WO2015022964A1 - リチウム二次電池用複合活物質およびその製造方法 - Google Patents

リチウム二次電池用複合活物質およびその製造方法 Download PDF

Info

Publication number
WO2015022964A1
WO2015022964A1 PCT/JP2014/071308 JP2014071308W WO2015022964A1 WO 2015022964 A1 WO2015022964 A1 WO 2015022964A1 JP 2014071308 W JP2014071308 W JP 2014071308W WO 2015022964 A1 WO2015022964 A1 WO 2015022964A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
graphite
lithium secondary
composite active
composite
Prior art date
Application number
PCT/JP2014/071308
Other languages
English (en)
French (fr)
Inventor
亮 玉城
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to EP14836628.9A priority Critical patent/EP3035418B1/en
Priority to CN201480045075.XA priority patent/CN105453310A/zh
Priority to US14/911,826 priority patent/US10749178B2/en
Publication of WO2015022964A1 publication Critical patent/WO2015022964A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite active material for a lithium secondary battery and a method for producing the same.
  • lithium ion secondary battery lithium secondary battery
  • the negative electrode material determines basic battery characteristics, development of materials having more excellent characteristics such as charge / discharge capacity is being actively conducted.
  • Patent Document 1 discloses a composite active material for a lithium secondary battery capable of producing a lithium secondary battery having both large charge / discharge capacity, high-speed charge / discharge characteristics, and good cycle characteristics, and a method for producing the same. It is disclosed.
  • the inventors of the present invention manufactured a lithium secondary battery composite active material containing silicon as a battery active material that can be combined with lithium ions in accordance with the manufacturing method described in Patent Document 1 described above.
  • an electrode material for example, a negative electrode material
  • a composite active material for a battery was evaluated, it was irreversible to exceed the theoretical expansion (about 3 times) accompanying the alloying of lithium and silicon after several cycles. It was found that a large volume expansion was observed and further improvement was necessary. This irreversible abnormal expansion is not desirable because it not only damages the structure of the battery but also reduces the volume energy density.
  • the present invention is capable of producing an electrode material in which volume expansion is suppressed even after repeated charge and discharge, and capable of producing a lithium secondary battery exhibiting excellent cycle characteristics. It aims at providing the composite active material for secondary batteries, and its manufacturing method.
  • Another object of the present invention is to provide a battery using the composite active material for a lithium secondary battery.
  • the present inventors have used silicon monoxide and a carbon precursor as a raw material for producing a composite active material for a lithium secondary battery, thereby providing a desired characteristic for a lithium secondary battery. It has been found that a composite active material can be obtained.
  • the present invention resides in the following (1) to (8).
  • (1) The area of the graphite component exposed on the surface observed by scanning electron microscope (SEM) observation at an acceleration voltage of 10 kV or less, containing a composite containing silicon and silicon dioxide and a graphite component A composite active material for a lithium secondary battery having a rate of 95% or more.
  • (2) The composite active material for a lithium secondary battery according to (1), wherein the silicon has an average particle diameter of 1 to 100 nm.
  • the carbon precursor is at least one selected from the group consisting of a polymer compound, coal-based pitch, petroleum-based pitch, mesophase pitch, coke, low-molecular heavy oil, and derivatives thereof (4 ) Or the method for producing a composite active material for a lithium secondary battery according to (5).
  • a lithium secondary battery comprising the composite active material for a lithium secondary battery according to any one of (1) to (3).
  • the composite for lithium secondary batteries which can produce the electrode material by which volume expansion was suppressed even after repeating charging / discharging, and can produce the lithium secondary battery which shows the outstanding cycling characteristics is possible.
  • An active material and a manufacturing method thereof can be provided.
  • a battery using the composite active material for a lithium secondary battery can also be provided.
  • One of the features of the production method of the present invention is that silicon monoxide and a carbon precursor are used together with graphite having a predetermined specific surface area as a starting material of a composite active material for a lithium secondary battery.
  • the present inventors have examined the cause of irreversible abnormal volume expansion after repeated charge and discharge in a battery material using the composite active material for a lithium secondary battery described in Patent Document 1. It has been found that silicon, which is a battery active material that can be combined with silicon, is gradually oxidized to form a sponge. The reason for the oxidation of silicon is that when lithium ions are stored and released in silicon, the volume expands and contracts. At that time, the silicon is stressed and cracks occur, and the electrolyte enters from the cracks.
  • a spherical mixture in which silicon monoxide is encapsulated with a graphite component is obtained by performing a later-described mixing step and spheroidizing treatment using silicon monoxide.
  • the mixture is subjected to heat treatment, the following reaction proceeds to obtain a composite (silicon-containing composite) containing silicon dioxide (SiO 2 ) and silicon (Si).
  • the carbon precursor used together functions as an adhesive between the graphite component and the composite, and has a function of assisting electrical contact between them. As a result, the cycle characteristics of the lithium secondary battery are further improved.
  • a method for producing a composite active material for a lithium secondary battery (hereinafter also simply referred to as a composite active material) according to the present invention will be described in detail, and then an embodiment of a composite active material for a lithium secondary battery manufactured thereafter will be described in detail. Describe.
  • the method for producing a composite active material for a lithium secondary battery according to the present invention comprises a mixing step of mixing predetermined components, a spheronization step of subjecting the obtained mixture to a spheronization treatment, and a resulting spherical mixture.
  • a heating step of performing a heat treatment comprises a heating step of performing a heat treatment.
  • the mixing step is a step of obtaining a mixture by mixing graphite having a specific surface area of 30 m 2 / g or more, silicon monoxide, and a carbon precursor.
  • silicon monoxide having a specific surface area of 30 m 2 / g or more
  • silicon monoxide and a carbon precursor.
  • the carbon precursor plays a role of assisting adhesion between graphite and silicon monoxide.
  • graphite since graphite has a large area, silicon monoxide and carbon precursor dispersed and adhering to the surface of the graphite in the mixture are sandwiched between the graphite by applying a slight pressure to the graphite. In other words, it is encased between graphite (in other words, encapsulated).
  • the graphite used in this step has a specific surface area of 30 m 2 / g or more. If it is in the said range, the composite active material for lithium secondary batteries in which the silicon
  • the specific surface area is preferably 40 m 2 / g or more, more preferably 60 m 2 / g or more, in that the cycle characteristics of the lithium secondary battery using the composite active material are more excellent.
  • the upper limit is not particularly limited, but the specific surface area is preferably 200 m 2 / g or less in that the production procedure is complicated and the synthesis is difficult.
  • the specific surface area of graphite is measured using the BET method (JIS Z 8830, one-point method) by nitrogen adsorption.
  • Graphite includes a layer in which a plurality of graphene sheets are stacked in the direction in which the graphite surfaces overlap, and the graphene sheets are bonded to each other mainly by van der Waals force.
  • the average thickness of the laminated graphene sheet layers contained in the graphite having the predetermined specific surface area is preferably 29 nm or less in view of more excellent charge / discharge amount and cycle characteristics of the lithium secondary battery using the composite active material. 22 nm or less is more preferable.
  • the lower limit is not particularly limited, but is usually 4.4 nm or more because the production procedure becomes complicated.
  • the average thickness is measured by observing graphite by electron microscope observation (TEM), measuring the thickness of 10 or more layers of graphene sheets laminated in graphite, and arithmetically averaging the values. An average thickness is obtained.
  • TEM electron microscope observation
  • the upper limit of the bulk specific gravity of the graphite used is not particularly limited, but is preferably 0.02 g / cm 3 or less in that the composite is more uniformly and highly dispersed in the graphite component in the composite active material. 0.01 g / cm 3 or less is more preferable. The lower limit is often 0.005 g / cm 3 or more due to manufacturing problems.
  • the sample is inserted into a 500 ml glass graduated cylinder without being compressed, and the sample weight is divided by the sample volume.
  • the graphite used in this step a commercial product may be used, or it may be produced by a known method.
  • graphite so-called expanded graphite or flaky graphite can be used.
  • graphite eg, scaly graphite
  • heat treatment preferably treated at 700 to 1000 ° C.
  • the acid is removed, followed by washing and drying.
  • expanded graphite is obtained by putting the obtained acid-treated graphite into a furnace at about 850 ° C.
  • expanded graphite can also be obtained by using graphite formed with an interlayer compound such as alkali metal instead of acid-treated graphite.
  • the bulk density of the acid-treated graphite obtained above is not particularly limited, 0.6 g / cm 3 or more is preferable and 0.7 g / cm 3 or more is more preferable in view of sufficient expansion of the acid-treated graphite.
  • the upper limit is not particularly limited, but is often 1.0 g / cm 3 or less due to manufacturing problems.
  • the sample is inserted into a 100 ml glass graduated cylinder so as not to be compressed, and the sample weight is divided by the sample volume.
  • the hinge portion of the expanded graphite is broken by dispersing the expanded graphite in a solvent and then treating it with an ultrasonic treatment or a pulverizer (for example, a stone mill) that applies a large shear stress.
  • a pulverizer for example, a stone mill
  • the number of graphene sheets constituting the expanded graphite exhibiting the above specific surface area and the number of graphene sheets constituting the flaky graphite obtained by pulverizing the graphite are estimated to be basically the same.
  • Silicon monoxide used in this step functions as a precursor for producing silicon, which is a battery active material that can be combined with lithium ions. More specifically, a composite of silicon (Si) and silicon dioxide (SiO 2 ) (silicon-containing composite) is obtained by subjecting a spherical mixture containing silicon monoxide to a heat treatment in a heating step described later. ) Is obtained.
  • SiOx As the silicon monoxide used, it is preferable to use SiOx (0.8 ⁇ X ⁇ 1.5). In particular, it is desirable to use SiO (x ⁇ 1) in order to obtain a preferable ratio of the quantitative relationship between silicon and silicon dioxide.
  • the shape of silicon monoxide used is not particularly limited, and any shape such as powder, plate, granule, fiber, lump, and sphere can be used.
  • the average particle size of the silicon monoxide used is that the silicon monoxide falling off when combined with graphite and the expansion and destruction of silicon accompanying the cycle are further suppressed, and that the graphite and electrical contacts are more In terms of providing a large number, it is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.3 ⁇ m or less.
  • the lower limit is not particularly limited and is preferably smaller, but is usually 0.1 ⁇ m or more in many cases.
  • a laser diffraction type particle size distribution measuring device As a method for measuring the average particle diameter, a laser diffraction type particle size distribution measuring device is used. More specifically, D50: 50% volume particle diameter is defined as the average particle diameter.
  • the above-mentioned particle diameter is obtained by pulverizing silicon monoxide using a known apparatus such as a stirring tank type stirring mill (bead mill or the like). Small powder can be obtained.
  • Carbon precursor used in this step functions as an adhesive that enhances the adhesion between graphite and silicon monoxide in the mixture.
  • the carbon precursor is converted into a carbide (for example, hard carbon, soft carbon, amorphous carbon, etc.) when subjected to a heat treatment in a heating step described later.
  • the carbon precursor is not particularly limited as long as it is a substance that is converted into a carbide by heat treatment (calcination carbonization) as described above.
  • a polymer compound organic polymer
  • coal pitch coal pitch
  • petroleum pitch petroleum pitch
  • Mesophase pitch methacrylate
  • coke low molecular weight heavy oil
  • polymer compounds are preferred.
  • polymer compound examples include phenol resin, furan resin, epoxy resin, polyvinyl chloride, polyvinyl alcohol, polyacrylamide, polyethyleneimine, cellulose, rayon, polyacrylonitrile, polystyrene, and the like.
  • a carbon precursor as a carbon precursor, only 1 type may be used and 2 or more types may be used together.
  • the shape of the carbon precursor used is not particularly limited, and any shape such as powder, plate, granule, fiber, lump, and sphere can be used. These carbon precursors are preferably dissolved in a solvent used when mixing silicon monoxide and expanded graphite.
  • the average molecular weight of the carbon precursor used is preferably 1000 or more, more preferably 1,000,000 or less, from the viewpoint that the effect of the present invention is more excellent.
  • the mixing method of the graphite, silicon monoxide, and carbon precursor described above is not particularly limited, and a known method can be employed, and examples thereof include so-called dry processing or wet processing.
  • the aspect of a wet process is preferable from the point which the graphite in a mixture obtained, a silicon monoxide, and a carbon precursor mix more uniformly.
  • dry treatment examples include a method in which the above-described graphite, silicon monoxide, and carbon precursor are added to a known stirrer (eg, Henschel mixer) and mixed.
  • a known stirrer eg, Henschel mixer
  • Examples of the wet treatment include a method of dispersing the above-described graphite, silicon monoxide, and carbon precursor in a solvent, mixing and stirring the obtained solution, and removing the solvent.
  • the type of the solvent used in the wet treatment is not particularly limited as long as it can disperse graphite, silicon monoxide, and a carbon precursor.
  • alcohol solvents eg, methanol, ethanol, isopropanol
  • ketone solvents eg, acetone, methyl ethyl ketone, cyclohexanone
  • amide solvents eg, formamide, dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone
  • Nitrile solvents eg acetonitrile, propionitrile
  • ester solvents eg methyl acetate, ethyl acetate
  • carbonate solvents eg dimethyl carbonate, diethyl carbonate
  • ether solvents eg cellosolve
  • halogens examples thereof include a solvent, water, and a mixture thereof.
