WO2015025859A1 - 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、酸拡散制御剤及び化合物 - Google Patents

感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、酸拡散制御剤及び化合物 Download PDF

Info

Publication number
WO2015025859A1
WO2015025859A1 PCT/JP2014/071687 JP2014071687W WO2015025859A1 WO 2015025859 A1 WO2015025859 A1 WO 2015025859A1 JP 2014071687 W JP2014071687 W JP 2014071687W WO 2015025859 A1 WO2015025859 A1 WO 2015025859A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
substituted
monovalent
Prior art date
Application number
PCT/JP2014/071687
Other languages
English (en)
French (fr)
Inventor
準人 生井
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014143742A external-priority patent/JP6459266B2/ja
Priority claimed from JP2014166251A external-priority patent/JP6354445B2/ja
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2015025859A1 publication Critical patent/WO2015025859A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/07Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms
    • C07C205/11Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms having nitro groups bound to carbon atoms of six-membered aromatic rings
    • C07C205/12Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms having nitro groups bound to carbon atoms of six-membered aromatic rings the six-membered aromatic ring or a condensed ring system containing that ring being substituted by halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/06Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing halogen atoms, or nitro or nitroso groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/07Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton
    • C07C309/12Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing esterified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/17Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing carboxyl groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/02Monothiocarboxylic acids
    • C07C327/04Monothiocarboxylic acids having carbon atoms of thiocarboxyl groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C327/06Monothiocarboxylic acids having carbon atoms of thiocarboxyl groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/12Sulfonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/36Oxalic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/757Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/28Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/30Oxygen atoms, e.g. delta-lactones
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/36Systems containing two condensed rings the rings having more than two atoms in common
    • C07C2602/42Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing seven carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes

Definitions

  • the present invention relates to a radiation-sensitive resin composition, a resist pattern forming method, a radiation-sensitive acid generator, an acid diffusion controller and a compound.
  • Radiation sensitive resin compositions used for fine processing by lithography are far ultraviolet rays such as KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193 nm) and extreme ultraviolet light (EUV: Extreme Ultraviolet, wavelength 13.5 nm).
  • the acid is generated in the exposed area by irradiation with a charged particle beam such as an electron beam, and a chemical reaction using this acid as a catalyst causes a difference in the dissolution rate in the developer between the exposed area and the unexposed area.
  • a resist pattern is formed on the substrate.
  • Such a radiation-sensitive resin composition is required to improve resolution and rectangularity of the cross-sectional shape of the resist pattern as processing technology becomes finer.
  • the types and molecular structures of polymers, acid generators and other components used in the composition have been studied, and further their combinations have been studied in detail (Japanese Patent Application Laid-Open No. 11-125907, special features). (See Kaihei 8-146610 and JP-A 2000-298347).
  • the miniaturization of the resist pattern has progressed to a level of a line width of 50 nm or less, the resolution and the rectangular shape of the cross-sectional shape of the resist pattern are not sufficiently satisfied.
  • the MEEF Mesk Error Enhancement Factor
  • the LWR Line Width Roughness
  • the CD Cosmetic Dimension
  • the present invention has been made based on the circumstances as described above, and its purpose is LWR performance, CDU performance, resolution, rectangularity of a cross-sectional shape, depth of focus, exposure margin, and MEEF performance (hereinafter referred to as the following).
  • Another object of the present invention is to provide a radiation-sensitive resin composition excellent in “LWR performance and the like”.
  • the invention made to solve the above problems is a polymer having a structural unit containing an acid-dissociable group (hereinafter also referred to as “structural unit (I)”) (hereinafter also referred to as “[A] polymer”).
  • a compound comprising a radiolytic onium cation and a counter anion hereinafter also referred to as “[B] compound”
  • [G] solvent hereinafter also referred to as “[G] solvent”.
  • a group having two or more groups, and the carbonyl groups are bonded to each other via a single bond, a substituted or unsubstituted alkanediyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted 1,2-benzenediyl group. It is a radiation resin composition.
  • Another invention made in order to solve the above-mentioned problems comprises a step of forming a resist film, a step of exposing the resist film, and a step of developing the exposed resist film, It is the resist pattern formation method formed with a conductive resin composition.
  • Still another invention made to solve the above-mentioned problems is to generate a radiation sensitive acid comprising a compound represented by the following formula (1-1), the following formula (1-2) or the following formula (1-3). It is an agent.
  • A is a monovalent organic group having 1 to 30 carbon atoms
  • E ⁇ is SO 3 — or COO —
  • X + is a monovalent radiolytic onium.
  • L is a single bond or an oxygen atom
  • R 1 is a single bond or a substituted or unsubstituted alkanediyl group having 1 to 10 carbon atoms
  • R 2 is 2 having 1 to 20 carbon atoms
  • K is an integer of 1 to 3.
  • R 1 When k is 2 or more, a plurality of R 1 may be the same or different.
  • A is a monovalent organic group having 1 to 30 carbon atoms
  • E ⁇ is SO 3 — or COO —
  • X + is a monovalent radiolytic onium.
  • R 1 is a single bond or a substituted or unsubstituted alkanediyl group having 1 to 10 carbon atoms
  • i is an integer of 0 to 2
  • R x is 1 to 10 carbon atoms.
  • a substituted or unsubstituted alkanediyl group, R 0 is a single bond or a divalent organic group having 1 to 19 carbon atoms, and when i is 2, a plurality of R 1 may be the same or different. Good.)
  • A is a monovalent organic group having 1 to 30 carbon atoms
  • X + is a monovalent radiolytic onium cation
  • R 1 is 1 to 10 carbon atoms. Substituted or unsubstituted alkanediyl groups.
  • an acid diffusion controller comprising a compound represented by the following formula (2).
  • R 21 represents a single bond, a substituted or unsubstituted methanediyl group, a substituted or unsubstituted ethanediyl group, or a substituted or unsubstituted 1,2-benzenediyl group.
  • R 22 and R 23 are each independently, .N2 a monovalent organic group having 1 to 30 carbon atoms, when 1 or more 3 or less integer .N2 is 2 or more, plural R 21 may be the same or different X + is a monovalent radiolytic onium cation, provided that two or more of R 21 , R 22 and R 23 form a ring structure having 5 to 30 ring members by these bonds. It may be formed.
  • Still another invention made to solve the above problems is a compound represented by the following formula (1-1), the following formula (1-2), or the following formula (1-3).
  • A is a monovalent organic group having 1 to 30 carbon atoms
  • E ⁇ is SO 3 — or COO —
  • X + is a monovalent radiolytic onium.
  • L is a single bond or an oxygen atom
  • R 1 is a single bond or a substituted or unsubstituted alkanediyl group having 1 to 10 carbon atoms
  • R 2 is 2 having 1 to 20 carbon atoms
  • K is an integer of 1 to 3.
  • R 1 When k is 2 or more, a plurality of R 1 may be the same or different.
  • A is a monovalent organic group having 1 to 30 carbon atoms
  • E ⁇ is SO 3 — or COO —
  • X + is a monovalent radiolytic onium.
  • R 1 is a single bond or a substituted or unsubstituted alkanediyl group having 1 to 10 carbon atoms
  • i is an integer of 0 to 2
  • R x is a substituted or unsubstituted carbon.
  • R 0 is a single bond or a divalent organic group having a carbon number of 1 to 19.
  • R 1 When i is 2, a plurality of R 1 may be the same or different. Good.)
  • A is a monovalent organic group having 1 to 30 carbon atoms
  • X + is a monovalent radiolytic onium cation
  • R 1 is a substituted or unsubstituted cation.
  • It is an alkanediyl group having 1 to 10 carbon atoms.
  • Still another invention made to solve the above problems is a compound represented by the following formula (2).
  • R 21 represents a single bond, a substituted or unsubstituted methanediyl group, a substituted or unsubstituted ethanediyl group, or a substituted or unsubstituted 1,2-benzenediyl group.
  • R 22 and R 23 are each independently, .N2 a monovalent organic group having 1 to 30 carbon atoms, when 1 or more 3 or less integer .N2 is 2 or more, plural R 21 may be the same or different
  • X + is a monovalent radiolytic onium cation, provided that two or more of R 21 , R 22 and R 23 form a ring structure having 5 to 30 ring members by these bonds. It may be formed.
  • organic group means a group containing at least one carbon atom.
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. This “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
  • the radiation-sensitive resin composition and the resist pattern forming method of the present invention excellent depth of focus, exposure margin and MEEF performance are exhibited, and LWR performance, CDU performance, resolution and cross-sectional rectangularity are excellent.
  • a resist pattern can be formed.
  • the said radiation sensitive acid generator and the said acid diffusion control agent can be used suitably as a component of the said radiation sensitive resin composition.
  • the compound of the present invention can be suitably used as the radiation-sensitive acid generator and the acid diffusion controller. Therefore, they can be suitably used for pattern formation in semiconductor device manufacturing or the like where further miniaturization is expected.
  • the radiation sensitive resin composition contains a [A] polymer, a [B] compound, and a [G] solvent.
  • the radiation-sensitive resin composition includes, as suitable components, a sulfonate compound that generates an acid upon irradiation with radiation other than the [B] compound (hereinafter also referred to as “[C] acid generator”), a [B] compound.
  • a sulfonate compound that generates an acid upon irradiation with radiation other than the [B] compound hereinafter also referred to as “[C] acid generator”
  • [B] compound May contain an acid diffusion controller (hereinafter also referred to as “[D] acid diffusion controller”) and a fluorine atom-containing polymer (hereinafter also referred to as “[E] fluorine atom-containing polymer”).
  • an acid diffusion controller hereinafter also referred to as “[D] acid diffusion controller”
  • [E] fluorine atom-containing polymer fluorine atom-containing polymer
  • the polymer is a polymer having the structural unit (I).
  • the acid-dissociable group of the [A] polymer in the exposed part is dissociated by the acid generated from the [B] compound or the like by irradiation with radiation, and the exposed part and the unexposed part
  • the “acid-dissociable group” refers to a group that replaces a hydrogen atom such as a carboxy group or a hydroxy group and dissociates by the action of an acid.
  • the polymer is not particularly limited as long as it has an acid dissociable group.
  • the acid dissociable group may be present anywhere in the main chain, side chain, terminal, etc. of the [A] polymer.
  • the polymer (A) is at least one selected from the group consisting of structural units represented by the following formula (5-1) and the following formula (5-2) (to be described later) , Also referred to as “structural unit (II)”), a structural unit represented by the following formula (6) (hereinafter also referred to as “structural unit (III)”), and the above structural units (I) to (III) Other structural units may be included.
  • the polymer may have one or more of each structural unit. Hereinafter, each structural unit will be described.
  • the structural unit (I) is a structural unit containing an acid dissociable group.
  • Examples of the structural unit (I) include a structural unit represented by the following formula (3-1) (hereinafter, also referred to as “structural unit (I-1)”), and a structural unit represented by the following formula (3-2). And a structural unit (hereinafter also referred to as “structural unit (I-2)”).
  • R 6 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • Y 1 is a monovalent acid dissociable group.
  • R 7 is a hydrogen atom or a methyl group.
  • Y 2 is a monovalent acid dissociable group.
  • R 6 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoint of the copolymerizability of the monomer that provides the structural unit (I-1).
  • the monovalent acid-dissociable group represented by Y preferably a group represented by the following formula (Y-1).
  • R e1 is a hydrocarbon group having 1 to 20 carbon atoms.
  • R e2 and R e3 each independently represent a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring member having 3 to 20 ring members formed by combining these groups with each other and the carbon atoms to which they are bonded. Represents an alicyclic structure.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R e1 , R e2 and R e3 include, for example, a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms. And monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include: Alkyl groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl and n-pentyl; Alkenyl groups such as ethenyl group, propenyl group, butenyl group, pentenyl group; Examples include alkynyl groups such as ethynyl group, propynyl group, butynyl group, and pentynyl group.
  • an alkyl group is preferable, an alkyl group having 1 to 4 carbon atoms is more preferable, a methyl group, an ethyl group, and an i-propyl group are more preferable, and an ethyl group is particularly preferable.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R e1 , R e2 and R e3 include, for example, A monocyclic cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group; A polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group, a tricyclodecyl group, a tetracyclododecyl group; A monocyclic cycloalkenyl group such as a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group; And polycyclic cycloalkenyl groups such as a norbornenyl group and a tricyclodecen
  • a monocyclic cycloalkyl group and a polycyclic cycloalkyl group are preferable, and a cyclopentyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group are more preferable.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include: Aryl groups such as phenyl, tolyl, xylyl, naphthyl and anthryl; Examples thereof include aralkyl groups such as benzyl group, phenethyl group, and naphthylmethyl group.
  • aryl groups are preferred, aryl groups having 6 to 10 carbon atoms are preferred, phenyl groups and naphthyl groups are more preferred, and phenyl groups are more preferred.
  • Examples of the alicyclic structure having 3 to 20 ring members constituted by combining these groups with each other include: Monocyclic cycloalkane structures such as cyclopropane structure, cyclobutane structure, cyclopentane structure, cyclohexane structure, cyclooctane structure; Polycyclic cycloalkane structures such as norbornane structure, adamantane structure, tricyclodecane structure and tetracyclododecane structure; Monocyclic cycloalkene structures such as cyclopropene structure, cyclobutene structure, cyclopentene structure, cyclohexene structure, cyclooctene structure; Examples thereof include polycyclic cycloalkene structures such as a norbornene structure, a tricyclodecene structure, and a tetracyclododecene structure.
  • a monocyclic cycloalkane structure and a polycyclic cycloalkane structure are preferable, a monocyclic cycloalkane structure having 5 to 8 carbon atoms, and a polycyclic cycloalkane structure having 7 to 12 carbon atoms are more preferable.
  • a pentane structure, a cyclohexane structure, a cyclooctane structure, a norbornane structure, and an adamantane structure are more preferable, and a cyclopentane structure and an adamantane structure are particularly preferable.
  • Examples of the group represented by the formula (Y-1) include carbon atoms to which R e1 is a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, and R e2 and R e3 are combined with each other.
  • R e1 is a monovalent chain hydrocarbon group having 1 to 10 carbon atoms
  • R e2 and R e3 are combined with each other.
  • it represents an alicyclic structure having 3 to 20 ring members that is formed together with atoms
  • R e1 is an alkyl group having 1 to 10 carbon atoms
  • R e2 and R e3 are combined with each other and bonded to each other
  • R e1 is an alkyl group having 1 to 4 carbon atoms
  • R e2 and R e3 are combined with each other and bonded to each other.
  • R 7 is preferably a hydrogen atom from the viewpoint of copolymerizability of the monomer giving the structural unit (I-2).
  • the monovalent acid-dissociable group represented by Y 2 preferably a group represented by the following formula (Y-2).
  • R e4 , R e5 and R e6 each independently represent a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent oxy group having 1 to 20 carbon atoms. It is a hydrocarbon group. However, R e4 , R e5 and R e6 are not simultaneously hydrogen atoms.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R e4 , R e5 and R e6 include, for example, a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms. And monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms.
  • Examples of the monovalent aromatic hydrocarbon group include the same groups as those exemplified above as R e1 , R e2 and R e3 .
  • R e4 , R e5 and R e6 are preferably a chain hydrocarbon group and an alicyclic hydrocarbon group, more preferably an alkyl group and a cycloalkyl group, and an alkyl group having 1 to 4 carbon atoms.
  • a monocyclic cycloalkyl group and a polycyclic cycloalkyl group are more preferable, and a methyl group, an ethyl group, an n-propyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group are particularly preferable.
  • Examples of the monovalent oxyhydrocarbon group having 1 to 20 carbon atoms represented by R e4 , R e5 and R e6 include, for example, a monovalent oxy-chain hydrocarbon group having 1 to 20 carbon atoms, and a carbon number of 3 And a monovalent oxyalicyclic hydrocarbon group having 20 to 20 and a monovalent oxyaromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Examples of the monovalent oxy-chain hydrocarbon group having 1 to 20 carbon atoms include: Alkoxy groups such as methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, sec-butoxy group, t-butoxy group and n-pentyloxy group; Alkenyloxy groups such as ethenyloxy group, propenyloxy group, butenyloxy group, pentenyloxy group; Examples include alkynyloxy groups such as ethynyloxy group, propynyloxy group, butynyloxy group, and pentynyloxy group.
  • an alkoxy group is preferable, an alkoxy group having 1 to 4 carbon atoms is preferable, and a methoxy group, an ethoxy group, and an n-propoxy group are more preferable.
  • an alkoxy group is preferable, an alkoxy group having 1 to 4 carbon atoms is preferable, and a methoxy group, an ethoxy group, and an n-propoxy group are more preferable.
  • Examples of the monovalent oxyalicyclic hydrocarbon group having 3 to 20 carbon atoms include: A monocyclic cycloalkyloxy group such as a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclooctyloxy group; A polycyclic cycloalkyloxy group such as a norbornyloxy group, an adamantyloxy group, a tricyclodecyloxy group, a tetracyclododecyloxy group; A monocyclic cycloalkenyloxy group such as a cyclopropenyloxy group, a cyclobutenyloxy group, a cyclopentenyloxy group, a cyclohexenyloxy group; Examples thereof include polycyclic cycloalkenyloxy groups such as norbornenyloxy group and tricyclodecenyloxy
  • a monocyclic cycloalkyloxy group and a polycyclic cycloalkyloxy group are preferable, and a cyclopentyloxy group, a cyclohexyloxy group, a norbornyloxy group, and an adamantyloxy group are more preferable.
  • Examples of the monovalent oxyaromatic hydrocarbon group having 6 to 20 carbon atoms include: Aryloxy groups such as phenoxy group, tolyloxy group, naphthyloxy group; Examples thereof include aralkyloxy groups such as benzyloxy group, phenethyloxy group and naphthylmethoxy group.
  • an aryloxy group is preferable, and a phenoxy group is more preferable.
  • Examples of the group represented by the formula (Y-2) include a group in which R e4 , R e5 and R e6 are monovalent chain hydrocarbon groups, and R e4 and R e5 are monovalent chain hydrocarbon groups. And R e6 is a monovalent oxy chain hydrocarbon group, R e4 is a monovalent chain hydrocarbon group, and R e5 and R e6 are monovalent oxy chain hydrocarbon groups, A group in which R e4 , R e5 and R e6 are alkyl groups, a group in which R e4 and R e5 are alkyl groups and R e6 is an alkoxy group, a group in which R e4 is an alkyl group and R e5 and R e6 are alkoxy groups Are more preferable, and groups in which R e4 , R e5 and R e6 are alkyl groups are more preferable, and a t-butyl group, a t-pentyl group, a
  • structural unit (I) for example, As the structural unit (I-1), structural units represented by the following formulas (3-1-1) to (3-1-7); Examples of the structural unit (I-2) include structural units represented by the following formulas (3-2-1) to (3-2-3).
  • R 6 has the same meaning as in the above formula (3-1).
  • R e1 , R e2 and R e3 have the same meaning as in the above formula (Y-1).
  • Each r is independently an integer of 1 to 3.
  • R 7 has the same meaning as the above formula (3-2).
  • the structural unit (I) is preferable, and the above formulas (3-1-2), (3-1-3), (3-1-4), (3-1-5) ) And (3-2-3) are more preferable, a structural unit including a cyclopentane structure, a structural unit including a cyclohexane structure, and a structural unit including an adamantane structure are more preferable, and 1-ethyl-1- Structural units derived from cyclopentyl (meth) acrylate, structural units derived from 2-methyl-2-adamantyl (meth) acrylate, structural units derived from 2-ethyl-2-adamantyl (meth) acrylate, adamantan-1-yl Structural units derived from 2-propyl (meth) acrylate, structural units derived from cyclohexyl-2-propyl (meth) acrylate, 2-ethyl-tetracyclod Structural units derived from sills
  • the content ratio of the structural unit (I) is preferably 10 mol% to 70 mol%, more preferably 20 mol% to 60 mol%, more preferably 30 mol% with respect to all the structural units constituting the [A] polymer. More preferred is ⁇ 55 mol%, particularly preferred is 35 mol% to 50 mol%.
  • the structural unit (II) includes a structural unit represented by the following formula (5-1) (hereinafter also referred to as “structural unit (II-1)”) and a structural unit represented by the following formula (5-2) ( Hereinafter, it is at least one selected from the group consisting of “structural unit (II-2)”.
  • R 8 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • E 1 is a single bond, —COO— or CO—O— (CH 2 ) i .
  • i is an integer of 1 to 6.
  • R 9 is a non-acid dissociable group containing a polar group.
  • R 8 ′ represents a hydrogen atom or a methyl group.
  • R a and R b are each independently a hydrogen atom, a fluorine atom, a hydroxy group, or a monovalent organic group.
  • s is an integer of 1 to 3.
  • R 9a and R 9b are each independently a hydrogen atom, a fluorine atom, a hydroxy group, or a monovalent organic group, or R 9a and R 9b are combined with each other and configured with a carbon atom to which they are bonded. Represents a ring structure having 3 to 30 ring members.
  • R 8 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of the copolymerizability of the monomer that provides the structural unit (II-1).
  • E 1 is preferably CO—O from the viewpoint of the copolymerizability of the monomer that gives the structural unit (II-1).
  • Examples of the polar group in the non-acid dissociable group represented by R 9 that includes a polar group include monovalent groups (a) such as a hydroxy group, a carboxy group, a cyano group, a sulfo group, and a mercapto group; Examples thereof include a carbonyl group, O, S, and a divalent group (b) formed by combining these.
  • Examples of the group containing a non-acid dissociable and polar group represented by R 9 include, for example, a part or all of the hydrogen atoms of a monovalent hydrocarbon group having 1 to 20 carbon atoms as the monovalent group ( a group substituted with a), a group containing the above divalent group (b) between some or all of carbon-carbon of a monovalent hydrocarbon group having 1 to 20 carbon atoms, monovalent having 1 to 20 carbon atoms A part or all of the hydrogen atoms of the hydrocarbon group is substituted with the monovalent group (a), and a group containing the divalent group (b) between some or all of the carbon-carbons, etc. Can be mentioned.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include, for example, a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and carbon. Examples thereof include monovalent aromatic hydrocarbon groups of 6 to 20. Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include groups similar to those exemplified as R e4 , R e5 and R e6 in the above formula (Y-2). Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include groups similar to those exemplified as R e1 , R e2 and R e3 in the above formula (Y-1).
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as phenyl group, tolyl group, xylyl group, mesityl group, naphthyl group, methylnaphthyl group, anthryl group, and methylanthryl group; Examples include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group, and anthrylmethyl group.
  • R 9 examples include a group having a lactone structure, a group having a cyclic carbonate structure, a group having a sultone structure, and a group having a hydroxy group.
  • Examples of the group having a lactone structure include a butyrolactone-yl group, a norbornanelactone-yl group, and a 5-oxo-4-oxatricyclo [4.3.1.1 3,8 ] undecan-yl group. It is done.
  • Examples of the group having a cyclic carbonate structure include an ethylene carbonate-ylmethyl group.
  • Examples of the group having a sultone structure include groups having a sultone structure such as a propane sultone-yl group and a norbornane sultone-yl group.
  • Examples of the group having a hydroxy group include a hydroxyadamantyl group, a dihydroxyadamantyl group, a trihydroxyadamantyl group, and a hydroxyethyl group.
  • R 8 ′ is preferably a hydrogen atom from the viewpoint of the copolymerizability of the monomer giving the structural unit (II-2).
  • Examples of the monovalent organic group represented by R a , R b , R 9a and R 9b include, for example, a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, and a monovalent organic group having 3 to 20 carbon atoms.
  • CO, CS, O, S, or NR ′, or a group including a group in which two or more of these are combined is exemplified.
  • R ′ is a hydrogen atom or a monovalent organic group.
  • Examples of the ring structure having 3 to 30 ring members formed by combining R 9a and R 9b together with the carbon atom to which they are bonded include, for example, a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, a norbornane structure, Examples thereof include alicyclic structures such as an adamantane structure; aliphatic heterocyclic structures such as an oxacyclopentane structure, a thiacyclopentane structure, and an azacyclopentane structure.
  • S is preferably 1 or 2, and more preferably 1.
  • structural unit (II) for example, Structural units represented by the following formulas (5-1-1) to (5-1-11) as the structural unit (II-1);
  • structural unit (II-2) examples include structural units represented by the following formulas (5-2-1) and (5-2-2).
  • R 8 has the same meaning as in the above formula (5-1).
  • R 8 ′ has the same meaning as in the above formula (5-2).
  • structural units represented by the above formulas (5-1-1), (5-1-3), (5-1-8) and (5-1-11) are preferable.
  • the content ratio of the structural unit (II) is preferably 0 mol% to 70 mol%, more preferably 10 mol% to 60 mol%, more preferably 20 mol%, based on all structural units constituting the [A] polymer. More preferred is ⁇ 50 mol%.
  • the structural unit (III) is a structural unit represented by the following formula (6).
  • the radiation-sensitive resin composition increases the sensitivity by including the structural unit (III) in the [A] polymer. be able to.
  • R ⁇ 10 > is a hydrogen atom or a methyl group.
  • R 11 is a monovalent organic group having 1 to 20 carbon atoms.
  • p is an integer of 0 to 3. If R 11 is plural, plural R 11 may be the same or different.
  • q is an integer of 1 to 3. However, p and q satisfy p + q ⁇ 5.
  • R 10 is preferably a hydrogen atom from the viewpoint of copolymerizability of the monomer that gives the structural unit (III).
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R 11 include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms and a monovalent alicyclic group having 3 to 20 carbon atoms.
  • R" represents a hydrogen atom or a monovalent group.
  • Organic group Among these, a monovalent chain hydrocarbon group is preferable, an alkyl group is more preferable, and a methyl group is more preferable.
  • P is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • the q is preferably 1 or 2, and more preferably 1.
  • Examples of the structural unit (III) include structural units represented by the following formulas (6-1) to (6-4).
  • R 10 has the same meaning as in the above formula (6).
  • the content ratio of the structural unit (III) is preferably 0 mol% to 90 mol%, more preferably 30 mol% to 80 mol%, and more preferably 50 mol% with respect to all the structural units constituting the [A] polymer. More preferred is ⁇ 75 mol%.
  • the structural unit (III) is obtained by polymerizing a monomer obtained by substituting the hydrogen atom of the OH group of hydroxystyrene with a t-butyl group or the like, and then subjecting the obtained polymer to a hydrolysis reaction in the presence of an amine. Or the like.
  • the polymer may have a structural unit other than the structural units (I) to (III).
  • the other structural unit include a structural unit derived from a (meth) acrylic acid ester containing a non-dissociable monovalent alicyclic hydrocarbon group.
  • a content rate of another structural unit 20 mol% or less is preferable with respect to all the structural units which comprise a [A] polymer, and 10 mol% or less is more preferable.
  • the content of the polymer is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 85% by mass or more based on the total solid content of the radiation-sensitive resin composition.
  • the polymer can be synthesized according to a conventional method such as radical polymerization.
  • a method in which a solution containing a monomer and a radical initiator is dropped into a reaction solvent or a solution containing a monomer to cause a polymerization reaction, a solution containing a monomer and a solution containing a radical initiator A method of performing a polymerization reaction by dropping each into a solution containing a reaction solvent or a monomer, a plurality of types of solutions containing each monomer and a solution containing a radical initiator separately from each other It is preferable to synthesize by a method in which a polymerization reaction is performed by dropping into a solution containing a body, a method in which a solution containing a monomer and a radical initiator is polymerized in a solventless or reaction solvent.
  • the monomer amount in the dropped monomer solution is 30 mol with respect to the total amount of monomers used for polymerization. % Or more, more preferably 50 mol% or more, and even more preferably 70 mol% or more.
  • the reaction temperature in these methods may be appropriately determined depending on the initiator type. Usually, it is 30 ° C to 150 ° C, preferably 40 ° C to 150 ° C, and more preferably 50 ° C to 140 ° C.
  • the dropping time varies depending on the reaction temperature, the type of initiator, the monomer to be reacted, etc., but is usually 30 minutes to 8 hours, preferably 45 minutes to 6 hours, more preferably 1 hour to 5 hours. Further, the total reaction time including the dropping time varies depending on the conditions as in the dropping time, but is usually 30 minutes to 12 hours, preferably 45 minutes to 12 hours, and more preferably 1 to 10 hours.
  • radical initiator used in the polymerization examples include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 2,2′-azobis. (2-cyclopropylpropionitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2'-azobis (2-methylpropionate), dimethyl 2,2'-azobis Azo radical initiators such as isobutyrate; peroxide radical initiators such as benzoyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, and the like. Of these, AIBN and dimethyl 2,2'-azobis (2-methylpropionate) are preferred. In addition, you may use a radical initiator individually or in combination of 2 or more types.
  • any solvent other than a solvent that inhibits polymerization (nitrobenzene having a polymerization inhibiting effect, mercapto compound having a chain transfer effect, etc.) and capable of dissolving the monomer may be used. It can. Examples thereof include alcohols, ethers, ketones, amides, esters / lactones, nitriles, and mixed solvents thereof. These solvents may be used alone or in combination of two or more.
  • the polymer obtained by the polymerization reaction is preferably recovered by a reprecipitation method. That is, after the polymerization reaction is completed, the polymer is recovered as a powder by introducing the polymerization solution into a reprecipitation solvent.
  • a reprecipitation solvent alcohols or alkanes may be used alone or in combination of two or more.
  • the polymer can be recovered by removing low molecular components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
  • the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 1,000 to 50,000, more preferably 2,000 to 40,000, and more preferably 3,000 to 30,000 is more preferable, and 5,000 to 20,000 is particularly preferable.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the ratio of Mw to the number average molecular weight (Mw) in terms of polystyrene (Mw) by GPC of the polymer is preferably 1 to 5, more preferably 1 to 3, and more preferably 1 to 2.5. Further preferred.
  • Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
  • GPC column 2 "G2000HXL” from Tosoh Corporation, 1 "G3000HXL", 1 "G4000HXL” Column temperature: 40 ° C
  • Elution solvent Tetrahydrofuran Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • the compound is a compound comprising a radiolytic onium cation and a counter anion, wherein the counter anion has two or more carbonyl groups, and the carbonyl groups are a single bond, substituted or unsubstituted carbon. It is a compound bonded through an alkanediyl group of formula 1 to 10 or a substituted or unsubstituted 1,2-benzenediyl group.
  • the said radiation sensitive resin composition is excellent in LWR performance etc. by containing a [B] compound.
  • A is a monovalent organic group having 1 to 30 carbon atoms.
  • E ⁇ is SO 3 — or COO — .
  • X + is a monovalent radiolytic onium cation.
  • L is a single bond or an oxygen atom.
  • R 1 is a single bond or a substituted or unsubstituted alkanediyl group having 1 to 10 carbon atoms.
  • R 2 is a divalent organic group having 1 to 20 carbon atoms.
  • k is an integer of 1 to 3. When k is 2 or more, the plurality of R 1 may be the same or different.
  • L is preferably an oxygen atom.
  • the said radiation sensitive resin composition is further excellent in LWR performance etc. by containing the [B] compound of such a specific structure.
  • the radiation-sensitive resin composition contains a [B] compound represented by the following formula (1-2), so that the LWR performance and the like are more excellent.
  • A is a monovalent organic group having 1 to 30 carbon atoms.
  • E ⁇ is SO 3 — or COO — .
  • X + is a monovalent radiolytic onium cation.
  • R 1 is a single bond or a substituted or unsubstituted alkanediyl group having 1 to 10 carbon atoms.
  • i is an integer of 0 or more and 2 or less.
  • R x is a substituted or unsubstituted alkanediyl group having 1 to 10 carbon atoms.
  • R 0 is a single bond or a divalent organic group having 1 to 19 carbon atoms.
  • the plurality of R 1 may be the same or different.
  • the radiation sensitive resin composition contains a [B] compound represented by the following formula (1-3), so that the LWR performance and the like are more excellent.
  • A is a monovalent organic group having 1 to 30 carbon atoms.
  • X + is a monovalent radiolytic onium cation.
  • R 1 is a substituted or unsubstituted alkanediyl group having 1 to 10 carbon atoms.
  • E ⁇ is SO 3 —
  • a fluorine atom or a fluorinated alkyl group is bonded to a carbon atom adjacent to E ⁇ .
  • E 2 — is SO 3 —
  • a fluorine atom is bonded to a carbon atom adjacent to E 2 — to not compound and E - is COO -
  • compound hereinafter, also referred to as "[B2] compounds
  • the compound [B1] functions as an acid generator, and the compound [B2] functions as an acid diffusion controller or functions as an acid generator when the PEB temperature is relatively high (hereinafter referred to as [B1] compound.
  • the radiation-sensitive resin composition containing the [B2] compound is also referred to as “radiation-sensitive resin composition (I)”).
