WO2015019995A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2015019995A1
WO2015019995A1 PCT/JP2014/070461 JP2014070461W WO2015019995A1 WO 2015019995 A1 WO2015019995 A1 WO 2015019995A1 JP 2014070461 W JP2014070461 W JP 2014070461W WO 2015019995 A1 WO2015019995 A1 WO 2015019995A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
pneumatic tire
bead
opening
radial direction
Prior art date
Application number
PCT/JP2014/070461
Other languages
English (en)
French (fr)
Inventor
さやか 三島
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2015019995A1 publication Critical patent/WO2015019995A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • B60C13/02Arrangement of grooves or ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C2015/009Height of the carcass terminal portion defined in terms of a numerical value or ratio in proportion to section height

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire for construction vehicles and mining vehicles.
  • Patent Document 1 a technique for thinning a rubber gauge in a bead portion having a large calorific value is known in order to suppress a temperature rise caused by rubber heat generation during rolling of the tire.
  • a pneumatic tire includes a carcass extending in a toroidal shape between bead cores embedded in a pair of bead portions.
  • the carcass has a folded portion that is wound around the bead core from the inside to the outside in the tire width direction.
  • a groove extending along the tire circumferential direction is formed on the tire outer surface of the bead portion, and the rubber gauge is partially thinned.
  • the rubber in the bead part works to alleviate distortion caused by the load received from the rim during rolling of the tire. Therefore, when the rubber gauge of the bead portion is made thin, temperature rise is suppressed, but separation is likely to occur particularly in the vicinity of the end portion of the folded portion of the carcass.
  • ORR tires off-the-road radial tires
  • distortion at the bead portion is also large. Therefore, in the ORR tire, it is difficult to achieve both prevention of separation and suppression of temperature rise.
  • an object of the present invention is to provide a pneumatic tire that suppresses temperature rise while preventing separation at the bead portion.
  • a pneumatic tire according to the present invention is a pneumatic tire including a carcass (carcass 13) extending in a toroid shape between bead cores (bead cores 12) embedded in a pair of bead portions (bead portions 11).
  • a carcass carcass 13
  • Has a folded portion folded portion (folded portion 13a) wound around the bead core from the inner side to the outer side in the tire width direction, and the bead portions are arranged at predetermined intervals in the tire circumferential direction, and have an opening (opening) on the tire outer surface.
  • the distance (distance D) from the opening to the deepest part of the recess in the tire radial direction is the distance of the vertical line extending from the opening toward the turned-up portion (the distance D).
  • the gist is that it is 30% to 80% of the distance D 0 ).
  • FIG. 1 is a tire radial direction cross-sectional view of a pneumatic tire according to the present embodiment.
  • FIG. 2 is a partially broken perspective view of the pneumatic tire according to the present embodiment.
  • FIG. 3A is a partially enlarged plan view showing a concave portion and a convex portion according to a modified example of the present embodiment.
  • FIG. 3B is a cross-sectional view taken along line AA in FIG.
  • FIG. 4A to FIG. 4S are diagrams illustrating the shape of the opening of the recess.
  • FIG. 5A to FIG. 5U are diagrams illustrating cross-sectional shapes of the recesses in the tire circumferential direction.
  • FIG. 6A to FIG. 6R are diagrams illustrating cross-sectional shapes in the tire radial direction of the recesses.
  • FIG. 1 is a tire radial cross-sectional view of a pneumatic tire 10 according to the present embodiment.
  • FIG. 1 shows only half of the pneumatic tire 10, and a portion not shown also has the same configuration as the portion shown in FIG.
  • the pneumatic tire 10 includes a carcass 13 extending in a toroidal shape between bead cores 12 embedded in a pair of bead portions 11.
  • the pneumatic tire 10 is, for example, an ORR tire for construction vehicles and mining vehicles.
  • the bead portion 11 refers to a portion from a bead end portion 11a in contact with the rim 60 at an inner end portion in the tire radial direction Td to a side wall portion 17 described later when the pneumatic tire 10 is mounted on the rim 60.
  • the rim 60 refers to a regular rim defined in a standard according to the size of a tire to be mounted. This standard is an industrial standard effective in an area where a tire is produced or used. YEAR ⁇ ⁇ BOOK, in Europe it is STANDARDS MANUAL of ETRTO (The European Tyre and Rim Technical), and in Japan, Japan Automobile Yes.
  • the bead core 12 has a polygonal cross section.
  • the carcass 13 is formed by one or a plurality of carcass plies made of, for example, a steel cord or an organic fiber cord.
  • the carcass 13 extends over the tread portion 16, the sidewall portion 17, and the bead portion 11.
  • a belt 14 is disposed on the outer side in the tire radial direction Td of the carcass 13. Is placed.
  • a portion where the tread rubber 15 is disposed is referred to as a tread portion 16, and a portion extending from both sides of the tread portion 16 to the inside in the tire radial direction Td and continuing to the bead portion 11 is referred to as a sidewall portion 17.
  • the height from the bead end portion 11a to the outer surface of the tread portion 16 (tread rubber 15) is referred to as a tire cross-section height SH.
  • the carcass 13 includes a main body portion 13b that extends from the tread portion 16 through the sidewall portion 17 to the bead core of the bead portion 11, and a turned-up portion 13a that winds around the bead core 12 from the inner side to the outer side in the tire width direction Tw.
  • the folded portion 13a and the main body portion 13b are continuous in the vicinity of the bead end portion 11a.
  • an end 42a outside the tire radial direction Td of the turned-up portion 13a is in the tire radial direction Td.
  • SHa the length in the tire radial direction Td from the bead end portion 11a to the outer end portion 42a in the tire radial direction Td of the folded portion 13a.
  • FIG. 2 is a partially broken perspective view of the pneumatic tire 10 according to the present embodiment.
  • the bead portion 11 includes a plurality of recesses 18 that are arranged at a predetermined interval P in the tire circumferential direction Tc and that have openings 18a on the outer surface of the tire.
  • a distance D from the opening 18a to the deepest portion of the recess 18 is 30% to 80% of the distance D 0 of the vertical line extended toward the folded portion 13a through the opening 18a.
  • the concave portion 18 is shown as a cylindrical shape having a perpendicular line extending from one point on the outer surface of the tire toward the folded portion 13a.
  • the recess 18 is located in the range of 0.05 to 0.5 times the tire cross-section height SH from the bead end portion 11a.
  • the recess 18 is located in the range of 0.15 to 0.3 times the tire cross-section height SH from the bead end portion 11a.
  • Area of the opening 18a is 50mm 2 ⁇ 15500mm 2.
  • the area of the opening portion 18a is 50mm 2 ⁇ 8000mm 2.
  • the predetermined interval P is 1.0 to 10.0 times the distance D from the opening 18a to the deepest portion of the recess 18 in the tire width direction Tw, and is equal to the width W of the opening in the tire circumferential direction Tc. 1.0 times to 10.0 times.
  • the evaluation test was performed using the pneumatic tire according to the example of the present embodiment and the pneumatic tire according to the comparative example. Carried out.
  • the results of the evaluation test will be described with reference to Table 1.
