WO2015015540A1 - 電池用負極材料、電池用負極および電池 - Google Patents

電池用負極材料、電池用負極および電池 Download PDF

Info

Publication number
WO2015015540A1
WO2015015540A1 PCT/JP2013/070399 JP2013070399W WO2015015540A1 WO 2015015540 A1 WO2015015540 A1 WO 2015015540A1 JP 2013070399 W JP2013070399 W JP 2013070399W WO 2015015540 A1 WO2015015540 A1 WO 2015015540A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
hydrogen storage
storage alloy
battery
hydrogen
Prior art date
Application number
PCT/JP2013/070399
Other languages
English (en)
French (fr)
Inventor
堤 香津雄
昌輝 名小路
Original Assignee
エクセルギー・パワー・システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクセルギー・パワー・システムズ株式会社 filed Critical エクセルギー・パワー・システムズ株式会社
Priority to PCT/JP2013/070399 priority Critical patent/WO2015015540A1/ja
Priority to JP2015522810A priority patent/JP5875095B2/ja
Publication of WO2015015540A1 publication Critical patent/WO2015015540A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery using hydrogen as an active material, and more particularly to a battery using a hydrogen storage alloy as a negative electrode.
  • the former is to reduce the hydrogen storage alloy with hydrogen gas, and is a reaction represented by a fuel cell.
  • the latter is to reduce the hydrogen storage alloy by electricity and is a reaction represented by a nickel metal hydride battery.
  • the hydrogen storage reaction of the hydrogen storage alloy (M) is expressed by the following formulas (1) and (2). That is, the gas phase reaction is represented by the formula (1).
  • the electrochemical reaction is represented by the formula (2). 2 / n M + H 2 ⁇ 2 / n n (1) M + H 2 O + e ⁇ M MH + OH ⁇ (2)
  • the former uses a hydrogen storage alloy instead of the high-pressure hydrogen tank of the hydrogen-oxygen fuel cell to reduce the pressure and make it more compact.
  • hydrogen storage alloys have been used as hydrogen tanks for in-vehicle fuel cells.
  • a high-pressure nickel-metal hydride battery has been made compact by using a nickel hydroxide negative electrode instead of an oxygen tank and an oxygen electrode.
  • a high-pressure nickel-metal hydride battery includes a nickel positive electrode, a separator impregnated with an alkaline electrolyte, a hydrogen gas diffusion electrode, and a hydrogen tank.
  • a hydrogen storage alloy may be used as the hydrogen tank, but the latter nickel-metal hydride battery is designed to be compact by replacing the hydrogen storage alloy electrode with the hydrogen storage electrode.
  • Alkaline secondary batteries include nickel-metal hydride batteries, nickel-iron batteries, nickel-zinc batteries, nickel-cadmium batteries, and the like.
  • these alkaline secondary batteries have problems such as lower charging efficiency, lower volumetric energy density, and shorter cycle life compared to nickel metal hydride batteries.
  • nickel-cadmium batteries were typical alkaline secondary batteries.
  • nickel metal hydride batteries are positioned as mainstream alkaline secondary batteries.
  • nickel-cadmium batteries are rarely used recently because cadmium used for the negative electrode is harmful and has a large environmental load and a large memory effect.
  • a nickel-metal hydride battery disclosed in Patent Document 1 is known as a nickel-metal hydride battery having improved battery cycle life characteristics.
  • a fluorine oil having water repellency is contained in a negative electrode containing a hydrogen storage alloy. This fluorine oil is partially attached to the surface of the hydrogen storage alloy to moderately limit the contact between the hydrogen storage alloy and the alkaline electrolyte. This prevents the hydrogen storage alloy from being oxidized and deteriorated by the alkaline electrolyte when charging and discharging are repeated, thereby improving the cycle life characteristics of the nickel metal hydride secondary battery.
  • the fluorine oil is added together with a hydrogen storage alloy powder, a conductive agent, a binder, and the like when the negative electrode mixture slurry is manufactured during the negative electrode manufacturing process, and the surface of the hydrogen storage alloy is mixed and kneaded. To be applied.
  • Patent Document 2 proposes an alkaline storage battery in which a fluororesin is mixed with a negative electrode using an Mg—Ni—rare earth-based hydrogen storage alloy and the alkaline electrolyte is appropriately prevented from penetrating into the negative electrode. Thereby, when charge / discharge is repeated, the hydrogen storage alloy of the negative electrode is prevented from being pulverized or oxidized, thereby improving the cycle life of the alkaline storage battery.
  • the surface of the hydrogen storage alloy particles is made water-repellent so that the surface of the hydrogen storage alloy particles is solid (alloy layer) -liquid (alkaline aqueous solution) -gas (hydrogen gas) 3.
  • An invention has been proposed in which the cycle life characteristics of a battery are improved by adopting a phase interface state.
  • Patent Documents 1 to 3 attempt to improve the cycle life by imparting water repellency to the negative electrode material.
  • it is a negative electrode material having water repellency
  • the hydrogen storage alloy expands and contracts, and it is difficult to prevent pulverization of the alloy and electrode peeling. I can't say.
  • the negative electrode material was wet with the electrolyte solution, so even when the inside of the battery was in a hydrogen gas atmosphere, the charging reaction with hydrogen gas was slow. This is presumably because hydrogen gas is difficult to dissolve in the electrolyte and it is difficult to penetrate the liquid, and thus it is difficult to charge the negative electrode with hydrogen gas.
  • the inventors of the present invention are concerned with the oxidation and charging / discharging of the hydrogen storage alloy derived from the electrolytic solution if the negative electrode can be kept charged with hydrogen gas when the battery using hydrogen as the active material is discharged. It was found that the volume change of the alloy can be alleviated. That is, according to the present invention, the negative electrode material for a battery is a negative electrode material capable of storing hydrogen, and the negative electrode material includes a water-repellent hydrogen storage alloy and a hydrophilic hydrogen storage alloy. The negative electrode material uses hydrogen as a negative electrode active material.
  • the surface of the hydrophilic hydrogen storage alloy is wetted with the electrolytic solution, and as a result, a battery reaction represented by the formula (2) occurs on the surface of the hydrophilic hydrogen storage alloy. That is, the reaction of occluding hydrogen and the reaction of depriving electrons from protons can be rapidly advanced.
  • the negative electrode material may be a mixture of a water-repellent hydrogen storage alloy and a hydrophilic hydrogen storage alloy. Further, part of the surface of the hydrogen storage alloy may have water repellency, and the other part may have hydrophilicity.
  • the water repellent hydrogen storage alloy preferably has a water repellent disposed on the surface thereof.
