JP2014229374A - X線管制御装置及びx線ct装置 - Google Patents

X線管制御装置及びx線ct装置 Download PDF

Info

Publication number
JP2014229374A
JP2014229374A JP2013105932A JP2013105932A JP2014229374A JP 2014229374 A JP2014229374 A JP 2014229374A JP 2013105932 A JP2013105932 A JP 2013105932A JP 2013105932 A JP2013105932 A JP 2013105932A JP 2014229374 A JP2014229374 A JP 2014229374A
Authority
JP
Japan
Prior art keywords
grid
voltage
ray tube
cathode
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013105932A
Other languages
English (en)
Other versions
JP6169890B2 (ja
Inventor
文雄 石山
Fumio Ishiyama
文雄 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2013105932A priority Critical patent/JP6169890B2/ja
Publication of JP2014229374A publication Critical patent/JP2014229374A/ja
Application granted granted Critical
Publication of JP6169890B2 publication Critical patent/JP6169890B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Abstract

【課題】三極X線管におけるグリッド電圧の高効率なリニア制御を実現する。【解決手段】一実施形態におけるX線管制御装置は、アノードと、カソードと、グリッドとを備えるX線管を制御するX線管制御装置であって、2つのスイッチング素子と、2つのダイオードと、コイルと、コンデンサと、制御回路とを備える。上記2つのスイッチング素子は、上記グリッドとの接続点を挟んで電源に対し直列に接続される。上記2つのダイオードは、上記2つのスイッチング素子のそれぞれと逆並列に接続される。上記コイルは、上記接続点と上記グリッドとの間に設けられる。上記コンデンサは、上記カソードと上記グリッドとの間に設けられる。上記制御回路は、上記2つのスイッチング素子を選択的に開閉させて上記コンデンサの電圧を制御することにより、上記カソードに対する上記グリッドの電圧を変化させる。【選択図】 図2

