • the amino acid sequence of the aromatic polyester degrading enzyme encoded by the optORF2645 gene is shown in SEQ ID NO: 4.
  • the amino acid sequence shown in SEQ ID NO: 4 is the same as the amino acid sequence obtained by removing the signal sequence from the amino acid sequence shown in SEQ ID NO: 2.
  • aromatic polyester-degrading enzyme of the present invention is deleted, substituted, or added to at least one, preferably one or several amino acids in the amino acid sequence as long as the protein comprising the amino acid sequence has aromatic polyester-degrading enzyme activity. Etc. may occur.
  • At least one, preferably one or several amino acid sequences represented by SEQ ID NO: 2 or 4 may be deleted, and at least 1, preferably 1 or several (eg, 1 to 10, preferably 1 to 5, more preferably) in the amino acid sequence represented by SEQ ID NO: 2 or 4 May be added with 1 to 3, particularly preferably 1 or 2, amino acids, or at least one, preferably 1 or several (for example 1 to 2) of the amino acid sequence represented by SEQ ID NO: 2 or 4 10 amino acids, preferably 1 to 5, more preferably 1 to 3, particularly preferably 1 or 2, may be substituted with other amino acids.
  • an amino acid sequence of SEQ ID NO: 2 or 4 and BLAST Basic Local Alignment Search Tool at the (E.g., National Center for Biological Information (Basic National Alignment Search Tool of the National Center for Biological Information)) (for example, default or default parameters), at least 85%, preferably 90% or more, More preferred are those having a sequence identity of 95% or more, particularly preferably 97% or more.
  • a protein having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 2 or 4 is substantially the same as a protein having the amino acid sequence of SEQ ID NO: 2 or 4. is there.
  • DNA that can hybridize with a DNA consisting of a sequence complementary to the DNA consisting of the base sequence represented by SEQ ID NO: 1 or 3 under the following stringent conditions, and has an aromatic polyester-degrading enzyme activity.
  • the DNA encoding the protein possessed is also included in the DNA of the present invention. Specifically, hybridization was performed at 68 ° C. in the presence of 0.7 to 1.0 M NaCl using a filter on which DNA was immobilized, and then a 0.1 to 2 fold concentration SSC solution (1 fold concentration SSC is 150 mM NaCl, It consists of 15 mM sodium citrate) and can be identified by washing at 68 ° C.
  • hybridization buffer [50% formamide, 4 ⁇ SSC, 50 mM HEPES (pH 7.0), 10 ⁇ Denhardt , s solution , 100 ⁇ g / ml salmon sperm DNA]
  • DNA consisting of the base sequence represented by SEQ ID NO: 1 or 3 and BLAST (Basic Local Alignment Search Tool at the National Center for Biological Information) DNA having a sequence identity of at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more when calculated using default or default parameters)
  • DNA encoding a protein having aromatic polyester-degrading enzyme activity is also included in the DNA encoding the aromatic polyester-degrading enzyme of the present invention.
  • RNA encoding the above-mentioned DNA or RNA capable of hybridizing with the RNA under stringent conditions and encoding a protein having aromatic polyester degrading enzyme activity is also included in the present invention.
  • polyester refers to a polymer substance having an ester bond in the main chain.
  • aromatic polyester serving as a substrate for the enzyme of the present invention refers to a polyester containing an aromatic component as a repeating unit.
  • the content of the repeating unit is, for example, 50 to 100% by weight, preferably 70 to 100% by weight, more preferably 90 to 100% by weight, and still more preferably 95 to 100% by weight.
  • aromatic polyester include polyethylene terephthalate (PET), and PET containing 95% by weight or more of ethylene terephthalate repeating units.
  • the aromatic polyester can be produced by polycondensation of a dicarboxylic acid component and a diol component.
  • a dicarboxylic acid component terephthalic acid can be used as the PET dicarboxylic acid component and ethylene glycol can be used as the diol component.
  • dicarboxylic acid components other than terephthalic acid aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, 2,5-naphthalenedicarboxylic acid and derivatives thereof; succinic acid, adipic acid, Aliphatic dicarboxylic acids such as azelaic acid, sebacic acid and decanedicarboxylic acid, and derivatives thereof.
  • diol components other than ethylene glycol include diethylene glycol, trimethylene glycol, tetramethylene glycol, propylene glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol and the like.
  • the aromatic polyester is decomposed using the enzyme of the present invention
  • the form of the aromatic polyester to be decomposed for example, those in the form of fibers, granules, flakes, pellets, films, lumps, bottles, etc. Can be mentioned. Moreover, these mixtures can also be used.
  • the aromatic polyester degrading enzyme of the present invention can decompose aromatic polyester.
  • the aromatic polyester degrading enzyme of the present invention can degrade isophthalic acid copolymerized amorphous PET (isoPET) and terephthalic acid copolymerized amorphous PET (tere PET).
  • iso PET film and tere PET film on the film can be decomposed.
  • iso PET and tere PET are 0.02 mg / cm 2 ⁇ day or more, preferably 0.05 mg / cm 2 ⁇ day or more, more preferably 0.1 mg / cm 2 ⁇ day or more, and for example 0.3 mg / cm 2 ⁇ day.
  • PET is decomposed at a rate of preferably 0.5 mg / cm 2 ⁇ day or less, more preferably 1.0 mg / cm 2 ⁇ day or less.
  • aromatic polyester degrading enzyme of the present invention is, for example, based on the production of monohydroxyethyl terephthalate (TA-EG, MHET) or terephthalic acid (TPA), which is a degradation product of PET. It is understood by doing.
  • the aromatic polyester degrading enzyme of the present invention can degrade the main chain of an aromatic polyester (for example, PET). Therefore, the aromatic polyester decomposing enzyme of the present invention can decompose an aromatic polyester decomposing intermediate product.
  • the aromatic polyester is PET, bis (2-hydroxyethyl) terephthalate (BHET) can be decomposed into monohydroxyethyl terephthalate (TA-EG, MHET).
  • the ORF2645 protein which is an aromatic polyester degrading enzyme of the present invention, hydrolyzes PET or PET partial structure bis (2-hydroxyethyl) terephthalate (BHET) as a substrate to produce monohydroxyethyl terephthalate (MHET). Arise.
  • the aromatic polyester decomposing enzyme of the aromatic polyester degrading enzyme according to the present invention can be obtained by treating a material (for example, a film) made of an aromatic polyester with an enzyme and performing an enzyme reaction to observe the whitening of the material, or after the enzyme reaction Can be determined by measuring the weight loss. It can also be examined by detecting aromatic polyesters and PET degradation intermediate products such as BHET and TPA ⁇ 2Na by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and the like.
  • TLC thin layer chromatography
  • HPLC high performance liquid chromatography
  • the waste such as PET bottles can be treated with the aromatic polyester degrading enzyme of the present invention.
  • aromatic polyester such as PET can be decomposed and the decomposed product can be used for recycling.
  • modification of the surface of PET processed products such as PET films, surface modification of PET fibers, washing of clothes using PET fibers, washing of PET resin for recycling, etc. It can also be done.
  • the degradation of the aromatic polyester by the aromatic polyester decomposing enzyme of the present invention can be performed by causing the aromatic polyester decomposing enzyme of the present invention to act on the above aromatic polyester.
  • the action means that an aromatic polyester is brought into contact with an enzyme to cause an enzyme reaction.
  • the concentration of the aromatic polyester degrading enzyme in the enzyme reaction is 0.5 to 20 ⁇ g / mL, preferably 1 to 10 ⁇ g / mL, more preferably 1 to 5 ⁇ g / mL, and particularly preferably about 1 to 3 ⁇ g / mL. This concentration is not limited, and can be appropriately set according to the amount of aromatic polyester to be decomposed.
  • the reaction temperature is 15 to 50 ° C., preferably 20 to 40 ° C., particularly preferably 25 to 30 ° C.
  • the pH during the reaction is around pH 6.0, preferably 4.0 to 8.0, more preferably 4.5 to 7.5, and particularly preferably 5.0 to 6.5.
  • the reaction time can be appropriately set depending on the amount of aromatic polyester to be decomposed, etc., and varies depending on whether the purpose is modification of the aromatic polyester fiber or modification of the surface of the aromatic polyester. is there. When the treatment is performed for a long time, an aromatic polyester degrading enzyme may be periodically added.
  • the aromatic polyester-degrading enzyme of the present invention can be produced by culturing Ideonella sp. No. 201-F6 strain, and a known method can be used from a culture such as a culture solution of Ideonella sp. Can be isolated.
  • the aromatic polyester-degrading enzyme of the present invention can be produced as a recombinant enzyme by introducing DNA encoding the aromatic polyester-degrading enzyme into a host microorganism and culturing the microorganism.
  • an expression vector may be prepared by ligating (inserting) the DNA of the present invention into an appropriate vector, the expression vector is introduced into the host microorganism, and the host microorganism is transformed.
  • the vector for inserting the DNA of the present invention is not particularly limited as long as it can replicate in a host cell such as a bacterium, yeast or animal cell, and examples thereof include plasmid DNA, phage DNA and the like.
  • a host cell such as a bacterium, yeast or animal cell
  • examples thereof include plasmid DNA, phage DNA and the like.
  • the vector DNA used for the construction of the expression vector a widely spread and easily available DNA is used.
  • pET vector, pQE vector, pCold vector, pUC19 vector and the like can be mentioned.
  • the method for constructing the expression vector of the present invention is not particularly limited, and can be performed by a conventional method.
  • the host cell transformed with the expression vector of the present invention is not particularly limited as long as it can express the DNA of the present invention.
  • Escherichia coli and Bacillus subtilis are used as bacteria, and Saccharomyces cerevisiae and the like are used as yeasts.
  • animal cells include Chinese hamster ovary (CHO) cells, monkey COS cells, mouse fibroblasts, and the like.
  • the present invention provides an aromatic polyester comprising culturing host cells containing the above DNA under conditions capable of expressing DNA, producing the aromatic polyester-degrading enzyme of the present invention, and recovering the aromatic polyester-degrading enzyme It includes a method for producing a degrading enzyme.
  • Aromatic polyester-degrading enzymes produced by host cells are, for example, gel filtration chromatography, ultrafiltration, ion exchange chromatography, affinity chromatography, hydrophobic chromatography, chromatofocusing, isoelectric focusing, gel electrophoresis It can refine
  • Monohydroxyethyl terephthalate (MHET) hydrolyzing enzyme ORF3352 protein
  • the present invention includes an enzyme having monohydroxyethyl terephthalate (MHET) hydrolysis activity, which is an aromatic polyester degradation product.
  • the enzyme can be isolated from Ideonella sp. No. 201-F6, which is a Gram-negative bacilli belonging to the genus Ideonella isolated from soil. Isolation of microorganisms belonging to the genus Ideonella can be performed by a known method.
  • the Ideonella sp. No. 201-F6 strain is described in JP-A-2008-199957.
  • the base sequence of DNA encoding the enzyme having monohydroxyethyl terephthalate (MHET) hydrolysis activity isolated from Ideonella sp. No. 201-F6 strain is shown in FIG.
  • the amino acid sequence of the enzyme is shown in SEQ ID NO: 10.
  • the gene encoding the enzyme having monohydroxyethyl terephthalate (MHET) hydrolysis activity is referred to as ORF3352 gene.
  • SEQ ID NO: 9 also includes the nucleotide sequence of DNA encoding the signal sequence (the sequence consisting of the first to 51st bases encodes the signal sequence), and the amino acid sequence shown in SEQ ID NO: 9 is It also includes a signal sequence (the sequence consisting of the 1st to 17th amino acids is a signal sequence).
  • the enzyme having monohydroxyethyl terephthalate (MHET) hydrolyzing activity of the present invention includes those that include a signal sequence and those that do not.
  • the DNA encoding the enzyme having monohydroxyethyl terephthalate (MHET) hydrolyzing activity of the present invention includes those containing and not including a base sequence encoding a signal sequence. Examples of DNA not containing a signal sequence include DNA consisting of the 52nd to 1812th bases of the base sequence shown in SEQ ID NO: 9.
  • the enzyme having monohydroxyethyl terephthalate (MHET) hydrolyzing activity of the present invention can be produced by culturing the above-mentioned Ideonella sp. No. 201-F6 strain, producing the strain, and purifying the gene. Can also be obtained by transforming a host microorganism and culturing the transformed microorganism. When producing by the latter method, it is preferable to optimize the codon utilization rate according to the host microorganism in order to increase the expression level in the host microorganism. Codon optimization can be performed by a known method.
  • the enzyme having monohydroxyethyl terephthalate (MHET) hydrolyzing activity of the present invention is produced as a recombinant enzyme using Escherichia coli as a host
  • the base sequence with the codon optimized is shown in SEQ ID NO: 11.
  • the gene consisting of this sequence is called optORF3352 gene.
  • the amino acid sequence of an enzyme having monohydroxyethyl terephthalate (MHET) hydrolysis activity encoded by the optORF3352 gene is shown in SEQ ID NO: 12.
  • the amino acid sequence shown in SEQ ID NO: 12 is the same as the amino acid sequence obtained by removing the signal sequence from the amino acid sequence shown in SEQ ID NO: 10.
  • the enzyme having monohydroxyethyl terephthalate (MHET) hydrolysis activity of the present invention has at least one enzyme in the amino acid sequence as long as the protein comprising the amino acid sequence has enzyme activity having monohydroxyethyl terephthalate (MHET) hydrolysis activity.
  • mutations such as deletion, substitution and addition may occur in one or several amino acids.
  • At least one, preferably one or several amino acid sequences represented by SEQ ID NO: 10 or 12 may be deleted, and at least 1, preferably 1 or several (eg 1 to 10, preferably 1 to 5, more preferably) in the amino acid sequence represented by SEQ ID NO: 10 or 12 May be added with 1 to 3, particularly preferably 1 or 2 amino acids, or at least one, preferably 1 or several (for example 1 to 2) of the amino acid sequence represented by SEQ ID NO: 10 or 12 10 amino acids, preferably 1 to 5, more preferably 1 to 3, particularly preferably 1 or 2, may be substituted with other amino acids.