  • Table 1 the pneumatic tires according to the example and the comparative examples 1 to 3 differ only in the configuration of the concave portion on the outer surface of the bead portion, and the other configurations are the same. That is, in the pneumatic tire according to Comparative Example 1, no recess is formed on the tire outer surface of the bead portion. However, the pneumatic tire according to Example and Comparative Examples 2 and 3 includes the tire outer surface of the bead portion. A recess is formed on the surface.
  • the opening shape of the recess, the cross-sectional shape, the center position and the number of the openings are the same, but the distance D from the opening of the recess to the deepest portion and the opening of the recess
  • the ratio (D / D 0 ) to the distance D 0 to the carcass turn-back portion is different.
  • D / D 0 is larger in the order of Comparative Example 3, Example, and Comparative Example 2.
  • the depth of the concave portion is larger in the order of Comparative Example 3, Example, and Comparative Example 2.
  • pneumatic tires according to Examples and Comparative Examples were assembled on a regular rim and filled with a specified internal pressure.
  • the pneumatic tire according to the example and the comparative example was mounted on the front wheel of a dump truck (360 tons), and the vehicle was allowed to run at a speed of about 40 km for 24 hours, and then the temperature was measured.
  • the temperature of the pneumatic tire was measured at a position of 5 mm from the carcass folded portion by inserting a thermocouple from a pore provided in advance in the bead portion 11 at a position 20 mm in height from the rim flange 61.
  • the temperature was measured at six pores, and the average values were compared.
  • Table 1 shows the temperatures of the pneumatic tires according to the example and the comparative examples 2 and 3 on the basis of the temperature of the pneumatic tire according to the comparative example 1 (temperature after running for 24 hours). As shown in Table 1, the temperature of the pneumatic tire according to the example and the comparative examples 2 and 3 is lower than the temperature of the pneumatic tire according to the comparative example 1 in which no recess is formed. The temperature after running 24 hours, Comparative Example 3, Example, low in the order of Comparative Example 2 was consistent with the order of magnitude of D / D 0. That is, it was confirmed that the temperature increase was suppressed as D / D 0 was increased.
  • the pneumatic tire according to Comparative Example 2 since the D / D 0 is smaller, although a possibility is small that separation occurs, the heat radiation effect is small.
  • the pneumatic tire according to Comparative Example 3 since the D / D 0 is greater, although the heat radiation effect is large, there is a possibility that separation may occur.
  • the pneumatic tire according to the example can obtain a sufficient heat dissipation effect while preventing separation.
  • the bead portion 11 includes a plurality of recesses 18 that are arranged at a predetermined interval P in the tire circumferential direction Tc and that have openings 18a on the tire outer surface. .
  • the plurality of recesses 18 are arranged at a predetermined interval P. Therefore, since the recessed part 18 does not make the rubber gauge of the whole bead part 11 thin, it can dissipate the distortion at the time of tire rolling and can radiate the bead part 11 to suppress the temperature rise.
  • a distance D from the opening 18a to the deepest portion of the recess 18 is 30% to 80% of the distance D 0 of the vertical line extended toward the folded portion 13a through the opening 18a.
  • the distance D is less than 30% of the distance D 0 the distance to a large folded portion 13a of the heat value is large, no sufficient heat dissipation effect.
  • the distance D exceeds 80% of the distance D 0 will be space portions strain is concentrated by difference in rigidity between the folded portion 13a and the rubber is formed, separation tends to occur. Therefore, by setting the distance D to be 30% to 80% of the distance D 0 , it is possible to obtain a sufficient heat dissipation effect while preventing separation.
  • the recess 18 is located in the range of 0.05 to 0.5 times the tire cross-section height SH from the bead end portion 11a.
  • the opening portion 18a of the concave portion 18 is covered with the rim flange 61, and heat dissipation is hindered.
  • the position of the recess 18 from the bead end portion 11a exceeds 0.5 times the tire cross-section height SH, it is close to or included in the sidewall portion 17 having a relatively small calorific value. Accordingly, by setting the position of the recess 18 from the bead end portion 11a to 0.05 times to 0.5 times the tire cross-section height SH, a sufficient heat dissipation effect can be obtained.
  • Area of the opening 18a is 50mm 2 ⁇ 15500mm 2.
  • the area of the opening 18a is less than 50 mm 2, it is difficult for outside air to pass through and the heat dissipation effect is reduced. Further, when the area of the opening 18a exceeds 15500Mm 2, tilting is likely to occur in the carcass 13 is the cause of separation. Therefore, by setting the area of the opening 18a and 50mm 2 ⁇ 15500mm 2, while preventing the separation, it is possible to obtain a sufficient heat dissipation effect.
  • the predetermined interval P is 1.0 to 10.0 times the distance D from the opening 18a to the deepest portion of the recess 18 in the tire width direction Tw, and is equal to the width W of the opening in the tire circumferential direction Tc. 1.0 times to 10.0 times.
  • the predetermined interval P is small (less than 1.0 times the distance D or the width W)
  • the number of the concave portions 18 increases, and the carcass 13 is likely to fall down as a cause of separation.
  • the predetermined interval P is large (10.0 times or more than the distance D or the width W)
  • the total capacity of the recesses 18 is small with respect to the rubber volume of the bead portion 11, and a sufficient heat dissipation effect cannot be obtained. . Therefore, by setting the predetermined interval P in the above range, it is possible to obtain a sufficient heat dissipation effect while preventing separation.
  • FIG. 3A is a partially enlarged plan view showing a concave portion and a convex portion according to a modified example of the present embodiment.
  • the bead portion 11 further includes a plurality of convex portions 20 protruding from the outer surface of the tire, and the convex portions 20 and the concave portions 18 are alternately arranged in the tire circumferential direction Tc.
  • the opening 18a is located between the outer end and the inner end of the protrusion 20.
  • the recess 18 is cylindrical (that is, the opening 18a is circular), and the protrusion 20 is three flat protrusions extending in the tire radial direction Td, the first protrusion 21, the second protrusion 22, and the third protrusion. A case that is a combination of the protrusions 23 will be illustrated.
  • the first protrusion 21, the second protrusion 22, and the third protrusion 23 have a flat plate shape in which the width in the tire radial direction Td is L and the width in the tire circumferential direction Tc is W1. have.
  • the first protrusion 21, the second protrusion 22, and the third protrusion 23 protrude from the tire outer surface and extend in the tire width direction Tw, and have a height h.
  • the height h of the protrusion 20 (the first protrusion 21, the second protrusion 22, and the third protrusion 23) will be described later.
  • the first protrusion 21, the second protrusion 22, and the third protrusion 23 are arranged in the order of the first protrusion 21, the second protrusion 22, and the third protrusion 23 from the outer side to the inner side in the tire radial direction Td.
  • the outer end portion of the first protrusion 21 in the tire radial direction Td corresponds to the outer end portion of the convex portion 20 in the tire radial direction Td