Description

本発明の実施形態は、三極X線管を制御するX線管制御装置及びX線CT(Computed Tomography)装置に関する。
三極X線管は、例えば回転陽極であるアノードと、フィラメントであるカソードと、収束電極としてのグリッドとを備える。フィラメントに対するグリッド電圧を、カットオフ電圧を超える負電圧とすることでX線の発生を阻止し、グリッド電圧を零にすることでX線を照射できる。
グリッド電圧を零とカットオフ電圧の間でリニアに変化させれば、管電流及び焦点サイズもリニアに変化する。
管電流等のリニアな制御を実現する方法としては、例えば複数のトランジスタにて構成したリニアアンプにてグリッド電圧を制御する方法が考えられる。しかしながら、グリッド電圧は高電圧であることからトランジスタの発熱も大きい。そのため、トランジスタを冷却するための大型の放熱機構が必要となる。さらに、リニアアンプはグリッド電圧の制御に際して常時電力を消費するため、大型の電源も必要となる。
特開2002−33064号公報
実施形態の目的は、三極X線管におけるグリッド電圧の高効率なリニア制御を実現することである。
一実施形態におけるX線管制御装置は、アノードと、カソードと、上記カソードから上記アノードに向けて放出される電子を阻止するグリッドとを備えるX線管を制御するX線管制御装置であって、2つのスイッチング素子と、2つのダイオードと、コイルと、コンデンサと、制御回路とを備える。上記2つのスイッチング素子は、上記グリッドとの接続点を挟んで電源に対し直列に接続される。上記2つのダイオードは、上記2つのスイッチング素子のそれぞれと逆並列に接続される。上記コイルは、上記接続点と上記グリッドとの間に設けられる。上記コンデンサは、上記カソードと上記グリッドとの間に設けられる。上記制御回路は、上記2つのスイッチング素子を選択的に開閉させて上記コンデンサの電圧を制御することにより、上記カソードに対する上記グリッドの電圧を変化させる。
実施形態に係るX線CT装置の要部を示す構成を示すブロック図。 実施形態に係る高電圧装置及びX線管の詳細な構成を示す回路図。 グリッド電圧と管電流との関係を示す図。 図2に示した構成の一部を抜き出した回路図(スイッチQ2;オン)。 図2に示した構成の一部を抜き出した回路図(スイッチQ2;オフ)。 スイッチング素子Q2のスイッチングによる作用を説明するタイムチャート。 図2に示した構成の一部を抜き出した回路図(スイッチQ1;オン)。 図2に示した構成の一部を抜き出した回路図(スイッチQ1;オフ)。 スイッチング素子Q1のスイッチングによる作用を説明するタイムチャート。 実施形態に係る管電流のリニア制御の利用例を説明するための図。 変形例に係るフィードバック回路を説明するための図。
一実施形態について図面を参照しながら説明する。
本実施形態では、X線管制御装置の一例として、X線CT装置に搭載された高電圧装置を開示する。
図1は、本実施形態におけるX線CT装置1の要部を示す構成を示すブロック図である。同図に示すように、X線CT装置1は、架台装置2、寝台装置3、及び、コンソール装置4を備える。
架台装置2は、X線管5、X線絞り部6、X線検出器7、回転フレーム8、高電圧装置9、架台駆動機構部10、架台/寝台制御部11、及び、データ収集部12等を備える。また、架台装置2は、被検体Pが送り込まれる撮影空間としての開口部13を有する。
X線管5、X線絞り部6、及び、X線検出器7は、回転フレーム8に取り付けられる。架台駆動機構部10は、回転フレーム8を回転させる構造的な機構と、当該機構を動作させるモータ等で構成される。回転フレーム8の回転により、X線管5とX線検出器7とが対向した状態で、開口部13内に搬送された被検体Pの周りを回転する。
高電圧装置9は、X線管5を制御する。高電圧装置9の詳細については後述する。
X線管5は、高電圧装置10に制御されてX線を発生する。本実施形態におけるX線管5は、アノード、カソード及びグリッドを備える三極X線管である。
X線絞り部6は、複数のスリット板を有し、このスリット板を移動させることにより、被検体Pに照射されるX線の照射範囲を調整する。
X線検出器7は、2次元アレイ型検出器(いわゆるマルチスライス型検出器)であり、2次元状に配列された複数のX線検出素子を有する。
データ収集部(DAS)12は、X線検出器7の各X線検出素子が出力する電気信号を取り込み、取り込んだ電気信号を増幅し、増幅した電気信号をデジタル信号に変換する。変換後のデジタル信号は、投影データと呼ばれる。
寝台装置3は、被検体Pが載置される天板30、天板30を支持する天板支持部31、及び、寝台駆動機構部32等を備える。寝台駆動機構部32は、天板30をその載置面に対する水平方向及び垂直方向に移動させる構造的な機構と、当該機構を動作させるモータ等で構成されている。スキャン時において寝台駆動機構部32は、架台/寝台制御部12の制御の下で天板30を開口部13内へと搬送することにより、被検体Pを架台装置2の撮影領域(FOV)に位置決めする。
架台/寝台制御部11は、CPU(Central Processing Unit)、ROM(Read Only Memory)、及び、RAM(Random Access Memory)等で構成され、コンソール装置4等から入力される指示に従って、架台装置2及び寝台装置3の各部を制御する。
コンソール装置4は、コンソール制御部40、前処理部41、再構成処理部42、画像記憶部43、画像処理部44、表示部45、及び、入力部46等を備える。
