WO2015022846A1 - 陽極及びその製造方法 - Google Patents

陽極及びその製造方法 Download PDF

Info

Publication number
WO2015022846A1
WO2015022846A1 PCT/JP2014/069433 JP2014069433W WO2015022846A1 WO 2015022846 A1 WO2015022846 A1 WO 2015022846A1 JP 2014069433 W JP2014069433 W JP 2014069433W WO 2015022846 A1 WO2015022846 A1 WO 2015022846A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
holding member
melting point
anode
hole
Prior art date
Application number
PCT/JP2014/069433
Other languages
English (en)
French (fr)
Inventor
憲明 菅本
龍夫 木部
哲郎 加茂
剛 岩佐
哲史 川上
功 高田
敏夫 森本
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201480044604.4A priority Critical patent/CN105452535A/zh
Priority to KR1020167002919A priority patent/KR20160041907A/ko
Priority to US14/909,830 priority patent/US20160201205A1/en
Publication of WO2015022846A1 publication Critical patent/WO2015022846A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • B22D25/04Casting metal electric battery plates or the like
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form

Definitions

  • the present invention relates to an anode used for electrolysis and a method for producing the same, and more particularly to an anode used for electrolyzing a low melting point metal or a low melting point alloy and a method for producing the same.
  • Electrolysis is an abbreviation for electrolysis.
  • a direct current is passed through both to cause a chemical change on the electrode surface, which decomposes the substance. It is to purify.
  • metal refining or metal plating is an example of an electrolysis method in which a metal is decomposed at the anode surface on the cathode surface by applying voltage with the anode as an anode, and a coating is formed in a high purity state. .
  • the anode used in electrolysis is an anode 100 as shown in FIG. 10 in many cases as shown in Patent Document 2.
  • the anode 100 is molded into a single plate having a protrusion 101 on the top, and is electrically connected to the power supply unit 102 by hooking or hanging the protrusion 101 on the power supply unit 102.
  • this exothermic phenomenon does not increase so much that the anode formed of a general metal such as copper is softened or melted.
  • a metal or alloy having a low melting point such as tin or indium
  • the heat generation softens and deforms, or the protrusion 101 and the power supply portion 102 that are at the highest temperature.
  • the protrusion 101 melts at the contact point, and the anode 100 itself cannot be supported, causing a problem of dropping into the electrolytic cell.
  • the normal integral-type anode 100 as shown in FIG. 10 has a very small contact area between the protrusion 101 and the power feeding portion 102, and therefore generates heat when a large voltage or current is passed. Cannot be kept low. For this reason, it becomes difficult to prevent the anode 100 from falling off. Therefore, in the anode 100, the electrolysis process must be completed in a short time until dropping off, the workability is deteriorated, and there is only a method of performing electrolysis while keeping the voltage and current low, and the metal deposition efficiency is poor. Become.
  • Patent Document 3 As shown in FIG. 11, holes 104 are formed in two upper portions of the electrode plate 103 for the anode, and are suspended from the power supply metal rod 106 through the conductive connection jig 105. And a method of electrically connecting the power feeding unit 107 is disclosed. Further, in Patent Document 4, as shown in FIG. 12, a ribbon-like metal suspension 109 is attached to an electrode plate 108 at two places and suspended from a power supply metal rod 110, and the metal rod 110 and the power supply portion 111 are connected. A method of electrical connection is disclosed.
  • Patent Document 4 is a method that is often used as an electrode on the cathode side, but such a structure is also used for the anode.
  • a metal suspension 109 and an electrode plate 108 are joined at two locations by rivets as shown in FIG.
  • This metal suspension 109 is made of thin metal with good workability in order to make a firm contact with the metal rod 110 and is easily deformed. It ’s hard to say. Also, for the purpose of using the suspension 109, it is common not to use a metal wider than necessary if the electrode plate 108 can be sufficiently held.
  • the electrode of a low-melting-point metal or low-melting-point alloy such as tin or indium is somewhat relaxed with respect to the temperature rise than the point contact as in the method described in Patent Document 3.
  • the effect is not sufficient for the plate, softening occurs when a large voltage or current is applied, and the weight of the metal suspension 109 and the electrode plate 108 in the vicinity of the joined portion where there is no holding portion on the upper side is added. , It starts to deform due to its own weight and falls off.
  • an electrode plate made of a low-melting-point metal or a low-melting-point alloy, and a holding member that holds the electrode plate and is electrically connected to the power feeding unit. It is an object of the present invention to provide an anode and a method for manufacturing the same, which can suppress the temperature rise at the connecting portion between the electrodes and allow long-term electrolysis without melting and dropping off the electrode plate. In particular, an object of the present invention is to provide an anode capable of long-term electrolysis without dropping off the electrode plate even when a large voltage or current is applied to the electrode plate, and a method for manufacturing the same.
  • the anode according to the present invention that achieves the above-described object is provided with a length of one side in the vicinity of one side of at least one main surface of an electrode plate made of a low melting point metal or low melting point alloy having a melting point of 100 ° C. or higher and 250 ° C. or lower.
  • a holding member made of a metal or alloy having the above length and having a melting point higher than the melting point of the electrode plate is attached by surface contact.
  • the manufacturing method of the anode according to the present invention is a low melting point metal or low melting point obtained by cooling and solidifying a low melting point metal or low melting point alloy having a melting point of 100 ° C. or higher and 250 ° C. or lower in a mold.
  • the alloy is removed from the mold to obtain an electrode plate, and has a length equal to or greater than the length of one side of at least one main surface of the obtained electrode plate, and a melting point higher than the melting point of the electrode plate.
  • An anode is manufactured by attaching a holding member made of a metal or an alloy so as to be in surface contact.
  • a holding member having a length equal to or longer than the length of one side of at least one main surface of the electrode plate is attached to the electrode plate while being in surface contact with each other.
  • the electrode plate can be easily melted by using a low melting point metal or low melting point alloy having a low melting point of 100 ° C. or more and 250 ° C. or less, and cooled and solidified to obtain an electrode plate by casting.
  • a low melting point metal or low melting point alloy having a low melting point of 100 ° C. or more and 250 ° C. or less
  • a temperature rise due to electrical resistance at the connecting portion between the electrode plate and the holding member is suppressed, and melting of the electrode plate is prevented.
  • FIG. 1 is a perspective view of an anode to which the present invention is applied.
  • FIG. 2 is an exploded perspective view of the anode.
  • FIG. 3 is an exploded perspective view of an anode having an electrode plate in which grooves are formed.
  • 4A and 4B are diagrams showing the relationship between the mold and the fixing plate, FIG. 4A is a plan view, and FIG. 4B is a side view.
  • FIG. 5 is a perspective view showing the relationship between the mold, the fixing plate, and the bar.
  • FIG. 6 is a perspective view of a mold for manufacturing an electrode plate having a groove.
  • FIG. 7 is a schematic view of an electrolysis apparatus.
  • FIG. 8 is a schematic view showing the arrangement of electrodes in the electrolytic cell.
  • FIG. 1 is a perspective view of an anode to which the present invention is applied.
  • FIG. 2 is an exploded perspective view of the anode.
  • FIG. 3 is an exploded perspective view of an anode having an electrode plate
  • FIG. 9 is a plan view of the anode used in the comparative example.
  • FIG. 10 is a plan view of a conventional anode.
  • FIG. 11 is a plan view of a conventional anode.
  • FIG. 12 is a plan view of a conventional anode.
  • the anode 1 shown in FIG. 1 and FIG. 2 to which the present invention is applied is an anode used for electrolysis, and is of a type that is hooked or hung on a power feeding part of an electrolysis apparatus.
  • a holding member 3 that holds the electrode plate 2 during electrolysis is attached to a holding member attachment surface 2 a that is located near one side of both main surfaces of the electrode plate 2.
  • the electrode plate 2 is made of a low melting point metal or a low melting point alloy having a melting point of 100 ° C. or higher and 250 ° C. or lower, and is formed in a square or rectangular plate shape, for example.
  • the low melting point metal or low melting point alloy include tin, indium, an alloy of indium and tin (for example, In-9.6 wt% Sn), an alloy of indium and gallium (for example, In-6.3 wt% Ga), and the like. Can do.
  • the thickness of the electrode plate 2 is appropriately determined from preventing it from falling off the holding member 3 due to the weight of the electrode plate 2 itself, the thickness of the anode 1 becoming thinner as the electrolysis proceeds, and the like.
  • the thickness of the electrode plate 2 is preferably 2 mm or more and 15 mm or less. A thickness of 2 mm or less is not preferable because it is thin and may be broken during handling, and the anode 1 for electrolysis is easily pitted.
  • the thickness is 15 mm or more, the electrode plate 2 becomes heavy and easily falls off, making it difficult to handle, and when the anode 1 becomes thin as the electrolysis progresses, the distance between the electrodes increases and the voltage rises significantly. This is not preferable.
  • the low melting point metal or low melting point alloy forming the electrode plate 2 is characterized by being softer as the purity is higher and the temperature is higher. For this reason, the electrode plate 2 obtained by molding the low melting point metal or the low melting point alloy into a plate shape has the holding member 3 having a large contact area attached to the holding member attaching surface 2a located above when the electrode plate 2 is attached to the electrolysis apparatus. The state suspended by the holding member 3 in the electrolytic solution is maintained.
  • the holding member 3 is attached to the holding member mounting surface 2a of the electrode plate 2, holds the electrode plate 2 in an electrolytic solution during electrolysis, and electrically connects the electrode plate 2 and a power feeding unit provided in the electrolysis apparatus. Connect to.
  • the holding member 3 is made of a metal or alloy having a melting point higher than that of the electrode plate 2 and high electrical conductivity. By using a metal or alloy having a melting point higher than the melting point of the electrode plate 2, the holding member 3 is melted before the electrode plate 2 even if the resistance increases at the contact portion with the electrode plate 2 and the temperature rises. Thus, the electrode plate 2 can be prevented from falling off.
  • the metal or alloy forming the holding member 3 include silver, copper, gold, and alloys thereof. Among them, it is preferable to use copper that is inexpensive in terms of cost.
  • the holding member 3 is preferably made of a metal or alloy having a high melting point and high electrical conductivity and coated with a metal having a low ionization tendency that does not cause corrosion by the electrolyte.
  • the metal for coating include noble metals such as platinum and titanium in order to prevent the core material from forming a non-conductive film due to corrosion or the like. Among them, it is preferable to use titanium which is inexpensive in terms of cost. When the requirement for corrosion resistance by the electrolytic solution is not high, it is more preferable to select a metal having high electrical conductivity and wear resistance.
  • the core material can be coated by a general method such as welding, plating, or cladding. There is no problem in partially covering only the portions where there is a risk of corrosion. If there is no concern about corrosion due to the electrolytic solution, only the uncovered core material may be used as the holding member 3.
  • the holding member 3 As the shape of the holding member 3, it is attached so as to be in surface contact with one side of at least one main surface of the electrode plate 2, that is, the holding member attaching surface 2 a, and holds the electrode plate 2. As long as they can be electrically connected, the shape is not particularly limited.