  • an alcohol-based solvent is preferable in that the cycle characteristics of the lithium secondary battery using the obtained composite active material for a lithium secondary battery are more excellent.
  • the conditions for mixing and stirring graphite, silicon monoxide, and the carbon precursor are not particularly limited, and optimal conditions are appropriately selected according to the materials used.
  • the stirring time is such that graphite, silicon monoxide, and carbon precursor can be more uniformly dispersed, and as a result, the cycle characteristics of a lithium secondary battery using the obtained composite active material for lithium secondary battery are more excellent.
  • About 1 to 2 hours is preferable.
  • ultrasonic waves may be applied during the stirring process.
  • the stirring time may be about 10 minutes.
  • the method for removing the solvent is not particularly limited, and examples thereof include a method using a known apparatus (for example, an evaporator).
  • the mixing ratio of graphite and silicon monoxide is not particularly limited, but it is preferable to mix 10 to 230 parts by mass of silicon monoxide with respect to 100 parts by mass of graphite in terms of more excellent effects of the present invention. It is more preferable to mix 200 parts by mass.
  • the mixing ratio of graphite and carbon precursor is not particularly limited, but 1 to 50 parts by mass of the carbon precursor is preferably mixed with 100 parts by mass of graphite from the viewpoint that the effect of the present invention is more excellent. It is more preferable to mix 20 parts by mass.
  • the mixing ratio of silicon monoxide and carbon precursor is not particularly limited, but 0.1 to 100 parts by mass of the carbon precursor is mixed with 100 parts by mass of silicon monoxide in that the effect of the present invention is more excellent. It is preferable to mix 1 to 50 parts by mass.
  • the amount of the solvent used is not particularly limited. However, as a result of achieving a higher degree of dispersion, the effect of the present invention is more excellent, and the solvent is used in an amount of 3000 to 15000 with respect to 100 parts by mass of graphite. It is preferable to mix parts by mass, and it is more preferable to mix 5000 to 7000 parts by mass.
  • the press process which presses the obtained mixture may be included as needed before the spheroidization process mentioned later of the said mixing process. If a press process is implemented, the distance between graphite will become smaller and the spheroidization process mentioned later advances more efficiently.
  • the pressing method is not particularly limited, and a known method can be adopted.
  • the spheronization step is a step of producing a spherical mixture by subjecting the mixture containing graphite, silicon monoxide and carbon precursor obtained in the mixing step to spheronization.
  • the graphite sheet is folded into a spherical shape so as to incorporate silicon monoxide and a carbon precursor therein.
  • the edge part of graphite is folded inside, and the structure which silicon monoxide is not exposed substantially on the surface of the composite active material for lithium secondary batteries formed is obtained.
  • the term “precursor material” includes both silicon monoxide and a carbon precursor.
  • the major axis direction of graphite that is, the AB of graphite
  • the surfaces are arranged in the direction of the airflow, and the pins or impingement plates provided perpendicular to the airflow, or the mixture particles of graphite and precursor material collide with each other, the graphite AB surface compressively deforms, and consequently the precursor material It is made spherical by sandwiching it.
  • the long axis of the expanded graphite is in the direction of the graphite C axis, and when the graphite is placed in a high-speed air stream, Are arranged in the direction of the airflow and collide with pins, collision plates, or particles.
  • the graphite C-axis is first compressed, and the graphite changes to a state close to that before expansion.
  • the precursor material adhering to the AB surface of the graphite is crushed by graphite, and the precursor material is completely sandwiched between the graphite layers.
  • the graphite once compressed in the C-axis direction changes to a structure in which the AB surface is a major axis, and eventually changes to a sphere-forming body in which the graphite AB surface is folded.
  • expanded graphite or flaky graphite has a small thickness of the laminated graphene sheet layer constituting it, it goes without saying that the AB surface can be easily deformed with a smaller compressive force in the AB surface direction. .
  • the method of spheroidizing treatment is not particularly limited as long as it is a pulverizer that mainly applies impact stress.
  • the pulverizer include a high-speed rotational impact pulverizer. More specifically, a sample mill, a hammer mill, a pin mill, or the like can be used. Among these, a pin mill is preferable in that the graphite and the precursor substance are more uniformly mixed and the effect of the present invention is more excellent.
  • Examples of high-speed rotary impact type pulverizers include those that collide a sample with a rotor that rotates at high speed and achieve miniaturization by the impact force.
  • a hammer with a fixed or swing type impactor attached to the rotor Mill type hammer type pin mill type rotary disc type with a pin and impact head attached to a rotating disc, an axial flow type that crushes while the sample is conveyed in the shaft direction, and an annular type that refines particles in a narrow annular part Examples include molds. More specifically, a hammer mill, a pin mill, a screen mill, a turbo mill, a centrifugal classification mill, and the like can be given.
  • the collision speed is preferably about 20 m / sec to 100 m / sec.
  • the processing time varies depending on the type of the pulverizer to be used, the amount charged, and the like, but is usually within 2 minutes, and the processing time can be completed in about 10 seconds if the apparatus is provided with an appropriate pin or collision plate. .
  • the spheronization treatment is preferably performed in air. If the same treatment is performed in a nitrogen stream, there is a risk of ignition when released to the atmosphere.
  • the size of the spherical mixture (spherical mixture) obtained by the spheronization treatment is not particularly limited, but the particle size (D50: 50% volume particle size) of the spherical mixture is 2 to 2 in that the effect of the present invention is more excellent. 40 ⁇ m is preferable, 5-35 ⁇ m is more preferable, and 5-30 ⁇ m is even more preferable.
  • D50 corresponds to a particle size of 50% cumulative from the fine particle side of the cumulative particle size distribution measured by the laser diffraction scattering method.
  • the spherical mixture is added to the liquid and vigorously mixed using ultrasonic waves, and the prepared dispersion is introduced into the apparatus as a sample and measured.
  • the liquid it is preferable to use water, alcohol, or a low-volatile organic solvent for work.
  • the obtained particle size distribution diagram preferably shows a normal distribution.
  • a heating process is a process which heat-processes with respect to the spherical mixture obtained above, and manufactures the substantially spherical composite active material (composite active material) for lithium secondary batteries.
  • the composite active material includes the graphite component derived from the graphite and a composite containing silicon and silicon dioxide (silicon-containing composite), and the composite is included in the graphite component as described later.
  • the composite contains silicon and silicon dioxide, the dispersion state of both is not particularly limited, and examples thereof include a sea-island dispersion state.
  • a composite in which silicon is dispersed in silicon dioxide is particularly preferable in that the effect of the present invention is more excellent.
  • silicon monoxide as a precursor may partially remain in the composite.
  • the heating temperature is preferably 700 ° C. or higher, more preferably 800 ° C. or higher, in that the effect of the present invention is more excellent.
  • the upper limit is not particularly limited, but is preferably 2000 ° C. or lower, more preferably 1500 ° C. or lower, and further preferably 1000 ° C. or lower from the viewpoint of heat resistance of the composite active material.
  • the heating time is preferably 0.5 hours or more, and more preferably 1 hour or more.
  • the upper limit is not particularly limited, but it is often 5 hours or less from the point that the effect of the invention is saturated and the fine crystal of silicon is a preferred size.
  • the atmosphere for the heat treatment is preferably an inert atmosphere from the viewpoint of preventing oxidation of silicon and carbon.
  • the composite active material for a lithium secondary battery obtained through the above-described steps is substantially spherical and contains a graphite component and a composite.
  • FIG. 1 the schematic diagram of one Embodiment of a composite active material is shown.
  • the composite active material 10 has a substantially spherical shape, and has a structure in which a composite 14 is included in a graphite component 12, and silicon 18 is dispersed in silicon dioxide 16 in the composite 14.
  • silicon silicon is dispersed in silicon dioxide is described, but the present invention is not limited to this embodiment.
  • the shape of the composite active material has a substantially spherical shape by the above treatment.
  • substantially spherical means that the composite active material has a rounded structure and does not have sharp edges (peaks or twills) that are commonly found in crushed grains.
  • substantially spherical means that the aspect ratio (major axis / minor axis), which is the ratio of the major axis to the minor axis, is in the range of 1 to 3 (1 to 2 in terms of more excellent effects of the present invention). More preferably) the shape of composite active material particles.
  • the aspect ratio means a value (arithmetic average value) obtained by calculating the long diameter / short diameter of each particle for at least 100 particles and arithmetically averaging them.
  • the minor axis in the above is the distance between two parallel lines that are in contact with the outside of a particle observed by a scanning electron microscope or the like and that are the shortest interval among a combination of two parallel lines that sandwich the particle.
  • the major axis is the two parallel lines perpendicular to the parallel line that determines the minor axis, and the distance between the two parallel lines that is the longest interval among the combination of two parallel lines that touch the outside of the particle It is.
  • the rectangle formed by these four lines is the size that the particles just fit within.
  • the area ratio of the graphite component exposed on the surface of the composite active material observed by scanning electron microscope (SEM) observation at an acceleration voltage of 10 kV or less is 95% or more. Among these, 98% or more is more preferable, and 99% or more is more preferable.
  • the upper limit is not particularly limited and may be 100%. If the area ratio is within the above range, the amount of the composite exposed on the surface of the composite active material is small, and as a result, the volume expansion of the electrode material containing the composite active material is suppressed, and the lithium containing the composite active material The secondary battery exhibits excellent cycle characteristics.
  • the composite When the area ratio is out of the above range (less than 95%), the composite is likely to fall off and the cycle characteristics are poor, or the volume expansion of the electrode material containing the composite active material is large.
  • an area ratio measurement method at least 100 composite active materials are observed with a scanning electron microscope (SEM) (preferably at a magnification of 2000 times or more) at an acceleration voltage of 10 kV or less, and the surface of each composite active material is measured. It is a value obtained by measuring the area ratio of the graphite component occupying and arithmetically averaging them.
  • SEM scanning electron microscope
  • the area ratio of the composite exposed on the surface of the composite active material observed by scanning electron microscope (SEM) observation at an acceleration voltage of 10 kV or less is preferably 5% or less. Among these, 2% or less is more preferable, and 1% or less is more preferable. A minimum in particular is not restrict
  • an area ratio measurement method at least 100 composite active materials are observed with a scanning electron microscope (SEM) (preferably at a magnification of 2000 times or more) at an acceleration voltage of 10 kV or less, and the surface of each composite active material is measured. It is a value obtained by measuring the area ratio of the composite in the area and arithmetically averaging them.
  • SEM scanning electron microscope
  • the composite active material for lithium secondary batteries when observed by scanning electron microscope (SEM) observation at an acceleration voltage of 10 kV or less, it is included in a state where the thin graphite layer is transmitted and sandwiched between the graphite layers. The composite can be observed directly.
  • SEM scanning electron microscope
  • the edge portion of graphite is not substantially exposed on the surface thereof. Since the edge portion is not exposed on the surface, the decomposition of the electrolytic solution and the destruction of the graphite, which are likely to occur during the charge / discharge cycle, are further suppressed, and as a result, the cycle characteristics are improved.
  • the graphite component in the composite active material is a component derived from graphite described above. Since the spheroidizing treatment is performed when forming the composite active material, the above-described graphite may have a more bent structure in the composite active material.
  • the content of the composite in the composite active material can be adjusted as appropriate depending on the content of silicon monoxide in the mixing step described above.
  • the content of the composite is preferably 10% by mass or more, more preferably 20% by mass, and particularly preferably 30% by mass or more with respect to the total amount of the composite active material in that the effect of the present invention is more excellent.
  • 80 mass% or less is preferable, and 70 mass% or less is more preferable.
  • the area ratio of the graphite component exposed on the surface of the composite active material is within the above range.
  • the shape of the composite in the composite active material is not particularly limited, but is usually generally spherical. Moreover, as shown in FIG. 1, many composites may be contained in the composite active material.
  • the average particle size of the composite in the composite active material is not particularly limited, but is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.3 ⁇ m or less in terms of more excellent effects of the present invention.
  • the lower limit is not particularly limited and is preferably smaller (in many cases, 50 nm or more).
  • the measurement method of the average particle diameter is a value obtained by observing the cross section of the composite active material with an electron microscope, measuring the diameters of at least 10 composites, and arithmetically averaging them.
  • the equivalent circle diameter is used.
  • the “equivalent circle diameter” is a diameter of a circle when the shape of the observed composite is assumed to be a circle having the same projected area as the projected area of the composite.
  • the composite contains silicon and silicon dioxide, and the silicon is included in the silicon dioxide.
  • the silicon is included in the silicon dioxide.
  • a large number of silicon may be included in the composite.
  • the average particle diameter of silicon in the composite is not particularly limited, but is preferably 1 to 100 nm, more preferably 1 to 20 nm, from the viewpoint that the effect of the present invention is more excellent.