  • the inner end portion of the third protrusion 23 in the tire radial direction Td corresponds to the convex portion 20. It corresponds to the inner end in the tire radial direction Td.
  • the outer end and the inner end of the second protrusion 22 respectively coincide with the outer end and the inner end of the opening 18a.
  • the second protrusion 22 is provided at a position different from the first protrusion 21 in the tire circumferential direction Tc.
  • the third protrusion 23 is provided at the same position as the first protrusion 21 in the tire circumferential direction Tc. Specifically, the second protrusion 22 is adjacent to the first protrusion 21 and the third protrusion 23 in the tire circumferential direction Tc, and a predetermined gap is formed between the first protrusion 21 and the second protrusion 22. The Similarly, a predetermined gap is formed between the third protrusion 23 and the second protrusion 22.
  • the inner end of the first protrusion 21 in the tire radial direction Td overlaps the outer end of the second protrusion 22 in the tire radial direction Td in the tire radial direction Td.
  • the outer end portion of the third protrusion 23 in the tire radial direction overlaps the inner end portion of the second protrusion 22 in the tire radial direction in the tire radial direction Td.
  • the protrusions 20 are arranged along the tire circumferential direction Tc at a predetermined interval P that is the same as the arrangement interval of the recesses 18. Accordingly, the protrusions 20 (the first protrusions 21, the second protrusions 22, and the third protrusions 23) and the recesses 18 are alternately arranged in the tire circumferential direction Tc.
  • FIG. 3B is a cross-sectional view taken along line AA in FIG.
  • the air flow S1 flowing in the tire circumferential direction Tc along the outer surface of the bead portion 11 rises when it collides with the convex portion 20, and the convex portion 20 (in FIG. 3B, the second protrusion 22).
  • Descends and collides with the outer surface of the bead part 11 rises again and climbs over the adjacent convex part 20.
  • the air flow S1 repeats such movement and becomes a turbulent flow.
  • region where air stays arises in the front side and the back side of the convex part 20 and the air flow S2 and the air flow S3 arise in the area
  • the air flow S2 and the air flow S3 flow so as to be drawn into the air flow S1 by taking away the heat staying on the front side and the back side of the convex portion 20.
  • the air flow S1 descending over the convex portion 20 is drawn into the concave portion 18.
  • the air flow S ⁇ b> 1 rises again and gets over the adjacent projection 20.
  • the air flow S1 takes away the heat staying in the recess 18. Therefore, compared with the case where the convex portion 20 is not formed and the air flow S1 flows along the tire circumferential direction Tc, the air flow S1 is turbulent in the modified example, and thus is easily drawn into the concave portion 18. High heat dissipation effect can be obtained.
  • the outermost point 18x of the opening 18a is located on the inner side of the outer end 20x of the convex portion 20 in the tire radial direction Td, and is the innermost side in the opening 18a.
  • the point 18y is located outside the inner end 20y of the convex portion 20 in the tire radial direction Td. Accordingly, when viewed from the tire circumferential direction Tc, since the entire opening 18a is located behind the convex portion 20, the air flow S1 is more reliably drawn into the concave portion 18, and a high heat dissipation effect can be obtained.
  • the height h of the convex portion 20 (second projection 22 in FIG. 3B) protruding from the outer surface of the tire and extending in the tire width direction Tw is defined as the height of the convex portion 20.
  • the height h of the convex portion 20 is 3 mm to 25 mm.
  • the height h is set to 3 mm to 25 mm.
  • the height h of the convex portion 20 (second protrusion 22 in FIG. 3B) and the predetermined interval P in the tire circumferential direction Tc satisfy the relationship of 1 ⁇ P / h ⁇ 50. If the predetermined interval P is too small with respect to the height h, turbulence is less likely to occur, and air tends to stagnate in the vicinity of the outer surface of the bead portion 11 between the convex portions 20. Further, if the predetermined interval P is too large with respect to the height h, a state close to that when the convex portion 20 is not formed is obtained. Therefore, 1 ⁇ P / h ⁇ 50.
  • the width W1 of the convex portion 20 in the tire circumferential direction Tc is 2 mm to 10 mm.
  • the width W1 is less than 2 mm, the rigidity of the convex portion 20 becomes low, so that there is a risk of vibration due to turbulent flow and damage.
  • the width W1 is larger than 10 mm, the amount of rubber forming the convex portion 20 is increased, and the convex portion 20 itself is likely to generate heat. Therefore, the width W1 is set to 2 mm to 10 mm.
  • the width W1 and the predetermined interval P satisfy the relationship 1 ⁇ (P ⁇ W1) / W1 ⁇ 100.
  • (P ⁇ W1) / W1 indicates the ratio of the distance between the convex portion 20 to the width W1. If (P ⁇ W1) / W1 is too small, the proportion of the surface area of the convex portion 20 in the tire circumferential direction Tc is large, and the ratio of the amount of heat generated from the convex portion 20 is large. Decreases. On the other hand, if (P ⁇ W1) / W1 is too large, the state is close to the case where the convex portion 20 is not formed. Therefore, 1 ⁇ (P ⁇ W1) / W1 ⁇ 100.
  • FIG. 4A to FIG. 4S are diagrams illustrating the shape of the opening 18a of the recess 18.
  • the shape of the opening 18a may be various shapes including, for example, an ellipse, a polygon, or a combination thereof (FIGS. 4B to 4C). s)).
  • FIGS. 5 (a) to 5 (u) are diagrams illustrating the cross-sectional shape of the recess 18 in the tire circumferential direction Tc.
  • FIG. 6A to FIG. 6R are diagrams illustrating the cross-sectional shape of the recess 18 in the tire radial direction Td.
  • the example has been described in which the concave portion 18 has a cylindrical shape and the cross-sectional shape of the concave portion 18 is a rectangle (FIG. 5A, FIG. 6A), but the present invention is not limited to this.
  • the recess 18 has various cross-sectional shapes including, for example, a polygon, a keyhole shape, or a combination thereof (FIGS.
  • the recessed part 18 may be formed so that a cross-sectional shape may become large toward the deepest part from the opening part 18a, and may be formed so that it may become small. Or the recessed part 18 may be formed so that the center position of a cross section may shift
  • the recess 18 has a cylindrical shape (that is, the opening 18a is circular), and the protrusion 20 is three flat protrusions extending in the tire radial direction Td.
  • the case of a combination of the third protrusions 23 is illustrated.
  • the cross-sectional shape of the recess 18 and the shape of the opening 18a are, for example, FIGS. 4 (a) to 4 (s), FIGS. 5 (a) to 5 (u), and FIGS. 6 (a) to 6 (r). Any of the shapes exemplified in (1) may be used.
  • the protrusion 20 may be an arbitrary number of protrusions extending in the tire radial direction Td, and the positions of the protrusions in the tire circumferential direction Tc may coincide with each other and are offset by a predetermined distance. Also good. Moreover, the position in the tire radial direction Td of each protrusion of the convex portion 20 may be separated by a predetermined distance, or a part thereof may overlap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 空気入りタイヤは、一対のビード部(11)内に埋設されたビードコア(12)の相互間にわたってトロイド状に延びるカーカス(13)を備える。カーカス(13)は、ビードコア(12)の周りをタイヤ幅方向(Tw)の内側から外側に巻上げた折返し部(13a)を有する。ビード部(11)は、タイヤ周方向(Tc)に所定の間隔で配置され、タイヤ外表面に開口部(18a)を有する複数の凹部(18)を備える。タイヤ幅方向(Tw)において、開口部(18a)から凹部(18)の最深部までの距離Dは、開口部(18a)から折返し部(13a)に向けて延ばした垂線の距離の30%~80%である。

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関し、特に、建設車両及び鉱山車両用の空気入りタイヤに関する。
 従来、車両に装着される空気入りタイヤにおいては、タイヤ転動時におけるゴムの発熱に起因する温度上昇を抑制するために、例えば、発熱量の大きいビード部においてゴムゲージを薄くする技術が知られている(例えば、特許文献1)。
 一般に、空気入りタイヤは、一対のビード部内に埋設されたビードコア相互間にわたってトロイド状に延びるカーカスを備える。カーカスは、ビードコアの周りをタイヤ幅方向の内側から外側に巻上げた折返し部を有する。特許文献1に記載された空気入りタイヤにおいては、ビード部のタイヤ外表面に、タイヤ周方向に沿って延びる溝が形成され、ゴムゲージが部分的に薄くされている。
特開2000-185530号公報
 しかしながら、ビード部のゴムは、タイヤ転動時にリムから受ける負荷による歪みを緩和する働きをする。そのため、ビード部のゴムゲージを薄くすると、温度上昇が抑制される一方で、特にカーカスの折返し部の端部付近において、セパレーションが発生しやすくなる。特に、建設車両及び鉱山車両用のORRタイヤ(オフザロードラジアルタイヤ)は、荷重による撓みが大きいため、ビード部における歪みも大きい。そのため、ORRタイヤにおいては、セパレーションの防止と温度上昇の抑制とを両立させることが難しい。
 そこで、本発明は、ビード部におけるセパレーションを防止しつつ、温度上昇を抑制する空気入りタイヤを提供することを目的とする。
 本発明に係る空気入りタイヤは、一対のビード部(ビード部11)内に埋設されたビードコア(ビードコア12)相互間にわたってトロイド状に延びるカーカス(カーカス13)を備える空気入りタイヤであって、カーカスは、ビードコアの周りをタイヤ幅方向の内側から外側に巻上げた折返し部(折返し部13a)を有し、ビード部は、タイヤ周方向に所定の間隔で配置され、タイヤ外表面に開口部(開口部18a)を有する複数の凹部(凹部18)を備え、タイヤ径方向において、開口部から凹部の最深部までの距離(距離D)は、開口部から折返し部に向けて延ばした垂線の距離(距離D)の30%~80%であることを要旨とする。
図1は、本実施形態に係る空気入りタイヤのタイヤ径方向断面図である。 図2は、本実施形態に係る空気入りタイヤの一部破断斜視図である。 図3(a)は、本実施形態の変更例に係る凹部及び凸部を示す一部拡大平面図である。図3(b)は、図3(a)のA-Aにおける断面図である。 図4(a)~図4(s)は、凹部の開口部の形状を例示する図である。 図5(a)~図5(u)は、凹部のタイヤ周方向における断面形状を例示する図である。 図6(a)~図6(r)は、凹部のタイヤ径方向における断面形状を例示する図である。
 以下において、本発明の実施形態に係る空気入りタイヤについて、図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 (1)空気入りタイヤの構成
 以下において、本実施形態に係る空気入りタイヤの構成について、図1を参照しながら説明する。図1は、本実施形態に係る空気入りタイヤ10のタイヤ径断面図である。ただし、図1は、空気入りタイヤ10の半分のみを示し、図示されていない部分も、図1に示された部分と同一の構成を有する。
 図1に示すように、空気入りタイヤ10は、一対のビード部11内に埋設されたビードコア12相互間にわたってトロイド状に延びるカーカス13を備える。空気入りタイヤ10は、例えば、建設車両及び鉱山車両用のORRタイヤである。
 ビード部11は、空気入りタイヤ10をリム60に装着した場合に、タイヤ径方向Tdの内側端部においてリム60と接するビード端部11aから、後述するサイドウォール部17までの部分をいう。リム60は、装着するタイヤのサイズに応じて規格に規定された正規リムをいい、この規格は、タイヤが生産又は使用される地域に有効な産業規格であって、例えば、アメリカ合衆国では、TRAのYEAR BOOKに、欧州では、ETRTO(The European Tyre and Rim Technical Organisation)のSTANDARDS MANUALに、日本では、日本自動車タイヤ協会(Japan Automobile Tyre Manufacturers Association,Inc.:JATMA)のYEAR BOOKに、それぞれ示されている。
 ビードコア12は、図1に示すように、横断面輪郭が多角形状に形成される。カーカス13は、例えば、スチールコード又は有機繊維コード等からなる1本又は複数本のカーカスプライにより形成される。
 図1に示すように、カーカス13は、トレッド部16とサイドウォール部17とビード部11とにわたって延びる。カーカス13の一対のビードコア12の間の中央部、すなわち、空気入りタイヤ10のクラウン領域において、カーカス13のタイヤ径方向Tdの外側にベルト14が配置され、更に、ベルト14を覆ってトレッドゴム15が配置される。以下、トレッドゴム15が配置された部分をトレッド部16といい、トレッド部16の両側からタイヤ径方向Tdの内側へ延び、ビード部11に連続する部分をサイドウォール部17という。また、タイヤ径方向Tdにおいて、ビード端部11aからトレッド部16(トレッドゴム15)外表面までの高さを、タイヤ断面高さSHという。
 カーカス13はトレッド部16からサイドウォール部17を経てビード部11のビードコアに至る本体部13bと、ビードコア12の周りをタイヤ幅方向Twの内側から外側に巻上げた折返し部13aとを有する。折返し部13aと本体部13bとは、ビード端部11a付近で連続している。
 正規内圧を充填し、無荷重である無荷重状態におけるタイヤ幅方向Tw及びタイヤ径方向Tdに沿ったタイヤ断面において、折返し部13aのタイヤ径方向Tdの外側の端部42aは、タイヤ径方向Tdの最も内側に位置するビード端部11aから、タイヤ径方向Tdの外側に向かってタイヤ断面高さSHの40%以上で60%以下の範囲に位置している。具体的に、図1に示すように、ビード端部11aから折返し部13aのタイヤ径方向Tdの外側の端部42aまでのタイヤ径方向Tdにおける長さをSHaとした場合、0.4SH≦SHa≦0.6SHの関係を満たす。
 (2)凹部の構成
 以下において、本実施形態に係る空気入りタイヤの凹部の構成について、図1及び図2を参照しながら説明する。図2は、本実施形態に係る空気入りタイヤ10の一部破断斜視図である。
 本実施形態において、ビード部11は、タイヤ周方向Tcに所定の間隔Pで配置され、タイヤ外表面に開口部18aを有する複数の凹部18を備える。タイヤ幅方向Twにおいて、開口部18aから凹部18の最深部までの距離Dは、開口部18aから折返し部13aに向けて延ばした垂線の距離Dの30%~80%である。図1及び図2において、凹部18は、タイヤ外表面上の1点から折返し部13aに向けて延ばした垂線を軸とする円柱形として示されている。
 タイヤ径方向Tdにおいて、凹部18は、ビード端部11aからタイヤ断面高さSHの0.05倍~0.5倍の範囲に位置する。好ましくは、タイヤ径方向Tdにおいて、凹部18は、ビード端部11aからタイヤ断面高さSHの0.15倍~0.3倍の範囲に位置する。
 開口部18aの面積は、50mm~15500mmである。好ましくは、開口部18aの面積は、50mm~8000mmである。
 所定の間隔Pは、タイヤ幅方向Twにおける開口部18aから凹部18の最深部までの距離Dの1.0倍~10.0倍であり、かつ、タイヤ周方向Tcにおける開口部の幅Wの1.0倍~10.0倍である。
 (3)評価試験
 次に、本実施形態に係る空気入りタイヤの効果を明確にするために、本実施形態の実施例に係る空気入りタイヤ及び比較例に係る空気入りタイヤを用いて、評価試験を実施した。評価試験の結果について、表1を参照しながら説明する。実施例及び比較例1~3に係る空気入りタイヤは、表1に示すように、ビード部のタイヤ外表面における凹部の構成のみが相違し、他の構成は同一とした。すなわち、比較例1に係る空気入りタイヤには、ビード部のタイヤ外表面に凹部が形成されていないが、実施例及び比較例2,3に係る空気入りタイヤには、ビード部のタイヤ外表面に凹部が形成されている。実施例及び比較例2,3において、凹部の開口部形状、断面形状、開口部の中心位置及び個数は同じであるが、凹部の開口部から最深部までの距離Dと、凹部の開口部からカーカスの折返し部までの距離Dとの比(D/D)はそれぞれ異なる。D/Dは、比較例3、実施例、比較例2の順に大きい。換言すると、凹部の深さは、比較例3、実施例、比較例2の順に大きい。
Figure JPOXMLDOC01-appb-T000001
 評価試験では、実施例及び比較例に係る空気入りタイヤを正規リムに組み、規定の内圧を充填した。このような状態で、実施例及び比較例に係る空気入りタイヤをダンプトラック(360トン)の前輪に装着し、時速約40kmで24時間走行させた後、温度を測定した。空気入りタイヤの温度は、ビード部11のうち、リムフランジ61から高さ20mmの位置に予め設けられた細孔から熱電対を挿入し、カーカスの折返し部から5mmの位置で測定した。各空気入りタイヤにつき、6箇所の細孔で温度を測定し、平均値を比較した。
 表1は、比較例1に係る空気入りタイヤの温度(24時間走行後の温度)を基準とした、実施例及び比較例2,3に係る空気入りタイヤの温度を示す。表1に示すように、実施例及び比較例2,3に係る空気入りタイヤの温度は、凹部が形成されていない比較例1に係る空気入りタイヤの温度よりも低い。また、24時間走行後の温度は、比較例3、実施例、比較例2の順に低く、D/Dの大きさの順と一致した。すなわち、D/Dが大きいほど、温度上昇が抑制されることが確認された。
 また、評価試験では、24時間走行後のセパレーションの有無についても確認を行った。表1に示すように、実施例及び比較例1,2ではセパレーションが発生しなかったが、比較例3ではセパレーションの発生が一部確認された。
 すなわち、比較例2に係る空気入りタイヤは、D/Dが小さいことから、セパレーションが発生するおそれは少ないものの、放熱効果も小さい。一方、比較例3に係る空気入りタイヤは、D/Dが大きいことから、放熱効果は大きいものの、セパレーションが発生するおそれがある。これに対し、実施例に係る空気入りタイヤは、セパレーションを防止しつつ、十分な放熱効果が得られることが確認された。
 (4)作用・効果
 以上説明したように、本実施形態において、ビード部11は、タイヤ周方向Tcに所定の間隔Pで配置され、タイヤ外表面に開口部18aを有する複数の凹部18を備える。換言すると、複数の凹部18は、タイヤ周方向Tcに延びる溝と異なり、所定の間隔Pを隔てて配置されている。そのため、凹部18は、ビード部11全体のゴムゲージを薄くすることないため、タイヤ転動時の歪みを緩和しつつ、ビード部11を放熱させて温度上昇を抑制することができる。
 また、タイヤ幅方向Twにおいて、開口部18aから凹部18の最深部までの距離Dは、開口部18aから折返し部13aに向けて延ばした垂線の距離Dの30%~80%である。ここで、距離Dが距離Dの30%未満であると、発熱量の大きい折返し部13aまでの距離が大きく、十分な放熱効果が得られない。また、距離Dが距離Dの80%を上回ると、折返し部13aとゴムとの剛性段差により歪が集中する部分に空間が形成されることになり、セパレーションが発生しやすくなる。そこで、距離Dを距離Dの30%~80%とすることにより、セパレーションを防止しつつ、十分な放熱効果を得ることができる。
 タイヤ径方向Tdにおいて、凹部18は、ビード端部11aからタイヤ断面高さSHの0.05倍~0.5倍の範囲に位置する。凹部18のビード端部11aからの位置がタイヤ断面高さSHの0.05倍未満であると、凹部18の開口部18aがリムフランジ61に覆われ、放熱が妨げられる。また、凹部18のビード端部11aからの位置がタイヤ断面高さSHの0.5倍を上回ると、発熱量の比較的小さいサイドウォール部17に近接し、又は含まれてしまう。そこで、凹部18のビード端部11aからの位置をタイヤ断面高さSHの0.05倍~0.5倍とすることにより、十分な放熱効果を得ることができる。
 開口部18aの面積は、50mm~15500mmである。開口部18aの面積が50mm未満であると、外気が通りにくく、放熱効果が低下する。また、開口部18aの面積が15500mmを上回ると、セパレーションの原因であるカーカス13の倒れ込みが発生しやすくなる。そこで、開口部18aの面積を50mm~15500mmとすることにより、セパレーションを防止しつつ、十分な放熱効果を得ることができる。
 所定の間隔Pは、タイヤ幅方向Twにおける開口部18aから凹部18の最深部までの距離Dの1.0倍~10.0倍であり、かつ、タイヤ周方向Tcにおける開口部の幅Wの1.0倍~10.0倍である。所定の間隔Pが小さい場合(距離D又は幅Wの1.0倍未満)、凹部18の数が多くなり、セパレーションの原因であるカーカス13の倒れ込みが発生しやすくなる。また、所定の間隔Pが大きい場合(距離D又は幅Wの10.0倍またはそれ以上)、ビード部11のゴムボリュームに対して凹部18の合計容量が小さく、十分な放熱効果が得られない。そこで、所定の間隔Pを上述の範囲とすることにより、セパレーションを防止しつつ、十分な放熱効果を得ることができる。
 (5)変更例
 以下において、本実施形態の変更例に係る空気入りタイヤについて説明する。以下、変更例と本実施形態との差異を中心に説明を行い、共通事項についての説明は省略する。
 図3(a)は、本実施形態の変更例に係る凹部及び凸部を示す一部拡大平面図である。変更例において、ビード部11は、タイヤ外表面から突出する複数の凸部20をさらに備え、凸部20と凹部18とは、タイヤ周方向Tcにおいて交互に配置される。タイヤ径方向Tdにおいて、開口部18aは、凸部20の外側端部と内側端部との間に位置する。ここでは、凹部18が円柱形(すなわち、開口部18aが円形)であり、凸部20がタイヤ径方向Tdに延びる3つの平板状突起である、第1突起21、第2突起22、第3突起23の組み合わせであるケースについて例示する。
 図3(a)に示すように、第1突起21、第2突起22、第3突起23は、タイヤ径方向Tdの幅がL、タイヤ周方向Tcの幅がW1である、平板状の形状を有している。第1突起21、第2突起22、第3突起23は、タイヤ外表面から突出してタイヤ幅方向Twに伸びており、高さhを有している。凸部20(第1突起21、第2突起22、第3突起23)の高さhについては後述する。
 第1突起21、第2突起22、第3突起23は、タイヤ径方向Tdの外側から内側に向けて、第1突起21、第2突起22、第3突起23の順に並ぶ。第1突起21のタイヤ径方向Tdの外側端部は、凸部20のタイヤ径方向Tdの外側端部に相当し、第3突起23のタイヤ径方向Tdの内側端部は、凸部20のタイヤ径方向Tdの内側端部に相当する。好ましくは、タイヤ径方向Tdにおいて、第2突起22の外側端部及び内側端部は、開口部18aの外側端部及び内側端部とそれぞれ一致する。
 第2突起22は、第1突起21とタイヤ周方向Tcにおいて異なる位置に設けられる。第3突起23は、第1突起21とタイヤ周方向Tcにおいて同じ位置に設けられる。具体的には、第2突起22は、タイヤ周方向Tcにおいて第1突起21及び第3突起23に隣接し、第1突起21と第2突起22との間には、所定の空隙が形成される。同様に、第3突起23と第2突起22との間には、所定の空隙が形成される。