  • the reason why the radiation-sensitive resin composition (I) exhibits the above effect by containing the [B1] compound or the [B2] compound having the above specific structure can be inferred as follows, for example. That is, the counter anion of the [B1] compound or the [B2] compound has a specific structure in which two or more carbonyl groups are located in the vicinity of each other. Therefore, the interaction between the acid generated by exposure of protons generated by exposure to the counter anion of the [B] compound and the [A] polymer in the resist film is enhanced, and the diffusion length of the acid is appropriately controlled. It is conceivable that acid diffusion can be suppressed uniformly by being uniformly distributed in the resist film.
  • Examples of the monovalent organic group having 1 to 30 carbon atoms represented by A include a monovalent hydrocarbon group having 1 to 30 carbon atoms, and —O at the end of the hydrocarbon group between carbon-carbon or at the bond side. And groups containing a heteroatom-containing group such as —, —S—, —N—, —CO—, —COO— and the like.
  • A is —NRR, —OR or —R, wherein R is a substituted or unsubstituted chain hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted ring member having 3 to 30 ring members.
  • R is a substituted or unsubstituted chain hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted ring member having 3 to 30 ring members.
  • An alicyclic hydrocarbon group, an aliphatic heterocyclic group having 3 to 30 ring members, and a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring members are preferable.
  • a group containing —COO— between carbon and carbon of the substituted or unsubstituted alicyclic hydrocarbon group having 3 to 30 ring members is also preferable.
  • two Rs may be the same or different.
  • chain hydrocarbon group examples include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Examples of the alicyclic hydrocarbon group include: A monocyclic cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group; A monocyclic cycloalkenyl group such as a cyclobutenyl group, a cyclopentenyl group, or a cyclohexenyl group; A polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group, a tricyclodecyl group, a tetracyclododecyl group; And polycyclic cycloalkenyl groups such as a norbornenyl group, a tricyclodecenyl group, and a tetracyclododecenyl group.
  • a monocyclic cycloalkyl group such as a
  • Examples of the aliphatic heterocyclic group include: A group containing a lactone structure such as a norbornanelactone-yl group; A group containing a sultone structure such as a norbornane sultone-yl group; An oxygen atom-containing heterocyclic group such as an oxacycloheptyl group and an oxanorbornyl group; A nitrogen atom-containing heterocyclic group such as an azacycloheptyl group or a diazabicyclooctane-yl group; And sulfur atom-containing heterocyclic groups such as a thiacycloheptyl group and a thianorbornyl group.
  • aromatic hydrocarbon group examples include: An aryl group such as a phenyl group, a tolyl group, a xylyl group, a mesityl group, and a naphthyl group; and an aralkyl group such as a benzyl group and a phenethyl group.
  • Examples of the substituent that may substitute the hydrogen atom of the chain hydrocarbon group, alicyclic hydrocarbon group or aromatic hydrocarbon group include an alkyl group, an alkoxy group, an aryloxy group, an acyl group, an acyloxy group, Examples thereof include a hydroxy group, a carboxy group, an amino group, a cyano group, a nitro group, and a sulfonamide group. Of these, a linear or branched alkyl group having 1 to 5 carbon atoms, a phenoxy group, and a hydroxy group are preferable.
  • A is preferably a cycloalkyl group, a group having a lactone structure, a cycloalkyloxy group, a cycloalkylamino group, a cycloalkylsulfanyl group, a hydroxyaryloxy group, or an aryloxyalkyl group.
  • E ⁇ is preferably SO 3 — .
  • k is preferably 1 or 2, and more preferably 1. However, when k is 3, it is preferable that 4 or more of —C (O) — are not consecutively bonded.
  • examples of the unsubstituted alkanediyl group include alkanediyl groups having 1 to 10 carbon atoms such as methanediyl group, ethanediyl group, and propanediyl group. Is mentioned. Of these, methanediyl group and propane-2,2-diyl group are preferable.
  • the substituted alkanediyl group includes a group in which some or all of the hydrogen atoms bonded to the same carbon atom of the alkanediyl group are substituted with a divalent organic group, or a hydrogen atom bonded to a different carbon atom of the alkanediyl group. And a group in which a part or all of is substituted with a monovalent group.
  • a divalent organic group for substituting the same carbon atom of the alkanediyl group a divalent organic group having a lactone structure, a divalent organic group having a cyclic carbonate structure, and a divalent organic group having a sultone structure are preferable.
  • a valerolactone-diyl group is more preferable.
  • a fluorine atom and a fluorinated alkyl group are preferable, and a fluorine atom is more preferable.
  • R 1 is also preferably a single bond.
  • the divalent organic group having 1 to 20 carbon atoms represented by R 2 is a group represented by the following formula (r 2 ) or represented by the following formula (r 2 ′). And the like. Of these, a group represented by the following formula (r 2 ) is preferable.
  • R 3 and R 4 are each independently a hydrogen atom or a monovalent organic group.
  • Rf 1 and Rf 2 are each independently a fluorine atom or a fluorinated alkyl group.
  • n1 is an integer of 1-6.
  • m is an integer of 0 or more and 6 or less.
  • * 1 indicates a site that binds to L.
  • R y is a substituted or unsubstituted alkanediyl group having 2 to 10 carbon atoms.
  • Rf 1 and Rf 2 are each independently a fluorine atom or a fluorinated alkyl group.
  • n1 is an integer of 1-6.
  • m is an integer of 0 or more and 6 or less.
  • * 1 indicates a site that binds to L.
  • Examples of the monovalent organic group represented by R 3 and R 4 include a chain hydrocarbon group.
  • R 3 and R 4 are preferably a hydrogen atom.
  • examples of the unsubstituted alkanediyl group include alkanes having 1 to 10 carbon atoms such as ethanediyl group and propanediyl group.
  • a diyl group is mentioned.
  • the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, Examples include an acyloxy group.
  • n1 is preferably 2 or more and 4 or less.
  • the fluorinated alkyl group represented by Rf 1 and Rf 2 in the above formulas (r 2 ) and (r 2 ′) is preferably a trifluoromethyl group.
  • i is preferably 0.
  • examples of the unsubstituted alkanediyl group include a methanediyl group, an ethanediyl group, and propanediyl. And alkanediyl groups having 1 to 10 carbon atoms such as a group.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, Examples include an acyloxy group.
  • R x is preferably a methanediyl group.
  • Examples of the divalent organic group having 1 to 19 carbon atoms of R 0 in the above formula (1-2) include the same groups as those exemplified for R 2 in the above formula (1-1).
  • the counter anion further has —N ⁇ — adjacent to one of the carbonyl groups, and the carbonyl groups are a single bond, a substituted or unsubstituted carbon number of 1 or A compound bonded through two alkanediyl groups or a substituted or unsubstituted 1,2-benzenediyl group (hereinafter also referred to as “[B3] compound”) is also preferable.
  • the said radiation sensitive resin composition contains a [B3] compound
  • the radiation-sensitive resin composition (II) contains the [B3] compound to ensure good storage stability and improve the LWR performance and the like. Excellent.
  • the compound [B3] exhibits an acid trapping function by N ⁇ in the unexposed area, but in the exposed area, the proton generated from X + is bonded to N ⁇ to become NH. Therefore, the acid-trapping function is lowered by exposure, that is, the [B3] compound functions as a radiation-sensitive acid diffusion controller. However, the [B3] compound does not correspond to the [C] acid generator described later.
  • the reason why the radiation-sensitive resin composition (II) contains the [B3] compound has the above-mentioned effects is not necessarily clear, for example, it can be inferred as follows. That is, in the [B3] compound, the nitrogen atom is an anion, and a carbonyl group is bonded to this, and further a single bond, an alkanediyl group having 1 or 2 carbon atoms, or a 1,2-benzenediyl group is relatively short. It has one of the other carbonyl groups through the group.
  • the [B3] compound is considered to have a higher basicity than the conventional acid diffusion controller containing a sulfonate anion and the like, and the acid trapping function is enhanced, and the quench contrast between the exposed and unexposed areas is increased. Can be high. As a result, it is considered that the LWR performance and the like of the radiation sensitive resin composition (II) are improved. On the other hand, since the basicity of the [B3] compound is suppressed to an appropriate height by the above-described specific structure, it is considered that the radiation-sensitive resin composition (II) can ensure good storage stability.
  • R 21 is a single bond, a substituted or unsubstituted methanediyl group, a substituted or unsubstituted ethanediyl group, or a substituted or unsubstituted 1,2-benzenediyl group.
  • R 22 and R 23 are each independently a monovalent organic group having 1 to 30 carbon atoms.
  • n2 is an integer of 1 or more and 3 or less. When n2 is 2 or more, the plurality of R 21 may be the same or different.
  • X + is a monovalent radiolytic onium cation. However, two or more of R 21 , R 22 and R 23 may form a ring structure having 5 to 30 ring members by these bonds.
  • Examples of the substituent that the methanediyl group, ethanediyl group and 1,2-benzenediyl group of R 21 may have include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a hydroxy group, a carboxy group, and the like.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a hydroxy group, a carboxy group, and the like.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a hydroxy group, a carboxy group, and the like.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a hydroxy
  • the R 21 is, for example, a group represented by the following formulas (C 1 -1) to (C 1 -10) (hereinafter referred to as “groups (C 1 -1) to (C 1 -10)”. ) ”)) And the like.
  • R 21 the basicity tends to be adjusted to a more appropriate height, so a single bond, groups (C 1 -1) to (C 1 -3), (C 1 -5), (C 1-6) is preferably a single bond.
  • Examples of the monovalent organic group having 1 to 30 carbon atoms represented by R 22 and R 23 include a monovalent hydrocarbon group having 1 to 30 carbon atoms, a carbon-carbon bond or a bond of the hydrocarbon group.
  • a group (q) containing a divalent heteroatom-containing group at the terminal on the side, a group obtained by substituting a part or all of the hydrogen atoms of the hydrocarbon group and group (q) with a monovalent heteroatom-containing group, etc. Can be mentioned.
  • Examples of the monovalent hydrocarbon group having 1 to 30 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, Examples thereof include 6-20 monovalent aromatic hydrocarbon groups.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include: Alkyl groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, and t-butyl; An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group; Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include: A monocyclic cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group; A monocyclic cycloalkenyl group such as a cyclobutenyl group, a cyclopentenyl group, or a cyclohexenyl group; A polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group, a tricyclodecyl group, a tetracyclododecyl group; And polycyclic cycloalkenyl groups such as a norbornenyl group, a tricyclodecenyl group, and a tetracyclododecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include: Aryl groups such as phenyl, tolyl, xylyl, naphthyl and anthryl; Examples include aralkyl groups such as benzyl group, phenethyl group, phenylpropyl group, naphthylmethyl group, and the like.
  • heteroatoms possessed by the monovalent and divalent heteroatom-containing groups include halogen atoms such as oxygen atoms, sulfur atoms, nitrogen atoms, silicon atoms, phosphorus atoms, fluorine atoms, chlorine atoms, and bromine atoms. .
  • halogen atoms such as oxygen atoms, sulfur atoms, nitrogen atoms, silicon atoms, phosphorus atoms, fluorine atoms, chlorine atoms, and bromine atoms.
  • an oxygen atom, a sulfur atom, a nitrogen atom and a halogen atom are preferable, and an oxygen atom and a fluorine atom are more preferable.
  • R ′ is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • Examples of the monovalent heteroatom-containing group include a hydroxy group, a carboxy group, a sulfanyl group (—SH), an amino group, a cyano group, and a halogen atom.
  • examples of R 22 and R 23 include groups represented by the following formulas (C 2 -1) to (C 2 -21) (hereinafter referred to as “groups (C 2 -1) to (C 2 -21), "also referred to), and the like.
  • R 22 groups (C 2 -1) to (C 2 -10) are preferable, and groups (C 2 -1) to (C 2 -3), (C 2 -5), (C 2 -7), (C 2 -9), and (C 2 -10) are more preferable.
  • R 23 groups (C 2 -11) to (C 2 -21) are preferable, and groups (C 2 -11), (C 2 -12), (C 2 -14), (C 2 -15) are preferred. ), (C 2 -17) to (C 2 -19), and (C 2 -21) are more preferable.
  • R 22 is —COR 24 , —SO 2 R 24 or —SO 3 R 24 from the viewpoint that the basicity can be adjusted to a more appropriate height, and R 24 is 1 to 20 carbon atoms. A valent organic group is preferred.
  • Examples of the monovalent organic group for R 24 include those having 1 to 20 carbon atoms among the groups exemplified as the monovalent organic groups for R 22 and R 23 .
  • At least one of R 22 and R 23 contains a fluorine atom. By doing so, the basicity tends to be adjusted to a more appropriate height.
  • R 21 , R 22 and R 23 may form, for example, Monocyclic cycloalkane structures such as cyclopropane structure, cyclobutane structure, cyclopentane structure, cyclohexane structure, cyclooctane structure; Polycyclic cycloalkane structures such as norbornane structure, adamantane structure, tricyclodecane structure and tetracyclododecane structure; Monocyclic cycloalkene structures such as cyclopropene structure, cyclobutene structure, cyclopentene structure, cyclohexene structure, cyclooctene structure; Polycyclic cycloalkene structures such as norbornene structure, tricyclodecene structure, tetracyclododecene structure; Oxacycloalkane structures such as oxacyclopentane structure, oxacyclohexane structure, cyclooctane structure;
  • R 21 in the above formula (2) is a single bond
  • R 22 is a monovalent fluorinated hydrocarbon group having 1 to 30 carbon atoms. Also in this case, the basicity tends to be adjusted to a more appropriate height.
  • n2 is preferably 1 or 2, and more preferably 1.
  • the [B3] compound is more excellent in the ease of synthesis.
  • Examples of the monovalent radiolytic onium cation represented by X + include a sulfonium cation, a tetrahydrothiophenium cation, and an iodonium cation.
  • an iodonium cation represented by the following formula (X-2) are preferable.
  • R b4 to R b6 each independently represent an aliphatic hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 36 carbon atoms, or 10 to 10 carbon atoms.
  • 36 aromatic hydrocarbon groups may be represented, or R b4 and R b5 may be combined to form a 3- to 12-membered ring containing a sulfur atom.
  • the hydrogen atom contained in the aliphatic hydrocarbon group is a hydroxy group, an alkoxy group having 1 to 12 carbon atoms, an alicyclic saturated hydrocarbon group having 3 to 12 carbon atoms, or an aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • the hydrogen atom contained in the alicyclic hydrocarbon group may be substituted with a halogen atom, an alkyl group having 1 to 18 carbon atoms, an acyl group having 2 to 4 carbon atoms, or a glycidyloxy group.
  • the hydrogen atom contained in the aromatic hydrocarbon group may be substituted with a halogen atom, a hydroxy group or an alkoxy group having 1 to 12 carbon atoms.
  • Examples of the aliphatic hydrocarbon group in the above formula (X-0) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group. Group, octyl group, 2-ethylhexyl group and the like.
  • the number of carbon atoms of the aliphatic hydrocarbon group of R b4 to R b6 is preferably 1 to 12.
  • Examples of the aliphatic hydrocarbon group in which a hydrogen atom is substituted with an alicyclic hydrocarbon group include a 1- (adamantan-1-yl) alkane-1-yl group.
  • Examples of the aliphatic hydrocarbon group in the above formula (X-0) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group. Group, octyl group, 2-ethylhexyl group and the like.
  • the number of carbon atoms of the aliphatic hydrocarbon group of R b4 to R b6 is preferably 1 to 12.
  • Examples of the aliphatic hydrocarbon group in which a hydrogen atom is substituted with an alicyclic hydrocarbon group include a 1- (adamantan-1-yl) alkane-1-yl group.
  • the alicyclic hydrocarbon group in the above formula (X-0) may be monocyclic or polycyclic, and the hydrogen atom contained in the alicyclic hydrocarbon group is substituted with an alkyl group. Also good. In this case, the alicyclic hydrocarbon group has 20 or less carbon atoms including the carbon number of the alkyl group.
  • Examples of the monocyclic alicyclic hydrocarbon group include cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclodecyl group.
  • Examples of the polycyclic alicyclic hydrocarbon group include a decahydronaphthyl group, an adamantyl group, and a norbornyl group.
  • Examples of the alicyclic hydrocarbon group in which a hydrogen atom is substituted with an alkyl group include a methylcyclohexyl group, a dimethylcyclohexyl group, a 2-alkyladamantan-2-yl group, a methylnorbornyl group, and an isobornyl group. It is done.
  • Examples of the aromatic hydrocarbon group in the above formula (X-0) include a naphthyl group and a phenanthryl group.
  • Examples of the aromatic hydrocarbon group in which a hydrogen atom is substituted with an alkoxy group include 4-methoxynaphthyl group and 4-nbutoxynaphthyl.
  • Examples of the alkyl group in which a hydrogen atom is substituted with an aromatic hydrocarbon group, that is, an aralkyl group include a benzyl group, a phenethyl group, a phenylpropyl group, a trityl group, a naphthylmethyl group, and a naphthylethyl group.
  • the aromatic hydrocarbon group includes an alkyl group or an alicyclic hydrocarbon group, an alkyl group having 1 to 12 carbon atoms and an alicyclic hydrocarbon group having 3 to 18 carbon atoms are preferable.
  • alkoxy group examples include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, decyloxy group, dodecyloxy group and the like.
  • acyl group examples include an acetyl group, a propionyl group, and a butyryl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkylcarbonyloxy group examples include a methylcarbonyloxy group, an ethylcarbonyloxy group, an n-propylcarbonyloxy group, an isopropylcarbonyloxy group, an n-butylcarbonyloxy group, a sec-butylcarbonyloxy group, and a tert-butylcarbonyloxy group. Pentylcarbonyloxy group, hexylcarbonyloxy group, octylcarbonyloxy group, 2-ethylhexylcarbonyloxy group and the like.
  • the ring containing a sulfur atom that R b4 and R b5 may form together may be any of monocyclic, polycyclic, aromatic, non-aromatic, saturated and unsaturated rings. If it contains one or more sulfur atoms, it may further contain one or more sulfur atoms and / or one or more oxygen atoms. As the ring, a ring having 3 to 18 carbon atoms is preferable, and a ring having 4 to 18 carbon atoms is more preferable.
  • R 15 , R 16 and R 17 are each independently a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted carbon. 6-12 aromatic hydrocarbon group, or an OSO 2 -R D or SO 2 -R E, or represent two or more are combined with each other configured ring of these groups.
  • R D and R E each independently represents a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms or a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 25 carbon atoms. Or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • R 15 ⁇ R 17 and R D and R E are a plurality each of a plurality of R 15 ⁇ R 17 and R D and R E may be the same as or different from each other.
  • R 18 and R 19 are each independently a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted carbon number of 6 to 12 aromatic hydrocarbon group, or an OSO 2 -R F or SO 2 -R G, or represent two or more are combined with each other configured ring of these groups.
  • R F and R G are each independently a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 25 carbon atoms. Or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • i and j are each independently an integer of 0 to 5.
  • R 18, R 19, R F and optionally R G is plural respective plurality of R 18, R 19, R F and R G may have each the same or different.
  • Examples of the unsubstituted linear alkyl group represented by R 15 to R 19 include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group.
  • Examples of the unsubstituted branched alkyl group represented by R 15 to R 19 include an i-propyl group, i-butyl group, sec-butyl group, and t-butyl group.
  • Examples of the unsubstituted aromatic hydrocarbon group represented by R 15 to R 19 include aryl groups such as a phenyl group and a naphthyl group; aralkyl groups such as a benzyl group and a phenethyl group.
  • Examples of the substituent that may substitute the hydrogen atom of the alkyl group and aromatic hydrocarbon group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, a hydroxy group, a carboxy group, and a cyano group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, a hydroxy group, a carboxy group, and a cyano group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, a hydroxy group, a carboxy group, and a cyano group.
  • alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, acyloxy group and the like Among these, a halogen
  • R 15 to R 19 examples include an unsubstituted linear or branched alkyl group, a fluorinated alkyl group, an unsubstituted monovalent aromatic hydrocarbon group, OSO 2 -R D , SO 2 -R E are preferable, a fluorinated alkyl group and an unsubstituted monovalent aromatic hydrocarbon group are more preferable, and a fluorinated alkyl group is more preferable.
  • R ′′ is an unsubstituted monovalent alicyclic hydrocarbon group or an unsubstituted monovalent aromatic hydrocarbon group.
  • k, m and n are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • i and j are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • Examples of the sulfonium cation include cations represented by the following formulas (b1-1) to (b1-27).
  • triphenylsulfonium cation represented by the above formula (b1-1), the cations represented by the above formulas (b1-21) to (b1-23), and the above formula (b1-25) Cations are preferred.
  • Examples of the iodonium cation include cations represented by the following formulas (b2-1) to (b2-25).
  • a cation represented by the above formula (b2-1) is preferable.
  • Examples of the [B1] compound and the [B2] compound include the following formulas (1-1-1) to (1-1-17), formulas (1-2-1) to (1-2-3), The compounds represented by 1-3-1) and (1-3-2) are preferred.
  • X + is as defined in the above formulas (1-1), (1-2) and (1-3).
  • Examples of the [B3] compound include compounds represented by the following formulas (B3-1) to (B3-17).
  • A, R 1 , R 2 , k, and X + are as defined in the above formula (1-1).
  • Z is a halogen atom.
  • D is an alkali metal.
  • Y ⁇ is a monovalent anion.
  • R 21 is a single bond, a substituted or unsubstituted methanediyl group, a substituted or unsubstituted ethanediyl group, or a substituted or unsubstituted 1,2-benzenediyl group.
  • R 22 and R 23 are each independently a monovalent organic group having 1 to 30 carbon atoms.
  • X + is a monovalent radiolytic onium cation.
  • two or more of R 21 , R 22 and R 23 may form a ring structure having 5 to 30 ring members by these bonds.
  • Z is a halogen atom.
  • Y ⁇ is a monovalent anion.
  • the above formula (c) By reacting the compound represented by the above formula (a) and the acid halide represented by the above formula (b) in a solvent such as tetrahydrofuran in the presence of a base such as pyridine, the above formula (c) ) Is obtained.
  • the obtained compound (c), in a solvent such as dichloromethane, is reacted with a base such as sodium hydroxide, N - after obtaining salt, the N - salt and, X + Y - represented by radiolysis in
  • the compound represented by the above formula (2 ′) can be obtained by reacting the active onium salt with, for example, a solvent of dichloromethane / water.
  • a content of a [B] compound As a minimum of content of a [B1] compound in case a [B] compound is a [B1] compound, it is 0.5 with respect to 100 mass parts of [A] polymers. Mass parts are preferable, 1 part by mass is more preferable, 2.5 parts by mass is further preferable, and 5 parts by mass is particularly preferable. On the other hand, as an upper limit of content in the case of a [B1] compound, 30 mass parts is preferable with respect to 100 mass parts of [A] polymers, 20 mass parts is more preferable, 15 mass parts is still more preferable, 10 Part by mass is particularly preferred.
  • the lower limit of the content of the [B2] compound is preferably 0.1 parts by mass with respect to 100 parts by mass of the [A] polymer. 5 parts by mass is more preferable.
  • an upper limit of content in the case of a [B2] compound 30 mass parts is preferable with respect to 100 mass parts of [A] polymers, 20 mass parts is more preferable, and 10 mass parts is further more preferable.
  • the lower limit of the content of the [B3] compound is preferably 0.1 parts by mass with respect to 100 parts by mass of the [A] polymer. 5 mass parts is more preferable, 1 mass part is further more preferable, and 1.5 mass parts is especially preferable.
  • the upper limit of the content of the compound is preferably 30 parts by mass, more preferably 20 parts by mass, further preferably 10 parts by mass, and particularly preferably 5 parts by mass with respect to 100 parts by mass of the polymer (A). .
  • the “[G] solvent” is a component for dissolving or dispersing the [A] polymer, the [B] compound, and optional components.
  • Examples of the solvent include alcohol solvents, ketone solvents, amide solvents, ether solvents, ester solvents and the like.
  • a solvent may be used alone or in combination of two or more.
  • Monoalcohol solvents include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol, sec -Pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-te
  • Examples of the ketone solvent include: As chain ketone solvents, acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n- Hexyl ketone, di-iso-butyl ketone, trimethylnonanone, 2,4-pentanedione, acetonyl acetone, diacetone alcohol, acetophenone, etc .;
  • Examples of the cyclic ketone solvent include cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, and methylcyclohexanone.
  • amide solvent for example, examples of chain amide solvents include N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropionamide and the like;
  • chain amide solvents include N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropionamide and the like
  • cyclic amide solvent include N-methylpyrrolidone and N, N′-dimethylimidazolidinone.
  • ether solvent for example, examples of chain ether solvents include diethyl ether, dipropyl ether, dibutyl ether, diphenyl ether and the like; Examples of cyclic ether solvents include tetrahydrofuran and tetrahydropyran.
  • ester solvent for example, As acetate solvents, methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-acetate Methoxybutyl, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, n-nonyl acetate, glycol diacetate, methoxytriglycol acetate, etc .; As an acetic acid ester solvent for a polyhydric alcohol partial ether, acetic acid ethylene glycol monomethyl ether, acetic acid ethylene glycol monoethyl mono
  • ketone solvents and ester solvents are preferable.
  • a cyclic ketone solvent is more preferable, and cyclohexanone is more preferable.
  • ester solvent an acetate ester of a polyhydric alcohol partial ether is used. System solvents are more preferred, and propylene glycol monomethyl ether acetate is more preferred.
  • the acid generator is a substance that generates an acid upon exposure (except for those corresponding to the [B] compound.
  • the [C] acid generator generates an acid stronger than the acid generated from the [B] compound. appear). Since the acid-dissociable group of the [A] polymer or the like is dissociated by the generated acid to generate a carboxy group or the like, and the solubility of these polymers in the developer changes, the radiation-sensitive resin composition From this, a resist pattern can be formed.
  • the content form of the [C] acid generator in the radiation-sensitive resin composition may be a low molecular compound form (hereinafter referred to as “[C] acid generator” as appropriate), as described later. It may be a form incorporated as a part or both of these forms.
  • Examples of the [C] acid generator include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, diazoketone compounds, and the like.
  • onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
  • [C] acid generator examples include compounds described in paragraphs [0080] to [0113] of JP2009-134088A.
  • the acid generator is preferably a compound represented by the following formula (c).
  • the acid generator By making the acid generator a compound represented by the following formula (c), the diffusion length of the acid generated by exposure in the resist film due to the interaction with the polar structure of the [A] polymer, etc. As a result, the LWR performance and the like of the radiation sensitive resin composition can be further improved.
  • R a1 is a monovalent group containing an alicyclic structure having 6 or more ring members or a monovalent group containing an aliphatic heterocyclic structure having 6 or more ring members.
  • R a2 is a fluorinated alkanediyl group having 1 to 10 carbon atoms.
  • M + is a monovalent radiolytic onium cation.
  • the “number of ring members” in R a1 means the number of atoms constituting the ring of the alicyclic structure and the aliphatic heterocyclic structure, and in the case of the polycyclic alicyclic structure and the polycyclic aliphatic heterocyclic structure, The number of atoms that make up a polycycle.
  • Examples of the monovalent group containing an alicyclic structure having 6 or more ring members represented by R a1 above include: A monocyclic cycloalkyl group such as a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a cyclododecyl group; A monocyclic cycloalkenyl group such as a cyclooctenyl group and a cyclodecenyl group; A polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group, a tricyclodecyl group, a tetracyclododecyl group; Examples thereof include polycyclic cycloalkenyl groups such as norbornenyl group and tricyclodecenyl group.
  • Examples of the monovalent group containing an aliphatic heterocyclic structure having 6 or more ring members represented by R a1 above include: A group containing a lactone structure such as a norbornanelactone-yl group; A group containing a sultone structure such as a norbornane sultone-yl group; An oxygen atom-containing heterocyclic group such as an oxacycloheptyl group and an oxanorbornyl group; A nitrogen atom-containing heterocyclic group such as an azacyclohexyl group, an azacycloheptyl group, a diazabicyclooctane-yl group; And sulfur atom-containing heterocyclic groups such as a thiacycloheptyl group and a thianorbornyl group.
  • the number of ring members of the group represented by R a1 is preferably 8 or more, more preferably 9 to 15 and even more preferably 10 to 13 from the viewpoint that the acid diffusion length becomes more appropriate.
  • a monovalent group containing an alicyclic structure having 9 or more ring members and a monovalent group containing an aliphatic heterocyclic structure having 9 or more ring members are preferable.
  • An adamantyl group, a hydroxyadamantyl group, norbornanelactone-yl The group, 5-oxo-4-oxatricyclo [4.3.1.1 3,8 ] undecan-yl group is more preferable, and an adamantyl group is more preferable.
  • Examples of the fluorinated alkanediyl group having 1 to 10 carbon atoms represented by R a2 include one or more hydrogen atoms of an alkanediyl group having 1 to 10 carbon atoms such as a methanediyl group, an ethanediyl group, and a propanediyl group. And a group in which is substituted with a fluorine atom.
  • SO 3 - fluorinated alkane diyl group which has a fluorine atom to carbon atom is bonded to adjacent groups are preferred, SO 3 - 2 fluorine atoms to the carbon atom adjacent to the group is attached More preferred are fluorinated alkanediyl groups, 1,1-difluoromethanediyl group, 1,1-difluoroethanediyl group, 1,1,3,3,3-pentafluoro-1,2-propanediyl group, 1,1 1,2,2-tetrafluoroethanediyl group, 1,1,2,2-tetrafluorobutanediyl group, and 1,1,2,2-tetrafluorohexanediyl group are more preferable.
  • Examples of the monovalent radiolytic onium cation represented by M + include the same cations as those exemplified as the radiolytic onium cation possessed by the above-mentioned [B] compound. Among these, a sulfonium cation is preferable, and a triphenylsulfonium cation is more preferable.
  • Examples of the acid generator include compounds represented by the following formulas (c-1) to (c-13) (hereinafter also referred to as “compounds (c-1) to (c-13)”). Can be mentioned.
  • M + has the same meaning as in the above formula (c).
  • compound (c-1), compound (c-2), compound (c-12) and compound (c-13) are preferred.
  • Examples of the [C] acid generator include a polymer in which the structure of the above formula (c) is incorporated as a part of the polymer, such as a polymer having a structural unit represented by the following formula (c-14). preferable.
  • R ′′ represents a hydrogen atom or a methyl group.
  • M + has the same meaning as in the above formula (c).
  • the content of the [C] acid generator is as follows.
  • the [C] acid generator is a [C] acid generator
  • the [A] polymer 100 is used from the viewpoint of sensitivity and developability of the radiation sensitive resin composition. 0.1 to 30 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, and more preferably 3 to 15 parts by weight with respect to parts by weight. Particularly preferred.
  • the [C] acid generator is incorporated as a part of the polymer, from the viewpoint of improving the sensitivity and developability of the radiation-sensitive resin composition, [A] with respect to all structural units constituting the polymer. 1 mol% to 30 mol% is preferable, 2 mol% to 20 mol% is more preferable, and 3 mol% to 10 mol% is more preferable.
  • [B] 1 type (s) or 2 or more types can be used for an acid generator.
  • the said radiation sensitive resin composition may contain [D] acid spreading
  • the acid diffusion controller controls the diffusion phenomenon in the resist film of the acid generated from the [B] compound or [C] acid generator upon exposure, and has the effect of suppressing undesirable chemical reactions in the unexposed areas.
  • the content form of the acid diffusion controller in the radiation-sensitive resin composition may be a compound form as described later (hereinafter, this aspect is also referred to as “[D] acid diffusion controller”) or a part of the polymer. It is possible to use both of these embodiments.
  • Examples of the acid diffusion controller include amine compounds, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.