  • Examples of the holding member 3 include those shown in FIGS. 1 and 2.
  • the holding member 3 shown in FIG. 1 is electrically connected via the electrode plate 2 and the conductive connection member 6, electrically connects the electrode plate 2 and the power feeding unit, and holds the electrode plate 2 in the electrolyte.
  • the electrode plate holding member 4, the conductive connection member 6 that electrically connects the electrode plate 2 and the electrode plate holding member 4, and the bolt 5 that attaches the conductive connection member 6 to the electrode plate 2 and the electrode plate holding member 4. Have.
  • the lower end of the electrode plate holding member 4 is connected to the electrode plate 2 via the conductive connection member 6, and the upper end of the electrode plate holding member 4 is horizontally oriented so that the electrode plate 2 is hooked or hung on the power feeding portion. It has a structure with arms extended. This overhanging portion becomes a power supply connecting portion 4a that is electrically connected to the power supply portion.
  • the power feeding connecting portion 4a may be formed in a horizontal bar shape or a plate shape.
  • the shape of the power supply connection portion 4a is preferably a structure that can ensure a sufficient contact area with the power supply portion, and when the anode and cathode are alternately installed (see FIG. 8), the distance between the anode and cathode electrodes It should be something that does not become too wide.
  • the conductive connecting member 6 has a length equal to or longer than the length of the holding member mounting surface 2a of the electrode plate 2 and the bolt 5 so as to be in contact with the entire holding member mounting surface 2a of the electrode plate 2 formed in a plate shape.
  • the electrode plate holding member 4 are formed in a plate shape having a sufficient width that can be connected integrally. It is preferable to use a metal having good conductivity for the conductive connecting member 6. Since the conductive connecting member 6 is connected to the electrode plate 2 by surface contact, heat is diffused even if the temperature rises due to electric resistance at the connection portion between the electrode plate 2 and the conductive connecting member 6, so that the electrode plate 2 is melted. The electrode plate 2 can be prevented from melting even when a large voltage or current is applied. Further, even if the temperature rises due to electric resistance and softening occurs somewhat, the entire holding member mounting surface 2a of the electrode plate 2 and the conductive connecting member 6 are connected, so that the electrode plate 2 can be prevented from falling off.
  • the electrode plate 2 and the holding member 3 are connected to each other in a state where the electrode plate holding member 4 is abutted against the electrode plate 2.
  • Bolts 5 are passed through each of them, and the bolts 5 and nuts (not shown) are fastened.
  • one through hole 9 of the two conductive connecting members 6 is a screw hole corresponding to the bolt 5, and the electrode plate 2 and the electrode plate holding member 4 are connected to the conductive connecting member 6 without using a nut.
  • FIG. 1 Thereby, the electrode plate 2 and the holding member 3 having the electrode plate holding member 4 and the two conductive connection members 6 are integrated, and the electrode plate 2 and the electrode plate holding member 4 are connected by the bolt 5 and the conductive connection member 6. Are electrically connected.
  • the electrode plate 2, the electrode plate holding member 4 and the conductive connection member 6 are previously formed with through holes 7, 8, and 9 through which the bolts 5 are passed.
  • FIG. 1 an example in which four bolts 5 are attached to each of the electrode plate 2 and the electrode plate holding member 4 has been shown, but the present invention is limited to this.
  • the distance between the bolts 5 may be sufficiently widened symmetrically and equally spaced.
  • the electrode plate 2 may have a through hole 7 through which the bolt 5 is passed as a groove 7a.
  • the groove portion 7a is provided on the outer peripheral portion of the electrode plate 2 facing the electrode plate holding member 4, and the upper end portion side facing the electrode plate holding member 4 is opened, and is formed into a groove shape by cutting with a width equal to or larger than the diameter of the bolt 5.
  • the shape of the groove portion 7a is not limited to the U-shaped groove portion shown in FIG. 3, but may be, for example, a triangular or quadrangular groove, and the bolt 5 is passed through the groove portion 7a of the electrode plate 2. Any shape may be used as long as it can be attached to the electrode plate holding member 4.
  • the electrode plate 2 and the connecting member 3 can be connected as in the case shown in FIG.
  • Both main surfaces of the butted electrode plate 2 and electrode plate holding member 4 are sandwiched between two conductive connection members 6, and the groove 7a of the electrode plate 2, the two conductive connection members 6, and the electrode plate holding member 4 and two sheets.
  • Bolts 5 are passed through each of the conductive connecting members 6 and the bolts 5 and nuts (not shown) are fastened.
  • the electrode plate 2 can be easily attached to and detached from the electrode plate holding member 4 by forming a groove-like groove portion 7a instead of using a through-hole as a through-hole.
  • the bolt 5 is removed and the two conductive connecting members 6 are not completely separated from the electrode plate 2 and the electrode plate holding member 4, but only by loosening the bolt 5
  • the used electrode plate 2 can be easily removed from the holding member 3.
  • the new electrode plate 2 is inserted between the conductive connection member 6 so that the bolt 5 fits into the groove portion 7a, and the bolt 5 is tightened to easily form the electrode.
  • the plate 2 can be fixed.
  • the electrode plate 2 in which the groove part 7a is formed can be easily attached and detached, the working efficiency can be improved.
  • the electrode plate 2 and the electrode plate holding member 4 are sandwiched between two conductive connection members 6, and the connection state is maintained by the bolts 5 and the conductive connection members 6, so that the electrode plate 2 is electrolyzed. Hold in liquid.
  • the holding member 3 electrically connects the electrode plate 2 and the electrode plate holding member 4 via the conductive connection member 6, and electrically connects the electrode plate 2 and the power supply portion on which the power supply connection portion 4a is caught. Connecting.
  • the holding member 3 is not limited to the one shown in FIG. 1, and as a simpler method, for example, a method of attaching and detaching with one touch using a pinching force using a spring or the like may be adopted.
  • a simpler method for example, a method of attaching and detaching with one touch using a pinching force using a spring or the like may be adopted.
  • Corrosion countermeasures become more important and maintenance becomes complicated.
  • the holding member 3 using the bolt 5 shown in FIG. 1 having a simpler structure is preferable.
  • the holding member 3 is attached only to the holding member mounting surface 2a of one main surface of the electrode plate 2 as long as the electrode plate 2 can be held and the electrode plate 2 and the power feeding portion can be electrically connected. It may be a thing.
  • the electrode plate 2 and the holding member 3, for example, the conductive connection member 6 in FIG. 1 are in surface contact even if the electrode plate 2 is formed of a low melting point metal or a low melting point alloy. Therefore, even if resistance heating occurs in the connection portion, heat is diffused and the temperature rise is suppressed, so that melting of the electrode plate 2 can be prevented, and the holding member for the electrode plate 2 even if resistance heating causes some softening By holding the entire mounting surface 2a with the holding member 3, it is possible to prevent the electrode plate 2 from falling off and to perform electrolysis for a long time.
  • the electrode plate 2 and the holding member 3 are in surface contact, even when a large voltage or current is passed through the electrode plate 2, the electrode plate 2 does not fall off, and for a long time. Electrolysis can be performed. Moreover, since the anode 1 is held without dropping from the holding member 3 even when the thickness of the electrode plate 2 is increased, for example, a thickness of 8 mm or more, it can be electrolyzed for a long time.
  • the electrode plate 2 is manufactured by casting using a mold that matches the shape of the electrode plate 2.
  • the electrode plate 2 used for the anode 1 shown in FIGS. 1 and 2 is equivalent to the size of the electrode plate 2 on a graphite carbon plate having a sufficient thickness, for example, as shown in FIGS. It forms using the casting_mold
  • the graphite carbon mold 10 the heat is easily transferred to the metal placed in the recess 10 a during heating, so that the metal is easily melted and the solidified metal from the mold 10 is easily taken out after cooling.
  • the mold 10 can be made of polytetrafluoroethylene or refractory metal in addition to graphite carbon from the viewpoint of heat resistance.
  • polytetrafluoroethylene since the thermal conductivity is poor, it takes time to melt the metal, which is not preferable.
  • a high melting point metal wettability with a molten low melting point metal or a low melting point alloy becomes high, and it becomes difficult to peel off from a mold when cooled and solidified, which is not preferable. Therefore, graphite carbon is preferable as a material having good thermal conductivity and less deformation due to thermal expansion and good peelability.
  • the dimensions of the mold 10 are determined by the thickness and width dimensions of the electrode plate 2. In order to make it easier to take out the cooled and solidified electrode plate 2, the recess 10 a of the mold 10 may be provided with an angle so that the inner wall extends from the bottom surface toward the opening.
  • the through hole 7 through which the bolt 5 for attaching the holding member 3 is passed is formed on the holding member attaching surface 2a to which the holding member 3 of the electrode plate 2 to be formed is attached.
  • the through hole 7 As a method for forming the through hole 7, as shown in FIGS. 4 and 5, while the low melting point metal or the low melting point alloy is melted in the mold 10, it is the same as the bolt 5 from the opening side of the mold 10.
  • the rod 11 having a diameter By inserting the rod 11 having a diameter, the inserted rod 11 portion becomes the through hole 7.
  • the fixing plate 13 is formed in a plate shape having a size almost the same as the width of the mold 10 and has a through hole 12 for passing the rod 11. Use.
  • the fixing plate 13 is covered with the opening of the mold 10 in parallel with the mold 10 and without floating on the mold 10.
  • the fixing plate 13 has a structure in which the positional accuracy is firmly maintained so that the fixing plate 13 is appropriately covered on the mold 10 every time casting is repeated. For this reason, as shown in FIG. 5, the fixed plate 13 has the same height as the thickness of the mold 10 on the bottom surface of one short side so as to be L-shaped. An accuracy maintaining member 14 having the same length is attached.
  • the accuracy maintaining member 14 is fitted so as to slide along the outer surface of the mold 10 when the fixing plate 13 is put on the mold 10. Since the accuracy maintaining member 14 is formed at the same height as the mold 10, the accuracy of the height of the fixing plate 13 can be maintained, and the length is formed to be the same as the length of the fixing plate 13. By matching the end portion 14a with the corner portion 10b of the mold 10, the accuracy of the position of the through hole 12 through which the rod 11 is passed can be maintained.
  • the accuracy maintaining member 14 is not limited to the above-described structure as long as high positional accuracy can be maintained.
  • the rod 11 forming the through-hole 7 is preferably heat-resistant and has a poor wettability with the metal so that it can be easily removed even after the low melting point metal or low melting point alloy is solidified.
  • a rod 11 made of polytetrafluoroethylene it is preferable to use.
  • the size of the rod 11 needs to be long enough to penetrate the electrode plate 2 to be cast and a diameter corresponding to the diameter of the bolt 5.
  • the number of rods 11 and the interval at which the rods 11 are inserted are adjusted to the number and position of the bolts 5.
  • the low melting point metal or low melting point alloy is heated to the melting point or higher in the mold 10 and the low melting point metal or low melting point alloy is sufficiently melted.