  • the measurement method of the average particle diameter is a value obtained by observing the cross section of the composite active material with an electron microscope (TEM), measuring the diameters of at least 10 silicons, and arithmetically averaging them.
  • TEM electron microscope
  • the “equivalent circle diameter” is the diameter of the circle when the observed silicon shape is assumed to be a circle having the same projected area as the projected area of silicon.
  • the content of silicon in the composite is not particularly limited, but is preferably 20 to 200% by mass with respect to the total total mass of silicon dioxide in the composite in terms of more excellent effects of the present invention. 150 mass% is more preferable.
  • part of silicon dioxide (SiO 2 ) in the composite may be removed using HF or the like.
  • the amount of silicon dioxide on the silicon (Si) surface can be adjusted by the amount of etching. From the viewpoint of surface protection, it is preferable to leave a certain amount of silicon dioxide.
  • the relative mass of Si as an active material can be increased and the capacity can be increased.
  • the silicon content can be increased by eluting SiO 2 with HF, in which case the silicon content is based on the total mass of silicon dioxide in the composite, It can be adjusted to 100 to 9900% by mass.
  • the content of silicon can be measured by ICP emission spectroscopic analysis.
  • the composite active material usually contains a carbon precursor-derived carbide (carbon material, for example, hard carbon, soft carbon, etc.).
  • carbon precursor-derived carbide carbon material, for example, hard carbon, soft carbon, etc.
  • the carbide content in the composite active material can be adjusted as appropriate according to the carbon precursor content in the mixing step described above.
  • the content of the carbide is preferably 1% by mass or more, more preferably 2% by mass, and particularly preferably 5% by mass or more with respect to the total amount of the composite active material in that the effect of the present invention is more excellent.
  • As an upper limit 30 mass% or less is preferable, and 20 mass% or less is more preferable.
  • the particle size (D50: 50% volume particle size) of the composite active material is not particularly limited, but is preferably 2 to 40 ⁇ m, more preferably 5 to 35 ⁇ m, and even more preferably 5 to 30 ⁇ m, from the viewpoint of more excellent effects of the present invention. .
  • the particle size (D90: 90% volume particle size) is not particularly limited, but is preferably 10 to 60 ⁇ m and more preferably 20 to 45 ⁇ m from the viewpoint that the effect of the present invention is more excellent.
  • the particle diameter (D10: 10% volume particle diameter) is not particularly limited, but is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, from the viewpoint that the effect of the present invention is more excellent.
  • D10, D50, and D90 correspond to the particle sizes of 10%, 50%, and 90% from the fine particle side of the cumulative particle size distribution measured by the laser diffraction scattering method, respectively.
  • the composite active material is added to the liquid and mixed vigorously using ultrasonic waves, and the prepared dispersion is introduced as a sample into the apparatus for measurement.
  • the liquid it is preferable to use water, alcohol, or a low-volatile organic solvent for work.
  • the obtained particle size distribution diagram preferably shows a normal distribution.
  • the bulk density of the composite active material is not particularly limited, but is preferably 0.5 g / cm 3 or more and more preferably 0.7 g / cm 3 or more in order to increase the capacity per volume of the composite active material to be obtained.
  • the upper limit is not particularly limited.
  • the method for measuring the bulk density is the same as the method for measuring the bulk density of graphite described above, except that a 25 ml graduated cylinder is used.
  • the tap density of the composite active material is not particularly limited, but is preferably 0.8 g / cm 3 or more and more preferably 1.0 g / cm 3 or more in order to increase the capacity per volume of the composite active material to be obtained.
  • the upper limit is not particularly limited, but is preferably 1.6 g / cm 3 or less.
  • the tap density is measured by putting the sample in a 25 ml graduated cylinder, tapping, and dividing the sample weight at the time when the change in volume disappears by the sample volume.
  • the specific surface area (BET specific surface area) of the composite active material is not particularly limited, but is preferably 5 m 2 / g or more, more preferably 8 m 2 / g in terms of better cycle characteristics of the lithium secondary battery using the resulting composite active material. The above is more preferable.
  • the upper limit is not particularly limited, but is preferably 100 m 2 / g or less.
  • the measurement method of the specific surface area (BET specific surface area) of the composite active material is measured by a nitrogen adsorption one point method after vacuum drying the sample at 300 ° C. for 30 minutes.
  • the surface of the composite active material can be coated with carbon. By performing this treatment, the surface area of the composite active material can be adjusted, and the electrochemical stability can be enhanced.
  • the method of coating with carbon is not particularly limited, and examples thereof include a CVD method. More specifically, it is preferable to perform a CVD process at 750 to 1100 ° C. by flowing a gas such as toluene.
  • Lithium secondary battery The composite active material described above is useful as an active material used for battery materials (electrode materials) used in lithium secondary batteries.
  • the characteristics of the battery material using the composite active material include that a capacity close to the theoretical value of the battery material can be obtained and that expansion is suppressed.
  • a battery using the battery material exhibits excellent cycle characteristics. In addition, it has excellent rapid charge / discharge characteristics. The reason for this is that the diffusion distance of Li ions is small as a result of the miniaturization of silicon.
  • the composite active material is particularly preferably applied to the negative electrode.
  • the aspect which used the composite active material for the negative electrode is explained in full detail.
  • the method for producing a negative electrode for a lithium secondary battery using the composite active material is not particularly limited, and a known method can be used.
  • a composite active material and a binder can be mixed, formed into a paste using pressure molding or a solvent, and applied onto a copper foil to form a negative electrode for a lithium secondary battery. More specifically, 92 g of the composite active material, 62 g of 13% PVDF / NMP solution, 0.5 g of conductive carbon black, and 29 g of NMP are mixed, and a good slurry is obtained using a commonly used double-arm mixer.
  • a material having a three-dimensional structure can also be used in that the cycle characteristics of the battery are more excellent.
  • the current collector material having a three-dimensional structure include carbon fiber, sponge-like carbon (a sponge-like resin coated with carbon), metal, and the like.
  • a current collector having a three-dimensional structure
  • a metal or carbon conductor porous body having a three-dimensional structure
  • a plain weave wire mesh having a three-dimensional structure
  • expanded metal lath net
  • metal foam having a plain weave wire mesh
  • metal woven fabric having a three-dimensional structure
  • metal nonwoven fabric having a three-dimensional structure
  • a carbon fiber woven fabric or a carbon fiber non-woven fabric may be used.
  • binder to be used a known material can be used.
  • fluorine-based resins such as polyvinylidene fluoride and polytetrafluoroethylene, SBR, polyethylene, polyvinyl alcohol, carboxymethylcellulose, glue and the like are used.
  • solvent examples include water, isopropyl alcohol, N-methylpyrrolidone, dimethylformamide and the like.
  • conductive carbon black, carbon nanotubes or a mixture thereof As a conductive material.
  • the shape of the composite active material obtained by the above process is often relatively granulated (particularly, substantially spherical), and the contact between particles tends to be point contact.
  • a method of blending carbon black, carbon nanotubes or a mixture thereof into the slurry can be mentioned. Since carbon black, carbon nanotubes, or a mixture thereof can be intensively aggregated in the capillary part formed by contact with the composite active material when the slurry solvent is dried, contact loss (increased resistance) associated with the cycle is prevented. Can do.
  • the blending amount of carbon black, carbon nanotube, or a mixture thereof is not particularly limited, but is preferably 0.2 to 4 parts by mass, and 0.5 to 2 parts by mass with respect to 100 parts by mass of the composite active material. Is more preferable.
  • the carbon nanotube include a single wall carbon nanotube and a multi-wall carbon nanotube.
  • a positive electrode used for a lithium secondary battery having a negative electrode obtained using the composite active material As a positive electrode used for a lithium secondary battery having a negative electrode obtained using the composite active material, a positive electrode using a known positive electrode material can be used.
  • the positive electrode material positive electrode active material
  • examples of the positive electrode material include metal oxides such as chromium oxide, titanium oxide, cobalt oxide, and vanadium pentoxide, LiCoO 2 , LiNiO 2 , LiNi 1-y Co y O 2 , and LiNi 1-xy.
  • LiMnO 2 O 4 LiFeO 2 lithium metal oxides such as titanium sulfide, chalcogen compounds of transition metals such as molybdenum sulfide, or polyacetylene, polyparaphenylene, conductive polypyrrole Conjugated polymer substances having
  • Electrode As an electrolytic solution used in a lithium secondary battery having a negative electrode obtained by using the composite active material, a known electrolytic solution can be used.
  • LiPF 6 and LiBF 4 are particularly preferred from the viewpoint of oxidation stability.
  • the electrolyte salt concentration in the electrolyte solution is preferably 0.1 to 5 mol / l, and more preferably 0.5 to 3 mol / l.
  • Examples of the solvent used in the electrolytic solution include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2 -Methyltetrahydrofuran, ⁇ -butyrolactone, 1,3-dioxofuran, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, acetonitrile, chloronitrile, propionitrile, etc.
  • carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate
  • 1,1- or 1,2-dimethoxyethane 1,2-diethoxyethane
  • tetrahydrofuran 2 -Methyltetrahydrofuran
  • an additive such as fluoroethylene carbonate can be added to the electrolytic solution.
  • fluoroethylene carbonate can be added to the electrolytic solution.
  • a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte may be used instead of the electrolyte.
  • the polymer compound constituting the matrix of the polymer solid electrolyte or polymer gel electrolyte include ether polymer compounds such as polyethylene oxide and cross-linked products thereof, methacrylate polymer compounds such as polymethacrylate, and acrylate compounds such as polyacrylate.
  • Fluorine polymer compounds such as polymer compounds and polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymers are preferred. These can also be mixed and used. From the viewpoint of oxidation-reduction stability, a fluorine-based polymer compound such as PVDF or vinylidene fluoride-hexafluoropropylene copolymer is particularly preferable.
  • a well-known material can be used as a separator used for the lithium secondary battery which has a negative electrode obtained using the said composite active material.
  • a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are illustrated.
  • a synthetic resin microporous membrane is preferred, and among these, a polyolefin-based microporous membrane is preferred from the standpoints of film thickness, membrane strength, membrane resistance, and the like.
  • it is a microporous film made of polyethylene and polypropylene, or a microporous film in which these are combined.
  • the lithium secondary battery uses the negative electrode, the positive electrode, the separator, the electrolyte, and other battery components (for example, a current collector, a gasket, a sealing plate, a case, etc.), and is cylindrical, square, or button according to a conventional method. It can have a form such as a mold.
  • the lithium secondary battery of the present invention is used in various portable electronic devices, particularly notebook computers, notebook word processors, palmtop (pocket) computers, mobile phones, mobile faxes, mobile printers, headphone stereos, video cameras, and mobile TVs.
  • Example 1 (Preparation of expanded graphite) After immersing scaly natural graphite having an average particle diameter of 1 mm in a mixed acid of 9 parts by weight of sulfuric acid and 1 part by weight of nitric acid at room temperature for 1 hour, the mixed acid was removed with a No. 3 glass filter to obtain acid-treated graphite. Further, the acid-treated graphite was washed with water and dried. When 5 g of dried acid-treated graphite was stirred in 100 g of distilled water and the pH was measured after 1 hour, the pH was 6.7. The dried acid-treated graphite was put into a vertical electric furnace under a nitrogen atmosphere set at 850 ° C. to obtain expanded graphite.
  • the bulk density of the acid-treated graphite was 0.78 g / cm 3 .
  • the specific surface area of the expanded graphite was 83 m 2 / g, the bulk specific gravity was 0.011 g / cm 3 , and the average thickness of the layers of the laminated graphene sheets was 16 nm.
  • the above expanded graphite (12 parts by mass) was added to ethanol in which SiO was dispersed to prepare a uniformly mixed slurry containing expanded graphite, SiO fine powder and phenol resin. Ethanol was recovered from this slurry using an evaporator to obtain a powder mixture.
  • the physical properties are as follows. Bulk density: 0.67 g / cm 3 , tap density: 1.21 g / cm 3 , particle size distribution D90: 43 ⁇ m, D50: 24 ⁇ m, D10: 5.7 ⁇ m, specific surface area: 8.7 m 2 / g, shape: average aspect Ratio: 1.55.
  • the composite active material had a structure in which the composite was sandwiched between thin graphite layers. Moreover, it was confirmed at the same time that the composite exposed on the surface was very small and that the graphite edge surface was not present on the surface of the composite.
  • the area ratio of graphite exposed on the surface of the composite active material for a lithium secondary battery observed by SEM observation is 98%, and the area ratio of the exposed composite is 2%. there were.
  • PVDF-containing NMP solution PVDF (polyvinylidene fluoride) (content: 13% by mass)
  • conductive carbon black 0.5 parts by mass of conductive carbon black
  • 29 parts by mass of NMP 29 parts by mass of NMP
  • PVDF polyvinylidene fluoride
  • the shape of the electrode before the cycle test was a disk shape with a diameter of 14 mm and a thickness of 55 ⁇ m.
  • thickness is an average value, and is the value which measured the thickness of the center of a disk, and three other arbitrary points, and arithmetically averaged them.
  • the thickness of the electrode after the cycle test is a value obtained by measuring the thickness of the center of the disk and any other three points and arithmetically averaging them.
  • the capacity retention rate in the eleventh cycle was measured based on the discharge capacity average value (mAh) in the second cycle.
  • Comparative Example 1 which is an aspect of Patent Document 1, compared with the Example, the cycle characteristics of the full cell were inferior and the expansion of the electrode was large.
  • the composite active material according to the present invention can be used as an electrode material for a lithium secondary battery.