  • Examples of the amine compound include mono (cyclo) alkylamines; di (cyclo) alkylamines; tri (cyclo) alkylamines; substituted alkylanilines or derivatives thereof; ethylenediamine, N, N, N ′, N′-tetra Methylethylenediamine, tetramethylenediamine, hexamethylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylamine, 2,2-bis (4 -Aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2- (4-aminophenyl) -2- (3-hydroxyphenyl) propane, 2- (4-amino) Phenyl) -2- (4-hydroxyphenyl) propane, 1 4-bis (1- (4-a
  • amide group-containing compounds include Nt-butoxycarbonyl group-containing amino compounds, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, Examples thereof include benzamide, pyrrolidone, N-methylpyrrolidone, N-acetyl-1-adamantylamine, and isocyanuric acid tris (2-hydroxyethyl).
  • urea compounds include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tri-n-butylthiourea, etc. Is mentioned.
  • nitrogen-containing heterocyclic compound examples include imidazoles; pyridines; piperazines; pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, piperidine ethanol, 3-piperidino-1,2-propanediol, morpholine, 4- Methylmorpholine, 1- (4-morpholinyl) ethanol, 4-acetylmorpholine, 3- (N-morpholino) -1,2-propanediol, 1,4-dimethylpiperazine, 1,4-diazabicyclo [2.2.2 ] Octane etc. are mentioned.
  • the acid diffusion controller may be used alone or in combination of two or more.
  • the content of the [D] acid diffusion controller is preferably 15 parts by mass or less with respect to 100 parts by mass of the polymer [A]. 10 parts by mass or less is more preferable.
  • the LWR performance of the said radiation sensitive resin composition etc. can be improved further.
  • the fluorine atom-containing polymer is a polymer containing a fluorine atom, and is a polymer different from the above-mentioned [A] polymer.
  • the [E] fluorine atom-containing polymer is formed on the surface layer of the resist film by further containing the [E] fluorine atom-containing polymer.
  • the hydrophobicity of the resist film surface can be improved.
  • the substance elution suppression from the resist film is excellent, and the receding contact angle between the resist film and the immersion liquid can be sufficiently increased, enabling faster scanning. Become.
  • Fluorine atom-containing polymer is not particularly limited, but is itself a polymer that is insoluble in a developer and becomes alkali-soluble by the action of an acid, itself soluble in a developer and alkali-soluble by the action of an acid Polymers that increase in solubility, polymers that are insoluble in the developer and become alkali-soluble by the action of alkali, polymers that are soluble in the developer and increase in alkali-solubility by the action of alkali, and the like .
  • [E] As an aspect of a fluorine atom containing polymer, for example, A structure in which a fluorinated alkyl group is bonded to the main chain; A structure in which a fluorinated alkyl group is bonded to the side chain; Examples include a structure in which a fluorinated alkyl group is bonded to the main chain and the side chain.
  • Examples of the monomer that gives a structure in which a fluorinated alkyl group is bonded to the main chain include, for example, ⁇ -trifluoromethyl acrylate compound, ⁇ -trifluoromethyl acrylate compound, ⁇ , ⁇ -trifluoromethyl acrylate compound, one or more types And compounds in which the hydrogen atom of the vinyl moiety is substituted with a fluorinated alkyl group such as a trifluoromethyl group.
  • Examples of monomers that give a structure in which a fluorinated alkyl group is bonded to the side chain include, for example, those in which the side chain of an alicyclic olefin compound such as norbornene is a fluorinated alkyl group or a derivative thereof, acrylic acid or methacrylic acid.
  • Examples include ester compounds in which the side chain is a fluorinated alkyl group or a derivative thereof, and one or more olefin side chains (sites not including a double bond) being a fluorinated alkyl group or a derivative thereof.
  • Monomers that give a structure in which a fluorinated alkyl group is bonded to the main chain and side chain include, for example, ⁇ -trifluoromethylacrylic acid, ⁇ -trifluoromethylacrylic acid, ⁇ , ⁇ -trifluoromethylacrylic acid
  • ⁇ -trifluoromethylacrylic acid such as a fluorinated alkyl group or its derivative ester compound, or a compound in which the hydrogen atom of one or more vinyl moieties is substituted with a fluorinated alkyl group such as a trifluoromethyl group
  • a hydrogen atom bonded to a double bond of one or more alicyclic olefin compounds is substituted with a fluorinated alkyl group such as a trifluoromethyl group
  • the side chain is a fluorinated alkyl group And those which are derivatives thereof.
  • an alicyclic olefin compound shows the compound in which a part of ring is a double bond.
  • the fluorine atom-containing polymer is a structural unit represented by the following formula (7) (hereinafter also referred to as “structural unit (f1)” and / or a structural unit represented by the following formula (8) (hereinafter, The [E] fluorine atom-containing polymer has “other structural units” other than the structural unit (f1) and the structural unit (f2).
  • the [E] fluorine atom containing polymer may contain 1 type, or 2 or more types of each structural unit.Hereinafter, each structural unit is explained in full detail.
  • the structural unit (f1) is a structural unit represented by the following formula (7).
  • R f3 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R f4 is a linear or branched alkyl group having 1 to 6 carbon atoms having a fluorine atom or a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms having a fluorine atom.
  • one part or all part of the hydrogen atom which the said alkyl group and alicyclic hydrocarbon group have may be substituted.
  • Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms include a cyclopentyl group, a cyclopentylpropyl group, a cyclohexyl group, a cyclohexylmethyl group, a cycloheptyl group, a cyclooctyl group, and a cyclooctylmethyl group. It is done.
  • Examples of the monomer that gives the structural unit (f1) include trifluoromethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, perfluoroethyl (meth) acrylate, and perfluoro n-propyl.
  • structural unit (f1) structural units represented by the following formulas (7-1) and (7-2) are preferable.
  • R f3 has the same meaning as in the above formula (7).
  • the content ratio of the structural unit (f1) is preferably 10% by mole to 70% by mole, and more preferably 20% by mole to 50% by mole with respect to all the structural units constituting the [E] fluorine atom-containing polymer.
  • the structural unit (f2) is a structural unit represented by the following formula (8).
  • R f5 is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group.
  • R f6 is a (r + 1) -valent linking group.
  • X 1 is a divalent linking group having a fluorine atom.
  • R f7 is a hydrogen atom or a monovalent organic group.
  • r is an integer of 1 to 3. However, when r is 2 or 3, the plurality of X 1 and R f7 may be the same or different.
  • the (r + 1) -valent linking group represented by R f6 is, for example, a linear or branched hydrocarbon group having 1 to 30 carbon atoms or an alicyclic group having 3 to 30 carbon atoms.
  • the (r + 1) -valent linking group may have a substituent.
  • linear or branched hydrocarbon group having 1 to 30 carbon atoms examples include hydrocarbon groups such as methane, ethane, propane, butane, pentane, hexane, heptane, decane, icosane and triacontane (r + 1). ) Groups from which a single hydrogen atom is removed.
  • Examples of the alicyclic hydrocarbon group having 3 to 30 carbon atoms include: As monocyclic saturated hydrocarbons, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclodecane, methylcyclohexane, ethylcyclohexane, etc .; As monocyclic unsaturated hydrocarbons, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclodecene, cyclopentadiene, cyclohexadiene, cyclooctadiene, cyclodecadiene, etc .; As polycyclic saturated hydrocarbons, bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, tricyclo [5.2.1.0 2,6 ] decane, tri
  • aromatic hydrocarbon group having 6 to 30 carbon atoms examples include aromatic hydrocarbon groups such as benzene, naphthalene, phenanthrene, anthracene, tetracene, pentacene, pyrene, picene, toluene, xylene, ethylbenzene, mesitylene, cumene and the like. And groups excluding (r + 1) hydrogen atoms.
  • examples of the divalent linking group having a fluorine atom represented by X 1 include a C 1-20 divalent linear hydrocarbon group having a fluorine atom.
  • examples of X 1 include groups represented by the following formulas (X1-1) to (X1-6).
  • X 1 is preferably a group represented by the above formulas (X1-1) and (X1-2), more preferably a group represented by the formula (X1-2).
  • examples of the monovalent organic group represented by R f7 include a linear or branched hydrocarbon group having 1 to 30 carbon atoms, and an alicyclic carbon group having 3 to 30 carbon atoms.
  • Examples of the structural unit (f2) include structural units represented by the following formula (8-1) and formula (8-2).
  • R f6 is a divalent linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, or cyclic saturated or unsaturated group having 3 to 20 carbon atoms. It is a hydrocarbon group.
  • R f5 , X 1 and R f7 have the same meaning as in the above formula (8).
  • R f5 , X 1 , R f7 and o are as defined in the above formula (8). However, when k is 2 or 3, the plurality of X 1 and R f7 may be the same or different.
  • Examples of the structural units represented by the above formulas (8-1) and (8-2) include the following formulas (8-1-1) to (8-1-3) and formulas (8-2-1). ) And the like.
  • R f5 has the same meaning as the formula (8).
  • the structural unit (f2) is preferably a structural unit represented by the above formula (8-1), and more preferably a structural unit represented by the above formula (8-1-3).
  • Examples of the monomer that gives the structural unit (f2) include (meth) acrylic acid [2- (1-ethyloxycarbonyl-1,1-difluoro-n-butyl)] ester, (meth) acrylic acid (1 , 1,1-trifluoro-2-trifluoromethyl-2-hydroxy-3-propyl) ester, (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-4 -Butyl) ester, (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-5-pentyl) ester, (meth) acrylic acid 2- ⁇ [5- (1 ′ , 1 ′, 1′-trifluoro-2′-trifluoromethyl-2′-hydroxy) propyl] bicyclo [2.2.1] heptyl ⁇ ester, and the like. Of these, (meth) acrylic acid [2- (1-ethyloxycarbonyl-1,1-difluoro-n-
  • the content ratio of the structural unit (f2) is preferably from 30 mol% to 90 mol%, more preferably from 50 mol% to 80 mol%, based on all the structural units constituting the [E] fluorine atom-containing polymer.
  • the fluorine atom-containing polymer may contain “other structural units” other than the structural unit (f1) and the structural unit (f2). Examples of other structural units include the structural unit (I) of [A] polymer.
  • the content ratio of other structural units is preferably 5 mol% to 90 mol%, more preferably 10 mol% to 80 mol%, more preferably 20 mol% to the total structural units constituting the [E] fluorine atom-containing polymer. More preferred is mol% to 70 mol%.
  • the content of the fluorine atom-containing polymer is preferably 20 parts by mass or less, more preferably 0.1 parts by mass to 15 parts by mass, and more preferably 1 part by mass to 100 parts by mass of the polymer [A]. 10 parts by mass is more preferable, and 1 part by mass to 6 parts by mass is particularly preferable. [E] When the content of the fluorine atom-containing polymer exceeds the above upper limit, the water repellency of the resist film surface becomes too high, and development failure may occur.
  • the fluorine atom content of the fluorine atom-containing polymer is preferably larger than the fluorine atom content of the [A] polymer.
  • the fluorine atom content in the fluorine atom-containing polymer is larger than that of the [A] polymer, it is formed by the radiation sensitive resin composition containing the [A] polymer and the [E] fluorine atom-containing polymer. Further, the water repellency of the resist film surface can be further increased.
  • the difference between the fluorine atom content of the fluorine atom-containing polymer and the fluorine atom content of the [A] polymer is preferably 1% by mass or more, and more preferably 3% by mass or more.
  • the fluorine atom content of the fluorine atom-containing polymer is preferably 1% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, and particularly preferably 10% by mass or more.
  • the fluorine atom content (% by mass) can be calculated from the structure of a polymer obtained by 13 C-NMR.
  • the fluorine atom-containing polymer can be synthesized, for example, by polymerizing a monomer corresponding to each predetermined structural unit in a suitable polymerization solvent using a radical polymerization initiator.
  • radical polymerization initiator examples include those similar to the radical polymerization initiator used in the method for synthesizing the polymer [A].
  • polymerization solvent the thing similar to the polymerization solvent used by the synthesis method of [A] polymer is mentioned, for example.
  • the reaction temperature in the above polymerization is usually 40 ° C to 150 ° C, preferably 50 ° C to 120 ° C.
  • the reaction time is usually 1 hour to 48 hours, preferably 1 hour to 24 hours.
  • the Mw of the fluorine atom-containing polymer is preferably 1,000 to 50,000, more preferably 2,000 to 30,000, and still more preferably 3,000 to 10,000. [E] When the Mw of the fluorine atom-containing polymer is less than 1,000, a sufficient receding contact angle cannot be obtained. On the other hand, when Mw exceeds 50,000, the developability of the resist tends to decrease.
  • the ratio (Mw / Mn) between Mw and Mn of the fluorine atom-containing polymer is preferably 1 to 5, and more preferably 1 to 3.
  • the uneven distribution accelerator (hereinafter, also referred to as “[F] uneven distribution accelerator”) is a component that segregates the [E] fluorine atom-containing polymer more efficiently on the resist film surface.
  • the radiation-sensitive resin composition contains [F] an uneven distribution accelerator, the [E] fluorine atom-containing polymer can be segregated more effectively on the resist film surface, resulting in [E] fluorine atoms.
  • the amount of the containing polymer used can be reduced.
  • Examples of the uneven distribution promoter include lactone compounds, carbonate compounds, and nitrile compounds.
  • the uneven distribution promoter may be used alone or in combination of two or more.
  • lactone compound examples include ⁇ -butyrolactone, valerolactone, mevalonic lactone, norbornane lactone, and the like.
  • Examples of the carbonate compound include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, and the like.
  • nitrile compound examples include succinonitrile.
  • lactone compounds are preferred, and ⁇ -butyrolactone is more preferred.
  • the content of the uneven distribution accelerator is preferably 5 to 300 parts by mass, more preferably 10 to 100 parts by mass, and 20 to 70 parts by mass with respect to 100 parts by mass of the polymer (A). Part by mass is more preferable.
  • the radiation-sensitive resin composition includes other optional components such as a surfactant, an alicyclic skeleton-containing compound, and a sensitizer as long as the effects of the present invention are not impaired. Can be contained. Two or more kinds of other optional components may be used in combination. Further, the content of other optional components can be appropriately determined according to the purpose.
  • the radiation-sensitive resin composition includes a [A] polymer, a [B] compound, a [G] solvent, and, if necessary, a [C] acid generator, a [D] acid diffusion controller, and [E] containing a fluorine atom.
  • Each arbitrary component such as a polymer can be prepared by mixing at a predetermined ratio.
  • the solid content concentration of the radiation-sensitive resin composition is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, and further preferably 1% by mass to 10% by mass.
  • the resist pattern forming method is: A step of forming a resist film with the radiation-sensitive resin composition (hereinafter also referred to as “resist film forming step”), a step of exposing the resist film (hereinafter also referred to as “exposure step”), and the exposed resist A step of developing the film (hereinafter also referred to as “developing step”).
  • resist film forming step A step of forming a resist film with the radiation-sensitive resin composition
  • exposure step a step of exposing the resist film
  • developing step A step of developing the film
  • a resist film is formed using the above-described radiation-sensitive resin composition of the present invention.
  • appropriate coating means such as spin coating, cast coating, roll coating, can be employ
  • the substrate include a silicon wafer and a wafer coated with aluminum.
  • the solvent in the coating film is volatilized by pre-baking (PB) as necessary.
  • the thickness of the coating film is preferably 10 nm to 500 nm.
  • the temperature of PB is usually 60 ° C. to 140 ° C., preferably 80 ° C. to 120 ° C.
  • the PB time is usually 5 to 600 seconds, preferably 10 to 300 seconds.
  • a protective film can be provided on the resist film as disclosed in, for example, JP-A-5-188598.
  • an immersion protective film may be provided on the resist film.
  • the resist film formed in the resist film forming step is exposed.
  • this exposure is performed by irradiating radiation through a mask having a predetermined pattern through an immersion medium such as water.
  • the immersion exposure liquid a liquid having a refractive index larger than that of air is usually used. Specific examples include pure water, long-chain or cyclic aliphatic compounds, and the like.
  • the exposure apparatus irradiates radiation and exposes the resist film through a mask having a predetermined pattern. To do.
  • the radiation examples include electromagnetic waves such as visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light (EUV), X-rays, and ⁇ -rays depending on the type of radiation-sensitive acid generator used; Of these, a far-ultraviolet ray, EUV, and an electron beam are preferable, and ArF excimer laser beam (wavelength 193 nm), KrF excimer laser beam (wavelength 248 nm), EUV, electron A line is more preferable, and ArF excimer laser light, EUV, and an electron beam are further preferable. Moreover, when the [A] polymer of the said radiation sensitive resin composition has a structural unit (I-2), an electron beam and EUV are preferable.
  • PEB post-exposure bake
  • the temperature of PEB is usually 50 ° C. to 180 ° C., preferably 80 ° C. to 130 ° C.
  • the PEB time is usually 5 to 600 seconds, preferably 10 to 300 seconds.
  • the resist film exposed in the exposure step is developed.
  • the developer used for the development include an alkali developer and an organic solvent developer. Thereby, a predetermined resist pattern is formed.
  • alkali developer examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, Methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3.0] -5-nonene and the like an alkaline aqueous solution in which at least one kind of alkaline compound is dissolved.
  • TMAH tetramethylammonium hydroxide
  • Examples of alcohol solvents include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol and the like;
  • Examples of ether solvents include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane, diphenyl ether, anisole and the like;
  • Examples of ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl amylkenton, and methyl-n-butyl ketone;
  • Examples of amide solvents include N, N′-dimethylimidazolidinone, N-methylformamide, N, N-dimethylformamide and the like;
  • Examples of the ester solvent include diethyl carbonate, methyl acetate, ethyl acetate, n-propyl acetate
  • These developers may be used alone or in combination of two or more.
  • the substrate is washed with water or the like and dried.
  • the radiation sensitive acid generator of the present invention comprises a compound represented by the above formula (1-1), the above formula (1-2) or the above formula (1-3). Since the said radiation sensitive acid generator consists of a compound which has the said structure, it is used suitably as a component of the said radiation sensitive resin composition.
  • the acid diffusion controller of the present invention comprises a compound represented by the above formula (2). Since the acid diffusion control agent is composed of a compound having the above structure, it is suitably used as a component of the above-mentioned radiation sensitive resin composition.
  • the compound of the present invention is represented by the above formula (1-1), the above formula (1-2) or the above formula (1-3). Since the said compound has the said structure, it is used suitably as the said radiation sensitive acid generator mentioned above.
  • Another compound of the present invention is represented by the above formula (2).
  • the compound can be suitably used as the acid diffusion controller.
  • the radiation-sensitive acid generator and the compound are described in the [B] compound section of the radiation-sensitive resin composition described above.
  • Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) using Tosoh GPC columns (G2000HXL: 2, G3000HXL: 1, G4000HXL: 1) under the following conditions.
  • the degree of dispersion (Mw / Mn) was calculated from the measurement results of Mw and Mn.
  • Elution solvent Tetrahydrofuran Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass Sample injection volume: 100 ⁇ L Column temperature: 40 ° C Detector: Differential refractometer Standard material: Monodisperse polystyrene
  • the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
  • the polymerization solution was cooled with water and cooled to 30 ° C. or lower.
  • the polymerization solution cooled in 400 g of methanol was added, and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with 80 g of methanol, filtered, and dried at 50 ° C. for 17 hours to synthesize a white powdery polymer (A-1) (15.2 g, yield 76). %).
  • Mw of the polymer (A-1) was 7,300, and Mw / Mn was 1.53.
  • the content ratio of each structural unit derived from (M-6), (M-7), and (M-8) was 34.3 mol%, 45.1 mol%, and 20 It was 6 mol%.
  • the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
  • the polymerization solution was cooled with water and cooled to 30 ° C. or lower.
  • the polymerization solution cooled in 400 g of methanol was added, and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with 80 g of methanol, filtered, and dried at 50 ° C. for 17 hours to synthesize a white powdery polymer (A-2) (14.9 g, yield 75). %).
  • Mw of the polymer (A-2) was 7,500, and Mw / Mn was 1.55.
  • the content of each structural unit derived from (M-1), (M-9), and (M-2) was 40.1 mol%, 10.1 mol%, and 9 It was 8 mol%.
  • the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
  • the polymerization solution was cooled with water and cooled to 30 ° C. or lower.
  • the polymerization solution cooled in 400 g of methanol was added, and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with 80 g of methanol, filtered, and dried at 50 ° C. for 17 hours to synthesize a white powdery polymer (A-3) (15.3 g, yield 77). %).
  • Mw of the polymer (A-3) was 7,200, and Mw / Mn was 1.53.
  • the content ratio of each structural unit derived from (M-1), (M-11), (M-10), and (M-8) was 19.5 mol%, 15 It was 0.5 mol%, 40.1 mol% and 24.9 mol%.
  • Mw of the polymer (A-4) was 7,500, and Mw / Mn was 1.90.
  • the content of each structural unit derived from p-hydroxystyrene and (M-3) was 65.4 mol% and 34.6 mol%, respectively.
  • the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
  • the polymerization solution was cooled with water and cooled to 30 ° C. or lower.
  • the polymerization solution was uniformly diluted with 150 g of n-hexane, and 600 g of methanol was added and mixed.
  • 30 g of distilled water was added, and the mixture was further stirred and allowed to stand for 30 minutes. Thereafter, the lower layer was recovered to obtain a propylene glycol monomethyl ether acetate solution containing the polymer (E-1) as a solid content (yield 60%).
  • Mw of the polymer (E-1) was 7,200, and Mw / Mn was 2.00.
  • the content of each structural unit derived from (M-1) and (M-4) was 71.1 mol% and 28.9 mol%, respectively.
  • G-1 Propylene glycol monomethyl ether acetate
  • G-2 Cyclohexanone
  • Example 23 (Preparation of radiation-sensitive resin composition (J1-1)) [A] 100 parts by mass of (A-1) as a polymer, [D] 2.3 parts by mass of (D-1) as an acid diffusion controller, and (B-1) 8.5 as a [B] compound [E] (E-1) 3 parts by mass as a fluorine atom-containing polymer, [G] 2,240 parts by mass and (G-2) 960 parts by mass as a solvent, F] A radiation-sensitive resin composition (J1-1) was prepared by mixing 30 parts by mass of (F-1) as an uneven distribution promoter and filtering through a 0.2 ⁇ m membrane filter.
  • Example 24 to 54 and Comparative Examples 1 to 6 Except that the components [A] to [D] having the types and contents shown in Table 1 below were used, the same operation as in Example 23 was carried out to prepare each of the radiation sensitive resin compositions (J1-2) to (J1- 32) and (CJ1-1) to (CJ1-6) were prepared.
  • a spin coater (“CLEAN TRACK ACT12” manufactured by Tokyo Electron Ltd.)
  • ARC66 manufactured by Brewer Science Inc.
  • NSR-S610C ArF excimer laser immersion exposure apparatus
  • the film was exposed through a 40 nm line and space (1L1S) mask pattern.
  • PEB was performed at 90 ° C. for 60 seconds.
  • alkali development was performed using a 2.38% by mass TMAH aqueous solution as an alkali developer, washed with water, and dried to form a positive resist pattern.
  • the exposure amount formed in a one-to-one line and space with a line width of 40 nm formed through a one-to-one line and space mask with a target dimension of 40 nm was defined as the optimum exposure amount.
  • a negative resist pattern was prepared in the same manner as in the resist pattern formation (1) except that n-butyl acetate was used in place of the TMAH aqueous solution and the organic solvent was developed and no washing with water was performed. Formed.
  • LWR performance The resist pattern resolved at the optimum exposure dose was observed from above the pattern using the scanning electron microscope. A total of 50 line widths were measured at arbitrary points, and a 3-sigma value was obtained from the distribution of the measured values, and this was defined as LWR performance (nm). LWR performance indicates that the smaller the value, the better. When the LWR performance is 3.5 nm or less, it can be evaluated as “good”, and when it exceeds 3.5 nm, it can be evaluated as “bad”.
  • CDU performance The resist pattern resolved at the optimum exposure dose was observed from above the pattern using the scanning electron microscope.
  • the line width was measured at 20 points in the range of 400 nm, the average value was measured at a total of 500 points, and a 3-sigma value was obtained from the distribution of the measured values, which was taken as CDU performance (nm).
  • CDU performance The smaller the value of the CDU performance, the better the line width variation over a long period.
  • the CDU performance can be evaluated as “good” when it is 1.5 nm or less, and “bad” when it exceeds 1.5.
  • resolution The dimension of the minimum resist pattern that can be resolved at the optimum exposure amount is defined as resolution (nm). The smaller the value, the better the resolution. When the resolution is 35 nm or less, it can be evaluated as “good”, and when it exceeds 35 nm, it can be evaluated as “bad”.
  • MEEF performance Five types of mask sizes (38.0 nm Line / 80 nm Pitch, 39.0 nm Line / 80 nm Pitch, 40.0 nm Line / 80 nm Pitch, 41.0 nm Line / 80 nm Pitch, 42.0 nm Line / 80 nm Pitch) at the optimum exposure dose using the scanning electron microscope.
  • the line width of the resist pattern resolved in (1) was measured.
  • the obtained measurement values were plotted with the horizontal axis as the mask size and the vertical axis as the line width formed with each mask size, and the slope of the approximate straight line calculated by the least square method was obtained, and this slope was defined as MEEF performance.
  • the MEEF performance indicates that the closer the value is to 1, the better.
  • the MEEF performance can be evaluated as “good” when 4.7 or less and “bad” when 4.7 or more.
  • the radiation-sensitive resin composition of the present invention when used for ArF exposure, in both alkaline development and organic solvent development, LWR performance, resolution, cross-sectional shape, depth of focus, While the exposure margin, CDU performance, and MEEF performance were good, in the comparative example, each characteristic was inferior to the examples.
  • [Preparation of radiation-sensitive resin composition for electron beam exposure] [Example 55] [A] 100 parts by mass of (A-4) as a polymer, [D] 2.3 parts by mass of (D-1) as an acid diffusion controller, and (B-1) 8.5 as a [B] compound
  • the radiation sensitivity is obtained by mixing 4 parts by mass and (G-1) 4,280 parts by mass and (G-2) 1,830 parts by weight as [G] solvent and filtering through a 0.2 ⁇ m membrane filter.
  • a resin composition (J1-33) was prepared.
  • Example 56 to 79 and Comparative Examples 7 and 8 The radiation sensitive resin compositions (J1-33) to (J1-57) and (CJ1-7) were prepared in the same manner as in Example 55 except that the components of the types and contents shown in Table 3 were used. And (CJ1-8) were prepared.
  • Example 81 to 90 Synthesis of compounds (Z-2) to (Z-11)
  • a precursor represented by the following formulas (Z-2) to (Z-11) was synthesized by appropriately selecting a precursor and performing the same operation as in Example 80.
  • the monomers (M′-1), (M′-5) to (M′-7), (M′-9), (M′-12) and (M′-13) are represented by [A] heavy
  • the structural unit (I) in the union is represented by monomers (M′-2), (M′-3), (M′-8), (M′-10) and (M′-11) as structural units ( II) and monomer (M′-4) gives structural unit (III), respectively.
  • the monomer (M′-14) incorporates a structural unit having a structure of a radiation-sensitive acid generator into the polymer.
  • the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
  • the polymerization reaction solution was cooled with water and cooled to 30 ° C. or lower.
  • the polymerization solution cooled in 400 g of methanol was added, and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with 80 g of methanol and then filtered and dried at 50 ° C. for 17 hours to synthesize a white powdery polymer (A′-1) (15.2 g, yield). 76%).
  • Mw of the polymer (A′-1) was 7,300, and Mw / Mn was 1.53.
  • the content ratio of each structural unit derived from (M′-1), (M′-2) and (M′-3) was 34.3 mol% and 45.1 mol, respectively. %, And 20.6 mol%.
  • Mw of the polymer (A′-5) was 7,500, and Mw / Mn was 1.90.
  • the content of each structural unit derived from p-hydroxystyrene and (M′-5) was 65.4 mol% and 34.6 mol%, respectively.
  • Mw of the polymer (E′-1) was 15,000, and Mw / Mn was 1.90.
  • the content ratio of each structural unit derived from (M′-15) and (M′-12) was 70.3 mol% and 29.7 mol%, respectively.
  • C′-1 Triphenylsulfonium 2- (adamantan-1-ylcarbonyloxy) -1,1,3,3,3-pentafluoropropane-1-sulfonate
  • C′-2 Triphenylsulfonium norbornane sultone-2- Ileoxycarbonyldifluoromethanesulfonate
  • C′-3 Triphenylsulfonium 3- (piperidin-1-ylsulfonyl) -1,1,2,2,3,3-hexafluoropropane-1-sulfonate
  • C′-4 Tri Phenylsulfonium adamantane-1-yloxycarbonyldifluoromethanesulfonate
  • G-1 Propylene glycol monomethyl ether acetate
  • G-2 Cyclohexanone
  • Example 92 to 105 and Comparative Examples 9 to 15 Each radiation-sensitive resin composition was prepared in the same manner as in Example 91 except that the components having the types and contents shown in Table 6 were used.
  • [Preparation of radiation-sensitive resin composition for electron beam exposure] [Example 106] [A] 100 parts by weight of (A′-5) as a polymer, 3.6 parts by weight of (Z-1) as a [B3] compound, [C] 20 parts by weight of (C′-1) as an acid generator And (G-1) 4,280 parts by mass and (G-2) 1,830 parts by weight as [G] solvent, and filtered through a membrane filter having a pore size of 0.2 ⁇ m.
  • a composition (J2-16) was prepared.
  • Example 107 to 123 and Comparative Examples 16 to 25 Each radiation-sensitive resin composition was prepared in the same manner as in Example 106 except that the components of the types and contents shown in Table 7 were used.
  • ⁇ Formation of resist pattern (1 ')> A 12-inch silicon wafer surface was coated with a composition for forming a lower antireflection film (“ARC66” from Brewer Science Co., Ltd.) using a spin coater (“CLEAN TRACK ACT12” from Tokyo Electron), and then 205 ° C. Was heated for 60 seconds to form a lower antireflection film having a thickness of 105 nm.
  • the prepared radiation sensitive resin composition for ArF exposure was applied using the spin coater, and PB was performed at 90 ° C. for 60 seconds. Then, it cooled at 23 degreeC for 30 second, and formed the resist film with a film thickness of 90 nm.
  • ⁇ Formation of resist pattern (3 ')> Using a spin coater (“CLEAN TRACK ACT8” manufactured by Tokyo Electron Ltd.) on the surface of an 8-inch silicon wafer, the prepared radiation sensitive resin composition for electron beam exposure was applied, and PB was performed at 90 ° C. for 60 seconds. It was. Then, it cooled at 23 degreeC for 30 second, and formed the resist film with a film thickness of 50 nm. Next, the resist film was irradiated with an electron beam by using a simple electron beam drawing apparatus (“HL800D” manufactured by Hitachi, Ltd., output: 50 KeV, current density: 5.0 A / cm 2 ). After irradiation, PEB was performed at 120 ° C. for 60 seconds. Thereafter, an alkali development was carried out at 23 ° C. for 30 seconds using a 2.38 mass% TMAH aqueous solution as an alkaline developer, washed with water, and dried to form a positive resist pattern.
  • a spin coater (“CLEAN
  • the radiation-sensitive resin compositions of the examples were subjected to LWR performance, CDU performance, solution in both ArF exposure and electron beam exposure, and alkaline development and organic solvent development. It is excellent in image quality, cross-sectional rectangularity, depth of focus, exposure margin, and MEEF performance. In the comparative example, each of these characteristics was inferior to that of the example, and the rectangular shape of the cross-sectional shape was also poor.
  • electron beam exposure it is known to show the same tendency as in the case of EUV exposure. Therefore, according to the radiation-sensitive resin composition of the example, even in the case of EUV exposure, It is estimated that the LWR performance is excellent.
  • the radiation-sensitive resin composition and the resist pattern forming method of the present invention excellent depth of focus, exposure margin and MEEF performance are exhibited, and LWR performance, CDU performance, resolution and cross-sectional rectangularity are excellent.
  • a resist pattern can be formed.
  • the compound of this invention can be used suitably as a component of the said radiation sensitive resin composition. Therefore, they can be suitably used for pattern formation in semiconductor device manufacturing or the like where further miniaturization is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)