  • the fixing plate 13 in a state where the rod 11 is passed through the hole 12 in a state of spreading in the mold 10 is placed on the mold 10 so that the rod 11 faces the portion where the through hole 7 is formed, and the rod is placed in the molten metal. 11 is inserted. Then, the metal is cooled and solidified by standing with the rod 11 inserted. Then, the rod 11 is extracted from the hole 12, and the solidified metal is removed from the mold 10 to obtain the electrode plate 2 in which the through hole 7 is formed.
  • the through-hole 8 is formed in the edge part connected with the conductive connection member 6 of the electrode plate holding member 4, and the through-hole 7 of the electrode plate 2 of the conductive connection member 6 and the through-hole 8 of the electrode plate holding member 4 are opposed.
  • a through-hole 9 through which the bolt 5 is passed is formed at a position where it is to be performed. Examples of the method for forming the through holes 8 and 9 include cutting with a general drill.
  • the holding member 3 is attached to the holding member attachment surface 2a of the electrode plate 2 obtained as described above, and the anode 1 is manufactured.
  • the electrode plate 2 and the electrode plate holding member 4 are abutted, and the abutted portion is sandwiched between two conductive connecting members 6 from both sides, and the electrode plates 2, the electrode plate holding member 4, and the through holes 7 and 8 of the conductive connecting member 6.
  • the bolt 5 is passed through and the bolt 5 and the nut are fastened, whereby the electrode plate 2 and the holding member 3 are integrated, and the anode 1 is obtained.
  • the electrode plate 2 having the groove 7a can be manufactured using a mold 15 shown in FIG.
  • the mold 15 has a sufficiently thick graphite carbon plate formed with a recess 15a corresponding to the size of the electrode plate 2, and a protrusion 15b protruding from the inner wall at a position corresponding to the groove 7a.
  • the recess 15 a of the mold 15 may be provided with an angle so that the inner wall extends from the bottom surface toward the opening.
  • the low melting point metal or low melting point alloy is heated to the melting point or higher in the mold 15, and the low melting point metal or low melting point alloy is sufficiently melted and spread in the mold 15. Allow to cool and solidify. Then, the solidified metal is removed from the mold 15 to obtain the electrode plate 2 in which the groove 7a is formed.
  • the electrode plate 2 since it is not necessary to form the through-hole 7 as described above, it is not necessary to melt and hold the low melting point metal or low melting point alloy of the electrode material in the mold 15, After melting the low melting point metal or the low melting point alloy in the container, the electrode plate 2 may be obtained by pouring into the recess 15a of the mold 15.
  • the low melting point metal or the low melting point alloy is melted in the mold 15 to be cooled and solidified or melted. It can be produced simply by pouring a low melting point metal or a low melting point alloy and cooling and solidifying the metal. Thereby, the electrode plate 2 in which the groove part 7a was formed can be manufactured more easily and efficiently than the electrode plate 2 in which the through-hole 7 was formed.
  • the bolt 5 When using the electrode plate 2 in which the groove 7a is formed, the bolt 5 is first passed through the through holes 8 and 9 of the electrode holding member 4 and the conductive connection member 6, and the bolt 5 and the nut are loosely fastened. Then, after inserting the bolt 5 into the groove portion 7a of the electrode plate 2 and tightening the bolt 5 and the nut firmly, the anode 1 in which the electrode plate 2 and the holding member 3 are integrated may be obtained.
  • the electrode plate 2 can be easily melted by using a low melting point metal or low melting point alloy having a low melting point of 100 ° C. or more and 250 ° C. or less.
  • the electrode plate 2 is obtained by molding with a mold, and the electrode plate 2 can be obtained simply by attaching the holding member 3, for example, the conductive connecting member 6 in FIG.
  • the anode 1 is efficiently produced in which the temperature rise due to the resistance is suppressed at the connection portion between the holding member 3 and the holding member 3, the electrode plate 2 is not melted, and is prevented from falling off even if it is somewhat softened by resistance heating. can do.
  • the method for manufacturing the anode 1 even when a large voltage or current is passed, the temperature rise due to the electrical resistance is suppressed by attaching the holding member 3 in surface contact, and the electrode plate 2 does not melt, The anode 1 that is prevented from falling off can be efficiently manufactured.
  • bolt 5 of the electrode plate 2 pass is formed.
  • the electrode plate 2 in which the through-holes 7 are formed can be easily manufactured simply by inserting the rod 11 positioned by the fixing plate 13 into the molten low melting point metal or low melting point alloy.
  • the conductive connecting member 6 is connected to the electrode plate 2 with the bolt 5 by using the electrode plate 2 having the through hole 7. Therefore, the anode 1 can be manufactured efficiently.
  • the electrode plate 2 in which the groove portion 7a is formed is obtained simply by pouring a molten low melting point metal or low melting point alloy into the mold 15 as shown in FIG. Therefore, the electrode plate 2 can be manufactured more easily.
  • the electrode plate 2 is made to be electrically conductive with the bolt 5 loosened without completely separating the conductive connection member 6 from the electrode plate holding member 4.
  • the electrode plate 2 and the electrode plate holding member 4 can be connected by inserting the bolt 5 between the connecting members 6 so as to enter the groove portion 7 a and then tightening the bolt 5 firmly.
  • the anode 1 can be manufactured more efficiently because it can be easily replaced especially when the used electrode plate 2 is replaced with a new electrode plate 2. Can do.
  • Example 1 In Example 1, the anode shown in FIG. 1 was produced with the same configuration as the anode using the electrode plate in which the through hole shown in FIG. 2 was formed.
  • An indium electrode plate having a thickness of 4 mm and a size of 27 cm in length and width was produced by melt casting using a mold (see FIG. 5).
  • the mold was manufactured by adding a concave portion having a depth of 15 mm and a length and width of 27 cm to carbon graphite having a thickness of 30 mm and a length and width of 30 cm.
  • the fixing plate was prepared by scraping a carbon graphite lump having a length of 65 mm, a width of 35 cm, and a height of 35 mm into a plate shape having a length of 60 mm, a width of 30 mm, and a height of 30 mm.
  • the dimension d (see FIG. 4) of the accuracy maintaining member attached to the fixed plate was set to 30 mm, which was the same as the thickness of the carbon graphite, and the length was set to be the same as the horizontal 30 mm of the fixed plate.
  • the fixing plate In the fixing plate, four through holes having a diameter of 5 mm were formed at equal intervals. Here, the positions of the through holes were arranged so as to be at an interval of 6.8 cm on a line having a distance of 15 mm from the upper side of the electrode plate. Also, four rods made of Teflon (registered trademark) having a diameter of 5 mm and a length of 3 cm were prepared for forming bolt through holes.
  • Teflon registered trademark
  • an indium electrode plate was cast as follows.
  • the prepared mold was placed on a large hot plate (HP-A2234M, 30 cm ⁇ 30 cm) manufactured by AS ONE, and 2000 g of indium metal was placed thereon.
  • the hot plate was heated to about 300 ° C. and held.
  • Teflon (registered trademark) rod into the four through holes. Cooling was performed. After the indium metal cooled to room temperature, the Teflon (registered trademark) rod was pulled out, the fixing plate was removed, and the mold was turned over. The solidified indium metal could be quickly peeled off from the mold.
  • the thickness of the obtained indium electrode plate was about 4 mm.
  • the holding member is a copper material having the same shape as the holding member shown in FIG. 1, and an electrode plate holding member and a conductive connecting member, which are molded into a shape with an upper side length of 40 cm and a lower side reduced to 27 cm, are prepared.
  • the holding member was coated with titanium.
  • Four through-holes for passing 5 mm bolts were formed on the line with a distance of 15 mm upward from the lower side of the electrode plate holding member so that the centers became 6.8 cm apart.
  • Bolts were passed through the through holes of the holding member and the indium electrode plate, and the bolts and nuts were used to join them at four locations.
  • the length from the top to the bottom of the anode in which the indium electrode plate and the holding member were integrated was 40 cm.
  • Electrolysis was performed using the anode produced as described above.
  • the electrolysis apparatus 20 the apparatus shown in FIG. 7 was used.
  • the electrolyte solution 21 was prepared by preparing 100 L of a 1 mol / L ammonium nitrate aqueous solution and adding nitric acid thereto to adjust the pH to 4.0. This was put into an electrolytic cell 23 provided with a liquid dispersion plate 22 to keep the electrolytic solution 21 at 25 ° C. Further, four anodes 24 and five cathodes 25 are arranged as shown in FIG.
  • a 1 mol / L ammonium nitrate aqueous solution having a pH of 4.0 is contained in an adjustment tank 27 provided adjacent to the electrolysis tank 23.
  • the adjustment tank 27 is connected to the electrolytic tank 23 by a circulation pump 28 and circulates the electrolytic solution 21.
  • the adjustment tank 27 includes a stirring rod 29 for stirring the electrolytic solution 21, a pH electrode 30 for measuring pH, a temperature adjusting heater 31 for controlling and maintaining the temperature of the electrolytic solution 21, and a cooler 32.
  • electrolysis was performed while maintaining the current so that the current density was 15 A / dm 2 .
  • Example 1 During electrolysis, the contact temperature between the indium electrode plate and the conductive connecting member changed between 50 ° C. and 80 ° C., and no deformation of the indium electrode plate was observed due to the temperature rise. In Example 1, it was possible to continuously generate indium hydroxide in the electrolytic solution for 6 hours by electrolysis, and the obtained slurry could be solid-liquid separated.
  • Example 2 the anode shown in FIG. 1 was produced with the same structure as the anode using the electrode plate in which the groove part shown in FIG. 3 was formed.
  • An indium electrode plate having a thickness of 8 mm, a length of 349 mm, and a width of 260 mm was produced by melt casting using a mold (see FIG. 6).
  • the mold was manufactured by attaching a recess having a depth of 15 mm, a bottom of 349 mm and a width of 260 mm inside a carbon graphite having a thickness of 30 mm, a length of 400 mm and a width of 300 mm. More specifically, the inner wall of the mold was inclined so as to be 355 mm long and 266 mm wide at a depth of 8 mm. Moreover, the convex part which protrudes from one short side is formed in the casting_mold
  • the convex portion has a shape having an angle such that the width is 14 mm, the length is 17 mm, and the depth is 8 mm at the bottom position of the concave portion of the mold, and the width is 8 mm and the length is 14 mm.
  • Three convex portions were provided at equal intervals.
  • the convex portion was formed in a U shape with the other end not connected to the short side of the mold being arcuate.
  • the attachment to the holding member was performed in the same manner as in Example 1 except that the number of attachment bolts was reduced from four to three. Electrolysis was also performed in the same manner as in Example 1.
  • Example 2 indium hydroxide could be generated by electrolysis for 12 hours, and the resulting slurry could be solid-liquid separated.
  • Example 3 An anode using an electrode plate in which the groove formed in the U shape in Example 2 was formed into a triangular V shape was produced. The other conditions were the same as in Example 2.
  • Example 3 indium hydroxide could be generated by electrolysis for 12 hours, and the resulting slurry could be solid-liquid separated.
  • the comparative example has a portion 40 a that protrudes to the left and right by 6.5 cm in the lateral direction above the anode 40 having a width of 27 cm, a length of 40 cm, and a thickness of 4 mm, and includes the protruding portion 40 a.
  • An anode 40 made of indium metal having a shape with a total length of 40 cm was molded.
  • the overhanging portion 40a of the anode 40 was hooked on the power feeding portion 41 and electrolysis was performed under the same conditions as in Example 1.
  • the melting temperature is low, such as indium
  • the electrode plate and the holding member are in surface contact as in Examples 1 to 3
  • the electrode plate can be prevented from melting. It can be seen that long-term electrolysis is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 電解の際に抵抗による温度上昇を抑え、陽極の脱落を防止する。100℃以上250℃以下の融点を有する低融点金属又は低融点合金からなる電極板の一辺に、該一辺の長さ以上の長さを有し、電極板の融点よりも高い融点を有する金属又は合金からなる保持部材を面接触により取り付ける。

Description

陽極及びその製造方法
 本発明は、電気分解に用いられる陽極及びその製造方法であって、特に低融点金属又は低融点合金を電気分解する際に用いられる陽極及びその製造方法に関するものである。本出願は、日本国において2013年8月13日に出願された日本特許出願番号特願2013-168271を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 電解とは、電気分解の略語であり、陽極と陰極を対にして電解液又は融解塩に浸漬させた状態で両者に直流電流を流し、電極面に化学変化を起こさせて、物質を分解・精製することである。
 例えば、金属の湿式精錬や金属メッキは、金属を陽極として電圧をかけることで陰極表面に陽極で分解した金属を純度の高い状態で析出させたり、被膜を形成させたりする電解手法の一例である。
 一方、電解液を適当なpH条件に調整することにより、陽極で分解した金属を電解液中に溶解させて陰極に移動させる際に、陰極に析出させる前に水酸化物として沈殿させることで単離させることもできる(例えば、特許文献1参照)。
 電解で使用される陽極は、特許文献2に示されているように多くの場合、図10に示すような陽極100である。陽極100は、上部に突起101を有する一枚の板状に成型され、その突起101を給電部102に引っかける又は吊り下げる等により給電部102と電気的に接続されている。
 このような陽極100を用いた電解では、陽極100の突起101と給電部102の間で電気抵抗による発熱現象が発生する。陽極100では、この発熱がエネルギーロスに繋がるため極力抑えられている。しかしながら、全く発熱がしないようにすることはできない。
 また、この発熱現象は、銅等の一般的な金属で形成されている陽極を軟化や溶融するほど温度上昇するものではない。しかしながら、スズ又はインジウム等のように融点の低い金属又は合金を陽極100とした場合には、大きな電圧や電流を流すとその発熱により軟化し変形したり、最も高温となる突起101と給電部102との接点で突起101が溶融して、陽極100自身を支えることができず、電解槽内に脱落してしまう問題が生じる。
 このような問題に対して、図10に示すような通常の一体型の形状の陽極100では、突起101と給電部102の接触面積が非常に小さいため、大きな電圧や電流を流した場合の発熱を低く抑えることができない。このため、陽極100の脱落を防ぐことは困難となる。したがって、陽極100では、脱落までの短時間で電解処理を終了させなければならず作業性が悪くなったり、また電圧や電流を低く抑えて電解を行うしか方法がなく、金属の析出効率が悪くなる。
 その他、特許文献3には、図11に示すように陽極用に電極板103の上部2カ所に穴104を形成し、導電接続治具105を通して給電用の金属棒106に吊り下げ、金属棒106と給電部107とを電気的に接続する方法が開示されている。また、特許文献4には、図12に示すように電極板108にリボン状の金属吊り手109を2カ所に取り付けて給電用の金属棒110に吊り下げ、金属棒110と給電部111とを電気的に接続する方法が開示されている。
 しかしながら、特許文献3に記載されている方法では、導電接続治具105と電極板103がそれぞれの穴で点接触しかしていないため、大きな電圧や電流を流した場合の接触部の温度上昇を抑えることができず、スズやインジウム等の低融点金属を陽極用の電極板103に用いた場合は軟化、溶融し脱落してしまう。
 また、特許文献4に記載された方法は、陰極側の電極として多く用いられている方法であるが、このような構造は陽極でも使用されている。特許文献4に記載されている方法では、図12に示すように金属吊り手109と電極板108をリベットにより2か所で接合している。この金属吊り手109は金属棒110としっかり接触させるため、加工性の良い薄い金属が使用されており、容易に変形しやすいためリベットの接合においても変形を生じたりして十分面接合がされているとは言い難い。また吊り手109の使用目的から、電極板108を十分保持できれば必要以上に幅の広い金属を使用しないのが一般的である。この特許文献4に記載された方法では、温度上昇に対して特許文献3に記載の方法の様な点接触よりは多少緩和されるものの、スズやインジウム等の低融点金属又は低融点合金の電極板に対しては効果が十分ではなく、大きな電圧や電流を流した場合には軟化を生じ、金属吊り手109と電極板108の接合部近傍に上辺に保持部がない場所などの自重が加わり、自重による変形を生じ始めて脱落してしまう。
特許第2829556号公報 特開平11-229171号公報 特許第4911668号公報 特開2004-043846号公報
 そこで、本発明は、このような実情に鑑みて提案されたものであり、低融点金属又は低融点合金の電極板と、この電極板を保持して給電部と電気的に接続する保持部材との間の接続部分における温度上昇を抑え、電極板が溶融せず脱落させることなく長時間の電解を可能とする陽極及びその製造方法を提供することを目的とする。特に、電極板に対して大きな電圧や電流を流した場合であっても電極板を脱落させることなく長時間の電解を可能とする陽極及びその製造方法を提供することを目的とする。
 上述した目的を達成する本発明に係る陽極は、100℃以上250℃以下の融点を有する低融点金属又は低融点合金からなる電極板の少なくとも一方の主面の一辺近傍に、該一辺の長さ以上の長さを有し、電極板の融点よりも高い融点を有する金属又は合金からなる保持部材が面接触により取り付けられていることを特徴とする。
 上述した目的を達成する本発明に係る陽極の製造方法は、100℃以上250℃以下の融点を有する低融点金属又は低融点合金を鋳型の中で冷却固化し、固化した低融点金属又は低融点合金を鋳型から取出して電極板を得て、得られた電極板の少なくとも一方の主面の一辺近傍に、該一辺の長さ以上の長さを有し、電極板の融点よりも高い融点を有する金属又は合金からなる保持部材を面接触するように取り付けて陽極を製造することを特徴とする。
 本発明では、電極板の少なくとも一方の主面の一辺近傍にその一辺の長さ以上の長さを有する保持部材を電極板に面接触させて取り付けることにより、電極板と保持部材との間において電気抵抗による温度上昇を抑制し電極板の溶融を防止し、また抵抗加熱により多少軟化が生じた場合であっても電極板の少なくとも一方の主面の一辺近傍全体を保持することにより、電極板の脱落を防止し、長時間の電解を行うことができる。更に、本発明では、大きな電圧や電流を流した場合であっても保持部材を面接触させて取り付けることにより電気抵抗による温度上昇を抑制し電極板の溶融を防止できるため、長時間の電解を行うことができる。
 また、本発明では、電極板に100℃以上250℃以下の低融点を有する低融点金属又は低融点合金を用いることで容易に溶融でき、冷却固化して鋳造により電極板が得られ、得られた電極板の少なくとも一方の主面の一辺近傍に面接触させて保持部材を付けるだけで、電極板と保持部材との間の接続部分における電気抵抗による温度上昇が抑制され電極板の溶融が防止され、また抵抗加熱により軟化が生じても脱落が防止された陽極を効率良く製造することができる。
図1は、本発明を適用した陽極の斜視図である。 図2は、同陽極の分解斜視図である。 図3は、溝部が形成された電極板を有する陽極の分解斜視図である。 図4は、鋳型と固定板との関係を示す図であり、図4(A)は、平面図であり、図4(B)は側面図である。 図5は、鋳型、固定板、棒との関係を示す斜視図である。 図6は、溝部を有する電極板を製造する鋳型の斜視図である。 図7は、電解装置の概略図である。 図8は、電解槽における電極の配置を示す概略図である。 図9は、比較例で用いた陽極の平面図である。 図10は、従来の陽極の平面図である。 図11は、従来の陽極の平面図である。 図12は、従来の陽極の平面図である。
 以下に、本発明を適用した陽極及びその製造について図面を参照して詳細に説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。
 <1.陽極>
 本発明を適用した図1及び図2に示す陽極1は、電解に用いられる陽極であり、電解装置の給電部に引っかけ又は吊り下げる方式のものである。陽極1は、電極板2の両主面の一辺近傍に位置する保持部材取付面2aに電解の際に電極板2を保持する保持部材3が取り付けられている。
 電極板2は、100℃以上250℃以下の融点を有する低融点金属又は低融点合金からなり、例えば正方形又は長方形の板状に形成されている。低融点金属又は低融点合金としては、スズ、インジウム、又はインジウムとスズの合金(例えばIn-9.6wt%Sn)、インジウムとガリウムの合金(例えばIn-6.3wt%Ga)等を挙げることができる。
 電極板2の厚みは、電極板2自体の重さによって保持部材3から脱落することを防止することや電解が進むにつれて陽極1の厚みが薄くなること等から適宜決定される。例えば、電極板2の厚みとしては、2mm以上15mm以下とすることが好ましい。2mm以下の厚さでは、薄くて取扱い時に破断させてしまう場合があり、また電解の陽極1としては容易に孔食されてしまうため好ましくない。一方、厚さが15mm以上になると、電極板2の重量が重くなるため脱落しやすく、取扱いが困難になる上、電解が進行して陽極1が薄くなると電極間距離が広くなり電圧上昇が顕著になるため好ましくない。
 電極板2を形成する低融点金属又は低融点合金は、純度が高いほど、また温度が高くなるほど柔らかくなる特徴がある。このため、低融点金属又は低融点合金を板状に成型した電極板2は、電解装置に取り付けた際に上方に位置する保持部材取付面2aに接触面積の大きな保持部材3が取り付けられ、その保持部材3により電解液中で吊された状態が維持される。
 保持部材3は、電極板2の保持部材取付面2aに取り付けられ、電解の際に電解液中で電極板2を保持し、かつ電極板2と電解装置に設けられた給電部とを電気的に接続する。
 保持部材3は、電極板2の融点よりも高い融点を有し、電気伝導度が高い金属又は合金からなる。電極板2の融点よりも高い融点を有する金属又は合金を用いることで仮に電極板2との接触部分で抵抗が高くなり温度が上昇しても保持部材3が電極板2よりも先に溶融して電極板2が脱落することを防止できる。保持部材3を形成する金属又は合金としては、銀、銅、金、又はこれらの合金等を挙げることができ、その中でもコスト的に安価な銅を用いることが好ましい。
 また、保持部材3は、融点が高く電気伝導度の高い金属又は合金を心材とし、電解液による腐食が生じないイオン化傾向の低い金属により被覆したものを使用することが好ましい。被覆用の金属としては、心材を腐食等による不導体被膜形成から防ぐために白金等の貴金属やチタン等が挙げられ、その中でもコスト的に安価なチタンを用いることが好ましい。電解液による耐食性の要求が高くない場合には、電気導電性が高く、耐摩耗性のある金属を選定するのがより好ましい。
 心材の被覆は、溶接加工やメッキ、クラッド等の一般的な方法で行うことができる。腐食のおそれがある箇所のみに部分的に被覆することでも問題ない。もし電解液による腐食等の心配が全くない場合には、被覆していない心材のみを保持部材3としてもよい。
 保持部材3の形状としては、電極板2の少なくとも一方の主面の一辺近傍、即ち保持部材取付面2aと面接触するように取り付けられ、電極板2を保持し、電極板2と給電部とを電気的に接続できるものであれば形状は特に限定されない。
 保持部材3としては、例えば、図1及び図2に示すようなものを挙げることができる。図1に示す保持部材3は、電極板2と導電接続部材6を介して電気的に接続され、電極板2と給電部とを電気的に接続し、電極板2を電解液中で保持し、電極板保持部材4と、電極板2と電極板保持部材4とを電気的に接続する導電接続部材6と、導電接続部材6を電極板2及び電極板保持部材4に取り付けるボルト5とを有する。
 電極板保持部材4は、下方側の端部が電極板2と導電接続部材6を介して接続され、電極板2を給電部に引っかけるか又は吊すために、上方側の端部は水平方向に腕を張出した構造となっている。この張り出した部分は、給電部と電気的に接続される給電接続部4aとなる。給電接続部4aは、横方向の棒状でもよく板状に形成されていてもよい。給電接続部4aの形状としては、好ましくは給電部との接触面積を十分に確保できる構造であって、陽極と陰極を交互に設置した際に(図8参照)、陽極と陰極の電極間距離が広くなりすぎないものがよい。
 導電接続部材6は、板状に形成された電極板2の保持部材取付面2a全面に少なくとも接するように電極板2の保持部材取付面2aの長さ以上の長さ及びボルト5で電極板2と電極板保持部材4との接続部分を一体に接続することができる十分な幅を有する板状に形成されている。導電接続部材6には、導電性の良い金属を用いることが好ましい。この導電接続部材6が電極板2に面接触により接続されていることによって、電極板2と導電接続部材6との接続部分において電気抵抗により温度上昇しても熱が拡散され電極板2の溶融を防止でき、大きな電圧や電流を流した場合であっても電極板2の溶融を防止できる。また、仮に電気抵抗により温度が上昇して多少軟化が生じても電極板2の保持部材取付面2a全体と導電接続部材6が接続されているため、電極板2の脱落を防止できる。
 電極板2と保持部材3の接続方法は、図1及び図2に示すように、電極板2に電極板保持部材4を突き合せた状態で、電極板2と電極板保持部材4の接続部分を側面、即ち電極板2の両主面側から2枚の導電接続部材6で挟み込み、電極板2と2枚の導電接続部材6、及び電極板保持部材4と2枚の導電接続部材6のそれぞれにボルト5を貫通させ、ボルト5と図示しないナットとを締結する。この際、2枚の導電接続部材6の内の1枚の貫通孔9をボルト5に対応したネジ穴とし、ナットを用いずに電極板2と電極板保持部材4とを導電接続部材6とボルト5を用いて締結してもよい。これにより、電極板2と、電極板保持部材4及び2枚の導電接続部材6を有する保持部材3とが一体となり、ボルト5と導電接続部材6とによって電極板2と電極板保持部材4とを電気的に接続する。電極板2、電極板保持部材4及び導電接続部材6には、図2に示すように、予めボルト5を通す貫通孔7、8、9を形成しておく。このような接続方法で接続する場合には、図1に示すように、電極板2及び電極板保持部材4のそれぞれに4つずつボルト5を取り付けた例を示したが、このことに限定されず、複数のボルト5、好ましくは3つ以上のボルト5で接続することが好ましく、特に好ましくは保持部材3に電極板2をしっかりと固定しかつ作業の煩雑さを避けるため3つ又は4つとすることが特に好ましい。ボルト5の間隔は、左右対称に十分広がり等間隔で有ればよい。
 また、電極板2は、図3に示すように、ボルト5を通す貫通孔7を溝部7aとしたものであってもよい。溝部7aは、電極板2の電極板保持部材4と相対する外周部に設けられ、電極板保持部材4に相対する上端部側が開口し、ボルト5の直径以上の幅で切り込んで溝状に形成されている。溝部7aの形状は、図3に示したU字形状の溝部に限定されるわけでは無く、例えば三角形状や四角形状の溝にしても良く、電極板2の溝部7aにボルト5を貫通させて電極板保持部材4に取り付けることができればいずれの形状であってもよい。
 図3に示す電極板2を用いた場合であっても、図1に示す場合と同様に電極板2と接続部材3とを接続することができる。突き合わせた電極板2と電極板保持部材4の両主面を2枚の導電接続部材6で挟み込み、電極板2の溝部7aと2枚の導電接続部材6、及び電極板保持部材4と2枚の導電接続部材6のそれぞれにボルト5を貫通させ、ボルト5と図示しないナットとを締結する。2枚の導電接続部材6で電極板2を挟み込むことによって、溝状に形成した溝部7aであっても電極板保持部材4から電極板2が落下せずに取り付けることができる。
 図3に示す電極板2では、ボルト5が貫通する部分を貫通孔とせず、溝状の溝部7aとすることにより、電極板2を電極板保持部材4から容易に取り付け、取り外しができる。例えば、連続操業時に電極板2を交換する際、ボルト5を外して電極板2及び電極板保持部材4から2枚の導電接続部材6を完全に分離させることなく、ボルト5を緩めるだけで使用済みの電極板2を保持部材3から容易に外すことができる。そして、電極板2を取り外した保持部材3の状態のまま、新規の電極板2を導電接続部材6との間にボルト5が溝部7aに嵌るように差し込み、ボルト5を締めることで容易に電極板2を固定することができる。このように、溝部7aが形成された電極板2は、取り付け、取り外しが容易であるため、作業効率を向上させることができる。
 図1に示す保持部材3では、電極板2と電極板保持部材4とを2枚の導電接続部材6で挟み込み、ボルト5及び導電接続部材6で接続状態を維持することで電極板2を電解液中で保持する。また、保持部材3は、電極板2と電極板保持部材4とを導電接続部材6を介して電気的に接続し、電極板2と給電接続部4aが引っかかっている給電部とを電気的に接続する。
 保持部材3としては、図1に示すものに限定されず、より簡便な方法として、例えばバネ等を用いた挟み込み力を利用してワンタッチで着脱する方法を採用してもよい。ただし、この場合は、図1に示す保持部材3より電極板2を挟み込む際に電極板2としっかり面接触できるような設計の工夫が必要であったり、可動部が多くなるため、電解液からの腐食対策がより重要となりメンテナンス等が煩雑になる。このため、長期間使用する場合は、より構造が簡単な図1に示すボルト5を使った保持部材3が好ましい。なお、保持部材3としては、電極板2を保持でき、電極板2と給電部とを電気的に接続できるものであれば、電極板2の一方の主面の保持部材取付面2aにのみ取付けるものであってもよい。