Abstract

 充放電を繰り返した後でも体積膨張が抑制された電極材料の作製が可能で、かつ、優れたサイクル特性を示すリチウム二次電池の作製が可能なリチウム二次電池用複合活物質の製造方法を提供する。 比表面積30m/g以上の黒鉛と、一酸化ケイ素と、炭素前駆体とを混合して、混合物を得る混合工程と、混合物に球形化処理を施し、球状の混合物を得る球形化工程と、球状の混合物に対して加熱処理を施し、シリコンおよび二酸化ケイ素を含む複合物と黒鉛成分とを含有する略球状のリチウム二次電池用複合活物質を製造する加熱工程を用いて、リチウム二次電池用複合活物質を製造する。

Description

リチウム二次電池用複合活物質およびその製造方法
 本発明は、リチウム二次電池用複合活物質およびその製造方法に関する。
 電子材料の小型軽量化、および、HEVまたはEVの開発の進展に伴い、大容量、高速充放電特性、良好なサイクル特性、かつ安全性に優れた電池の開発の要望は益々増大している。なかでも、リチウムイオン二次電池(リチウム二次電池)が最も有望な電池として注目されている。
 しかしながら、優れた性能を示すリチウム二次電池が開発される前提として、各種性能に優れた負極材料、正極材料、電解液、セパレータ、または集電体などが開発され、且つ、それらの特性を十分に生した電池設計がなされなくてはならない。
 なかでも、負極材料は基本的な電池特性を決定するものであるため、充放電容量などの特性がより優れる材料の開発が活発に行われている。
 例えば、特許文献1には、大充放電容量、高速充放電特性、および良好なサイクル特性を併せ持ったリチウム二次電池の作製が可能なリチウム二次電池用複合活物質、並びに、その製造方法が開示されている。
日本国特許第5227483号公報
 近年、電池の使用安全性の点から、充放電を繰り返した後においても電極材料の体積が膨張しないことが求められている。電極材料の体積膨張が大きいと、電解液の液漏れの発生や、電池の寿命の低下が引き起こされる。また、体積当たりのエネルギー密度が下がり、高容量の材料を用いるメリットが失われることになる。
 本発明者らは、上述した特許文献1に記載の製造方法に従って、リチウムイオンと化合可能な電池活物質としてシリコンを含むリチウム二次電池用複合活物質を製造して、得られたリチウム二次電池用複合活物質を含む電極材料(例えば、負極材料)の膨張特性について評価を行ったところ、数サイクル後にはリチウムとシリコンの合金化に伴う理論的な膨張(3倍程度)以上の不可逆的な体積の膨張が認められ、更なる改良が必要であることを知見した。なお、この不可逆的異常膨張は電池の構造に損傷を与えるだけではなく、体積エネルギー密度の低減につながるため、望ましくない。
 本発明は、上記実情に鑑みて、充放電を繰り返した後でも体積膨張が抑制された電極材料の作製が可能で、かつ、優れたサイクル特性を示すリチウム二次電池の作製が可能なリチウム二次電池用複合活物質、並びにその製造方法を提供することを目的とする。
 また、本発明は、該リチウム二次電池用複合活物質を用いた電池を提供することも目的とする。
 本発明者らは、従来技術について鋭意検討を行った結果、リチウム二次電池用複合活物質の製造原料として一酸化ケイ素および炭素前駆体を用いることにより、所望の特性を示すリチウム二次電池用複合活物質が得られることを見出した。
 すなわち、本発明は以下の(1)~(8)に存する。
(1) シリコンおよび二酸化ケイ素を含む複合物と、黒鉛成分とを含有し、加速電圧10kV以下での走査型電子顕微鏡(SEM)観察により観察される表面上に露出している前記黒鉛成分の面積率が95%以上であるリチウム二次電池用複合活物質。
(2) 前記シリコンの平均粒子径が1~100nmである(1)に記載のリチウム二次電池用複合活物質。
(3) 前記複合物の平均粒子径が50~1000nmである(1)または(2)に記載のリチウム二次電池用複合活物質。
(4) 比表面積30m/g以上の黒鉛と、一酸化ケイ素と、炭素前駆体とを混合して、混合物を得る混合工程と、
 前記混合物を球形化処理し、球状の混合物を得る球形化工程と、
 前記球状の混合物を加熱処理し、略球状のリチウム二次電池用複合活物質を製造する加熱工程と、
を有する(1)に記載のリチウム二次電池用複合活物質の製造方法。
(5) 前記一酸化ケイ素の平均粒子径が1μm以下である(4)に記載のリチウム二次電池用複合活物質の製造方法。
(6) 前記炭素前駆体が、高分子化合物、石炭系ピッチ、石油系ピッチ、メソフェーズピッチ、コークス、低分子重質油、およびそれらの誘導体からなる群から選択される少なくとも1種である(4)または(5)に記載のリチウム二次電池用複合活物質の製造方法。
(7) 前記黒鉛が膨張黒鉛である(4)~(6)のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
(8) (1)~(3)のいずれかに記載のリチウム二次電池用複合活物質を含むリチウム二次電池。
 本発明によれば、充放電を繰り返した後でも体積膨張が抑制された電極材料の作製が可能で、かつ、優れたサイクル特性を示すリチウム二次電池の作製が可能なリチウム二次電池用複合活物質、並びにその製造方法を提供することができる。
 また、本発明によれば、該リチウム二次電池用複合活物質を用いた電池を提供することもできる。
本発明のリチウム二次電池用複合活物質の一実施形態の模式的断面図である。
 以下に、本発明のリチウム二次電池用複合活物質およびその製造方法について詳述する。
 まず、従来技術と比較した本発明の特徴点について詳述する。
 本発明の製造方法の特徴点の一つとしては、リチウム二次電池用複合活物質の出発原料として、所定の比表面積を有する黒鉛と共に、一酸化ケイ素および炭素前駆体を使用している点が挙げられる。本発明者らは、特許文献1に記載のリチウム二次電池用複合活物質を用いた電池材料において充放電を繰り返した後に不可逆的な異常体積膨張が生じる原因について検討を行ったところ、リチウムイオンと化合可能な電池活物質であるシリコンが徐々に酸化され、スポンジ状になっていることを知見した。シリコンが酸化される原因としては、シリコンにリチウムイオンが貯蔵・放出される際に体積の膨張および収縮が起こり、その際にシリコンにストレスがかかり割れが生じ、その割れから電解液が侵入してシリコンが酸化されるプロセスが繰り返されることによるものと推測される。そこで、本発明者らは、出発原料として一酸化ケイ素を使用することにより、上記問題を解決できることを見出した。より具体的には、一酸化ケイ素を用いて後述する混合工程および球形化処理を施すことにより、一酸化ケイ素が黒鉛成分により内包された球状の混合物が得られる。その混合物に対して加熱処理を施すと、以下のような反応が進行して、二酸化ケイ素(SiO)およびシリコン(Si)を含む複合物(シリコン含有複合物)が得られる。
  2SiO→Si+SiO
 得られた複合物では、シリコンは微細結晶(好ましくは、100nm以下)であるため、このようなシリコンにはストレスがかかりにくく、膨張収縮を繰り返してもひび割れが生じにくいという特性がある。従って、電解液による酸化も表面のみに留まり、内部まで電解液による酸化が進行することが避けられる。また、上記態様で得られる微細なシリコンの表面の大部分は二酸化ケイ素により保護されており、上述したように電解液により酸化が生じにくく、この点も結果として電極材料の体積膨張の抑制に寄与していると考えられる。
 また、合わせて使用される炭素前駆体は、黒鉛成分と上記複合物との接着剤として機能し、両者の電気的接触を助ける機能を有する。結果として、リチウム二次電池のサイクル特性がより向上する。
 以下では、まず、本発明のリチウム二次電池用複合活物質(以後、単に複合活物質とも称する)の製造方法について詳述し、その後製造されるリチウム二次電池用複合活物質の態様について詳述する。
 本発明のリチウム二次電池用複合活物質の製造方法は、所定の成分を混合する混合工程と、得られた混合物に球形化処理を施す球形化工程と、得られた球状の混合物に対して加熱処理を施す加熱工程とを備える。
 以下、工程ごとに、使用される材料、および、その手順について詳述する。
 <混合工程>
 混合工程は、比表面積30m/g以上の黒鉛と、一酸化ケイ素と、炭素前駆体とを混合して、混合物を得る工程である。本工程を実施することによって、極めて広い黒鉛表面に一酸化ケイ素が均一に混じり合い、極めて高度に一酸化ケイ素が分散した混合物を得ることができる。なお、その際、炭素前駆体は、黒鉛と一酸化ケイ素との接着性を助ける役割を果たす。なお、後述するように、黒鉛は大きな面積を有しているため、混合物中の黒鉛表面に分散し付着した一酸化ケイ素および炭素前駆体は、黒鉛に僅かな圧力を加えるだけで黒鉛に挟みこまれる形で、黒鉛間に包み込まれる(言い換えれば内包される)。
 まず、本工程で使用される材料(黒鉛、一酸化ケイ素、炭素前駆体など)について詳述し、その後本工程の手順について詳述する。
 (黒鉛)
 本工程で使用される黒鉛は、比表面積が30m/g以上を有する。上記範囲内であれば、高表面積(好ましくは、厚みの薄い)の黒鉛表面に高度にシリコンが分散したリチウム二次電池用複合活物質が得られる。その結果として、本発明のリチウム二次電池用複合活物質を用いた電池材料は、優れた電池特性(例えば、高速充放電特性、大充放電容量および良好なサイクル特性など)を示す。なかでも、該複合活物質を用いたリチウム二次電池のサイクル特性がより優れる点で、比表面積は40m/g以上が好ましく、60m/g以上がより好ましい。上限は特に制限されないが、製造の手順が煩雑となり、合成が困難な点で、比表面積は200m/g以下が好ましい。
 黒鉛の比表面積が30m/g未満の場合、黒鉛と一酸化ケイ素との混合が不均一となり、成型時の一酸化ケイ素の脱落や成型複合物表面への複合物の露出などが起こり、結果として、複合活物質を含む電池材料の体積膨張が大きい、または、複合活物質を用いたリチウム二次電池のサイクル特性が劣る。
 なお、黒鉛の比表面積は、窒素吸着によるBET法(JIS Z 8830、一点法)を用いて測定したものである。
 黒鉛中においては、黒鉛面を重ねる方向でグラフェンシートが複数枚重なった層が含まれており、グラフェンシートは主にファンデルワールス力によって互いに結合している。
 上記所定の比表面積を示す黒鉛中に含まれる積層したグラフェンシートの層の平均厚みは、複合活物質を用いたリチウム二次電池の充放電量およびサイクル特性がより優れる点で、29nm以下が好ましく、22nm以下がより好ましい。下限は特に制限されないが、製造手順が煩雑になることから、通常、4.4nm以上である場合が多い。
 なお、上記平均厚みの測定方法としては、電子顕微鏡観察(TEM)によって黒鉛を観察し、黒鉛中の積層したグラフェンシートの層の厚みを10個以上測定して、その値を算術平均することによって、平均厚みが得られる。
 使用される黒鉛の嵩比重の上限は特に制限されないが、複合活物質中において黒鉛成分への複合物のより均一かつより高度な分散がなされる点で、0.02g/cm以下が好ましく、0.01g/cm以下がより好ましい。下限は、製造上の問題から、0.005g/cm以上の場合が多い。
 なお、嵩比重の測定方法としては、500mlのガラス製メスシリンダーに試料を圧縮しないように挿入し、その試料重量を試料体積で除して求める。
 本工程で使用される黒鉛としては、市販品を使用してもよいし、公知の方法で製造してもよい。
 該黒鉛としては、いわゆる膨張黒鉛や、薄片状黒鉛を使用することができる。
 膨張黒鉛の製造方法としては、例えば、酸中に黒鉛(例えば、鱗片状黒鉛)を室温で浸漬した後、得られた酸処理黒鉛に加熱処理(好ましくは、700~1000℃で処理)を施すことにより製造することができる。より具体的には、硫酸9重量部と硝酸1重量部の混酸に鱗片状天然黒鉛を1時間程度浸漬後、酸を除去し、水洗・乾燥を行う。その後、得られた酸処理黒鉛を850℃程度の炉に投入することで膨張黒鉛が得られる。なお、酸処理黒鉛の代わりに、アルカリ金属など黒鉛と層間化合物を形成した黒鉛を使用しても、膨張黒鉛を得ることができる。
 上記で得られた酸処理黒鉛の嵩密度は特に限定されないが、酸処理黒鉛が十分に膨張する点で、0.6g/cm以上が好ましく、0.7g/cm以上がより好ましい。上限は特に制限されないが、製造上の問題から、1.0g/cm以下の場合が多い。
 なお、嵩密度の測定方法としては、100mlのガラス製メスシリンダーに試料を圧縮しないように挿入し、その試料重量を試料体積で除して求める。
 また、薄片状黒鉛の製造方法としては、上記膨張黒鉛を溶媒に分散後、超音波処理や大きなズリ応力を与える粉砕機(例えば、石臼)などで処理することにより、膨張黒鉛のヒンジ部が破壊され、グラフェンシート枚数で50枚程度(好ましくは、10~150枚)が積層した薄片状の黒鉛を得ることができる。