Abstract

 本発明は、酸解離性基を含む構造単位を有する重合体、放射線分解性を有するオニウムカチオンとカウンターアニオンとからなる化合物、及び溶媒を含有し、上記カウンターアニオンが、カルボニル基を2以上有し、上記カルボニル基同士が、単結合、置換若しくは非置換の炭素数1~10のアルカンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基を介して結合する感放射線性樹脂組成物である。上記化合物としては、下記式(1-1)で表される化合物が好ましい。式(1-1)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Lは、単結合又は酸素原子である。Rは、単結合又は置換若しくは非置換の炭素数1~10のアルカンジイル基である。Rは、炭素数1~20の2価の有機基である。kは、1以上3以下の整数である。

Description

感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、酸拡散制御剤及び化合物
 本発明は、感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、酸拡散制御剤及び化合物に関する。
 リソグラフィーによる微細加工に用いられる感放射線性樹脂組成物は、KrFエキシマレーザー光(波長248nm)、ArFエキシマレーザー光(波長193nm)及び極端紫外線(EUV:Extreme Ultraviolet、波長13.5nm)等の遠紫外線、電子線等の荷電粒子線などの照射により露光部に酸を発生させ、この酸を触媒とする化学反応により露光部と未露光部との現像液に対する溶解速度に差を生じさせ、基板上にレジストパターンを形成する。
 かかる感放射線性樹脂組成物には、加工技術の微細化に伴って解像性、レジストパターンの断面形状の矩形性を向上させることが要求される。この要求に対し、組成物に用いられる重合体、酸発生剤、その他の成分の種類や分子構造が検討され、さらにその組み合わせについても詳細に検討されている(特開平11-125907号公報、特開平8-146610号公報及び特開2000-298347号公報参照)。
 しかしながら、レジストパターンの微細化が線幅50nm以下のレベルまで進展している現在にあっては、上記解像性やレジストパターンの断面形状の矩形性は十分に満たされていない。また、リソグラフィー性能であるMEEF(Mask Error Enhancement Factor)性能、LWR(Line Width Roughness)性能、CD(Critical Dimension)均一性、焦点深度及び露光余裕度は、上記従来の酸発生剤では不都合がある。
特開平11-125907号公報 特開平8-146610号公報 特開2000-298347号公報
 本発明は、上述のような事情に基づいてなされたものであり、その目的は、LWR性能、CDU性能、解像性、断面形状の矩形性、焦点深度、露光余裕度及びMEEF性能(以下、「LWR性能等」ともいう)に優れる感放射線性樹脂組成物を提供することにある。
 上記課題を解決するためになされた発明は、酸解離性基を含む構造単位(以下、「構造単位(I)」ともいう)を有する重合体(以下、「[A]重合体」ともいう)、放射線分解性オニウムカチオンとカウンターアニオンとからなる化合物(以下、「[B]化合物」ともいう)、及び溶媒(以下、「[G]溶媒」ともいう)を含有し、上記カウンターアニオンが、カルボニル基を2以上有し、上記カルボニル基同士が、単結合、置換若しくは非置換の炭素数1~10のアルカンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基を介して結合する感放射線性樹脂組成物である。
 上記課題を解決するためになされた別の発明は、レジスト膜を形成する工程、上記レジスト膜を露光する工程、及び上記露光されたレジスト膜を現像する工程を備え、上記レジスト膜を当該感放射線性樹脂組成物により形成するレジストパターン形成方法である。
 上記課題を解決するためになされたさらに別の発明は、下記式(1-1)、下記式(1-2)又は下記式(1-3)で表される化合物からなる感放射線性酸発生剤である。
Figure JPOXMLDOC01-appb-C000017
(式(1-1)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Lは、単結合又は酸素原子である。Rは、単結合又は炭素数1~10の置換又は非置換のアルカンジイル基である。Rは、炭素数1~20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000018
(式(1-2)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Rは、単結合又は炭素数1~10の置換又は非置換のアルカンジイル基である。iは、0以上2以下の整数である。Rは、炭素数1~10の置換又は非置換のアルカンジイル基である。Rは、単結合又は炭素数1~19の2価の有機基である。iが2の場合、複数のRは、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000019
(式(1-3)中、Aは、炭素数1~30の1価の有機基である。Xは、1価の放射線分解性オニウムカチオンである。Rは、炭素数1~10の置換又は非置換のアルカンジイル基である。)
 上記課題を解決するためになされたさらに別の発明は、下記式(2)で表される化合物からなる酸拡散制御剤である。
Figure JPOXMLDOC01-appb-C000020
(式(2)中、R21は、単結合、置換若しくは非置換のメタンジイル基、置換若しくは非置換のエタンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基である。R22及びR23は、それぞれ独立して、炭素数1~30の1価の有機基である。n2は、1以上3以下の整数である。n2が2以上の場合、複数のR21は同一でも異なっていてもよい。Xは、1価の放射線分解性オニウムカチオンである。但し、R21、R22及びR23のうちの2つ以上は、これらの結合により環員数5~30の環構造を形成してもよい。)
 上記課題を解決するためになされたさらに別の発明は、下記式(1-1)、下記式(1-2)又は下記式(1-3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000021
(式(1-1)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Lは、単結合又は酸素原子である。Rは、単結合又は置換若しくは非置換の炭素数1~10のアルカンジイル基である。Rは、炭素数1~20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。)
(式(1-2)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Rは、単結合又は置換若しくは非置換の炭素数1~10のアルカンジイル基である。iは、0以上2以下の整数である。Rは、置換若しくは非置換の炭素数1~10のアルカンジイル基である。Rは、単結合又は炭素数1~19の2価の有機基である。iが2の場合、複数のRは、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000023
(式(1-3)中、Aは、炭素数1~30の1価の有機基である。Xは、1価の放射線分解性オニウムカチオンである。Rは、置換若しくは非置換の炭素数1~10のアルカンジイル基である。)
 上記課題を解決するためになされたさらに別の発明は、下記式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000024
(式(2)中、R21は、単結合、置換若しくは非置換のメタンジイル基、置換若しくは非置換のエタンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基である。R22及びR23は、それぞれ独立して、炭素数1~30の1価の有機基である。n2は、1以上3以下の整数である。n2が2以上の場合、複数のR21は同一でも異なっていてもよい。Xは、1価の放射線分解性オニウムカチオンである。但し、R21、R22及びR23のうちの2つ以上は、これらの結合により環員数5~30の環構造を形成してもよい。)
 ここで、「有機基」とは、少なくとも1個の炭素原子を含む基をいう。「炭化水素基」とは、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れた焦点深度、露光余裕度及びMEEF性能を発揮し、LWR性能、CDU性能、解像性及び断面形状の矩形性に優れるレジストパターンを形成することができる。当該感放射線性酸発生剤及び当該酸拡散制御剤は、当該感放射線性樹脂組成物の成分として好適に用いることができる。本発明の化合物は、当該感放射線性酸発生剤及び当該酸拡散制御剤として好適に用いることができる。従って、これらはさらなる微細化が進行すると予想される半導体デバイス製造等におけるパターン形成に好適に用いることができる。
<感放射線性樹脂組成物>
 当該感放射線性樹脂組成物は、[A]重合体、[B]化合物及び[G]溶媒を含有する。また、当該感放射線性樹脂組成物は、好適成分として、[B]化合物以外の放射線の照射により酸を発生するスルホネート化合物(以下、「[C]酸発生体」ともいう)、[B]化合物以外の酸拡散制御体(以下、「[D]酸拡散制御体」ともいう)及びフッ素原子含有重合体(以下、「[E]フッ素原子含有重合体」ともいう)を含有していてもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。以下、各成分について説明する。
<[A]重合体>
 [A]重合体は、構造単位(I)を有する重合体である。当該感放射線性樹脂組成物によれば、放射線の照射により[B]化合物等から発生する酸により露光部の[A]重合体の酸解離性基が解離して、露光部と未露光部とで現像液に対する溶解性に差異が生じ、その結果、レジストパターンを形成することができる。「酸解離性基」とは、カルボキシ基、ヒドロキシ基等の水素原子を置換する基であって、酸の作用により解離する基をいう。[A]重合体は酸解離性基を有する限り特に限定されない。酸解離性基は、[A]重合体の主鎖、側鎖、末端等のどこに有していてもよい。[A]重合体は、構造単位(I)以外にも、後述する下記式(5-1)及び下記式(5-2)で表される構造単位からなる群より選ばれる少なくとも1種(以下、「構造単位(II)」ともいう)、後述する下記式(6)で表される構造単位(以下、「構造単位(III)」ともいう)及び上記構造単位(I)~(III)以外のその他の構造単位を有していてもよい。[A]重合体は、各構造単位を1種又は2種以上有していてもよい。以下、各構造単位について説明する。
[構造単位(I)]
 構造単位(I)は、酸解離性基を含む構造単位である。構造単位(I)としては、例えば、下記式(3-1)で表される構造単位(以下、「構造単位(I-1)」ともいう)、下記式(3-2)で表される構造単位(以下、「構造単位(I-2)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 上記式(3-1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Yは、1価の酸解離性基である。
 上記式(3-2)中、Rは、水素原子又はメチル基である。Yは、1価の酸解離性基である。
 上記Rとしては、構造単位(I-1)を与える単量体の共重合性の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。
 上記Yで表される1価の酸解離性基としては、下記式(Y-1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000026
 上記式(Y-1)中、Re1は、炭素数1~20の炭化水素基である。Re2及びRe3は、それぞれ独立して炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造を表す。
 上記Re1、Re2及びRe3で表される炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 上記炭素数1~20の1価の鎖状炭化水素基としては、例えば、
 メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基、ペンテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基、ペンチニル基等のアルキニル基等が挙げられる。
 これらのうち、アルキル基が好ましく、炭素数1~4のアルキル基がより好ましく、メチル基、エチル基、i-プロピル基がさらに好ましく、エチル基が特に好ましい。
 上記Re1、Re2及びRe3で表される炭素数3~20の1価の脂環式炭化水素基としては、例えば、
 シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の単環のシクロアルキル基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環のシクロアルキル基;
 シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
 ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基等が挙げられる。
 これらのうち、単環のシクロアルキル基、多環のシクロアルキル基が好ましく、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基がより好ましい。
 上記炭素数6~20の1価の芳香族炭化水素基としては、例えば、
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基等のアラルキル基などが挙げられる。
 これらのうち、アリール基が好ましく、炭素数6~10のアリール基が好ましく、フェニル基、ナフチル基がさらに好ましく、フェニル基がさらに好ましい。
 上記これらの基が互いに合わせられ構成される環員数3~20の脂環構造としては、例えば、
 シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロオクタン構造等の単環のシクロアルカン構造;
 ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環のシクロアルカン構造;
 シクロプロペン構造、シクロブテン構造、シクロペンテン構造、シクロヘキセン構造、シクロオクテン構造等の単環のシクロアルケン構造;
 ノルボルネン構造、トリシクロデセン構造、テトラシクロドデセン構造等の多環のシクロアルケン構造等が挙げられる。
 これらのうち、単環のシクロアルカン構造、多環のシクロアルカン構造が好ましく、炭素数5~8の単環のシクロアルカン構造、炭素数7~12の多環のシクロアルカン構造がより好ましく、シクロペンタン構造、シクロヘキサン構造、シクロオクタン構造、ノルボルナン構造、アダマンタン構造がさらに好ましく、シクロペンタン構造、アダマンタン構造が特に好ましい。
 上記式(Y-1)で表される基としては、Re1が炭素数1~10の1価の鎖状炭化水素基であり、かつRe2及びRe3が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造を表すことが好ましく、Re1が炭素数1~10のアルキル基であり、かつRe2及びRe3が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20のシクロアルカン構造を表すことがより好ましく、Re1が炭素数1~4のアルキル基であり、かつRe2及びRe3が互いに合わせられこれらが結合する炭素原子と共に構成される環員数5~8の単環のシクロアルカン構造又は環炭素数7~12の多環のシクロアルカン構造を表すことがさらに好ましい。
 上記Rとしては、構造単位(I-2)を与える単量体の共重合性の観点から、水素原子が好ましい。
 上記Yで表される1価の酸解離性基としては、下記式(Y-2)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000027
 上記式(Y-2)中、Re4、Re5及びRe6は、それぞれ独立して、水素原子、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のオキシ炭化水素基である。但し、Re4、Re5及びRe6が同時に水素原子である場合はない。
 上記Re4、Re5及びRe6で表される炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 上記Re4、Re5及びRe6で表される炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基及び炭素数6~20の1価の芳香族炭化水素基としては、例えば、上記Re1、Re2及びRe3として例示したそれぞれのものと同様の基等が挙げられる。
 上記Re4、Re5及びRe6としては、これらの中で、鎖状炭化水素基、脂環式炭化水素基が好ましく、アルキル基、シクロアルキル基がより好ましく、炭素数1~4のアルキル基、単環のシクロアルキル基、多環のシクロアルキル基がさらに好ましく、メチル基、エチル基、n-プロピル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基が特に好ましい。
 上記Re4、Re5及びRe6で表される炭素数1~20の1価のオキシ炭化水素基としては、例えば、炭素数1~20の1価のオキシ鎖状炭化水素基、炭素数3~20の1価のオキシ脂環式炭化水素基、炭素数6~20の1価のオキシ芳香族炭化水素基等が挙げられる。
 上記炭素数1~20の1価のオキシ鎖状炭化水素基としては、例えば、
 メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基等のアルコキシ基;
 エテニルオキシ基、プロペニルオキシ基、ブテニルオキシ基、ペンテニルオキシ基等のアルケニルオキシ基;
 エチニルオキシ基、プロピニルオキシ基、ブチニルオキシ基、ペンチニルオキシ基等のアルキニルオキシ基等が挙げられる。
 これらの中で、アルコキシ基が好ましく、炭素数1~4のアルコキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基がさらに好ましい。
 これらの中で、アルコキシ基が好ましく、炭素数1~4のアルコキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基がさらに好ましい。
 上記炭素数3~20の1価のオキシ脂環式炭化水素基としては、例えば、
 シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロオクチルオキシ基等の単環のシクロアルキルオキシ基;
 ノルボルニルオキシ基、アダマンチルオキシ基、トリシクロデシルオキシ基、テトラシクロドデシルオキシ基等の多環のシクロアルキルオキシ基;
 シクロプロペニルオキシ基、シクロブテニルオキシ基、シクロペンテニルオキシ基、シクロヘキセニルオキシ基等の単環のシクロアルケニルオキシ基;
 ノルボルネニルオキシ基、トリシクロデセニルオキシ基等の多環のシクロアルケニルオキシ基等が挙げられる。
 これらの中で、単環のシクロアルキルオキシ基、多環のシクロアルキルオキシ基が好ましく、シクロペンチルオキシ基、シクロヘキシルオキシ基、ノルボルニルオキシ基、アダマンチルオキシ基がより好ましい。
 上記炭素数6~20の1価のオキシ芳香族炭化水素基としては、例えば、
 フェノキシ基、トリルオキシ基、ナフチルオキシ基等のアリールオキシ基;
 ベンジルオキシ基、フェネチルオキシ基、ナフチルメトキシ基等のアラルキルオキシ基などが挙げられる。
 これらの中で、アリールオキシ基が好ましく、フェノキシ基がより好ましい。
 上記式(Y-2)で表される基としては、Re4、Re5及びRe6が1価の鎖状炭化水素基である基、Re4及びRe5が1価の鎖状炭化水素基かつRe6が1価のオキシ鎖状炭化水素基である基、Re4が1価の鎖状炭化水素基かつRe5及びRe6が1価のオキシ鎖状炭化水素基である基が好ましく、Re4、Re5及びRe6がアルキル基である基、Re4及びRe5がアルキル基かつRe6がアルコキシ基である基、Re4がアルキル基かつRe5及びRe6がアルコキシ基である基がより好ましく、Re4、Re5及びRe6がアルキル基である基がさらに好ましく、t-ブチル基、t-ペンチル基、t-ヘキシル基、t-ヘプチル基が特に好ましい。
 構造単位(I)としては、例えば、
 構造単位(I-1)として、下記式(3-1-1)~(3-1-7)で表される構造単位等;
 構造単位(I-2)として、下記式(3-2-1)~(3-2-3)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000028
 上記式(3-1-1)~(3-1-7)中、Rは、上記式(3-1)と同義である。Re1、Re2及びRe3は、上記式(Y-1)と同義である。rは、それぞれ独立して、1~3の整数である。
 上記式(3-2-1)~(3-2-3)中、Rは、上記式(3-2)と同義である。
 構造単位(I)としては、構造単位(I-1)が好ましく、上記式(3-1-2)、(3-1-3)、(3-1-4)、(3-1-5)及び(3-2-3)で表される構造単位がより好ましく、シクロペンタン構造を含む構造単位、シクロヘキサン構造を含む構造単位、アダマンタン構造を含む構造単位がより好ましく、1-エチル-1-シクロペンチル(メタ)アクリレートに由来する構造単位、2-メチル-2-アダマンチル(メタ)アクリレートに由来する構造単位、2-エチル-2-アダマンチル(メタ)アクリレートに由来する構造単位、アダマンタン-1-イル-2-プロピル(メタ)アクリレートに由来する構造単位、シクロヘキシル-2-プロピル(メタ)アクリレートに由来する構造単位、2-エチル-テトラシクロドデシル(メタ)アクリレートに由来する構造単位、1-(シクロヘキシルエトキシ)エトキシスチレンに由来する構造単位がさらに好ましい。
 構造単位(I)の含有割合としては、[A]重合体を構成する全構造単位に対して、10モル%~70モル%が好ましく、20モル%~60モル%がより好ましく、30モル%~55モル%がさらに好ましく、35モル%~50モル%が特に好ましい。構造単位(I)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能等がより優れる。
[構造単位(II)]
 構造単位(II)は、下記式(5-1)で表される構造単位(以下、「構造単位(II-1)」ともいう)及び下記式(5-2)で表される構造単位(以下、「構造単位(II-2)」ともいう)からなる群より選ばれる少なくとも1種である。[A]重合体が構造単位(II)を有することで、[B]化合物や[C]酸発生剤の[A]重合体中での分散性を向上させることができる。その結果、当該感放射線性樹脂組成物は、LWR性能等がより優れる。また、当該感放射線性樹脂組成物から形成されるレジストパターンの基板への密着性を向上させることができる。
Figure JPOXMLDOC01-appb-C000029
 上記式(5-1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Eは、単結合、-COO-又はCO-O-(CHiである。iは、1~6の整数である。Rは、非酸解離性でかつ極性基を含む基である。
 上記式(5-2)中、R8’は、水素原子又はメチル基である。R及びRは、それぞれ独立して、水素原子、フッ素原子、ヒドロキシ基又は1価の有機基である。sは、1~3の整数である。sが2以上の場合、複数のR及びRはそれぞれ同一でも異なっていてもよい。R9a及びR9bは、それぞれ独立して水素原子、フッ素原子、ヒドロキシ基若しくは1価の有機基であるか、又はR9a及びR9bは互いに合わせられ、これらが結合する炭素原子と共に構成される環員数3~30の環構造を表す。
 構造単位(II-1)において、
 上記Rとしては、構造単位(II-1)を与える単量体の共重合性の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。
 上記Eとしては、構造単位(II-1)を与える単量体の共重合性の観点から、CO-Oが好ましい。
 上記Rで表される非酸解離性でかつ極性基を含む基における極性基としては、例えば、ヒドロキシ基、カルボキシ基、シアノ基、スルホ基、メルカプト基等の1価の基(a);カルボニル基、O、S、これらを組み合わせてなる2価の基(b)等が挙げられる。
 上記Rで表される非酸解離性かつ極性基を含む基としては、例えば、炭素数1~20の1価の炭化水素基が有する水素原子の一部又は全部を上記1価の基(a)で置換した基、炭素数1~20の1価の炭化水素基の一部又は全部の炭素-炭素間に上記2価の基(b)を含む基、炭素数1~20の1価の炭化水素基が有する水素原子の一部又は全部を上記1価の基(a)で置換し、かつ一部又は全部の炭素-炭素間に上記2価の基(b)を含む基等が挙げられる。
 上記炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 上記炭素数1~20の1価の鎖状炭化水素基としては、例えば、上記式(Y-2)におけるRe4、Re5及びRe6として例示したものと同様の基等が挙げられる。
 上記炭素数3~20の1価の脂環式炭化水素基としては、例えば、上記式(Y-1)におけるRe1、Re2及びRe3として例示したものと同様の基等が挙げられる。
 上記炭素数6~20の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、メシチル基、ナフチル基、メチルナフチル基、アントリル基、メチルアントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基等が挙げられる。
 上記Rとしては、ラクトン構造を有する基、環状カーボネート構造を有する基、スルトン構造を有する基、ヒドロキシ基を有する基等が挙げられる。
 上記ラクトン構造を有する基としては、例えば、ブチロラクトン-イル基、ノルボルナンラクトン-イル基、5-オキソ-4-オキサトリシクロ[4.3.1.13,8]ウンデカン-イル基等が挙げられる。
 環状カーボネート構造を有する基としては、例えば、エチレンカーボネート-イルメチル基等が挙げられる。
 スルトン構造を有する基としては、例えば、プロパンスルトン-イル基、ノルボルナンスルトン-イル基等のスルトン構造を有する基等が挙げられる。
 ヒドロキシ基を有する基としては、例えば、ヒドロキシアダマンチル基、ジヒドロキシアダマンチル基、トリヒドロキシアダマンチル基、ヒドロキシエチル基等が挙げられる。
 構造単位(II-2)において、
 上記R8’としては、構造単位(II-2)を与える単量体の共重合性の観点から、水素原子が好ましい。
 上記R、R、R9a及びR9bで表される1価の有機基としては、例えば、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基、これらの基が有する水素原子の一部又は全部を置換基で置換した基、これらの基の炭素-炭素間に、CO、CS、O、S若しくはNR’、又はこれらのうちの2種以上を組み合わせた基を含む基等が挙げられる。R’は、水素原子又は1価の有機基である。
 R9a及びR9bが互いに合わせられ、これらが結合する炭素原子と共に構成される環員数3~30の環構造としては、例えば例えばシクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、ノルボルナン構造、アダマンタン構造等の脂環構造;オキサシクロペンタン構造、チアシクロペンタン構造、アザシクロペンタン構造等の脂肪族複素環構造等が挙げられる。
 sとしては、1又は2が好ましく、1がより好ましい。
 構造単位(II)としては、例えば、
 構造単位(II-1)として下記式(5-1-1)~(5-1-11)で表される構造単位等;
 構造単位(II-2)として下記式(5-2-1)及び(5-2-2)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000030
 上記式(5-1-1)~(5-1-11)中、Rは上記式(5-1)と同義である。
 上記式(5-2-1)及び(5-2-2)中、R8’は、上記式(5-2)と同義である。
 これらの中で、上記式(5-1-1)、(5-1-3)、(5-1-8)及び(5-1-11)で表される構造単位が好ましい。
 構造単位(II)の含有割合としては、[A]重合体を構成する全構造単位に対して、0モル%~70モル%が好ましく、10モル%~60モル%がより好ましく、20モル%~50モル%がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、[B]化合物や[C]酸発生剤の[A]重合体中における分散性がより向上し、その結果、当該感放射線性樹脂組成物のLWR性能等がより優れる。
 [構造単位(III)]
 構造単位(III)は、下記式(6)で表される構造単位である。照射する放射線として、KrFエキシマレーザー光、EUV、電子線等を用いる場合には、当該感放射線性樹脂組成物は、[A]重合体中が構造単位(III)を有することで、感度を高めることができる。
Figure JPOXMLDOC01-appb-C000031
 上記式(6)中、R10は、水素原子又はメチル基である。R11は、炭素数1~20の1価の有機基である。pは、0~3の整数である。R11が複数の場合、複数のR11は同一でも異なっていてもよい。qは、1~3の整数である。但し、p及びqは、p+q≦5を満たす。
 上記R10としては、構造単位(III)を与える単量体の共重合性の観点から、水素原子が好ましい。
 上記R11で表される炭素数1~20の1価の有機基としては、例えば、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基、これらの基が有する水素原子の一部又は全部を置換基で置換した基、これらの基の炭素-炭素間に、-CO-、-CS-、-O-、-S-若しくは-NR-”、又はこれらのうちの2種以上を組み合わせた基を含む基等が挙げられる。R”は、水素原子又は1価の有機基である。
 これらの中で、1価の鎖状炭化水素基が好ましく、アルキル基がより好ましく、メチル基がさらに好ましい。
 上記pとしては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
 上記qは、1又は2が好ましく、1がより好ましい。
 構造単位(III)としては、例えば、下記式(6-1)~(6-4)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 上記式(6-1)~(6-4)中、R10は、上記式(6)と同義である。
 これらの中で、上記式(6-1)及び(6-2)で表される構造単位が好ましく、上記式(6-1)で表される構造単位がより好ましい。
 構造単位(III)の含有割合としては、[A]重合体を構成する全構造単位に対して、0モル%~90モル%が好ましく、30モル%~80モル%がより好ましく、50モル%~75モル%がさらに好ましい。構造単位(III)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物は、感度をより向上させることができる。
 なお、構造単位(III)は、ヒドロキシスチレンのOH基の水素原子をt-ブチル基等で置換した単量体を重合した後、得られた重合体を、アミン存在下で加水分解反応を行うこと等により形成することができる。
[他の構造単位]
 [A]重合体は、上記構造単位(I)~(III)以外の他の構造単位を有していてもよい。他の構造単位としては、例えば、非解離性の1価の脂環式炭化水素基を含む(メタ)アクリル酸エステルに由来する構造単位等が挙げられる。他の構造単位の含有割合としては、[A]重合体を構成する全構造単位に対して、20モル%以下が好ましく、10モル%以下がより好ましい。
 [A]重合体の含有量としては、当該感放射線性樹脂組成物の全固形分に対して、70質量%以上が好ましく、80質量%以上がより好ましく、85質量%以上がさらに好ましい。
<[A]重合体の合成方法>
 [A]重合体は、ラジカル重合等の常法に従って合成することができる。例えば、単量体及びラジカル開始剤を含有する溶液を反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、単量体を含有する溶液とラジカル開始剤を含有する溶液とを各別に反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、各々の単量体を含有する複数種の溶液とラジカル開始剤を含有する溶液とを各別に反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、単量体及びラジカル開始剤を含有する溶液を無溶媒中や反応溶媒中で重合反応させる方法等で合成することが好ましい。
 なお、単量体溶液に対して、単量体溶液を滴下して反応させる場合、滴下される単量体溶液中の単量体量は、重合に用いられる単量体総量に対して30モル%以上であることが好ましく、50モル%以上であることがより好ましく、70モル%以上であることがさらに好ましい。
 これらの方法における反応温度は開始剤種によって適宜決定すればよい。通常30℃~150℃であり、40℃~150℃が好ましく、50℃~140℃がより好ましい。滴下時間は、反応温度、開始剤の種類、反応させる単量体等の条件によって異なるが、通常30分~8時間であり、45分~6時間が好ましく、1時間~5時間がより好ましい。また、滴下時間を含む全反応時間も、滴下時間と同様に条件により異なるが、通常30分~12時間であり、45分~12時間が好ましく、1~10時間がより好ましい。
 上記重合に使用されるラジカル開始剤としては、例えば、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系ラジカル開始剤;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤等が挙げられ。これらの中で、AIBN、ジメチル2,2’-アゾビス(2-メチルプロピオネート)が好ましい。なお、ラジカル開始剤は、単独で又は2種以上を組み合わせて用いてもよい。
 反応溶媒としては、重合を阻害する溶媒(重合禁止効果を有するニトロベンゼン、連鎖移動効果を有するメルカプト化合物等)以外の溶媒であって、その単量体を溶解可能な溶媒であれば使用することができる。例えば、アルコール類、エーテル類、ケトン類、アミド類、エステル・ラクトン類、ニトリル類及びその混合溶媒等が挙げられる。これらの溶媒は、単独で又は2種以上を組み合わせて用いてもよい。
 重合反応により得られた重合体は、再沈殿法により回収することが好ましい。すなわち重合反応終了後、重合液を再沈溶媒に投入することにより、目的の重合体を粉体として回収する。再沈溶媒としては、アルコール類やアルカン類等を単独で又は2種以上を組み合わせて用いてもよい。また、再沈殿法の他に、分液操作やカラム操作、限外ろ過操作等により、単量体、オリゴマー等の低分子成分を除去して、重合体を回収することもできる。
 [A]重合体のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量(Mw)としては、1,000~50,000が好ましく、2,000~40,000がより好ましく、3,000~30,000がさらに好ましく、5,000~20,000が特に好ましい。[A]重合体のMwが上記下限未満の場合、当該感放射線性樹脂組成物から形成されたレジストパターンの耐熱性が低下するおそれがある。[A]重合体のMwが上記上限を超える場合、当該感放射線性樹脂組成物の現像性が低下するおそれがある。
 [A]重合体のGPCによりポリスチレン換算数平均分子量(Mw)に対するMwの比(Mw/Mn、分散度)としては、1~5が好ましく、1~3がより好ましく、1~2.5がさらに好ましい。
 本明細書における重合体のMw及びMnは以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPCカラム:東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本
 カラム温度:40℃
 溶出溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
<[B]化合物>
 [B]化合物は、放射線分解性オニウムカチオンとカウンターアニオンとからなる化合物であって、上記カウンターアニオンが、カルボニル基を2以上有し、上記カルボニル基同士が、単結合、置換若しくは非置換の炭素数1~10のアルカンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基を介して結合する化合物である。当該感放射線性樹脂組成物は、[B]化合物を含有することで、LWR性能等に優れる。
 [B]化合物としては、下記式(1-1)で表される化合物が好ましい。当該感放射線性樹脂組成物は、下記式(1-1)で表される[B]化合物を含有することで、LWR性能等がより優れる。
Figure JPOXMLDOC01-appb-C000033
 上記式(1-1)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Lは、単結合又は酸素原子である。Rは、単結合又は置換若しくは非置換の炭素数1~10のアルカンジイル基である。Rは、炭素数1~20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。
 上記式(1-1)におけるLとしては、酸素原子が好ましい。当該感放射線性樹脂組成物は、このような特定構造の[B]化合物を含有することで、LWR性能等がさらに優れる。
 [B]化合物としては、下記式(1-2)で表される化合物も好ましい。当該感放射線性樹脂組成物は、下記式(1-2)で表される[B]化合物を含有することで、LWR性能等がより優れる。
Figure JPOXMLDOC01-appb-C000034
 上記式(1-2)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Rは、単結合又は置換若しくは非置換の炭素数1~10のアルカンジイル基である。iは、0以上2以下の整数である。Rは、置換若しくは非置換の炭素数1~10のアルカンジイル基である。Rは、単結合又は炭素数1~19の2価の有機基である。iが2の場合、複数のRは、同一でも異なっていてもよい。
 [B]化合物としては、下記式(1-3)で表される化合物も好ましい。当該感放射線性樹脂組成物は、下記式(1-3)で表される[B]化合物を含有することで、LWR性能等がより優れる。
Figure JPOXMLDOC01-appb-C000035
 上記式(1-3)中、Aは、炭素数1~30の1価の有機基である。Xは、1価の放射線分解性オニウムカチオンである。Rは、炭素数1~10の置換又は非置換のアルカンジイル基である。
 [B]化合物としては、上記式(1-1)又は(1-2)中、EがSO であって、Eに隣接する炭素原子にフッ素原子又はフッ素化アルキル基が結合する化合物(以下、「[B1]化合物」ともいう)、又は上記式(1-3)で表される化合物、EがSO であって、Eに隣接する炭素原子にフッ素原子が結合していない化合物及びEがCOOである化合物(以下、「[B2]化合物」ともいう)が挙げられる。[B1]化合物は酸発生剤として機能し、[B2]化合物は、酸拡散制御剤として機能するか、又はPEB温度が比較的高い場合は、酸発生剤として機能する(以下、[B1]化合物又は[B2]化合物を含有する当該感放射線性樹脂組成物を、「感放射線性樹脂組成物(I)」ともいう)。
<[B1]化合物及び[B2]化合物>
 当該感放射線性樹脂組成物(I)が上記特定構造の[B1]化合物又は[B2]化合物を含有することで上記効果を奏する理由については、例えば以下のように推察することができる。すなわち、[B1]化合物又は[B2]化合物のカウンターアニオンは、2以上のカルボニル基が互いに近傍に位置する特定構造を有している。そのため、露光により発生するプロトンが[B]化合物のカウンターアニオンに結合して得られる酸とレジスト膜中の[A]重合体との相互作用が高まり、上記酸の拡散長を適度に制御することができること、レジスト膜中に均一に分布することで酸拡散を均一に抑制することができること等が考えられる。
 Aで表される炭素数1~30の1価の有機基としては、炭素数1~30の1価の炭化水素基、この炭化水素基の炭素-炭素間又は結合手側の末端に-O-、-S-、-N-、-CO-、-COO-等のヘテロ原子含有基を含む基等が挙げられる。
 これらのうち、上記Aとしては、-NRR、-OR又は-Rであり、Rが置換又は非置換の炭素数1~10の鎖状炭化水素基、置換又は非置換の環員数3~30の脂環式炭化水素基、環員数3~30の脂肪族複素環基、置換又は非置換の環員数6~30の芳香族炭化水素基が好ましい。
 また、上記Aとしては、上記置換または非置換の環員数3~30の脂環式炭化水素基の炭素-炭素間に-COO-を含む基も好ましい。尚、-NRRにおいては2つのRは同一でも異なっていても良い。
 上記鎖状炭化水素基としては、メチル基、エチル基、プロピル基、またはブチル基等が挙げられる。
 上記脂環式炭化水素基としては、例えば、
 シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の単環のシクロアルキル基;
 シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環のシクロアルキル基;
 ノルボルネニル基、トリシクロデセニル基、テトラシクロドデセニル基等の多環のシクロアルケニル基等が挙げられる。
 上記脂肪族複素環基としては、例えば、
 ノルボルナンラクトン-イル基等のラクトン構造を含む基;
 ノルボルナンスルトン-イル基等のスルトン構造を含む基;
 オキサシクロヘプチル基、オキサノルボルニル基等の酸素原子含有複素環基;
 アザシクロヘプチル基、ジアザビシクロオクタン-イル基等の窒素原子含有複素環基;
 チアシクロヘプチル基、チアノルボルニル基等のイオウ原子含有複素環基等が挙げられる。
 上記芳香族炭化水素基としては、例えば、
 フェニル基、トリル基、キシリル基、メシチル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
 上記鎖状炭化水素基、脂環式炭化水素基又は芳香族炭化水素基が有する水素原子を置換していてもよい置換基としては、アルキル基、アルコキシ基、アリーロキシ基、アシル基、アシロキシ基、ヒドロキシ基、カルボキシ基、アミノ基、シアノ基、ニトロ基、スルホンアミド基等が挙げられる。これらのうち、炭素数1~5の直鎖状又は分岐状のアルキル基、フェノキシ基、ヒドロキシ基が好ましい。
 これらのうち、Aとしては、シクロアルキル基、ラクトン構造を有する基、シクロアルキルオキシ基、シクロアルキルアミノ基、シクロアルキルスルファニル基、ヒドロキシアリールオキシ基、アリールオキシアルキル基が好ましい。
 Eとしては、SO が好ましい。
 上記式(1-1)におけるkとしては、1及び2が好ましく、1がより好ましい。但し、kが3の場合において、-C(O)-が連続して4つ以上結合しないことが好ましい。
 Rの炭素数1~10の置換又は非置換のアルカンジイル基のうち、非置換のアルカンジイル基としては、例えばメタンジイル基、エタンジイル基、プロパンジイル基等の炭素数1~10のアルカンジイル基が挙げられる。これらのうち、メタンジイル基、プロパン-2,2-ジイル基が好ましい。置換のアルカンジイル基としては、アルカンジイル基の同一炭素原子に結合する水素原子の一部又は全部が2価の有機基で置換された基、又はアルカンジイル基の異なる炭素原子に結合する水素原子の一部又は全部が1価の基で置換された基等が挙げられる。アルカンジイル基の同一炭素原子を置換する2価の有機基としては、ラクトン構造を有する2価の有機基、環状カーボネート構造を有する2価の有機基及びスルトン構造を有する2価の有機基が好ましく、バレロラクトン-ジイル基がより好ましい。また、アルカンジイル基の異なる炭素原子に結合する水素原子の一部又は全部を置換する1価の基としては、フッ素原子、フッ素化アルキル基が好ましく、フッ素原子がより好ましい。
 Rとしては、単結合も好ましい。
 上記式(1-1)におけるRで表される炭素数1~20の2価の有機基としては、下記式(r)で表される基、下記式(r’)で表される基等が挙げられる。これらのうち、下記式(r)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000036
 上記式(r)中、R及びRは、それぞれ独立して、水素原子又は1価の有機基である。Rf及びRfは、それぞれ独立して、フッ素原子又はフッ素化アルキル基である。n1は、1以上6以下の整数である。mは、0以上6以下の整数である。*1は、Lに結合する部位を示す。
Figure JPOXMLDOC01-appb-C000037
 上記式(r’)中、Rは、炭素数2~10の置換又は非置換のアルカンジイル基である。Rf及びRfは、それぞれ独立して、フッ素原子又はフッ素化アルキル基である。n1は、1以上6以下の整数である。mは、0以上6以下の整数である。*1は、Lに結合する部位を示す。
 上記R及びRで表される1価の有機基としては、鎖状炭化水素基等が挙げられる。
 R及びRとしては、水素原子が好ましい。
 上記Rで表される炭素数2~10の置換又は非置換のアルカンジイル基のうち、非置換のアルカンジイル基としては、例えば、エタンジイル基、プロパンジイル基等の炭素数1~10のアルカンジイル基が挙げられる。置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。
 上記式(r)及び(r’)におけるn1としては、2以上4以下が好ましい。
 上記式(r)及び(r’)におけるRf及びRfで表されるフッ素化アルキル基としては、トリフルオロメチル基が好ましい。
 上記式(r)及び(r’)におけるmとしては、0以上2以下が好ましい。
 上記式(1-2)におけるiとしては、0が好ましい。