 図3(a)に示すように、第1突起21のタイヤ径方向Tdの内側端部は、第2突起22のタイヤ径方向Tdの外側端部とタイヤ径方向Tdにおいて重なる。同様に、第3突起23のタイヤ径方向の外側端部は、第2突起22のタイヤ径方向の内側端部とタイヤ径方向Tdにおいて重なる。
 変更例において、凸部20(第1突起21、第2突起22、第3突起23)は、凹部18の配置間隔と同じ所定の間隔Pで、タイヤ周方向Tcに沿って配置される。従って、凸部20(第1突起21、第2突起22、第3突起23)と凹部18とは、タイヤ周方向Tcにおいて交互に配置される。
 次に、変更例に係る空気入りタイヤにおける乱流発生の状態について、図3(b)を参照しながら説明する。図3(b)は、図3(a)の線A-Aにおける断面図である。タイヤ転動時に、ビード部11の外表面に沿ってタイヤ周方向Tcに流れる空気流S1は、凸部20と衝突すると、上昇して凸部20(図3(b)では、第2突起22)を乗り越え、下降してビード部11の外表面に衝突し、再び上昇して隣接する凸部20を乗り越える。空気流S1は、このような動きを繰り返し、乱流となる。また、凸部20の前面側及び背面側には、空気が滞留する領域が生じ、空気が滞留する領域には、空気流S2及び空気流S3が生じる。空気流S2及び空気流S3は、凸部20の前面側及び背面側に滞留する熱を奪って、空気流S1に引き込まれるように流れる。
 変更例では、タイヤ周方向Tcにおいて、凸部20と凸部20との間に凹部18が位置するため、凸部20を乗り越えて下降する空気流S1は、凹部18に引き込まれる。空気流S1は、凹部18の底面に衝突した後、再び上昇して隣接する凸部20を乗り越える。これにより、空気流S1は、凹部18に滞留する熱を奪う。従って、凸部20が形成されておらず、空気流S1がタイヤ周方向Tcに沿って流れる場合と比べ、変更例では、空気流S1が乱流となっているため、凹部18に引き込まれやすく、高い放熱効果を得ることができる。
 また、変更例では、タイヤ径方向Tdにおいて、開口部18aの最も外側の点18xは、凸部20のタイヤ径方向Tdの外側端部20xよりも内側に位置し、開口部18aで最も内側の点18yは、凸部20のタイヤ径方向Tdの内側端部20yよりも外側に位置する。従って、タイヤ周方向Tcから見ると、開口部18aの全体が凸部20の背後に位置する為、空気流S1がより確実に凹部18に引き込まれ、高い放熱効果を得ることができる。
 図3(b)に示すように、タイヤ外表面から突出してタイヤ幅方向Twに伸びている凸部20(図3(b)では、第2突起22)の高さhを、凸部20の上端からタイヤ外表面に垂直におろした垂線の長さとして定義すると、変更例では、凸部20の高さhは、3mm~25mmである。高さhが3mm未満の場合、乱流が発生しにくく、十分な放熱効果を得ることができない。一方、高さhが25mmより大きい場合、走行時に凸部20が破損する可能性が高まる。そこで、凸部20の高さhは、3mm~25mmとする。
 また、凸部20(図3(b)では、第2突起22)の高さhと、タイヤ周方向Tcにおける所定の間隔Pとは、1≦P/h≦50の関係を満たす。高さhに対して所定の間隔Pを小さくしすぎると、乱流が発生しにくくなり、凸部20と凸部20との間のビード部11の外表面付近で空気が停滞しやすくなる。また、高さhに対して所定の間隔Pを大きくしすぎると、凸部20が形成されていない場合に近い状態となる。そこで、1≦P/h≦50とする。
 また、変更例では、凸部20のタイヤ周方向Tcにおける幅W1は、2mm~10mmである。幅W1が2mm未満の場合、凸部20の剛性が低くなるため、乱流によって振動し、破損するおそれがある。一方、幅W1が10mmよりも大きい場合、凸部20を形成するゴム量が多くなり、凸部20自体が発熱し易くなるため、温度上昇抑制効果が低下してしまう。そこで、幅W1は、2mm~10mmとする。
 また、幅W1と所定の間隔Pとは、1≦(P-W1)/W1≦100の関係を満たす。(P-W1)/W1は、幅W1に対する凸部20と凸部20との間の距離の割合を示す。(P-W1)/W1が小さすぎると、タイヤ周方向Tcにおいて凸部20の表面積が占める割合が大きく、凸部20からの発熱量の割合が大きくなるため、凸部20による温度上昇抑制効果が低下する。一方、(P-W1)/W1が大きすぎると、凸部20が形成されていない場合に近い状態となる。そこで、1≦(P-W1)/W1≦100とする。
 (6)その他の実施形態
 本発明を上述の実施形態によって説明したが、これらの実施形態は本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明は当該実施形態に限定されるものではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。本発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。
 図4(a)~図4(s)は、凹部18の開口部18aの形状を例示する図である。本実施形態では、凹部18が円柱形であり、開口部18aの形状が円形(図4(a))である例を説明したが、これに限定されるものではない。図4(a)~図4(s)に示すように、開口部18aの形状は、例えば、楕円、多角形、又はこれらの組み合わせ等を含む様々な形状(図4(b)~図4(s))であってもよい。
 図5(a)~図5(u)は、凹部18のタイヤ周方向Tcにおける断面形状を例示する図である。また、図6(a)~図6(r)は、凹部18のタイヤ径方向Tdにおける断面形状を例示する図である。本実施形態では、凹部18が円柱形であり、凹部18の断面形状が長方形(図5(a)、図6(a))である例を説明したが、これに限定されるものではない。図5(a)~図5(u)に示すように、凹部18の断面形状は、例えば、多角形、鍵穴型、又はこれらの組み合わせ等を含む様々な形状(図5(b)~図5(u)、図6(b)~図6(r))であってもよい。換言すると、凹部18は、開口部18aから最深部に向けて断面形状が大きくなるように形成されてもよく、小さくなるように形成されてもよい。あるいは、凹部18は、開口部18aから最深部に向けて、断面の中心位置がずれるように形成されてもよい。
 また、変更例では、凹部18が円柱形(すなわち、開口部18aが円形)であり、凸部20がタイヤ径方向Tdに延びる3つの平板状突起である、第1突起21、第2突起22、第3突起23の組み合わせであるケースについて例示した。しかしながら、実施形態は、これに限定されない。凹部18の断面形状及び開口部18aの形状は、例えば、図4(a)~図4(s)、図5(a)~図5(u)、図6(a)~図6(r)に例示した形状のいずれかであってもよい。また、凸部20は、タイヤ径方向Tdに延びる任意の数の突起であってもよく、各突起のタイヤ周方向Tcにおける位置は、一致していてもよく、所定の距離だけオフセットしていてもよい。また、凸部20の各突起のタイヤ径方向Tdにおける位置は、所定の距離だけ離れていてもよく、一部が重複していてもよい。
 本出願は、2013年8月7日に出願された日本国特許願第2013-163829号に基づく優先権を主張しており、この出願の全内容が参照により本明細書に組み込まれる。
 本発明によれば、ビード部におけるセパレーションを防止しつつ、温度上昇を抑制する空気入りタイヤを提供することができる。
10 空気入りタイヤ
11 ビード部
11a ビード端部
12 ビードコア
13 カーカス
13a 折返し部
14 ベルト
15 トレッドゴム
16 トレッド部
17 サイドウォール部
18 凹部
18a 開口部
20 凸部
21 第1突起
22 第2突起
23 第3突起