 なお、上記比表面積を示す膨張黒鉛を構成するグラフェンシートの枚数と、それを解砕した薄片状黒鉛を構成するグラフェンシートの枚数は、基本的にほぼ同一と推測される。
 (一酸化ケイ素)
 本工程で使用される一酸化ケイ素は、リチウムイオンと化合可能な電池活物質であるシリコンを生成する前駆体として機能する。より具体的には、一酸化ケイ素を含む球状の混合物に対して後述する加熱工程での加熱処理を施すことにより、シリコン(Si)と二酸化ケイ素(SiO)との複合物(シリコン含有複合物)が得られる。
 使用される一酸化ケイ素としては、SiOx(0.8≦X≦1.5)を用いることが好ましい。特にSiO(x≒1)を用いることが、シリコンと二酸化ケイ素との量的関係を好ましい比率とする上で望ましい。
 使用される一酸化ケイ素の形状は特に制限されず、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能である。
 使用される一酸化ケイ素の平均粒子径としては、黒鉛との複合化時の一酸化ケイ素の脱落やサイクルに伴うシリコンの膨張破壊などがより抑制される点、および、黒鉛と電気的接点をより多く設ける点で、1μm以下が好ましく、0.5μm以下がより好ましく、0.3μm以下がさらに好ましい。下限値については、特に制限はなく小さいほうが好ましいが、通常、0.1μm以上の場合が多い。
 なお、平均粒子径の測定方法としては、レーザー回折式の粒度分布測定器が用いられる。より具体的には、D50:50%体積粒径を平均粒子径とする。
 なお、上記所定の平均粒子径の一酸化ケイ素を得る方法としては、攪拌槽型攪拌ミル(ビーズミル等)等などの公知の装置を用いて一酸化ケイ素の粉砕を行うことによって、上記した粒径の小さい粉末を得ることが可能である。
 (炭素前駆体)
 本工程で使用される炭素前駆体は、混合物中における黒鉛と一酸化ケイ素との接着性を高める接着剤として機能する。炭素前駆体は、後述する加熱工程による加熱処理が施されると、炭化物(例えば、ハードカーボン、ソフトカーボン、非晶カーボンなど)へと変換される。
 炭素前駆体としては、上記のように加熱処理(焼成炭化)により、炭化物に変換される物質であれば特に制限されず、例えば、高分子化合物(有機高分子)、石炭系ピッチ、石油系ピッチ、メソフェーズピッチ、コークス、低分子重質油、またはそれらの誘導体などが挙げられる。なかでも、リチウム二次電池用複合活物質を用いた電池材料の膨張がより抑制され、リチウム二次電池のサイクル特性がより優れる点で(以後、単に「本発明の効果がより優れる点」とも称する)、高分子化合物が好ましい。
 高分子化合物としては、フェノール樹脂、フラン樹脂、エポキシ樹脂、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリルアミド、ポリエチレンイミン、セルロース、レーヨン、ポリアクリロニトリル、ポリスチレンなどが挙げられる。
 なお、炭素前駆体としては、1種のみを使用してもよいし、2種以上を併用してもよい。
 使用される炭素前駆体の形状は特に制限されず、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能である。これらの炭素前駆体は、一酸化ケイ素と膨張黒鉛を混合する際に使用する溶剤に溶解することが好ましい。
 使用される炭素前駆体の平均分子量としては、本発明の効果がより優れる点で1000以上が好ましく、1,000,000以下がより好ましい。
 (工程の手順)
 上述した黒鉛と一酸化ケイ素と炭素前駆体との混合方法は特に制限されず、公知の方法を採用することができ、いわゆる乾式処理または湿式処理などが挙げられる。なお、得られる混合物中での黒鉛と一酸化ケイ素と炭素前駆体とがより均一に混合する点より、湿式処理の態様が好ましい。
 乾式処理としては、例えば、公知の攪拌機(例えば、ヘンシェルミキサー)に上述した黒鉛と一酸化ケイ素と炭素前駆体とを加え、混合する方法が挙げられる。
 湿式処理としては、例えば、上述した黒鉛と一酸化ケイ素と炭素前駆体とを溶媒中に分散させ、得られた溶液を混合攪拌して、溶媒を除去する方法が挙げられる。
 湿式処理の際に使用される溶媒の種類は特に制限されず、黒鉛と一酸化ケイ素と炭素前駆体とを分散させることができる溶媒であればよい。例えば、アルコール系溶媒(例えば、メタノール、エタノール、イソプロパノール)、ケトン系溶媒(例えば、アセトン、メチルエチルケトン、シクロヘキサノン)、アミド系溶媒(例えば、ホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン)、ニトリル系溶媒(例えば、アセトニトリル、プロピオニトリル)、エステル系溶媒(例えば、酢酸メチル、酢酸エチル)、カーボネート系溶媒(例えば、ジメチルカーボネート、ジエチルカーボネート)、エーテル系溶媒(例えば、セロソルブ)、ハロゲン系溶媒、水およびこれらの混合物などが挙げられる。
 なかでも、得られるリチウム二次電池用複合活物質を用いたリチウム二次電池のサイクル特性がより優れる点で、アルコール系溶媒が好ましい。
 湿式処理において、黒鉛と一酸化ケイ素と炭素前駆体とを混合攪拌する条件は特に制限されず、使用される材料に応じて適宜最適な条件が選択される。通常、攪拌時間としては、黒鉛と一酸化ケイ素と炭素前駆体とをより均一に分散できる結果、得られるリチウム二次電池用複合活物質を用いたリチウム二次電池のサイクル特性がより優れる点で、1~2時間程度が好ましい。
 また、必要に応じて、攪拌処理時に超音波を加えてもよい。この場合、撹拌時間は10分程度でもよい。
 溶媒を除去する方法は特に制限されず、公知の装置(例えば、エバポレータ)などを使用する方法が挙げられる。
 黒鉛と一酸化ケイ素との混合比は特に制限されないが、本発明の効果がより優れる点で、黒鉛100質量部に対して、一酸化ケイ素を10~230質量部混合することが好ましく、20~200質量部混合することがより好ましい。
 黒鉛と炭素前駆体との混合比は特に制限されないが、本発明の効果がより優れる点で、黒鉛100質量部に対して、炭素前駆体を1~50質量部混合することが好ましく、5~20質量部混合することがより好ましい。
 一酸化ケイ素と炭素前駆体との混合比は特に制限されないが、本発明の効果がより優れる点で、一酸化ケイ素100質量部に対して、炭素前駆体を0.1~100質量部混合することが好ましく、1~50質量部混合することがより好ましい。
 また、溶媒を使用する場合、溶媒の使用量は特に制限されないが、より高度な分散が図られる結果、本発明の効果がより優れる点で、黒鉛100質量部に対して、溶媒を3000~15000質量部混合することが好ましく、5000~7000質量部混合することがより好ましい。
 なお、上記混合工程の後述する球形化工程の前に、必要に応じて、得られた混合物をプレスするプレス工程が含まれていてもよい。プレス工程を実施すると、黒鉛間の距離がより小さくなり、後述する球形化処理がより効率的に進行する。
 なお、プレスの方法は特に制限されず、公知の方法を採用できる。
 <球形化工程>
 球形化工程は、上記混合工程で得られた黒鉛、一酸化ケイ素および炭素前駆体を含む混合物に球形化処理を施し、球状の混合物を製造する工程である。
 本工程を実施することにより、黒鉛のシートがその内部に一酸化ケイ素および炭素前駆体を取り込むように折り畳まれて球形化する。その際、黒鉛のエッジ部は内部に折り畳まれ、形成されるリチウム二次電池用複合活物質の表面には実質的に一酸化ケイ素が露出しない構造が得られる。
 以下に、比表面積30m/g未満の鱗片状の黒鉛を使用した場合と、比表面積の大きな黒鉛(膨張黒鉛または薄片状黒鉛)を使用した場合との球形化工程におけるメカニズムの違いについて詳述する。なお、以下では、一酸化ケイ素と炭素前駆体との両者を含めて、前駆体物質と称する。
 例えば、特開2008-27897公報に記載されるように、比表面積30m/g未満の鱗片状の黒鉛と前駆体物質とを高速気流中に置くと、黒鉛の長軸方向、即ち黒鉛のAB面は気流の方向に配列し、気流と垂直に設けられたピンまたは衝突板、または黒鉛と前駆体物質の混合物粒子同士が衝突し、黒鉛AB面は圧縮変形し、結果的に前駆体物質を挟み込む形で球形化する。この場合、黒鉛表面に存在する前駆体物質の多くは衝突時の衝撃で黒鉛表面から離れ、たまたま黒鉛AB面間に挟まれた状態の前駆体物質のみが黒鉛層間に挟み込まれる。
 一方、本発明においては、例えば、使用される比表面積の大きな黒鉛が膨張黒鉛の場合、膨張黒鉛の長軸は黒鉛C軸方向であり、高速気流中に該黒鉛が置かれると、黒鉛C軸が気流方向に配列し、ピンや衝突板に、または粒子同士で衝突する。その結果、まず黒鉛C軸が圧縮され、黒鉛は膨張前の形態に近い状態に変化する。これは黒鉛のAB面に付着した前駆体物質が黒鉛で押し潰され、完全に前駆体物質が黒鉛層同士で挟み込まれることを意味する。一旦C軸方向に圧縮された黒鉛は、AB面が長軸となる構造に変化し、やがて黒鉛AB面が折り畳まれた球形成型体へと変化する。
 また、薄片状黒鉛の場合、黒鉛AB面に平行方向の圧縮と垂直方向の圧縮を同時に受けるが、黒鉛AB面の弾性率が低いため、黒鉛AB面に垂直方向の圧縮により黒鉛AB間で容易に接着して変形し、薄片状黒鉛表面に付着した前駆体物質は黒鉛AB面内に挟み込まれる作用が先行する。その後、弾性率の高い黒鉛AB面の変形が起こり、球形化が進行する。
 また、膨張黒鉛または薄片状黒鉛は、それを構成する積層したグラフェンシートの層の厚みが小さいため、より小さなAB面方向の圧縮力でAB面の変形が容易に行われることはいうまでもない。
 球形化処理の方法は特に制限されず、主に衝撃応力を加えられる粉砕機であれば特に限定されない。粉砕機としては、例えば、高速回転衝撃式粉砕機が挙げられ、より具体的にはサンプルミル、ハンマミル、ピンミル等を用いることができる。なかでも、黒鉛と前駆体物質との混合がより均一に実施され、本発明の効果がより優れる点で、ピンミルが好ましい。
 高速回転衝撃式粉砕機としては、高速回転するローターに試料を衝突させて、その衝撃力による微細化を達成するものが挙げられ、例えば、ローターに固定式あるいはスイング式の衝撃子を取り付けたハンマーミルタイプのハンマー型、回転する円盤にピンや衝撃ヘッドを取り付けたピンミルタイプの回転円盤型、試料がシャフト方向に搬送されながら粉砕する軸流型、狭い環状部での粒子の微細化を行うアニュラー型などが挙げられる。より具体的には、ハンマミル、ピンミル、スクリーンミル、ターボ型ミル、遠心分級型ミルなどが挙げられる。
 なお、本工程を上記高速回転衝撃式粉砕機で行なう場合には、通常100rpm以上、好ましくは1500rpm以上、また、通常20000rpm以下の回転速度で球形化を行うことが好ましい。したがって衝突速度は20m/秒~100m/秒程度とすることが好ましい。
 粉砕と異なり、球形化処理は低い衝撃力で処理するため、本工程は通常循環処理を行うことが好ましい。その処理時間は、使用する粉砕機の種類や仕込み量等によって異なるが、通常2分以内であり、適切なピン或いは衝突板の配置がなされた装置であれば処理時間は10秒程度で終了する。
 また、球形化処理は空気中で行うことが好ましい。窒素気流中で同処理を行うと、大気開放時に発火する危険がある。
 上記球形化処理により得られる球状の混合物(球状混合物)の大きさは特に制限されないが、本発明の効果がより優れる点で、球状混合物の粒径(D50:50%体積粒径)は2~40μmが好ましく、5~35μmがより好ましく、5~30μmがさらに好ましい。
 D50は、レーザー回折散乱法により測定した累積粒度分布の微粒側から累積50%の粒径にそれぞれ該当する。
 なお、測定に際しては、球状混合物を液体に加えて超音波などを利用しながら激しく混合し、作製した分散液を装置にサンプルとして導入し、測定を行う。液体としては作業上、水やアルコール、低揮発性の有機溶媒を用いることが好ましい。この時、得られる粒度分布図は正規分布を示すことが好ましい。
 (加熱工程)
 加熱工程は、上記で得られた球状混合物に対して加熱処理を施し、略球状のリチウム二次電池用複合活物質(複合活物質)を製造する工程である。なお、複合活物質には、上記黒鉛由来の黒鉛成分と、シリコンおよび二酸化ケイ素が含まれる複合物(シリコン含有複合物)とが含まれ、後述するように複合物は黒鉛成分に内包される。また、複合物はシリコンおよび二酸化ケイ素を含んでいれば両者の分散状態は特に制限されず、例えば、海島状の分散状態が挙げられる。なかでも、本発明の効果がより優れる点で、特に、二酸化ケイ素中にシリコンが分散した複合物であることが好ましい。なお、前駆体である一酸化ケイ素が一部、複合物中に残存する場合もある。
 加熱処理の条件としては、本発明の効果がより優れる点で、加熱温度としては700℃以上が好ましく、800℃以上がより好ましい。なお、上限は特に制限されないが、複合活物質の耐熱性の点から、2000℃以下が好ましく、1500℃以下がより好ましく、1000℃以下がさらに好ましい。