 以上のような構成からなる陽極1は、電極板2が低融点金属又は低融点合金で形成されていても電極板2と保持部材3、例えば、図1中の導電接続部材6とが面接触しているため、接続部分で抵抗加熱が生じても熱が拡散し温度上昇が抑制されて電極板2の溶融を防止でき、また仮に抵抗加熱により多少軟化が生じても電極板2の保持部材取付面2a全体を保持部材3で保持することにより電極板2の脱落を防止でき、長時間の電解をすることができる。陽極1では、電極板2と保持部材3とが面接触しているため、電極板2に対して大きな電圧や電流を流した場合であっても電極板2が脱落することなく、長時間の電解をすることができる。また、陽極1は、電極板2の厚みを厚くしても、例えば8mm以上の厚みであっても保持部材3から落下せずに保持されるため、長時間の電解をすることができる。
 <2.陽極の製造方法>
 陽極1の製造方法については、先ず電極板2の製造方法について説明する。電極板2は、電極板2の形状に合わせた鋳型を用いて鋳造により製造する。
 具体的に、図1及び図2に示す陽極1に用いられる電極板2は、図4及び図5に示すような、例えば十分な厚みのグラファイトカーボン製の板に電極板2の大きさに相当する凹部10aを形成した鋳型10を用いて形成する。グラファイトカーボン製の鋳型10を用いることで、加熱する際に熱が凹部10aに入れた金属に伝わりやすいため金属を溶かしやすく、また冷却後に鋳型10から固まった金属を取り出しやすくなる。
 鋳型10には、グラファイトカーボンの他に、耐熱性の点からポリテトラフルオロエチレンや高融点金属のものを使用することができる。しかしながら、ポリテトラフルオロエチレンの場合は、熱伝導率が悪いため金属を溶融させるまでに時間がかかってしまい好ましくない。高融点金属の場合は、溶融した低融点金属又は低融点合金との濡れ性が高くなり、冷却固化して取り出す際に型から剥がしづらくなってしまうため好ましくない。したがって、熱伝導率が良くかつ熱膨張による変形が少なく剥離性のよい材質としてグラファイトカーボンが好ましい。鋳型10の寸法は、電極板2の厚みや広さの寸法により決定される。鋳型10の凹部10aには、冷却固化した電極板2をより取り出しやすくするために、内壁が底面から開口に向って広がるように角度を設けても良い。
 上述の鋳型10を用いて鋳造の際には、形成される電極板2の保持部材3を取り付ける保持部材取付面2aに保持部材3を取り付けるためのボルト5を通す貫通孔7を形成する。例えば、貫通孔7の形成方法としては、図4及び図5に示すように、低融点金属又は低融点合金が鋳型10内で溶融している間に、鋳型10の開口側からボルト5と同じ直径を有する棒11を差し込むことで、差し込んだ棒11部分が貫通孔7となるようにする。溶融した低融点金属又は低融点合金中で棒11を固定するため、鋳型10の幅とほぼ同じ大きさで板状に形成され、棒11を通すための通し孔12を形成した固定板13を用いる。
 固定板13は、鋳型10に対して平行でかつ鋳型10上で浮いたりすることなく鋳型10の開口部に被さるようにする。また、固定板13は、鋳造を繰り返す度に鋳型10上に適切に被さるように位置精度がしっかり保たれる構造とする。このため、固定板13には、図5に示すように、L字状となるように一方の短辺の底面に、鋳型10の厚さと同じ高さを有し、固定板13の短辺と同じ長さを有する精度維持部材14が取り付けられている。
 この精度維持部材14は、固定板13を鋳型10に被せた際に鋳型10の外側の面に沿ってスライドするように嵌め合わされる。精度維持部材14は、鋳型10の高さと同じ高さに形成されているため固定板13の高さの精度を維持でき、また長さが固定板13の長さと同じに形成されているため、端部14aを鋳型10の角部10bに合わせることで棒11を通す通し孔12の位置の精度を維持することができる。精度維持部材14は、高い位置精度が維持できれば上述の構造に限定されるものではない。
 貫通孔7を形成する棒11は、耐熱性がありかつ低融点金属又は低融点合金を凝固させた後であっても取り外しやすいように、金属との濡れ性が悪いものを用いることが好ましい。例えば、ポリテトラフルオロエチレンからなる棒11を用いることが好ましい。
 棒11の大きさは、鋳造する電極板2を貫通させるのに十分な長さとボルト5の直径に相当する直径を有する必要がある。棒11の数や棒11を差し込む間隔は、ボルト5の数及び位置に合わせる。
 このような鋳型10等を用いて電極板2を製造する場合には、低融点金属又は低融点合金を鋳型10内で融点以上まで加熱し、低融点金属又は低融点合金が十分に溶融して鋳型10内に広がった状態で棒11を通し孔12に通した状態の固定板13を棒11が貫通孔7を形成する部分と対向するように鋳型10に被せて、溶融した金属中に棒11を差し込む。そして、棒11を差し込んだ状態で静置して金属を冷却固化させる。そして、棒11を通し孔12から抜き取り、固化した金属を鋳型10から外して貫通孔7が形成された電極板2を得る。この電極板2の製造方法では、棒11を差し込むまでの間、低融点金属又は低融点合金の溶融状態を維持するため、鋳型10を加熱することが好ましい。
 そして、電極板保持部材4の導電接続部材6と接続される端部に貫通孔8を形成し、導電接続部材6の電極板2の貫通孔7及び電極板保持部材4の貫通孔8と対向する位置にボルト5を通す貫通孔9を形成する。貫通孔8、9の形成方法は、例えば一般的なドリルによる切削加工が挙げられる。
 次に、以上のようにして得られた電極板2の保持部材取付面2aに保持部材3を取り付けて陽極1を製造する。電極板2と、電極板保持部材4とを突き合わせ、突き合わせた部分を両側から2枚の導電接続部材6で挟み込み、電極板2、電極板保持部材4及び導電接続部材6の貫通孔7、8、9にボルト5を貫通させて、ボルト5とナットを締結することで、電極板2と保持部材3とが一体となり、陽極1が得られる。
 上述の陽極1の製造方法は、保持部材3が図1に示すようなものである場合を説明したが、保持部材3の構造によってそれぞれに適した取り付け方法で行うようにする。
 上述では、貫通孔7を有する電極板2を使用した陽極1の製造方法を説明したが、次に、溝部7aを有する電極板2を使用した陽極1の製造方法について説明する。
 溝部7aを有する電極板2は、図6に示す鋳型15を用いて製造することができる。鋳型15は、十分な厚みのグラファイトカーボン製の板に電極板2の大きさに相当する凹部15aが形成され、溝部7aに相当する位置に内壁から突出した凸部15bが形成されている。鋳型15の凹部15aには、冷却固化した電極板2をより取り出しやすくするために、内壁が底面から開口に向って広がるように角度を設けても良い。
 電極板2を製造する際には、低融点金属又は低融点合金を鋳型15内で融点以上まで加熱し、低融点金属又は低融点合金を十分に溶融して鋳型15内に広げた後、金属を冷却固化させる。そして、固化した金属を鋳型15から外して溝部7aが形成された電極板2を得る。
 この電極板2の製造方法では、上述のように貫通孔7を形成する必要がないため、鋳型15内で電極材料の低融点金属又は低融点合金を溶融保持する必要がないことから、別の容器で低融点金属又は低融点合金を溶融した後、鋳型15の凹部15aに流し込んで電極板2を得ても良い。
 溝部7aが形成された電極板2は、鋳型15に溝部7aを形成する凹部15bが形成されているため、鋳型15内で低融点金属又は低融点合金を溶融させ、冷却固化させる、又は溶融した低融点金属又は低融点合金を流し込み、金属を冷却固化させるだけで製造することができる。これにより、溝部7aが形成された電極板2は、貫通孔7が形成された電極板2よりも容易に且つ効率的に製造することができる。
 溝部7aを形成した電極板2を用いる場合は、先に電極保持部材4及び導電接続部材6の貫通孔8、9にボルト5を貫通させて、ボルト5とナットを緩めに締結しておき、その後、電極板2の溝部7aにボルト5が嵌るように差し込んだ後にボルト5とナットをしっかりと締め付けて、電極板2と保持部材3とを一体化した陽極1を得ても良い。
 以上の陽極1の製造方法では、電極板2に100℃以上250℃以下の低融点を有する低融点金属又は低融点合金を用いることで容易に溶融でき、溶融した低融点金属又は低融点合金を鋳型で成型することで電極板2が得られ、得られた電極板2の保持部材取付面2aに保持部材3、例えば図1中の導電接続部材6を面接触させて取り付けるだけで、電極板2と保持部材3との間の接続部分で抵抗による温度上昇が抑制され、電極板2が溶融することなく、また抵抗加熱により多少軟化が生じても脱落が防止された陽極1を効率良く製造することができる。また、この陽極1の製造方法では、大きな電圧や電流を流した場合であっても保持部材3を面接触させて取り付けることにより電気抵抗による温度上昇が抑制され、電極板2が溶融せず、脱落が防止された陽極1を効率良く製造することができる。