Claims (7)

  1.  一対のビード部内に埋設されたビードコアの相互間にわたってトロイド状に延びるカーカスを備える空気入りタイヤであって、
     前記カーカスは、前記ビードコアの周りをタイヤ幅方向の内側から外側に巻上げた折返し部を有し、
     前記ビード部は、タイヤ周方向に所定の間隔で配置され、タイヤ外表面に開口部を有する複数の凹部を備え、
     タイヤ径方向において、前記開口部から前記凹部の最深部までの距離は、前記開口部から前記折返し部に向けて延ばした垂線の距離の30%~80%であること
    を特徴とする空気入りタイヤ。
  2.  請求項1に記載の空気入りタイヤであって、
     前記タイヤ径方向において、前記凹部は、ビード端部からタイヤ断面高さの0.05倍~0.5倍の範囲に位置すること
    を特徴とする空気入りタイヤ。
  3.  請求項1に記載の空気入りタイヤであって、
     前記開口部の面積は、50mm~15500mmであること
    を特徴とする空気入りタイヤ。
  4.  請求項1に記載の空気入りタイヤであって、
     前記所定の間隔は、前記タイヤ径方向における前記開口部から前記凹部の最深部までの距離の1.0倍~10.0倍であり、かつ、前記タイヤ周方向における前記開口部の幅の1.0倍~10.0倍であること
    を特徴とする空気入りタイヤ。
  5.  請求項1に記載の空気入りタイヤであって、
     前記ビード部は、前記タイヤ外表面から突出する複数の凸部をさらに備え、
     前記凸部と前記凹部とは、前記タイヤ周方向において交互に配置されること
    を特徴とする空気入りタイヤ。
  6.  請求項5に記載の空気入りタイヤであって、
     前記タイヤ径方向において、前記開口部は、隣接する凸部の外側端部と内側端部との間に位置すること
    を特徴とする空気入りタイヤ。
  7.  請求項5に記載の空気入りタイヤであって、
     前記凸部は、前記タイヤ径方向に隣接する複数の突起を含み、
     前記タイヤ径方向において、前記複数の突起のいずれか1つの外側端部及び内側端部は、前記開口部の外側端部及び内側端部とそれぞれ一致すること
    を特徴とする空気入りタイヤ。
PCT/JP2014/070461 2013-08-07 2014-08-04 空気入りタイヤ WO2015019995A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-163829 2013-08-07
JP2013163829A JP2015030441A (ja) 2013-08-07 2013-08-07 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2015019995A1 true WO2015019995A1 (ja) 2015-02-12