コンソール制御部40は、CPU、ROM、および、RAM等で構成され、コンソール装置4が備える各部を制御する。前処理部41は、データ収集部12から投影データを受け取り、感度補正やX線強度補正等の前処理を施す。
再構成処理部42は、再構成スライス厚、再構成間隔、及び、再構成関数等のパラメータや再構成プロトコルに従い、前処理部41にて前処理が施された後の投影データを再構成して被検体の断層像データやボリュームデータ等の再構成画像データを生成する。
画像記憶部43は、データ収集部12から送られる投影データ(生データ)、前処理部41にて前処理が施された投影データ、及び、再構成処理部42にて生成された再構成画像データ等を記憶する。
画像処理部44は、画像記憶部43に記憶された再構成画像データに対して、ウィンドウ変換、RGB処理等の表示のための画像処理を行い、当該処理後のデータを表示部45に出力する。画像処理部44は、オペレータの指示に基づき、当該再構成画像データを用いて任意断面の断層像、任意方向からの投影像、或いは3次元表面画像等のデータを生成し、当該データを表示部45に出力することもある。表示部45は、画像処理部44が出力したデータに基づくX線CT画像を表示する。
入力部46は、キーボード、各種スイッチ、マウス、及びトラックボール等のデバイスを備える。入力部46は、スキャンプロトコルや再構成プロトコル等の各種スキャン条件の入力等に用いられる。
高電圧装置9について説明する。
図2は、高電圧装置9及びX線管5の詳細な構成を示す回路図である。X線管5は、例えば回転陽極であるアノード51と、フィラメントであるカソード52と、集束電極としてのグリッド53とを備える。グリッド53に印可する電圧を変化させることにより、X線管5の管電流Iを制御することができる。以下の説明においては、カソード52に対するグリッド53の電位をグリッド電圧Vgと呼ぶ。グリッド電圧Vgと管電流Iとの関係を図3に示す。管電圧及びフィラメントの加熱条件を一定に保った状態で、グリッド電圧Vgを負方向に高めると、管電流Iは減少する。管電流Iが零となるグリッド電圧を、カットオフ電圧と呼ぶ。
高電圧装置9は、X線管5に管電圧を印可するための回路として、主インバータ100と、高電圧トランス101と、高電圧整流器102と、高電圧コンデンサ103とを備える。主インバータ100は、商用交流電源から図示せぬ整流器を介して供給される直流をスイッチングして所定周波数の交流電圧を生成する。高電圧トランス101は、主インバータ100に接続された一次巻線101aと、高電圧整流器102に接続された2つの二次巻線101bとを備える絶縁トランスである。主インバータ100から一次巻線101aに交流が供給されると、二次巻線101bから高電圧整流器102に昇圧された交流電圧が出力される。高電圧整流器102及び高電圧コンデンサ103は、高電圧トランス101から入力される交流電圧を整流及び平滑化してX線管5のアノード51及びカソード52間に印可する。
高電圧装置9は、グリッド電圧Vgを制御するための回路として、グリッド電圧インバータ200と、グリッド電圧トランス201と、倍電圧整流器202と、グリッド電圧回路203と、コンデンサCgと、抵抗Rgと、制御回路204とを備える。
グリッド電圧インバータ200は、商用交流電源から図示せぬ整流器を介して供給される直流をスイッチングして所定周波数の交流電圧を生成する。グリッド電圧トランス201は、グリッド電圧インバータ200に接続された一次巻線201aと、倍電圧整流器202に接続された二次巻線201bとを備える絶縁トランスである。グリッド電圧インバータ200から一次巻線201aに交流が供給されると、二次巻線201bから倍電圧整流器202に昇圧された交流電圧が出力される。例えば二次巻線201bの出力電圧は1500V(交流)であり、倍電圧整流器202の出力電圧は3000V(直流)である。
グリッド電圧回路203は、2つのスイッチング素子Q1,Q2と、2つのダイオードD1,D2と、2つのスイッチ駆動回路A1,A2と、コイルLとを備える。スイッチング素子Q1,Q2は、グリッド53との接続点を挟んで、グリッド電圧回路203の電源である倍電圧整流器202に対して直列に接続されている。スイッチング素子Q1,Q2としては、例えばMOSFETを用いることができる。以下の説明においては、スイッチング素子Q1,Q2が閉じている状態をオンと呼び、開いている状態をオフと呼ぶ。
ダイオードD1は、スイッチング素子Q1に対して逆並列に接続される。ダイオードD2は、スイッチング素子Q2に対して逆並列に接続される。スイッチング素子Q1としてMOSFETを用いる場合、ダイオードD1は当該MOSFETに内蔵されたダイオードを利用してもよい。同様に、スイッチング素子Q2としてMOSFETを用いる場合、ダイオードD2は当該MOSFETに内蔵されたダイオードを利用してもよい。
スイッチ駆動回路A1は、スイッチング素子Q1をオン/オフする。スイッチ駆動回路A2は、スイッチング素子Q2をオン/オフする。
コイルLは、スイッチング素子Q1,Q2間に所在する上記接続点と、グリッド53とを接続する導線上に配置される。
コンデンサCgは、カソード52とグリッド53の間に設けられる。グリッド53とグリッド電圧回路203を接続する導線と、カソード52とグリッド電圧回路203を接続する導線は、高電圧装置9とX線管5を接続する高圧ケーブル内に平行して配置される。コンデンサCgとしては、これら各導線の間に生じる分布容量、及び、カソード52とグリッド53との間に生じる浮遊容量を利用できる。但し、これらの分布容量及び浮遊容量を用いずに、回路部品としてのコンデンサを使用してもよい。抵抗Rgは、X線管5のカソード52とグリッド53との間に生じる漏れ電流の存在を示す。