 上記式(1-2)におけるRで表される炭素数1~10の置換又は非置換のアルカンジイル基のうち、非置換のアルカンジイル基としては、例えば、メタンジイル基、エタンジイル基、プロパンジイル基等の炭素数1~10のアルカンジイル基が挙げられる。置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。
 これらのうち、Rとしては、メタンジイル基が好ましい。
 上記式(1-2)におけるRの炭素数1~19の2価の有機基としては、上記式(1-1)のRで例示した基と同様の基等が挙げられる。
<[B3]化合物>
 [B]化合物としては、上記カウンターアニオンが、上記カルボニル基のうちの1つに隣接する-N-をさらに有し、上記カルボニル基同士が、単結合、置換若しくは非置換の炭素数1若しくは2のアルカンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基を介して結合する化合物(以下、「[B3]化合物」ともいう)も好ましい。当該感放射線性樹脂組成物が[B3]化合物を含有する場合、当該感放射線性樹脂組成物は、後述する[C]酸発生体(但し[B3]化合物に該当するものを除く。[C]酸発生体は、[B3]化合物から発生する酸よりも強い酸を発生する)をさらに含有することが好ましい(以下、[B3]化合物を含有する当該感放射線性樹脂組成物を、「感放射線性樹脂組成物(II)」ともいう)。
 感放射線性樹脂組成物(II)は、[A]重合体及び[C]酸発生体に加えて、[B3]化合物を含有することで良好な保存安定性を確保しつつ、LWR性能等に優れる。
 [B3]化合物は、未露光部ではNによる酸捕捉機能を発揮するが、露光部では露光によりXから生じたプロトンが結合してNがNHになる。従って、露光によりその酸捕捉機能が低下する、すなわち[B3]化合物は感放射線性の酸拡散制御剤として機能する。但し、[B3]化合物は後述する[C]酸発生体に該当しないものとする。
 当該感放射線性樹脂組成物(II)が[B3]化合物を含有することで、上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[B3]化合物は、窒素原子がアニオンであり、これにカルボニル基が結合し、さらに、単結合、又は炭素数1若しくは2のアルカンジイル基若しくは1,2-ベンゼンジイル基という比較的短い基を介して他のカルボニル基の1つを有している。従って、[B3]化合物は従来のスルホネートアニオン等を含む酸拡散制御体と比べて高い塩基性を有していると考えられ、酸捕捉機能が高くなり、露光部と未露光部のクエンチコントラストを高くすることができる。その結果、当該感放射線性樹脂組成物(II)のLWR性能等が向上すると考えられる。一方、[B3]化合物の塩基性は、上述の特定構造により適度な高さに抑えられるので、当該感放射線性樹脂組成物(II)は、良好な保存安定性を確保できると考えられる。
 [B3]化合物としては、下記式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000038
 上記式(2)中、R21は、単結合、置換若しくは非置換のメタンジイル基、置換若しくは非置換のエタンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基である。R22及びR23は、それぞれ独立して、炭素数1~30の1価の有機基である。n2は、1以上3以下の整数である。n2が2以上の場合、複数のR21は同一でも異なっていてもよい。Xは、1価の放射線分解性オニウムカチオンである。但し、R21、R22及びR23のうちの2つ以上は、これらの結合により環員数5~30の環構造を形成してもよい。
 上記R21のメタンジイル基、エタンジイル基及び1,2-ベンゼンジイル基が有していてもよい置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基などが挙げられる。これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。
 上記R21としては、より具体的には、例えば下記式(C-1)~(C-10)で表される基(以下、「基(C-1)~(C-10)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000039
 上記式(C-1)~(C-10)中、*及び**は、結合手を示す。
 R21としては、上記塩基性をより適度な高さに調整できる傾向があることから、単結合、基(C-1)~(C-3)、(C-5)、(C-6)が好ましく、単結合が好ましい。
 上記R22及びR23で表される炭素数1~30の1価の有機基としては、例えば炭素数1~30の1価の炭化水素基、この炭化水素基の炭素-炭素間又は結合手側の末端に2価のヘテロ原子含有基を含む基(q)、上記炭化水素基及び基(q)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等が挙げられる。
 上記炭素数1~30の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 上記炭素数1~20の1価の鎖状炭化水素基としては、例えば、
 メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 上記炭素数3~20の1価の脂環式炭化水素基としては、例えば、
 シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の単環のシクロアルキル基;
 シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環のシクロアルキル基;
 ノルボルネニル基、トリシクロデセニル基、テトラシクロドデセニル基等の多環のシクロアルケニル基などが挙げられる。
 上記炭素数6~20の1価の芳香族炭化水素基としては、例えば、
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基等のアラルキル基などが挙げられる。
 上記1価及び2価のヘテロ原子含有基が有するヘテロ原子としては、例えば酸素原子、硫黄原子、窒素原子、ケイ素原子、リン原子、フッ素原子、塩素原子、臭素原子等のハロゲン原子などが挙げられる。これらの中で、酸素原子、硫黄原子、窒素原子、ハロゲン原子が好ましく、酸素原子、フッ素原子がより好ましい。
 上記2価のヘテロ原子含有基としては、例えば-O-、-CO-、-CO-CO-、-CS-、-NR’-、-SO-、-SO-、これらを組み合わせた基等が挙げられる。R’は水素原子又は炭素数1~10の1価の炭化水素基である。
 上記1価のヘテロ原子含有基としては、例えばヒドロキシ基、カルボキシ基、スルファニル基(-SH)、アミノ基、シアノ基、ハロゲン原子等が挙げられる。
 より具体的には、上記R22及びR23としては、例えば下記式(C-1)~(C-21)で表される基(以下、「基(C-1)~(C-21)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000040
 上記式(C-1)~(C-21)中、*は、結合手を示す。
 これらの中で、上記R22としては、基(C-1)~(C-10)が好ましく、基(C-1)~(C-3)、(C-5)、(C-7)、(C-9)、(C-10)がより好ましい。
 上記R23としては、基(C-11)~(C-21)が好ましく、基(C-11)、(C-12)、(C-14)、(C-15)、(C-17)~(C-19)、(C-21)がより好ましい。
 上記R22としては、上記塩基性をより適度な高さに調整できる観点から、-COR24、-SO24又は-SO24であり、このR24が炭素数1~20の1価の有機基であることが好ましい。
 上記R24の1価の有機基としては、例えば、上記R22及びR23の1価の有機基として例示した基のうち炭素数1~20のもの等が挙げられる。
 また、R22及びR23のうちの少なくとも1つがフッ素原子を含むことも好ましい。そのようにすることで、上記塩基性をより適度な高さに調整できる傾向がある。
 上記R21、R22及びR23のうちの2つ以上が形成してもよい環構造としては、例えば、
 シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロオクタン構造等の単環のシクロアルカン構造;
 ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環のシクロアルカン構造;
 シクロプロペン構造、シクロブテン構造、シクロペンテン構造、シクロヘキセン構造、シクロオクテン構造等の単環のシクロアルケン構造;
 ノルボルネン構造、トリシクロデセン構造、テトラシクロドデセン構造等の多環のシクロアルケン構造;
 オキサシクロペンタン構造、オキサシクロヘキサン構造、オキサノルボルナン構造等のオキサシクロアルカン構造;
 アザシクロペンタン構造、アザシクロヘキサン構造、アザノルボルナン構造等のアザシクロアルカン構造;
 チアシクロペンタン構造、チアシクロヘキサン構造、チアノルボルナン構造等のチアシクロアルカン構造などが挙げられる。
 上記式(2)におけるR21が単結合であり、R22が炭素数1~30の1価のフッ素化炭化水素基であることも好ましい。この場合も、上記塩基性をより適度な高さに調整できる傾向がある。
 上記式(2)におけるn2としては、1又は2が好ましく、1がより好ましい。上記n2を上記値とすることで、[B3]化合物は合成容易性により優れる。
 上記Xで表される1価の放射線分解性オニウムカチオンとしては、例えば、スルホニウムカチオン、テトラヒドロチオフェニウムカチオン、ヨードニウムカチオン等が挙げられる。これらの中で、下記式(X-0)で表されるスルホニウムカチオン、下記式(X-1)で表されるスルホニウムカチオン、下記式(X-2)で表されるヨードニウムカチオンが好ましい。
Figure JPOXMLDOC01-appb-C000041
 上記式(X-0)中、Rb4~Rb6は、それぞれ独立して、炭素数1~30の脂肪族炭化水素基、炭素数3~36の脂環式炭化水素基又は炭素数10~36の芳香族炭化水素基を表すか、Rb4とRb5とが一緒になって硫黄原子を含む3員環~12員環の環を形成してもよい。上記脂肪族炭化水素基に含まれる水素原子は、ヒドロキシ基、炭素数1~12のアルコキシ基、炭素数3~12の脂環式飽和炭化水素基又は炭素数6~18の芳香族炭化水素基で置換されていてもよく、上記脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~18のアルキル基、炭素数2~4のアシル基又はグリシジルオキシ基で置換されていてもよく、上記芳香族炭化水素基に含まれる水素原子は、ハロゲン原子、ヒドロキシ基又は炭素数1~12のアルコキシ基で置換されていてもよい。
 上記式(X-0)における脂肪族炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基等が挙げられる。Rb4~Rb6の脂肪族炭化水素基の炭素数としては、1~12が好ましい。水素原子が脂環式炭化水素基で置換された脂肪族炭化水素基としては、例えば、1-(アダマンタン-1-イル)アルカン-1-イル基等が挙げられる。
 上記式(X-0)における脂肪族炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基等が挙げられる。Rb4~Rb6の脂肪族炭化水素基の炭素数としては、1~12が好ましい。水素原子が脂環式炭化水素基で置換された脂肪族炭化水素基としては、例えば1-(アダマンタン-1-イル)アルカン-1-イル基等が挙げられる。
 上記式(X-0)における脂環式炭化水素基としては、単環式又は多環式のいずれでもよく、上記脂環式炭化水素基に含まれる水素原子は、アルキル基で置換されていてもよい。この場合、上記脂環式炭化水素基の炭素数は、アルキル基の炭素数も含めて20以下である。単環式の脂環式炭化水素基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基等のシクロアルキル基が挙げられる。多環式の脂環式炭化水素基としては、例えばデカヒドロナフチル基、アダマンチル基、ノルボルニル基等が挙げられる。
 水素原子がアルキル基で置換された脂環式炭化水素基としては、例えばメチルシクロヘキシル基、ジメチルシクロへキシル基、2-アルキルアダマンタン-2-イル基、メチルノルボルニル基、イソボルニル基等が挙げられる。
 上記式(X-0)における芳香族炭化水素基としては、例えばナフチル基、フェナントリル基等が挙げられる。
 水素原子がアルコキシ基で置換された芳香族炭化水素基としては、例えば4-メトキシナフチル基、4-nブトキシナフチル等が挙げられる。水素原子が芳香族炭化水素基で置換されたアルキル基、すなわちアラルキル基としては、例えばベンジル基、フェネチル基、フェニルプロピル基、トリチル基、ナフチルメチル基、ナフチルエチル基等が挙げられる。なお、芳香族炭化水素基に、アルキル基又は脂環式炭化水素基が含まれる場合は、炭素数1~12のアルキル基及び炭素数3~18の脂環式炭化水素基が好ましい。
 アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基等が挙げられる。
 アシル基としては、例えばアセチル基、プロピオニル基、ブチリル基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
 アルキルカルボニルオキシ基としては、例えばメチルカルボニルオキシ基、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、sec-ブチルカルボニルオキシ基、tert-ブチルカルボニルオキシ基、ペンチルカルボニルオキシ基、ヘキシルカルボニルオキシ基、オクチルカルボニルオキシ基及び2-エチルヘキシルカルボニルオキシ基等が挙げられる。
 Rb4とRb5とが一緒になって形成してもよい硫黄原子を含む環としては、単環式、多環式、芳香族性、非芳香族性、飽和及び不飽和のいずれの環であってもよく、硫黄原子を1以上含むものであれば、さらに、1以上の硫黄原子及び/又は1以上の酸素原子を含んでいてもよい。上記環としては、炭素数3~18の環が好ましく、炭素数4~18の環がより好ましい。
Figure JPOXMLDOC01-appb-C000042
 上記式(X-1)中、R15、R16及びR17は、それぞれ独立して置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、OSO-R若しくはSO-Rであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k、m及びnは、それぞれ独立して、0~5の整数である。R15~R17並びにR及びRがそれぞれ複数の場合、複数のR15~R17並びにR及びRはそれぞれ同一でも異なっていてもよい。
 上記式(X-2)中、R18及びR19は、それぞれ独立して置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、OSO-R若しくはSO-Rであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。i及びjは、それぞれ独立して、0~5の整数である。R18、R19、R及びRがそれぞれ複数の場合、複数のR18、R19、R及びRはそれぞれ同一でも異なっていてもよい。
 上記R15~R19で表される非置換の直鎖状のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基等が挙げられる。
 上記R15~R19で表される非置換の分岐状のアルキル基としては、例えばi-プロピル基、i-ブチル基、sec-ブチル基、t-ブチル基等が挙げられる。
 上記R15~R19で表される非置換の芳香族炭化水素基としては、例えばフェニル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
 上記アルキル基及び芳香族炭化水素基が有する水素原子を置換していてもよい置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。
 これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。
 上記R15~R19としては、非置換の直鎖状又は分岐状のアルキル基、フッ素化アルキル基、非置換の1価の芳香族炭化水素基、OSO-R、SO-Rが好ましく、フッ素化アルキル基、非置換の1価の芳香族炭化水素基がより好ましく、フッ素化アルキル基がさらに好ましい。R”は、非置換の1価の脂環式炭化水素基又は非置換の1価の芳香族炭化水素基である。
 上記式(X-1)におけるk、m及びnとしては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
 上記式(X-2)におけるi及びjとしては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
 上記スルホニウムカチオンとしては、例えば下記式(b1-1)~(b1-27)で表されるカチオン等が挙げられる。
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000044
 これらのうち、上記式(b1-1)で表されるトリフェニルスルホニウムカチオン、上記式(b1-21)~(b1-23)で表されるカチオン、上記式(b1-25)で表されるカチオンが好ましい。
 上記ヨードニウムカチオンとしては、例えば下記式(b2-1)~(b2-25)で表されるカチオンが挙げられる。
Figure JPOXMLDOC01-appb-C000045
 これらの中で、上記式(b2-1)で表されるカチオンが好ましい。
 上記オニウムカチオンは、例えばAdvances in Polymer Science,Vol.62,p.1-48(1984)に記載されている一般的な方法に準じて製造することができる。
 [B1]化合物及び[B2]化合物としては、下記式(1-1-1)~(1-1-17)、式(1-2-1)~(1-2-3)、並びに式(1-3-1)及び(1-3-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 上記式(1-1-1)~(1-1-17)、式(1-2-1)~(1-2-3)及び式(1-3-1)~(1-3-2)中、Xは、上記式(1-1)、(1-2)及び(1-3)と同義である。
 [B3]化合物としては、例えば下記式(B3-1)~(B3-17)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000049
 上記式(B3-1)~(B3-17)中、Xは、上記式(2)と同義である。
<[B]化合物の合成>
 [B]化合物のうち、例えば上記式(1-1)におけるEがSO である化合物を合成する場合、下記第1の工程、下記第2の工程及び下記第3の工程を有し、下記反応スキームで示される合成方法により合成することができる。
 下記式(i-a)で表される有機ハロゲン化物とDで表される亜ジチオン酸塩とを反応させ、下記式(i-b)で表される亜硫酸塩を得る第1の工程;
 下記式(i-b)で表される亜硫酸塩と過酸化水素水溶液とを反応させ、下記式(i-c)で表されるスルホン酸塩を得る第2の工程;
 下記式(i-c)で表されるスルホン酸塩とXYで表されるオニウム塩とを反応させる第3の工程
Figure JPOXMLDOC01-appb-C000050
 上記式(i-a)、(i-b)、(i-c)中、A、R、R、k及びXは上記式(1-1)と同義である。Zは、ハロゲン原子である。Dは、アルカリ金属である。Yは、1価のアニオンである。
 なお、上記式(1-1)中、EがCOOである場合や、上記式(1-2)で表される化合物も上述と同様の方法により、[B]化合物を合成することができる。
 また、[B3]化合物は、上記式(2)におけるn2が1の場合(下記式(2’)で表される化合物)、下記スキームに従い合成することができる。
Figure JPOXMLDOC01-appb-C000051
 上記スキーム中、R21は、単結合、置換若しくは非置換のメタンジイル基、置換若しくは非置換のエタンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基である。R22及びR23は、それぞれ独立して、炭素数1~30の1価の有機基である。Xは、1価の放射線分解性オニウムカチオンである。但し、R21、R22及びR23のうちの2つ以上は、これらの結合により環員数5~30の環構造を形成してもよい。Zは、ハロゲン原子である。Yは、1価のアニオンである。
 上記式(a)で表される化合物と、上記式(b)で表される酸ハロゲン化物とを、例えばピリジン等の塩基存在下、テトラヒドロフラン等の溶媒中で反応させることにより、上記式(c)で表される化合物が得られる。得られた化合物(c)に、ジクロロメタン等の溶媒中、水酸化ナトリウム等の塩基を反応させて、N塩を得た後、このN塩と、Xで表される放射線分解性オニウム塩とを、例えばジクロロメタン/水の溶媒中で反応させることにより上記式(2’)で表される化合物が得られる。
 上記式(2’)で表される化合物以外の[B3]化合物も、上述の方法と同様の方法により合成することができる。
 [B]化合物の含有量としては、[B]化合物が[B1]化合物である場合の[B1]化合物の含有量の下限としては、[A]重合体100質量部に対して、0.5質量部が好ましく、1質量部がより好ましく、2.5質量部がさらに好ましく、5質量部が特に好ましい。一方、[B1]化合物である場合の含有量の上限としては、[A]重合体100質量部に対して、30質量部が好ましく、20質量部がより好ましく、15質量部がさらに好ましく、10質量部が特に好ましい。
 また、[B]化合物が[B2]化合物である場合の、[B2]化合物の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましい。一方、[B2]化合物である場合の含有量の上限としては、[A]重合体100質量部に対して、30質量部が好ましく、20質量部がより好ましく、10質量部がさらに好ましい。
 また、[B]化合物が[B3]化合物である場合の、[B3]化合物の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、1.5質量部が特に好ましい。[B3]化合物の含有量の上限としては、[A]重合体100質量部に対して、30質量部が好ましく、20質量部がより好ましく、10質量部がさらに好ましく、5質量部が特に好ましい。[B3]化合物の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物は、さらに良好な保存安定性を確保しつつ、LWR性能等をさらに向上させることができる。当該感放射線性樹脂組成物は[B3]化合物を1種又は2種以上含有してもよい。
<[G]溶媒>
 「[G]溶媒」は、[A]重合体、[B]化合物及び任意成分を溶解又は分散させるための成分である。[G]溶媒としては、例えばアルコール系溶媒、ケトン系溶媒、アミド系溶媒、エーテル系溶媒、エステル系溶媒等が挙げられる。[G]溶媒は、1種単独で又は2種以上を併用してもよい。
 アルコール系溶媒としては、例えば、
 モノアルコール系溶媒として、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、iso-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等;
 多価アルコール系溶媒として、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等;
 多価アルコール部分エーテル系溶媒として、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等が挙げられる。
 上記ケトン系溶媒としては、例えば、
 鎖状ケトン系溶媒として、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン、2,4-ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン等;
 環状ケトン系溶媒として、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等が挙げられる。
 上記アミド系溶媒としては、例えば、
 鎖状アミド系溶媒として、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等;
 環状アミド系溶媒として、N-メチルピロリドン、N,N’-ジメチルイミダゾリジノン等が挙げられる。
 上記エーテル系溶媒としては、例えば、
 鎖状エーテル系溶媒として、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジフェニルエーテル等;
 環状エーテル系溶媒としてテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
 上記エステル系溶媒としては、例えば、
 酢酸エステル系溶媒として、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、ジ酢酸グリコール、酢酸メトキシトリグリコール等;
 多価アルコール部分エーテルの酢酸エステル系溶媒として、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル等;
 炭酸エステル系溶媒として、ジメチルカーボネート、ジエチルカーボネート等;
 その他のカルボン酸のエステル系溶媒として、アセト酢酸メチル、アセト酢酸エチル、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸iso-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。
 これらの中で、ケトン系溶媒、エステル系溶媒が好ましく、上記ケトン系溶媒としては、環状ケトン系溶媒がより好ましく、シクロヘキサノンがさらに好ましく、上記エステル系溶媒としては、多価アルコール部分エーテルの酢酸エステル系溶媒がより好ましく、酢酸プロピレングリコールモノメチルエーテルがさらに好ましい。
<[C]酸発生体>
 [C]酸発生体は露光により酸を発生する物質である(但し[B]化合物に該当するものを除く。[C]酸発生体は、[B]化合物から発生する酸よりも強い酸を発生する)。この発生した酸により[A]重合体等が有する酸解離性基が解離してカルボキシ基等が生じ、これらの重合体の現像液への溶解性が変化するため、当該感放射線性樹脂組成物からレジストパターンを形成することができる。当該感放射線性樹脂組成物における[C]酸発生体の含有形態としては、後述するような低分子化合物の形態(以下、適宜「[C]酸発生剤」と称する)でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
 [C]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 [C]酸発生剤の具体例としては、例えば特開2009-134088号公報の段落[0080]~[0113]に記載されている化合物等が挙げられる。
 [C]酸発生剤としては、下記式(c)で表される化合物が好ましい。[C]酸発生剤を下記式(c)で表される化合物とすることで、[A]重合体が有する極性構造との相互作用等により、露光により発生する酸のレジスト膜中の拡散長がより適度に短くなると考えられ、その結果、当該感放射線性樹脂組成物のLWR性能等をより向上させることができる。
Figure JPOXMLDOC01-appb-C000052
 上記式(c)中、Ra1は、環員数6以上の脂環構造を含む1価の基又は環員数6以上の脂肪族複素環構造を含む1価の基である。Ra2は、炭素数1~10のフッ素化アルカンジイル基である。Mは、1価の放射線分解性オニウムカチオンである。
 上記Ra1における「環員数」とは、脂環構造及び脂肪族複素環構造の環を構成する原子数をいい、多環の脂環構造及び多環の脂肪族複素環構造の場合は、この多環を構成する原子数をいう。
 上記Ra1で表される環員数6以上の脂環構造を含む1価の基としては、例えば、
 シクロオクチル基、シクロノニル基、シクロデシル基、シクロドデシル基等の単環のシクロアルキル基;
 シクロオクテニル基、シクロデセニル基等の単環のシクロアルケニル基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環のシクロアルキル基;
 ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基などが挙げられる。
 上記Ra1で表される環員数6以上の脂肪族複素環構造を含む1価の基としては、例えば、
 ノルボルナンラクトン-イル基等のラクトン構造を含む基;
 ノルボルナンスルトン-イル基等のスルトン構造を含む基;
 オキサシクロヘプチル基、オキサノルボルニル基等の酸素原子含有複素環基;
 アザシクロヘキシル基、アザシクロヘプチル基、ジアザビシクロオクタン-イル基等の窒素原子含有複素環基;
 チアシクロヘプチル基、チアノルボルニル基等のイオウ原子含有複素環基などが挙げられる。
 上記Ra1で表される基の環員数としては、上述の酸の拡散長がさらに適度になる観点から、8以上が好ましく、9~15がより好ましく、10~13がさらに好ましい。
 これらの中で、環員数9以上の脂環構造を含む1価の基、環員数9以上の脂肪族複素環構造を含む1価の基が好ましく、アダマンチル基、ヒドロキシアダマンチル基、ノルボルナンラクトン-イル基、5-オキソ-4-オキサトリシクロ[4.3.1.13,8]ウンデカン-イル基がより好ましく、アダマンチル基がさらに好ましい。
 上記Ra2で表される炭素数1~10のフッ素化アルカンジイル基としては、例えばメタンジイル基、エタンジイル基、プロパンジイル基等の炭素数1~10のアルカンジイル基が有する水素原子の1個以上をフッ素原子で置換した基等が挙げられる。これらの中で、SO 基に隣接する炭素原子にフッ素原子が結合しているフッ素化アルカンジイル基が好ましく、SO 基に隣接する炭素原子に2個のフッ素原子が結合しているフッ素化アルカンジイル基がより好ましく、1,1-ジフルオロメタンジイル基、1,1-ジフルオロエタンジイル基、1,1,3,3,3-ペンタフルオロ-1,2-プロパンジイル基、1,1,2,2-テトラフルオロエタンジイル基、1,1,2,2-テトラフルオロブタンジイル基、1,1,2,2-テトラフルオロヘキサンジイル基がさらに好ましい。
 上記Mで表される1価の放射線分解性オニウムカチオンとしては、上述した[B]化合物が有する放射線分解性オニウムカチオンとして例示するものと同様のカチオン等が挙げられる。これらの中で、スルホニウムカチオンが好ましく、トリフェニルスルホニウムカチオンがより好ましい。
 [C]酸発生剤としては、例えば下記式(c-1)~(c-13)で表される化合物(以下、「化合物(c-1)~(c-13)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000053
 上記式(c-1)~(c-13)中、Mは、上記式(c)と同義である。
 これらの中で、化合物(c-1)、化合物(c-2)、化合物(c-12)、化合物(c-13)が好ましい。
 また、[C]酸発生体としては、下記式(c-14)で表される構造単位を有する重合体等の上記式(c)の構造が重合体の一部として組み込まれた重合体も好ましい。
Figure JPOXMLDOC01-appb-C000054
 上記式(c-14)中、R”は、水素原子又はメチル基である。Mは、上記式(c)と同義である。
 [C]酸発生体の含有量としては、[C]酸発生体が[C]酸発生剤の場合、当該感放射線性樹脂組成物の感度及び現像性の観点から、[A]重合体100質量部に対して、0.1質量部~30質量部が好ましく、0.5質量部~20質量部がより好ましく、1質量部~15質量部がさらに好ましく、3質量部~15質量部が特に好ましい。また、[C]酸発生体が重合体の一部として組み込まれる場合、当該感放射線性樹脂組成物の感度及び現像性の向上の観点から、[A]重合体を構成する全構造単位に対して、1モル%~30モル%が好ましく、2モル%~20モル%がより好ましく、3モル%~10モル%がさらに好ましい。[B]酸発生体は1種又は2種以上を用いることができる。
<[D]酸拡散制御体>
 当該感放射線性樹脂組成物は、本発明の効果を損なわない範囲で、[B]化合物以外の[D]酸拡散制御体を含有してもよい。[D]酸拡散制御体は、露光により[B]化合物や[C]酸発生体から生じる酸のレジスト膜中における拡散現象を制御し、未露光部における好ましくない化学反応を抑制する効果を奏する。当該感放射線性樹脂組成物における酸拡散制御体の含有形態としては、後述するような化合物の形態(以下、この態様を「[D]酸拡散制御剤」ともいう)でも、重合体の一部として組み込まれた態様でも、これらの両方の態様形態でもよい。
 [D]酸拡散制御剤としては、例えばアミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。
 アミン化合物としては、例えばモノ(シクロ)アルキルアミン類;ジ(シクロ)アルキルアミン類;トリ(シクロ)アルキルアミン類;置換アルキルアニリン又はその誘導体;エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルアミン、2,2-ビス(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2-(4-アミノフェニル)-2-(3-ヒドロキシフェニル)プロパン、2-(4-アミノフェニル)-2-(4-ヒドロキシフェニル)プロパン、1,4-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼン、1,3-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼン、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル、1-(2-ヒドロキシエチル)-2-イミダゾリジノン、2-キノキサリノール、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’’N’’-ペンタメチルジエチレントリアミン等が挙げられる。
 アミド基含有化合物としては、例えばN-t-ブトキシカルボニル基含有アミノ化合物、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン、N-アセチル-1-アダマンチルアミン、イソシアヌル酸トリス(2-ヒドロキシエチル)等が挙げられる。
 ウレア化合物としては、例えば尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリ-n-ブチルチオウレア等が挙げられる。
 含窒素複素環化合物としては、例えばイミダゾール類;ピリジン類;ピペラジン類;ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、ピペリジンエタノール、3-ピペリジノ-1,2-プロパンジオール、モルホリン、4-メチルモルホリン、1-(4-モルホリニル)エタノール、4-アセチルモルホリン、3-(N-モルホリノ)-1,2-プロパンジオール、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン等が挙げられる。
 [D]酸拡散制御体は、単独で使用してもよく2種以上を併用してもよい。[D]酸拡散制御体が[D]酸拡散制御剤の場合の[D]酸拡散制御剤の含有量としては、[A]重合体100質量部に対して、15質量部以下が好ましく、10質量部以下がより好ましい。[D]酸拡散制御剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能等をさらに向上させることができる。
<[E]フッ素原子含有重合体>
 [E]フッ素原子含有重合体は、フッ素原子を含む重合体であって、上記[A]重合体とは異なる重合体である。当該感放射線性樹脂組成物によれば、[A]重合体に加えて[E]フッ素原子含有重合体をさらに含有することで、形成されるレジスト膜の表層に[E]フッ素原子含有重合体が偏在化し、その結果、レジスト膜表面の疎水性を向上させることができる。これにより、液浸露光を行う場合等に、レジスト膜からの物質溶出抑制性に優れると共に、レジスト膜と液浸液との後退接触角を十分高くすることができ、より高速なスキャンが可能になる。
 [E]フッ素原子含有重合体としては特に限定されないが、それ自体は現像液に不溶で酸の作用によりアルカリ可溶性となる重合体、それ自体が現像液に可溶であり酸の作用によりアルカリ可溶性が増大する重合体、それ自体は現像液に不溶でアルカリの作用によりアルカリ可溶性となる重合体、それ自体が現像液に可溶でありアルカリの作用によりアルカリ可溶性が増大する重合体等が挙げられる。
 [E]フッ素原子含有重合体の態様としては、例えば、
 主鎖にフッ素化アルキル基が結合した構造;
 側鎖にフッ素化アルキル基が結合した構造;
 主鎖と側鎖とにフッ素化アルキル基が結合した構造等が挙げられる。
 主鎖にフッ素化アルキル基が結合した構造を与える単量体としては、例えば、α-トリフルオロメチルアクリレート化合物、β-トリフルオロメチルアクリレート化合物、α,β-トリフルオロメチルアクリレート化合物、1種類以上のビニル部位の水素原子がトリフルオロメチル基等のフッ素化アルキル基で置換された化合物等が挙げられる。
 側鎖にフッ素化アルキル基が結合した構造を与える単量体としては、例えば、ノルボルネン等の脂環式オレフィン化合物の側鎖がフッ素化アルキル基やその誘導体であるもの、アクリル酸又はメタクリル酸の側鎖がフッ素化アルキル基やその誘導体のエステル化合物、1種類以上のオレフィンの側鎖(二重結合を含まない部位)がフッ素化アルキル基やその誘導体であるもの等が挙げられる。
 主鎖と側鎖とにフッ素化アルキル基が結合した構造を与える単量体としては、例えば、α-トリフルオロメチルアクリル酸、β-トリフルオロメチルアクリル酸、α,β-トリフルオロメチルアクリル酸等の側鎖がフッ素化アルキル基やその誘導体のエステル化合物、1種類以上のビニル部位の水素原子がトリフルオロメチル基等のフッ素化アルキル基で置換された化合物の側鎖をフッ素化アルキル基やその誘導体で置換したもの、1種類以上の脂環式オレフィン化合物の二重結合に結合している水素原子をトリフルオロメチル基等のフッ素化アルキル基で置換し、かつ側鎖がフッ素化アルキル基やその誘導体であるもの等が挙げられる。なお、脂環式オレフィン化合物とは、環の一部が二重結合である化合物を示す。
 [E]フッ素原子含有重合体は、下記式(7)で表される構造単位(以下、「構造単位(f1)ともいう」及び/又は下記式(8)で表される構造単位(以下、「構造単位(f2)」ともいう)を有することが好ましい。また、[E]フッ素原子含有重合体は、構造単位(f1)及び構造単位(f2)以外の「他の構造単位」を有してもよい。なお、[E]フッ素原子含有重合体は、各構造単位を1種又は2種以上含んでいてもよい。以下、各構造単位について詳述する。
[構造単位(f1)]
 構造単位(f1)は下記式(7)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000055
 上記式(7)中、Rf3は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rf4は、フッ素原子を有する炭素数1~6の直鎖状若しくは分岐状のアルキル基又はフッ素原子を有する炭素数4~20の1価の脂環式炭化水素基である。但し、上記アルキル基及び脂環式炭化水素基が有する水素原子の一部又は全部は、置換されていてもよい。
 上記炭素数1~6の直鎖状若しくは分岐状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。
 上記炭素数4~20の1価の脂環式炭化水素基としては、例えば、シクロペンチル基、シクロペンチルプロピル基、シクロヘキシル基、シクロヘキシルメチル基、シクロヘプチル基、シクロオクチル基、シクロオクチルメチル基等が挙げられる。
 構造単位(f1)を与える単量体としては、例えば、トリフルオロメチル(メタ)アクレート、2,2,2-トリフルオロエチル(メタ)アクリレート、パーフルオロエチル(メタ)アクリレート、パーフルオロn-プロピル(メタ)アクリレート、パーフルオロi-プロピル(メタ)アクリレート、パーフルオロn-ブチル(メタ)アクリレート、パーフルオロi-ブチル(メタ)アクリレート、パーフルオロt-ブチル(メタ)アクリレート、パーフルオロシクロヘキシル(メタ)アクリレート、2-(1,1,1,3,3,3-ヘキサフルオロ)プロピル(メタ)アクリレート、1-(2,2,3,3,4,4,5,5-オクタフルオロ)ペンチル(メタ)アクリレート、1-(2,2,3,3,4,4,5,5-オクタフルオロ)ヘキシル(メタ)アクリレート、パーフルオロシクロヘキシルメチル(メタ)アクリレート、1-(2,2,3,3,3-ペンタフルオロ)プロピル(メタ)アクリレート、1-(2,2,3,3,4,4,4-ヘプタフルオロ)ペンタ(メタ)アクリレート、1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロ)デシル(メタ)アクリレート、1-(5-トリフルオロメチル-3,3,4,4,5,6,6,6-オクタフルオロ)ヘキシル(メタ)アクリレート等が挙げられる。
 構造単位(f1)としては、下記式(7-1)及び(7-2)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000056
 上記式(7-1)及び(7-2)中、Rf3は、上記式(7)と同義である。
 これらの中で、式(7-1)で表される構造単位がより好ましい。
 構造単位(f1)の含有割合としては、[E]フッ素原子含有重合体を構成する全構造単位に対して、10モル%~70モル%が好ましく、20モル%~50モル%がより好ましい。
[構造単位(f2)]
 構造単位(f2)は、下記式(8)で表される構造単位である。
Figure JPOXMLDOC01-appb-C000057
 上記式(8)中、Rf5は、水素原子、フッ素原子、メチル基、又はトリフルオロメチル基である。Rf6は、(r+1)価の連結基である。Xは、フッ素原子を有する2価の連結基である。Rf7は、水素原子又は1価の有機基である。rは、1~3の整数である。但し、rが2又は3の場合、複数のX及びRf7は、それぞれ同一であっても異なっていてもよい。
 上記式(8)中、Rf6で表される(r+1)価の連結基としては、例えば、炭素数1~30の直鎖状又は分岐状の炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基、又はこれらの基と酸素原子、硫黄原子、エーテル基、エステル基、カルボニル基及びイミノ基からなる群より選ばれる1種以上の基とを組み合わせた基が挙げられる。また、上記(r+1)価の連結基は、置換基を有していてもよい。
 上記炭素数1~30の直鎖状又は分岐状の炭化水素基としては、例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、デカン、イコサン、トリアコンタン等の炭化水素基から(r+1)個の水素原子を除いた基等が挙げられる。
 上記炭素数3~30の脂環式炭化水素基としては、例えば、
 単環式飽和炭化水素として、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン、メチルシクロヘキサン、エチルシクロヘキサン等;
 単環式不飽和炭化水素として、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、シクロデカジエン等;
 多環式飽和炭化水素として、ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン、アダマンタン等;
 多環式不飽和炭化水素として、ビシクロ[2.2.1]ヘプテン、ビシクロ[2.2.2]オクテン、トリシクロ[5.2.1.02,6]デセン、トリシクロ[3.3.1.13,7]デセン、テトラシクロ[6.2.1.13,6.02,7]ドデセン等から(r+1)個の水素原子を除いた基等が挙げられる。
 上記炭素数6~30の芳香族炭化水素基としては、例えば、ベンゼン、ナフタレン、フェナントレン、アントラセン、テトラセン、ペンタセン、ピレン、ピセン、トルエン、キシレン、エチルベンゼン、メシチレン、クメン等の芳香族炭化水素基から(r+1)個の水素原子を除いた基等が挙げられる。
 上記式(8)中、Xで表されるフッ素原子を有する2価の連結基としては、フッ素原子を有する炭素数1~20の2価の直鎖状炭化水素基が挙げられる。Xとしては、例えば、下記式(X1-1)~(X1-6)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000058
 Xとしては、上記式(X1-1)及び(X1-2)で表される基が好ましく、式(X1-2)で表される基がより好ましい。
 上記式(8)中、Rf7で表される1価の有機基としては、例えば、炭素数1~30の直鎖状又は分岐状の炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基、又はこれらの基と酸素原子、硫黄原子、エーテル基、エステル基、カルボニル基及びイミノ基からなる群より選ばれる1種以上の基とを組み合わせた基等が挙げられる。
 上記構造単位(f2)としては、例えば、下記式(8-1)及び式(8-2)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000059
 上記式(8-1)中、Rf6は、炭素数1~20の2価の直鎖状又は分岐状の飽和若しくは不飽和の炭化水素基、炭素数3~20の環状の飽和若しくは不飽和の炭化水素基である。Rf5、X及びRf7は、上記式(8)と同義である。
 上記式(8-2)中、Rf5、X、Rf7及びoは上記式(8)と同義である。但し、kが2又は3の場合、複数のX及びRf7は、それぞれ同一であっても異なっていてもよい。