 また、加熱時間としては、0.5時間以上が好ましく、1時間以上がより好ましい。なお、上限は特に制限されないが、発明の効果が飽和する点、また、シリコンの微細結晶が好ましい大きさである点から、5時間以下の場合が多い。
 加熱処理を行う雰囲気は、シリコンや炭素の酸化を防ぐ観点から、不活性雰囲気下が好ましい。
 <リチウム二次電池用複合活物質>
 上述した工程を経て得られるリチウム二次電池用複合活物質は略球状であり、黒鉛成分と複合物とを含有する。図1に、複合活物質の一実施形態の模式図を示す。図1に示すように、複合活物質10は略球状であり、その構造は黒鉛成分12中に複合物14が内包され、複合物14では二酸化ケイ素16中にシリコン18が分散している。なお、上記では二酸化ケイ素中にシリコンが分散している複合物を記載したが、この態様には限定されない。
 以下、得られた複合活物質について詳述する。
 複合活物質の形状は、上記処理によって略球状の形状を有する。略球状とは、複合活物質が丸みを帯びた構造を有し、破砕粒に一般的に見られるような鋭いエッジ(峰部や綾部)を有さない形状であることを意図する。
 より具体的には、略球状とは、長径と短径との比率であるアスペクト比(長径/短径)が1~3の範囲程度(本発明の効果がより優れる点で、1~2がより好ましい)の複合活物質粒子の形状を表す。上記アスペクト比は、少なくとも100の粒子について一つ一つの粒子の長径/短径を求め、それらの算術平均した値(算術平均値)を意味する。
 なお、上記における短径とは、走査型電子顕微鏡などによって観察される粒子の外側に接し、粒子を挟み込む二つの平行線の組み合わせのうち最短間隔になる二つの平行線の距離である。一方、長径とは、該短径を決定する平行線に直角方向の二つの平行線であって、粒子の外側に接する二つの平行線の組み合わせのうち、最長間隔になる二つの平行線の距離である。これらの四つの線で形成される長方形は、粒子がちょうどその中に納まる大きさとなる。
 加速電圧10kV以下での走査型電子顕微鏡(SEM)観察により観察される複合活物質表面上に露出している黒鉛成分の面積率は、95%以上である。なかでも、98%以上がより好ましく、99%以上がさらに好ましい。上限値は特に制限されず、100%が挙げられる。面積率が上記範囲内であれば、複合活物質の表面上に露出している複合物の量が少なく、結果として複合活物質を含む電極材料の体積膨張が抑制され、複合活物質を含むリチウム二次電池が優れたサイクル特性を示す。
 上記面積率が上記範囲外(95%未満)の場合、複合物の脱落などが生じやすくサイクル特性に劣る、または、複合活物質を含む電極材料の体積膨張が大きい。
 面積率の測定方法としては、加速電圧10kV以下での走査型電子顕微鏡(SEM)(好ましくは、倍率2000倍以上)によって、少なくとも100個以上の複合活物質を観察し、各複合活物質表面上に占める黒鉛成分の面積率を測定し、それらを算術平均した値である。
 また、加速電圧10kV以下での走査型電子顕微鏡(SEM)観察により観察される複合活物質表面上に露出している複合物の面積率は、5%以下が好ましい。なかでも、2%以下がより好ましく、1%以下がさらに好ましい。下限は特に制限されず、0%が挙げられる。面積率が上記範囲内であれば、複合活物質の表面上に露出している複合物の量が少なく、結果として複合活物質を含む電極材料の体積膨張が抑制され、複合活物質を含むリチウム二次電池が優れたサイクル特性を示す。
 面積率の測定方法としては、加速電圧10kV以下での走査型電子顕微鏡(SEM)(好ましくは、倍率2000倍以上)によって、少なくとも100個以上の複合活物質を観察し、各複合活物質表面上に占める複合物の面積率を測定し、それらを算術平均した値である。
 また、リチウム二次電池用複合活物質の特徴として、加速電圧10kV以下での走査型電子顕微鏡(SEM)観察により観察すると、薄い黒鉛層を透過して黒鉛層内に挟み込まれた状態で内包された複合物を直接観察できる。
 また、複合活物質の好ましい態様として、黒鉛のエッジ部がその表面上に実質的に露出していない態様が挙げられる。エッジ部が表面に露出していないことによって、充放電サイクル時に発生しやすい電解液の分解や黒鉛の破壊がより抑制され、結果としてサイクル特性の向上がもたらされる。
 複合活物質中の黒鉛成分は、上述した黒鉛由来の成分である。なお、複合活物質を形成する際に球形化処理が施されるために、上述した黒鉛は複合活物質中においてはより折り曲げられた構造をとっていてもよい。
 複合活物質中における複合物の含有量は、上述した混合工程における一酸化ケイ素の含有量により適宜調整できる。
 なかでも、本発明の効果がより優れる点で、複合物の含有量は、複合活物質全量に対して、10質量%以上が好ましく、20質量%がより好ましく、30質量%以上が特に好ましい。上限としては、80質量%以下が好ましく、70質量%以下がより好ましい。
 なお、得られる複合活物質において複合物の含有量が上記範囲内である場合でも、複合活物質表面に露出する黒鉛成分の面積率は上記範囲内となる。
 複合活物質中における複合物の形状は特に制限されないが、通常、略球状の場合が多い。また、図1に示すように、複合活物質中に複合物は多数含まれていてもよい。
 複合活物質中における複合物の平均粒子径は特に制限されないが、本発明の効果がより優れる点で、1μm以下が好ましく、0.5μm以下がより好ましく、0.3μm以下がさらに好ましい。下限値については、特に制限はなく小さいほうが好ましい(なお、50nm以上の場合が多い)。
 平均粒子径の測定方法としては、複合活物質の断面を電子顕微鏡で観察して、少なくとも10個の複合物の直径を測定して、それらを算術平均した値である。なお、複合物が真円状でない場合は、円相当径を用いる。「円相当径」とは、観察される複合物の形状を、複合物の投影面積と同じ投影面積をもつ円と想定したときの当該円の直径である。
 上述したように、複合物にはシリコンと二酸化ケイ素とが含まれ、シリコンが二酸化ケイ素中に内包されることが好ましい。また、図1に示すように、複合物中にシリコンは多数含まれていてもよい。
 複合物中におけるシリコンの平均粒子径は特に制限されないが、本発明の効果がより優れる点で、1~100nmが好ましく、1~20nmがより好ましい。
 平均粒子径の測定方法としては、複合活物質の断面を電子顕微鏡(TEM)で観察して、少なくとも10個のシリコンの直径を測定して、それらを算術平均した値である。なお、シリコンが真円状でない場合は、円相当径を用いる。「円相当径」とは、観察されるシリコンの形状を、シリコンの投影面積と同じ投影面積をもつ円と想定したときの当該円の直径である。
 また、複合物中におけるシリコンの含有量は特に制限されないが、本発明の効果がより優れる点で、複合物中の二酸化ケイ素の全合計質量に対して、20~200質量%が好ましく、40~150質量%がより好ましい。
 なお、必要に応じて、複合体中の二酸化ケイ素(SiO)はHFなどを用いて一部取り除いても構わない。その際、エッチングの量により、シリコン(Si)表面の二酸化ケイ素の量を調整することも可能である。表面保護の観点からは、ある一定量の二酸化ケイ素を残すことが好ましい。二酸化ケイ素を取り除くことで、活物質であるSiの相対質量を増加させ、容量を増加させることができる。また、必要であれば、さらに球形化に用いたミル等、等方的に圧力をかける装置を用い、二酸化ケイ素が抜けた後の空隙を減少させることも可能である。
 なお、上記のように、シリコンの含有量はHFでSiOを溶出することで上昇させることができ、その場合、シリコンの含有量は、複合物中の二酸化ケイ素の全合計質量に対して、100~9900質量%に調整できる。
 上記シリコンの含有量は、ICP発光分光分析法により測定することができる。
 複合活物質には、通常、炭素前駆体由来の炭化物(炭素材。例えば、ハードカーボン、ソフトカーボンなど)が含まれる。
 複合活物質中における炭化物の含有量は、上述した混合工程における炭素前駆体の含有量により適宜調整できる。
 なかでも、本発明の効果がより優れる点で、炭化物の含有量は、複合活物質全量に対して、1質量%以上が好ましく、2質量%がより好ましく、5質量%以上が特に好ましい。上限としては、30質量%以下が好ましく、20質量%以下がより好ましい。
 複合活物質の粒径(D50:50%体積粒径)は特に制限されないが、本発明の効果がより優れる点で、2~40μmが好ましく、5~35μmがより好ましく、5~30μmがさらに好ましい。
 なお、粒径(D90:90%体積粒径)は特に制限されないが、本発明の効果がより優れる点で、10~60μmが好ましく、20~45μmがより好ましい。
 さらに、粒径(D10:10%体積粒径)は特に制限されないが、本発明の効果がより優れる点で、1~20μmが好ましく、2~10μmがより好ましい。
 D10、D50およびD90は、レーザー回折散乱法により測定した累積粒度分布の微粒側から累積10%、累積50%、累積90%の粒径にそれぞれ該当する。
 なお、測定に際しては、複合活物質を液体に加えて超音波などを利用しながら激しく混合し、作製した分散液を装置にサンプルとして導入し、測定を行う。液体としては作業上、水やアルコール、低揮発性の有機溶媒を用いることが好ましい。この時、得られる粒度分布図は正規分布を示すことが好ましい。
 複合活物質の嵩密度は特に制限されないが、得られる複合活物質の体積当たりの容量をより大きくするため、0.5g/cm以上が好ましく、0.7g/cm以上がより好ましい。上限は特に制限されない。
 嵩密度の測定方法は、25mlのメスシリンダーを用いる以外、上述した黒鉛の嵩密度の測定方法と同じである。
 複合活物質のタップ密度は特に制限されないが、得られる複合活物質の体積当たりの容量をより大きくするため、0.8g/cm以上が好ましく、1.0g/cm以上がより好ましい。上限は特に制限されないが、1.6g/cm以下が好ましい。
 タップ密度の測定方法は、試料を25mlメスシリンダーには入れ、タッピングを行い、容量変化がなくなった時点の試料重量を試料体積で除して求める。
 複合活物質の比表面積(BET比表面積)は特に制限されないが、得られる複合活物質を用いたリチウム二次電池のサイクル特性がより優れる点で、5m/g以上が好ましく、8m/g以上がより好ましい。上限は特に制限されないが、100m/g以下が好ましい。
 複合活物質の比表面積(BET比表面積)の測定方法は、試料を300℃で30分真空乾燥後、窒素吸着1点法で測定する。
 必要に応じて、複合活物質の表面を炭素で被覆することができる。該処理を実施することにより、複合活物質の表面積を調整し、電気化学的安定性を高めることができる。
 炭素で被覆する方法は特に制限されないが、例えば、CVD法が挙げられる。より具体的には、トルエンなどのガスを流し、750~1100℃でCVD処理を行うことが好ましい。
 <リチウム二次電池>
 上述した複合活物質は、リチウム二次電池で使用される電池材料(電極材料)に使用される活物質として有用である。
 上記複合活物質を用いた電池材料の特徴として、電池材料の理論値に近い容量が得られること、膨張が抑制されていることが挙げられる。なお、該電池材料を用いた電池は優れたサイクル特性を示す。また、それ以外にも急速充放電特性にも優れ、その理由としては、シリコンが微細化している結果、Liイオンの拡散距離が小さいことが挙げられる。
 なお、上記複合活物質は特に負極に適用されることが好ましい。以下、複合活物質を負極に用いた態様について詳述する。
 複合活物質を使用してリチウム二次電池用負極を製造する方法は特に制限されず、公知の方法を使用することができる。
 例えば、複合活物質と結着剤とを混合し、加圧成形または溶剤を用いてペースト化し、銅箔上に塗布してリチウム二次電池用負極とすることができる。より具体的には、複合活物質92g、13%PVDF/NMP溶液62g、導電用カーボンブラック0.5g、およびNMP29gを混合し、通常用いられる双腕型ミキサーを用いて良好なスラリーが得られる。
 なお、集電体としては銅箔以外に、電池のサイクル特性がより優れる点で、三次元構造を有する材料を用いることもできる。三次元構造を有する集電体の材料としては、例えば、炭素繊維、スポンジ状カーボン(スポンジ状樹脂にカーボンを塗工したもの)、金属などが挙げられる。
 三次元構造を有する集電体(多孔質集電体)としては、金属や炭素の導電体の多孔質体として、平織り金網、エキスパンドメタル、ラス網、金属発泡体、金属織布、金属不織布、炭素繊維織布、または炭素繊維不織布などが挙げられる。
 使用される結着剤としては、公知の材料を使用でき、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系樹脂、SBR、ポリエチレン、ポリビニルアルコール、カルボキシメチルセルロース、膠などが用いられる。