  • amino acid sequence in which one or several amino acids are deleted, substituted or added in such an amino acid sequence of SEQ ID NO: 10 or 12 the amino acid sequence of SEQ ID NO: 10 or 12 and BLAST (Basic Local Alignment Search Tool at the (E.g., National Center for Biological Information (Basic National Alignment Search Tool of the National Center for Biological Information)) (for example, default or default parameters), at least 85%, preferably 90% or more, More preferred are those having a sequence identity of 95% or more, particularly preferably 97% or more.
  • a protein having an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 10 or 12 is substantially the same as a protein having the amino acid sequence of SEQ ID NO: 10 or 12. is there.
  • DNA that can hybridize with a DNA consisting of a base sequence represented by SEQ ID NO: 9 or 11 and a DNA complementary to the sequence under the following stringent conditions, and is monohydroxyethyl terephthalate (MHET)
  • MHET monohydroxyethyl terephthalate
  • DNA encoding a protein having enzymatic activity having hydrolytic activity is also included in the DNA of the present invention.
  • hybridization was performed at 68 ° C. in the presence of 0.7 to 1.0 M NaCl using a filter on which DNA was immobilized, and then a 0.1 to 2 fold concentration SSC solution (1 fold concentration SSC is 150 mM NaCl, It consists of 15 mM sodium citrate) and can be identified by washing at 68 ° C.
  • hybridization buffer [50% formamide, 4 ⁇ SSC, 50 mM HEPES (pH 7.0), 10 ⁇ Denhardt , s solution , 100 ⁇ g / ml salmon sperm DNA]
  • DNA consisting of the nucleotide sequence represented by SEQ ID NO: 9 or 11 and BLAST (Basic Local Alignment Search Tool the National Center for Biological Information) DNA having a sequence identity of at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more when calculated using default or default parameters)
  • MHET monohydroxyethyl terephthalate
  • RNA encoding the above-mentioned DNA or RNA that can hybridize with the RNA under stringent conditions and that encodes a protein having an enzyme activity having monohydroxyethyl terephthalate (MHET) hydrolysis activity is also present. Included in the invention.
  • the enzyme having monohydroxyethyl terephthalate (MHET) hydrolyzing activity of the present invention hydrolyzes monohydroxyethyl terephthalate (MHET) to produce terephthalic acid (TPA) and ethylene glycol (EG).
  • ORF2645 protein which is an aromatic polyester degrading enzyme, hydrolyzes PET or PET partial structure bis (2-hydroxyethyl) terephthalate (BHET) to produce monohydroxyethyl terephthalate (MHET).
  • Monohydroxyethyl terephthalate (MHET) produced by hydrolysis with ORF2645 protein is further hydrolyzed with ORF3352 protein, an enzyme with monohydroxyethyl terephthalate (MHET) hydrolysis activity, to produce terephthalic acid (TPA) and ethylene glycol. (EG) is generated.
  • TPA terephthalic acid
  • EG ethylene glycol
  • These two enzymes can decompose PET or BHET into terephthalic acid (TPA) and ethylene glycol (EG).
  • the present invention includes a method for decomposing aromatic polyester, which comprises allowing ORF2645 protein and ORF3352 protein to act on aromatic polyester such as PET.
  • the action means that an aromatic polyester such as PET is brought into contact with ORF2645 protein and ORF3352 protein to cause an enzyme reaction.
  • ORF2645 protein hydrolyzes PET or its partial structure bis (2-hydroxyethyl) terephthalate (BHET) to monohydroxyethyl terephthalate (MHET), and ORF3352 protein converts monohydroxyethyl terephthalate (MHET) to terephthalic acid (MHET). Hydrolyzed to TPA).
  • the concentration of ORF2645 protein or ORF3352 protein in the enzyme reaction is 0.5 to 20 ⁇ g / mL, preferably 1 to 10 ⁇ g / mL, more preferably 1 to 5 ⁇ g / mL, and particularly preferably about 1 to 3 ⁇ g / mL. This concentration is not limited, and can be appropriately set according to the amount of aromatic polyester to be decomposed.
  • the reaction temperature is 15 to 50 ° C., preferably 20 to 40 ° C., particularly preferably 25 to 30 ° C.
  • the pH during the reaction is around pH 6.0, preferably 4.0 to 8.0, more preferably 4.5 to 7.5, and particularly preferably 5.0 to 6.5.
  • the reaction time can be appropriately set depending on the amount of aromatic polyester to be decomposed, etc., and varies depending on whether the purpose is modification of the aromatic polyester fiber or modification of the surface of the aromatic polyester. is there.
  • an aromatic polyester degrading enzyme may be periodically added.
  • ORF3352 protein a mixture of ORF3352 protein and ORF2645 protein may be used.
  • the ORF2645 protein and ORF3352 protein of the present invention may be co-expressed.
  • the host microorganism may be transformed with the DNA encoding ORF2645 protein and the DNA encoding ORF3352 protein separately inserted into two expression vectors, or DNA encoding ORF2645 protein.
  • the host microorganism may be transformed with a DNA encoding the ORF3352 protein inserted into one expression vector (two gene expression vector).
  • the ORF2645 protein and the ORF3352 protein can be produced in a mixed state.
  • An aromatic polyester such as PET can be decomposed using the obtained mixture of ORF2645 protein and ORF3352 protein.
  • the form of the aromatic polyester to be decomposed is not limited, and for example, fibrous, granular, flake, pellet, film, lump, bottle The thing of the shape is mentioned. Moreover, these mixtures can also be used.
  • the waste such as PET bottles can be treated with the ORF2645 protein and ORF3352 protein of the present invention.
  • aromatic polyester such as PET can be decomposed and the decomposed product can be used for recycling.
  • surface modification of PET processed products such as PET film, surface modification of PET fibers, washing of clothes using PET fibers, washing of PET resin for recycling, etc. It can also be done.
  • ORF2645 predicted as a PET-degrading enzyme gene based on genome information obtained by the next-generation sequencer of the non-crystalline PET-utilizing bacterium ldeonella sp. No.201-F6 The function identification of the gene is described.
  • FIG. 1 and SEQ ID NO: 1 show the base sequence of the IDeonella-derived ORF2645 gene.
  • SEQ ID NO: 2 shows the amino acid sequence of the IDeonella-derived ORF2645 protein.
  • a signal sequence preumed for membrane transport exists at the N-terminus of the ORF2645 protein. The underlined part in the figure shows the signal sequence.
  • FIG. 2 and SEQ ID NO: 3 show the nucleotide sequence of the optORF2645 gene. In FIG. 2, the underlined portion indicates the optimized codon. Furthermore, SEQ ID NO: 4 shows the amino acid sequence of the protein encoded by the optORF2645 gene.
  • PET-21b (+) Vector (Novagen) was used as a plasmid vector. Both the vector and the insert were treated with restriction enzymes using Xho I and Nde I ⁇ (both from Takara Bio Inc.).
  • the BAP-treated plasmid vector and insert were ligated using T4 DNA ligase (New England Biolab).
  • the molar ratio of plasmid vector to insert was 1: 3.
  • PCR uses Gotaq Green Master Mix (Promega) and T7 promoter (5'- CGCGAAATTAATACGACTCACTATAGGG -3 ') and T7 terminator (5'- GCTAGTTATTGCTCAGCGGTGG -3') (SEQ ID NO: 8) as primers did.
  • Plasmids were extracted with Plasmid Mini Mini Purification Kit (Cosmo Genetch). Using this as a template, PCR was performed using BigDye TM terminator v.3.1Cycle Sequencing Kit (Applied Biosystems) using T7 promoter, T7 terminator, optORF2645-f and optORF2645-r as primers.
  • ORF2645 protein The ORF2645 expression vector was introduced into competent cell BL21 Codon Plus (DE3) RIPL (Agilent) by the heat shock method. Protein was expressed using IPTG as a protein expression inducer. The cells were collected, crushed using an ultrasonic crusher, and centrifuged at 14,000 rpm for 20 minutes at 4 ° C., and the supernatant was used as a crude enzyme solution.
  • the expressed protein in the obtained crude enzyme solution was confirmed by SDS-PAGE.
  • the purified protein was measured with a spectrophotometer BioSpec-mini (SHIMADZU) at a wavelength of 280 nm to calculate the concentration.
  • the molar extinction coefficient ⁇ of ORF2645 protein was set to 1.389 Lg ⁇ 1 cm ⁇ 1 from the amino acid sequence using the Swiss Institute of Bioinformatics ProtParam tool (http://web.expasy.org/protparam/).
  • ORF2645 protein expression vector optORF2645 was incorporated into the Xho I and Nde I sites of pET-21b (+) Vector, and the nucleotide sequence of optORF2645 was confirmed by Sanger sequencing. The produced expression vector was designated as pET21-b / optORF2645.
  • ORF2645 protein An expression vector (pET21-b / optORF2645) was introduced into E. coli BL21 Codon Plus (DE3) RIPL, and expression was induced at 16 ° C. by IPTG. When confirmed by SDS-PAGE, the expression of the target protein could be confirmed.
  • ORF2645 protein was purified by nickel affinity chromatography from a crude enzyme solution of E. coli expressing the ORF2645 protein.
  • a band around 30 kDa which was considered to be ORF2645 protein, was confirmed in the eluate having imidazole concentrations of 50 mM, 100 mM, and 250 mM (FIG. 3).
  • 20 ⁇ g of purified ORF2645 protein was obtained from 100 mL of the culture solution.
  • Example 2 Experimental method for activity of ORF2645 protein Activity experiment using tere-PET film
  • the activity of purified protein against PET resin was evaluated using an amorphous tere-PET film provided by Dr. Kohei Oda, emeritus professor at Kyoto Institute of Technology.
  • Tere-PET is a condensation polymer of terephthalic acid and ethylene glycol in which two carboxyl groups are bonded to the para-position of the benzene ring.
  • a crystal is a state in which molecules constituting the crystal are regularly stacked in three dimensions.
  • An amorphous PET resin can be prepared by rapidly cooling a molten resin from a melting point of 260 ° C. to a glass transition temperature of 73 ° C. or lower. Gloves were worn to prevent protein from adhering to the film surface, and the film was extracted into small pieces having a diameter of 6 mm with a punch. The pieces were then sterilized in 70% ethanol for 5 minutes and dried at room temperature. One small piece was placed in each sterilized 96-well plate, and 200 ⁇ L of purified ORF2645 protein solution adjusted in concentration with 100 mM phosphate buffer (pH 7.0) was added. The reaction was allowed to stand in an incubator at 30 ° C. The surface of the film was observed with a stereomicroscope every other day, and a digital camera lens was applied to the eyepiece of the stereomicroscope.
  • HPLC reversed-phase high-performance liquid chromatography
  • HPLC conditions and gradient conditions were as shown in Table 1.
  • the calibration curve for TPA was created by associating the detected peak area with the concentration.
  • the TPA solution was dissolved in DMSO, diluted with 20 mM phosphate buffer (pH 2.5), and adjusted to 1 mM. Thereafter, 1 ⁇ mM TPA solution was serially diluted twice with 20 ⁇ mM phosphate buffer (pH 2.5) and applied to HPLC to detect a peak.
  • p-nitrophenol was dissolved in DMSO at 10 ⁇ mM and diluted with 100 ⁇ mM phosphate buffer (pH 7.0) so that the final concentration was 1 ⁇ mM.
  • the 1 mM mM p-nitrophenol solution was serially diluted 2-fold with 100 mM phosphate buffer (pH 7.0), and the absorbance was measured.
  • the BHET concentration was measured under the same conditions as 3 above, and a calibration curve was created corresponding to the detected peak area.
  • the BHET solution was first dissolved in DMSO to 10 mM and diluted with 20 mM phosphate buffer (pH 2.5) to a final concentration of 1 mM. Table 3 shows the reaction solution composition.
  • the activity of the ORF2645 protein on the tere-PET film was highest at a concentration of 2.2 ⁇ g / mL, and then no activity could be confirmed at 22 ⁇ g / mL and 0.22 ⁇ g / mL.
  • FIG. 5 shows the results of analysis using HPLC of the reaction solution in the activity evaluation experiment using the tere-PET film.
  • a peak considered to be a PET degradation product was not detected, and 22 ⁇ g
  • the peaks of MHET, which is the main degradation product, were detected in the samples to which ORF2645 protein of / mL, 2.2 ⁇ g / mL, and 0.22 ⁇ g / mL was added. That is, it was shown that the tere-PET film was not spontaneously degraded, and the ORF2645 protein had an activity to release TPA from the tere-PET film.
  • ORF2645 protein showed activity against pNP-butyrate, and unlike tere-PET, the higher the concentration of ORF2645 protein, the higher the pNP release activity.
  • specific activities were averaged, it was shown that 11 ⁇ M of pNP-butyrate was hydrolyzed per second per 1 ⁇ M of ORF2645 protein.
  • Example 3 Surface observation method of tere-PET film using scanning electron microscope (SEM)
  • SEM scanning electron microscope
  • a microscope SEM
  • the tere-PET film was removed from the 96-well plate and washed with 70% alcohol. Thereafter, the film was cut in half with scissors, and fixed to the SEM sample stage (Nisshin EM) using carbon double-sided tape (Nisshin EM). These operations were performed wearing tweezers and gloves to prevent dust from adhering.
  • Osmium Plasma Coater vacuum device company
  • osmium (Wako company) coating was carried out in the vacuum.
  • the sample stage in the SEM was pulled out, and the SEM reagent table was set in the sample holder.
  • the sample chamber was evacuated and placed in the SEM body for observation.
  • Example 4 Method for Measuring Activity of ORF2645 Protein at Various pHs Citric Buffer (100 mM citric acid, pH 3.5-pH 6.0, 100 mM NaCl), Phosphate Buffer (100 mM Na 2 ) in increments of 0.5 from pH 3.5 to pH 9.0 HPO 4 , pH 6.0-pH 8.0, 100 mM NaCl) and bicine Buffer (100 mM bicine, pH 8.0-pH 9.0, 100 mM NaCl) were prepared, and the activity against pNP-butyrate was measured under each Buffer condition.
  • Citric Buffer 100 mM citric acid, pH 3.5-pH 6.0, 100 mM NaCl
  • Phosphate Buffer 100 mM Na 2
  • bicine Buffer 100 mM bicine, pH 8.0-pH 9.0, 100 mM NaCl
  • the measurement was performed at a constant temperature of 30 ° C.
  • the reaction solution excluding the enzyme solution was placed in a 1.5 mL tube and warmed to 30 ° C. with a hot water bath.
  • the cell chamber of the absorbance meter was maintained at 30 ° C.
  • the reaction solution was transferred to a cuvette and allowed to stand in the cell chamber for 1 minute.
  • purified ORF2645 protein dissolved in 100 mM phosphate buffer (pH 7.0) was also warmed to 30 ° C. in a hot water bath.
  • the enzyme solution was added to the cell and mixed by inversion to start the reaction, and the release of pNP was measured over time at a wavelength of 415 nm for 3 minutes.
  • a blank was prepared by adding 100 mM phosphate buffer (pH 7.0) instead of the enzyme solution.
  • Table 4 shows the reaction solution composition.
  • p-nitrophenol® (pNP) released by enzymatic reaction has a molar extinction coefficient ⁇ that depends on pH.
  • the absorbance of pNP at each pH at a wavelength of 415 nm was measured twice with an absorptiometer.
  • the pNP concentration was adjusted by serial dilution from 20 mM from pH 3.5 to pH 6.0 and from 1 mM from pH 6.5 to pH 9.0.
  • a calibration curve was created from the measurement results based on at least 5 plots, and the molar extinction coefficient ⁇ of pNP at each pH was calculated from the slope.
  • ORF2645 protein hydrolyzes PET as shown in FIG. 10 to yield monohydroxyethyl terephthalate (MHET) and ethylene glycol (EG) (FIG. 10A), and bis (2-hydroxyethyl) which is a partial structure of PET. ) Hydrolysis of terephthalate (BHET) yielded monohydroxyethyl terephthalate (MHET) and ethylene glycol (EG) (FIG. 10B).
  • MHET monohydroxyethyl terephthalate
  • EG ethylene glycol
  • MRNA was extracted from No. 201-F6 strain grown on a medium containing maltose, terephthalic acid, and tere-PET film as the main carbon source, and transcriptome analysis was performed using a next-generation sequencer.
  • ORF3351 to ORF3356 are terephthalic acid and tere-PET film is used as a carbon source, the expression level of mRNA is remarkably increased as compared with the case where maltose is used as the carbon source.
  • ORF3352 was speculated to be a Tannase gene, a kind of esterase.
  • ORF3355 and 3356 genes present in the peripheral region of ORF3352 are presumed to be genes encoding terephthalate dioxygenase involved in the first stage of terephthalic acid degradation. From these facts, ORF3352 is involved in PET degradation. It was suggested to be a gene. Therefore, a recombinant protein of ORF3352 protein by E. coli was prepared.
  • FIG. 11 and SEQ ID NO: 9 show the base sequence of the IDeonella-derived ORF3352 gene.
  • SEQ ID NO: 10 shows the amino acid sequence of the IDeonella-derived ORF3352 protein.
  • a signal sequence preumed for membrane transport exists at the N-terminus of the ORF3352 protein.
  • the underlined part in FIG. 11 shows the signal sequence.
  • FIG. 12 and SEQ ID NO: 11 show the base sequence of the optORF3352 gene. In FIG. 12, the underlined portion indicates the optimized codon. Furthermore, SEQ ID NO: 12 shows the amino acid sequence of the protein encoded by the optORF3352 gene.
  • OptORF3352 was amplified by PCR using Tks®Gflex® (Takara Bio Inc.) for DNA Polymerase. PCR amplification of optORF3352 gene using Ideonella sp. No 201 genome as template and forward primer optORF3352f with NdeI restriction enzyme site, reverse primer optORF3352-r with XhoI restriction enzyme site and Tks Gflex Went. The obtained PCR product was confirmed by 1% agarose gel electrophoresis, and the target band of about 60% kbp was cut out from the gel, extracted and purified. Treated with XhoI and NdeI with O / N at 37 ° C and purified using Wizard SV-Gel and PCR Clean-Up System.
  • the pET-21b possessed by the applicants of the present application was treated with Xho I and NdeI under the same conditions as above and purified. Thereafter, 1% agarose gel electrophoresis was performed. A band of about 5 kbp was extracted from the gel and purified according to protocol using Wizard SV SV Gel and PCR Clean-Up System. The EET coli Alkaline Phosphatase (BAP, Takara Bio) was allowed to stand at 37 ° C for 70 min to remove the 5 'phosphate group of the pET-21b plasmid treated with Nde I and Xho I.
  • the purified PCR product was mixed with pCold II (molar ratio 3: 1) and incorporated into a vector using T4 DNA ligase (NEB).
  • This ligation product was introduced into XL10 Gold by the heat shock method.
  • TOP10 into which the plasmid was introduced was spread on LB + amp agar medium and O / N culture was performed at 37 ° C.
  • colony PCR was carried out using the grown colonies as templates using T7promoter ', T7terminator' and GoTaq Green Master Mix, and agarose gel electrophoresis was performed.
  • a colony in which a target band of about 1.8 kbp was confirmed was subjected to plasmid extraction using FastGene Plasmid Mini Kit (Nippon Genetics). Using the primer of 5′- GCTAGTTATTGCTCAGCGGTGG -3 ′) (SEQ ID NO: 14), the sequence of the insert was confirmed by Sanger sequencing according to the protocol.
  • ORF3352 expression vector was introduced into competent cell Rosseta-gami B (DE3) by the heat shock method. Protein was expressed using IPTG as a protein expression inducer. The cells were collected and crushed using an ultrasonic crusher, and centrifuged at 14,000 rpm for 20 minutes at 4 ° C., and the supernatant was used as a crude enzyme solution.
  • the expressed protein in the obtained crude enzyme solution was confirmed by SDS-PAGE.
  • the cells were cultured at 16 ° C. for 24 hours.
  • ORF3352 protein expression vector After incorporating optORF3352 into Not I and Nde I sites of pCold II Vector, the nucleotide sequence of optORF3352 was confirmed by Sanger sequencing. This expression vector was designated as pCold II / optORF3352. 2. Expression and purification of ORF3352 protein An expression vector (pCold II / optORF3352) was introduced into Rosetta-gami B (DE3), and expression was induced by adding IPTG. SDS-PAGE confirmed the induction of IPTG expression of the 61.4 kDa ORF3352 protein. After ultrasonic disruption of the expressed cells, the soluble fraction was subjected to nickel affinity chromatography to purify the ORF3352 protein to obtain a sufficient amount of purified protein.
  • Example 7 Experimental method for ORF3352 protein activity Degradation of monohydroxyethyl terephthalate (MHET) and related substrates by ORF3352 protein
  • MHET monohydroxyethyl terephthalate
  • pH 7, 50 mM phosphate buffer (containing 100 mM NaCl) and DMSO were added, and finally adjusted to 100 ⁇ L.
  • the protein amount of the purified enzyme was adjusted to 0, 50, and 500 ng, respectively, and incubated at 30 ° C.
  • ORF3352 protein is considered to be most closely related to tannase, ferulic acid esterase and chlorogenic acid esterase from its amino acid sequence. Therefore, the activity of these enzymes, which are considered to be catalyzed, was measured against ethyl gallate (Ethyl gallate, ethyl ferulate (Ethyl ferulate), and chlorogenic acid hydrate (Chlorogenic Acid Hydrate). Phase HPLC was used.
  • the ORF3352 protein only showed very low activity against ethyl gallate, ethyl ferulate, and chlorogenic acid hydrate (FIG. 14). From this, it can be confirmed that the ORF3352 protein shows activity specifically to MHET.
  • the PET degrading enzyme of the present invention can contribute to the effective utilization of PET resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 PET樹脂等の芳香族ポリエステル樹脂を加水分解する酵素の提供、及び該酵素を用いたPET樹脂等の芳香族ポリエステル樹脂の分解方法の提供。 配列表の配列番号2又は4に表されるアミノ酸配列からなる芳香族ポリエステル分解酵素によりポリエチレンテレフタレート(PET)等の芳香族ポリエステルを分解することができる。さらに、前記ポリエステル分解酵素と配列表の配列番号10又は12に表されるアミノ酸配列からなるモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素によりポリエチレンテレフタレート(PET)等の芳香族ポリエステルの酵素分解により生じるMHETを分解し、完全にモノマー化することができる。

Description

芳香族ポリエステル分解酵素及び該酵素を用いた芳香族ポリエステル分解方法