制御回路204は、グリッド電圧Vgと、グリッド電圧Vgの目標値とに基づいて、スイッチ駆動回路A1,A2を駆動する。
制御回路204の動作について説明する。
先ず、X線管5の管電流Iを下げ、かつX線管5の焦点サイズを小さくする方向にグリッド電圧Vgを制御する場合の動作について説明する。この場合、グリッド電圧Vgが負方向に増加するようにコンデンサCgに電荷を蓄えさせる。当該動作に際して、スイッチング素子Q1はオフされている。
図4及び図5は、図2に示した構成からグリッド電圧回路203の電源E、スイッチング素子Q2、ダイオードD1、コイルL、コンデンサCg、及び、抵抗Rgを抜き出して示す回路図である。電源Eは、倍電圧整流器202の出力であり、例えば3000Vである。特に図4はスイッチング素子Q2がオンされた状態を示し、図5はスイッチング素子Q2がオフされた状態を示す。
スイッチング素子Q2をオン/オフさせると、オン状態及びオフ状態の時間比率に応じてコンデンサCgを充電することができる。スイッチング素子Q2がオンされると、図4に示す矢印のように電源E、コンデンサCg、コイルL、スイッチング素子Q2の順で通過する電流が流れる。その結果、コンデンサCgは、グリッド53がカソード52に対して負極性となるように充電される。すなわち、グリッド電圧Vgが負方向に増加する。
スイッチング素子Q2がオフされると、コイルLに発生する起電力により、図5に示す矢印のようにダイオードD1及びコンデンサCgを通ってコイルLに戻る循環電流が流れる。
ここで、抵抗Rgが十分小さく適度に電力を消費するならば、スイッチング素子Q2を所定周期で繰り返しオン/オフする場合には、以下の式によってグリッド電圧Vgが求まる。
Vg=−E・Ton/(Ton+Toff)
ここに、Tonは上記周期に従ってスイッチング素子Q2をオンする時間であり、Toffは上記周期に従ってスイッチング素子Q2をオフする時間である。この式に従ってグリッド電圧Vgが定まる場合、制御回路204は、オン時間Ton及びオフ時間Toffを目標値に応じた値に設定することで、グリッド電圧Vgを目標値に収束させることができる。
しかしながら、抵抗Rgが大きい場合にはオン時間Ton及びオフ時間Toffの設定のみによってグリッド電圧Vgを収束させることができず、コンデンサCgの電圧が上昇を続けてしまう。そこで、本実施形態における制御回路204は、グリッド電圧Vgを検出し、検出結果に応じてオン時間Ton及びオフ時間Toffの時間比率を調整することで、グリッド電圧Vgを目標値で安定させる。
図6は、コンデンサCgの電圧と、コイルLに流れる電流と、オン時間Ton及びオフ時間Toffの関係の一例を示すタイムチャートである。X線管5の管電流Iを下げるとき、先ず制御回路204は、オン時間をTon1、オフ時間をToff1に設定する。スイッチ駆動回路A2は、オン時間Ton1、オフ時間Toff1でスイッチング素子Q2をスイッチングする。このスイッチングにより、コンデンサCgの電圧、すなわちグリッド電圧Vgが負方向に増加する。コイルLを流れる電流は、スイッチング素子Q2がオフのときに上昇し、スイッチング素子Q2がオンのときに減少する。なお、図6においては、図4及び図5における左から右の方向を正として当該電流の変化を示している。
やがてグリッド電圧Vgが目標値に達したことを検出すると、制御回路204は、オン時間をTon2(<Ton1)、オフ時間をToff2(>Toff1)に設定する。スイッチ駆動回路A2は、オン時間Ton2、オフ時間Toff2でスイッチング素子Q2をスイッチングする。このスイッチングにより、コンデンサCgの電圧、すなわちグリッド電圧Vgが目標値で一定に保たれる。オン時間Ton2及びオフ時間Toff2は、例えばこれらの時間比率でのスイッチングによって、コンデンサCgの放電による電圧低下が補われる程度の値となるように予め定めておけばよい。コイルLを流れる電流は、ほぼ零であり、スイッチング素子Q2がオンのときに負方向に僅かに振れる。
続いて、X線管5の管電流Iを上げ、かつX線管5の焦点サイズを大きくする方向にグリッド電圧Vgを制御する場合の動作について説明する。この場合、グリッド電圧Vgが零に向かうようにコンデンサCgに電荷を放出させる。当該動作に際して、スイッチング素子Q2はオフされている。
図7及び図8は、図2に示した構成からグリッド電圧回路203の電源E、スイッチング素子Q1、ダイオードD2、コイルL、コンデンサCg、及び、抵抗Rgを抜き出して示す回路図である。特に図7はスイッチング素子Q1がオンされた状態を示し、図8はスイッチング素子Q1がオフされた状態を示す。
スイッチング素子Q1がオンされると、図7に示す矢印のようにコンデンサCg、コイルL、スイッチング素子Q1の順で通過する電流が流れる。このとき、コンデンサCgに蓄えられたエネルギーの一部がコイルLに移り、コンデンサCgの電圧が零に近づく。そのため、管電流Iが増加し、焦点サイズが大きくなる方向に変化する。
スイッチング素子Q1がオフされると、コイルLに発生する起電力により、図8に示す矢印のようにダイオードD2、コイルL、コンデンサCg、及び、電源Eの順で通過する電流が流れる。この電流により、コンデンサCgに蓄えられた電荷が電源Eに回生されるとともに、コイルLに蓄えられたエネルギーも電源Eに回生される。具体的には、この電荷は、図2に示す倍電圧整流器202に含まれるコンデンサに蓄えられる。