 また、溶剤としては、例えば、水、イソプロピルアルコール、N-メチルピロリドン、ジメチルホルムアミドなどが挙げられる。
 なお、ペースト化する際には、上記のように必要に応じて、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合してもよい。
 複合活物質を用いて塗工用スラリーを調製する場合、導電材として導電性カーボンブラック、カーボンナノチューブまたはその混合物を添加することが好ましい。上記工程により得られた複合活物質の形状は、比較的、粒状化(特に、略球形化)している場合が多く、粒子間の接触は点接触となりやすい。この弊害を避けるために、スラリーにカーボンブラック、カーボンナノチューブまたはその混合物を配合する方法が挙げられる。カーボンブラック、カーボンナノチューブまたはその混合物はスラリー溶剤の乾燥時に該複合活物質が接触して形成する毛細管部分に集中的に凝集することが出来るので、サイクルに伴う接点切れ(抵抗増大)を防止することができる。
 カーボンブラック、カーボンナノチューブまたはその混合物の配合量は特に制限されないが、複合活物質100質量部に対して、0.2~4質量部であることが好ましく、0.5~2質量部であることがより好ましい。カーボンナノチューブの例としては、シングルウォールカーボンナノチューブ、マルチウォールカーボンナノチューブがある。
 (正極)
 上記複合活物質を使用して得られる負極を有するリチウム二次電池に使用される正極としては、公知の正極材料を使用した正極を使用することができる。
 正極の製造方法としては公知の方法が挙げられ、正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布する方法などが挙げられる。正極材料(正極活物質)としては、酸化クロム、酸化チタン、酸化コバルト、五酸化バナジウムなどの金属酸化物や、LiCoO、LiNiO、LiNi1-yCo、LiNi1-x-yCoAl、LiMnO、LiMn、LiFeOなどのリチウム金属酸化物、硫化チタン、硫化モリブデンなどの遷移金属のカルコゲン化合物、または、ポリアセチレン、ポリパラフェニレン、ポリピロールなどの導電性を有する共役系高分子物質などが挙げられる。
 (電解液)
 上記複合活物質を使用して得られる負極を有するリチウム二次電池に使用される電解液としては、公知の電解液を使用することができる。
 例えば、電解液中に含まれる電解質塩として、LiPF、LiBF、LiAsF、LiClO、LiB(C)、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN{(CFCHOSO、LiB{(C(CF、LiN(SOCF、LiC(SOCF、LiAlCl、LiSiFなどのリチウム塩を用いることができる。特にLiPFおよびLiBFが酸化安定性の点から好ましい。
 電解質溶液中の電解質塩濃度は0.1~5mol/lであることが好ましく、0.5~3mol/lであることがより好ましい。
 電解液で使用される溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1-または1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ-ブチロラクトン、1,3-ジオキソフラン、4-メチル―1,3-ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチル-2-オキサゾリン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。
 また、電解液には、フルオロエチレンカーボネート等の添加剤を加えることもできる。これらの添加剤はシリコン表面に安定な保護膜を形成し、サイクル特性を向上させることが知られている。
 なお、電解液の代わりに、高分子固体電解質、高分子ゲル電解質などの高分子電解質を使用してもよい。高分子固体電解質または高分子ゲル電解質のマトリクスを構成する高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのメタクリレート系高分子化合物、ポリアクリレートなどのアクリレート系高分子化合物、ポリビニリデンフルオライド(PVDF)やビニリデンフルオライド-ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が好ましい。これらを混合して使用することもできる。酸化還元安定性などの観点から、PVDFやビニリデンフルオライド-ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が特に好ましい。
 (セパレータ)
 上記複合活物質を使用して得られる負極を有するリチウム二次電池に使用されるセパレータとしては、公知の材料を使用できる。例えば、織布、不織布、合成樹脂製微多孔膜などが例示される。合成樹脂製微多孔膜が好適であるが、中でもポリオレフィン系微多孔膜が、膜厚、膜強度、膜抵抗などの点から好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜などである。
 リチウム二次電池は、上述した負極、正極、セパレータ、電解液、その他電池構成要素(例えば、集電体、ガスケット、封口板、ケースなど)を用いて、常法に従って円筒型、角型あるいはボタン型などの形態を有することができる。
 本発明のリチウム二次電池は、各種携帯電子機器に用いられ、特にノート型パソコン、ノート型ワープロ、パームトップ(ポケット)パソコン、携帯電話、携帯ファックス、携帯プリンター、ヘッドフォンステレオ、ビデオカメラ、携帯テレビ、ポータブルCD、ポータブルMD、電動髭剃り機、電子手帳、トランシーバー、電動工具、ラジオ、テープレコーダー、デジタルカメラ、携帯コピー機、携帯ゲーム機などに用いることができる。また、さらに、電気自動車、ハイブリッド自動車、自動販売機、電動カート、ロードレベリング用蓄電システム、家庭用蓄電器、分散型電力貯蔵機システム(据置型電化製品に内蔵)、非常時電力供給システムなどの二次電池として用いることもできる。
 実施例1
 (膨張黒鉛の調製)
 平均粒子径1mmの鱗片状天然黒鉛を硫酸9重量部、硝酸1重量部の混酸に室温で1時間浸漬後、No3ガラスフィルターで混酸を除去して酸処理黒鉛を得た。さらに酸処理黒鉛を水洗後、乾燥した。乾燥した酸処理黒鉛5gを蒸留水100g中で攪拌し、1時間後にpHを測定したところ、pHは6.7であった。乾燥した酸処理黒鉛を850℃に設定した窒素雰囲気下の縦型電気炉に投入し、膨張黒鉛を得た。酸処理黒鉛の嵩密度は0.78g/cmであった。膨張黒鉛の比表面積は83m/g、嵩比重は0.011g/cm、積層したグラフェンシートの層の平均厚みは16nmであった。
 (混合工程)
 平均粒子径0.3μmの一酸化ケイ素(SiO)微粉末のエタノールスラーリー(固体濃度26.6%、22.56質量部)をビーカー中で1600質量部のエタノールに投入し、炭素前駆体としてフェノール樹脂(炭化度40%、5質量部)を加え、撹拌を行いながら10分間、超音波処理を行った。
 SiOが分散したエタノールに上記膨張黒鉛(12質量部)を加え、膨張黒鉛とSiO微粉末とフェノール樹脂を含む均一混合スラリーを調製した。エバポレーターを用い、このスラリーからエタノールを回収し、粉末の混合物を得た。
 (プレス工程)
 3本ローラー(EKAKT50)を用い、上記粉末の混合物のプレスを行った。この処理で開いていた膨張黒鉛の層が閉じ、層間距離が縮まり、また密度も上昇し、次の球形化工程での衝突エネルギーを上昇させることで、球形化の効率を上げることが可能となる。
 (球形化工程)
 ニューパワーミル、PM-2005M-1380W(大阪ケミカル株式会社)(回転速度:20000rpm、処理時間:90秒を10回)を用いて、上記で得られた粉末の混合物を球形状に造粒成形を行った。
 (焼成、炭化処理、Si微細結晶形成)
 窒素を流しながら(1L/min)、球状の混合物を900℃で1時間加熱することで、フェノール樹脂の炭化と、SiOのシリコン(Si)と二酸化ケイ素(SiO)への熱分離とを同時に行った。これにより、黒鉛の含有量60質量%、シリコンおよび二酸化ケイ素を含む複合物の含有量30質量%、フェノール樹脂由来のハードカーボンの含有量10質量%からなる略球形のリチウム二次電池用複合活物質を得た。
 その物性は以下の通りである。嵩密度:0.67g/cm、タップ密度;1.21g/cm、粒度分布D90:43μm、D50:24μm、D10:5.7μm、比表面積:8.7m/g、形状:平均アスペクト比:1.55であった。
 10kV以下の低加速電圧にて、SEM(走査型電子顕微鏡)を用いて複合活物質の2次電子像をした所、黒鉛表皮を透過してシリコンが二酸化ケイ素中に分散した複合物(以後、単に複合物とも称する)の粒子を明瞭に観察することができた。
 このことから、複合活物質においては、薄い黒鉛層で複合物を挟み込んだ構造であることを直接観察することができた。また、表面に露出する複合物が極めて少ないこと、黒鉛エッジ面が複合材の表面に存在しないことも同時に確認できた。
 より具体的には、SEM観察により観察されるリチウム二次電池用複合活物質表面上に露出している黒鉛の面積率は98%であり、露出している複合物の面積率は2%であった。
 (負極製造)
 上記複合活物質92質量部、PVDF含有NMP溶液(PVDF(ポリフッ化ビニリデン)(含有量:13質量%)62質量部、導電用カーボンブラック0.5質量部、およびNMP29質量部を秤り取り、双腕型ミキサーを用いて3分間混合することで塗工用スラリーを調製した。本スラリーを銅箔に塗工し、乾燥して、負極を製造した。
 (正極製造)
 LiNi1-x-yCoAl84質量部、PVDF含有NMP溶液(PVDF(ポリフッ化ビニリデン)(含有量:12%)66質量部、導電用カーボンブラック8質量部、およびNMP29質量部を秤り取り、双腕型ミキサーを用いて3分間混合することで塗工用スラリーを調製した。本スラリーをアルミ箔に塗工し、乾燥して、正極を製造した。
 (フルセル製造)
 上記負極と正極を電極とし、エチレンカーボネート:ジエチルカーボネート=1:1、1.2モル/リットルのLiPF電解液、さらに2体積%のフルオロエチレンカーボネートを加えてフルセルを作製し、以下の電池評価を行った。
 (電池評価:電極膨張測定)
 上記フルセルを用い、サイクル試験を行い、その後、セルを分解し、電極を取り出し、電極の厚みの変化{(試験後の電極の厚み-試験前の電極の厚み)/試験前の電極の厚み×100}を測定した。なお、充放電のレートはC/3(0.18mA)を用い、充電側でのカットオフ電圧は4.2V、放電側のカットオフ電圧は3.0Vとし、サイクル実験を行った。
 なお、サイクル試験前の電極の形状は、直径14mmで厚みが55μmの円盤状であった。なお、厚みは平均値であり、円盤の中心と、他の任意の3点の厚みを測定して、それらを算術平均した値である。また、サイクル試験後の電極の厚みも、同様に、円盤の中心と、他の任意の3点の厚みを測定して、それらを算術平均した値である。
 また、サイクル実験においては、2回目のサイクルにおける放電容量平均値(mAh)を基準とした11回目のサイクルにおける容量維持率を測定した。
 また、10サイクル目におけるクーロン効率も合わせて測定した。
 結果を表1にまとめて示す。
 比較例1
 特許文献1(特許第5227483号公報)の実施例1の記載に従って、黒鉛の含有量70質量%、金属Siの含有量30質量%からなる略球形のリチウム二次電池用複合活物質を得た。
 得られた複合活物質を用いて、実施例1と同様の手順に従って、フルセルを製造して、各種評価を実施した。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、本発明のリチウム二次電池用複合活物質を用いたフルセルは、優れた容量維持率およびクーロン効率を示し、サイクル特性に優れることが確認された。また、該複合活物質を含む電極も膨張が抑制されていることが確認された。
 一方、特許文献1の態様である比較例1では、実施例と比較して、フルセルのサイクル特性に劣り、電極の膨張も大きかった。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、2013年8月14日に出願された日本特許出願2013-168719号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 本発明による複合活物質は、リチウム二次電池の電極材料として使用できる。
 10  複合活物質
 12  黒鉛成分
 14  複合物
 16  二酸化ケイ素
 18  シリコン