 本発明は、飲料用のボトル等で汎用されている合成ポリマーであるポリエチレンテレフタレート(以下PET)等の芳香族ポリエステルを加水分解する酵素に関する。
 PET樹脂は、透明性が高く強度にも優れていることから、ボトル等に幅広く利用されてきた。しかし、安定であるが故に自然界で分解することが無いため、ゴミ問題が起きていた。そこで、リサイクルが行われるようになり、現在ではケミカルリサイクルが広く行われている。
 一般的な加水分解によるケミカルリサイクルでは、PETを150℃~250℃の高温で触媒と過剰の水で処理するとテレフタル酸(TPA)とエチレングリコール(EG)に解重合される。加水分解の触媒は硫酸のような酸、又は水酸化ナトリウムのような塩基が使用されている。
 また、メタノール分解を使ったケミカルリサイクルでは、必要に応じて触媒を添加して、溶解したPETにメタノールを加え、20~70 atmの圧力下で160℃~240℃で加熱すると99%の収率で高純度のPET原料を得ることができる。
 しかし、ケミカルリサイクルは純粋なPET製品にのみ可能であり、高コストや強アルカリ処理などにともなう廃液の処分問題をかかえている。
 これら使用済みPETを環境に負荷をかけずに処理することを目指して、PET分解菌の探索を行い、PETを二酸化炭素と水まで完全分解する菌株(No.201-F6株)の分離に成功したという報告がある(特許文献1を参照)。該菌株はその16S rRNAの塩基配列から、ldeonella 属と同定された。しかしながら、該株からPET分解酵素群はいまだ公表されていない。
 近年の研究ではクチン分解酵素であるcutinaseがPETを加水分解するという報告がされている(非特許文献1を参照)。
 このように、PET樹脂のリサイクルのためには、エステル結合を加水分解して、モノマーに分解する必要があった。このため、酵素によるPET分解が検討されてきたが、高活性な酵素は報告されていない。
特開2008-199957号公報
Ribitsch, Doris et al., Biocatalysis and Biotransformation (2012), 30(1), 2-9
 本発明は、PET樹脂等の芳香族ポリエステル樹脂を加水分解する酵素の提供、及び該酵素を用いたPET樹脂等の芳香族ポリエステル樹脂の分解方法の提供を目的とする。
 PETを二酸化炭素と水まで完全分解する菌株であるNo.201-F6株は、PETを分解、資化する唯一の細菌である。本発明者らは、本菌のPET加水分解酵素はcutinaseとは異なり、PETを本来の基質とする新規酵素である可能性が高いと考えた。しかし、これまでにPETフィルムや、PET類似低分子化合物への活性を指標に、PET分解酵素の同定が試みられてきたが、遺伝子の同定には至っていなかった。本発明者らはNo.201-F6株のPET分解酵素遺伝子を同定するため、新たにゲノム解析を行い、目的遺伝子を探索するアプローチを試みた。これまで、小田らにより、No.201-F6株のPETフィルム分解により培養液にTPAとbis(2-hydroxyethyl)terephthalate (BHET)を遊離する知見が得られていた。そこで、No.201-F6株のゲノム上のEsteraseやLipase遺伝子をin silicoで探索したところ、42個の推定Esterase遺伝子、8個の推定Lipase遺伝子を見出した。これらの中で推定Lipase遺伝子ORF2645はThermobifida fusca由来cutinaseと51%の相同性があり、Acidoborax delafiedii BS-3 株由来のPBSA depolymeraseと82%の相同性があることがわかった。PBSAはPoly(tetramethylene succinate)-co-adipateという脂肪酸エステルの1つである。これらの結果からこのORF2645はPET樹脂を加水分解する酵素をコードしていると予測した。
 本発明者らは、非結晶PET資化菌Ideonella sp. No.201-F6株のゲノム上に見出されたPET分解酵素遺伝子と予測されたORF2645の大腸菌によるタンパク質の異種発現、および精製を行い、機能同定を試みた。
 精製ORF2645タンパク質を非結晶PET樹脂であるtere-PETフィルムに対して作用させたところ、実体顕微鏡による観察ではフィルム表面の白化、亀裂が確認でき、走査型電子顕微鏡 (SEM)による観察では分解溝が確認できた。HPLCによるtere-PETフィルムの分解産物の分析では、tere-PETの部分構造であるモノヒドロキシエチルテレフタレート(MHET)、およびテレフタル酸(TPA)が検出された。以上の結果からORF2645タンパク質はPET分解酵素であると同定した。
 さらに発明者らは、本菌をPETを主炭素源とする培地で生育させ、トランスクリプトーム解析を行った。そして、本培地で非常に高発現する遺伝子の一つORF3352遺伝子に着目した。本遺伝子の大腸菌によるタンパク質の異種発現、および精製を行い、機能同定を試みた結果、本酵素が高特異性のMHET加水分解酵素であることが判明した。
 このようにして、本発明者らは新たにPET分解酵素、MHET加水分解酵素を同定し、本発明を完成させるに至った。
 すなわち、本発明は以下の通りである。
[1] 以下の(a)又は(b)の芳香族ポリエステル分解酵素:
(a) 配列表の配列番号2又は4に表されるアミノ酸配列からなる芳香族ポリエステル分解酵素;又は
(b) 配列表の配列番号2又は4に表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、芳香族ポリエステル分解活性を有する芳香族ポリエステル分解酵素。
[2] 芳香族ポリエステルがポリエチレンテレフタレート(PET)である、[1]の芳香族ポリエステル分解酵素。
[3] 以下の(a)または(b)の芳香族ポリエステル分解酵素をコードするDNA:
(a) 配列表の配列番号2又は4に表されるアミノ酸配列からなる芳香族ポリエステル分解酵素;又は
(b) 配列表の配列番号2又は4に表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、芳香族ポリエステル分解活性を有する芳香族ポリエステル分解酵素。
[4] 以下の(c)または(d)の芳香族ポリエステル分解酵素をコードするDNA:
(c) 配列表の配列番号1に表される塩基配列若しくは配列番号1に示す塩基配列の82番目~873番目の塩基配列、又は配列番号3に表される塩基配列からなるDNA;又は
(d) 配列表の配列番号1に表される塩基配列若しくは配列番号1に示す塩基配列の82番目~873番目の塩基配列、又は配列番号3に表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズすることができ、かつ芳香族ポリエステル分解活性を有する芳香族ポリエステル分解酵素をコードするDNA。
[5] 芳香族ポリエステルがポリエチレンテレフタレート(PET)である、[3]又は[4]のDNA。
[6] [3]~[5]のいずれかのDNAを含有する発現ベクター。
[7] [6]の発現ベクターで形質転換された宿主細胞。
[8] [7]の宿主細胞をDNAの発現可能な条件下で培養して、芳香族ポリエステル分解酵素を産生させ、該芳香族ポリエステル分解酵素を回収することを含む芳香族ポリエステル分解酵素の製造方法。
[9] [1]又は[2]の芳香族ポリエステル分解酵素を芳香族ポリエステルに作用させることを含む、芳香族ポリエステル分解方法。
[10] 以下の(a)又は(b)のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素:
(a) 配列表の配列番号10又は12に表されるアミノ酸配列からなるモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素;又は
(b) 配列表の配列番号10又は12に表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素活性を有するモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素。
[11] 以下の(a)または(b)のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素をコードするDNA:
(a) 配列表の配列番号10又は12に表されるアミノ酸配列からなるモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素;又は
(b) 配列表の配列番号10又は12に表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素活性を有するモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素。
[12] 以下の(c)または(d)のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素をコードするDNA:
(c) 配列表の配列番号9に表される塩基配列若しくは配列番号9に示す塩基配列の52番目~1812番目の塩基配列、又は配列番号11に表される塩基配列からなるDNA;又は
(d) 配列表の配列番号9に表される塩基配列若しくは配列番号9に示す塩基配列の52番目~1812番目の塩基配列、又は配列番号11に表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズすることができ、かつモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素活性を有するモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素をコードするDNA。
[13] [11]又は[12]のDNAを含有する発現ベクター。
[14] [13]の発現ベクターで形質転換された宿主細胞。
[15] [14]の宿主細胞をDNAの発現可能な条件下で培養して、モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素を産生させ、該モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素を回収することを含むモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素の製造方法。
[16] [1]若しくは[2]の芳香族ポリエステル分解酵素、並びに[10]のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素に作用させることを含む、芳香族ポリエステル分解方法。
[17] 芳香族ポリエステルがポリエチレンテレフタレート(PET)である、[16]の分解方法。
 本明細書は本願の優先権の基礎である日本国特許出願2013-171745号の明細書および/または図面に記載される内容を包含する。
 PET樹脂等の芳香族ポリエステル樹脂に本発明の芳香族ポリエステル分解酵素ORF2645タンパク質を作用させることにより、モノマーへと分解することができる。従って、本発明の芳香族ポリエステル分解酵素を用いることにより、PETボトル等の廃棄物を適切に処理することができ、またPET樹脂をリサイクルし有効利用することができる。さらに、PET繊維の表面に本発明の芳香族ポリエステル分解酵素を作用させて、親水基を露出させることにより、染色性やしなやかさを向上させることができる。
 また、さらに、PET樹脂等の芳香族ポリエステル樹脂に本発明の芳香族ポリエステル分解酵素ORF2645タンパク質とモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素ORF3352タンパク質を作用させることにより、完全にモノマーへと分解することができる。
Ideonella由来ORF2645遺伝子の塩基配列を示す図である。 E. coliで発現させるためにコドン使用頻度の至適化を行ったoptORF2645遺伝子の塩基配列を示す図である。 ニッケルアフィニティークロマトグラフィーにおけるORF2645タンパク質の精製結果を示す図である。 pNP-butyrateの構造式(A)及びp-nitrophenolの構造式(B)を示す図である。 Bis(2-Hydroxyethyl)Terephtalic Acid(BHET)の構造式を示す図である。 tere-PETフィルムを用いた活性評価実験の反応液のHPLCを用いた解析結果を示す図であり、tere-PETフィルムを用いた活性評価実験の反応液から検出されたMHET濃度を示す図である。 ORF2645タンパク質のBHET分解活性を示した図である。 図6-1を定量し、図示したものである。 ORF2645タンパク質で処理したtere-PETフィルムの実体顕微鏡による観察写真を示す図である。 ORF2645タンパク質のtere-PETフィルムに対する活性を示すSEMによる表面観察写真像を示す図である。 ORF2645タンパク質のpH依存的活性を示す図であり、各pH条件におけるpNP-butyrateに対するORF2645タンパク質の比活性(酵素 1 μMがpNP-butyrateから1秒間に遊離するpNP濃度)を示す図である。 ORF2645タンパク質によるPET及びBHETの加水分解反応を示す図である。 Ideonella由来ORF3352遺伝子の塩基配列を示す図である。 E. coliで発現させるためにコドン使用頻度の至適化を行ったoptORF3352遺伝子の塩基配列を示す図である。 ORF3352タンパク質によるMHETの分解と、それに伴うTPAの生成を経時的に測定した図である。 ORF3352タンパク質の、MHET、没食子酸エチル、フェルラ酸エチル及びクロロゲン酸水和物に対する活性を示す図である。
 以下、本発明を詳細に説明する。
 本発明は、新規な芳香族ポリエステル分解酵素(ポリエチレンテレフタレート(PET)又はその部分構造であるビス(2-ヒドロキシエチル)テレフタレート(BHET)を加水分解するORF2645タンパク質)である。
 また、本発明は、上記の新規な芳香族ポリエステル分解能を有する酵素及び該酵素を用いた芳香族ポリエステル分解方法である。本発明において、芳香族ポリエステル分解能を有する酵素を代表的な基質の名をとりPET分解酵素と呼ぶこともある。
 本発明の芳香族ポリエステル分解酵素は、土壌から単離されたIdeonella属に属するグラム陰性桿菌であるIdeonella sp. No.201-F6株より単離することができる。Ideonella属微生物の単離は公知の方法で行なうことができる。Ideonella sp. No.201-F6株については、特開2008-199957号公報に記載されている。
 Ideonella sp. No.201-F6株から単離された芳香族ポリエステル分解酵素をコードするDNAの塩基配列を図1及び配列番号1に示す。該酵素のアミノ酸配列を配列番号2に示す。本発明において、該芳香族ポリエステルPET分解酵素をコードする遺伝子をORF2645遺伝子と呼ぶ。図1及び配列番号1に示す塩基配列はシグナル配列をコードするDNAの塩基配列も含み(第1~81番目の塩基からなる配列がシグナル配列をコードする配列)、配列番号2に示すアミノ酸配列はシグナル配列も含む(第1~27番目のアミノ酸からなる配列がシグナル配列)。本発明の芳香族ポリエステル分解酵素はシグナル配列を含むものも、含まないものも包含する。また、本発明の芳香族ポリエステル分解酵素をコードするDNAは、シグナル配列をコードする塩基配列を含むものも、含まないものも包含する。シグナル配列を含まないものとして、配列番号1に示す塩基配列の82番目~873番目の塩基からなるDNAが挙げられる。
 本発明の芳香族ポリエステル分解酵素は、上記のIdeonella sp. No.201-F6株を培養し、該株に産生させ精製することもでき、本発明の酵素をコードする遺伝子で宿主微生物を形質転換し、該形質転換微生物を培養することによっても得ることができる。後者の方法で製造する場合、宿主微生物での発現量を上げるためにコドンの利用率を宿主微生物に合わせて最適化することが好ましい。コドンの最適化は公知の方法で行うことができる。例えば、本発明の芳香族ポリエステル分解酵素を、大腸菌を宿主として組換え酵素として作製するときに、コドンを最適化した塩基配列を配列番号3に示す。本発明において、該配列からなる遺伝子をoptORF2645遺伝子と呼ぶ。optORF2645遺伝子がコードする芳香族ポリエステル分解酵素のアミノ酸配列を配列番号4に示す。配列番号4に示すアミノ酸配列は、配列番号2に示すアミノ酸配列からシグナル配列を除いたアミノ酸配列と同じである。
 本発明の芳香族ポリエステル分解酵素は、そのアミノ酸配列からなるタンパク質が芳香族ポリエステル分解酵素活性を有する限り、当該アミノ酸配列において少なくとも1個、好ましくは1若しくは数個のアミノ酸に欠失、置換、付加等の変異が生じてもよい。
 例えば、配列番号2又は4で表わされるアミノ酸配列の少なくとも1個、好ましくは1又は数個(例えば1~10個、好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1若しくは2個)のアミノ酸が欠失してもよく、配列番号2又は4で表わされるアミノ酸配列に少なくとも1個、好ましくは1又は数個(例えば1~10個、好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1若しくは2個)のアミノ酸が付加してもよく、あるいは、配列番号2又は4で表わされるアミノ酸配列の少なくとも1個、好ましくは1又は数個(例えば1~10個、好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1若しくは2個)のアミノ酸が他のアミノ酸に置換してもよい。
 このような配列番号2又は4のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列として、配列番号2又は4のアミノ酸配列と、BLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の配列同一性を有しているものが挙げられる。
 このような配列番号2又は4のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有するタンパク質は配列番号2又は4のアミノ酸配列を有するタンパク質と実質的に同一である。
 また、配列番号1又は3に表される塩基配列からなるDNAと相補的な配列からなるDNAと下記のストリンジェントな条件下でハイブリダイズすることができるDNAであって芳香族ポリエステル分解酵素活性を有するタンパク質をコードするDNAも本発明のDNAに含まれる。すなわち、DNAを固定したフィルターを用いて、0.7~1.0 MのNaCl存在下、68℃でハイブリダイゼーションを行った後、0.1~2倍濃度のSSC溶液(1倍濃度のSSCとは150 mM NaCl、15 mM クエン酸ナトリウムからなる)を用い、68℃で洗浄することにより同定することができる条件をいう。あるいは、サザンブロッティング法によりニトロセルロース膜上にDNAを転写、固定後、ハイブリダイゼーション緩衝液〔50% フォルムアミド、4×SSC、50 mM HEPES(pH7.0)、10×デンハルツ(Denhardts)溶液、100μg/mlサケ精子DNA〕中で42℃で一晩反応させることによりハイブリッドを形成することができるDNAである。
 また、配列番号1又は3に表される塩基配列からなるDNAとBLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の配列同一性を有しているDNAであって、芳香族ポリエステル分解酵素活性を有するタンパク質をコードするDNAも本発明の芳香族ポリエステル分解酵素をコードするDNAに包含される。
 さらに、上記DNAに対するRNA、又は該RNAとストリンジェントな条件下でハイブリダイズすることができるRNAであって芳香族ポリエステル分解酵素活性を有するタンパク質をコードするRNAも本発明に含まれる。
 本発明において、「ポリエステル」とは、主鎖にエステル結合を有する高分子物質をいう。また、本発明の酵素の基質となる「芳香族ポリエステル」とは、芳香族成分を繰り返し単位として含むポリエステルをいう。該繰り返し単位の含有量は、例えば50~100重量%、好ましくは70~100重量%、より好ましくは90~100重量%、さらに好ましくは95~100重量%である。芳香族ポリエステルとして、ポリエチレンテレフタレート(PET)が挙げられ、さらに、エチレンテレフタレート繰り返し単位を95重量%以上含むPETが挙げられる。
 芳香族ポリエステルはジカルボン酸成分及びジオール成分の重縮合により製造することができる。例えば、PETジカルボン酸成分としてテレフタル酸を使用し、ジオール成分としてエチレングリコールを使用し製造することができる。テレフタル酸以外の他のジカルボン酸成分として、フタル酸、イソフタル酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、2,5-ナフタレンジカルボン酸等の芳香族ジカルボン酸及びその誘導体;コハク酸、アジピン酸、アゼライン酸、セバチン酸、デカンジカルボン酸等の脂肪族ジカルボン酸及びその誘導体が挙げられる。また、エチレングリコール以外の他のジオール成分としては、ジエチレングリコール、トリメチレングリコール、テトラメチレングリコール、プロピレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、デカメチレングリコール等が挙げられる。
 本発明の酵素を用いて芳香族ポリエステルを分解する場合、分解する芳香族ポリエステルの形態に限定はなく、例えば、繊維状、粒状、フレーク状、ペレット状、フィルム状、塊状、ボトル状のものが挙げられる。また、これらの混合体を用いることもできる。
 本発明の芳香族ポリエステル分解酵素は、芳香族ポリエステルを分解し得る。例えば、本発明の芳香族ポリエステル分解酵素は、イソフタル酸共重合非晶質PET(isoPET)及びテレフタル酸共重合非晶質PET(tere PET)を分解し得る。例えば、フィルム上のiso PETフィルム及びtere PETフィルムを分解し得る。例えば、iso PET及びtere PETを、0.02 mg/cm2・日以上、好ましくは0.05 mg/cm2・日以上、より好ましくは0.1 mg/cm2・日以上、かつ例えば0.3 mg/cm2・日以下、好ましくは0.5 mg/cm2・日以下、より好ましくは1.0 mg/cm2・日以下の速度で分解することができる。本発明の芳香族ポリエステル分解酵素によりPETが分解されたか否かは、例えば、PETの分解産物である、モノヒドロキシエチルテレフタレート(TA-EG、MHET)、或いはテレフタル酸(TPA)の生成を指標にすることによりわかる。
 本発明の芳香族ポリエステル分解酵素は、芳香族ポリエステル(例えば、PET)の主鎖を分解し得る。従って、本発明の芳香族ポリエステル分解酵素は、芳香族ポリエステル分解中間産物を分解し得る。例えば、芳香族ポリエステルがPETの場合、ビス(2-ヒドロキシエチル)テレフタレート(BHET)をモノヒドロキシエチルテレフタレート(TA-EG、MHET)に分解することができる。すなわち、本発明の芳香族ポリエステル分解酵素であるORF2645タンパク質は、PET又はPETの部分構造であるビス(2-ヒドロキシエチル)テレフタレート(BHET)を基質として加水分解し、モノヒドロキシエチルテレフタレート(MHET)を生じる。
 本発明の芳香族ポリエステル分解酵素の芳香族ポリエステル分解能は、芳香族ポリエステルからなる材料(例えば、フィルム)を酵素で処理し酵素反応を行い、材料の白化を観察すること、あるいは酵素反応後の材料の重量損失を測定することによって調べることができる。また、芳香族ポリエステルや、BHET、TPA・2Na等のPET分解中間産物を薄層クロマトグラフィー(TLC)、高速液体クロマトグラフィー(HPLC)等により検出することによっても調べることができる。
 本発明の芳香族ポリエステル分解酵素により、PETボトルなどの廃棄物を処理することができる。本発明の芳香族ポリエステル分解酵素により、PET等の芳香族ポリエステルを分解し、分解物をリサイクルに用いることができる。さらに、本発明の芳香族ポリエステル分解酵素を用いて、PETフィルム等のPET加工品の表面の修飾、PET繊維の表面修飾、PET繊維を使用した衣類の洗浄、リサイクルに供するPET樹脂の洗浄等を行うこともできる。
 本発明の芳香族ポリエステル分解酵素による芳香族ポリエステルの分解は、上記の芳香族ポリエステルに本発明の芳香族ポリエステル分解酵素を作用させることにより行うことができる。ここで、作用とは、芳香族ポリエステルと酵素を接触させ、酵素反応を起こさせることをいう。酵素反応させるときの芳香族ポリエステル分解酵素の濃度は、0.5~20μg/mL、好ましくは1~10μg/mL、さらに好ましくは1~5μg/mL、特に好ましくは1~3μg/mL程度であるが、この濃度に限定はされず、分解する芳香族ポリエステルの量等に応じ適宜設定することができる。反応温度は、15~50℃、好ましくは20~40℃、特に好ましくは25~30℃である。反応時のpHは、pH6.0付近であり、好ましくは4.0~8.0、さらに好ましくは4.5~7.5、特に好ましくは5.0~6.5である。反応時間は、分解する芳香族ポリエステルの量等により適宜設定でき、また、芳香族ポリエステル繊維の修飾や芳香族ポリエステルの表面の修飾等を目的とするかにより異なるが、数時間から数か月である。長時間の処理を行う場合は、定期的に芳香族ポリエステル分解酵素を添加してもよい。
 本発明の芳香族ポリエステル分解酵素は、Ideonella sp. No.201-F6株を培養し、製造することができ、Ideonella sp. No.201-F6株の培養液等の培養物から公知の方法を用いて単離することができる。また、本発明の芳香族ポリエステル分解酵素は、該芳香族ポリエステル分解酵素をコードするDNAを宿主微生物に導入し、該微生物を培養することにより組換え酵素として製造することができる。例えば、適当なベクターに本発明のDNAを連結(挿入)することにより発現ベクターを作製し、該発現ベクターを宿主微生物に導入し宿主微生物を形質転換すればよい。本発明のDNAを挿入するためのベクターは、細菌、酵母又は動物細胞等の宿主細胞中で複製可能なものであれば特に限定されず、例えば、プラスミドDNA、ファージDNA等が挙げられる。発現ベクターの構築に用いられるベクターDNAは、広く普及した入手の容易なものが用いられる。例えば、pETベクター、pQEベクター、pColdベクター、pUC19ベクター等が挙げられる。本発明の発現ベクターの構築方法は、特に限定されるものではなく常法により行うことができる。本発明の発現ベクターで形質転換された宿主細胞は、本発明のDNAを発現し得るものであれば特に制限されないが、例えば、細菌としては大腸菌、枯草菌等が、酵母としてはサッカロマイセス・セレビィシエ等が、動物細胞としては、チャイニーズ・ハムスター・卵巣(CHO)細胞、サルCOS細胞、マウス線維芽細胞等が挙げられる。
 本発明は、上記DNAを含む宿主細胞をDNAの発現可能な条件下で培養して、本発明の芳香族ポリエステル分解酵素を産生させ、該芳香族ポリエステル分解酵素を回収することを含む芳香族ポリエステル分解酵素の製造方法を包含する。宿主細胞により産生された芳香族ポリエステル分解酵素は、例えばゲル濾過クロマトグラフィー、限外濾過、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー、疎水クロマトグラフィー、クロマトフォカシング、等電点電気泳動法、ゲル電気泳動法等の公知の精製法を単独又は組み合わせて精製することができる。
モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素(ORF3352タンパク質)
 さらに、本発明は芳香族ポリエステル分解産物である、モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素を包含する。
 該酵素は、土壌から単離されたIdeonella属に属するグラム陰性桿菌であるIdeonella sp. No.201-F6株より単離することができる。Ideonella属微生物の単離は公知の方法で行なうことができる。Ideonella sp. No.201-F6株については、特開2008-199957号公報に記載されている。
 Ideonella sp. No.201-F6株から単離されたモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素をコードするDNAの塩基配列を図11及び配列番号9に示す。該酵素のアミノ酸配列を配列番号10に示す。本発明において、該モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素をコードする遺伝子をORF3352遺伝子と呼ぶ。図11及び配列番号9に示す塩基配列はシグナル配列をコードするDNAの塩基配列も含み(第1~51番目の塩基からなる配列がシグナル配列をコードする配列)、配列番号9に示すアミノ酸配列はシグナル配列も含む(第1~17番目のアミノ酸からなる配列がシグナル配列)。本発明のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素はシグナル配列を含むものも、含まないものも包含する。また、本発明のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素をコードするDNAは、シグナル配列をコードする塩基配列を含むものも、含まないものも包含する。シグナル配列を含まないものとして、配列番号9に示す塩基配列の52番目~1812番目の塩基からなるDNAが挙げられる。
 本発明のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素は、上記のIdeonella sp. No.201-F6株を培養し、該株に産生させ精製することもでき、該酵素をコードする遺伝子で宿主微生物を形質転換し、該形質転換微生物を培養することによっても得ることができる。後者の方法で製造する場合、宿主微生物での発現量を上げるためにコドンの利用率を宿主微生物に合わせて最適化することが好ましい。コドンの最適化は公知の方法で行うことができる。例えば、本発明のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素を、大腸菌を宿主として組換え酵素として作製するときに、コドンを最適化した塩基配列を配列番号11に示す。本発明において、該配列からなる遺伝子をoptORF3352遺伝子と呼ぶ。optORF3352遺伝子がコードするモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素のアミノ酸配列を配列番号12に示す。配列番号12に示すアミノ酸配列は、配列番号10に示すアミノ酸配列からシグナル配列を除いたアミノ酸配列と同じである。
 本発明のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素は、そのアミノ酸配列からなるタンパク質がモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素活性を有する限り、当該アミノ酸配列において少なくとも1個、好ましくは1若しくは数個のアミノ酸に欠失、置換、付加等の変異が生じてもよい。
 例えば、配列番号10又は12で表わされるアミノ酸配列の少なくとも1個、好ましくは1又は数個(例えば1~10個、好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1若しくは2個)のアミノ酸が欠失してもよく、配列番号10又は12で表わされるアミノ酸配列に少なくとも1個、好ましくは1又は数個(例えば1~10個、好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1若しくは2個)のアミノ酸が付加してもよく、あるいは、配列番号10又は12で表わされるアミノ酸配列の少なくとも1個、好ましくは1又は数個(例えば1~10個、好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1若しくは2個)のアミノ酸が他のアミノ酸に置換してもよい。
 このような配列番号10又は12のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列として、配列番号10又は12のアミノ酸配列と、BLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の配列同一性を有しているものが挙げられる。
 このような配列番号10又は12のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有するタンパク質は配列番号10又は12のアミノ酸配列を有するタンパク質と実質的に同一である。
 また、配列番号9又は11に表される塩基配列からなるDNAと相補的な配列からなるDNAと下記のストリンジェントな条件下でハイブリダイズすることができるDNAであってモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素活性を有するタンパク質をコードするDNAも本発明のDNAに含まれる。すなわち、DNAを固定したフィルターを用いて、0.7~1.0 MのNaCl存在下、68℃でハイブリダイゼーションを行った後、0.1~2倍濃度のSSC溶液(1倍濃度のSSCとは150 mM NaCl、15 mM クエン酸ナトリウムからなる)を用い、68℃で洗浄することにより同定することができる条件をいう。あるいは、サザンブロッティング法によりニトロセルロース膜上にDNAを転写、固定後、ハイブリダイゼーション緩衝液〔50% フォルムアミド、4×SSC、50 mM HEPES(pH7.0)、10×デンハルツ(Denhardts)溶液、100μg/mlサケ精子DNA〕中で42℃で一晩反応させることによりハイブリッドを形成することができるDNAである。
 また、配列番号9又は11に表される塩基配列からなるDNAとBLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の配列同一性を有しているDNAであって、モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素活性を有するタンパク質をコードするDNAも本発明のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素をコードするDNAに包含される。
 さらに、上記DNAに対するRNA、又は該RNAとストリンジェントな条件下でハイブリダイズすることができるRNAであってモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素活性を有するタンパク質をコードするRNAも本発明に含まれる。
 本発明のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素は、モノヒドロキシエチルテレフタレート(MHET)を加水分解し、テレフタル酸(TPA)及びエチレングリコール(EG)を生成する。
 上記の芳香族ポリエステル分解酵素であるORF2645タンパク質は、PET又はPETの部分構造であるビス(2-ヒドロキシエチル)テレフタレート(BHET)を加水分解し、モノヒドロキシエチルテレフタレート(MHET)を生じる。ORF2645タンパク質による加水分解により生じたモノヒドロキシエチルテレフタレート(MHET)を、さらにモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素であるORF3352タンパク質で加水分解することにより、テレフタル酸(TPA)とエチレングリコール(EG)が生成する。これら2つの酵素によりPET又はBHETをテレフタル酸(TPA) とエチレングリコール(EG)にまで分解することができる。
ORF2645タンパク質及びORF3352タンパク質を用いた芳香族ポリエステルの分解
 本発明は、ORF2645タンパク質とORF3352タンパク質をPET等の芳香族ポリエステルに作用させることを含む、芳香族ポリエステルの分解方法を包含する。ここで、作用とは、PET等の芳香族ポリエステルをORF2645タンパク質及びORF3352タンパク質と接触させ、酵素反応を起こさせることをいう。ORF2645タンパク質によりPET又はその部分構造であるビス(2-ヒドロキシエチル)テレフタレート(BHET)がモノヒドロキシエチルテレフタレート(MHET)に加水分解され、さらに、ORF3352タンパク質によりモノヒドロキシエチルテレフタレート(MHET)がテレフタル酸(TPA)に加水分解される。