このようなスイッチングが続けられると、コンデンサCgの電荷が電源Eに徐々に移るので、グリッド電圧Vgが零に近づき続ける。
図9は、コンデンサCgの電圧と、コイルLに流れる電流と、スイッチング素子Q1のオン時間Ton及びオフ時間Toffの関係の一例を示すタイムチャートである。X線管5の管電流Iを上げるとき、先ず制御回路204は、スイッチング素子Q1のオン時間をTon3、オフ時間をToff3に設定する。スイッチ駆動回路A1は、オン時間Ton3、オフ時間Toff3でスイッチング素子Q1をスイッチングする。このスイッチングにより、コンデンサCgの電圧、すなわちグリッド電圧Vgが零に近づく。コイルLを流れる電流は、スイッチング素子Q1がオフのときに上昇し、スイッチング素子Q1がオンのときに減少する。なお、図9においては、図7及び図8における左から右の方向を正として当該電流の変化を示している。
やがてグリッド電圧Vgが目標値に達したことを検出すると、制御回路204は、スイッチング素子Q1のスイッチングを停止する。コンデンサCgの放電による電圧低下を補う必要がある場合、制御回路204は、図6に示したようにスイッチング素子Q2をオン時間Ton2及びオフ時間Toff2にてスイッチングすることにより、当該電圧低下を補う電荷をコンデンサCgに供給する。
以上のように、高電圧装置9は、スイッチング素子Q1,Q2のスイッチングによりグリッド電圧Vgを所望の値に設定することができる。すなわち、高電圧装置9は、グリッド電圧Vgをリニアに変化させることができる。したがって、X線管5の管電流Iのリニアな制御と、焦点サイズの連続的な制御を実現できる。
このような制御の利用例につき、図10を用いて説明する。
天板30に寝た被検体Pの体軸に沿う断面形状は、図10の上方に示すように楕円形となる。X線管5が発生したX線は、体厚が厚い方向ほどX線検出器7に到達し難い。最も厚い体厚において良好な投影データが収集できるようにX線のエネルギーを設定したとすると、より低いエネルギーで足りる体厚が薄い方向においてまで当該エネルギーのX線を被検体Pに照射することになる。すなわち、被検体Pを無駄に被曝させてしまう。
そこで、本例では、X線管5及びX線検出器7を被検体Pの周囲で1回転させる間に、被検体Pの体厚に応じて管電流Iをリニアに変化させる手法を開示する。
被検体Pの真上位置を回転角0°としてX線管5及びX線検出器7の回転角θを定義する。通常、被検体Pの体厚は、回転角0°及び回転角180°の方向において最小となり、回転角90°及び回転角270°の方向において最大となる。
そこで図10の下方に示すように、高電圧装置9は、管電流Iを、回転角0°及び回転角180°において最小となり、回転角90°及び回転角270°において最大となるように制御する。
具体的には、回転角θと、図10の下方に示すような管電流Iを得るためのグリッド電圧Vgの目標値との関係を定めておく。このような関係を表す情報は、例えば制御回路204が備えるメモリに記憶させる。制御回路204は、例えば架台/寝台制御部11から現在の回転角θの通知を受け、当該回転角θに応じた目標値を上記メモリから読み出す。制御回路204は、図4〜図9を用いて説明したスイッチング素子Q1,Q2のスイッチングにより、当該目標値にグリッド電圧Vgを収束させる。なお、X線管5の回転速度が一定であるならば、架台/寝台制御部11から現在の回転角θの通知を受けずとも、制御回路204は時間経過とともに上記メモリを参照してグリッド電圧Vgの目標値を変化させればよい。
なお、管電流は、X線管のフィラメントの加熱量によって変化させることもできる。しかしながら、X線CT装置におけるX線管の回転速度は例えば1回転あたり0.3秒程度と高速であり、フィラメントの加熱量の制御では管電流を追従させることができない。
以上説明した本実施形態によれば、スイッチング素子Q1,Q2のスイッチングにより、X線管5の管電流Iのリニアな制御と、焦点サイズの連続的な制御を実現できる。
この方式においては、従来のリニアアンプのようにトランジスタ等のパワー素子をリニアに動作させない。そのため、例えばMOSFETであるスイッチング素子Q1,Q2における損失は少なく、大型の放熱機構は不要である。
また、コンデンサCgとして高電圧装置9とX線管5を接続する高圧ケーブル内の導体間の分布容量やカソード52とグリッド53との間に生じる浮遊容量等の容量成分を利用する場合には、別途のコンデンサを回路に組み込む必要がないので、部品点数を削減できる。また、ダイオードD1,D2として例えばMOSFETであるスイッチング素子Q1,Q2に内蔵されたダイオードを利用することによっても、部品点数を削減できる。
また、グリッド電圧Vgを零に近づける際には、コンデンサCgの電荷を電源に回生できるので、消費電力を抑えることができる。さらに、電源も小型化できる。
このように、本実施形態によれば、X線管5におけるグリッド電圧Vgの高効率なリニア制御を実現することができる。
さらに、例えば図10を用いて説明した利用例のように管電流Iをリニアに制御することで、被検体Pの被曝を低減することができる。この場合においては、体厚に応じたエネルギーのX線を被検体Pに照射して投影データを収集するので、アーチファクトの少ない高精細な再構成画像が得られる。
これらの他にも、本実施形態にて開示した構成からは、種々の好適な効果が得られる。