Family

ID=52461327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070461 WO2015019995A1 (ja) 2013-08-07 2014-08-04 空気入りタイヤ

Country Status (2)

Country Link
JP (1) JP2015030441A (ja)
WO (1) WO2015019995A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060459A1 (fr) * 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Pneumatique resistant aux attaques chimiques
WO2020123300A2 (en) 2018-12-14 2020-06-18 Eli Lilly And Company Kras variant mrna molecules

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935365B2 (ja) * 2018-06-21 2021-09-15 株式会社ブリヂストン 建設車両用タイヤ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160204A (en) * 1980-05-13 1981-12-09 Bridgestone Corp Heavy load bearing radial tire with reduced shearing strain in bead section
JPS61129604U (ja) * 1985-02-01 1986-08-14
JP2010260418A (ja) * 2009-04-30 2010-11-18 Bridgestone Corp 空気入りタイヤ
JP2010260376A (ja) * 2009-04-30 2010-11-18 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2011143844A (ja) * 2010-01-15 2011-07-28 Bridgestone Corp タイヤ
WO2012018128A1 (ja) * 2010-08-05 2012-02-09 株式会社ブリヂストン タイヤ
WO2013111890A1 (ja) * 2012-01-27 2013-08-01 株式会社ブリヂストン タイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160204A (en) * 1980-05-13 1981-12-09 Bridgestone Corp Heavy load bearing radial tire with reduced shearing strain in bead section
JPS61129604U (ja) * 1985-02-01 1986-08-14
JP2010260418A (ja) * 2009-04-30 2010-11-18 Bridgestone Corp 空気入りタイヤ
JP2010260376A (ja) * 2009-04-30 2010-11-18 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2011143844A (ja) * 2010-01-15 2011-07-28 Bridgestone Corp タイヤ
WO2012018128A1 (ja) * 2010-08-05 2012-02-09 株式会社ブリヂストン タイヤ
WO2013111890A1 (ja) * 2012-01-27 2013-08-01 株式会社ブリヂストン タイヤ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060459A1 (fr) * 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Pneumatique resistant aux attaques chimiques
WO2018115702A1 (fr) * 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Pneumatique résistant aux attaques chimiques
WO2020123300A2 (en) 2018-12-14 2020-06-18 Eli Lilly And Company Kras variant mrna molecules

Also Published As

Publication number Publication date
JP2015030441A (ja) 2015-02-16

Similar Documents

Publication Publication Date Title
JP5809611B2 (ja) ランフラットタイヤ
JP5545901B1 (ja) タイヤ
JP5956942B2 (ja) タイヤ
CA2862595C (en) Tire
WO2014178186A1 (ja) 空気入りタイヤ
JP6885713B2 (ja) 空気入りタイヤ
US9956826B2 (en) Tire
JP2007038917A (ja) 空気入りタイヤ
JP5883208B2 (ja) 空気入りタイヤ
WO2015019995A1 (ja) 空気入りタイヤ
JP6121285B2 (ja) 空気入りタイヤ
JP7183689B2 (ja) 重荷重用空気入りタイヤ
JP2009083769A (ja) 空気入りタイヤ
JP6133632B2 (ja) 重荷重用タイヤ
JP6046947B2 (ja) ランフラットタイヤ
JP6117556B2 (ja) 建設車両用タイヤ
JP2013180651A (ja) 空気入りタイヤ
JP2007326392A (ja) 空気入りタイヤ
JP2012144129A (ja) 空気入りラジアルタイヤ
JP2010208505A (ja) タイヤ
WO2016093126A1 (ja) 建設車両用タイヤ
JP2020066244A (ja) 重荷重用空気入りタイヤ
JP5070927B2 (ja) 重荷重用タイヤ用チューブおよび重荷重用チューブ入りタイヤ
WO2014175347A1 (ja) 空気入りラジアルタイヤ
JP5944881B2 (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14835024

Country of ref document: EP

Kind code of ref document: A1