 酵素反応させるときのORF2645タンパク質又はORF3352タンパク質の濃度は、0.5~20μg/mL、好ましくは1~10μg/mL、さらに好ましくは1~5μg/mL、特に好ましくは1~3μg/mL程度であるが、この濃度に限定はされず、分解する芳香族ポリエステルの量等に応じ適宜設定することができる。反応温度は、15~50℃、好ましくは20~40℃、特に好ましくは25~30℃である。反応時のpHは、pH6.0付近であり、好ましくは4.0~8.0、さらに好ましくは4.5~7.5、特に好ましくは5.0~6.5である。反応時間は、分解する芳香族ポリエステルの量等により適宜設定でき、また、芳香族ポリエステル繊維の修飾や芳香族ポリエステルの表面の修飾等を目的とするかにより異なるが、数時間から数か月である。長時間の処理を行う場合は、定期的に芳香族ポリエステル分解酵素を添加してもよい。
 この際、ORF3352タンパク質とORF2645タンパク質を混合して用いればよい。
 さらに、本発明のORF2645タンパク質とORF3352タンパク質を共発現させてもよい。共発現させるには、ORF2645タンパク質をコードするDNAとORF3352タンパク質をコードするDNAをそれぞれ、別々に2つの発現ベクターに挿入したもので宿主微生物を形質転換してもよいし、ORF2645タンパク質をコードするDNAとORF3352タンパク質をコードするDNAを1つの発現ベクターに挿入したもの(2遺伝子発現ベクター)で宿主微生物を形質転換してもよい。共発現させることにより、ORF2645タンパク質とORF3352タンパク質が混合した状態で製造することができる。得られたORF2645タンパク質とORF3352タンパク質の混合物を用いてPET等の芳香族ポリエステルを分解することができる。
 本発明のORF2645タンパク質及びORF3352タンパク質を用いて芳香族ポリエステルを分解する場合、分解する芳香族ポリエステルの形態に限定はなく、例えば、繊維状、粒状、フレーク状、ペレット状、フィルム状、塊状、ボトル状のものが挙げられる。また、これらの混合体を用いることもできる。
 本発明のORF2645タンパク質及びORF3352タンパク質により、PETボトルなどの廃棄物を処理することができる。本発明のORF2645タンパク質及びORF3352タンパク質により、PET等の芳香族ポリエステルを分解し、分解物をリサイクルに用いることができる。さらに、本発明のORF2645タンパク質及びORF3352タンパク質を用いて、PETフィルム等のPET加工品の表面の修飾、PET繊維の表面修飾、PET繊維を使用した衣類の洗浄、リサイクルに供するPET樹脂の洗浄等を行うこともできる。
 本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例1 No. 201-F6株由来ORF2645の調製
 京都工芸繊維大学名誉教授 小田 耕平博士より非結晶PET資化菌ldeonella sp. No.201-F6株の供与を受けた。該菌株については、特開2008-199957号公報に記載されている。
 本実施例及び後記の実施例2~4において、非結晶PET資化菌ldeonella sp. No.201-F6株の次世代シークエンサーにより得られたゲノム情報を基にPET分解酵素遺伝子と予測された ORF2645遺伝子の機能同定について述べる。
方法
1.ORF2645タンパク質発現ベクターの構築
 Ideonella由来ORF2645は、Escherichia coli (E. coli)では使用頻度の低いレアコドンが多数含まれている。図1及び配列番号1にIdeonella由来ORF2645遺伝子の塩基配列を示す。配列番号2にIdeonella由来ORF2645タンパク質のアミノ酸配列を示す。また、ORF2645タンパク質のN末端には膜輸送するシグナル配列 (推定)が存在する。図中下線部はシグナル配列を示す。これまでにIdeonella由来ORF2645のNative配列からシグナルペプチド配列を除いた配列を用いたE. coli によるタンパク質の発現が試みられたが、SDS-PAGE上のバンドとして確認できなかった。そこでE. coliで目的タンパクを発現させるために本遺伝子のコドン使用頻度の至適化および全合成を行った。この遺伝子の配列をoptORF2645とした。図2及び配列番号3にoptORF2645遺伝子の塩基配列を示す。図2中、下線部は最適化したコドンを示す。さらに、配列番号4にoptORF2645遺伝子がコードするタンパク質のアミノ酸配列を示す。DNA PolymeraseにPrimeSTAR-GC (タカラバイオ社)を使用し、optORF2645をPCRで増幅した。プライマーは、optORF2645-f (5’- GGGAATTCCATATGCCAAACAAACCCGTATGCGCTG -3’)(配列番号5)、optORF2645-r (5’- GGGAATTCCATATGGGTGCCATTGCGATTGTTCCG -3)(配列番号6)を用いた。その後、脱塩精製した。
 プラスミドベクターとしてpET-21b(+) Vector (Novagen社)を使用した。ベクター、インサートともにXho IとNde I (ともにタカラバイオ社)を用い、制限酵素処理を行った。
 電気泳動で制限酵素によりpET-21b Vectorsとインサートが切断されていることを確認後、セルフライゲーションを防ぐために、Bacterial Alkaline Phosphatase(BAP) (タカラバイオ社)により脱リン酸化処理を行った。
 BAP処理済のプラスミドベクターとインサートをT4 DNA ligase (New England BioLab社)を使用し、ライゲーションを行った。プラスミドベクターとインサートのモル比は1:3とした。
 プラスミドベクターに組み込まれたDNA断片の長さをコロニーPCRにより確認した。PCRはGotaq Green Master Mix (Promega社)を用い、プライマーとしてT7 promoter (5’- CGCGAAATTAATACGACTCACTATAGGG -3’)(配列番号7)とT7 terminator (5’- GCTAGTTATTGCTCAGCGGTGG -3’)(配列番号8)を使用した。
 次に長さが確認できたプラスミドベクターのインサートの塩基配列を確認するためにサンガーシークエンスを行った。Plasmid Mini Purification Kit (Cosmo Genetch社)により、プラスミドを抽出した。これをテンプレートとして、プライマーにT7 promoter、T7 terminator、optORF2645-fとoptORF2645-rを使用し、BigDye terminator v.3.1Cycle Sequencing Kit (Applied Biosystems社)によりPCRを行った。
 その後、ABI PRISM(登録商標)3100 Genetic Analyzer (Applied Biosystems社)により配列を解読した。
 解析データはBio Editで確認、修正し、Clustal Wにより得られた配列と既知配列の比較を行った。 
2.ORF2645タンパク質の発現
 コンピテントセルBL21 Codon Plus (DE3) RIPL (Agilent社)にORF2645発現ベクターをヒートショック法で導入した。タンパク質発現誘導剤としてIPTGを用いタンパク質を発現させた。菌体を集め、超音波破砕機を使用し破砕し、4℃で14,000 rpm 20分間遠心し上清を粗酵素液とした。
 得られた粗酵素液中の発現タンパク質をSDS-PAGEにより確認した。
 IPTGを添加した後、16℃で一晩培養した。 
3. ORF2645タンパク質の精製
 COSMOGEL His-Accept (ナカライテスク社)を使用して、ニッケルアフィニティクロマトグラフィーを行った。各溶出液をSDS‐PAGEでバンドを確認し目的のタンパク質が精製されているかどうか確認を行った。
 精製タンパク質を280 nmの波長により、吸光度計BioSpec-mini(SHIMADZU社)で測定し、濃度を算出した。
 ORF2645タンパク質のモル吸光係数εはSwiss Institute of Bioinformatics社のProtParam tool (http://web.expasy.org/protparam/)を使い、そのアミノ酸配列より1.389Lg-1cm-1とした。
結果
1.ORF2645タンパク質発現ベクターの構築
 pET-21b(+) VectorのXho IとNde IサイトにoptORF2645を組み込み、サンガーシークエンスによりoptORF2645の塩基配列を確認した。作製した発現ベクターをpET21-b/optORF2645とした。
2.ORF2645タンパク質の発現・可溶化
 E. coli BL21 Codon Plus (DE3) RIPLに発現ベクター(pET21-b/optORF2645)を導入し、IPTGにより16℃で発現を誘導した。SDS-PAGEにより確認したところ、目的タンパク質の発現を確認することができた。
3.ORF2645タンパク質の精製
 ORF2645タンパク質を発現させた大腸菌の粗酵素液からニッケルアフィニティクロマトグラフィーによりORF2645タンパク質を精製した。各溶出液をSDS‐PAGEでバンドを確認したところ、イミダゾール濃度が50 mM、100 mM、250 mMの溶出液にORF2645タンパク質と考えられる30 kDa付近のバンドを確認した(図3)。結果、100 mLの培養液から、20μgの精製ORF2645タンパク質を得た。
実施例2 ORF2645タンパク質の活性実験
方法
1.tere-PETフィルムを使用した活性実験
 精製タンパク質のPET樹脂に対する活性評価は、京都工芸繊維大学名誉教授 小田 耕平博士から提供された非結晶性tere-PETフィルムを使用して行った。tere-PETとは、ベンゼン環のパラ位に2つのカルボキシル基が結合したテレフタル酸とエチレングリコールの縮重合体である。固体の状態は結晶と非晶質固体(非結晶性)の2つある。結晶は、結晶を構成する分子が3次元にわたって規則正しく積み重なった状態である。
 非結晶性PET樹脂は、融解状態の樹脂を260℃の融点からガラス転移温度の73℃以下まで急冷することで調製できる。フィルム表面にタンパク質が付着するのを防ぐために手袋を着用し、穴あけパンチでフィルムを径6 mmの小片に抜き取った。その後、小片を5分間70%エタノールに入れ殺菌し室温で乾燥させた。滅菌処理された96穴プレートに小片を各穴に1枚ずつ入れ、100 mMリン酸Buffer (pH 7.0)で濃度を調整した精製ORF2645タンパク質溶液を200μLを加えた。30℃のインキュベータで静置し反応させた。1日おきにフィルム表面を実体顕微鏡で観察し、実体顕微鏡の接眼レンズにデジタルカメラのレンズをあてて撮影を行った。
2.逆相高速液体クロマトグラフィー(HPLC)によるtere-PET分解産物の検出
 tere-PETフィルムを用いた活性評価実験において得られた各サンプル反応上清からPET分解産物を検出するため、逆相高速液体クロマトグラフィー(HPLC)を用いた。まず各サンプルを限外濾過膜(Amicon Ultra, cut off; 5 kDa)に通過させてタンパク質を取り除いた。リン酸Buffer(20 mM NaH2PO4, H3PO4, pH 2.5)で10倍希釈後、HPLCに各サンプルを20μLずつアプライした。展開溶媒はメタノール(A)と20 mMリン酸Buffer(pH 2.5) (B)を使用した。2つの溶媒の直線的濃度勾配により溶出を試みた。
 HPLCの条件及び勾配条件は表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000001
 TPAの検量線は検出されるピーク面積と、濃度を対応させることによって作成した。TPA溶液はDMSOに溶かし20 mMリン酸Buffer (pH 2.5)で希釈し1 mMに調整した。その後、1 mM TPA溶液を2倍ずつ20 mMリン酸Buffer (pH 2.5)で段階希釈しHPLCにアプライし、ピークを検出した。
3.para-nitorophenyl (pNP)-butyrateを用いた活性実験
 より簡便、且つ定量的に加水分解活性を評価するために、人工基質であるpNP-butyrate (p-ニトロフェニル酪酸)(図4-1A)を用いた。pNP-butyrateは加水分解されるとp-nitrophenol(図4-1B)が遊離する。p-nitrophenolは黄色を呈し、吸光度計で濃度を測定することができる。120秒間吸光度計で波長415 nmで遊離したp-nitrophenol濃度を計測した。反応液組成を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 次に、濃度を調製したp-nitrophenol溶液の波長415 nmにおける吸光度を測定し(n=3)、その平均値と濃度を対応させた検量線の傾きからモル吸光係数εを算出した。p-nitrophenolをDMSOに10 mM溶かし終濃度が1 mMになるように100 mMリン酸Buffer(pH 7.0)で希釈し調整した。1 mM p-nitrophenol溶液を100 mMリン酸Buffer(pH 7.0)で2倍ずつ段階希釈し吸光度を測定した。
4.Bis (2-Hydroxyethyl) Terephtalic Acid (BHET)を用いた活性実験
 PETの部分構造であるBHET(図4-2)に対する活性を調べた。反応時間30分後、60分後、180分後、1日後に反応液を氷上で急冷し、限外濾過膜(Amicon Ultra, cut off; 5 kDa)によってORF2645タンパク質を取り除くことで反応を停止させた。各サンプルを2つずつ用意した。HPLC条件は表1に示す条件と同様とした。BHETはDMSOに溶かし100 mMリン酸Buffer (pH 7.0)で希釈し10 mM溶液を調製した。調製したBHETの検量線BHET濃度を上記の3と同条件で測定し、検出されるピーク面積と対応させて検量線を作成した。BHET溶液は最初にDMSOに10 mMになるように溶かし、終濃度が1 mMになるように20 mMリン酸Buffer (pH 2.5)で希釈し調整した。反応液組成を表3に示す。
Figure JPOXMLDOC01-appb-T000003
結果
1.tere-PETフィルムを使用した活性実験
 精製したORF2645タンパク質のtere-PETフィルムに対する活性を実体顕微鏡で観察した。
 2.2μg/mLのORF2645タンパク質を添加したサンプルでは反応を始めて3日目に四方に亀裂が入り著しい変化が確認できた。時間経過とともに亀裂がさらに広がり肉眼でもフィルム表面が白く濁っていることが確認できた。
 22μg/mLのORF2645タンパク質を添加したサンプルでは反応を始めて3日目に横方向にはいる亀裂を確認した。2.2μg/mLのORF2645タンパク質を添加したサンプルに比べ変化は少ないが、時間経過とともに亀裂が広がっていくことが確認できた。
 ORF2645タンパク質のtere-PETフィルムへの活性は濃度が2.2μg/mLにおいて最も高く、次に22μg/mL、そして0.22μg/mLにおいては活性が確認できなかった。
2.逆相高速液体クロマトグラフィー(HPLC)によるtere-PET分解産物の検出
 tere-PETフィルムを用いた活性実験の反応開始後29日後の各サンプル反応上清を用いて、逆相高速液体クロマトグラフィー(HPLC)によるPET分解産物の検出を試みた。まず、標準サンプルにより、TPAは7.5 min付近に、BHETは9.5 min付近に検出されピークが現れることがわかった。
 次に、tere-PETフィルムにORF2645タンパク質溶液を添加したサンプルの解析をHPLCを用いて行った。図5に、tere-PETフィルムを用いた活性評価実験の反応液のHPLCを用いた解析結果を示すORF2645タンパク質溶液を添加していないコントロールにはPET分解産物と考えられるピークは検出されず、22μg/mL、2.2μg/mL、0.22μg/mLのORF2645タンパク質を添加したサンプルには主な分解産物であるMHETのピークが検出された。つまり、tere-PETフィルムは自発的に分解されず、ORF2645タンパク質はtere-PETフィルムからTPAを遊離する活性があることが示された。
 その結果、実体顕微鏡観察で最も活性が高いと推察された2.2μg/mLのタンパク質溶液を添加したサンプルの反応液が最も高いTPA遊離活性を持つことが定量的にも示された(図5)。この実験結果からも、ORF2645タンパク質は濃度が2.2μg/mL付近で最も活性が高いことが示された。
 また実体顕微鏡で亀裂が観察されなかった精製ORF2645タンパク質を添加した他のサンプルの反応液からもTPAが遊離し、活性があることがわかった(図5)。
3.pNP-butyrateを使用した活性実験
 ORF2645タンパク質のpNP-butyrate からのpNP 遊離活性を測定した。まず、pNPのpH 7.0における波長415 nmでの検量線を作成、活性を定量化した。検量線の傾きよりモル吸光係数ε=8.3 mM-1cm-1と算出された。
 活性測定の結果、ORF2645タンパク質はpNP-butyrateに対して活性を示し、tere-PETと違いORF2645タンパク質濃度が濃いほどpNP遊離活性が高くなっていくことも示された。比活性は、それぞれを平均したところ、ORF2645タンパク質1μMあたり1秒間に11μMのpNP-butyrateを加水分解していることが示された。
4.Bis (2-Hydroxyethyl) Terephtalic Acid(BHET)に対しての活性実験
 ORF2645タンパク質のBHETに対する活性をHPLCで測定した。HPLCの結果を、図6-1に示す(縦軸:検出強度μV、横軸:経過時間)より9.0 min付近のBHETのピークが反応時間が長くなるほど減少し、8.0 min付近に、それとともに増加するピークが確認できた。ORF2645タンパク質はPET樹脂の部分構造であるBHETに対して酵素活性があることがわかった。BHETの減少を定量するために、ピーク面積とBHET濃度が対応した検量線を作成した。算出したBHET濃度をもとに、反応開始から反応時間60分後を初速度として比活性を計算したところ、ORF2645タンパク質1μMあたり1秒間に6.3μMのBHETを分解していると算出された(図6-2)。
実施例3 走査型電子顕微鏡(Scanning Electron Microscope; SEM)を使用したtere-PETフィルムの表面観察
方法
 実施例2の活性実験で使用したtere-PETフィルム表面の細部を観察するために、走査型電子顕微鏡(SEM)を使用した。96穴プレートからtere-PETフィルムを取り出し70%アルコールで洗浄した。その後、ハサミでフィルムを半分に切りSEM試料台(日新EM社)にカーボン両面テープ(日新EM社)を使い固定した。これらの作業はゴミが付着しないようピンセットと手袋を着用して行った。各サンプルを固定した後、Osmium Plasma Coater(真空デバイス社)を使用して真空中でオスミウム(Wako社)コーティングをした。その後、SEM内にある試料ステージを引き出し、試料ホルダーにSEM試薬台をセットした。試料室を真空にし、SEM本体にいれ観察を行った。
結果
 実体顕微鏡観察の結果からtere-PETフィルム表面に亀裂が確認できた。より詳細にこれらの分解痕を観察するため、走査型電子顕微鏡(SEM)を用いた。実施例2の活性実験1回目の77日後のサンプルを使いSEMで観察を行った。まず、77日後のtere-PETフィルムの様子を実体顕微鏡で観察した(図7)。
 3日後のサンプルの実体顕微鏡写真と同様に、ORF2645タンパク質を添加してないサンプル2は特に亀裂は確認できず、顕微鏡写真からは分解の様子は観察されなかった。ORF2645タンパク質を添加したサンプル(図7B,C,D)はtere-PETフィルム表面に亀裂が広がっていることが観察された。特に、0.22μg/mLのORF2645タンパク質を添加したサンプルは14日後では観察できなかった亀裂がtere-PETフィルム表面全体に観察できた。
 亀裂が確認されなかった(図7A)コントロールでは、SEMによる高倍率で観察してもフィルムの表面に変化は見られなかった(図8A)。
 フィルム表面の白化は確認されず亀裂のみ確認できた(図7B)、22μg/mLのORF2645タンパク質を添加したサンプルでは、観察の結果、亀裂のみ確認できた。亀裂の周囲表面にはコントロールと同様に凹凸は観察されなかった(図8B)。
 フィルム表面全体が白化し、一番早く亀裂が確認された(図7C) 2.2μg/mLのORF2645タンパク質を添加したサンプルでは、フィルム表面全てに分解痕が確認され、一部分ではより深い分解溝も確認できた(図8C)。
 亀裂が観察され(図7D)、フィルム表面の白化が確認された0.22μg/mLのORF2645タンパク質を添加したサンプルではフィルム全体に分解溝が確認できたが、分解溝がなく凹凸のない部分も残っていた(図8D)。また、2.2μg/mLのORF2645タンパク質を添加したときの分解溝(図8C)と比べ凹凸が浅い様子が確認できた。
実施例4 ORF2645タンパク質の種々のpHにおける活性測定
方法
 pH 3.5からpH 9.0まで0.5刻みでクエン酸Buffer(100 mM クエン酸, pH 3.5 - pH 6.0, 100 mM NaCl)、リン酸Buffer(100 mM Na2HPO4, pH 6.0 - pH 8.0, 100 mM NaCl)、ビシンBuffer(100 mM ビシン, pH 8.0 - pH 9.0, 100 mM NaCl)を作製、各Buffer条件における、pNP-butyrateに対する活性を測定した。
 測定は温度一定30℃の条件下で行った。まず酵素液を除く反応液を1.5 mLチューブに入れ湯浴で30℃に温めた。また、吸光度計のセルチャンバーを30℃に維持した。反応液をキュベットに移し、セルチャンバー内で1分間静置した。またその間に100 mMリン酸Buffer (pH 7.0)に溶けた精製ORF2645タンパク質も湯浴で30℃に温めておいた。セルに酵素液を加え転倒混和して反応開始させ、波長415 nmで3分間経時的にpNPの遊離を測定した。このときブランクは、酵素液の代わり100 mMリン酸Buffer (pH 7.0)を加えたものとした。反応液組成を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 pNP-butyrateから、酵素反応で遊離するp-nitrophenol (pNP)はモル吸光係数εがpHに依存する。波長415 nmで2回ずつ各pHにおけるpNPの吸光度を吸光度計で測定した。pNP濃度はpH 3.5からpH 6.0までを20 mMから、pH 6.5からpH 9.0までを1 mMから段階希釈して調整した。測定結果から最低5プロットをもとに検量線を作成し、その傾きから各pHにおけるpNPのモル吸光係数εを算出した。
 実験で算出した各pHにおけるpNPのモル吸光係数εと測定結果から反応開始60秒後から120秒後までの傾きを求め比活性を算出した。
結果
 各pHにおけるpNPのモル吸光係数を実験により求め、ORF2645タンパク質のpNP-butyrate に対する比活性の定量化に用いた。ORF2645タンパク質の各pHにおける比活性を測定した。結果を図9に示す。比活性は、酵素1μMがpNP-butyrateから1秒間に遊離するpNP濃度(μM)と定義した。図9に示すように、ORF2645タンパク質の至適pHはpH 6.0付近であり、低pH(< pH 4.0)、高pH(< pH 7.5)条件下では活性がほとんど認められなかった。
実施例5 ORF2645のPET、BHETに対する加水分解活性
 ORF2645タンパク質の加水分解活性を測定した。
 ORF2645タンパク質は、図10に示すようにPETを加水分解し、モノヒドロキシエチルテレフタレート(MHET)及びエチレングリコール(EG)を生じ(図10A)、また、PETの部分構造であるビス(2-ヒドロキシエチル)テレフタレート(BHET)を加水分解し、モノヒドロキシエチルテレフタレート(MHET)及びエチレングリコール(EG)を生じた(図10B)。
実施例6 No.201-F6株由来ORF3352タンパク質の調製
 ORF2645タンパク質を用いてPETを分解した場合、PETの分解産物としてモノヒドロキシエチルテレフタレート(MHET)とテレフタル酸(TPA)が生じた。また、PETの部分構造であるビス(2-ヒドロキシエチル)テレフタレート(BHET)に作用させるとTPAを生成せずMHETを生じた(図10)。このことから、No.201-F6株は、PETを分解、資化するためには、MHET加水分解酵素を備えていると考えられた。そこで、該酵素についての検討を行った。
 マルトース、テレフタル酸、及びtere-PETフィルムを主な炭素源とした培地で生育させたNo.201-F6株からmRNAを抽出し、次世代シークエンサーによるトランスクリプトーム解析を行った。その結果、ORF3351~ORF3356の遺伝子群がテレフタル酸、tere-PETフィルムを炭素源とした場合に、マルトースを炭素源として生育させた場合と比べ、mRNAの発現量が著しく上昇することを見出した。ORF3352はエステラーゼの一種であるTannase遺伝子と推測された。また、ORF3352の周辺領域に存在するORF3355,3356遺伝子は、テレフタル酸分解の第一段階に関わるテレフタル酸ジオキシゲナーゼをコードする遺伝子と推定され、これらの事から、ORF3352はPET分解に関与している遺伝子であることが示唆された。そこで、大腸菌によるORF3352タンパク質の組み換え型タンパク質を作製した。
方法
1.ORF3352タンパク質発現ベクターの構築
 Ideonella由来ORF3352は、Escherichia coli (E. coli)では使用頻度の低いレアコドンが多数含まれている。図11及び配列番号9にIdeonella由来ORF3352遺伝子の塩基配列を示す。配列番号10にIdeonella由来ORF3352タンパク質のアミノ酸配列を示す。また、ORF3352タンパク質のN末端には膜輸送するシグナル配列(推定)が存在する。図11中下線部はシグナル配列を示す。これまでにIdeonella由来ORF3352のNative配列からシグナルペプチド配列を除いた配列を用いたE. coliによるタンパク質の発現が試みられたが、SDS-PAGE上のバンドとして確認できなかった。そこでE. coliで目的タンパクを発現させるために本遺伝子のコドン使用頻度の至適化、及び全合成を行った。この遺伝子の配列をoptORF3352とした。図12及び配列番号11にoptORF3352遺伝子の塩基配列を示す。図12中、下線部は最適化したコドンを示す。さらに、配列番号12にoptORF3352遺伝子がコードするタンパク質のアミノ酸配列を示す。
 DNA PolymeraseにTks Gflex (タカラバイオ社)を使用し、optORF3352をPCRで増幅した。Ideonella sp. No 201のゲノムをテンプレートに、NdeIの制限酵素サイトを付加したフォワードプライマーのoptORF3352f,XhoIの制限酵素サイトを付加したリバースプライマーoptORF3352-r及びTks Gflexを用いて、optORF3352遺伝子のPCRによる増幅を行った。得られたPCR産物を1 %アガロースゲル電気泳動で確認し、目的の約60 kbpのバンドをゲルから切り出し、抽出、精製した。 37℃の条件でO/NでXho Iおよび Nde Iで処理し、Wizard SV Gel and PCR Clean-Up Systemを用いて精製した。
 本願出願人ら保有のpET-21bを、先と同条件でXho I、NdeI処理し、精製した。その後、1%アガロースゲル電気泳動した。約5 kbpのバンドをゲルから抽出し、protocolに従ってWizard SV Gel and PCR Clean-Up Systemを用いて精製した。E. coli Alkaline Phosphatase (BAP,タカラバイオ)を用いて、37℃ 70 min静置し、Nde I及びXho Iで処理したpET-21bプラスミドの5’側のリン酸基を除去した。
 精製したPCR産物をpCold IIと混合(モル比3:1)し、T4 DNA ligase(NEB社)によりベクターに組み込んだ。
 このライゲーション産物を,XL10 Goldにヒートショック法により導入した。プラスミドを導入したTOP10をLB+amp寒天培地に撒き、37℃でO/N培養をした。
 その後、生育したコロニーをテンプレートに、T7promoter’、T7terminator’及びGoTaq Green Master Mixを用いてコロニーPCRを行い、アガロースゲル電気泳動した。
 約1.8 kbpの目的バンドが確認できたコロニーをFastGene Plasmid Mini Kit(日本ジェネティクス)を用いてプラスミドの抽出を行い、T7 promoter (5’- CGCGAAATTAATACGACTCACTATAGGG -3’)(配列番号13)とT7 terminator (5’- GCTAGTTATTGCTCAGCGGTGG -3’)(配列番号14)のプライマーを用いて、プロトコルに従ってサンガーシークエンシングによりインサートの配列確認を行った。
2.ORF3352タンパク質の発現
 コンピテントセルRosseta-gami B(DE3)にORF3352発現ベクターをヒートショック法で導入した。タンパク質発現誘導剤としてIPTGを用いタンパク質を発現させた。菌体を集め超音波破砕機を使用し破砕し、4℃で14,000 rpm、20分間遠心し上清を粗酵素液とした。
 得られた粗酵素液中の発現タンパク質をSDS-PAGEにより確認した。
 IPTGを添加した後、16℃で24時間培養した。
3.ORF3352タンパク質の精製
 COSMOGEL His-Accept(ナカライテスク社)を使用して、ニッケルアフィニティクロマトグラフィーを行った。各溶出液をSDS‐PAGEにより目的のタンパク質が精製されているかどうか確認を行った。
結果
1. ORF3352タンパク質発現ベクターの構築
 pCold II VectorのNot IとNde IサイトにoptORF3352を組み込んだのち、サンガーシークエンスにより、optORF3352の塩基配列を確認した。本発現ベクターをpCold II/optORF3352とした。 
2. ORF3352タンパク質の発現・精製
 Rosetta-gami B(DE3)に発現ベクター(pCold II/optORF3352)を導入し、IPTGを加え発現を誘導した。SDS-PAGEにより61.4 kDaのORF3352タンパク質のIPTGによる発現の誘導を確認した。発現細胞の超音波破砕後、可溶画分をニッケルアフィニティークロマトグラフィーに供することで、ORF3352タンパク質を精製し、十分量の精製タンパク質を得た。
実施例7 ORF3352タンパク質の活性実験
方法
1. ORF3352タンパク質によるモノヒドロキシエチルテレフタレート(MHET)、および類縁基質の分解
1.5 mLチューブに、2 mM MHET基質溶液(終濃度0.5 mM)を加え、pH7、50 mMリン酸バッファー(100 mM NaCl含)とDMSOを加え、最終的に100μLとなるように調整した。精製酵素のタンパク量を0,50,500 ngになるようにそれぞれ調整し30℃でインキュベートした。反応時間3時間終了後、リン酸バッファー(pH 2.5)を20μL加えクエンチした後、遠心機で17400 gで20分間遠心し、逆相HPLCで分解産物の解析を行った。HPLCによる解析条件を表5に示す。また、同様の実験をEthyl gallate、 Ethyl ferulate、 Chlorogenic Acid Hydrateをそれぞれ基質として行った。
Figure JPOXMLDOC01-appb-T000005
結果
 ORF3352タンパク質のMHETに対する活性をHPLCで測定した。その結果、MHETのピークが反応時間とともに減少しTPAのピークが増加した。この結果から、ORF3352タンパク質はMHETに対して酵素活性があることがわかった。MHETの減少を定量するために、ピーク面積とMHET濃度が対応した検量線を作成し、算出したMHET濃度をもとに、反応開始から反応時間60分後を初速度として比活性を計算したところ、ORF3352タンパク質1 ngあたり1秒間に21.7 nMのMHETを分解していると算出された(図13)。
 ORF3352タンパク質は、そのアミノ酸配列から、タンナーゼ、フェルラ酸エステラーゼ、クロロゲン酸エステラーゼと最も近縁と考えられる。そこで、これらの酵素が触媒すると考えられる基質の没食子酸エチル(Ethyl gallate、フェルラ酸エチル(Ethyl ferulate、及びクロロゲン酸水和物(Chlorogenic Acid Hydrate:に対する活性測定を行った。反応産物の定量は逆相HPLCを用いた。
 ORF3352タンパク質は、没食子酸エチル、フェルラ酸エチル、及びクロロゲン酸水和物に対して、非常に低い活性を示すのみであった(図14)。このことから、ORF3352タンパク質はMHETに特異的に活性をしめすと確認できる。
 本発明のPET分解酵素は、PET樹脂の有効利用に寄与することができる。
 配列番号5~8、13、14 プライマー
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (17)

  1.  以下の(a)又は(b)の芳香族ポリエステル分解酵素:
    (a) 配列表の配列番号2又は4に表されるアミノ酸配列からなる芳香族ポリエステル分解酵素;又は
    (b) 配列表の配列番号2又は4に表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、芳香族ポリエステル分解活性を有する芳香族ポリエステル分解酵素。
  2.  芳香族ポリエステルがポリエチレンテレフタレート(PET)である、請求項1記載の芳香族ポリエステル分解酵素。
  3.  以下の(a)または(b)の芳香族ポリエステル分解酵素をコードするDNA:
    (a) 配列表の配列番号2又は4に表されるアミノ酸配列からなる芳香族ポリエステル分解酵素;又は
    (b) 配列表の配列番号2又は4に表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、芳香族ポリエステル分解活性を有する芳香族ポリエステル分解酵素。
  4.  以下の(c)または(d)の芳香族ポリエステル分解酵素をコードするDNA:
    (c) 配列表の配列番号1に表される塩基配列若しくは配列番号1に示す塩基配列の82番目~873番目の塩基配列、又は配列番号3に表される塩基配列からなるDNA;又は
    (d)  配列表の配列番号1に表される塩基配列若しくは配列番号1に示す塩基配列の82番目~873番目の塩基配列、又は配列番号3に表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズすることができ、かつ芳香族ポリエステル分解活性を有する芳香族ポリエステル分解酵素をコードするDNA。
  5.  芳香族ポリエステルがポリエチレンテレフタレート(PET)である、請求項3又は4に記載のDNA。
  6.  請求項3~5のいずれか1項に記載のDNAを含有する発現ベクター。
  7.  請求項6記載の発現ベクターで形質転換された宿主細胞。
  8.  請求項7記載の宿主細胞をDNAの発現可能な条件下で培養して、芳香族ポリエステル分解酵素を産生させ、該芳香族ポリエステル分解酵素を回収することを含む芳香族ポリエステル分解酵素の製造方法。
  9.  請求項1又は2に記載の芳香族ポリエステル分解酵素を芳香族ポリエステルに作用させることを含む、芳香族ポリエステル分解方法。
  10.  以下の(a)又は(b)のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素:
    (a) 配列表の配列番号10又は12に表されるアミノ酸配列からなるモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素;又は