 また、陽極1の製造方法では、図1に示す陽極1を図2に示す構成で製造する場合、図4及び図5に示すように、電極板2のボルト5を通す貫通孔7を形成する際に、固定板13で位置決めされた棒11を溶融した低融点金属又は低融点合金に差し込むだけで貫通孔7が形成された電極板2を容易に製造することができる。これにより、図1に示す陽極1を図2に示す構成で製造する場合には、貫通孔7を有する電極板2を用いることで、この電極板2に導電接続部材6をボルト5で接続するだけで陽極を作製できるため、陽極1を効率よく製造することができる。
 図3に示す構成の陽極1を製造する場合には、図6に示すような鋳型15に溶融した低融点金属又は低融点合金を流し込むだけで、溝部7aが形成された電極板2を得ることができるため、より容易に電極板2を製造することができる。また、図3に示す構成で陽極1を製造する場合には、導電接続部材6を電極板保持部材4から完全に分離させることなく、ボルト5を緩めた状態で電極板2を2枚の導電接続部材6の間にボルト5が溝部7aに入り込むように差し込み、その後ボルト5でしっかり締結することにより電極板2と電極板保持部材4とを接続することができる。溝部7aが形成された電極板2を用いた場合には、特に使用済みの電極板2を新規の電極板2に交換する際に容易に交換できるため、陽極1の製造をより効率よく行うことができる。
 以下、本発明を適用した具体的な実施例について説明するが、本発明は、これらの実施例に限定されるものではない。
 <実施例1>
 実施例1では、図2に示す貫通孔が形成された電極板を用いた陽極と同じ構成で図1に示す陽極を作製した。
 厚み4mm、縦横27cm四方のサイズのインジウム電極板を、鋳型(図5参照)を用いて溶解鋳造にて作製した。
 鋳型は、厚み30mm、縦横30cm四方のカーボングラファイトに、深さ15mmで縦横27cmの凹部を付けて製作した。固定板は、縦65mm、横35cm、高さ35mmのカーボングラファイトの塊から縦60mm、横30mm、高さ30mmの板状となるように削り取って作製した。固定板に取り付ける精度維持部材の寸法d(図4参照)は、カーボングラファイトの厚みと同じ30mmとし、長さは固定板の横30mmと同じにした。固定板には、直径5mmの通し孔を4つ等間隔に空けた。ここで、通し孔の位置は、電極板の上辺から15mmの距離の線上に6.8cm間隔となるように配置した。また、ボルトの通し孔を形成するための棒は、直径5mm長さ3cmのテフロン(登録商標)製のものを4本準備した。
 以上のようにして作製した鋳型等を使用して次のようにしてインジウム電極板を鋳造した。アズワン社製の大型ホットプレート(HP-A2234M、30cm×30cm)に作製した鋳型を載せ、その上に2000gのインジウム金属を載せた。この状態でホットプレートを約300℃まで加熱し保持した。インジウム金属が完全に溶解したところで、固定板に取り付けた精度維持部材の端部を鋳型の一方の隅に合わせて載せて4つの通し孔にテフロン(登録商標)製の棒を奥まで差し込んでから冷却を行った。インジウム金属が室温まで冷めたのちにテフロン(登録商標)製の棒を抜き、固定板を外してから鋳型をひっくり返した。固化したインジウム金属は鋳型から速やかに剥離し取り出すことができた。得られたインジウム電極板の厚みは、約4mmであった。
 次に、インジウム電極板を次のようにして製作された保持部材に取り付けた。保持部材としては、図1に示す保持部材と同じ形状の銅材であり、上辺の長さが40cmで下辺を27cmにしぼった形状に成型した電極板保持部材と導電接続部材を準備し、表面をチタンで被膜した。電極板保持部材の下辺から上方に15mmの距離の線上に中心同士が6.8cm間隔となるように5mmのボルトを通す通し孔を4つあけた。このような保持部材とインジウム電極板の通し孔にボルトを通し、ボルトとナットを用いて4か所でつなぎ合わせた。インジウム電極板と保持部材が一体となった陽極の上から下までの長さは40cmであった。
 以上のようにして作製した陽極を用いて電解を行った。電解装置20には、図7に示す装置を用いた。電解液21は、1mol/Lの硝酸アンモニウム水溶液100Lを準備し、これに硝酸を加えてpHを4.0として作製した。これを液分散板22を設けた電解槽23に入れて電解液21を25℃に保持した。さらに極中心間距離が2.0cmとなるように陽極24を4枚、陰極25を5枚、図8に示すように配置し、陽極24と陰極25を導線26の2芯VVケーブル(JIS C 3342許容電流200A、公称断面積100mm)を用いて繋ぎ、整流器と結線した。
 電解装置20には、電解槽23に隣接して設けた調整槽27にpH4.0の1mol/Lの硝酸アンモニウム水溶液が入っている。調整槽27は、循環ポンプ28によって電解槽23と接続され、電解液21を循環させる。調整槽27は、電解液21を攪拌する攪拌棒29、pHを測定するpH電極30、電解液21の温度を制御及び維持するための温調ヒーター31及び冷却器32を備える。
 このような構成の電解装置20において電流密度が15A/dmとなるよう電流を維持し電解を行った。
 電解中、インジウム電極板と導電接続部材との接点温度は50℃から80℃の間を推移し、温度上昇によるインジウム電極板の変形は見られなかった。実施例1では、電解により電解液には水酸化インジウムを連続して6時間発生させることができ、得られたスラリーを固液分離することができた。
 <実施例2>
 実施例2では、図3に示す溝部が形成された電極板を用いた陽極と同じ構成で図1に示す陽極を作製した。
 厚み8mm、縦349mm、横260mmのサイズのインジウム電極板を、鋳型(図6参照)を用いて溶解鋳造にて作製した。
 鋳型は、厚み30mm、縦400mm、横300mmのカーボングラファイトの内側に、深さ15mmで底部が縦349mm、横260mmの凹部を付けて製作した。より詳細には、深さ8mmの位置で縦355mm、横266mmとなるように鋳型内壁に傾斜を付けた。また、鋳型には、一方の短辺から突出する凸部が形成されている。その凸部は、鋳型の凹部の底位置で幅14mm、長さ17mm、深さ8mmの位置では幅8mm、長さ14mmとなる様な角度を持った形状である。凸部は、3つ等間隔で設けた。その凸部は、鋳型短辺に接続していないもう片方の端部を円弧状にしてU字形状に形成した。
 そして、アズワン社製大型ホットプレート(HP-A2234M、30cm×30cm)に2Lステンレス鍋を乗せその上に5000gのインジウム金属を入れた。この状態でホットプレートを約300℃まで加熱し保持し、インジウム金属を完全に溶解した。この溶融インジウムを前述の鋳型に流し入れた。その後15分間の室温静置による冷却で固化させた後、鋳型をひっくり返した。固化したインジウム金属は鋳型から速やかに剥離し取り出すことができた。電極板の一辺には3つの溝部が問題なく形成されており、厚み8mm、縦349mm、横260mmのサイズのインジウム電極板が得られた。
 保持部材への取り付けは、取り付けボルトが4つから3つに減った以外は実施例1と同じ方法で行った。電解も実施例1と同様の方法にて行った。
 実施例2においては、電解により水酸化インジウムを12時間発生させることができ、得られたスラリーを固液分離することができた。
 <実施例3>
 実施例3では、実施例2においてU字状に形成した溝部を三角形のV字状にした電極板を用いた陽極を作製した。それ以外の条件は実施例2と同様に行った。
 実施例3においても、電解により水酸化インジウムを12時間発生させることができ、得られたスラリーを固液分離することができた。
 <比較例>
 比較例は、図9に示すような、幅27cm、長さ40cm、厚み4mmの陽極40の上方に横方向にそれぞれ6.5cm左右に張り出した部分40aを有し、その張り出した部分40aを含む全長幅が40cmとなる形状のインジウム金属からなる陽極40を成型した。この陽極40の張り出し部分40aを給電部41に引っかけて実施例1と同じ条件で電解を行った。
 電解の開始直後から、陽極40の突起40aと給電部41との接点付近の温度が徐々に上昇し始め、30分後に150℃に達する直前でインジウムが軟化溶融し陽極40が落下してしまい、この時点で電解を終了せざるを得なかった。
 以上の実施例及び比較例から、インジウムのような溶融温度が低いものであって、実施例1~3のように電極板と保持部材が面接触している場合には電極板の溶融防止でき、長時間電解が可能であることがわかる。
 一方、比較例のように、電極板と給電部とが狭い面積で接している場合にはインジウムのような融点が低いものは溶融し、電解時間が短くなり、十分に金属を析出させることができないことがわかる。
 1 陽極、2 電極板、2a 保持部材取付面、3 保持部材、4 電極板保持部材、5 ボルト、6 導電接続部材、7 貫通孔、7a 溝部、8 貫通孔、9 貫通孔、10 鋳型、10a 凹部、10b 角部、11 棒、12 通し孔、13 固定板、14 精度維持部材、14a 端部、15 鋳型、15a 凹部、15b 凸部、20 電解装置、21 電解液、22 液分散板、23 電解槽、24 陽極、25 陰極、26 
導線、27 調整槽、28 循環ポンプ、29 攪拌棒、30 pH電極、31 ヒーター、32 冷却器

Claims (12)

  1.  100℃以上250℃以下の融点を有する低融点金属又は低融点合金からなる電極板の少なくとも一方の主面の一辺近傍に、該一辺の長さ以上の長さを有し、上記電極板の融点よりも高い融点を有する金属又は合金からなる保持部材が面接触により取り付けられていることを特徴とする陽極。
  2.  上記保持部材は、上記電極板を保持する電極板保持部材と、上記電極板と上記電極板保持部材とを電気的に接続し、板状に形成された導電接続部材とを有し、
     上記電極板と上記電極板保持部材とが接続された接続部分の側面を2枚の導電接続部材で挟み込み、上記電極板と上記電極板保持部材と2枚の上記導電接続部材とが一体となるように貫通させたボルトをかしめることで上記電極板と上記電極板保持部材とが上記導電接続部材を介して電気的に接続されていることを特徴とする請求項1に記載の陽極。
  3.  上記電極板は、上記ボルトが貫通する部分が貫通孔又は溝部からなることを特徴とする請求項2に記載の陽極。
  4.  上記電極板は、厚みが2mm以上、15mm以下であることを特徴とする請求項1に記載の陽極。
  5.  上記低融点金属は、インジウム又はスズであることを特徴とする請求項1に記載の陽極。
  6.  上記保持部材は、銅で形成されていることを特徴とする請求項1に記載の陽極。
  7.  上記保持部材の表面を電解の電解液で腐食されない金属で被覆することを特徴とする請求項1に記載の陽極。
  8.  100℃以上250℃以下の融点を有する低融点金属又は低融点合金を鋳型の中で冷却固化し、固化した低融点金属又は低融点合金を上記鋳型から取出して上記電極板を得て、得られた上記電極板の少なくとも一方の主面の一辺近傍に、該一辺の長さ以上の長さを有し、上記電極板の融点よりも高い融点を有する金属又は合金からなる保持部材を面接触するように取り付けて陽極を製造することを特徴とする陽極の製造方法。
  9.  上記鋳型中の低融点金属又は低融点合金が溶融した状態で、上記一辺近傍に棒を差し込み、差し込んだ該棒部分が貫通孔となるように上記電極板を形成し、
     上記保持部材を構成し、上記電極板を保持する電極板保持部材の端部に貫通孔を形成し、
     上記電極板及び上記電極板保持部材の貫通孔に対向する位置に貫通孔が形成された板状であって、上記保持部材を構成し、上記電極板と上記電極板保持部材とを電気的に接続する2枚の導電接続部材で上記電極板と上記電極板保持部材とが接続される接続部分の側面を挟み、
     上記電極板の貫通孔と上記電極板保持部材の貫通孔と上記2枚の導電接続部材の貫通孔とにボルトを貫通させてかしめ、上記電極板と上記電極板保持部材と上記2枚の導電接続部材とを一体にし、上記導電接続部材で上記電極板保持部材と上記電極板を電気的に接続することを特徴とする請求項8に記載の陽極の製造方法。
  10.  上記鋳型は、グラファイトカーボンで形成されていることを特徴とする請求項8に記載の陽極の製造方法。
  11.  上記棒は、ポリテトラフルオロエチレンで形成されていることを特徴とする請求項9に記載の陽極の製造方法。
  12.  内壁から突出した凸部を有する上記鋳型を用い、該凸部部分によって形成された溝部を外周部に有する上記電極板を形成し、
     上記保持部材を構成し、上記電極板を保持する電極板保持部材の端部に貫通孔を形成し、
     上記電極板の溝部及び上記電極板保持部材の貫通孔に対向する位置に貫通孔が形成された板状であって、上記保持部材を構成し、上記電極板と上記電極板保持部材とを電気的に接続する2枚の導電接続部材で上記電極板と上記電極板保持部材とが接続される接続部分の側面を挟み、
     上記電極板の溝部と上記電極板保持部材の貫通孔と上記2枚の導電接続部材の貫通孔とにボルトを貫通させてかしめ、上記電極板と上記電極板保持部材と上記2枚の導電接続部材とを一体にし、上記導電接続部材で上記電極板保持部材と上記電極板を電気的に接続することを特徴とする請求項8に記載の陽極の製造方法。
PCT/JP2014/069433 2013-08-13 2014-07-23 陽極及びその製造方法 WO2015022846A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480044604.4A CN105452535A (zh) 2013-08-13 2014-07-23 阳极及其制造方法
KR1020167002919A KR20160041907A (ko) 2013-08-13 2014-07-23 양극 및 그 제조 방법
US14/909,830 US20160201205A1 (en) 2013-08-13 2014-07-23 Anode and process for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013168271A JP6011488B2 (ja) 2013-03-25 2013-08-13 陽極及びその製造方法
JP2013-168271 2013-08-13

Publications (1)

Publication Number Publication Date
WO2015022846A1 true WO2015022846A1 (ja) 2015-02-19

Family

ID=52468289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069433 WO2015022846A1 (ja) 2013-08-13 2014-07-23 陽極及びその製造方法

Country Status (6)

Country Link
US (1) US20160201205A1 (ja)
JP (1) JP6011488B2 (ja)
KR (1) KR20160041907A (ja)
CN (1) CN105452535A (ja)
TW (1) TW201510284A (ja)
WO (1) WO2015022846A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10221499B2 (en) * 2015-06-25 2019-03-05 Ge-Hitachi Nuclear Energy Americas Llc Nuclear fuel structure and method of making a nuclear fuel structure using a detachable cathode material
JP2022003156A (ja) * 2020-06-23 2022-01-11 住友金属鉱山株式会社 カソード吊り上げ器具およびカソードの補修方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531944A (zh) * 2018-07-24 2018-09-14 河南海之德高新环保科技有限公司 一种金属镓循环电解用组合式阴、阳电极板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251337A (en) * 1979-06-08 1981-02-17 Titanium Industries Novel titanium-containing electrode and electrolytic processes employing same
JPS60221591A (ja) * 1984-04-17 1985-11-06 Central Glass Co Ltd フツ素の製造方法
JPH0389166U (ja) * 1989-12-25 1991-09-11
JPH055262U (ja) * 1991-02-15 1993-01-26 住友金属鉱山株式会社 アノード鋳造用鋳型
JPH10204669A (ja) * 1997-01-16 1998-08-04 Mitsubishi Materials Corp 酸化インジウム粉末の製造方法
JP2000064075A (ja) * 1998-08-18 2000-02-29 Mitsui Chemicals Inc 電解槽
JP2001179260A (ja) * 1999-12-24 2001-07-03 Sanyo Electric Co Ltd 水処理装置
JP2007100144A (ja) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd 亜鉛電解精錬方法および亜鉛電解精錬用の支持治具
JP2010150634A (ja) * 2008-12-26 2010-07-08 Mitsubishi Materials Corp 電極板用クロスバーおよび電極板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1592443B1 (de) * 1966-05-11 1972-04-27 Knapsack Ag Elektrodensystem in einer Elektrolysezelle zur Braunsteinelektrolyse
JP2003112252A (ja) * 2001-10-03 2003-04-15 Canon Inc 半導体基体の製造方法、半導体基体、及び太陽電池、並びに半導体基体製造用鋳型
US7909968B2 (en) * 2006-11-13 2011-03-22 Advanced R F Design, L.L.C. Apparatus and method for the electrolysis of water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251337A (en) * 1979-06-08 1981-02-17 Titanium Industries Novel titanium-containing electrode and electrolytic processes employing same
JPS60221591A (ja) * 1984-04-17 1985-11-06 Central Glass Co Ltd フツ素の製造方法
JPH0389166U (ja) * 1989-12-25 1991-09-11
JPH055262U (ja) * 1991-02-15 1993-01-26 住友金属鉱山株式会社 アノード鋳造用鋳型
JPH10204669A (ja) * 1997-01-16 1998-08-04 Mitsubishi Materials Corp 酸化インジウム粉末の製造方法
JP2000064075A (ja) * 1998-08-18 2000-02-29 Mitsui Chemicals Inc 電解槽
JP2001179260A (ja) * 1999-12-24 2001-07-03 Sanyo Electric Co Ltd 水処理装置
JP2007100144A (ja) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd 亜鉛電解精錬方法および亜鉛電解精錬用の支持治具
JP2010150634A (ja) * 2008-12-26 2010-07-08 Mitsubishi Materials Corp 電極板用クロスバーおよび電極板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10221499B2 (en) * 2015-06-25 2019-03-05 Ge-Hitachi Nuclear Energy Americas Llc Nuclear fuel structure and method of making a nuclear fuel structure using a detachable cathode material
JP2022003156A (ja) * 2020-06-23 2022-01-11 住友金属鉱山株式会社 カソード吊り上げ器具およびカソードの補修方法
JP7501143B2 (ja) 2020-06-23 2024-06-18 住友金属鉱山株式会社 カソード吊り上げ器具およびカソードの補修方法

Also Published As

Publication number Publication date
JP2014208871A (ja) 2014-11-06
JP6011488B2 (ja) 2016-10-19
KR20160041907A (ko) 2016-04-18
TW201510284A (zh) 2015-03-16
US20160201205A1 (en) 2016-07-14
CN105452535A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
RU2644482C2 (ru) Системы и способы защиты электролизеров
JP6011488B2 (ja) 陽極及びその製造方法
CA2169521C (en) Cathode for electrolytic refining of copper
RU2642782C2 (ru) Системы и способы защиты боковых стенок электролизера
JP2019510137A (ja) 鉛直型電解セル用装置及びシステム
RU2675310C2 (ru) Системы и способы защиты боковых стенок электролизеров
KR101819219B1 (ko) 전해 제련용 양극 구조체, 이의 제조 방법 및 이를 포함하는 전해 제련 장지
JP7259389B2 (ja) 硫酸溶液の製造方法
KR102500973B1 (ko) 전극구조체
US10221494B2 (en) Hanging bar for anodes without lugs
JP7532418B2 (ja) 電気化学的プロセス用の電極アセンブリ
CN101984143A (zh) 一种外热式铝电解槽
WO2019245386A1 (en) Anode hanger, and method of production thereof
CN110965093B (zh) 用于太阳能组件的汇流条、其制备方法及太阳能组件
JP7264759B2 (ja) 陽極接続構造、溶融塩電解装置、溶融塩電解方法及び、金属マグネシウムの製造方法
CA2811355A1 (en) Cathode for electrolytic cells
JP2019210518A (ja) 非鉄電解精錬用の電極板を支持する配電棒
NO345291B1 (en) An aluminium production anode yoke, an anode hanger, and a carbon anode
JP2020055728A (ja) 硫酸溶液の製造方法
JP7211144B2 (ja) 硫酸溶液の製造方法
JP2005163106A (ja) 脱銅電解装置
JP2009102723A (ja) 非鉄電解精製方法
JP6183315B2 (ja) 非鉄電解精錬用の電解槽上導電体
JP2020125519A (ja) アノード
CS207298B1 (cs) Způsob výroby pastilovaného hydroxidu sodného nebo draselného z jeho taveniny a zařízení k provádění tohoto způsobu

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044604.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167002919

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14909830

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14835806

Country of ref document: EP

Kind code of ref document: A1