(変形例)
いくつかの変形例を示す。
上記実施形態では、X線管制御装置の一例として、X線CT装置1に搭載された高電圧装置9を開示した。しかしながら、高電圧装置9が備える構成は、他種のX線管制御装置に適用することもできる。例えば、高電圧装置9と同様の回路構成を、X線透視撮影装置が備える高電圧装置等のX線管制御装置に適用してもよい。
上記実施形態では、X線管5を被検体Pの周囲で1回転させる間に体厚に応じて管電流をリニアに変化させる利用例を挙げた。しかしながら、上記実施形態における構成は、他の場面で利用することもできる。例えば、X線管5を1回転させる際に、被検体Pの部位のうちX線による悪影響が懸念される目などの特定の部位がX線管5の正面に位置する間に限って管電流Iが低くなるように、管電流Iをリニアに制御してもよい。
上記実施形態では、グリッド電圧Vg用の電源を生成するための構成要素として、グリッド電圧インバータ200とグリッド電圧トランス201とを用いる場合を示した。しかしながら、X線管5に高電圧を供給するための高電圧トランス101にグリッド電圧回路203に接続された二次巻線を設け、主インバータ100の動作によってグリッド電圧Vg用の電源を生成してもよい。
上記実施形態では、X線管5の管電流Iを下げる場合に、グリッド電圧Vgが目標値に達した後は、制御回路204がスイッチング素子Q2のオン時間Ton及びオフ時間Toffの時間比率を調整してグリッド電圧Vgを安定させるとした。しかしながら、グリッド電圧Vgが目標値に達した際に、制御回路204は、オン時間Ton及びオフ時間Toffを変えずに、スイッチング素子Q2のスイッチングの周波数を調整することによりグリッド電圧Vgを安定させてもよい。
また、制御回路204は、グリッド電圧Vgが目標値に近づくように、PWM(パルス幅変調)制御によりスイッチング素子Q1,Q2のオン時間Ton及びオフ時間Toffを調整してもよい。このような構成を実現するためのフィードバック回路の一例を、図11に示す。
フィードバック回路300は、極性反転器301と、誤差増幅器302と、PWM回路303,304とを備える。極性反転器301のマイナス端子(−)への入力は分圧されたグリッド電圧Vgであり、プラス端子(+)への入力は基準電位である。極性反転器301は、マイナス端子(−)に入力される電圧の極性を反転させ、誤差増幅器302のマイナス端子(−)に出力する。例えば極性反転器301は、グリッド電圧Vgが−1500Vのときに3Vの電圧を誤差増幅器302のマイナス端子(−)に出力し、グリッド電圧Vgが−1000Vのときに2Vの電圧を誤差増幅器302のマイナス端子(−)に出力する。誤差増幅器302のプラス端子(+)への入力は、グリッド電圧Vgの目標値に対応する電圧である。この電圧は、極性反転器301と同様の比率で目標値を減圧し、極性を反転した値であり、例えば目標値が−1500Vのときに3Vであり、目標値が−1000Vのときに2Vである。
誤差増幅器302の出力は、PWM回路303,304のそれぞれに接続される。PWM回路303は、スイッチ駆動回路A1に駆動波形を出力する。この駆動波形は、スイッチング素子Q1のオン時間Ton或いはオフ時間Toffを表すパルスを含む。スイッチ駆動回路A1は、当該駆動波形に従ってスイッチング素子Q1をオン/オフする。PWM回路303は、誤差増幅器302から出力される電圧がマイナス極性である場合に、当該電圧が大きいほどスイッチング素子Q1のオン時間Tonが長く、オフ時間Toffが短くなるように駆動波形のパルス幅を調整する。
PWM回路304は、スイッチ駆動回路A2に駆動波形を出力する。この駆動波形は、スイッチング素子Q2のオン時間Ton或いはオフ時間Toffを表すパルスを含む。スイッチ駆動回路A2は、当該駆動波形に従ってスイッチング素子Q2をオン/オフする。PWM回路304は、誤差増幅器302から出力される電圧がプラス極性である場合に、当該電圧の絶対値が大きいほどスイッチング素子Q2のオン時間Tonが長く、オフ時間Toffが短くなるように駆動波形のパルス幅を調整する。
このような構成のフィードバック回路300においては、グリッド電圧Vgが目標値よりも低い場合には誤差増幅器302の出力がプラス極性となり、PWM回路304が動作してスイッチング素子Q2がオン/オフされる。グリッド電圧Vgが目標値に近づくにつれてスイッチQ2のオン時間Tonが短くなり、グリッド電圧Vgが目標値にて安定する。
一方、グリッド電圧Vgが目標値よりも高い場合には誤差増幅器302の出力がマイナス極性となり、PWM回路303が動作してスイッチング素子Q1がオン/オフされる。グリッド電圧Vgが目標値に近づくにつれてスイッチQ1のオン時間Tonが短くなり、グリッド電圧Vgが目標値にて安定する。
このようなPWM制御を用いた場合であっても、グリッド電圧Vgないしは管電流Iをリニアに制御することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…X線CT装置、5…X線管、9…高電圧装置、Cg…コンデンサ、Rg…抵抗、Q1,Q2…スイッチング素子、D1,D2…ダイオード、A1,A2…スイッチ駆動回路、L…コイル、51…アノード、52…カソード、53…グリッド、100…主インバータ、101…高電圧トランス、102…高電圧整流器、103…高電圧コンデンサ、200…グリッド電圧インバータ、201…グリッド電圧トランス、202…倍電圧整流器、203…グリッド電圧回路、204…制御回路。