    (b) 配列表の配列番号10又は12に表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素活性を有するモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素。
  11.  以下の(a)または(b)のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素をコードするDNA:
    (a) 配列表の配列番号10又は12に表されるアミノ酸配列からなるモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素;又は
    (b) 配列表の配列番号10又は12に表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素活性を有するモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素。
  12.  以下の(c)または(d)のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素をコードするDNA:
    (c) 配列表の配列番号9に表される塩基配列若しくは配列番号9に示す塩基配列の52番目~1812番目の塩基配列、又は配列番号11に表される塩基配列からなるDNA;又は
    (d) 配列表の配列番号9に表される塩基配列若しくは配列番号9に示す塩基配列の52番目~1812番目の塩基配列、又は配列番号11に表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズすることができ、かつモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素活性を有するモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素をコードするDNA。
  13.  請求項11又は12に記載のDNAを含有する発現ベクター。
  14.  請求項13記載の発現ベクターで形質転換された宿主細胞。
  15.  請求項14記載の宿主細胞をDNAの発現可能な条件下で培養して、モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素を産生させ、該モノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素を回収することを含むモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素の製造方法。
  16.  請求項1若しくは2に記載の芳香族ポリエステル分解酵素、並びに請求項10に記載のモノヒドロキシエチルテレフタレート(MHET)加水分解活性を有する酵素に作用させることを含む、芳香族ポリエステル分解方法。
  17.  芳香族ポリエステルがポリエチレンテレフタレート(PET)である、請求項16記載の分解方法。
PCT/JP2014/071701 2013-08-21 2014-08-20 芳香族ポリエステル分解酵素及び該酵素を用いた芳香族ポリエステル分解方法 WO2015025861A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532867A JP6599767B2 (ja) 2013-08-21 2014-08-20 芳香族ポリエステル分解酵素及び該酵素を用いた芳香族ポリエステル分解方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-171745 2013-08-21
JP2013171745 2013-08-21

Publications (1)

Publication Number Publication Date
WO2015025861A1 true WO2015025861A1 (ja) 2015-02-26

Family

ID=52483634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071701 WO2015025861A1 (ja) 2013-08-21 2014-08-20 芳香族ポリエステル分解酵素及び該酵素を用いた芳香族ポリエステル分解方法

Country Status (2)

Country Link
JP (1) JP6599767B2 (ja)
WO (1) WO2015025861A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017198463A1 (de) * 2016-05-17 2017-11-23 Henkel Ag & Co. Kgaa Wasch- oder reinigungsmittel enthaltend eine polyethylenterephthalat hydrolase
CN107794252A (zh) * 2016-10-18 2018-03-13 电子科技大学 降解pet塑料的基因工程菌
WO2018168679A1 (ja) 2017-03-14 2018-09-20 学校法人慶應義塾 添加物によるpet分解酵素の活性向上方法
KR20200017321A (ko) * 2018-08-08 2020-02-18 경북대학교 산학협력단 IsPETase 단백질 결정체의 제조 방법 및 IsPETase 변이체
KR20200067665A (ko) * 2018-12-04 2020-06-12 경북대학교 산학협력단 재조합 PETase 생산 균주, 재조합 MHETase 생산 균주 및 이를 포함하는 PET 분해용 조성물
US10851355B2 (en) 2018-08-08 2020-12-01 Kyungpook National University Industry-Academic Cooperation Foundation IsPETase variants
WO2021232124A1 (pt) * 2020-05-18 2021-11-25 Cnpem - Centro Nacional De Pesquisa Em Energia E Materiais Uso de monooxigenases líticas de polissacarídeos, composição enzimática contendo-as e método de degradação de polímeros plásticos
WO2021231315A3 (en) * 2020-05-11 2021-12-16 Alliance For Sustainable Energy, Llc Plastic degrading fusion proteins and methods of using the same
US11279963B2 (en) 2016-03-23 2022-03-22 Julius-Maximilians-Universität Würzburg Glycosylated mono(2-hydroxyethyl) terephthalic acid and glycosylated bis(2-hydroxyethyl) terephthalic acid
CN114854713A (zh) * 2022-04-28 2022-08-05 天津大学 PET水解酶IsPETase-cSP突变酶及编码基因及工程菌
CN115896066A (zh) * 2022-09-27 2023-04-04 自然资源部第三海洋研究所 嗜吡啶红球菌pet降解酶及其编码基因与应用
WO2024094679A1 (en) * 2022-11-01 2024-05-10 Microo Terraforming, S.L. MICROPLASTIC-DEGRADING CLEANING COMPOSITION COMPRISING MHETase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199957A (ja) * 2007-02-20 2008-09-04 Kyoto Institute Of Technology 芳香族ポリエステル分解細菌およびこれを用いた芳香族ポリエステル分解方法
WO2013033318A1 (en) * 2011-08-31 2013-03-07 Danisco Us Inc. Compositions and methods comprising a lipolytic enzyme variant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199957A (ja) * 2007-02-20 2008-09-04 Kyoto Institute Of Technology 芳香族ポリエステル分解細菌およびこれを用いた芳香族ポリエステル分解方法
WO2013033318A1 (en) * 2011-08-31 2013-03-07 Danisco Us Inc. Compositions and methods comprising a lipolytic enzyme variant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOHEI ODA ET AL.: "Nansei Bunkaisei Hokozoku Polymer PET no Biseibutsu Bunkai", 94TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2014) KOEN YOKOSHU I, 12 March 2014 (2014-03-12), pages 21, 3 F5 - 44 *
SAWA NAKAJIMA ET AL.: "PET Bunkai Saikin Yurai Terephthalic Acid Bis(2-hydroxyethyl) Bunkai Koso no Seisei to Seishitsu", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, 2009, pages 161, 2P1286B *
SHOSUKE YOSHIDA ET AL.: "Shinki Polyethylene- Telephthalate Taisha Kosogun no Dotei to Kino Kaiseki", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2014 NENDO TAIKAI KOEN YOSHISHU, 5 March 2014 (2014-03-05) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279963B2 (en) 2016-03-23 2022-03-22 Julius-Maximilians-Universität Würzburg Glycosylated mono(2-hydroxyethyl) terephthalic acid and glycosylated bis(2-hydroxyethyl) terephthalic acid
WO2017198463A1 (de) * 2016-05-17 2017-11-23 Henkel Ag & Co. Kgaa Wasch- oder reinigungsmittel enthaltend eine polyethylenterephthalat hydrolase
CN107794252B (zh) * 2016-10-18 2021-07-23 电子科技大学 降解pet塑料的基因工程菌
CN107794252A (zh) * 2016-10-18 2018-03-13 电子科技大学 降解pet塑料的基因工程菌
WO2018168679A1 (ja) 2017-03-14 2018-09-20 学校法人慶應義塾 添加物によるpet分解酵素の活性向上方法
JPWO2018168679A1 (ja) * 2017-03-14 2020-02-06 学校法人慶應義塾 添加物によるpet分解酵素の活性向上方法
KR20200017321A (ko) * 2018-08-08 2020-02-18 경북대학교 산학협력단 IsPETase 단백질 결정체의 제조 방법 및 IsPETase 변이체
US10851355B2 (en) 2018-08-08 2020-12-01 Kyungpook National University Industry-Academic Cooperation Foundation IsPETase variants
KR102088340B1 (ko) 2018-08-08 2020-03-12 경북대학교 산학협력단 IsPETase 단백질 결정체의 제조 방법 및 IsPETase 변이체
KR102176506B1 (ko) 2018-12-04 2020-11-10 경북대학교 산학협력단 재조합 PETase 생산 균주, 재조합 MHETase 생산 균주 및 이를 포함하는 PET 분해용 조성물
KR20200067665A (ko) * 2018-12-04 2020-06-12 경북대학교 산학협력단 재조합 PETase 생산 균주, 재조합 MHETase 생산 균주 및 이를 포함하는 PET 분해용 조성물
WO2021231315A3 (en) * 2020-05-11 2021-12-16 Alliance For Sustainable Energy, Llc Plastic degrading fusion proteins and methods of using the same
WO2021232124A1 (pt) * 2020-05-18 2021-11-25 Cnpem - Centro Nacional De Pesquisa Em Energia E Materiais Uso de monooxigenases líticas de polissacarídeos, composição enzimática contendo-as e método de degradação de polímeros plásticos
CN114854713A (zh) * 2022-04-28 2022-08-05 天津大学 PET水解酶IsPETase-cSP突变酶及编码基因及工程菌
CN114854713B (zh) * 2022-04-28 2023-05-23 天津大学 PET水解酶IsPETase-cSP突变酶及编码基因及工程菌
CN115896066A (zh) * 2022-09-27 2023-04-04 自然资源部第三海洋研究所 嗜吡啶红球菌pet降解酶及其编码基因与应用
WO2024094679A1 (en) * 2022-11-01 2024-05-10 Microo Terraforming, S.L. MICROPLASTIC-DEGRADING CLEANING COMPOSITION COMPRISING MHETase

Also Published As

Publication number Publication date
JP6599767B2 (ja) 2019-10-30
JPWO2015025861A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6599767B2 (ja) 芳香族ポリエステル分解酵素及び該酵素を用いた芳香族ポリエステル分解方法
JP7392029B2 (ja) 新規エステラーゼ及びその使用
Ribitsch et al. Hydrolysis of polyethyleneterephthalate by p‐nitrobenzylesterase from Bacillus subtilis
CN106852154B (zh) 具有聚酯降解活性的多肽及其用途
CN112673104A (zh) 新酯酶及其用途
CN114096664A (zh) 新型酯酶及其用途
US20220251327A1 (en) Esterases and uses thereof
Zhang et al. Thermostable esterase from Thermoanaerobacter tengcongensis: high-level expression, purification and characterization
US20230392130A1 (en) Novel esterases and uses thereof
TW202227629A (zh) 新穎之酯酶及其用途
WO2022250622A1 (en) A mutant pet degrading enzyme
KR102097720B1 (ko) 마리노박터 리포리티쿠스 유래 지질분해효소
US20230392129A1 (en) Novel esterases and uses thereof
US20230399628A1 (en) Novel esterases and uses thereof
JP2024525117A (ja) 酵素バリアント及びその使用
TW202417636A (zh) 酵素變體及其用途
TW202417470A (zh) 酵素及其用途
TR2021008657A2 (tr) Pet parçalayici mutant bi̇r enzi̇m
WO2024040304A1 (en) Enzyme variants and uses thereof
Molpeceres-García et al. One-Step Polyethylene Terephthalate Valorisation into Polyhydroxybutyrate Using an Engineered Comamonas Testosteroni Strain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532867

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838656

Country of ref document: EP

Kind code of ref document: A1