 上記式(8-1)及び式(8-2)で表される構造単位としては、例えば、下記式(8-1-1)~(8-1-3)及び式(8-2-1)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000060
 上記式(8-1-1)~(8-1-3)及び式(8-2-1)中、Rf5は上記式(8)と同義である。
 構造単位(f2)としては、上記式(8-1)で表される構造単位が好ましく、上記式(8-1-3)で表される構造単位がより好ましい。
 構造単位(f2)を与える単量体としては、例えば、(メタ)アクリル酸[2-(1-エチルオキシカルボニル-1,1-ジフルオロ-n-ブチル)]エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-3-プロピル)エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-4-ブチル)エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル)エステル、(メタ)アクリル酸2-{[5-(1’,1’,1’-トリフルオロ-2’-トリフルオロメチル-2’-ヒドロキシ)プロピル]ビシクロ[2.2.1]ヘプチル}エステル等が挙げられる。これらの中で、(メタ)アクリル酸[2-(1-エチルオキシカルボニル-1,1-ジフルオロ-n-ブチル)]エステルが好ましい。
 構造単位(f2)の含有割合としては、[E]フッ素原子含有重合体を構成する全構造単位に対して、30モル%~90モル%が好ましく、50モル%~80モル%がより好ましい。
[他の構造単位]
 [E]フッ素原子含有重合体は、構造単位(f1)、構造単位(f2)以外の「他の構造単位」を含んでいてもよい。他の構造単位としては、例えば、[A]重合体の構造単位(I)等が挙げられる。
 他の構造単位の含有割合としては、[E]フッ素原子含有重合体を構成する全構造単位に対して、5モル%~90モル%が好ましく、10モル%~80モル%がより好ましく、20モル%~70モル%がさらに好ましい。
 [E]フッ素原子含有重合体の含有量としては、[A]重合体100質量部に対して、20質量部以下が好ましく、0.1質量部~15質量部がより好ましく、1質量部~10質量部がさらに好ましく、1質量部~6質量部が特に好ましい。[E]フッ素原子含有重合体の含有量が上記上限を超える場合、レジスト膜表面の撥水性が高くなり過ぎて現像不良が起こる場合がある。
 [E]フッ素原子含有重合体のフッ素原子含有率としては、[A]重合体のフッ素原子含有率よりも大きいことが好ましい。[E]フッ素原子含有重合体におけるフッ素原子含有率が[A]重合体よりも大きいと、[A]重合体及び[E]フッ素原子含有重合体を含有する感放射線性樹脂組成物により形成されたレジスト膜表面の撥水性をより高めることができる。[E]フッ素原子含有重合体のフッ素原子含有率と、[A]重合体のフッ素原子含有率との差は1質量%以上が好ましく、3質量%以上がより好ましい。
 また、[E]フッ素原子含有重合体のフッ素原子含有率としては、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましく、10質量%以上が特に好ましい。なお、このフッ素原子含有率(質量%)は、13C-NMRにより重合体の構造を求め、その構造から算出することができる。
<[E]フッ素原子含有重合体の合成方法>
 [E]フッ素原子含有重合体は、例えば、所定の各構造単位に対応する単量体を、ラジカル重合開始剤を使用し、適当な重合溶媒中で重合することにより合成できる。
 上記ラジカル重合開始剤としては、例えば、[A]重合体の合成方法で用いたラジカル重合開始剤と同様のもの等が挙げられる。上記重合溶媒としては、例えば、[A]重合体の合成方法で用いた重合溶媒と同様のもの等が挙げられる。
 上記重合における反応温度としては、通常40℃~150℃であり、50℃~120℃が好ましい。反応時間としては、通常1時間~48時間であり、1時間~24時間が好ましい。
 [E]フッ素原子含有重合体のMwとしては、1,000~50,000が好ましく、2,000~30,000がより好ましく、3,000~10,000がさらに好ましい。[E]フッ素原子含有重合体のMwが1,000未満の場合、十分な後退接触角を得ることができない。一方、Mwが50,000を超えると、レジストとした際の現像性が低下する傾向にある。
 [E]フッ素原子含有重合体のMwとMnとの比(Mw/Mn)としては、1~5が好ましく、1~3がより好ましい。
<[F]偏在化促進剤>
 偏在化促進剤(以下、「[F]偏在化促進剤」ともいう)は、[E]フッ素原子含有重合体を、より効率的にレジスト膜表面に偏析させる成分である。当該感放射線性樹脂組成物が[F]偏在化促進剤を含有することで、[E]フッ素原子含有重合体をレジスト膜表面により効果的に偏析させることができ、結果として[E]フッ素原子含有重合体の使用量を少なくすることができる。[F]偏在化促進剤としては、例えば、ラクトン化合物、カーボネート化合物、ニトリル化合物等が挙げられる。[F]偏在化促進剤は、1種単独で又は2種以上を組み合わせて用いてもよい。
 上記ラクトン化合物としては、例えば、γ-ブチロラクトン、バレロラクトン、メバロニックラクトン、ノルボルナンラクトン等が挙げられる。
 上記カーボネート化合物としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等が挙げられる。
 上記ニトリル化合物としては、例えば、スクシノニトリル等が挙げられる。
 これらの中で、ラクトン化合物が好ましく、γ-ブチロラクトンがより好ましい。
 [F]偏在化促進剤の含有量としては、[A]重合体100質量部に対して、5質量部~300質量部が好ましく、10質量~100質量部がより好ましく、20質量部~70質量部がさらに好ましい。
<その他の任意成分>
 当該感放射線性樹脂組成物は、上記[A]~[G]成分に加え、本発明の効果を損なわない限り、界面活性剤、脂環式骨格含有化合物、増感剤等のその他の任意成分を含有できる。その他の任意成分は、各成分を2種以上併用してもよい。また、その他の任意成分の含有量は、その目的に応じて適宜決定することができる。
<感放射線性樹脂組成物の調製方法>
 当該感放射線性樹脂組成物は、[A]重合体、[B]化合物、[G]溶媒及び必要に応じて[C]酸発生体、[D]酸拡散制御体、[E]フッ素原子含有重合体等の各任意成分を所定の割合で混合することにより調製できる。
 当該感放射線性樹脂組成物の固形分濃度としては0.1質量%~50質量%が好ましく、0.5質量%~30質量%がより好ましく、1質量%~10質量%がさらに好ましい。
<レジストパターンの形成方法>
 当該レジストパターンの形成方法は、
 当該感放射線性樹脂組成物でレジスト膜を形成する工程(以下、「レジスト膜形成工程」ともいう)、上記レジスト膜を露光する工程(以下、「露光工程」ともいう)及び上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)を有する。以下、各工程について説明する。
[レジスト膜形成工程]
 本工程では、上述の本発明の感放射線性樹脂組成物を用い、レジスト膜を形成する。塗布方法としては特に限定されないが、例えば、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段を採用することができる。基板としては、例えば、シリコンウエハ、アルミニウムで被覆されたウエハ等が挙げられる。具体的には、得られるレジスト膜が所定の厚さになるように当該組成物を塗布した後、必要に応じてプレベーク(PB)することで塗膜中の溶媒を揮発させる。塗膜の膜厚としては、10nm~500nmが好ましい。PBの温度としては、通常60℃~140℃であり、80℃~120℃が好ましい。PBの時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。
 また、当該感放射線性樹脂組成物の潜在能力を最大限に引き出すため、例えば特公平6-12452号公報、特開昭59-93448号公報等に開示されているように、使用される基板上に有機系又は無機系の反射防止膜を形成しておくこともできる。また、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば特開平5-188598号公報等に開示されているように、レジスト膜上に保護膜を設けることもできる。また、液浸露光を行う場合は、液浸媒体とレジスト膜との直接的な接触を避けるため、例えば、レジスト膜上に液浸用保護膜を設けてもよい。
[露光工程]
 本工程では、上記レジスト膜形成工程で形成されたレジスト膜を露光する。この露光は、場合によっては、水等の液浸媒体を介し、所定のパターンを有するマスクを介して放射線を照射することにより行う。
 上記液浸露光液としては、通常空気より屈折率の大きい液体を使用する。具体的には、例えば純水、長鎖又は環状の脂肪族化合物等が挙げられる。この液浸露光液を介した状態、すなわちレンズとレジスト膜との間に液浸露光液を満たした状態で、露光装置から放射線を照射し、所定のパターンを有するマスクを介してレジスト膜を露光する。
 上記放射線としては、使用される感放射線性酸発生体の種類に応じて、可視光線、紫外線、遠紫外線、極端紫外線(EUV)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などから適宜選定されて使用されるが、これらの中で、遠紫外線、EUV、電子線が好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、EUV、電子線がより好ましく、ArFエキシマレーザー光、EUV、電子線がさらに好ましい。また、当該感放射線性樹脂組成物の[A]重合体が構造単位(I-2)を有する場合等は、電子線、EUVが好ましい。
 また、露光後にポストエクスポージャーベーク(PEB)を行うことが好ましいこのPEBにより、[A]重合体中の酸解離性基の解離反応を円滑に進行させることができる。PEBの温度としては、通常50℃~180℃であり、80℃~130℃が好ましい。PEBの時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。
[現像工程]
 本工程では、上記露光工程で露光されたレジスト膜を現像する。この現像に用いる現像液としては、例えば、アルカリ現像液、有機溶媒現像液等が挙げられる。これにより、所定のレジストパターンが形成される。
 上記アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液等が挙げられる。
 上記有機溶媒現像液としては、例えば、
 アルコール系溶媒として、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール等;
 エーテル系溶媒として、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、ジフェニルエーテル、アニソール等;
 ケトン系溶媒として、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルアミルケントン、メチル-n-ブチルケトン等;
 アミド系溶媒として、N,N’-ジメチルイミダゾリジノン、N-メチルホルムアミド、N,N-ジメチルホルムアミド等;
 エステル系溶媒として、ジエチルカーボネート、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル等が挙げられる。
 これらの現像液は、単独で又は2種以上を組み合わせて用いてもよい。なお、現像後は、水等で洗浄し、乾燥することが一般的である。
<感放射線性酸発生剤>
 本発明の感放射線性酸発生剤は、上記式(1-1)、上記式(1-2)又は上記式(1-3)で表される化合物からなる。当該感放射線性酸発生剤は、上記構造を有する化合物からなるので、当該感放射線性樹脂組成物の成分として好適に用いられる。
 本発明の酸拡散制御剤は、上記式(2)で表される化合物からなる。当該酸拡散制御剤は、上記構造を有する化合物からなるので、上述の当該感放射線性樹脂組成物の成分として好適に用いられる。
<化合物>
 本発明の化合物は、上記式(1-1)、上記式(1-2)又は上記式(1-3)で表される。当該化合物は、上記構造を有するので、上述の当該感放射線性酸発生剤として好適に用いられる。
 また、本発明の別の化合物は、上記式(2)で表される。当該化合物は上述の当該酸拡散制御剤として好適に用いることができる。
 当該感放射線性酸発生剤及び当該化合物については、上述の感放射線性樹脂組成物の[B]化合物の項で説明している。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各種物性値の測定方法を以下に示す。
[重量平均分子量(Mw)及び数平均分子量(Mn)]
 重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により東ソー社のGPCカラム(G2000HXL:2本、G3000HXL:1本、G4000HXL:1本)を使用し、以下の条件により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
 溶出溶媒 :テトラヒドロフラン
 流量   :1.0mL/分
 試料濃度 :1.0質量%
 試料注入量:100μL
 カラム温度:40℃
 検出器  :示差屈折計
 標準物質 :単分散ポリスチレン
13C-NMR分析]
 核磁気共鳴装置(日本電子株式会社の「JNM-ECX400」)を用い、測定溶媒として重クロロホルムを使用して、各重合体における各構造単位の含有割合(モル%)を求めた。
<[B1]化合物及び/又は[B2]化合物を含有する場合>
[[B1]化合物及び/又は[B2]化合物の合成]
[実施例1](化合物(B-1)の合成)
 3Lのナス型フラスコにアダマンタノールA122g(0.80mol)、トリエチルアミン97.1g(0.96mol)、アセトニトリル800gを加え、氷浴にて0℃に冷却した。そこへ、酸クロリドBを120g(0.88mol)滴下した。滴下終了後、室温で7時間撹拌した。溶媒を酢酸エチルに置換した後、セライトろ過によって塩を除去した。水洗した後に有機相を無水硫酸ナトリウムで乾燥し、溶媒を留去した。カラムクロマトグラフィで精製することにより、エチルエステルC181gを得た(収率90%)。
 200mLのナス型フラスコに上記得られたエチルエステルC15g(59.5mmol)を加え、100gのテトラヒドロフランに溶解した。そこへ5質量%の水酸化リチウム水溶液を34.2g(71.3mmol)滴下した。室温で10時間撹拌した後、水酸化リチウムと当量の濃塩酸を加え室温で20分撹拌した。有機相を回収し無水硫酸ナトリウムで乾燥させた後、溶媒を留去することでカルボン酸D13.0gを得た(収率98%)。
 100mLのナス型フラスコに上記得られたカルボン酸Dを3.30g(14.7mmol)加え、アセトニトリル15gに溶解させた。そこへ、ジクロロメチルメチルエーテル5.07g(44.1mmol)をゆっくりと滴下した後、60℃にて10時間加熱撹拌した。溶媒と過剰のジクロロメチルメチルエーテルを除去した後、10mLのアセトニトリルを加え、氷浴にて0℃に冷却した(E)。そこへ、4-ブロモ-3,3,4,4-テトラフルオロブタン-1-オール3.51g(14.7mmol)と、トリエチルアミン1.78g(17.6mmol)を30mLのアセトニトリルに溶解させた溶液をゆっくりと滴下した。滴下終了後、室温で10時間撹拌した。溶媒を酢酸エチルに置換した後、セライトろ過によって塩を除去した。水洗した後に、有機相を無水硫酸ナトリウムで乾燥し、溶媒を留去した。カラムクロマトグラフィで精製することにより、エステルFを4.89g得た(収率75%)。
 200mLのナス型フラスコにエステルF3.18g(7.37mmol)と30gのアセトニトリルとを加え溶解させた。そこへ、1.86g(22.1mmol)の炭酸水素ナトリウムと2.57g(14.7mmol)の亜ジチオンサンナトリウムとを30gの水に溶解させたものを一気に加えた後、65℃で4時間加熱撹拌した。室温まで冷却した後に、チオ硫酸ナトリウム水溶液で2回洗浄した(G)。有機層を回収し、30%の過酸化水素水溶液を2.51g(22.1mmol)加え、55℃にて6時間加熱撹拌した。室温に冷却した後、亜硫酸ナトリウム水溶液で過剰の過酸化水素をクエンチした(H)。有機層を回収し、溶媒留去した後にトリフェニルスルホニウムクロリド2.20g(7.37mmol)、ジクロロメタン50g、水25gを加え室温にて10時間撹拌した。有機層を6回水洗した後、溶媒を留去することにより下記式(B-1)で表される化合物(以下、「化合物(B-1)」ともいう)を4.45g得た(収率87%)。以下に、(B-1)化合物合成のスキームを示す。
Figure JPOXMLDOC01-appb-C000061
[実施例2~22](化合物(B-2)~化合物(B-22)の合成)
 前駆体を適宜選択したこと以外は、実施例1と同様に操作して、下記式(B-2)~(B-22)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
<[A]重合体及び[E]フッ素原子含有重合体の合成>
 各実施例及び比較例における各重合体の合成に用いた単量体を下記に示す。
Figure JPOXMLDOC01-appb-C000064
[合成例1](重合体(A-1)の合成)
 化合物(M-6)7.97g(35モル%)、化合物(M-7)7.44g(45モル%)及び化合物(M-8)4.49g(20モル%)を2-ブタノン40gに溶解し、開始剤としてAIBN0.80g(全モノマーに対して5モル%)を添加して単量体溶液を調製した。次いで20gの2-ブタノンを投入した100mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。400gのメタノール中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を80gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A-1)を合成した(15.2g、収率76%)。重合体(A-1)のMwは7,300であり、Mw/Mnは1.53であった。13C-NMR分析の結果、(M-6)、(M-7)、(M-8)に由来する各構造単位の含有割合は、それぞれ34.3モル%、45.1モル%及び20.6モル%であった。
[合成例2](重合体(A-2)の合成)
 化合物(M-1)6.88g(40モル%)、化合物(M-9)2.30g(10モル%)及び化合物(M-2)10.83g(50モル%)を2-ブタノン40gに溶解し、開始剤としてAIBN0.72g(全モノマーに対して5モル%)を添加して単量体溶液を調製した。次いで20gの2-ブタノンを入れた100mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。400gのメタノール中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を80gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A-2)を合成した(14.9g、収率75%)。重合体(A-2)のMwは7,500であり、Mw/Mnは1.55であった。13C-NMR分析の結果、(M-1)、(M-9)、(M-2)に由来する各構造単位の含有割合は、それぞれ40.1モル%、10.1モル%及び9.8モル%であった。
[合成例3](重合体(A-3)の合成)
 化合物(M-1)3.43g(20モル%)、化合物(M-11)3.59g(15モル%)、化合物(M-10)7.83g(40モル%)及び化合物(M-8)5.16g(25モル%)を2-ブタノン40gに溶解し、開始剤としてAIBN0.72g(全モノマーに対して5モル%)を添加して単量体溶液を調製した。次いで20gの2-ブタノンを入れた100mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。400gのメタノール中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を80gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A-3)を合成した(15.3g、収率77%)。重合体(A-3)のMwは7,200であり、Mw/Mnは1.53であった。13C-NMR分析の結果、(M-1)、(M-11)、(M-10)、(M-8)に由来する各構造単位の含有割合は、それぞれ19.5モル%、15.5モル%、40.1モル%及び24.9モル%であった。
[合成例4](重合体(A-4)の合成)
 化合物(M-5)55.0g(65モル%)及び化合物(M-3)45.0g(35モル%)、開始剤としてAIBN4g、並びにt-ドデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル100gに溶解した後、窒素雰囲気下、反応温度を70℃に保持して、16時間共重合させた。重合反応終了後、重合溶液を1,000gのn-ヘキサン中に滴下して、重合体を凝固精製した。次いで上記重合体に、再度プロピレングリコールモノメチルエーテル150gを加えた後、更に、メタノール150g、トリエチルアミン34g及び水6gを加えて、沸点にて還流させながら、8時間加水分解反応を行った。反応終了後、溶媒及びトリエチルアミンを減圧留去し、得られた重合体をアセトン150gに溶解した後、2,000gの水中に滴下して凝固させ、生成した白色粉末をろ過し、50℃で17時間乾燥させて白色粉末状の重合体(A-4)を得た(65.7g、収率77%)。重合体(A-4)のMwは7,500であり、Mw/Mnは1.90であった。13C-NMR分析の結果、p-ヒドロキシスチレン及び(M-3)に由来する各構造単位の含有割合は、それぞれ65.4モル%及び34.6モル%であった。
[合成例5](重合体(E-1)の合成)
 化合物(M-1)79.9g(70モル%)及び化合物(M-4)20.91g(30モル%)を、100gの2-ブタノンに溶解し、開始剤としてジメチル2,2’-アゾビスイソブチレート4.77gを溶解させて単量体溶液を調製した。次いで100gの2-ブタノンを入れた1,000mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。反応溶液を2L分液漏斗に移液した後、150gのn-ヘキサンで上記重合溶液を均一に希釈し、600gのメタノールを投入して混合した。次いで30gの蒸留水を投入し、さらに攪拌して30分静置した。その後、下層を回収し、固形分である重合体(E-1)を含むプロピレングリコールモノメチルエーテルアセテート溶液を得た(収率60%)。重合体(E-1)のMwは7,200であり、Mw/Mnは2.00であった。13C-NMR分析の結果、(M-1)及び(M-4)に由来する各構造単位の含有割合は、それぞれ71.1モル%及び28.9モル%であった。
<感放射線性樹脂組成物の調製>
 各感放射線性樹脂組成物の調製に用いた成分を下記に示す。
[[C]酸発生剤]
 下記式(C-1)で表される化合物
Figure JPOXMLDOC01-appb-C000065
[[D]酸拡散制御剤]
 下記式(D-1)及び(D-2)で表される化合物
Figure JPOXMLDOC01-appb-C000066
[[G]溶媒]
 G-1:プロピレングリコールモノメチルエーテルアセテート
 G-2:シクロヘキサノン
[[F]偏在化促進剤]
 F-1:γ-ブチロラクトン
[実施例23](感放射線性樹脂組成物(J1-1)の調製)
 [A]重合体としての(A-1)100質量部、[D]酸拡散制御剤としての(D-1)2.3質量部、[B]化合物としての(B-1)8.5質量部、[E]フッ素原子含有重合体としての(E-1)3質量部、[G]溶媒としての(G-1)2,240質量部及び(G-2)960質量部、並びに[F]偏在化促進剤としての(F-1)30質量部を混合し、0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J1-1)を調製した。
[実施例24~54及び比較例1~6]
 下記表1に示す種類及び含有量の[A]~[D]成分を用いた以外は、実施例23と同様に操作して、各感放射線性樹脂組成物(J1-2)~(J1-32)及び(CJ1-1)~(CJ1-6)を調製した。
Figure JPOXMLDOC01-appb-T000067
<レジストパターンの形成(1)>
 12インチのシリコンウエハー表面に、スピンコーター(東京エレクトロン株式会社の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより膜厚105nmの下層反射防止膜を形成した。この下層反射防止膜上に、上記スピンコーターを使用して上記調製した各感放射線性樹脂組成物を塗布し、90℃で60秒間PBを行った。その後、23℃で30秒間冷却し、膜厚90nmのレジスト膜を形成した。次に、このレジスト膜を、ArFエキシマレーザー液浸露光装置(株式会社NIKONの「NSR-S610C」)を用い、NA=1.3、ダイポール(シグマ0.977/0.782)の光学条件にて、40nmラインアンドスペース(1L1S)マスクパターンを介して露光した。露光後、90℃で60秒間PEBを行った。その後、アルカリ現像液として2.38質量%のTMAH水溶液を用いてアルカリ現像し、水で洗浄し、乾燥してポジ型のレジストパターンを形成した。このレジストパターン形成の際、ターゲット寸法が40nmの1対1ラインアンドスペースのマスクを介して形成した線幅が、40nmの1対1ラインアンドスペースに形成される露光量を最適露光量とした。
<レジストパターンの形成(2)>
 上記TMAH水溶液の代わりに酢酸n-ブチルを用いて有機溶媒現像し、かつ水での洗浄を行わなかった以外は、上記レジストパターンの形成(1)と同様に操作して、ネガ型のレジストパターンを形成した。
<評価>
 上記各感放射線性樹脂組成物を用いて形成したレジストパターンについて、LWR性能、解像性、断面形状、焦点深度、露光余裕度、CDU性能及びMEEFを下記方法に従い評価した。その結果を表2に示す。上記レジストパターンの測長には、走査型電子顕微鏡(株式会社日立ハイテクノロジーズの「S-9380」)を用いた。評価結果を表2に示す。
[LWR性能]
 上記最適露光量において解像されるレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅を任意のポイントで計50点測定し、その測定値の分布から3シグマ値を求め、これをLWR性能(nm)とした。LWR性能は、その値が小さいほど良好であることを示す。LWR性能が3.5nm以下の場合は「良好」と、3.5nmを超える場合は「不良」と評価できる。
[CDU性能]
 上記最適露光量において解像されるレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。400nmの範囲で線幅を20点測定し、その平均値を任意のポイントで計500点測定し、その測定値の分布から3シグマ値を求め、これをCDU性能(nm)とした。CDU性能は、その値が小さいほど、長周期での線幅のばらつきが小さく良好である。CDU性能は、1.5nm以下の場合は「良好」と、1.5を超える場合は「不良」と評価できる。
[解像性]
 上記最適露光量において解像される最小のレジストパターンの寸法を解像性(nm)とした。解像性は、その値が小さいほど良好であることを示す。解像性が35nm以下の場合は「良好」と、35nmを超える場合は「不良」と評価できる。
[断面形状の矩形性]
 上記最適露光量において解像されるレジストパターンの断面形状を観察し、レジストパターンの中間での線幅Lbと、膜の上部での線幅Laを測定した。「La/Lb」を算出して断面形状の矩形性の指標とした。このとき、断面形状の矩形性は、0.9≦La/Lb≦1.1の範囲内である場合は「良好」と、上記範囲外である場合は「不良」と評価できる。
[焦点深度]
 上記最適露光量において解像されるレジストパターンにおいて、深さ方向にフォーカスを変化させた際の寸法を観測し、ブリッジや残渣が無いままパターン寸法が基準の90%~110%に入る深さ方向の余裕度を焦点深度(nm)とした。焦点深度は、その値が大きいほど良好であることを示す。焦点深度が100nm以上の場合は「良好」と、100nm未満の場合は「不良」と評価できる。
[露光余裕度]
 上記Eopを含む露光量の範囲において、露光量を1mJ/cmごとに変えて、それぞれレジストパターンを形成し、上記走査型電子顕微鏡を用いて、それぞれの線幅を測定した。得られた線幅と露光量の関係から、線幅が44nmとなる露光量E(44)、及び線幅が36nmとなる露光量E(36)を求め、露光余裕度=(E(36)-E(44))×100/(最適露光量)の式から露光余裕度(%)を算出した。露光余裕度は、その値が大きいほど、露光量が変動した際に得られるパターンの寸法の変動が小さく、デバイス作製時の歩留まりを高くすることができるので良好である。露光余裕度は、18%以上の場合は「良好」と、18%未満の場合は「不良」と評価できる。
[MEEF性能]
 上記走査型電子顕微鏡を用い、上記最適露光量において、5種類のマスクサイズ(38.0nmLine/80nmPitch、39.0nmLine/80nmPitch、40.0nmLine/80nmPitch、41.0nmLine/80nmPitch、42.0nmLine/80nmPitch)で解像されるレジストパターンの線幅を測定した。横軸をマスクサイズ、縦軸を各マスクサイズで形成された線幅として、得られた測定値をプロットし、最小二乗法により算出した近似直線の傾きを求め、この傾きをMEEF性能とした。MEEF性能は、その値が1に近いほど良好であることを示す。MEEF性能は、4.7以下の場合は「良好」と、4.7を超える場合は「不良」と評価できる。
Figure JPOXMLDOC01-appb-T000068
 表2の結果から分かるように、本発明の感放射線性樹脂組成物は、ArF露光に用いた場合、アルカリ現像及び有機溶媒現像の場合とも、LWR性能、解像性、断面形状、焦点深度、露光余裕度、CDU性能及びMEEF性能が良好であったのに対し、比較例では、各特性が実施例に比べて劣っていた。
[電子線露光用感放射線性樹脂組成物の調製]
[実施例55]
 [A]重合体としての(A-4)100質量部、[D]酸拡散制御剤としての(D-1)2.3質量部、[B]化合物としての(B-1)8.5質量部、並びに[G]溶媒としての(G-1)4,280質量部及び(G-2)1,830質量部を混合し、0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J1-33)を調製した。
[実施例56~79並びに比較例7及び8]
 下記表3に示す種類及び含有量の各成分を用いた以外は実施例55と同様に操作して、感放射線性樹脂組成物(J1-33)~(J1-57)並びに(CJ1-7)及び(CJ1-8)を調製した。
Figure JPOXMLDOC01-appb-T000069
<レジストパターンの形成(3)>
 8インチのシリコンウエハー表面にスピンコーター(東京エレクトロン株式会社の「CLEAN TRACK ACT8」)を使用して、表3に記載の各感放射線性樹脂組成物を塗布し、90℃で60秒間PBを行った。その後、23℃で30秒間冷却し、膜厚50nmのレジスト膜を形成した。次に、このレジスト膜に、簡易型の電子線描画装置(株式会社日立製作所の「HL800D」、出力:50KeV、電流密度:5.0A/cm)を用いて電子線を照射した。照射後、120℃で60秒間PEBを行った。その後、2.38質量%のTMAH水溶液を用いて23℃で30秒間現像し、水で洗浄し、乾燥してポジ型のレジストパターンを形成した。形成した各レジストパターンについて、上記同様にして評価を実施した。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000070
 表4の結果から分かるように、本発明の感放射線性樹脂組成物は、電子線露光でアルカリ現像に用いた場合、LWR性能、解像性、断面形状、焦点深度、露光余裕度及びCDU性能が良好であったのに対し、比較例では、各特性が実施例に比べて不良であった。
<[B3]化合物を含有する場合>
[[B3]化合物の合成]
[実施例80](化合物(Z-1)の合成)
 200mLの丸底フラスコに、ヘキサンスルホンアミド5.00g(30.3mmol)、ピリジン3.60g(45.5mmol)及びテトラヒドロフラン50mLを加え、窒素雰囲気下で氷浴にて冷却しつつ撹拌した。そこへ、クロログリオキシル酸エチル4.96g(36.4mmol)をゆっくりと滴下した。滴下終了後、0℃にて1時間撹拌した後、室温で5時間撹拌した。水を加えて反応を停止させた後、有機層を塩化ナトリウム水溶液で2回洗浄した。溶媒を留去した後、カラムクロマトグラフィで精製することにより、下記式(z-1)で表される化合物4.10g(収率51%)を得た。
 次に、200mLの丸底フラスコに、上記得られた化合物(z-1)4.00g(15.1mmol)及びテトラヒドロフラン50mLを加えて室温で撹拌した。そこへ、水酸化ナトリウム0.634g(15.9mmol)を含む5質量%水溶液をゆっくりと滴下した。滴下終了後、室温で1時間撹拌した後、溶媒を留去した。そこへ、トリフェニルスルホニウムクロリド4.51g(15.1mmol)、ジクロロメタン70mL及び水30mLを加え室温で8時間撹拌した。次いで、有機層を回収し、水洗を3回実施した後、無水硫酸ナトリウムで乾燥させた。溶媒を留去した後、カラムクロマトグラフィで精製することにより、下記式(Z-1)で表される化合物6.53g(収率82%)を得た。
Figure JPOXMLDOC01-appb-C000071
[実施例81~90](化合物(Z-2)~(Z-11)の合成)
 前駆体を適宜選択し、実施例80と同様の操作を行うことによって、下記式(Z-2)~(Z-11)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000072
<重合体の合成>
 [A]重合体及び[E]フッ素原子含有重合体の合成で用いた単量体を以下に示す。
Figure JPOXMLDOC01-appb-C000073
 上記単量体(M’-1)、(M’-5)~(M’-7)、(M’-9)、(M’-12)及び(M’-13)は[A]重合体における構造単位(I)を、単量体(M’-2)、(M’-3)、(M’-8)、(M’-10)及び(M’-11)は構造単位(II)を、単量体(M’-4)は構造単位(III)をそれぞれ与える。また、単量体(M’-14)により、重合体に感放射線性酸発生体の構造を有する構造単位が組み込まれる。
 [[A]重合体の合成]
[合成例1’](重合体(A’-1)の合成)
 上記化合物(M’-1)7.97g(35モル%)、化合物(M’-2)7.44g(45モル%)及び化合物(M’-3)4.49g(20モル%)を2-ブタノン40gに溶解し、さらにラジカル重合開始剤としてのAIBN0.80g(単量体の総量に対して5モル%)を溶解させて単量体溶液を調製した。次に、20gの2-ブタノンを入れた100mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合反応液を水冷して30℃以下に冷却した。400gのメタノール中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を80gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A’-1)を合成した(15.2g、収率76%)。重合体(A’-1)のMwは7,300、Mw/Mnは1.53であった。13C-NMR分析の結果、(M’-1)、(M’-2)及び(M’-3)に由来する各構造単位の含有割合は、それぞれ34.3モル%、45.1モル%、及び20.6モル%であった。
 [合成例2’~4’、6’及び7’](重合体(A’-2)~(A’-4)、(A’-6’)及び(A’-7))
 下記表5に示す種類及び使用量の単量体を用いた以外は、合成例1’と同様にして、重合体(A’-2)~(A’-7)を合成した。用いる単量体の合計質量は20gとした。合成した重合体の収率(%)、Mw、Mw/Mn及び各構造単位の含有割合(モル%)を下記表5に合わせて示す。
[合成例5’](重合体(A’-5)の合成)
 上記化合物(M’-4)55.0g(65モル%)及び化合物(M’-5)45.0g(35モル%)、ラジカル重合開始剤としてのAIBN4g、並びにt-ドデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル100gに溶解した後、窒素雰囲気下、反応温度を70℃に保持して、16時間共重合させた。重合反応終了後、重合反応液を1,000gのn-ヘキサン中に滴下して、重合体を凝固精製した。次いで上記得られた重合体に、再度プロピレングリコールモノメチルエーテル150gを加えた後、さらに、メタノール150g、トリエチルアミン34g及び水6gを加えて、沸点にて還流させながら、8時間加水分解反応を行った。反応終了後、溶媒及びトリエチルアミンを減圧留去し、得られた重合体をアセトン150gに溶解した後、2,000gの水中に滴下して凝固させ、生成した白色粉末をろ過し、50℃で17時間乾燥させて白色粉末状の重合体(A’-5)を得た(65.7g、収率77%)。重合体(A’-5)のMwは7,500、Mw/Mnは1.90であった。13C-NMR分析の結果、p-ヒドロキシスチレン及び(M’-5)に由来する各構造単位の含有割合は、それぞれ65.4モル%及び34.6モル%であった。
Figure JPOXMLDOC01-appb-T000074
[[E]フッ素原子含有重合体の合成]
[合成例8’](重合体(E’-1)の合成)
 上記化合物(M’-15)82.2g(70モル%)及び化合物(M’-12)17.8g(30モル%)を2-ブタノン200gに溶解し、ラジカル重合開始剤としてのAIBN0.46g(単量体の総量に対して1モル%)を添加して単量体溶液を調製した。次いで100gの2-ブタノンを入れた500mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合反応液を水冷して30℃以下に冷却した。アセトニトリル400gで溶媒を置換した後、ヘキサン100gを加えて撹拌しアセトニトリル層を回収する作業を3回繰り返した。その後、溶媒をプロピレングリコールモノメチルエーテルアセテートに置換することで、重合体(E’-1)を60.1g含む溶液を得た(収率60%)。重合体(E’-1)のMwは15,000、Mw/Mnは1.90であった。13C-NMR分析の結果、(M’-15)及び(M’-12)に由来する各構造単位の含有割合は、それぞれ70.3モル%、29.7モル%であった。
<感放射線性樹脂組成物の調製>
 感放射線性樹脂組成物の調製に用いた[B3]化合物、[C]酸発生剤、[G]溶媒及び[F]偏在化促進剤を以下に示す。
[[B3]化合物]
 実施例で用いるZ-1~Z-11:上記合成した化合物(Z-1)~(Z-11)
 比較例で用いるCZ-1~CZ-4:下記式(CZ-1)~(CZ-4)で表される化合物
Figure JPOXMLDOC01-appb-C000075
[[C]酸発生剤]
 各構造式を以下に示す。
 C’-1:トリフェニルスルホニウム2-(アダマンタン-1-イルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパン-1-スルホネート
 C’-2:トリフェニルスルホニウムノルボルナンスルトン-2-イルオキシカルボニルジフルオロメタンスルホネート
 C’-3:トリフェニルスルホニウム3-(ピペリジン-1-イルスルホニル)-1,1,2,2,3,3-ヘキサフルオロプロパン-1-スルホネート
 C’-4:トリフェニルスルホニウムアダマンタン-1-イルオキシカルボニルジフルオロメタンスルホネート
Figure JPOXMLDOC01-appb-C000076
[[G]溶媒]
 G-1:プロピレングリコールモノメチルエーテルアセテート
 G-2:シクロヘキサノン
[[F]偏在化促進剤]
 F-1:γ-ブチロラクトン
[ArF露光用感放射線性樹脂組成物の調製]
[実施例91]
 [A]重合体としての(A’-1)100質量部、[B3]化合物としての(Z-1)2.3質量部、[C]酸発生剤としての(C’-1)8.5質量部、[G]溶媒としての(G-1)2,240質量部及び(G-2)960質量部、[E]フッ素原子含有重合体としての(E’-1)3質量部、並びに[F]偏在化促進剤としての(F-1)30質量部を混合し、孔径0.2μmのメンブランフィルターでろ過することにより感放射線性樹脂組成物(J2-1)を調製した。
[実施例92~105及び比較例9~15]
 下記表6に示す種類及び含有量の各成分を用いた以外は、実施例91と同様に操作して、各感放射線性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000077
[電子線露光用感放射線性樹脂組成物の調製]
[実施例106]
 [A]重合体としての(A’-5)100質量部、[B3]化合物としての(Z-1)3.6質量部、[C]酸発生剤としての(C’-1)20質量部、並びに[G]溶媒としての(G-1)4,280質量部及び(G-2)1,830質量部を混合し、孔径0.2μmのメンブランフィルターでろ過することにより感放射線性樹脂組成物(J2-16)を調製した。
[実施例107~123及び比較例16~25]
 下記表7に示す種類及び含有量の各成分を用いた以外は、実施例106と同様に操作して、各感放射線性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000078
<レジストパターンの形成(1’)>
 12インチのシリコンウエハー表面に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより膜厚105nmの下層反射防止膜を形成した。この下層反射防止膜上に、上記スピンコーターを使用して上記調製したArF露光用感放射線性樹脂組成物を塗布し、90℃で60秒間PBを行った。その後、23℃で30秒間冷却し、膜厚90nmのレジスト膜を形成した。次に、このレジスト膜を、ArFエキシマレーザー液浸露光装置(NIKON社の「NSR-S610C」)を用い、NA=1.3、ダイポール(シグマ0.977/0.782)の光学条件にて、40nmラインアンドスペース(1L1S)マスクパターンを介して露光した。露光後、90℃で60秒間PEBを行った。その後、アルカリ現像液としての2.38質量%のTMAH水溶液を用いてアルカリ現像し、水で洗浄し、乾燥してポジ型のレジストパターンを形成した。このレジストパターン形成の際、ターゲット寸法が40nmの1対1ラインアンドスペースのマスクを介して形成した線幅が、線幅40nmの1対1ラインアンドスペースに形成される露光量を最適露光量とした。
<レジストパターンの形成(2’)>
 上記レジストパターンの形成(1’)において、上記TMAH水溶液の代わりに酢酸n-ブチルを用いて有機溶媒現像し、かつ水での洗浄を行わなかった以外は、上記レジストパターンの形成(1’)と同様に操作して、ネガ型のレジストパターンを形成した。
<レジストパターンの形成(3’)>
 8インチのシリコンウエハー表面にスピンコーター(東京エレクトロン社の「CLEAN TRACK ACT8」)を使用して、上記調製した電子線露光用感放射線性樹脂組成物を塗布し、90℃で60秒間PBを行った。その後、23℃で30秒間冷却し、膜厚50nmのレジスト膜を形成した。次に、このレジスト膜に、簡易型の電子線描画装置(日立製作所社の「HL800D」、出力:50KeV、電流密度:5.0A/cm)を用いて電子線を照射した。照射後、120℃で60秒間PEBを行った。その後、アルカリ現像液としての2.38質量%のTMAH水溶液を用いて23℃で30秒間アルカリ現像し、水で洗浄し、乾燥してポジ型のレジストパターンを形成した。
<レジストパターンの形成(4’)>
 上記レジストパターンの形成(3’)において、上記TMAH水溶液の代わりに酢酸n-ブチルを用いて有機溶媒現像し、かつ水での洗浄を行わなかった以外は、上記レジストパターンの形成(3’)と同様に操作して、ネガ型のレジストパターンを形成した。
<評価>
 上記形成したレジストパターンについて、上述した方法に従って測定することにより、各感放射線性樹脂組成物のLWR性能、CDU性能、断面形状の矩形性、焦点深度、露光余裕度、MEEF性能を評価した。結果を下記表8に示す。
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
 表8及び表9の結果から明らかなように、実施例の感放射線性樹脂組成物はArF露光及び電子線露光の場合、かつアルカリ現像及び有機溶媒現像の場合とも、LWR性能、CDU性能、解像性、断面形状の矩形性、焦点深度、露光余裕度及びMEEF性能に優れている。比較例では、これらの各特性が実施例に比べて劣っており、断面形状の矩形性も不良であった。一般的に、電子線露光によれば、EUV露光の場合と同様の傾向を示すことが知られており、従って、実施例の感放射線性樹脂組成物によれば、EUV露光の場合においても、LWR性能等に優れると推測される。
<保存安定性>
 上記調製した実施例91~101の感放射線性樹脂組成物(J2-1)~(J2-11)及び比較例9の感放射線性樹脂組成物(CJ2-1)を35℃で3ヶ月保管したのち、溶液の濁り具合を目視にて確認した。
 その結果、感放射線性樹脂組成物(J2-1)~(J2-11)では濁りが確認されなかったが、感放射線性樹脂組成物(CJ2-1)は白濁が観測された。GC-MSの分析結果から、感放射線性樹脂組成物(CJ2-1)では上記単量体(M’-15)に由来する分解生成物が観測された。感放射線性樹脂組成物(J2-1)~(J2-11)では対応する分解生成物は観測されなかった。
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れた焦点深度、露光余裕度及びMEEF性能を発揮し、LWR性能、CDU性能、解像性及び断面形状の矩形性に優れるレジストパターンを形成することができる。本発明の化合物は当該感放射線性樹脂組成物の成分として好適に用いることができる。従って、これらはさらなる微細化が進行すると予想される半導体デバイス製造等におけるパターン形成に好適に用いることができる。