Claims (5)

  1. アノードと、カソードと、前記カソードから前記アノードに向けて放出される電子を阻止するグリッドとを備えるX線管を制御するX線管制御装置であって、
    前記グリッドとの接続点を挟んで電源に対し直列に接続された2つのスイッチング素子と、
    前記2つのスイッチング素子のそれぞれと逆並列に接続された2つのダイオードと、
    前記接続点と前記グリッドとの間に設けられたコイルと、
    前記カソードと前記グリッドとの間に設けられたコンデンサと、
    前記2つのスイッチング素子を選択的に開閉させて前記コンデンサの電圧を制御することにより、前記カソードに対する前記グリッドの電圧を変化させる制御回路と、
    を備えるX線管制御装置。
  2. 前記コンデンサとして、前記カソードと前記グリッドとの間の容量成分と、当該X線管制御装置と前記X線管とを接続するケーブルに含まれる導体間の容量成分とを用いた請求項1に記載のX線管制御装置。
  3. 前記2つのスイッチング素子はMOSFETであり、前記2つのダイオードは前記MOSFETに内蔵されたダイオードである請求項1又は2に記載のX線管制御装置。
  4. 前記X線管はX線CT装置に搭載され、被検体の周囲を回転し、
    前記制御回路は、前記X線管の回転角度に応じて、前記カソードに対する前記グリッドの電圧をリニアに変化させる請求項1乃至3のうちいずれか1に記載のX線管制御装置。
  5. アノードと、カソードと、前記カソードから前記アノードに向けて放出される電子を阻止するグリッドとを備えるX線管と、
    前記グリッドとの接続点を挟んで電源に対し直列に接続された2つのスイッチング素子と、
    前記2つのスイッチング素子のそれぞれと逆並列に接続された2つのダイオードと、
    前記接続点と前記グリッドとの間に設けられたコイルと、
    前記カソードと前記グリッドとの間に設けられたコンデンサと、
    前記2つのスイッチング素子を選択的に開閉させて前記コンデンサの電圧を制御することにより、前記カソードに対する前記グリッドの電圧を変化させる制御回路と、
    を備えるX線CT装置。
JP2013105932A 2013-05-20 2013-05-20 X線管制御装置及びx線ct装置 Active JP6169890B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013105932A JP6169890B2 (ja) 2013-05-20 2013-05-20 X線管制御装置及びx線ct装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013105932A JP6169890B2 (ja) 2013-05-20 2013-05-20 X線管制御装置及びx線ct装置

