WO2015021920A1 - 一种高强度交联型聚合物光子晶体膜的制备方法 - Google Patents

一种高强度交联型聚合物光子晶体膜的制备方法 Download PDF

Info

Publication number
WO2015021920A1
WO2015021920A1 PCT/CN2014/084282 CN2014084282W WO2015021920A1 WO 2015021920 A1 WO2015021920 A1 WO 2015021920A1 CN 2014084282 W CN2014084282 W CN 2014084282W WO 2015021920 A1 WO2015021920 A1 WO 2015021920A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
polymer
crystal film
microspheres
self
Prior art date
Application number
PCT/CN2014/084282
Other languages
English (en)
French (fr)
Inventor
戴李宗
余世荣
袁丛辉
张龙
钟丽娜
宋存峰
许一婷
曾碧榕
罗伟昂
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Priority to US14/911,953 priority Critical patent/US10189981B2/en
Publication of WO2015021920A1 publication Critical patent/WO2015021920A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/14Copolymers of styrene with unsaturated esters

Definitions

  • the invention belongs to the technical field of preparation of colloidal photonic crystal films, in particular to the preparation of high-strength cross-linked polymer photonic crystal films prepared by a solvent-volume self-assembly method for core-shell polymer microspheres.
  • Velev et al. (0. D. Velev, et al. Science, 2000, 287, 2240-2243.) A high concentration aqueous solution of polystyrene nanospheres is dropped into a fluorinated oil phase, and the polymer droplets stand in the oil phase fluid. Above the surface, the micron-sized photonic crystal spheres are arranged along with the volatile polystyrene nanospheres of the aqueous solution; micron photons of different colors and shapes can be obtained by adjusting the particle size and the microsphere concentration of the polystyrene nanospheres. Crystal ball. Velikov et al. (KP Velikov, et al.
  • the photonic crystal By adjusting the particle size of the polymer nano-spheres, the photonic crystal can be Achieve color changes from red to blue.
  • Mihi et al. (A. Mihi, et al. Adv. Mater. 2006, 18, 2244-2249.) then disperse silica or sulfonated polystyrene nanospheres in a volatile solvent using spin coating A photonic crystal with adjustable color is constructed.
  • the polymer latex particles are simply physically stacked, and there is no chemical bond interaction between the micelles, so the mechanical strength of the high-strength cross-linked polymer photonic crystal film prepared by the present invention It is unmatched.
  • the present invention provides a more effective method for easily preparing a high-strength cross-linked polymer photonic crystal film on the basis of self-assembly.
  • One of the objects of the present invention is to provide a process for preparing a simple high strength crosslinked polymer photonic crystal film.
  • the preparation method adopts the monodisperse polymer microspheres with different functional groups as described in the objective 1, and the implementation process is simple and easy, and can be carried out only under normal temperature and normal pressure, and the obtained high-strength cross-linked polymer photons are obtained.
  • the crystal film exhibits different colors and has strong mechanical properties.
  • step (1) Under normal temperature and pressure, the different kinds of polymer microsphere emulsions obtained in step (1) are used, and the epoxy group-containing polymer microspheres are used as the first component self-assembling element, and the surface has carboxyl group or amino group.
  • the polymeric microspheres are a second component self-assembling element. After being applied to the substrate of the plate, the epoxy groups of the first component and the second component are chemically reacted with the carboxyl group or the amino group. After the water solvent is naturally volatilized, the polymer microspheres self-assemble to construct the growth-ordered polymer photons. The crystal film, self-crosslinking between the two component microspheres increases the mechanical strength of the resulting polymer photonic crystal film.
  • the color of the photonic crystal film can be adjusted by adjusting the ratio of the first component and the second component polymer microspheres, the particle size of the ball, and the arrangement of the balls.
  • Another object of the present invention is to provide a monodisperse method for preparing core-shell structured polymer microspheres having different functional groups.
  • the polymer microspheres obtained by one-step polymerization of the soap-free emulsion are obtained, and the operation process is simple and easy, and the product polymer microspheres do not contain impurities such as surfactants, stabilizers, etc., the product is pure, and the particle size is The size is uniform and controllable.
  • the preparation process of the polymer photonic crystal is simple and easy to operate, and the polymer microspheres can be closely packed and arranged in a regular manner to exhibit photonic crystals of different colors. Due to the purity of the prepared polymer microspheres and photonic crystals, its application in the fields of coatings, dyes or pigments and films has been expanded.
  • the hydrophilic monomer and the hydrophobic monomer are added to the water solvent, the polymerization system is maintained at a stirring speed of 200 to 600 rpm, the emulsion is uniformly mixed, the nitrogen gas is passed, the reaction system is maintained at 65 to 85 ° C, and the initiator solution is further added to continue the nitrogen gas flow. After reacting for 10 to 26 hours, monodisperse polymer microspheres are obtained; the microspheres have a particle size ranging from 100 nm to 2 ⁇ m;
  • the hydrophilic monomer, hydrophobic monomer, water and initiator solution are in mass percentage: hydrophilic monomer and hydrophobic monomer are 1% to 20%, and the initiator is hydrophilic monomer and hydrophobic monomer. a mass of 0.1% ⁇ 5%, the rest is solvent water; the volume ratio of the hydrophilic monomer to the hydrophobic monomer is 1/10 ⁇ 1/3;
  • the hydrophilic monomer refers to glycidyl methacrylate, acrylamide, acrylic acid
  • the hydrophobic monomer refers to styrene
  • the initiator solution is an aqueous solution of an initiator having a solution concentration of 0.1 to 5 wt%; and the initiator is potassium persulfate.
  • the monodisperse core-shell polymer microspheres described in the present invention are prepared by a one-step synthesis method of soap-free emulsion, which has the advantages of simple operation, fine micro-spherical appearance and controllable particle size, and Adding any emulsifier and stabilizer, the resulting product microspheres are pure, and the subsequent preparation of the polymer photonic crystal can be used without any treatment.
  • the soap-free emulsion one-step polymerization method is used for hydrophilic and lipophilic two monomers. During the polymerization process, the hydrophilic portion tends to form a shell layer in the aqueous solvent system, and the lipophilic component migrates into the interior of the polymer sphere.
  • the core of the polymer microspheres is formed to form monodisperse core-shell polymer microspheres under the combined action of mechanical agitation.
  • the particle size can change the ratio of the amount of hydrophilic lipophilic monomer as needed, and change the polymerization temperature and stirring speed, and can also change the amount of initiator and the concentration of the added initiator and the progress of the addition to control the product microspheres. The purpose of the trail.
  • the method for preparing a high-strength cross-linked polymer photonic crystal film according to the present invention adopts the previously described monodisperse core-shell polymer microspheres with different functional groups, which can be uniformly formed after being dissolved in water.
  • the emulsion is applied to the flat substrate, and the water-volatile polymer microspheres self-assemble to form a structured polymer photonic crystal film, and the first component and the second component polymer are adjusted according to different color requirements.
  • the ratio of the spheres, the particle size of the spheres, and the arrangement of the spheres enable the color of the photonic crystal film to be adjusted, thereby producing a high-strength cross-linked polymer photonic crystal film of various colors and widely adjustable.
  • the thickness of the resulting photonic crystal film depends on the concentration of the polymer microsphere emulsion and the amount of application. Since the previously prepared polymer microspheres are strictly monodisperse, it is easy to form a regular and orderly stack during the microsphere self-assembly process, and the chemical reaction between the microspheres realizes self-crosslinking and finally forms a high-strength cross-linking polymerization. The photonic crystal film, and because the surface of the microsphere is pure, the self-assembly process of the stack does not cause interference, and the interaction between the microspheres is closely arranged to achieve self-crosslinking.
  • the high-strength cross-linked polymer photonic crystal film prepared by the invention has special structure, unique optical characteristics and high mechanical strength, and has many application fields such as decorative materials, coatings, films and solar concentrators.
  • FIG. 1 SEM photograph of prepared monodisperse core-shell polymer microspheres (PS-PAA)
  • FIG. 1 SEM photograph of the prepared monodisperse core-shell polymer microspheres (PS-PAM)
  • FIG. 3 SEM photograph of the prepared monodisperse core-shell polymer microspheres (PS-PGMA)
  • Figure 4 Morphology of two-dimensional polymer photonic crystals constructed using two-component polymer nanospheres (A front view, B cross-section)
  • Figure 5 Morphological simulation of a three-dimensional polymer photonic crystal constructed using two-component polymer nanospheres (A front view, B cross-sectional view).
  • the PS-PGMA polymer microspheres with epoxy groups on the surface are the first component self-assembled elements
  • the PS-PAA polymer microspheres with carboxyl groups on the surface are the second component self-assembled elements.
  • It is applied to the substrate of the plate successively, and the epoxy group of the first component and the second component reacts with the carboxyl group to realize self-crosslinking. After the water solvent is naturally volatilized, the polymer microspheres self-assemble and grow in an orderly manner. High strength crosslinked polymer photonic crystal film.
  • Examples 2 to 6 In the same manner as in the process of Example 1, the amount of the hydrophilic monomer acrylic acid was changed, and monodisperse styrene copolymerized acrylic acid (PS-PAA) microsphere emulsions of different particle diameters were synthesized. The results are shown in Table 1. The amount of the hydrophilic monomer glycidyl methacrylate was changed to synthesize a monodisperse styrene copolymerized acrylic acid (PS-PGMA) microsphere emulsion of different particle diameters. The results are shown in Table 2.
  • PS-PAA monodisperse styrene copolymerized acrylic acid
  • the monodisperse surface epoxy group-containing PS-PGMA polymer microspheres obtained in Examples 2 to 6 were the first component self-assembled elements at room temperature, and the PS-PAA polymer microspheres with carboxyl groups on the surface were used as the first Two component self-assembling primitives. It is applied to the substrate of the plate successively, and the epoxy group of the first component and the second component reacts with the carboxyl group to realize self-crosslinking. After the water solvent is naturally volatilized, the polymer microspheres self-assemble and grow in an orderly manner. High strength crosslinked polymer photonic crystal film. Table 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种高强度交联型聚合物光子晶体膜的制备,属于胶体光子晶体膜的制备技术领域,尤其涉及核壳结构聚合物微球采用溶剂挥发自组装法制备高强度交联型聚合物光子晶体膜的制备。采用无皂乳液聚合方法制备单分散的核壳结构聚合物微球,将该微球乳液涂抹于平板基体上,伴随水溶剂的挥发,微球实现自组装,自行构筑成长程有序的聚合物光子晶体,并且聚合物微球间通过官能团的相互反应实现自交联,从而大大提高光子晶体膜的强度。而由于该光子晶体膜的组成基元——聚合物微球之间相互交联,使得大尺寸工业级光子晶体膜的制备成为可能,并且极大的拓广了其在诸多采用染料为基底材料(如织物、薄膜等)染色方面的实际应用。

Description

一种高强度交联型聚合物光子晶体膜的制备方法 技术领域
本发明属于胶体光子晶体膜的制备技术领域,尤其涉及核壳结构聚合物微球采用溶剂挥 发自组装法制备高强度交联型聚合物光子晶体膜的制备。
背景技术
1987 年, Yab lonovit(Yablonovitch, E. et al. Phys. Rev. Lett. 1987, 58, 2059-2062.)和 John(John, S. et al. Phys. Rev. Lett. 1987, 58, 2486-2489.)分别提出了光子晶体 (Photonic Crystal) 的概念。 在此后的近 30年里, 由于光子晶体的势场中介电常数的差异足够大, 在电介质交 界面上发生布拉格衍射, 从而导致能够使光传播和分散的光子带隙的出现, 因此产生了许多 新的物理现象, 如超棱镜现象、 负折射率介质效应等, 从而引起了研究者们的极大关注, 对 光子晶体制备技术进行研究。并且光子晶体作为一类重要的先进光学材料, 在光子晶体反射 器件、 光子晶体滤波器、 发光二极管和光子晶体光纤等方面展现出了巨大的应用前景, 成为 构建光子器件的一种重要材料。
Velev等 (0. D. Velev, et al. Science, 2000, 287, 2240-2243. ) 将高浓度聚苯乙烯纳米微球 水溶液滴在氟化油相中, 聚合物液滴立于油相液面之上, 随着水溶液的挥发聚苯乙烯纳米微 球规整排列而成微米级光子晶体球;通过调整聚苯乙烯纳米微球的粒径和微球浓度可获得颜 色和形态各异的微米光子晶体球。 Velikov 等 (K. P. Velikov, et al. Science, 2002, 296, 206-109. ) 以不同粒径的聚苯乙烯纳米微球为自组装基元, 采用层 -层自组装法构筑了 "二 进制超晶格"。 Wang等(J. Wang, et al. Macromol. Chem. Phys. 2006, 207, 596-604. )合成了一 系列粒径不同的核壳结构纳米微球(核为聚苯乙烯, 壳为聚(甲基丙烯酸甲酯 -co-丙烯酸)), 发现这些聚合物纳米微球可在基底上密集且无缝堆积成长程有序的光子晶体,通过调节聚合 物纳米微球的粒径,光子晶体可实现从红到蓝的颜色变化。 Mihi等( A. Mihi, et al. Adv. Mater. 2006, 18, 2244-2249. ) 则等将二氧化硅或磺化聚苯乙烯纳米微球分散于挥发性溶剂中, 采用 旋涂的方法构筑了颜色可调的光子晶体。
在专利文献中王京霞等 (CN200510012021.6)利用硬核 -软壳的聚合物乳胶粒制备了光子 晶体在紫外区聚合物胶体光子晶体膜,但是其聚合物乳胶粒采用三单体制备以及加料和升温 程序控制复杂, 而且在聚合体系中引入了乳化剂和 pH缓冲剂, 使得最后产物聚合物乳胶粒 不纯净, 在水分挥发过程中, 其胶体晶体的的形成受到了各种杂质干扰, 对晶体膜的大尺寸 化受到限制, 并且也由于产物的不纯净, 使得其最终应用领域受限。 关键点是其与本发明相 比其光子晶体膜的组成基元——聚合物乳胶粒只是简单的物理堆砌,胶粒之间并没有化学键 相互作用, 因此本发明所制备的高强度交联型聚合物光子晶体膜的机械强度是其无法比拟 的。
自组装法由于工艺简单, 并且范德华力、 氢键、 静电力和表面张力等作为其驱动力可以 很好的实现光子晶体的有序排列。 因此本发明在自组装基础上, 提供了一种更为行之有效的 简易制备高强度交联型聚合物光子晶体膜的方法。
发明内容
本发明的目的之一是提供一种简单的高强度交联型聚合物光子晶体膜的制备方法。 该 制备方法由于采用目的一所述的带有不同官能团的单分散聚合物微球, 其实施过程简单易 行, 只需在常温常压下即可实施, 且所得高强度交联型聚合物光子晶体膜呈现不同颜色, 并且具有较强的力学性能。
具体操作步骤如下:
( 1 ) 常温常压下, 将不同种类的单分散聚合物微球分散于水中, 得到不同种类和浓度 的聚合物微球乳液, 所述聚合物微球乳液浓度 5〜30wt% ;
(2)常温常压下, 采用步骤(1 ) 中所得不同种聚合物微球乳液, 以表面带环氧基的聚 合物微球为第一组份自组装基元, 以表面带羧基或氨基的聚合物微球为第二组份自组装基 元。 先后涂抹于平板基体上, 第一组分和第二组分的环氧基与羧基或氨基发生化学反应, 待水溶剂自然挥发后, 聚合物微球自组装构筑成长程有序的聚合物光子晶体膜, 两组分的 微球之间自交联提高了所得聚合物光子晶体膜的力学强度。
通过调节第一组份和第二组份聚合物微球的比例、 球的粒径以及球的排列方式可以实 现光子晶体薄膜颜色的可调节。
本发明的目的之二是提供一种单分散的带有不同官能团的核壳结构聚合物微球制备方 法。 尤其是采用无皂乳液一步法聚合得到核壳结构的聚合物微球, 其操作过程简单易行, 且产物聚合物微球不含诸如表面活性剂、 稳定剂等杂质, 产物纯净, 并且粒径大小均一可 控。 使聚合物光子晶体的制备过程简单易操作, 聚合物微球能够紧密堆砌、 规整排列, 可 呈现不同颜色的光子晶体。 由于所制备的聚合物微球及光子晶体纯净, 扩展了其在涂料、 染料或颜料、 薄膜领域的应用。
具体合成步骤如下:
将亲水单体、 疏水单体加入水溶剂中, 聚合反应体系维持 200〜600rpm搅拌速度, 使 乳液混合均匀, 通氮气, 反应体系维持 65〜85°C, 再加入引发剂溶液, 继续通氮气反应 10〜26小时后, 得到单分散的聚合物微球; 微球粒径范围在 100nm〜2um; 所述亲水单体、 疏水单体、 水和引发剂溶液按质量百分比的含量为: 亲水单体和疏水 单体为 1%〜20%, 引发剂为亲水单体和疏水单体总质量的 0.1%〜5%, 其余为溶剂水; 所 述亲水单体与疏水单体的体积比为 1/10 〜 1/3;
所述的亲水单体指甲基丙烯酸缩水甘油酯、 丙烯酰胺、 丙烯酸;
所述的疏水单体指苯乙烯;
所述的引发剂溶液为引发剂的水溶液, 其溶液浓度为 0.1〜5wt%; 引发剂为过硫酸 钾。
本发明中所述的单分散的核壳结构聚合物微球是采用无皂乳液一步合成法制备, 具有 操作简单易行, 所得产物微球形貌以及粒径大小可控的优点, 并且由于不添加任何乳化剂 以及稳定剂, 所得产物微球纯净, 后续制备聚合物光子晶体不需任何处理即可使用。 采用 的无皂乳液一步聚合法, 所用为亲水和亲油的两种单体, 在聚合过程中, 亲水部分趋向于 水溶剂体系形成壳层, 而亲油组分则向聚合物球体内部迁移形成聚合物微球的内核, 在机 械搅拌力的共同作用下, 形成单分散的核壳结构聚合物微球。 其粒径大小可根据需要改变 亲水亲油单体量的配比以及改变聚合反应温度和搅拌速度, 还可改变引发剂的用量以及所 加入引发剂的浓度及加入进程达到控制产物微球粒径的目的。
本发明中所述的制备高强度交联型聚合物光子晶体膜的方法, 采用的是先前所述的带 有不同官能团的单分散的核壳结构聚合物微球, 溶于水后可形成均匀的乳液, 将其涂抹于 平板基体上, 随着水分挥发聚合物微球自组装形成规整堆砌的聚合物光子晶体膜, 并且根 据不同的颜色需求调节第一组份和第二组份聚合物微球的比例、 球的粒径以及球的排列方 式可以实现光子晶体膜颜色的可调节, 从而制得各种颜色并广泛可调的高强度交联型聚合 物光子晶体膜。 其所得光子晶体膜的厚度取决于所配聚合物微球乳液的浓度以及涂抹的 量。 由于先前所制备的聚合物微球严格单分散, 使得在微球自组装过程中, 很容易形成规 整有序的堆砌, 并且微球之间化学反应实现自交联最终形成高强度交联型聚合物光子晶体 膜, 而且由于微球表面纯净, 堆砌自组装过程不会形成干扰, 更有利于微球之间相互作用 紧密规整排列实现自交联。
本发明所制得的高强度交联型聚合物光子晶体膜由于其特殊的结构, 独特的光学特性 以及较高的力学强度, 在许多装饰材料、 涂料、 薄膜以及太阳能聚光器等应用领域具有相 当广阔的应用前景; 并且由于该发明所用聚合微球严格单分散且纯净, 在环保材料等要求 严格的领域具有独特优势。 而由于该光子晶体膜的组成基元——聚合物微球之间相互交 联, 使得大尺寸工业级光子晶体膜的制备成为可能, 并且极大的拓广了其在诸多采用染料 为基底材料 (如织物、 薄膜等) 染色方面的实际应用。 附图说明
图 1 : 所制备的单分散核壳结构聚合物微球 SEM照片 (PS-PAA)
图 2: 所制备的单分散核壳结构聚合物微球 SEM照片 (PS-PAM )
图 3: 所制备的单分散核壳结构聚合物微球 SEM照片 (PS-PGMA)
图 4: 采用双组份聚合物纳米微球构筑的二维聚合物光子晶体形态模拟图 (A正面图, B截面图)
图 5: 采用双组份聚合物纳米微球构筑的三维聚合物光子晶体形态模拟图 (A正面图, B截面图) 。
具体实施方式
下面通过实施例对本发明做进一步说明。
实施例 1 :
将亲水单体丙烯酸 0.6mL, 疏水单体苯乙烯 2mL加入含有 40mL去离子水的三颈瓶中通 氮气搅拌 10min, 然后加入溶有 0.08g过硫酸钾引发剂的水溶液, 继续通氮气, 升温至 80 V , 反应 12h, 得到单分散的苯乙烯共聚丙烯酸 (PS-PAA) 微球乳液。
将亲水单体甲基丙烯酸缩水甘油酯 0.8mL, 疏水单体苯乙烯 2mL加入含有 40mL去离子 水的三颈瓶中通氮气搅拌 lOmin, 然后加入溶有 0.08g过硫酸钾引发剂的水溶液, 继续通氮 气, 升温至 80°C, 反应 12h, 得到单分散的苯乙烯共聚丙烯酰胺 (PS-PGMA) 微球乳液。
常温常压下, 以表面带环氧基的 PS-PGMA聚合物微球为第一组份自组装基元, 以表面 带羧基的 PS-PAA聚合物微球为第二组份自组装基元。 先后涂抹于平板基体上, 第一组分和 第二组分的环氧基与羧基发生化学反应, 实现自交联, 待水溶剂自然挥发后, 聚合物微球 自组装构筑成长程有序的高强度交联型聚合物光子晶体膜。
实施例 2~6: 同实施例 1的工艺条件, 改变亲水单体丙烯酸的加入量, 合成不同粒径的 单分散的苯乙烯共聚丙烯酸(PS-PAA)微球乳液, 结果见表 1。 改变亲水单体甲基丙烯酸缩 水甘油酯的加入量, 合成不同粒径的单分散的苯乙烯共聚丙烯酸 (PS-PGMA) 微球乳液, 结果见表 2。
室温下,将实施例 2~6所得单分散的表面带环氧基的 PS-PGMA聚合物微球为第一组份 自组装基元, 以表面带羧基的 PS-PAA聚合物微球为第二组份自组装基元。 先后涂抹于平板 基体上, 第一组分和第二组分的环氧基与羧基发生化学反应, 实现自交联, 待水溶剂自然挥 发后, 聚合物微球自组装构筑成长程有序的高强度交联型聚合物光子晶体膜。 表 1
Figure imgf000007_0001
表 2
Figure imgf000007_0002
上述实施例仅用来进一步说明本发明的一种气控装置, 但本发明并不局限于实施例, 凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰, 均落入本 发明技术方案的保护范围内。
工业实用性
由于该光子晶体膜的组成基元一聚合物微球之间相互交联, 使得大尺寸工业级光子 晶体膜的制备成为可能, 并且极大的拓广了其在诸多采用染料为基底材料 (如织物、 薄膜 等) 染色方面的实际应用。

Claims

权 利 要 求
1、 一种高强度交联型聚合物光子晶体膜, 其特征在于所述的聚合物光子晶体膜由单分 散的核壳结构聚合物微球规整堆砌而成, 单分散聚合物微球粒径范围在 100nm〜2um, 所述 光子晶体由带有不同官能团的聚合物微球之间通过化学反应相互交联,形成的聚合物光子晶 体膜。
2、 一种的高强度交联型聚合物光子晶体膜的制备方法, 其特征在于所述方法的具体操 作步骤如下:
( 1 ) 常温常压下, 分别制备的不同种类的单分散聚合物微球分散于水中, 得到不同种 类和浓度的聚合物微球乳液, 所述聚合物微球乳液浓度 5〜30wt%;
(2)常温常压下, 采用步骤(1 ) 中所得不同种聚合物微球乳液, 以表面带环氧基的聚 合物微球为第一组份自组装基元, 以表面带羧基或氨基的聚合物微球为第二组份自组装基 元; 先后涂抹于平板基体上, 第一组分和第二组分的环氧基与羧基或氨基发生化学反应, 待 水溶剂自然挥发后, 聚合物微球自组装构筑成长程有序的聚合物光子晶体膜, 两组分的微球 之间自交联提高了所得聚合物光子晶体膜的力学强度。
3、 如权利要求 2所述的高强度交联型聚合物光子晶体膜的制备方法,其特征在于所述单 分散的核壳结构聚合物微球的具体合成步骤如下:
将亲水单体、疏水单体加入水溶剂中, 聚合反应体系维持 200〜600rpm搅拌速度, 使乳 液混合均匀, 通氮气, 反应体系维持 65〜85°C, 再加入引发剂溶液, 继续通氮气反应 10〜 26小时后, 得到单分散的聚合物微球; 微球粒径范围在 100nm〜2um;
所述亲水单体、疏水单体、 水和引发剂溶液按质量百分比的含量为: 亲水单体和疏水单 体为 1 %〜20%, 引发剂为亲水单体和疏水单体总质量的 0.1 %〜5%, 其余为溶剂水; 所述亲 水单体与疏水单体的体积比为 1/10 〜 1 /3。
4、如权利要求 3所述的高强度交联型聚合物光子晶体膜的制备方法,其特征在于所述的 亲水单体指甲基丙烯酸缩水甘油酯、 甲基丙烯酸羟乙酯、 N-异丙基丙烯酰胺、 丙烯酰胺、 丙 烯酸。
5、如权利要求 3所述的高强度交联型聚合物光子晶体膜的制备方法,其特征在于所述的 疏水单体指苯乙烯。
6、如权利要求 3所述的高强度交联型聚合物光子晶体膜的制备方法,其特征在于所述的 引发剂溶液为引发剂的水溶液, 其溶液浓度为 0.2〜2wt%; 引发剂为过硫酸钾。
7、 如权利要求 3所述的高强度交联型聚合物光子晶体膜的制备方法, 其特征在于将亲 水单体丙烯酸 0.6mL, 疏水单体苯乙烯 2mL加入含有 40mL去离子水的三颈瓶中通氮气搅拌 lOmin, 然后加入溶有 0.08g 过硫酸钾引发剂的水溶液, 继续通氮气, 升温至 80°C, 反应 12h, 得到单分散的苯乙烯共聚丙烯酸 (PS-PAA) 微球乳液;
将亲水单体甲基丙烯酸缩水甘油酯 0.8mL, 疏水单体苯乙烯 2mL加入含有 40mL去离子 水的三颈瓶中通氮气搅拌 lOmin, 然后加入溶有 0.08g过硫酸钾引发剂的水溶液, 继续通氮 气, 升温至 80°C, 反应 12h, 得到单分散的苯乙烯共聚丙烯酰胺 (PS-PGMA) 微球乳液; 常温常压下, 以表面带环氧基的 PS-PGMA聚合物微球为第一组份自组装基元, 以表面 带羧基的 PS-PAA聚合物微球为第二组份自组装基元; 先后涂抹于平板基体上, 第一组分和 第二组分的环氧基与羧基发生化学反应, 实现自交联, 待水溶剂自然挥发后, 聚合物微球 自组装构筑成长程有序的高强度交联型聚合物光子晶体膜。
PCT/CN2014/084282 2013-08-13 2014-08-13 一种高强度交联型聚合物光子晶体膜的制备方法 WO2015021920A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/911,953 US10189981B2 (en) 2013-08-13 2014-08-13 High-strength cross-linked polymer photonic crystal film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310351466.1A CN103409801B (zh) 2013-08-13 2013-08-13 一种高强度交联型聚合物光子晶体膜的制备方法
CN201310351466.1 2013-08-13

Publications (1)

Publication Number Publication Date
WO2015021920A1 true WO2015021920A1 (zh) 2015-02-19

Family

ID=49602839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084282 WO2015021920A1 (zh) 2013-08-13 2014-08-13 一种高强度交联型聚合物光子晶体膜的制备方法

Country Status (3)

Country Link
US (1) US10189981B2 (zh)
CN (1) CN103409801B (zh)
WO (1) WO2015021920A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284379A (zh) * 2021-12-29 2022-04-05 明冠新材料股份有限公司 聚丙烯薄膜

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409801B (zh) * 2013-08-13 2016-06-08 厦门大学 一种高强度交联型聚合物光子晶体膜的制备方法
CN104693469B (zh) * 2015-03-19 2017-08-25 哈尔滨工业大学 一种高度有序柔性胶体晶体薄膜的制备方法
CN106908898B (zh) * 2015-12-23 2019-06-21 中国科学院化学研究所 一种光子晶体的制备方法以及由该方法制备的光子晶体
CN105801730A (zh) * 2016-04-01 2016-07-27 辽宁大学 聚苯乙烯微球及其制备方法和在三维光子晶体中的应用
US10126471B2 (en) * 2016-08-18 2018-11-13 The Boeing Company Protective material and method for reflecting and dispersing incident energy
CN109851707A (zh) * 2018-12-26 2019-06-07 平湖石化有限责任公司 一种三元杂化光子晶体薄膜及其制备方法
CN110780361B (zh) * 2019-11-29 2021-08-17 大连理工大学 一种双层光子晶体光开关薄膜器件及其制备方法
CN113024874B (zh) * 2019-12-24 2022-02-15 华中科技大学 一种高灵敏图案化光子晶体传感材料及其制备与应用
CN111688189B (zh) * 2020-06-18 2022-04-19 南京工业大学 基于固着液滴制备结构色三维阵列图案的方法
CN112058606A (zh) * 2020-08-27 2020-12-11 苏州宏琦材料科技有限公司 结构色光学涂层的制备方法
CN112229826A (zh) * 2020-08-31 2021-01-15 广东比派科技有限公司 通用高效多底物检测光子晶体微芯片
CN112362866A (zh) * 2020-09-25 2021-02-12 滁州瑞谷生物技术有限公司 一种高通量、快速的半定量免疫检测方法及检测试剂
CN112305642B (zh) * 2020-10-09 2022-02-18 武汉纺织大学 一种无明显缺陷的六边辐射状光子晶体薄膜及其制备方法
CN112965268B (zh) * 2021-02-05 2022-07-05 中山蓝宏科技有限公司 具有多角度光致变色效果的柔性光子晶体及其制备方法
CN114324568A (zh) * 2021-12-31 2022-04-12 浙江大学 鸟嘌呤肽核酸自组装纳米球基光子晶体的声场辅助制备方法
CN116515057B (zh) * 2023-02-28 2023-12-08 重庆禾维科技有限公司 自组装热可逆光散热材料的制备方法及具有其的调光板/薄膜和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1808214A (zh) * 2005-01-20 2006-07-26 中国科学院化学研究所 全色胶体光子晶体膜及其制备方法和用途
CN1916056A (zh) * 2005-08-17 2007-02-21 中国科学院化学研究所 具有可控浸润性的聚合物胶体光子晶体膜及其制法和用途
CN101168582A (zh) * 2007-10-17 2008-04-30 北京理工大学 高交联单分散聚合物微球的制备方法
CN102691106A (zh) * 2011-03-23 2012-09-26 中国科学院化学研究所 无裂纹光子晶体的制备方法
US20130102733A1 (en) * 2011-10-20 2013-04-25 National Central University Method of Manufacturing Core-Shell Submicron Spheres
CN103409802A (zh) * 2013-08-13 2013-11-27 厦门大学 一种蛋白石结构聚合物光子晶体的制备方法
CN103409801A (zh) * 2013-08-13 2013-11-27 厦门大学 一种高强度交联型聚合物光子晶体膜的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083545A (ja) * 2006-09-28 2008-04-10 Nippon Paint Co Ltd フォトニック結晶構造作成用樹脂粒子およびそれから得られるフォトニック結晶膜。
AU2007346889B2 (en) * 2007-02-16 2014-05-15 Opalux Incorporated Compressible photonic crystal
CN100586551C (zh) * 2007-06-19 2010-02-03 东南大学 非密堆积胶体晶体微球的制备方法
ES2482092T3 (es) * 2007-08-24 2014-08-01 Basf Se Cristales fotónicos a partir de partículas poliméricas con interacción interparticular
CN101934267B (zh) * 2010-08-20 2012-06-13 中国科学院化学研究所 自支撑的胶体光子晶体膜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1808214A (zh) * 2005-01-20 2006-07-26 中国科学院化学研究所 全色胶体光子晶体膜及其制备方法和用途
CN1916056A (zh) * 2005-08-17 2007-02-21 中国科学院化学研究所 具有可控浸润性的聚合物胶体光子晶体膜及其制法和用途
CN101168582A (zh) * 2007-10-17 2008-04-30 北京理工大学 高交联单分散聚合物微球的制备方法
CN102691106A (zh) * 2011-03-23 2012-09-26 中国科学院化学研究所 无裂纹光子晶体的制备方法
US20130102733A1 (en) * 2011-10-20 2013-04-25 National Central University Method of Manufacturing Core-Shell Submicron Spheres
CN103409802A (zh) * 2013-08-13 2013-11-27 厦门大学 一种蛋白石结构聚合物光子晶体的制备方法
CN103409801A (zh) * 2013-08-13 2013-11-27 厦门大学 一种高强度交联型聚合物光子晶体膜的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284379A (zh) * 2021-12-29 2022-04-05 明冠新材料股份有限公司 聚丙烯薄膜
CN114284379B (zh) * 2021-12-29 2023-08-22 明冠新材料股份有限公司 聚丙烯薄膜

Also Published As

Publication number Publication date
CN103409801B (zh) 2016-06-08
US10189981B2 (en) 2019-01-29
US20160194490A1 (en) 2016-07-07
CN103409801A (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
WO2015021920A1 (zh) 一种高强度交联型聚合物光子晶体膜的制备方法
Liang et al. Rational design and synthesis of Janus composites
CN101220187A (zh) 一种具有核壳结构的磁性复合微球及其制备方法
Zhai et al. An efficient strategy for preparation of polymeric Janus particles with controllable morphologies and emulsifiabilities
CN101225179B (zh) 一种大面积有序多孔膜材料及其制备方法
CN1300179C (zh) 聚苯乙烯包覆纳米二氧化硅微球制备单分散性核/壳复合颗粒乳液的方法
CN103409802B (zh) 一种蛋白石结构聚合物光子晶体的制备方法
Fallahi-Samberan et al. Investigating Janus morphology development of poly (acrylic acid)/poly (2‑(dimethylamino) ethyl methacrylate) composite particles: An experimental study and mathematical modeling of DOX release
Ifijen et al. Stabilizing capability of gum Arabic on the synthesis of poly (styrene-methylmethacrylate-acrylic acid) latex for the generation of colloidal crystal films
Cheng et al. Syntheses and applications of concave and convex colloids with precisely controlled shapes
CN105131309A (zh) 聚合物/人工合成的硅酸锂镁纳米复合乳胶粒子分散液及其制备方法
Wang et al. One-pot synthesis of mushroom-shaped polymeric Janus particles by soap-free emulsion copolymerization
CN103359746B (zh) 一种双层中空二氧化硅纳米球及其制备方法
Arai et al. Colloidal silica bearing thin polyacrylate coat: A facile inorganic modifier of acrylic emulsions for fabricating hybrid films with least aggregation of silica nanoparticles
Yamamoto et al. Design of polymer particles maintaining dispersion stability for the synthesis of hollow silica particles through sol-gel reaction on polymer surfaces
Zhang et al. Facile fabrication of snowman-like Janus particles with asymmetric fluorescent properties via seeded emulsion polymerization
Tian et al. Janus dimers from tunable phase separation and reactivity ratios
Yang et al. Facile fabrication of lilium pollen-like organosilica particles
Zhang et al. Preparation of thermosensitive PNIPAM microcontainers and a versatile method to fabricate PNIPAM shell on particles with silica surface
Huang et al. Fabrication and self-assembly of the tetrahedron dimpled colloidal particles
Zhai et al. One-pot facile synthesis of half-cauliflower amphiphilic Janus particles with pH-switchable emulsifiabilities
An et al. Colloidal crystals of monodisperse fluoro-nanoparticles by aqueous polymerization-induced self-assembly
Nguyen et al. Soft–hard Janus nanoparticles for polymer encapsulation of solid particulate
CN106749930B (zh) 一种具有表面褶皱的非球形微粒的制备方法
Deng et al. Fabrication and morphology control of hollow polymer particles by altering core particle size

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14911953

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836372

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14836372

Country of ref document: EP

Kind code of ref document: A1