Claims (8)

  1. シリコンおよび二酸化ケイ素を含む複合物と、黒鉛成分とを含有し、加速電圧10kV以下での走査型電子顕微鏡観察により観察される表面上に露出している前記黒鉛成分の面積率が95%以上であることを特徴とするリチウム二次電池用複合活物質。
  2. 前記シリコンの平均粒子径が1~100nmであることを特徴とする請求項1に記載のリチウム二次電池用複合活物質。
  3. 前記複合物の平均粒子径が50~1000nmであることを特徴とする請求項1または2に記載のリチウム二次電池用複合活物質。
  4. 比表面積30m/g以上の黒鉛と、一酸化ケイ素と、炭素前駆体とを混合して、混合物を得る混合工程と、
    前記混合物を球形化処理し、球状の混合物を得る球形化工程と、
    前記球状の混合物を加熱処理し、略球状のリチウム二次電池用複合活物質を製造する加熱工程と、
    を有することを特徴とする請求項1に記載のリチウム二次電池用複合活物質の製造方法。
  5. 前記一酸化ケイ素の平均粒子径が1μm以下であることを特徴とする請求項4に記載のリチウム二次電池用複合活物質の製造方法。
  6. 前記炭素前駆体が、高分子化合物、石炭系ピッチ、石油系ピッチ、メソフェーズピッチ、コークス、低分子重質油、およびそれらの誘導体からなる群から選択される少なくとも1種であることを特徴とする請求項4または5に記載のリチウム二次電池用複合活物質の製造方法。
  7. 前記黒鉛が膨張黒鉛であることを特徴とする請求項4~6のいずれか1項に記載のリチウム二次電池用複合活物質の製造方法。
  8. 請求項1~3のいずれか1項に記載のリチウム二次電池用複合活物質を含むことを特徴とするリチウム二次電池。
PCT/JP2014/071308 2013-08-14 2014-08-12 リチウム二次電池用複合活物質およびその製造方法 WO2015022964A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14836628.9A EP3035418B1 (en) 2013-08-14 2014-08-12 Composite active material for lithium secondary batteries and method for producing same
CN201480045075.XA CN105453310A (zh) 2013-08-14 2014-08-12 锂二次电池用复合活性物质及其制造方法
US14/911,826 US10749178B2 (en) 2013-08-14 2014-08-12 Composite active material for lithium secondary batteries and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-168719 2013-08-14
JP2013168719A JP6508870B2 (ja) 2013-08-14 2013-08-14 リチウム二次電池用複合活物質およびその製造方法

Publications (1)

Publication Number Publication Date
WO2015022964A1 true WO2015022964A1 (ja) 2015-02-19

Family

ID=52468349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071308 WO2015022964A1 (ja) 2013-08-14 2014-08-12 リチウム二次電池用複合活物質およびその製造方法

Country Status (5)

Country Link
US (1) US10749178B2 (ja)
EP (1) EP3035418B1 (ja)
JP (1) JP6508870B2 (ja)
CN (1) CN105453310A (ja)
WO (1) WO2015022964A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190177171A1 (en) * 2016-08-11 2019-06-13 Wacker Chemie Ag Production of si/c composite particles
CN115911303A (zh) * 2022-10-25 2023-04-04 广东容钠新能源科技有限公司 一种高倍率硅基硬炭材料的制备方法及应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133690A1 (en) * 2015-07-20 2017-02-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Silicon-carbon composite particulate material
JP6733248B2 (ja) * 2016-03-22 2020-07-29 東ソー株式会社 リチウム二次電池用複合活物質の製造方法
CA3037214C (en) * 2016-10-11 2022-01-04 Grst International Limited Cathode slurry for lithium ion battery
CN110235286A (zh) * 2016-11-28 2019-09-13 新罗纳米技术有限公司 具有改进的粘合剂、结构和性能的高容量电池电极
WO2018179111A1 (ja) * 2017-03-28 2018-10-04 日立化成株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
US10714745B2 (en) 2017-07-28 2020-07-14 Uchicago Argonne, Llc High energy, long cycle life electrode for lithium-ion batteries
CN107623113A (zh) * 2017-09-08 2018-01-23 赣州市瑞富特科技有限公司 一种多孔长循环硅碳负极材料制备方法
KR102244953B1 (ko) * 2017-11-09 2021-04-27 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
JP6978947B2 (ja) * 2018-01-12 2021-12-08 株式会社クレハ 電池用負極材料及びその製造方法、二次電池用負極、並びに二次電池
KR20200110756A (ko) * 2018-01-31 2020-09-25 히타치가세이가부시끼가이샤 리튬 이온 이차 전지용 음극 활물질, 리튬 이온 이차 전지용 음극 및 리튬 이온 이차 전지
US11063255B2 (en) * 2018-01-31 2021-07-13 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN114744167B (zh) * 2022-03-10 2024-02-27 合盛科技(宁波)有限公司 一种氧化亚硅/膨胀石墨/碳复合材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123175A (ja) * 2003-09-26 2005-05-12 Jfe Chemical Corp 複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池
JP2008027897A (ja) 2006-06-20 2008-02-07 Osaka Gas Chem Kk リチウムイオン二次電池用負極活物質
JP2012124115A (ja) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2013030428A (ja) * 2011-07-29 2013-02-07 Sumitomo Bakelite Co Ltd リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP2013073764A (ja) * 2011-09-27 2013-04-22 Toshiba Corp 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
JP5227483B1 (ja) 2011-08-22 2013-07-03 直芳 可知 リチウム二次電池用複合活物質およびその製造方法
JP2013219018A (ja) * 2012-03-11 2013-10-24 Connexx Systems株式会社 リチウム二次電池用複合活物質およびその製造方法
WO2014129594A1 (ja) * 2013-02-21 2014-08-28 Connexx Systems 株式会社 リチウム二次電池用複合活物質およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278429B (en) * 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2004119176A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 非水電解質二次電池用負極活物質及び非水電解質二次電池
KR100578870B1 (ko) 2004-03-08 2006-05-11 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
JP4519592B2 (ja) * 2004-09-24 2010-08-04 株式会社東芝 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP4533822B2 (ja) 2005-08-24 2010-09-01 株式会社東芝 非水電解質電池および負極活物質
JP5143437B2 (ja) * 2007-01-30 2013-02-13 日本カーボン株式会社 リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極
KR101375328B1 (ko) 2007-07-27 2014-03-19 삼성에스디아이 주식회사 Si/C 복합물, 이를 포함하는 음극활물질 및 리튬전지
JP5272492B2 (ja) * 2008-04-21 2013-08-28 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法、ならびに非水電解質二次電池用負極及び非水電解質二次電池
US9093693B2 (en) * 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
WO2011057074A2 (en) 2009-11-06 2011-05-12 Northwestern University Electrode material comprising graphene-composite materials in a graphite network
US9558860B2 (en) * 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
EP2650954B1 (en) * 2010-12-10 2016-09-28 Hitachi Chemical Co., Ltd. Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013073920A (ja) * 2011-09-29 2013-04-22 Sumitomo Bakelite Co Ltd 組成物、リチウムイオン二次電池負極材用炭素複合材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
KR20140026633A (ko) 2011-07-29 2014-03-05 스미토모 베이클리트 컴퍼니 리미티드 리튬 이온 2차 전지용 탄소재의 제조 방법, 리튬 이온 2차 전지용 탄소재, 리튬 이온 2차 전지용 부극 활물질, 조성물, 리튬 이온 2차 전지 부극재용 탄소 복합재, 리튬 이온 2차 전지용 부극 합제, 리튬 이온 2차 전지용 부극 및 리튬 이온 2차 전지

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123175A (ja) * 2003-09-26 2005-05-12 Jfe Chemical Corp 複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池
JP2008027897A (ja) 2006-06-20 2008-02-07 Osaka Gas Chem Kk リチウムイオン二次電池用負極活物質
JP2012124115A (ja) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2013030428A (ja) * 2011-07-29 2013-02-07 Sumitomo Bakelite Co Ltd リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP5227483B1 (ja) 2011-08-22 2013-07-03 直芳 可知 リチウム二次電池用複合活物質およびその製造方法
JP2013073764A (ja) * 2011-09-27 2013-04-22 Toshiba Corp 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
JP2013219018A (ja) * 2012-03-11 2013-10-24 Connexx Systems株式会社 リチウム二次電池用複合活物質およびその製造方法
WO2014129594A1 (ja) * 2013-02-21 2014-08-28 Connexx Systems 株式会社 リチウム二次電池用複合活物質およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3035418A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190177171A1 (en) * 2016-08-11 2019-06-13 Wacker Chemie Ag Production of si/c composite particles
US10968106B2 (en) * 2016-08-11 2021-04-06 Wacker Chemie Ag Production of Si/C composite particles
CN115911303A (zh) * 2022-10-25 2023-04-04 广东容钠新能源科技有限公司 一种高倍率硅基硬炭材料的制备方法及应用

Also Published As

Publication number Publication date
EP3035418A1 (en) 2016-06-22
EP3035418A4 (en) 2017-01-18
US10749178B2 (en) 2020-08-18
JP6508870B2 (ja) 2019-05-08
US20160197345A1 (en) 2016-07-07
CN105453310A (zh) 2016-03-30
EP3035418B1 (en) 2019-07-31
JP2015037057A (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
WO2015022964A1 (ja) リチウム二次電池用複合活物質およびその製造方法
US20190088935A1 (en) Composite active material for lithium secondary batteries and method for producing same
JP6334195B2 (ja) リチウム二次電池用複合活物質およびその製造方法
JP2017130274A (ja) リチウム二次電池用負極材およびその製造方法、リチウム二次電池
WO2016125819A1 (ja) リチウム二次電池用複合活物質およびその製造方法
JP7480284B2 (ja) 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
JP6961980B2 (ja) リチウム二次電池用複合活物質およびその製造方法
JP7452599B2 (ja) リチウム二次電池用複合活物質
JP2018029049A (ja) シリコン系リチウム二次電池用複合活物質およびその製造方法
JP6759583B2 (ja) リチウム二次電池用複合活物質およびその製造方法、リチウム二次電池
JP2017134937A (ja) リチウム二次電池用複合活物質およびその製造方法
JP6808959B2 (ja) リチウムイオン二次電池用複合活物質およびその製造方法
JP2019175851A (ja) リチウムイオン二次電池用負極活物質及びその製造方法
JP6961981B2 (ja) リチウム二次電池用複合活物質およびその製造方法
KR102176590B1 (ko) 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
JP2013219018A (ja) リチウム二次電池用複合活物質およびその製造方法
JP2016173938A (ja) 非水電解液蓄電素子
JP2022190387A (ja) リチウム二次電池用複合活物質およびその製造方法
JP2017168376A (ja) リチウム二次電池用複合活物質およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045075.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014836628

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14911826

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE