WO2015016117A1 - X線ct装置、x線高電圧装置、および、x線撮影装置 - Google Patents

X線ct装置、x線高電圧装置、および、x線撮影装置 Download PDF

Info

Publication number
WO2015016117A1
WO2015016117A1 PCT/JP2014/069504 JP2014069504W WO2015016117A1 WO 2015016117 A1 WO2015016117 A1 WO 2015016117A1 JP 2014069504 W JP2014069504 W JP 2014069504W WO 2015016117 A1 WO2015016117 A1 WO 2015016117A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
anode
rotation speed
ray irradiation
arrival time
Prior art date
Application number
PCT/JP2014/069504
Other languages
English (en)
French (fr)
Inventor
将太郎 進藤
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2015529532A priority Critical patent/JP6379092B2/ja
Priority to CN201480039529.2A priority patent/CN105379426B/zh
Priority to US14/903,198 priority patent/US9900971B2/en
Publication of WO2015016117A1 publication Critical patent/WO2015016117A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/66Circuit arrangements for X-ray tubes with target movable relatively to the anode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4021Arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/545Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/56Switching-on; Switching-off

Definitions

  • the present invention relates to an X-ray CT apparatus including a starter device that rotates a rotating anode of an X-ray tube.
  • a rotating anode type X-ray tube is used in order to suppress the thermal influence on the X-ray tube anode by X-ray irradiation.
  • the rotary anode type X-ray tube includes a stator coil arranged outside the tube and a rotary anode arranged inside the tube.
  • a starter circuit is connected to the stator coil. The starter circuit supplies a three-phase AC voltage or a 90 ° phase-shifted voltage to the stator coil to generate a rotating magnetic field, and rotates the anode inside the tube.
  • the rotation speed of the anode does not reach the predetermined rotation speed, and therefore, X-ray irradiation is performed after a predetermined standby time has elapsed.
  • the standby time is a time required for the anode rotation speed to rise to a predetermined rotation speed or more, and is a fixed time obtained in advance. As a result, the anode is prevented from being irradiated with an electron beam from the cathode before reaching a predetermined rotational speed.
  • Patent Document 1 discloses an X-ray apparatus that controls the anode rotation speed as follows.
  • the starter device obtains the model of the X-ray tube device and stores the relationship between the rotational speed of the rotating anode and the rating for each X-ray tube device model Read the rating corresponding to the model of the X-ray tube device.
  • the holding rotation speed at the time of imaging of the rotating anode of the X-ray tube apparatus is calculated, and the rotation speed of the rotating anode of the X-ray tube apparatus is calculated to the calculated holding rotation speed at imaging. Launch and maintain.
  • the starter device is provided with a rotation speed detector, and when the detected rotation speed has increased to the holding rotation speed during shooting, the shooting preparation operation completion display is turned on. Accordingly, it is not necessary to increase the rotation speed uniformly to a high speed, and the rotation speed can be increased to the holding rotation speed at the time of shooting corresponding to the shooting conditions, so that the startup time can be shortened.
  • Patent Document 1 since the method disclosed in Patent Document 1 changes the rotation speed of the anode (the holding rotation speed at the time of shooting) every time the shooting condition changes, the control of the rotation speed of the anode is complicated. For example, it is necessary to arrange a detector for detecting the rotation speed of the anode in real time in the apparatus, which complicates the apparatus configuration. Further, since it is necessary to determine whether or not the detected rotation speed has reached the holding rotation speed at the time of shooting, the control circuit is also complicated. Furthermore, when this technology is applied to an X-ray CT apparatus, it is necessary to arrange a detector for the anode rotation speed in the gantry, but the detector avoids the influence of vibration due to the rotation of the gantry and the anode rotation speed is accurate. Is difficult to detect.
  • An object of the present invention is to provide an X-ray CT apparatus that shortens the waiting time until X-ray irradiation is permitted with a simple configuration without detecting the number of rotations of the anode.
  • the rated anode rotation speed is selected from a plurality of types according to the X-ray irradiation conditions.
  • the control unit obtains the time (arrival time) to reach the anode rotation speed (irradiation possible rotation speed) that is smaller than the rated anode rotation speed and can be irradiated with X-rays under the input X-ray irradiation conditions. If this arrival time has elapsed, it outputs that X-rays can be irradiated.
  • an X-ray CT apparatus that reduces the waiting time until X-ray irradiation is permitted with a simple configuration without detecting the number of rotations of the anode.
  • FIG. 1 is a block diagram showing a configuration of an X-ray high voltage device 12 and an X-ray tube device 8 of an X-ray CT apparatus according to Embodiment 1 of the present invention.
  • 1 is a block diagram illustrating a configuration of a starter circuit 10 according to a first embodiment.
  • the graph which shows the relationship between the X-ray irradiation conditions of the X-ray tube apparatus 8 of Embodiment 1 and the amount of heat generated by the anode for each of a plurality of anode rotation speeds Graph showing the relationship between the time from the start of driving current supply to the stator coil 81 of the X-ray tube device 8 of Embodiment 1 and the anode rotation speed FIG.
  • FIG. 3 is a flowchart showing the operation of the control unit 23 and the like according to the first embodiment.
  • Block diagram showing configurations of the X-ray high voltage device 12 and the X-ray tube device 8 of the X-ray CT apparatus of the second embodiment
  • FIG. 3 is a block diagram illustrating a configuration of the focal position control unit 11 according to the second embodiment.
  • the block diagram which shows the structure of the X-ray high voltage apparatus 12 and the X-ray tube apparatus 8 of the X-ray CT apparatus of Embodiment 3.
  • the X-ray CT apparatus supplies an input unit for receiving X-ray irradiation conditions of a mounted rotary anode X-ray tube, and supplies driving power for rotating the anode to the rotary anode X-ray tube
  • a starter circuit and a control unit wherein the control unit selects one of two or more predetermined rated anode rotation speeds according to the X-ray irradiation condition received by the input unit. Select and instruct the starter circuit to supply driving power to achieve the selected rated anode rotation speed, and the X-ray irradiation condition is smaller than the rated anode rotation speed and received by the input unit.
  • control unit includes a storage unit that stores a relationship between various X-ray irradiation conditions and the arrival time, and the arrival time corresponding to the X-ray irradiation condition received by the input unit is stored in the storage unit. It is characterized by reading.
  • control unit obtains an irradiable rotation number necessary for irradiating X-rays under the X-ray irradiation condition received by the input unit, and obtains the arrival time from the irradiable rotation number.
  • the control unit stores a relationship between various X-ray irradiation conditions and the irradiable rotation speed
  • a second storage stores a relationship between the irradiable rotation speed and the arrival time.
  • the X-ray irradiation condition received by the input unit further includes a focal position control unit for changing a focal position of the electron beam emitted from the cathode of the rotary anode X-ray tube on the anode. , Wherein the focal position swing width is included.
  • control unit stores a relationship between the irradiation possible rotation speed and other X-ray irradiation conditions excluding the swing width for each focus position swing width included in the X-ray irradiation conditions
  • a second storage unit that stores a relationship between the irradiation possible rotation speed and the arrival time, and the irradiation possible rotation speed corresponding to the X-ray irradiation condition including the amplitude received by the input unit is It reads from 1 memory
  • it further includes a calorific value calculation unit that calculates the amount of heat accumulated in the anode from the amount of heat radiated to the anode of the rotary anode X-ray tube and the elapsed time, and the control unit is capable of irradiating the rotation number
  • the arrival time required for the rotation speed of the anode to reach is determined in accordance with the heat quantity obtained by the heat quantity calculation unit.
  • the control unit stores a relationship between the X-ray irradiation condition and the irradiation possible rotation number, and a relationship between the irradiation possible rotation number and the arrival time for each predetermined amount of heat.
  • a second storage unit that stores the read-out rotation speed corresponding to the X-ray irradiation condition received by the input unit from the first storage unit, the arrival time corresponding to the read-out irradiation possible rotation number, Reading from the second storage unit according to the amount of heat obtained by the heat amount calculation unit.
  • the rotating anode X-ray tube is further equipped with a rotating unit, and a rotation driving unit that rotates the rotating unit around a subject.
  • the X-ray high-voltage apparatus supplies an input unit for receiving the X-ray irradiation conditions of the rotary anode X-ray tube and driving power for rotating the anode to the rotary anode X-ray tube.
  • a starter circuit and a control unit wherein the control unit selects one of two or more predetermined rated anode rotation speeds according to the X-ray irradiation condition received by the input unit; And instructing the starter circuit to supply a driving power for realizing the selected rated anode rotation speed, which is smaller than the rated anode rotation speed, and is in the X-ray irradiation condition received by the input unit. If the arrival time required for the rotation speed of the anode to reach the rotation speed that can be irradiated is required to irradiate, and if the arrival time has elapsed from the start of supply of the drive power by the starter circuit, Output to the display that X-rays can be emitted And wherein the Rukoto.
  • the X-ray imaging apparatus includes an input unit that receives an X-ray irradiation condition of a mounted rotary anode X-ray tube, and driving power for rotating the anode in the rotary anode X-ray tube
  • the X-ray irradiation conditions are selected according to the above, instructing the starter circuit to supply driving power that realizes the selected rated anode rotation speed, and smaller than the rated anode rotation speed and received by the input unit
  • the arrival time required for the rotation speed of the anode to reach the irradiation speed required for X-ray irradiation with the X-ray is obtained, and the arrival time has elapsed since the start of the drive power supply by the starter circuit
  • X-rays can be irradiated And outputs to the display unit.
  • Embodiment 1 an X-ray CT apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • the X-ray CT apparatus of the first embodiment includes an input unit (input terminal) 21 that receives the X-ray irradiation conditions of the rotary anode X-ray tube 8 from an operator, and the rotary anode X-ray tube 8
  • a starter circuit 10 for supplying driving power for rotating the anode 83 and a control unit 23 are provided.
  • the control unit 23 selects one of two or more predetermined rated anode rotation speeds according to the X-ray irradiation conditions received by the input unit 21, and drives to realize the selected rated anode rotation speed
  • the starter circuit 10 is instructed to supply power.
  • control unit 23 has a rotation speed of the anode 83 that is lower than the rated anode rotation speed and reaches the irradiation possible rotation speed necessary for irradiating X-rays under the X-ray irradiation conditions received by the input section 21.
  • the time required to complete (arrival time) is obtained. If the arrival time has elapsed from the start of driving power supply by the starter circuit 10, the display unit 26 displays that X-ray irradiation is possible.
  • the control unit 23 of the present invention selects the rated anode rotation speed from among a plurality of types according to the X-ray irradiation conditions, and supplies driving power for realizing the selected rated anode rotation speed.
  • the arrival time required to reach the irradiable rotation number that is smaller than the rated anode rotation number and is necessary for irradiating X-rays under the X-ray irradiation condition is obtained.
  • the arrival time to reach the irradiable rotation speed has passed before reaching the rated anode rotation speed, the X-ray irradiation is permitted so that the amount of heat does not exceed the threshold according to the X-ray irradiation conditions.
  • X-ray irradiation can be started at an anode rotation speed smaller than the rated anode rotation speed, and the waiting time for the operator can be reduced.
  • the rated anode speed can be selected from multiple types as with a general CT device, so there is no need to change the rated anode speed each time the X-ray irradiation conditions change slightly, and the starter circuit Can be simplified.
  • the present invention can reduce the waiting time of the operator with an apparatus having a simple configuration.
  • the control unit 23 includes a storage unit 230 that stores the relationship between various X-ray irradiation conditions and the above-described arrival times, and reads the arrival time corresponding to the X-ray irradiation conditions received by the input unit 21 from the storage unit 230. Can be.
  • control unit 23 may be configured to obtain an irradiation possible rotation number necessary for irradiating X-rays under the X-ray irradiation conditions received by the input unit 21, and obtain an arrival time from the irradiation possible rotation number.
  • control unit 23 stores, for example, a first storage unit 231 that stores the relationship between various X-ray irradiation conditions and irradiation possible rotation speed, and a second storage that stores the relationship between irradiation possible rotation speed and arrival time.
  • the storage unit 232 is included, and the irradiation possible rotation speed corresponding to the X-ray irradiation condition received by the input unit 21 is read from the first storage unit 231 and the arrival time corresponding to the read irradiation possible rotation number is read from the second storage unit 232 Configure to read.
  • the X-ray CT apparatus includes a rotating anode X-ray tube 8, an X-ray high voltage device 13 that supplies a tube current and a tube voltage to the rotating anode X-ray tube 8, an X-ray detector ( (Not shown) and an image reconstruction unit for reconstructing a tomographic image of the subject from the output of the X-ray detector.
  • the rotating anode X-ray tube 8 and the X-ray detector are mounted on a rotating plate (not shown), irradiate the subject with X-rays while rotating around the subject, and transmit the X-rays transmitted through the subject. To detect.
  • the rotary anode type X-ray tube 8 has a structure in which a cathode 82 and an anode 83 are sealed in a tube 80. Outside the tube 80, a stator coil 81 for generating a magnetic field for rotating a rotor connected to the anode 83 is provided. A starter circuit 10 is connected to the stator coil 81. The starter circuit 10 supplies a drive current to the stator coil 81.
  • the X-ray high voltage apparatus 13 includes a starter circuit 10, a high voltage generation unit 15, an input terminal (input unit) 21, a control unit 23, and a display unit 26.
  • Fig. 2 shows the configuration of the starter circuit.
  • the starter circuit includes a starter circuit inverter 101, an output filter inductor 102, an output filter capacitor 103, and a starter circuit inverter drive circuit 104.
  • the starter circuit inverter drive circuit 104 receives the starter circuit drive start signal output from the starter circuit drive trigger generation unit 26 in the control unit 23, the starter circuit inverter drive circuit 104 starts the operation of the starter circuit inverter 101.
  • the starter circuit inverter 101 converts a part of the output voltage of the DC bus capacitor 3 into an AC voltage signal and supplies it to the stator coil 81 of the anode rotary X-ray tube 8 through the output filter inductor 102 and the output filter capacitor 103. To do.
  • the starter circuit inverter drive circuit 104 controls the on / off timing of the switching circuit of the starter circuit inverter 101 to drive a low-speed rotation drive current (frequency 60 Hz, voltage 180 Vrms, current 14 Arms) or high-speed rotation drive current (frequency 105 Hz, voltage 180 Vrms, current 7 Arms) is generated and supplied to the stator coil 81.
  • a low-speed rotation drive current frequency 60 Hz, voltage 180 Vrms, current 14 Arms
  • high-speed rotation drive current frequency 105 Hz, voltage 180 Vrms, current 7 Arms
  • the high voltage generator 15 includes an AC-DC conversion circuit 2 that converts the voltage supplied from the three-phase AC power source 1 into a DC voltage, a DC bus capacitor 3 that stores the DC voltage, and a DC voltage that is a high-frequency AC voltage.
  • a high-frequency square-wave inverter 4 that converts the output voltage of the high-frequency square-wave inverter to a high voltage
  • a rectifier circuit 6 that converts the output voltage of the high-voltage transformer 5 into a DC voltage
  • the output smoothing capacitor 7 for storing the output voltage of the rectifier circuit 6 and the control circuit 19 are provided.
  • the control circuit 19 applies a high-frequency square wave so that the tube voltage / tube current set in the input terminal 21 is applied between the cathode 82 and the anode 83 of the X-ray tube 8. Controls the operation of the inverter 4 and the like.
  • the X-ray tube 8 supplied with the tube voltage / tube current irradiates the subject with X-rays.
  • the control unit 23 when the supply of the tube voltage / tube current to the cathode 82 and the anode 83 of the anode rotary X-ray tube 8 is started, the X-ray irradiation conditions received by the input terminal 21 (tube voltage / tube current / Control is performed so that the number of rotations of the anode 83 reaches the number of rotations that can be performed for irradiation with X-rays with a focus size or the like.
  • the control unit 23 includes an X-ray irradiation condition reading unit 22, a calculation unit 234, a storage unit 230, a starter circuit drive trigger generation unit 24, an arrival time timer 233, and an X-ray exposure permission signal generation unit 25. is doing.
  • the storage unit 230 stores the relationship between the X-ray irradiation conditions determined in advance and the rotation speed that can be irradiated as a table, for example, the first storage section 231 that has been determined in advance, and the irradiation speed that can be irradiated in advance and the irradiation possible
  • a second storage unit 232 that stores the time (arrival time) required to reach the rotational speed as a table, for example, is arranged.
  • the amount of heat generated at the anode 83 varies depending on the X-ray irradiation conditions (kW) (tube current ⁇ tube voltage) and the rotation speed of the anode 83, as shown in the graph of FIG. The amount of heat generated in is small.
  • the anode 83 has an allowable heat amount threshold value.
  • the anode rotation speed (the rotation speeds R4, R5, R6, R7, and R8 in FIG. 3) in which the amount of generated heat of the anode 83 is lower than the threshold value under a certain X-ray irradiation condition ⁇ 4 is obtained.
  • the lowest rotation speed R4 is set as the “irradiable rotation speed”.
  • the number of revolutions that can be irradiated is determined for each X-ray irradiation condition (for example, ⁇ 1 to ⁇ 6).
  • the obtained relationship between the X-ray irradiation conditions and the number of rotations that can be irradiated is stored in the first storage unit 231 in the form of a table, for example.
  • the relationship between the time from the start of the supply of drive current to the stator coil 81 from the starter circuit 10 until the rated rotational speed is reached and the rotational speed is shown in the graph of FIG. Therefore, for each irradiable rotation number stored in the first storage unit 231, the time (arrival time) to reach the irradiable rotation number is obtained from the graph of FIG. 4, and stored in the second storage unit 232 as a table, for example. To do.
  • the increase in the rotation speed of the anode 83 differs depending on whether the drive current supplied to the stator coil 81 is for low speed rotation or high speed rotation, so the X-ray irradiation conditions corresponding to the irradiation speed that can be irradiated are different.
  • the arrival time is determined depending on whether the driving current for low speed rotation is supplied or the driving current for high speed rotation is supplied. As will be described later, whether to supply low-speed rotation drive current or high-speed rotation drive current is determined under conditions (for example, only tube current) that are different from the X-ray irradiation conditions for which the number of rotations that can be irradiated is determined.
  • the second arrival time (TH1 to TH3 in the case of high-speed rotation drive current, TL1 to TL3 in the case of low-speed rotation drive current) is obtained for each of the same number of revolutions that can be irradiated.
  • the arrival time is selected according to the drive current stored in the storage unit 232 and supplied.
  • X-ray irradiation When the operator inputs subject information and X-ray irradiation conditions (tube current, tube voltage, focus size, etc.) from the input terminal 21 and instructs the start of X-ray irradiation preparation (steps 501, 502), X-ray irradiation
  • the condition reading unit 22 reads the X-ray irradiation conditions input from the input terminal.
  • the calculation unit 234 reads the irradiation possible rotation number corresponding to the read X-ray irradiation condition (tube current ⁇ tube voltage) from the first storage unit 231 storing the relationship between the X-ray irradiation condition and the irradiation possible rotation number ( Step 503).
  • the calculation unit 234 sends a low-speed rotation drive current (frequency 60 Hz, voltage 180 Vrms, current 14 Arms) from the starter circuit 10 to the stator coil 81. It is determined that the conditions are to be supplied, and the process proceeds to Step 505.
  • a driving current for high-speed rotation (frequency 105 Hz, voltage 180 Vrms, current 7 Arms) should be supplied from the starter circuit 10 to the stator coil 81. It is determined that the condition is satisfied, and the process proceeds to step 506.
  • the calculation unit 234 determines the irradiation possible rotation number obtained in step 503 and the low speed determined in step 504 from the relationship between the irradiation possible rotation number stored in the second storage unit 232 and its arrival time. The arrival time corresponding to the condition of the rotation drive current or the high-speed rotation drive current is obtained.
  • the calculation unit 234 sets the obtained arrival time in the arrival time timer 233 (step 507). Subsequently, the calculation unit 234 controls the starter circuit drive trigger generation unit 24 to instruct which of the low-speed rotation drive current and the high-speed rotation drive current determined in Step 504 should be supplied, and the starter circuit A drive start signal is output to the starter circuit 10 (step 508). As a result, the starter circuit 10 supplies the low speed rotation drive current (frequency 60 Hz, voltage 180 Vrms, current 14 Arms) or high speed rotation drive current (frequency 105 Hz, voltage 180 Vrms, current 7 Arms) to the stator coil 81 according to the instruction. Start (step 509). The stator coil 81 supplied with the drive current generates an alternating magnetic field, and the anode 83 of the X-ray tube 8 starts to rotate. The number of revolutions increases with time as shown in the graph of FIG.
  • the calculation unit 234 instructs the arrival time timer 233 to start counting (step 510). If the arrival time set in step 507 has elapsed (steps 511 and 512), it can be estimated that the irradiation possible rotation number obtained in step 503 has been reached, so the X-ray exposure permission signal generation unit 25 A signal for enabling the exposure switch 18 to be pressed is output (step 513), and a display indicating that irradiation can be started is displayed on the display unit 26 (step 514). The display unit 26 displays a display indicating irradiation standby until the arrival time elapses.
  • the control circuit 19 of the high voltage generation unit 15 reads the X-ray irradiation conditions (tube voltage / tube current) input to the input terminal 21, It is supplied to the cathode 82 and the anode 83 of the X-ray tube 8 to expose the X-rays (step 515).
  • the rated anode rotation speed is selected according to the X-ray irradiation conditions from among a plurality of types as usual, and is smaller than the rated anode rotation speed and input X-ray irradiation conditions.
  • X-ray irradiation is permitted when the anode rotation speed (the irradiation possible rotation speed) at which X-ray irradiation is possible is reached.
  • the anode rotation speed continues to increase as shown in the graph of FIG. 4 even after reaching the irradiation-enabled rotation speed, and becomes constant at the rated rotation speed.
  • the standby time is shortened with a simple configuration by determining whether or not the irradiable rotation number has been reached based on the elapsed time from the start of rotation without detecting the rotation number of the anode. be able to.
  • the rated anode rotation speed is selected from a plurality of types according to the X-ray irradiation conditions, and the X-ray irradiation conditions are within the range of the X-ray irradiation conditions used for selection. Even if it changes slightly, the rated anode speed itself is not changed. Therefore, the anode rotation speed can be controlled only by switching the type of drive current supplied to the stator coil 81, and the anode rotation speed can be easily controlled.
  • the rated anode rotation speed is two types of low-speed rotation and high-speed rotation, but it may be three or more types.
  • the relationship between the X-ray irradiation conditions and the irradiable rotation is stored in the first storage unit 231 and the relationship between the irradiable rotation number and the arrival time is stored in the second storage unit 232. It is also possible to combine the two relationships into one and store a table or the like indicating the relationship between the X-ray irradiation conditions and the arrival time in one storage unit. In this case, step 503 in FIG. 5 is omitted, and in steps 505 and 506, the arrival time can be directly obtained from the X-ray irradiation conditions.
  • the X-ray CT apparatus of Embodiment 2 includes a focus position control unit 11 and a coil for changing the focus position on the anode 83 of the electron beam emitted from the cathode 82 of the rotary anode type X-ray tube 8 as shown in FIG. 12 is provided in addition to the configuration of the first embodiment.
  • the X-ray irradiation condition received by the input terminal 21 from the operator includes the amplitude of the focal position in addition to the tube voltage, the tube current, and the focus size.
  • the calculation unit 234 reads from the first storage unit 231 the irradiable rotation number corresponding to the X-ray irradiation condition including the swing width received by the input terminal 21. In steps 505 and 506, the arrival time corresponding to the readable rotation speed is read from the second storage unit 232.
  • the focal position control unit 11 includes an AC power supply 111, an AC / DC conversion unit 112 that converts AC power output from the AC power supply 111 into DC power, and an output of the AC / DC conversion unit 112.
  • a DC / AC conversion unit 113 that generates an AC signal having a current, voltage, and frequency corresponding to the output signal of the DC / AC conversion control unit 114.
  • the AC signal generated by the DC / AC conversion unit 113 is supplied to the coil 12.
  • the coil 12 generates a magnetic field for changing the focal position of the electron beam emitted from the cathode 82.
  • the coil 12 and the DC / AC conversion control unit 114 read the amplitude of the focal position set in the input terminal 21, and the DC / AC conversion control unit so that the coil 12 generates a magnetic field that realizes the amplitude. Control the output of 114.
  • the configuration for changing the focal position on the anode 83 may be an electrode that generates an electric field and a control circuit that controls a potential applied to the electrode.
  • the X-ray irradiation in the X-ray CT apparatus having the focal position control unit 11, by considering the amplitude of the focal position together with the X-ray irradiation conditions and obtaining the anode rotation speed, the X-ray irradiation can be performed. It is possible to further reduce the waiting time of the operator.
  • Embodiment 3 An X-ray CT apparatus according to Embodiment 3 will be described with reference to FIGS.
  • the X-ray CT apparatus calculates the amount of heat (HU: heat amount) accumulated in the anode 83 from the amount of heat irradiated to the anode 83 of the rotary anode type X-ray tube 8 and the elapsed time.
  • a Heat Unit calculation unit 41 is provided.
  • the calorific value calculation method of the calorific value calculation unit 41 a widely known calculation method is used in which the heat dissipation accumulated over time is subtracted from the heat amount accumulated in the history of the electron beam irradiated on the anode 83 until that time.
  • the temperature of the anode 83 of the rotary anode X-ray tube 8 rises due to heat from X-ray irradiation, and when it becomes high temperature, it becomes difficult to rotate than at normal temperature. Therefore, when the arrival time of the irradiable rotation speed of the first embodiment is calculated without considering the temperature of the anode 83, the irradiable rotation speed and the arrival time are assumed assuming that the X-ray tube 8 is at the highest temperature. It is necessary to establish the relationship of time. In the third embodiment, the arrival time required for the rotation speed of the anode to reach the irradiable rotation speed in the second storage unit 232 is obtained according to the heat quantity obtained by the heat quantity calculation part 41.
  • the second storage unit 232 stores the relationship between the number of revolutions that can be irradiated and the arrival time for each possible amount of heat. For example, as shown in FIG. 9, a graph showing the relationship between the elapsed time and the anode rotation speed for each heat quantity (HU) is obtained for each of the high-speed rotation drive current supply time and the low-speed rotation drive current supply time. In the same manner as in the first embodiment, the time to reach the irradiable rotation speed is obtained for each amount of heat (HU) and stored in the second storage unit 232.
  • the calculation unit 234 reads the irradiable rotation number corresponding to the X-ray irradiation condition received by the input terminal 21 in step 503 in FIG. 5 from the first storage unit 231 as in the first embodiment. In steps 505 and 506, the arrival time corresponding to the irradiable rotation speed read in step 503 is read from the second storage unit 232 in accordance with the heat amount obtained by the heat amount calculation unit 41.
  • the third embodiment it is possible to shorten the standby time until X-ray irradiation is possible by considering the amount of heat of the anode 83 at the time of X-ray irradiation.
  • the X-ray CT apparatus has been described. However, it is of course possible to apply the X-ray high voltage apparatus of the present embodiment to an X-ray imaging apparatus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 陽極の回転数を検出することなく、簡単な構成で、X線照射を許可するまでの待機時間を短縮したX線CT装置を提供するために、制御部23は、X線照射条件に応じて、定格陽極回転数を複数種類の中から選択し、選択した定格陽極回転数を実現する駆動電力をスタータ回路10からステータコイル81に供給する。定格陽極回転よりも小さく、X線照射条件でX線を照射するのに必要な照射可能回転数に到達するのに要する時間を、制御部23は求める。到達時間が経過したならば、X線照射を許可する。これにより、X線照射条件に応じて、許容可能な最小の陽極回転数でX線照射を開始することができ、操作者が、陽極回転数の立ち上がりを待つ待機時間を低減することができる。

Description

X線CT装置、X線高電圧装置、および、X線撮影装置
 本発明は、X線管の回転陽極を回転させるスタータ装置を備えたX線CT装置に関する。
 X線CT装置では、X線照射によるX線管陽極への熱的影響を抑制するため、回転陽極型X線管が利用されている。回転陽極型X線管は、管の外側に配置されたステータコイルと、管の内側に配置された回転陽極とを備えて構成される。ステータコイルにはスタータ回路が接続されている。スタータ回路は、ステータコイルに3相交流電圧もしくは90度位相のずれた電圧を供給して回転磁界を発生させ、管の内側の陽極を回転させる。スタータ回路からステータコイルへの電圧の供給開始時には、陽極の回転数が所定の回転数に達していないため、予め定めておいた待機時間が経過後、X線の照射が行われる。待機時間は、陽極の回転数が所定の回転数以上まで上昇するのに必要な時間であり、予め求めておいた固定時間である。これにより、所定の回転数に達する前に、陽極に陰極から電子線が照射されるのを防止している。
 一方、特許文献1には、次のように陽極回転数の制御を行うX線装置が開示されている。術者がX線管装置を選択し、撮影条件を入力すると、スタータ装置がX線管装置の機種を求め、X線管装置の機種毎に回転陽極の回転数と定格の関係を記憶する手段から、X線管装置の機種に対応した定格を読み出す。次に、設定された撮影条件に基づいて、X線管装置の回転陽極の撮影時の保持回転数を算出し、X線管装置の回転陽極の回転数を算出された撮影時保持回転数まで立ち上げて維持する。スタータ装置には回転数検出器が設けられており、検出した回転数が撮影時保持回転数まで上昇したならば、撮影準備操作完了表示を点灯させる。これにより、一律に高速の回転数まで上昇させる必要がなくなり、撮影条件に応じた撮影時保持回転数まで上昇させることができるため、起動時間を短縮できる。
特開2000-286092号公報
 しかしながら、特許文献1に開示されている方法は、撮影条件が変化するごとに、陽極の回転数(撮影時保持回転数)を変化させるため、陽極の回転数の制御が複雑である。例えば、陽極の回転数をリアルタイムに検出する検出器を装置内に配置する必要があり、装置構成が複雑になる。また、検出した回転数が撮影時保持回転数に達しているかどうかを判断する必要があるため、制御回路も複雑になる。さらに、この技術をX線CT装置に適用しようとすると、ガントリに陽極回転数の検出器を配置する必要があるが、検出器がガントリの回転による振動の影響を避けて、精度よく陽極回転数を検出するのが難しい。
 また、特許文献1の技術では、撮影条件が変化するごとに陽極回転数を変化させるため、低回転数から高回転数の撮影条件に変化させて連続でX線を照射する場合には、回転数の差分だけ回転数を上昇させるための待ち時間が必要となる。逆に、陽極回転数を高回転数から低回転数に変化させる場合には、ステータコイルやスタータ回路等での熱損失が生じる。
 本発明の目的は、陽極の回転数を検出することなく、簡単な構成で、X線照射を許可するまでの待機時間を短縮したX線CT装置を提供することにある。
 上記目的を達成するために、本発明では、X線照射条件に応じて複数種類の中から定格陽極回転数を選択する。定格陽極回転数よりも小さく、入力されたX線照射条件でX線を照射可能になる陽極回転数(照射可能回転数)に到達する時間(到達時間)を制御部が求める。この到達時間が経過したならば、X線が照射可能であることを出力する。
 本発明によれば、陽極の回転数を検出することなく、簡単な構成で、X線照射を許可するまでの待機時間を短縮したX線CT装置を提供できる。
本発明の実施形態1のX線CT装置のX線高電圧装置12とX線管装置8の構成を示すブロック図 実施形態1のスタータ回路10の構成を示すブロック図 実施形態1のX線管装置8のX線照射条件と陽極発生熱量の関係を、複数の陽極回転数についてそれぞれ示すグラフ 実施形態1のX線管装置8のステータコイル81への駆動電流供給開始からの時間と、陽極回転数の関係を示したグラフ 実施形態1の制御部23等の動作を示すフローチャート図 実施形態2のX線CT装置のX線高電圧装置12とX線管装置8の構成を示すブロック図 実施形態2の焦点位置制御部11の構成を示すブロック図 実施形態3のX線CT装置のX線高電圧装置12とX線管装置8の構成を示すブロック図 実施形態3のX線管装置8のステータコイル81への駆動電流供給開始からの時間と、陽極回転数の関係を熱量(HU)ごとに示したグラフ
 本実施形態に係るX線CT装置は、搭載されている回転陽極型X線管のX線照射条件を受け付ける入力部と、前記回転陽極型X線管に陽極の回転のための駆動電力を供給するスタータ回路と、制御部とを有し、前記制御部は、予め定められた2種類以上の定格陽極回転数のうちの一つを、前記入力部が受け付けた前記X線照射条件に応じて選択し、選択した定格陽極回転数を実現する駆動電力を供給するように前記スタータ回路に指示し、前記定格陽極回転数よりも小さく、かつ、前記入力部が受け付けた前記X線照射条件でX線を照射するのに必要な、照射可能回転数に、前記陽極の回転数が到達するのに要する到達時間を求め、前記スタータ回路による前記駆動電力の供給開始から前記到達時間が経過したならば、X線が照射可能であることを表示部に出力することを特徴とする。
 また、前記制御部は、種々のX線照射条件と前記到達時間との関係を記憶した記憶部を含み、前記入力部が受け付けた前記X線照射条件に対応する前記到達時間を前記記憶部から読み出すことを特徴とする。
 また、前記制御部は、前記入力部が受け付けたX線照射条件でX線を照射するのに必要な照射可能回転数を求め、前記照射可能回転数から前記到達時間を求めることを特徴とする。
 また、前記制御部は、種々のX線照射条件と前記照射可能回転数との関係を記憶する第1記憶部、および、前記照射可能回転数と前記到達時間との関係を記憶する第2記憶部を含み、前記入力部が受け付けた前記X線照射条件に対応する前記照射可能回転数を第1記憶部から読み出し、読み出した照射可能回転数に対応する前記到達時間を前記第2記憶部から読み出すことを特徴とする。
 また、前記回転陽極型X線管の陰極から出射される電子線の前記陽極上の焦点位置を変化させるための焦点位置制御部をさらに有し、前記入力部が受け付ける前記X線照射条件には、前記焦点位置の振り幅が含まれていることを特徴とする。
 また、前記制御部は、X線照射条件に含まれる焦点位置の振り幅ごとに、前記振り幅を除いた他のX線照射条件と前記照射可能回転数との関係を記憶する第1記憶部、および、前記照射可能回転数と前記到達時間との関係を記憶する第2記憶部を含み、前記入力部が受け付けた前記振り幅を含むX線照射条件に対応する前記照射可能回転数を第1記憶部から読み出し、読み出した照射可能回転数に対応する前記到達時間を前記第2記憶部から読み出すことを特徴とする。
 また、前記回転陽極型X線管の前記陽極に照射された熱量と経過時間から前記陽極に蓄積されている熱量を演算する熱量演算部をさらに有し、 前記制御部は、前記照射可能回転数に前記陽極の回転数が到達するのに要する前記到達時間を、前記熱量演算部が求めた前記熱量に応じて求めることを特徴とする。
 また、前記制御部は、X線照射条件と前記照射可能回転数との関係を記憶する第1記憶部、および、所定範囲の熱量ごとに、前記照射可能回転数と前記到達時間との関係を記憶する第2記憶部を含み、前記入力部が受け付けた前記X線照射条件に対応する前記照射可能回転数を第1記憶部から読み出し、読み出した照射可能回転数に対応する前記到達時間を、前記熱量演算部が求めた前記熱量に応じて前記第2記憶部から読み出すことを特徴とする。
 また、前記回転陽極型X線管を搭載する回転部と、前記回転部を被検体の周囲で回転させる回転駆動部とをさらに備えることを特徴とする、
 また、本実施形態に係るX線高電圧装置は、回転陽極型X線管のX線照射条件を受け付ける入力部と、前記回転陽極型X線管に陽極の回転のための駆動電力を供給するスタータ回路と、制御部とを有し、前記制御部は、予め定められた2種類以上の定格陽極回転数のうちの一つを、前記入力部が受け付けた前記X線照射条件に応じて選択し、選択した定格陽極回転数を実現する駆動電力を供給するように前記スタータ回路に指示し、前記定格陽極回転数よりも小さく、かつ、前記入力部が受け付けた前記X線照射条件でX線を照射するのに必要な、照射可能回転数に、前記陽極の回転数が到達するのに要する到達時間を求め、前記スタータ回路による前記駆動電力の供給開始から前記到達時間が経過したならば、X線が照射可能であることを表示部に出力することを特徴とする。
 また、本実施形態に係るX線撮影装置は、搭載されている回転陽極型X線管のX線照射条件を受け付ける入力部と、前記回転陽極型X線管に陽極の回転のための駆動電力を供給するスタータ回路と、制御部とを有し、前記制御部は、予め定められた2種類以上の定格陽極回転数のうちの一つを、前記入力部が受け付けた前記X線照射条件に応じて選択し、選択した定格陽極回転数を実現する駆動電力を供給するように前記スタータ回路に指示し、前記定格陽極回転数よりも小さく、かつ、前記入力部が受け付けた前記X線照射条件でX線を照射するのに必要な、照射可能回転数に、前記陽極の回転数が到達するのに要する到達時間を求め、前記スタータ回路による前記駆動電力の供給開始から前記到達時間が経過したならば、X線が照射可能であることを表示部に出力することを特徴とする。
 以下、本発明の実施形態について図面を用いて詳述する。
 (実施形態1)
 以下、本発明の実施形態1のX線CT装置について図1~図5を用いて説明する。
 実施形態1のX線CT装置は、図1のように、回転陽極型X線管8のX線照射条件を操作者から受け付ける入力部(入力端末)21と、回転陽極型X線管8に陽極83の回転のための駆動電力を供給するスタータ回路10と、制御部23とを有する。制御部23は、予め定められた2種類以上の定格陽極回転数のうちの一つを、入力部21が受け付けたX線照射条件に応じて選択し、選択した定格陽極回転数を実現する駆動電力を供給するようにスタータ回路10に指示する。また、制御部23は、定格陽極回転数より小さく、かつ、入力部21が受け付けたX線照射条件でX線を照射するのに必要な照射可能回転数に、陽極83の回転数が到達するのに要する時間(到達時間)を求める。そして、スタータ回路10による駆動電力の供給開始から到達時間が経過したならば、X線を照射可能であることを表示部26に表示させる。
 このように、本発明の制御部23は、X線照射条件に応じて、定格陽極回転数を複数種類の中から選択し、選択した定格陽極回転数を実現する駆動電力を供給する。その一方で、定格陽極回転数よりも小さく、X線照射条件でX線を照射するのに必要な照射可能回転数に到達するのに要する到達時間を求める。そして、定格陽極回転数まで到達する前に、照射可能回転数に到達する到達時間が経過したならば、X線照射を許可するため、X線照射条件に応じて、熱量が閾値を超えない範囲で、かつ、定格陽極回転数よりも小さい陽極回転数でX線照射を開始することができ、操作者の待機時間を低減することができる。
 また、定格陽極回転数は、一般的なCT装置と同様に、複数種類の中から選択するため、X線照射条件が微妙に変化するたびに定格陽極回転数を変更する必要がなく、スタータ回路の構成を簡素化できる。また、到達時間でX線照射が可能かどうかを判断するため、実際の陽極回転数を検出する必要が無い。このように、本発明は簡単な構成の装置で、操作者の待機時間を低減できる。
 制御部23は、種々のX線照射条件と上述の到達時間との関係を記憶した記憶部230を含み、入力部21が受け付けたX線照射条件に対応する到達時間を記憶部230から読み出す構成にすることができる。
 また、制御部23は、入力部21が受け付けたX線照射条件でX線を照射するのに必要な照射可能回転数を求め、照射可能回転数から到達時間を求める構成とすることもできる。この場合、制御部23は、例えば、種々のX線照射条件と照射可能回転数との関係を記憶する第1記憶部231、および、照射可能回転数と到達時間との関係を記憶する第2記憶部232を含み、入力部21が受け付けたX線照射条件に対応する照射可能回転数を第1記憶部231から読み出し、読み出した照射可能回転数に対応する到達時間を第2記憶部232から読み出すように構成する。
 以下、実施形態1のX線CT装置について、さらに詳細に説明する。
 図1のように、X線CT装置は、回転陽極型X線管8と、回転陽極型X線管8に管電流および管電圧を供給するX線高電圧装置13と、X線検出器(不図示)と、X線検出器の出力から被検体の断層画像等を再構成する画像再構成部とを備えている。回転陽極型X線管8と、X線検出器は、回転板(不図示)に搭載され、被検体の周囲を回転しながらX線を被検体に照射し、被検体を透過したX線を検出する。
 回転陽極型X線管8は、陰極82と陽極83を管80内に封止した構造である。管80の外側には、陽極83に接続されたローターを回転させる磁界を発生するステータコイル81が備えられている。ステータコイル81にはスタータ回路10が接続されている。スタータ回路10は、ステータコイル81に駆動電流を供給する。
 X線高電圧装置13は、スタータ回路10と、高電圧生成部15と、入力端末(入力部)21と、制御部23と、表示部26とを備えている。
 図2はスタータ回路の構成を示す。スタータ回路は、スタータ回路インバータ101、出力フィルタインダクタ102、出力フィルタコンデンサ103およびスタータ回路インバータドライブ回路104を備えて構成される。スタータ回路インバータドライブ回路104は、制御部23内のスタータ回路駆動トリガ生成部26から出力されたスタータ回路駆動開始信号を受けたならば、スタータ回路インバータ101の動作を開始させる。スタータ回路インバータ101は、DCバスコンデンサ3の出力電圧の一部を交流電圧信号に変換し、出力フィルタインダクタ102および出力フィルタコンデンサ103を介して、陽極回転型X線管8のステータコイル81に供給する。スタータ回路インバータドライブ回路104は、スタータ回路インバータ101のスイッチング回路のオンオフタイミングを制御することにより、低速回転用駆動電流(周波数60Hz、電圧180Vrms、電流14Arms)または高速回転用駆動電流(周波数105Hz、電圧180Vrms、電流7Arms)のうちのいずれかを生成させ、ステータコイル81に供給する。これにより、陽極83を2種類の定格陽極回転数(低速回転:3600rpm=60Hz、高速回転:6300rpm=105Hz)のいずれかで回転させることができる。
 高電圧生成部15は、三相交流電源1から供給される電圧を直流電圧に変換する交流-直流変換回路2と、その直流電圧を蓄えておくDCバスコンデンサ3と、直流電圧を高周波交流電圧に変換する高周波方形波インバータ4と、高周波方形波インバータの出力電圧を高電圧に昇圧する高電圧変圧器5と、高電圧変圧器5の出力電圧を直流電圧に変換するための整流回路6と、整流回路6の出力電圧を蓄えておく出力平滑コンデンサ7と、制御回路19とを備えて構成される。制御回路19は、曝射スイッチ18が押下されたならば、入力端末21に設定された管電圧・管電流がX線管8の陰極82および陽極83間に印加されるように、高周波方形波インバータ4等の動作を制御する。管電圧・管電流が供給されたX線管8は、X線を被検体に向けて照射する。
 制御部23は、陽極回転型X線管8の陰極82と陽極83に管電圧・管電流の供給が開始される時点で、入力端末21が受け付けたX線照射条件(管電圧・管電流・焦点サイズ等)でX線を照射するのに必要な照射可能回転数に、陽極83の回転数を到達させるための制御を行う。制御部23は、X線照射条件読み込み部22と、演算部234と、記憶部230と、スタータ回路駆動トリガ生成部24と、到達時間タイマ233と、X線曝射許可信号生成部25を有している。
 記憶部230には、予め求めておいたX線照射条件と照射可能回転数との関係を例えばテーブルとして格納した第1記憶部231と、予め求めておいた照射可能回転数と、その照射可能回転数するに到達するのに要する時間(到達時間)を例えばテーブルとして格納した第2記憶部232とが配置されている。陽極83で発生する熱量は、図3のグラフに示すように、X線照射条件(kW)(管電流×管電圧)と陽極83の回転数によって異なり、陽極83の回転数が大きければ陽極83で発生する熱量は小さくなる。また、陽極83には、許容できる熱量の閾値がある。本実施形態では、図3に示すように、あるX線照射条件α4において陽極83の発生熱量が閾値よりも低い陽極回転数(図3では回転数R4、R5、R6、R7、R8)を求める。そのうち最も低い回転数R4を「照射可能回転数」とする。この照射可能回転数を、X線照射条件(例えば、α1~α6)ごとに求める。求めたX線照射条件と照射可能回転数との関係を例えばテーブルの形式で第1記憶部231に格納する。
 一方、ステータコイル81にスタータ回路10から駆動電流の供給が開始されてから定格回転数に到達するまでの時間と回転数との関係は、図4のグラフに示される。よって、第1記憶部231に格納された照射可能回転数ごとに、図4のグラフから照射可能回転数に到達するまでの時間(到達時間)を求め、例えばテーブルとして第2記憶部232に格納する。
 図4のように、陽極83の回転数の上昇は、ステータコイル81に供給される駆動電流が低速回転用か高速回転用かで異なるため、その照射可能回転数に対応するX線照射条件が低速回転用駆動電流を供給する条件か、高速回転用駆動電流を供給する条件かに応じて、到達時間を求める。なお、後述するように低速回転用駆動電流を供給するか高速回転用駆動電流を供給するかを、照射可能回転数を求めたX線照射条件とは異なる条件(例えば管電流のみ)で判断する場合には、同じ照射可能回転数であっても、2種類の到達時間(高速回転用駆動電流の場合のTH1~TH3、低速回転用駆動電流の場合のTL1~TL3)をそれぞれ求めて第2記憶部232に格納し、供給される駆動電流に応じて到達時間を選択できるようにする。
 以下、制御部23の各部の動作を図5のフローを用いて説明する。
 操作者が、入力端末21から被検体情報やX線照射条件(管電流・管電圧・焦点サイズ等)を入力し、X線照射準備の開始を指示すると(ステップ501、502)、X線照射条件読み込み部22が入力端末から入力されたX線照射条件を読み込む。演算部234は、読み込まれたX線照射条件(管電流×管電圧)に対応する照射可能回転数を、X線照射条件-照射可能回転数の関係を格納した第1記憶部231より読み込む(ステップ503)。
 演算部234は、X線照射条件の管電流が、所定値(例えば300mA)以下の場合には、低速回転用駆動電流(周波数60Hz、電圧180Vrms、電流14Arms)をスタータ回路10からステータコイル81に供給すべき条件であると判断し、ステップ505に進む。一方、X線照射条件の管電流が、所定値(例えば300mA)より大きい場合には、高速回転用駆動電流(周波数105Hz、電圧180Vrms、電流7Arms)をスタータ回路10からステータコイル81に供給すべき条件であると判断し、ステップ506に進む。
 ステップ505、506において、演算部234は、第2記憶部232に格納されている照射可能回転数とその到達時間との関係から、ステップ503で求めた照射可能回転数およびステップ504で判断した低速回転用駆動電流または高速回転用駆動電流の条件に対応する到達時間を求める。
 演算部234は、求めた到達時間を到達時間タイマ233にセットする(ステップ507)。続けて、演算部234は、スタータ回路駆動トリガ生成部24を制御して、ステップ504で判断した低速回転用駆動電流または高速回転用駆動電流のいずれを供給すべきかを指示する信号と、スタータ回路駆動開始信号をスタータ回路10に出力させる(ステップ508)。これにより、スタータ回路10は、指示に応じて低速回転用駆動電流(周波数60Hz、電圧180Vrms、電流14Arms)または高速回転用駆動電流(周波数105Hz、電圧180Vrms、電流7Arms)をステータコイル81に供給を開始する(ステップ509)。駆動電流の供給を受けたステータコイル81は、交番磁界を発生し、X線管8の陽極83は回転を始める。回転数は、図4のグラフのように時間の経過とともに上昇する。
 演算部234は、到達時間タイマ233にカウント開始を指示する(ステップ510)。ステップ507でセットされた到達時間が経過したならば(ステップ511、512)、ステップ503で求めた照射可能回転数まで到達していると推測できるので、X線曝射許可信号生成部25は、曝射スイッチ18を押下可能にする信号を出力するとともに(ステップ513)、表示部26に照射開始可能を示す表示を表示させる(ステップ514)。なお、表示部26は、到達時間が経過するまでは、照射待機を示す表示が表示されている。
 この状態で、操作者が、曝射スイッチ18を押下すると、高電圧生成部15の制御回路19は、入力端末21に入力されているX線照射条件(管電圧・管電流)を読み込んで、X線管8の陰極82と陽極83に供給し、X線を曝射させる(ステップ515)。
 上述してきたように、本実施形態では、定格陽極回転数は、従来通り複数種類の中からX線照射条件に応じて選択するとともに、定格陽極回転数よりも小さく、入力されたX線照射条件でX線を照射可能になる陽極回転数(照射可能回転数)に到達したならばX線照射を許可する構成とした。これにより、定格陽極回転数に到達する前からX線照射が可能になり、操作者の待機時間を低減することができる。なお、陽極回転数は、照射可能回転数に到達した後も、図4のグラフのように上昇を続け、定格回転数で一定になる。
 また、本実施形態では、照射可能回転数に到達したかどうかを、陽極の回転数を検出することなく、回転開始からの経過時間で判断することにより、簡単な構成で、待機時間を短縮することができる。
 また、本実施形態では、定格陽極回転数は、X線照射条件に応じて複数種類の中から選択され、選択に用いられるX線照射条件の範囲内に入っていれば、X線照射条件が微妙に変化しても定格陽極回転数自体を変化させない。よって、陽極回転数の制御は、ステータコイル81に供給する駆動電流の種類の切り替えのみでよく、陽極回転数の制御を容易に行うことができる。
 なお、本実施形態では、定格陽極回転数を低速回転と高速回転の2種類としたが、3種類以上であってもよい。
 また、本実施形態では、第1記憶部231にX線照射条件と照射可能回転の関係を格納し、第2記憶部232に照射可能回転数と到達時間の関係を格納しているが、これら2つの関係を一つにまとめ、X線照射条件と到達時間との関係を示すテーブル等を一つの記憶部に格納することも可能である。この場合、図5のステップ503は省略し、ステップ505、506においてX線照射条件から到達時間を直接求めることが可能である。
 また、本実施形態は、X線CT装置について説明したが、本実施形態のX線高電圧装置13をX線撮影装置に適用することももちろん可能である。
 (実施形態2)
 実施形態2について図6および図7を用いて説明する。
 実施形態2のX線CT装置は、図6のように回転陽極型X線管8の陰極82から出射される電子線の陽極83上の焦点位置を変化させるための焦点位置制御部11およびコイル12を実施形態1の構成に加えて備えている。本実施形態では、入力端末21が操作者から受け付けるX線照射条件として、管電圧、管電流および焦点サイズに加えて、焦点位置の振り幅を含める。
 一般にX線管8の焦点位置を大きく振ると、陽極83で発生する熱量の拡散は大きくなり、小さく振ると陽極83で発生する熱量の拡散は小さくなる。このため、振り幅が大きいほど、照射可能回転数は小さくなり、到達時間を短くすることができる。そこで、本実施形態では、X線照射条件として設定可能な焦点位置の振り幅ごとに、他のX線照射条件(管電圧・管電流・焦点サイズ)と照射可能回転数との関係を予め求め、記憶部230の第1記憶部231に格納する。演算部234は、図5のステップ503において、入力端末21が受け付けた振り幅を含むX線照射条件に対応する照射可能回転数を第1記憶部231から読み出す。ステップ505、506において、読み出した照射可能回転数に対応する到達時間を第2記憶部232から読み出す。
 図7のように、焦点位置制御部11は、交流電源111と、交流電源111の出力する交流電力を直流電力に変換するAC/DC変換部112と、AC/DC変換部112の出力から、DC/AC変換制御部114の出力信号に対応した電流、電圧および周波数の交流信号を生成するDC/AC変換部113とを備えている。DC/AC変換部113が生成する交流信号は、コイル12に供給される。コイル12は、陰極82から出射される電子線の焦点位置を変化させるための磁界を発生する。コイル12と、DC/AC変換制御部114は、入力端末21に設定された焦点位置の振り幅を読み込んで、その振り幅を実現する磁界をコイル12が発生するようにDC/AC変換制御部114の出力を制御する。なお、陽極83上の焦点位置を変化させるための構成は、電界を発生する電極と、電極に印加される電位を制御する制御回路でもよい。
 他の構成は、実施形態1と同様であるので説明を省略する。
 実施形態2では、焦点位置制御部11を有するX線CT装置において、焦点位置の振り幅をX線照射条件と共に考慮して、陽極回転数を求めることにより、X線照射が可能になるまでの操作者の待機時間を更に短縮することが可能となる。
 (実施形態3)
 実施形態3のX線CT装置について図8、図9を用いて説明する。
 実施形態3のX線CT装置は、図8のように、回転陽極型X線管8の陽極83に照射された熱量と経過時間から陽極83に蓄積されている熱量を演算する熱量(HU:Heat Unit)演算部41を実施形態1の構成に加えて備えている。熱量演算部41の熱量演算方法には、陽極83にその時点まで照射された電子線の履歴で蓄積される熱量から時間経過による放熱等を差し引く、広く知られた演算方法を用いる。
 回転陽極型X線管8の陽極83は、X線照射による熱で温度が上昇し、高温になると通常温度の時よりも回転しにくくなる。そのため、陽極83の温度を考慮せずに、実施形態1の照射可能回転数の到達時間を求める場合には、X線管8が最も高温である場合を想定して、照射可能回転数と到達時間の関係を定めておく必要がある。実施形態3では、第2記憶部232に照射可能回転数に陽極の回転数が到達するのに要する到達時間を、熱量演算部41が求めた熱量に応じて求める。
 具体的には、第2記憶部232には、想定されうる範囲の熱量ごとに、照射可能回転数と到達時間との関係が格納されている。例えば、図9のように、経過時間と陽極回転数との関係を熱量(HU)ごとに示すグラフを、高速回転用駆動電流供給時と低速回転用駆動電流供給時についてそれぞれ求め、このグラフを用いて、実施形態1と同様に、照射可能回転数に到達する時間を、熱量(HU)ごとに求め、第2記憶部232に格納しておく。
 演算部234は、図5のステップ503において入力端末21が受け付けたX線照射条件に対応する照射可能回転数を実施形態1と同様に第1記憶部231から読み出す。ステップ505、506においては、ステップ503で読み出した照射可能回転数に対応する到達時間を、熱量演算部41が求めた熱量に応じて第2記憶部232から読み出す。
 他の構成および動作は、実施形態1と同様であるので説明を省略する。
 実施形態3によれば、X線照射時の陽極83の熱量を考慮することにより、X線照射が可能になるまでの待機時間を短縮することが可能となる。
 上述して実施形態では、X線CT装置について説明したが、本実施形態のX線高電圧装置をX線撮影装置に適用することももちろん可能である。
 1 三相交流電源、2 交流‐直流変換回路、3 DCバスコンデンサ、4 高周波方形波インバータ、5 高電圧変圧器、6 整流回路、7 出力平滑コンデンサ、8 回転陽極型X線管、10 スタータ回路、11 焦点位置制御部、12 コイル、13 X線高電圧装置、21 入力端末(入力部)、22 X線照射条件読み込み部、23 制御部、24 スタータ回路駆動トリガ生成部、25 X線曝射許可信号生成部、26 表示部、41 熱量演算部、81 ステータコイル、101 スタータ回路インバータ、102 スタータ回路出力フィルタインダクタ、103 出力フィルタコンデンサ、104 スタータ回路インバータドライブ回路、111 交流電源、112 AC/DC変換部、113 DC/AC変換部、114 DC/AC変換制御部、231 第1記憶部、232 第2記憶部、233 到達時間タイマ

Claims (11)

  1.  搭載されている回転陽極型X線管のX線照射条件を受け付ける入力部と、
     前記回転陽極型X線管に陽極の回転のための駆動電力を供給するスタータ回路と、
     制御部とを有し、
     前記制御部は、
     予め定められた2種類以上の定格陽極回転数のうちの一つを、前記入力部が受け付けた前記X線照射条件に応じて選択し、選択した定格陽極回転数を実現する駆動電力を供給するように前記スタータ回路に指示し、
     前記定格陽極回転数よりも小さく、かつ、前記入力部が受け付けた前記X線照射条件でX線を照射するのに必要な、照射可能回転数に、前記陽極の回転数が到達するのに要する到達時間を求め、前記スタータ回路による前記駆動電力の供給開始から前記到達時間が経過したならば、X線が照射可能であることを表示部に出力することを特徴とするX線CT装置。
  2.  請求項1に記載のX線CT装置において、前記制御部は、種々のX線照射条件と前記到達時間との関係を記憶した記憶部を含み、前記入力部が受け付けた前記X線照射条件に対応する前記到達時間を前記記憶部から読み出すことを特徴とするX線CT装置。
  3.  請求項1に記載のX線CT装置において、前記制御部は、前記入力部が受け付けたX線照射条件でX線を照射するのに必要な照射可能回転数を求め、前記照射可能回転数から前記到達時間を求めることを特徴とするX線CT装置。
  4.  請求項1または2に記載のX線CT装置において、前記制御部は、種々のX線照射条件と前記照射可能回転数との関係を記憶する第1記憶部、および、前記照射可能回転数と前記到達時間との関係を記憶する第2記憶部を含み、前記入力部が受け付けた前記X線照射条件に対応する前記照射可能回転数を第1記憶部から読み出し、読み出した照射可能回転数に対応する前記到達時間を前記第2記憶部から読み出すことを特徴とするX線CT装置。
  5.  請求項1に記載のX線CT装置において、前記回転陽極型X線管の陰極から出射される電子線の前記陽極上の焦点位置を変化させるための焦点位置制御部をさらに有し、
     前記入力部が受け付ける前記X線照射条件には、前記焦点位置の振り幅が含まれていることを特徴とするX線CT装置。
  6.  請求項5に記載のX線CT装置において、前記制御部は、X線照射条件に含まれる焦点位置の振り幅ごとに、前記振り幅を除いた他のX線照射条件と前記照射可能回転数との関係を記憶する第1記憶部、および、前記照射可能回転数と前記到達時間との関係を記憶する第2記憶部を含み、前記入力部が受け付けた前記振り幅を含むX線照射条件に対応する前記照射可能回転数を第1記憶部から読み出し、読み出した照射可能回転数に対応する前記到達時間を前記第2記憶部から読み出すことを特徴とするX線CT装置。
  7.  請求項1に記載のX線CT装置において、前記回転陽極型X線管の前記陽極に照射された熱量と経過時間から前記陽極に蓄積されている熱量を演算する熱量演算部をさらに有し、
     前記制御部は、前記照射可能回転数に前記陽極の回転数が到達するのに要する前記到達時間を、前記熱量演算部が求めた前記熱量に応じて求めることを特徴とするX線CT装置。
  8.  請求項7に記載のX線CT装置において、前記制御部は、X線照射条件と前記照射可能回転数との関係を記憶する第1記憶部、および、所定範囲の熱量ごとに、前記照射可能回転数と前記到達時間との関係を記憶する第2記憶部を含み、前記入力部が受け付けた前記X線照射条件に対応する前記照射可能回転数を第1記憶部から読み出し、読み出した照射可能回転数に対応する前記到達時間を、前記熱量演算部が求めた前記熱量に応じて前記第2記憶部から読み出すことを特徴とするX線CT装置。
  9.  請求項1乃至8のいずれか1項に記載のX線CT装置であって、前記回転陽極型X線管を搭載する回転部と、前記回転部を被検体の周囲で回転させる回転駆動部とをさらに備えることを特徴とするX線CT装置。
  10.  回転陽極型X線管のX線照射条件を受け付ける入力部と、
     前記回転陽極型X線管に陽極の回転のための駆動電力を供給するスタータ回路と、
     制御部とを有し、
     前記制御部は、
     予め定められた2種類以上の定格陽極回転数のうちの一つを、前記入力部が受け付けた前記X線照射条件に応じて選択し、選択した定格陽極回転数を実現する駆動電力を供給するように前記スタータ回路に指示し、
     前記定格陽極回転数よりも小さく、かつ、前記入力部が受け付けた前記X線照射条件でX線を照射するのに必要な、照射可能回転数に、前記陽極の回転数が到達するのに要する到達時間を求め、前記スタータ回路による前記駆動電力の供給開始から前記到達時間が経過したならば、X線が照射可能であることを表示部に出力することを特徴とするX線高電圧装置。
  11.  搭載されている回転陽極型X線管のX線照射条件を受け付ける入力部と、
     前記回転陽極型X線管に陽極の回転のための駆動電力を供給するスタータ回路と、
     制御部とを有し、
     前記制御部は、
     予め定められた2種類以上の定格陽極回転数のうちの一つを、前記入力部が受け付けた前記X線照射条件に応じて選択し、選択した定格陽極回転数を実現する駆動電力を供給するように前記スタータ回路に指示し、
     前記定格陽極回転数よりも小さく、かつ、前記入力部が受け付けた前記X線照射条件でX線を照射するのに必要な、照射可能回転数に、前記陽極の回転数が到達するのに要する到達時間を求め、前記スタータ回路による前記駆動電力の供給開始から前記到達時間が経過したならば、X線が照射可能であることを表示部に出力することを特徴とするX線撮影装置。
PCT/JP2014/069504 2013-07-31 2014-07-24 X線ct装置、x線高電圧装置、および、x線撮影装置 WO2015016117A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015529532A JP6379092B2 (ja) 2013-07-31 2014-07-24 X線ct装置、x線高電圧装置、および、x線撮影装置
CN201480039529.2A CN105379426B (zh) 2013-07-31 2014-07-24 X射线ct装置、x射线高电压装置、以及x射线摄影装置
US14/903,198 US9900971B2 (en) 2013-07-31 2014-07-24 X-ray CT apparatus, X-ray high-voltage device, and X-ray scanning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-159577 2013-07-31
JP2013159577 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015016117A1 true WO2015016117A1 (ja) 2015-02-05