Publications (2)

Publication Number Publication Date
JP2014229374A true JP2014229374A (ja) 2014-12-08
JP6169890B2 JP6169890B2 (ja) 2017-07-26

Family

ID=52129068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013105932A Active JP6169890B2 (ja) 2013-05-20 2013-05-20 X線管制御装置及びx線ct装置

Country Status (1)

Country Link
JP (1) JP6169890B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053626A1 (en) * 2020-08-11 2022-02-17 Siemens Healthcare Gmbh Controlling an x-ray tube
KR102666726B1 (ko) * 2022-06-28 2024-05-20 주식회사 티인테크놀로지 엑스선 튜브의 고속 스위칭 방법 및 이를 수행하는 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103300A (ja) * 1982-11-03 1984-06-14 ゼネラル・エレクトリック・カンパニイ 直流―直流逓昇変換器
JPH11204289A (ja) * 1998-01-13 1999-07-30 Toshiba Corp パルスx線装置
JP2000195697A (ja) * 1998-12-22 2000-07-14 General Electric Co <Ge> イメ―ジング装置用のx線ビ―ム制御装置
JP2002033064A (ja) * 2000-07-17 2002-01-31 Shimadzu Corp 三極x線管グリッド制御装置
JP2007324068A (ja) * 2006-06-05 2007-12-13 Hitachi Medical Corp X線発生用電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103300A (ja) * 1982-11-03 1984-06-14 ゼネラル・エレクトリック・カンパニイ 直流―直流逓昇変換器
JPH11204289A (ja) * 1998-01-13 1999-07-30 Toshiba Corp パルスx線装置
JP2000195697A (ja) * 1998-12-22 2000-07-14 General Electric Co <Ge> イメ―ジング装置用のx線ビ―ム制御装置
JP2002033064A (ja) * 2000-07-17 2002-01-31 Shimadzu Corp 三極x線管グリッド制御装置
JP2007324068A (ja) * 2006-06-05 2007-12-13 Hitachi Medical Corp X線発生用電源装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053626A1 (en) * 2020-08-11 2022-02-17 Siemens Healthcare Gmbh Controlling an x-ray tube
US11690158B2 (en) * 2020-08-11 2023-06-27 Siemens Healthcare Gmbh Controlling an x-ray tube
KR102666726B1 (ko) * 2022-06-28 2024-05-20 주식회사 티인테크놀로지 엑스선 튜브의 고속 스위칭 방법 및 이를 수행하는 장치

Also Published As

Publication number Publication date
JP6169890B2 (ja) 2017-07-26

Similar Documents

Publication Publication Date Title
JP5588875B2 (ja) 位相シフト型インバータ回路、それを用いたx線高電圧装置、x線ct装置、および、x線撮影装置
US9084335B2 (en) High frequency power distribution unit for a CT system
JP6362865B2 (ja) X線コンピュータ断層撮影装置及びx線発生装置
US9374879B2 (en) X-ray equipment
US7649974B2 (en) Method and system for controlling an X-ray imaging system
JP5570746B2 (ja) X線コンピュータ断層撮像装置
JP6822807B2 (ja) X線コンピュータ断層撮影装置
JP7086622B2 (ja) X線コンピュータ断層撮影装置
JP6858648B2 (ja) X線高電圧装置、x線撮影装置、及び判定回路
US9970889B2 (en) Energy imaging with generally constant energy separation
JP6169890B2 (ja) X線管制御装置及びx線ct装置
US10420518B2 (en) X-ray computed tomography imaging apparatus and x-ray tube apparatus
US11089667B2 (en) X-ray computed tomography apparatus
JP6139262B2 (ja) X線高電圧装置
JP5685449B2 (ja) X線高電圧装置およびx線ct装置
JP6670617B2 (ja) 高電圧発生装置及びx線ct装置
JP6858582B2 (ja) X線撮像装置
JP5637697B2 (ja) X線高電圧装置、x線装置、及びこれを用いたx線診断装置
JP7034628B2 (ja) X線高電圧装置及びx線画像診断装置
WO2023068342A1 (ja) 制御装置、制御方法、及び制御プログラム
JP6173700B2 (ja) X線高電圧装置及びx線ct装置
JP6490911B2 (ja) X線コンピュータ断層撮影装置、x線高電圧装置、管電圧発生方法および管電圧発生プログラム
JP5660763B2 (ja) X線ct装置
JP7123538B2 (ja) X線高電圧装置及びx線画像診断装置
JP2011167466A (ja) X線ct装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170629

R150 Certificate of patent or registration of utility model

Ref document number: 6169890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350