Claims (23)

  1.  酸解離性基を含む構造単位を有する重合体、
     放射線分解性オニウムカチオンとカウンターアニオンとからなる化合物、及び
     溶媒
    を含有し、
     上記カウンターアニオンが、カルボニル基を2以上有し、
     上記カルボニル基同士が、単結合、置換若しくは非置換の炭素数1~10のアルカンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基を介して結合する感放射線性樹脂組成物。
  2.  上記化合物が下記式(1-1)で表される請求項1に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1-1)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Lは、単結合又は酸素原子である。Rは、単結合又は置換若しくは非置換の炭素数1~10のアルカンジイル基である。Rは、炭素数1~20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。)
  3.  上記式(1-1)におけるLが、酸素原子である請求項2に記載の感放射線性樹脂組成物。
  4.  上記化合物が下記式(1-2)で表される請求項1に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1-2)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Rは、単結合又は置換若しくは非置換の炭素数1~10のアルカンジイル基である。iは、0以上2以下の整数である。Rは、置換若しくは非置換の炭素数1~10のアルカンジイル基である。Rは、単結合又は炭素数1~19の2価の有機基である。iが2の場合、複数のRは、同一でも異なっていてもよい。)
  5. 上記化合物が下記式(1-3)で表される請求項1に記載の感放射線性樹脂組成物。  
    Figure JPOXMLDOC01-appb-C000003
    (式(1-3)中、Aは、炭素数1~30の1価の有機基である。Xは、1価の放射線分解性オニウムカチオンである。Rは、置換若しくは非置換の炭素数1~10のアルカンジイル基である。)
  6.  上記式(1-1)におけるRが下記式(r)で表される請求項2に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(r)中、R及びRは、それぞれ独立して、水素原子又は1価の有機基である。Rf及びRfは、それぞれ独立して、フッ素原子又はフッ素化アルキル基である。n1は、1以上6以下の整数である。mは、0以上6以下の整数である。*1は、Lに結合する部位を示す。)
  7.  上記式(1-1)におけるRが下記式(r’)で表される請求項2に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(r’)中、Rは、置換若しくは非置換の炭素数2~10のアルカンジイル基である。Rf及びRfは、それぞれ独立して、フッ素原子又はフッ素化アルキル基である。n1は、1以上6以下の整数である。mは、0以上6以下の整数である。*1は、Lに結合する部位を示す。)
  8.  上記式(1-1)におけるkが1である請求項2に記載の感放射線性樹脂組成物。
  9.  上記式(1-1)又は上記式(1-2)におけるRが単結合であり、-C(O)-が連続して4つ以上結合しない請求項2、請求項3又は請求項4に記載の感放射線性樹脂組成物。
  10.  上記式(1-1)、上記式(1-2)又は上記式(1-3)におけるRが置換若しくは非置換のアルカンジイル基であり、このアルカンジイル基がメタンジイル基である請求項2から請求項5のいずれか1項に記載の感放射線性樹脂組成物。
  11.  上記式(1-1)、上記式(1-2)又は上記式(1-3)におけるAが-OR又は-Rであり、Rが、環員数3~30の1価の脂環式炭化水素基、環員数3~30の1価の脂肪族複素環基又は環員数6~30の1価の芳香族炭化水素基である請求項2から請求項5のいずれか1項に記載の感放射線性樹脂組成物。
  12.  上記化合物から発生する酸よりも強い酸を発生する感放射線性酸発生体をさらに含有し、
     上記化合物のカウンターアニオンが、上記カルボニル基のうちの1つに隣接する-N-をさらに有し、上記カルボニル基同士が、単結合、置換若しくは非置換の炭素数1若しくは2のアルカンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基を介して結合する請求項1に記載の感放射線性樹脂組成物。
  13.  上記化合物が、下記式(2)で表される請求項12に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式(2)中、R21は、単結合、置換若しくは非置換のメタンジイル基、置換若しくは非置換のエタンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基である。R22及びR23は、それぞれ独立して、炭素数1~30の1価の有機基である。n2は、1以上3以下の整数である。n2が2以上の場合、複数のR21は同一でも異なっていてもよい。Xは、1価の放射線分解性オニウムカチオンである。但し、R21、R22及びR23のうちの2つ以上は、これらの結合により環員数5~30の環構造を形成してもよい。)
  14.  上記式(2)におけるR22が-COR24、-SO24又は-SO24であり、このR24が炭素数1~20の1価の有機基である請求項13に記載の感放射線性樹脂組成物。
  15.  上記式(2)におけるR22及びR23のうちの少なくとも1つがフッ素原子を含む請求項13に記載の感放射線性樹脂組成物。
  16.  上記式(2)におけるR21が単結合であり、R22が炭素数1~30の1価のフッ素化炭化水素基である請求項15に記載の感放射線性樹脂組成物。
  17.  上記構造単位が、下記式(3)で表される請求項1に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式(3)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Yは、下記式(Y-1)で表される1価の酸解離性基である。)
    Figure JPOXMLDOC01-appb-C000008
    (式(Y-1)中、Re1は、炭素数1~20の炭化水素基である。Re2及びRe3は、それぞれ独立して炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造を表す。)
  18.  上記放射線分解性オニウムカチオンが、スルホニウムカチオン又はヨードニウムカチオンである請求項1に記載の感放射線性樹脂組成物。
  19.  レジスト膜を形成する工程、
     上記レジスト膜を露光する工程、及び
     上記露光されたレジスト膜を現像する工程
    を備え、
     上記レジスト膜を請求項1に記載の感放射線性樹脂組成物により形成するレジストパターン形成方法。
  20.  下記式(1-1)、下記式(1-2)又は下記式(1-3)で表される化合物からなる感放射線性酸発生剤。
    Figure JPOXMLDOC01-appb-C000009
    (式(1-1)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Lは、単結合又は酸素原子である。Rは、単結合又は置換若しくは非置換の炭素数1~10のアルカンジイル基である。Rは、炭素数1~20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000010
    (式(1-2)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Rは、単結合又は置換若しくは非置換の炭素数1~10のアルカンジイル基である。iは、0以上2以下の整数である。Rは、置換若しくは非置換の炭素数1~10のアルカンジイル基である。Rは、単結合又は炭素数1~19の2価の有機基である。iが2の場合、複数のRは、同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000011
    (式(1-3)中、Aは、炭素数1~30の1価の有機基である。Xは、1価の放射線分解性オニウムカチオンである。Rは、置換若しくは非置換の炭素数1~10のアルカンジイル基である。)
  21.  下記式(2)で表される化合物からなる酸拡散制御剤。
    Figure JPOXMLDOC01-appb-C000012
    (式(2)中、R21は、単結合、置換若しくは非置換のメタンジイル基、置換若しくは非置換のエタンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基である。R22及びR23は、それぞれ独立して、炭素数1~30の1価の有機基である。n2は、1以上3以下の整数である。n2が2以上の場合、複数のR21は同一でも異なっていてもよい。Xは、1価の放射線分解性オニウムカチオンである。但し、R21、R22及びR23のうちの2つ以上は、これらの結合により環員数5~30の環構造を形成してもよい。)
  22.  下記式(1-1)、下記式(1-2)又は下記式(1-3)で表される化合物。
    Figure JPOXMLDOC01-appb-C000013
    (式(1-1)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Lは、単結合又は酸素原子である。Rは、単結合又は置換若しくは非置換の炭素数1~10のアルカンジイル基である。Rは、炭素数1~20の2価の有機基である。kは、1以上3以下の整数である。kが2以上の場合、複数のRは、同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000014
    (式(1-2)中、Aは、炭素数1~30の1価の有機基である。Eは、SO 又はCOOである。Xは、1価の放射線分解性オニウムカチオンである。Rは、単結合又は置換若しくは非置換の炭素数1~10のアルカンジイル基である。iは、0以上2以下の整数である。Rは、置換若しくは非置換の炭素数1~10のアルカンジイル基である。Rは、単結合又は炭素数1~19の2価の有機基である。iが2の場合、複数のRは、同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000015
    (式(1-3)中、Aは、炭素数1~30の1価の有機基である。Xは、1価の放射線分解性オニウムカチオンである。Rは、置換若しくは非置換の炭素数1~10のアルカンジイル基である。)
  23.  下記式(2)で表される化合物。
    Figure JPOXMLDOC01-appb-C000016
    (式(2)中、R21は、単結合、置換若しくは非置換のメタンジイル基、置換若しくは非置換のエタンジイル基、又は置換若しくは非置換の1,2-ベンゼンジイル基である。R22及びR23は、それぞれ独立して、炭素数1~30の1価の有機基である。n2は、1以上3以下の整数である。n2が2以上の場合、複数のR21は同一でも異なっていてもよい。Xは、1価の放射線分解性オニウムカチオンである。但し、R21、R22及びR23のうちの2つ以上は、これらの結合により環員数5~30の環構造を形成してもよい。)
PCT/JP2014/071687 2013-08-20 2014-08-19 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、酸拡散制御剤及び化合物 WO2015025859A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-170357 2013-08-20
JP2013170357 2013-08-20
JP2014143742A JP6459266B2 (ja) 2013-08-20 2014-07-11 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP2014-143742 2014-07-11
JP2014-166251 2014-08-18
JP2014166251A JP6354445B2 (ja) 2014-08-18 2014-08-18 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤及び化合物

Publications (1)

Publication Number Publication Date
WO2015025859A1 true WO2015025859A1 (ja) 2015-02-26

Family

ID=52483632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071687 WO2015025859A1 (ja) 2013-08-20 2014-08-19 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、酸拡散制御剤及び化合物

Country Status (1)

Country Link
WO (1) WO2015025859A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065207A1 (ja) * 2015-10-16 2017-04-20 東京応化工業株式会社 レジスト組成物およびレジストパターン形成方法
JP2019104713A (ja) * 2017-12-14 2019-06-27 東洋合成工業株式会社 光酸発生剤、レジスト組成物、及び、該レジスト組成物を用いたデバイスの製造方法
CN110590626A (zh) * 2019-09-26 2019-12-20 中国科学技术大学 制备氧代巯基乙酸类化合物的方法
TWI691788B (zh) * 2018-09-18 2020-04-21 日商信越化學工業股份有限公司 光阻材料及圖案形成方法
TWI712580B (zh) * 2018-05-31 2020-12-11 日商信越化學工業股份有限公司 光阻材料及圖案形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106045A (ja) * 2006-09-28 2008-05-08 Shin Etsu Chem Co Ltd 新規光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
JP2010248174A (ja) * 2009-03-26 2010-11-04 Sumitomo Chemical Co Ltd 酸発生剤として用いられる塩
US20130052585A1 (en) * 2011-08-26 2013-02-28 Jsr Corporation Photodecomposable bases and photoresist compositions
JP2013092618A (ja) * 2011-10-25 2013-05-16 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法、新規な化合物、酸発生剤
JP2013152450A (ja) * 2011-12-27 2013-08-08 Fujifilm Corp パターン形成方法、感活性光線性又は感放射線性樹脂組成物、レジスト膜、電子デバイスの製造方法及び電子デバイス
JP2013152375A (ja) * 2012-01-25 2013-08-08 Jsr Corp ネガ型感放射線性組成物、パターン形成方法及び絶縁膜の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106045A (ja) * 2006-09-28 2008-05-08 Shin Etsu Chem Co Ltd 新規光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
JP2010248174A (ja) * 2009-03-26 2010-11-04 Sumitomo Chemical Co Ltd 酸発生剤として用いられる塩
US20130052585A1 (en) * 2011-08-26 2013-02-28 Jsr Corporation Photodecomposable bases and photoresist compositions
JP2013092618A (ja) * 2011-10-25 2013-05-16 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法、新規な化合物、酸発生剤
JP2013152450A (ja) * 2011-12-27 2013-08-08 Fujifilm Corp パターン形成方法、感活性光線性又は感放射線性樹脂組成物、レジスト膜、電子デバイスの製造方法及び電子デバイス
JP2013152375A (ja) * 2012-01-25 2013-08-08 Jsr Corp ネガ型感放射線性組成物、パターン形成方法及び絶縁膜の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065207A1 (ja) * 2015-10-16 2017-04-20 東京応化工業株式会社 レジスト組成物およびレジストパターン形成方法
JPWO2017065207A1 (ja) * 2015-10-16 2018-08-02 東京応化工業株式会社 レジスト組成物およびレジストパターン形成方法
US11150554B2 (en) 2015-10-16 2021-10-19 Tokyo Ohka Kogyo Co., Ltd. Resist composition and method of forming resist pattern
TWI771277B (zh) * 2015-10-16 2022-07-21 日商東京應化工業股份有限公司 阻劑組成物及阻劑圖型之形成方法
JP2019104713A (ja) * 2017-12-14 2019-06-27 東洋合成工業株式会社 光酸発生剤、レジスト組成物、及び、該レジスト組成物を用いたデバイスの製造方法
JP7091063B2 (ja) 2017-12-14 2022-06-27 東洋合成工業株式会社 光酸発生剤、レジスト組成物、及び、該レジスト組成物を用いたデバイスの製造方法
TWI712580B (zh) * 2018-05-31 2020-12-11 日商信越化學工業股份有限公司 光阻材料及圖案形成方法
TWI691788B (zh) * 2018-09-18 2020-04-21 日商信越化學工業股份有限公司 光阻材料及圖案形成方法
CN110590626A (zh) * 2019-09-26 2019-12-20 中国科学技术大学 制备氧代巯基乙酸类化合物的方法

Similar Documents

Publication Publication Date Title
JP6569221B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6304246B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6052283B2 (ja) フォトレジスト組成物
JP6241212B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生体及び化合物
JP6269766B2 (ja) 感放射線性樹脂組成物及び重合体
JPWO2018070327A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2012157433A1 (ja) ダブルパターン形成方法
WO2014148241A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物の製造方法
WO2014034190A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、化合物及び化合物の製造方法
JP6160435B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6152804B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
WO2015025859A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、酸拡散制御剤及び化合物
JP6721839B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6428389B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2017156649A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2017227810A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6146329B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6171774B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
JP2012063741A (ja) 感放射線性樹脂組成物、パターン形成方法、重合体及び化合物
JP6241303B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6593138B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生体
JP2016099483A (ja) 感放射線性樹脂組成物、重合体及び化合物
WO2014141979A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6146328B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生体及び化合物
JP6354445B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤及び化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838363

Country of ref document: EP

Kind code of ref document: A1