Family

ID=52431653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069504 WO2015016117A1 (ja) 2013-07-31 2014-07-24 X線ct装置、x線高電圧装置、および、x線撮影装置

Country Status (4)

Country Link
US (1) US9900971B2 (ja)
JP (1) JP6379092B2 (ja)
CN (1) CN105379426B (ja)
WO (1) WO2015016117A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10692684B2 (en) 2015-12-14 2020-06-23 General Electric Company Electronic control for high voltage systems
CN111602470A (zh) * 2017-09-02 2020-08-28 思庭股份有限公司 用于x射线管的控制装置以及用于操作x射线管的方法
JP7481555B2 (ja) 2016-12-28 2024-05-10 キヤノンメディカルシステムズ株式会社 X線コンピュータ断層撮影装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009089B2 (ja) * 2016-06-07 2022-01-25 キヤノンメディカルシステムズ株式会社 X線診断装置及び医用情報処理装置
US11147151B2 (en) * 2019-05-07 2021-10-12 Shimadzu Corporation Rotary anode type X-ray tube apparatus comprising rotary anode driving device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335092A (ja) * 1997-04-01 1998-12-18 Toshiba Corp X線装置
JP2000286093A (ja) * 1999-03-30 2000-10-13 Shimadzu Corp X線装置
JP2000286092A (ja) * 1999-03-30 2000-10-13 Shimadzu Corp X線装置
JP2001176693A (ja) * 1999-12-21 2001-06-29 Toshiba Corp X線制御装置およびx線診断装置
JP2001231775A (ja) * 2000-02-25 2001-08-28 Ge Yokogawa Medical Systems Ltd X線ct装置
JP2002093596A (ja) * 2000-09-14 2002-03-29 Toshiba Corp 回転陽極型x線管のステータコイル駆動装置
JP2004349254A (ja) * 2003-05-20 2004-12-09 Ge Medical Systems Global Technology Co Llc 放射線源の発熱体に給電する方法及び対応する線源
JP2007179817A (ja) * 2005-12-27 2007-07-12 Shimadzu Corp X線透視撮影装置
JP2013182764A (ja) * 2012-03-01 2013-09-12 Hitachi Medical Corp X線装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217997A (ja) * 1983-05-26 1984-12-08 Hitachi Medical Corp X線管陽極の駆動装置
JPS59217996A (ja) * 1983-05-26 1984-12-08 Hitachi Medical Corp X線管陽極の駆動装置
JPS59217995A (ja) * 1983-05-26 1984-12-08 Hitachi Medical Corp X線管の許容負荷制御回路
DE3763469D1 (de) * 1986-07-31 1990-08-02 Siemens Ag Roentgendiagnostikgeraet fuer roentgenaufnahmen.
JPH06205770A (ja) * 1993-01-11 1994-07-26 Hitachi Medical Corp X線ct装置
JP2008053061A (ja) * 2006-08-24 2008-03-06 Shimadzu Corp X線撮影装置の冷却システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335092A (ja) * 1997-04-01 1998-12-18 Toshiba Corp X線装置
JP2000286093A (ja) * 1999-03-30 2000-10-13 Shimadzu Corp X線装置
JP2000286092A (ja) * 1999-03-30 2000-10-13 Shimadzu Corp X線装置
JP2001176693A (ja) * 1999-12-21 2001-06-29 Toshiba Corp X線制御装置およびx線診断装置
JP2001231775A (ja) * 2000-02-25 2001-08-28 Ge Yokogawa Medical Systems Ltd X線ct装置
JP2002093596A (ja) * 2000-09-14 2002-03-29 Toshiba Corp 回転陽極型x線管のステータコイル駆動装置
JP2004349254A (ja) * 2003-05-20 2004-12-09 Ge Medical Systems Global Technology Co Llc 放射線源の発熱体に給電する方法及び対応する線源
JP2007179817A (ja) * 2005-12-27 2007-07-12 Shimadzu Corp X線透視撮影装置
JP2013182764A (ja) * 2012-03-01 2013-09-12 Hitachi Medical Corp X線装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10692684B2 (en) 2015-12-14 2020-06-23 General Electric Company Electronic control for high voltage systems
JP7481555B2 (ja) 2016-12-28 2024-05-10 キヤノンメディカルシステムズ株式会社 X線コンピュータ断層撮影装置
CN111602470A (zh) * 2017-09-02 2020-08-28 思庭股份有限公司 用于x射线管的控制装置以及用于操作x射线管的方法
CN111602470B (zh) * 2017-09-02 2024-03-26 思庭股份有限公司 用于x射线管的控制装置以及用于操作x射线管的方法

Also Published As

Publication number Publication date
CN105379426B (zh) 2018-04-20
JP6379092B2 (ja) 2018-08-22
US20160143120A1 (en) 2016-05-19
US9900971B2 (en) 2018-02-20
JPWO2015016117A1 (ja) 2017-03-02
CN105379426A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
JP6379092B2 (ja) X線ct装置、x線高電圧装置、および、x線撮影装置
JP5588875B2 (ja) 位相シフト型インバータ回路、それを用いたx線高電圧装置、x線ct装置、および、x線撮影装置
JP5666485B2 (ja) 電力変換装置、x線ct装置およびx線撮影装置
WO2012073983A1 (ja) 陽極回転駆動装置およびx線撮影装置
JP2020511251A (ja) 内蔵無停電電源装置および安定器を有するピークシェービング対応コンピュータ断層撮影システム
JP4774972B2 (ja) X線発生装置およびこれを備えたx線診断装置
JP2017064392A (ja) X線コンピュータ断層撮影装置及びx線管装置
JP2010049974A (ja) X線発生装置及びx線管の駆動方法
JP6139262B2 (ja) X線高電圧装置
JP2003217896A (ja) X線管装置及びこれを用いたx線発生装置並びにx線画像診断装置
JP5685449B2 (ja) X線高電圧装置およびx線ct装置
JP4454079B2 (ja) X線高電圧装置及びx線装置
JP5314692B2 (ja) X線ct装置
JP2007026965A (ja) X線ct装置及びct用x線制御方法
JP6207948B2 (ja) X線透視撮影装置
JP2001176693A (ja) X線制御装置およびx線診断装置
CN104904322B (zh) X射线计算机断层摄影装置及x射线发生装置
JP7166789B2 (ja) X線診断システム及び陽極回転コイル駆動装置
JP6670617B2 (ja) 高電圧発生装置及びx線ct装置
JP7171247B2 (ja) 陽極回転コイル駆動装置及びx線画像診断装置
JP2000286093A (ja) X線装置
JP3006668B2 (ja) X線装置
JP5637697B2 (ja) X線高電圧装置、x線装置、及びこれを用いたx線診断装置
JP2014078443A (ja) X線診断装置、高電圧装置および高電圧装置の制御方法
JP2015062542A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529532

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14903198

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831566

Country of ref document: EP

Kind code of ref document: A1