  • the water-repellent hydrogen storage alloy is more preferably covered with the water-repellent agent.
  • the negative electrode material for a battery according to the present invention preferably has a ratio of the water repellent of 0.1 to 20% by mass with respect to 100% by mass of the water repellent hydrogen storage alloy.
  • the water repellent contains a fluororesin.
  • the water repellent hydrogen storage alloy when the total of the water repellent hydrogen storage alloy and the hydrophilic hydrogen storage alloy is 100% by mass, the water repellent hydrogen storage alloy is 10 to 90% by mass. Preferably there is.
  • the mixing ratio of the hydrophilic hydrogen storage alloy and the water repellent hydrogen storage alloy is more preferably 3: 7 to 7: 3, and further preferably 55:65 to 65:55.
  • the negative electrode material preferably contains granulated particles of a water-repellent hydrogen storage alloy and granulated particles of a hydrophilic hydrogen storage alloy.
  • the average particle size of the granulated particles is preferably 10 to 500 ⁇ m in terms of a particle size D50 by a laser diffraction / scattering particle size distribution method.
  • the granulated particles of the water repellent hydrogen storage alloy and the granulated particles of the hydrophilic hydrogen storage alloy are formed with a binder.
  • the granulated particles contain a granulation aid, and the total of the water-repellent hydrogen storage alloy, the hydrophilic hydrogen storage alloy, and the granulation aid is 100.
  • the granulation aid is preferably 0.1 to 20 mass%.
  • the granulation aid contains EVA.
  • the granulation aid is used. The agent is preferably 30 to 60% by mass.
  • the negative electrode for a battery according to the present invention may be a negative electrode for a battery using the negative electrode material for a battery, and the battery according to the present invention may be a battery using the negative electrode. And it is preferable that the inside of the battery is filled with hydrogen gas.
  • the negative electrode is recharged by the hydrogen gas held inside the battery. Hydrogen is stored in the hydrogen storage alloy by a so-called gas phase reaction, improving the cycle life of the negative electrode.
  • the solvent is removed, and the surface of the hydrogen storage alloy particles is repelled.
  • the negative electrode material for a battery according to the present invention can store hydrogen by two methods of “gas phase reaction” and “electrochemical reaction”.
  • the negative electrode material includes a water-repellent hydrogen storage alloy and hydrophilic hydrogen.
  • the negative electrode material of the present invention makes it possible to provide a negative electrode for a battery using hydrogen as an active material, which has a long life and excellent high output characteristics. Further, a battery using such a negative electrode has a high current density and energy density, and is excellent in charge / discharge cycle characteristics.
  • the hydrogen storage alloy contained in the negative electrode material is not particularly limited as long as it can store and release hydrogen.
  • it is an intermetallic compound formed by combining a metal A that easily stores hydrogen such as lanthanum, titanium, zirconium, and magnesium and a metal B that does not store hydrogen such as nickel, manganese, iron, and cobalt.
  • alloy systems such as AB5 type, which is a rare earth alloy, AB2 type, which is a Laves phase alloy, AB type, which is a titanium-zirconium alloy, and A2B type, which is a magnesium alloy, can be cited.
  • palladium, vanadium, etc. are single elements, the amount of hydrogen that can be stored is small and expensive. Since vanadium alone is difficult to activate at the initial stage, an alloy to which titanium, chromium, or the like is added as a solid solution may be used.
  • a ternary alloy containing MmNiCoMnAl misch metal which is an AB5 type rare earth-nickel alloy.
  • a LaMgNi system called a superlattice hydrogen storage alloy is preferable. These alloys may be used alone or in combination of two or more.
  • the hydrogen storage alloy is subjected to etching treatment on the surface of the hydrogen storage alloy to increase the battery reaction area, and the surface of the hydrogen storage alloy is subjected to plating treatment. Therefore, it is preferable to improve the electronic conductivity.
  • the water-repellent hydrogen storage alloy is not particularly limited as long as it is a hydrogen storage alloy having water repellency.
  • the water repellent hydrogen storage alloy can be obtained, for example, by mixing a hydrogen storage alloy and a water repellent. Specifically, it is preferable that a water repellent is dispersed on the surface of the hydrogen storage alloy.
  • FIG. 1 schematically shows an example in which the water repellent is dispersedly arranged on the surface of the hydrogen storage alloy.
  • FIG. 1A is a particle cross section of a hydrogen storage alloy in which a particulate water repellent is attached in an island shape.
  • FIG. 1B is a particle cross section of a hydrogen storage alloy having a particulate water repellent adhered to the entire surface.
  • FIG. 1C is a particle cross section of a hydrogen storage alloy in which a film-like water repellent is attached in an island shape.
  • FIG. 1D is a particle cross section of a hydrogen storage alloy having a film-like water repellent adhered to the entire surface
  • the electrolyte does not easily adhere to the hydrogen storage alloy, and the entire surface of the hydrogen storage alloy functions as a gas phase reaction surface. Become. Thereby, the contact area of a hydrogen storage alloy and hydrogen gas is ensured, and the charge rate by gas reaction can be improved.
  • the surface of the hydrogen storage alloy particles may be coated with the water repellent as shown in FIG. 1D. preferable.
  • the ratio between the hydrogen storage alloy and the water repellent is preferably 0.1 to 20% by mass of the water repellent with respect to 100% by mass of the hydrogen storage alloy. This is because if the amount of the water repellent is too small, the water repellent effect is not sufficient, so that the electrolytic solution adheres to the hydrogen storage alloy and charging with hydrogen gas becomes difficult. On the contrary, if the amount of the water repellent is too large, the electronic conductivity of the hydrogen storage alloy is remarkably lowered and it becomes difficult to contribute to the battery reaction. Therefore, the more preferable ratio of the water repellent is 0.2 to 10% by mass, and further preferably 0.5 to 7% by mass. In the water-repellent hydrogen storage alloy, it is preferable that the entire surface of the hydrogen storage alloy on the particles is coated with a water repellent, but there may be a portion that is not partially covered with the water repellent.
  • Fluorine resin, silicone resin, polyolefin resin, paraffin wax, asphalt pitch, metal soap, fluorine oil, fluorosilicone oil, silicone oil, alkylsilane, kerosene, boron nitride, etc. can be used as water repellent.
  • Properties required for water repellents include the following. That is, it is difficult for the water repellent to adhere to the surface of the hydrophilic hydrogen storage alloy during the mixing and kneading of the slurry, the water repellent is less likely to adhere to the conductive agent and binder that do not require water repellency, Have reducibility. From these viewpoints, a fluororesin is preferable as the water repellent.
  • Fluorocarbon resin includes fluorocarbon, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), polyperfluorobutenino vinyl ether, and the like.
  • the water repellent is preferably PTFE. You may use these individually by 1 type or 2 or more types.
  • Examples of the method for adding water repellency to the hydrogen storage alloy include a method of mixing a raw material containing a hydrogen storage alloy and a water repellent and performing a mechanical milling treatment.
  • the raw material consists of A powder made of hydrogen storage alloy and B powder made of water repellent.
  • the mechanical milling process is a process that applies external forces such as impact, tension, friction, compression, and shear to the raw material powder (A powder component and B powder). It is a rolling mill, vibration mill, planetary mill, rocking Examples thereof include a mill, a horizontal mill, an attritor mill, a jet mill, a crusher, a homogenizer, a fluidizer, a paint shaker, and a mixer.
  • a planetary mill is one in which raw material powder and balls are placed in a container, and the raw material powder is pulverized, mixed, or subjected to a solid phase reaction by mechanical energy generated by rotation and revolution.
  • a composite of a hydrogen storage alloy and a water repellent can be obtained. Since many water repellents have a lower hardness than hydrogen storage alloys, water repellents are more easily pulverized than hydrogen storage alloys. Therefore, the water repellent powder that has become fine particles can be pressure-bonded to the surface of the hydrogen storage alloy powder with a ball, and the hydrogen storage alloy can be covered with the water repellent.
  • the evaporation method is preferably employed because the water storage repellent is difficult to cover the hydrogen storage alloy.
  • the evaporation method is a method in which a hydrogen storage alloy powder is mixed with a solution in which a water repellent is dissolved or dispersed, and then the mixed solution is evaporated by heating, decompression, etc. to remove the solvent, and the surface of the hydrogen storage alloy particles It is a manufacturing method provided with the process of coat
  • the heating and decompression conditions are not particularly limited, but may be about 20 to 250 ° C. and about 10 ⁇ 7 to 10 ⁇ 5 Pa, respectively.
  • examples of the solvent include methanol, ethanol, propanol, acetic acid, tartaric acid, acetone, benzene, toluene, xylene, carbon disulfide, carbon tetrachloride, ether, and the like. .
  • a conductive agent or a binder may be added to the water repellent.
  • a conductive agent and / or a binder may be dispersed in a solution in which a water repellent is dissolved.
  • the conductive agent is not particularly limited as long as it has electronic conductivity.
  • the conductive agent is more preferably a carbon-based agent from the viewpoint that it does not elute into the electrolyte due to overdischarge or overcharge.
  • Carbon types include graphite, soft carbon, hard carbon, glass carbon, acetylene black (AB), furnace black, channel black, thermal black, ketchin black (KB), vapor grown carbon fiber (VGCF), carbon nanotube (CNT) ), Graphene, activated carbon, and other materials. These may be used alone or in combination of two or more.
  • the amount of the conductive agent added depends on the type of the conductive agent.
  • the conductive agent is a carbon-based material
  • the hydrogen storage alloy is 100 mass%
  • the conductive material is 0.1 to 20 mass. %, Preferably 0.5 to 5% by mass.
  • the content is from 0.1 to 20% by mass, a sufficient conductivity improving effect can be obtained, and high rate discharge characteristics can be improved.
  • Binder As the binder, it is possible to use general-purpose materials such as fluororesin, styrene-butylene rubber (SBR), polyvinyl alcohol (PVA), polyethylene (PE), polypropylene (PP), styrene-based copolymers, and cellulose esters. Yes, but not limited to this.
  • fluororesin is preferably used because it also has an effect as a water repellent.
  • the water repellent effect may make it difficult to uniformly disperse the added conductive agent. Is preferably emulsified.
  • the surfactant used in this case saponin, phospholipid, peptide, PEG, sodium alkyl sulfate and the like are effective, and about 0.1 to 3% by mass may be added to the whole solution in which the water repellent is dissolved. .
  • PTFE exhibits the best battery characteristics, and a battery having a good cycle life can be obtained.
  • the mixing ratio of the water repellent and the binder is preferably 0.5 to 10% by mass, and more preferably 1 to 5% by mass, where the total mass of the water repellent and the binder is 100%.
  • Hydrophilic hydrogen storage alloy Since the hydrogen storage alloy has hydrophilicity, a hydrophilic hydrogen storage alloy can be obtained unless a water repellent is attached to the hydrogen storage alloy. However, a hydrogen storage alloy with a hydrophilic agent attached or a hydrogen storage alloy that has been subjected to a hydrophilic treatment is preferable.
  • the hydrophilic agent may be an organic material having a hydrophilic group such as polyamide, acrylic acid, methacrylic acid, polyvinyl alcohol, or ethylene vinyl alcohol, or an inorganic material such as alumina, silica, zirconia, titania, or yttria. Also good. These may be used alone or in combination of two or more.
  • Examples of the hydrophilic treatment of the hydrogen storage alloy include sulfonation treatment, carboxylation treatment, amidation treatment, surfactant treatment, and sulfuric acid treatment.
  • the water-repellent hydrogen-absorbing alloy is preferably 10 to 90% by mass. This is because if the amount of the water-repellent hydrogen storage alloy is too small relative to the hydrophilic hydrogen storage alloy, the water-repellent effect cannot be sufficiently obtained, and the charging efficiency by hydrogen gas is deteriorated. On the other hand, if the amount is too large, the ratio of the hydrophilic hydrogen storage alloy is decreased, so that the area in contact with the electrolytic solution is relatively decreased, and the ratio contributing to the battery reaction is decreased. Therefore, the ratio of the water repellent hydrogen storage alloy is preferably 20 to 80% by mass, and more preferably 30 to 70% by mass.
  • the negative electrode material may be used by mixing the water-repellent hydrogen storage alloy and the hydrophilic hydrogen storage alloy described above, but is preferably composite particles obtained by granulating the water-repellent hydrogen storage alloy and the hydrophilic hydrogen storage alloy. .
  • the granulated particles preferably have an average particle size (particle size D50 by laser scattering particle size distribution measurement method) of 10 to 500 ⁇ m. If the particle diameter is too small, the energy density tends to be low in the step of applying the negative electrode material to the substrate. On the other hand, if it is too large, the negative electrode material cannot be uniformly applied or filled into the current collector in the slurry application step, or the negative electrode material may be peeled off or dropped from the current collector. Therefore, a more preferable granulated particle size is 50 to 300 ⁇ m.
  • the granulated negative electrode material is preferably a spherical granulated body.
  • a spherical granulated body By being a spherical granulated body, the fluidity as a powder is improved, the dispersibility of the negative electrode material is improved in the mixing and kneading steps, and the negative electrode material can be excellent in uniformity.
  • the average particle size of the primary particles of the hydrogen storage alloy is preferably 0.1 to 100 ⁇ m, although it depends on the particle size of the granulated particles. If the primary particles before granulation are too small, the specific surface area of the negative electrode material is large, so that the primary particles are easily oxidized. On the other hand, if it is too large, the packing density and volume capacity density of the granulated material will be low. Therefore, a more preferable particle diameter is 0.5 to 50 ⁇ m, and further preferably 1 to 40 ⁇ m.
  • the average particle size of the primary particles was observed using a scanning electron microscope (SEM) at an acceleration voltage of 20 kV and a magnification of 2000 to 10,000 times.
  • SEM scanning electron microscope
  • the primary particle image of the electron micrograph was analyzed with image analysis software (for example, Using OLYMPUS (analysis FIVE), 50 or more particles can be measured and calculated.
  • the negative electrode material preferably further contains a granulation aid.
  • the granulation aid is a material for increasing the granulation efficiency.
  • EVA ethylene vinyl acetate copolymer
  • acrylic resin acrylic resin
  • copolymer of isobutylene and maleic anhydride polyvinyl alcohol
  • polyvinyl butyral polyethylene glycol
  • polyvinyl pyrrolidene hydroxypropyl cellulose
  • carboxyl methyl cellulose corn starch
  • gelatin And lignin Among these, EVA is preferable from the viewpoint of high granulation efficiency, alkali resistance, reduction resistance, and life characteristics of the negative electrode.
  • the addition method of the granulation aid is preferably added and granulated by dissolving it in water or an organic solvent such as alcohol, acetone, xylene, toluene or the like rather than adding it in a powder state.
  • the amount of the granulation aid added is 0.1 to 20 mass% when the total amount of the water-repellent hydrogen storage alloy, the hydrophilic hydrogen storage alloy and the granulation aid is 100% by mass. % Is preferred.
  • a conductive agent to the granulation aid.
  • the electronic conductivity of the granulated body is improved and the output characteristics of the battery are improved.
  • the conductive agent is not particularly limited as long as it has electronic conductivity.
  • the conductive agent is more preferably a carbon-based agent from the viewpoint that it does not elute into the electrolyte due to overdischarge or overcharge.
  • Carbon types include graphite, soft carbon, hard carbon, glass carbon, acetylene black (AB), carbon black (CB), furnace black, channel black, thermal black, ketchin black (KB), vapor grown carbon fiber (VGCF) ), Carbon nanotube (CNT), graphene, activated carbon, and the like. These may be used alone or in combination of two or more.
  • the amount of the conductive agent added depends on the type of the conductive agent. For example, when the conductive agent is a carbon-based material, when the total amount of the granulation aid and the conductive agent is 100% by mass, the conductive material Is preferably 40 to 70% by mass. If the amount of the conductive agent is too small, the electronic conductivity of the granule is not sufficiently imparted. On the other hand, if the amount is too large, the effect of the granulation aid cannot be sufficiently obtained.
  • Granulation is not particularly limited as long as a granulated body can be obtained.
  • the granulated body may be obtained by spray drying, rolling granulation, agglomeration and the like.
  • the image of the composite particle which consists of the granulated body of a water repellent hydrogen storage alloy and the granulated body of a hydrophilic hydrogen storage alloy is shown in FIG. That is, the composite particles 7 are formed by granulating the water-repellent hydrogen-absorbing alloy 3 and the hydrophilic hydrogen-absorbing alloy 4 with the same amount of the granulating aid 5 added with the conductive agent 6.
  • the spray drying method is a method in which a stock solution comprising a water repellent hydrogen storage alloy, a hydrophilic hydrogen storage alloy, a granulation aid added as necessary, and a solution in which a conductive agent is dispersed is used as a nozzle or It is a method of obtaining composite particles which are secondary particles by atomizing with a high-speed rotating disk, increasing the surface area per unit volume, contacting with hot air continuously, and drying instantaneously.
  • a battery can be formed using the negative electrode material produced as described above.
  • the negative electrode may be added with a conductive agent for imparting conductivity and a binder for imparting binding properties, as necessary.
  • a conductive agent or the like As a method of adding a conductive agent or the like to the water-repellent hydrogen storage alloy, a hydrogen storage alloy and a conductive agent are dispersed and mixed in a solvent to form a slurry-like negative electrode material-containing composition, and this composition is applied to the surface of the current collector.
  • the negative electrode material-containing layer is formed on the surface of the current collector by applying or filling, drying, and pressing.
  • NMP N-methyl-2-pyrrolidone
  • water alcohol, xylene, toluene or the like
  • a solvent a solvent used as a solvent.
  • a paste-like or slurry-like negative electrode mixture obtained by adding an appropriate solvent to a mixture containing commonly used materials, for example, the above-described negative electrode material, conductive agent, binder, and the like, and sufficiently kneading. Is applied to the surface of the current collector and dried, so that the desired thickness and density can be controlled.
  • a battery of a square type, a cylindrical type, a coin type, a button type or the like is assembled according to a commonly used method in combination with a positive electrode, a separator, an electrolytic solution, and the like, which are other battery elements.
  • the binder is usually used, for example, EVA, acrylic resin, copolymer of isobutylene and maleic anhydride, polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, polyvinyl pyrrolidene, hydroxypropyl cellulose, styrene butadiene.
  • SBR styrene-ethylene-butylene-styrene copolymer
  • SEBS polyimide
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • sodium alginate carboxymethylcellulose
  • PE polyethylene
  • PP polypropylene
  • EVA or SBR is preferable from the viewpoint of strong binding force, alkali resistance, reduction resistance, and life characteristics of the negative electrode.
  • the conductive agent added to the negative electrode mixture includes a carbon material.
  • the type and structure of the carbon material are not particularly limited.
  • graphite, soft carbon, hard carbon, glass carbon, acetylene black (AB), furnace black, channel black, thermal black, kettin black (KB), vapor grown carbon fiber (VGCF), carbon nanotube (CNT), graphene Carbon materials such as activated carbon may be used alone or in combination of two or more.
  • the composite powder is capable of forming a conductive three-dimensional network structure. If a conductive three-dimensional network structure is formed, a sufficient current collecting effect can be obtained as a negative electrode material for a secondary battery using hydrogen as an active material, and volume expansion of an electrode, particularly an alloy component, during hydrogen storage can be achieved. It can be effectively suppressed.
  • the negative electrode material When the total of the negative electrode material, the conductive agent and the binder is 100% by mass, the negative electrode material is 50 to 99% by mass, the conductive agent amount is 0.5 to 40% by mass, and the binder amount is 0.5 to 20%. It is preferable that it is mass%.
  • the current collector is not particularly limited as long as it is a material having electronic conductivity and capable of supplying electricity to the held negative electrode material.
  • Examples thereof include metals such as carbon, titanium, chromium, nickel, copper, molybdenum, ruthenium, rhodium, tantalum, tungsten, osmium, iridium, platinum, and gold.
  • An alloy containing two or more of these metals for example, stainless steel, ambiloy steel, hastelloy steel, carbon-coated stainless steel, or the like can be used.
  • the current collector is preferably made of a metal or alloy material having alkali resistance and reduction resistance.
  • a metal or alloy material in which the surface of a metal or alloy material not having alkali resistance and reduction resistance is coated with a metal or alloy material having alkali resistance and reduction resistance may be used.
  • it may be composed of two or more layers of metal such as steel coated with nickel.
  • the current collector is preferably carbon, titanium, chromium, nickel, copper, gold, stainless steel, steel coated with nickel, etc. From the above viewpoint, carbon, nickel, copper, stainless steel, steel coated with nickel, and the like are preferable.
  • the shape of the current collector includes linear, rod-like, plate-like, foil-like, net-like, woven fabric, non-woven fabric, expanded, porous body or foam, among which the packing density can be increased and the output characteristics are good. Therefore, an expand, a porous body or a foam is preferable.
  • the negative electrode material thus produced can be made to function well as a negative electrode for a battery by being deposited on a current collector.
  • the formation of deposition means fixing the current collector and the negative electrode material of the present invention in contact with each other. That is, filling the current collector with the negative electrode material, fixing the negative electrode material to a metal net or the like as the current collector, and the like are applicable.
  • the deposition method is not particularly limited, and examples thereof include a pressure bonding method, a slurry method, a paste method, an electrophoresis method, a dipping method, a spin coating method, and an aerosol deposition method.
  • a metal foam such as foamed nickel is used as a current collector
  • a slurry method or a paste method is preferable from the viewpoints of packing density, electrode production rate, and the like.
  • Counter electrode When a secondary battery is formed using such a negative electrode, as the counter electrode, existing ones such as a nickel hydroxide positive electrode, a manganese hydroxide positive electrode, a manganese dioxide positive electrode and the like can be used. On the other hand, when used as a fuel cell or an air cell, an air positive electrode or an oxygen positive electrode can be used as a counter electrode.
  • Separator As a separator, what is used for the battery which uses a well-known hydrogen as an active material can be used. Examples of the shape of the separator include a microporous membrane, a woven fabric, a nonwoven fabric, and a green compact. Among these, a nonwoven fabric is preferable from the viewpoint of output characteristics and manufacturing cost.
  • the material of the separator is not particularly limited, but is preferably a separator having alkali resistance, oxidation resistance, and reduction resistance. Examples thereof include materials such as polytetrafluoroethylene (PTFE), polyimide (PI), polyamide, polyamideimide, aramid, polyethylene, and polypropylene. Moreover, the separator which coat
  • the electrolytic solution is not particularly limited as long as it is used in a battery using hydrogen as an active material.
  • a salt such as potassium hydroxide (KOH), lithium hydroxide (LiOH), or sodium hydroxide (NaOH) is used as water. What was melt
  • dissolved in is suitable.
  • the electrolytic solution is preferably an aqueous potassium hydroxide solution.
  • the electrolyte may be a non-aqueous solvent, a solid electrolyte, a gel electrolyte, an ionic liquid, or the like in addition to the above-described aqueous solvent.
  • the negative electrode and the positive electrode are overlapped with each other via a separator and stored in a battery container, and sealed to assemble a battery. After the battery is assembled, a vacuum is drawn to remove the air inside the battery. Next, an amount of electrolytic solution corresponding to 20 to 50% of the space in the battery after the negative electrode, positive electrode, and separator are accommodated is supplied into the battery.
  • hydrogen gas may be enclosed inside the battery.
  • a hydrogen gas cylinder installed outside the battery may be connected to the battery, and hydrogen gas may be pumped to the battery after supplying the electrolyte. The pumped hydrogen gas fills the gaps in the negative electrode or between the negative electrode and the separator, and comes into contact with the hydrogen storage alloy.
  • the hydrogen storage alloy is charged with hydrogen gas supplied from the outside. This is storage of hydrogen gas by a so-called gas phase reaction.
  • the negative electrode material of the present invention can be efficiently charged with hydrogen gas, and the battery life can be improved.
  • the negative electrode can be charged by connecting an external power source to the battery and supplying current to the electrode. It is possible to store hydrogen in the negative electrode by an electrochemical reaction.
  • hydrophilic hydrogen storage alloy (Production of hydrophilic hydrogen storage alloy) A hydrogen storage alloy (MmNiCoMnAl-based alloy, average particle diameter D50: 35 ⁇ m) and a hydrophilic agent were mixed using a mortar so as to obtain a blending ratio shown in Table 2, and then dried to prepare a hydrophilic hydrogen storage alloy.
  • a water repellent hydrogen storage alloy (water repellent MH) and a hydrophilic hydrogen storage alloy (hydrophilic MH) were mixed to obtain a negative electrode material.
  • Table 3 shows a summary table of the produced negative electrode materials.
  • the granulation was performed by adding a double amount of xylene (100 ° C.) and a conductive agent to the granulation aid and mixing while applying vibration. That is, a negative electrode material, a conductive agent, and a granulation aid were prepared so that the granule composition shown in Table 3 was obtained, and dried and pulverized while mixing in a mortar.
  • granulated particles of 50 to 75 ⁇ m were taken out from the obtained pulverized product using a sieve and used as a negative electrode material.
  • a negative electrode using only a water repellent hydrogen storage alloy as a negative electrode material was used as Comparative Example 1
  • a negative electrode using only a hydrophilic hydrogen storage alloy as a negative electrode material was used as Comparative Example 2.
  • Each negative electrode material of Examples 1 to 15, Comparative Example 1 and Comparative Example 2 was applied to a foamed nickel base having a thickness of 800 ⁇ m, and the pressure was adjusted to 200 ⁇ m using a pressure press machine, and the granulated particles were foamed.
  • a negative electrode was obtained by depositing on a nickel substrate.
  • a nickel hydroxide positive electrode was used by filling a foamed nickel base material with a slurry obtained by adding carboxymethyl cellulose as a thickener to nickel hydroxide.
  • the electrolytic solution a 30% by mass potassium hydroxide aqueous solution was used, and as the separator, a 150 ⁇ m-thick polypropylene nonwoven fabric with a hydrophilic treatment was used to produce a wound body. This wound body was put into a pressure vessel, and hydrogen gas was sealed until the pressure became 0.4 MPa to produce a battery.
  • the manufactured battery was subjected to activation treatment by performing three-cycle charge / discharge so that the SOC was 105% at a rate of 0.1C.
  • Table 4 summarizes the cycle life characteristics of the batteries of Examples 1 to 15, Comparative Example 1 and Comparative Example 2.
  • the charge / discharge test conditions were an environmental temperature of 25 ° C., an SOC of 100%, a discharge cutoff potential of 0.8 V, and a charge / discharge current rate of 1C.
  • the capacity maintenance rate is a percentage of the amount of electricity of the battery at that time with respect to the battery capacity.
  • Examples 1 and 4 maintain the capacity more than Example 7. The rate showed a high value, and a higher capacity retention rate value than in Example 8.
  • Examples 4 and 10 using water-repellent hydrogen storage alloys (water repellent MH2, 6, 7, and 8) having different types of water repellents
  • Examples 4 and 10 using fluorine-based resins 11 showed a capacity retention rate higher than that of Example 12 using silicon resin (silicon).
  • Example 4 using PTFE as the water repellent showed a high capacity retention rate.
  • Examples 3, 4 and 5 with ⁇ 70: 30 show higher capacity retention than Example 2 with a mass ratio of 10:90 and higher capacity maintenance than Example 6 with a mass ratio of 90:10. It was.
  • Example 13 using a hydrophilic hydrogen storage alloy (hydrophilic MH2) coated with PVA maintains a higher capacity than Example 4 using a hydrogen storage alloy (hydrophilic MH1) not coated with anything. Showed the rate.
  • Example 14 using VGCF as the conductive agent showed a higher capacity retention rate than Example 4 using CB.
  • Example 4 using EVA as the granulation aid showed a higher capacity retention rate than Example 15 using PVdF as the granulation aid.
  • FIG. 3 shows a charge / discharge curve at the 10th cycle of Example 14 in which the battery characteristics were the best among Examples 1 to 15.
  • the curve indicated by 1 is the charge characteristic
  • the curve indicated by 2 is the discharge characteristic.
  • the vertical axis is the battery voltage
  • the horizontal axis is the battery capacity.
  • FIG. 3 shows that the energy efficiency is good because the discharge voltage is high. Moreover, it is a feature that the plateau area
  • FIG. 4 and 5 show the measurement results of the internal pressure of the battery during the battery charge / discharge test.
  • the used battery has the same composition as Example 5 except that the conductive agent is 3% and the granulation aid is 3% with respect to 100% of the negative electrode material.
  • the positive electrode capacity is 228 mAh with respect to the negative electrode capacity of 41 mAh.
  • the enclosed hydrogen gas pressure is 0.8 MPa.
  • FIG. 4 shows the test results during charging
  • FIG. 5 shows the test results during discharging. In either case, the upper graph shows the internal pressure of the battery, and the lower graph shows the battery potential.
  • the numbers in the figure indicate the charge / discharge rate.
  • FIG. 4 shows that the hydrogen gas pressure inside the battery increases as charging proceeds. This is because hydrogen gas is generated from the negative electrode by charging.
  • FIG. 5 shows that the hydrogen gas pressure inside the battery decreases as the discharge progresses. This is because the hydrogen gas inside the battery is taken into the negative electrode during discharge, and as a result, the hydrogen gas pressure is reduced.
  • Battery capacity and capacity retention can be improved by using PTFE as the water repellent and setting the coating amount within the range of 0.1% by mass or more and 20% by mass or less.
  • the capacity retention rate can be improved by using a fluororesin as the water repellent used in the water repellent hydrogen storage alloy.
  • PTFE shows a high capacity maintenance rate.
  • the blending ratio of the water-repellent hydrogen storage alloy and the hydrophilic hydrogen storage alloy is such that the water-repellent hydrogen storage alloy is 10 mass% or more and 90 mass% or less, and the blend ratio of the hydrophilic hydrogen storage alloy is 90 mass% or less 10 mass%. By setting it within the above range, the capacity maintenance rate can be improved. Above all, the mixing ratio of water-repellent hydrogen storage alloy and hydrophilic hydrogen storage alloy. Those having a ratio of 30:70 to 70:30 exhibit a high capacity retention rate.
  • the hydrophilic hydrogen storage alloy exhibits a higher battery capacity by coating with a hydrophilic agent (PVA) than that without coating.
  • PVA hydrophilic agent
  • the capacity retention rate can be improved by using EVA for the granulation aid.
  • a battery using PTFE as a water repellent has excellent life characteristics.
  • the above-described battery including a negative electrode and using hydrogen as an active material has a long life and a high capacity, it can be used as a power source for various electric devices including vehicles using electricity.

Abstract

水素を活物質とする負極は、充放電の過程で体積変化が生じて劣化する。また酸化により劣化する。そこで、水素を貯蔵することが可能であり、撥水性水素吸蔵合金と、親水性水素吸蔵合金とを含んでいる、水素を活物質とした電池用負極材料の開発を行なった。このような負極材料は高出力特性を有しており、水素雰囲気とすることにより長寿命とすることができた。また、このような負極材料を用いて負極を製造し、この負極を用いて水素を活物質とする電池を組立てた。組立後に電池内部に水素ガスを充填することにより、長寿命で高出力特性に優れる電池を開発した。

Description

電池用負極材料、電池用負極および電池
 本発明は水素を活物質とする電池に関し、詳しくは水素吸蔵合金を負極に用いた電池に関する。
 水素を活物質とする燃料電池、ニッケル水素電池および空気電池などに水素吸蔵合金を使用する試みは、水素吸蔵合金の発見とほぼ同時に開始された。この水素吸蔵合金を電池に利用する方法は、「気相反応での水素貯蔵」と「電気化学的反応での水素貯蔵」の2種類に大別できる。
 前者は、水素ガスで水素吸蔵合金を還元するものであり、燃料電池に代表される反応である。一方後者は、電気で水素吸蔵合金を還元するものであり、ニッケル水素電池に代表される反応である。水素吸蔵合金(M)の水素吸蔵反応は、下式(1)(2)で表わされる。すなわち、気相反応は式(1)で表わされる。電気化学的反応は式(2)で表わされる。
   2/n M + H   ⇔  2/n MH   (1)
   M + HO + e ⇔  MH + OH  (2)
 前者は、水素-酸素燃料電池の高圧水素タンクの代わりに、水素吸蔵合金を利用して低圧化とコンパクト化を図ったものである。最近では車載用燃料電池の水素タンクとして水素吸蔵合金が利用されている。
 水素を燃料とする水素-酸素燃料電池は、1960年ごろに実用化が進められた。酸素タンクと酸素極の代わりに、水酸化ニッケル負極を用いてコンパクト化を図ったのが、高圧型のニッケル水素電池である。高圧型のニッケル水素電池は、ニッケル正極、アルカリ電解液を含浸したセパレータ、水素ガス拡散電極、水素タンクからなる。この水素タンクとして水素吸蔵合金を用いてもよいが、水素タンクと水素極を一体として水素吸蔵合金電極で代替してコンパクト化を図ったのが、後者のニッケル水素電池である。
 アルカリ二次電池には、ニッケル水素電池の他、ニッケル-鉄電池、ニッケル-亜鉛電池、ニッケル-カドミウム電池等がある。しかし、これらのアルカリ二次電池はニッケル水素電池と比較すると、充電効率が低い、体積エネルギー密度が低い、サイクル寿命が短いなどの問題点を有する。そのため、1980年代までは、ニッケル-カドミウム電池が、代表的なアルカリ二次電池であった。現在では、ニッケル水素電池が主流なアルカリ二次電池として位置付けられている。また、ニッケル-カドミウム電池は、負極に用いられるカドミウムが有害で環境負荷が大きいことと、メモリー効果が大きいことなどから、最近ではほとんど使用されていない。
 そして、近年においては、このようなニッケル水素電池は、例えば、情報通信機器、パワーツール、電気自動車、電力貯蔵用に使用されるようになり、さらなる高性能化が求められている。
 電池のサイクル寿命特性を向上させたニッケル水素電池としては、例えば、特許文献1に示されたニッケル水素電池が知られている。このニッケル水素電池は、水素吸蔵合金を含む負極中に撥水性を有するフッ素オイルが含有されている。このフッ素オイルを水素吸蔵合金の表面に部分的に付着させ、水素吸蔵合金とアルカリ電解液との接触を適度に制限する。これにより、充放電を繰り返した際に、前記水素吸蔵合金がアルカリ電解液により酸化されて劣化することを防ぎ、ニッケル水素二次電池のサイクル寿命特性の向上を図っている。
 前記フッ素オイルは、負極の製造工程中において、負極合剤スラリーを製造する際に、水素吸蔵合金粉末、導電剤、バインダ等とともに添加され、このスラリーを混合・混練する工程で水素吸蔵合金の表面に塗布される。
 特許文献2には、Mg-Ni-希土類系水素吸蔵合金を用いた負極にフッ素樹脂を混合させ、この負極にアルカリ電解液が浸透するのを適度に抑制したアルカリ蓄電池が提案されている。これにより、充放電を繰り返した場合に、負極の水素吸蔵合金が微粉化したり、酸化したりするのを抑制して、アルカリ蓄電池のサイクル寿命を向上させる。
 その他にも、特許文献3に示すように、水素吸蔵合金粒子の表面を撥水化させて、水素吸蔵合金粒子表面を固体(合金層)-液体(アルカリ水溶液)-気体(水素ガス)の3相界面状態とすることで、電池のサイクル寿命特性を改善する発明が提案されている。
特開2009-206004号公報 特開2005-190863号公報 特開平02-250260号公報
 しかし、特許文献1に示された方法では、撥水性を付与するフッ素オイルが流動性を有しているため、スラリーの混合・混練の工程で、水素吸蔵合金表面のほとんどの部分が撥水性の被膜で覆われる。また撥水性を必要としない導電剤やバインダも撥水性被膜で覆われる。
 水素吸蔵合金表面の比較的広い範囲が撥水性の被膜により覆われると、電解液由来の水素吸蔵合金の酸化は抑制されるので、負極のサイクル寿命特性は改善される。しかしこの方法では、負極と電解液との接触面積が極端に少なくなるため、電池反応が起こりにくくなり、電池の出力特性および充電効率が顕著に低下する問題が生じる。また、水素吸蔵合金の表面に存在する撥水性被膜は、電子導電性に乏しいため、電池の内部抵抗が上昇して出力特性が悪くなる。
 そこで、出力特性を改善するために、フッ素樹脂やフッ素オイルの添加量を少なくすることも考えられるが、こうした場合、電池のサイクル寿命の改善は期待できなくなる。
 以上のように、従来のニッケル水素電池では、サイクル寿命特性を向上させるために、出力特性を犠牲にしなければならず、逆に、出力特性を向上させるためには、サイクル寿命特性を犠牲にしなければならないトレードオフの関係にあった。
 更に特許文献1~3に示された方法は、負極材料に撥水性を持たせ、サイクル寿命を改善しようと試みたものである。しかし、撥水性を有する負極材料であっても、充放電を繰り返すと、水素吸蔵合金が膨張収縮し、合金の微粉化や電極剥離を防ぐことが困難であるため、根本的な解決がなされているとはいえない。
 水素を活物質とする電池は、負極材料が電解液で濡れているため、電池内部を水素ガス雰囲気下にしても、水素ガスによる充電反応が遅かった。これは、水素ガスが電解液中に溶けにくく、また液体を貫通することも困難であるため、水素ガスによる負極の充電が困難であるためと推察される。
 そこで、本発明者らは、水素を活物質とする電池が放電する際、水素ガスで負極を充電状態に維持することができれば、電解液由来による水素吸蔵合金の酸化、および、充放電に伴う合金の体積変化を緩和できることを見出した。すなわち、
 本発明によれば、電池用負極材料は、水素を貯蔵することが可能な負極材料であり、前記負極材料が、撥水性水素吸蔵合金と、親水性水素吸蔵合金とを含んでいる。当該負極材料は水素を負極活物質としている。
 この構成によれば、負極材料を水素ガスの雰囲気下におくことで、負極材料を含む負極が放電しても水素ガスにより負極の充電状態を維持することが可能となる。この結果、充放電に伴う水素吸蔵合金の体積変化が緩和されて、寿命特性の改善を図ることができる。もっとも負極材料を水素ガス雰囲気下においても、負極材料が電解液で濡れると、電解液により充電反応が阻害される。撥水性水素吸蔵合金は電解液に濡れることがないので充電反応が阻害されることはない。一方親水性水素吸蔵合金の表面は電解液で濡れており、この結果親水性水素吸蔵合金の表面において(2)式で示す電池反応が起こる。すなわち、水素を吸蔵するという反応と、プロトンから電子を奪う反応を速やかに進めることが可能となった。
 この構成において、負極材料は、撥水性水素吸蔵合金と親水性水素吸蔵合金の混合物であってもよい。また、水素吸蔵合金の表面の一部が撥水性を有しており、他の一部が親水性を有していてもよい。
 本発明に係る電池用負極材料は、前記撥水性水素吸蔵合金が、その表面に撥水剤が配置されていることが好ましい。また、本発明に係る電池用負極材料は、前記撥水性水素吸蔵合金が、前記撥水剤で覆われていることがさらに好ましい。更に、本発明に係る電池用負極材料は、前記撥水性水素吸蔵合金100質量%に対して、前記撥水剤が0.1~20質量%の割合であることが好ましい。
 本発明に係る電池用負極材料は、前記撥水剤が、フッ素樹脂を含んでいることが好ましい。
 本発明に係る電池用負極材料は、前記撥水性水素吸蔵合金と、前記親水性水素吸蔵合金との合計を100質量%とした場合に、前記撥水性水素吸蔵合金が、10~90質量%であることが好ましい。親水性水素吸蔵合金と撥水性水素吸蔵合金の混合割合は3:7~7:3がより好ましく、55:65~65:55がさらに好ましい。
 本発明に係る電池用負極材料は、前記負極材料が、撥水性水素吸蔵合金の造粒粒子と親水性水素吸蔵合金の造粒粒子を含んでいることが好ましい。このとき、造粒粒子の平均粒子径はレーザー回折・散乱式粒度分布法による粒径D50で、10~500μmであることが好ましい。撥水性水素吸蔵合金の造粒粒子と親水性水素吸蔵合金の造粒粒子とは結着剤で成形される。
 本発明に係る電池用負極材料は、前記造粒粒子は造粒助剤を含んでおり、前記撥水性水素吸蔵合金と、前記親水性水素吸蔵合金と、前記造粒助剤との合計を100質量%とした場合に、前記造粒助剤が、0.1~20質量%であることが好ましい。
 本発明に係る電池用負極材料は、前記造粒助剤が、EVAを含んでいることが好ましい。
 本発明に係る電池用負極材料は、前記造粒助剤に、導電剤が添加されていて、前記造粒助剤と、前記導電剤の合計を100質量%とした場合に、前記造粒助剤が、30~60質量%であるであることが好ましい。
 本発明に係る電池用負極は前記電池用負極材料用いた電池用負極であってもよく、また、本発明に係る電池は前記負極を用いた電池であってもよい。そして、当該電池の内部に水素ガスが充填されていることが好ましい。電池内部に保持された水素ガスにより負極が再充電される。いわゆる気相反応で水素貯蔵合金に水素が貯蔵され、負極のサイクル寿命を改善する。
 本発明に係る電池用の負極材料の製造方法は、撥水剤が溶解又は分散した溶液中に、水素吸蔵合金粒子を分散した後、溶媒を除去し、前記水素吸蔵合金粒子の表面を前記撥水剤で覆うことにより撥水性水素吸蔵合金を製造する第1工程と、前記撥水性水素吸蔵合金と前記水素吸蔵合金とを混合して造粒する第2工程とを備える。
 本発明にいう電池用負極材料は、「気相反応」と「電気化学的反応」の2つの方法で水素貯蔵することが可能であり、負極材料が、撥水性水素吸蔵合金と、親水性水素吸蔵合金とを含有した、水素を活物質とした電池用の負極材料である。
 本発明の負極材料は、長寿命で高出力特性に優れた水素を活物質とする電池用の負極の提供を可能にする。また、このような負極を用いた電池は、高い電流密度とエネルギー密度を有し、充放電サイクル特性にも優れたものとなる。
水素吸蔵合金に撥水剤が付着した状況を説明する図面である。 水素吸蔵合金に撥水剤が付着した状況を説明する図面である。 水素吸蔵合金に撥水剤が付着した状況を説明する図面である。 水素吸蔵合金に撥水剤が付着した状況を説明する図面である。 複合粒子のイメージ図である。 電池の充放電曲線である。 電池の充電曲線と電池内部の圧力変化を示す試験結果である。 電池の放電特性と電池内部の圧力変化を示す試験結果である。
 以下の実施例により本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<水素吸蔵合金>
 先ず、負極材料の素材となる水素吸蔵合金について説明し、その後に負極材料について説明する。
 負極材料に含まれる水素吸蔵合金は、水素の吸蔵・放出が行えるものであれば特に限定されない。例えば、ランタン、チタン、ジルコニウム、マグネシウムなどの水素を吸蔵しやすい金属Aと、ニッケル、マンガン、鉄、コバルトなどの水素を吸蔵しない金属Bとを組合せて、構成される金属間化合物である。具体的には、希土類系合金であるAB5型、ラーベス相合金であるAB2型、チタン-ジルコニウム系合金であるAB型、マグネシウム系合金であるA2B型などの合金系が挙げられる。また、単体の元素としてパラジウムやバナジウム等があるが、パラジウム単体では貯蔵できる水素量が少なく、かつ高価である。バナジウム単体では、初期活性化が困難なため、チタンやクロムなどを固溶添加した合金であってもよい。
 このうち、水素貯蔵容量、充放電特性、自己放電特性およびサイクル寿命特性の観点から、AB5型の希土類-ニッケル合金である、MmNiCoMnAlのミッシュメタルを含んだ5元系合金であることが好ましい。あるいは、超格子水素吸蔵合金といわれるLaMgNi系であることが好ましい。なお、これら合金は1種又は2種以上を用いてもよい。
 上記の水素吸蔵合金には、充放電特性の向上のために、水素吸蔵合金の表面にエッチング処理を施して、電池反応面積の増大を図ること、および、水素吸蔵合金の表面にめっき処理を施して、電子導電性の向上を図ることが好ましい。
<撥水性水素吸蔵合金>
 撥水性水素吸蔵合金は、撥水性を有する水素吸蔵合金であれば特に限定されない。撥水性水素吸蔵合金は、例えば、水素吸蔵合金と撥水剤とを混合して得ることができる。具体的には、水素吸蔵合金の表面に撥水剤が分散配置されていることが好ましい。図1に撥水剤が水素吸蔵合金の表面に分散配置されている例を模式的に表したものを示す。
 図1Aは、粒子状の撥水剤がアイランド状に付着した水素吸蔵合金の粒子断面である。図1Bは、粒子状の撥水剤が全面に付着した水素吸蔵合金の粒子断面である。図1Cは、フィルム状の撥水剤がアイランド状に付着した水素吸蔵合金の粒子断面である。図1Dは、フィルム状の撥水剤が全面に付着した水素吸蔵合金の粒子断面である。
 図1に示すように、水素吸蔵合金表面に撥水剤を分散配置すれば、水素吸蔵合金に電解液が付着しにくくなり、水素吸蔵合金の表面全体が、気相反応面として機能するようになる。これにより、水素吸蔵合金と水素ガスの接触面積が確保されて、ガス反応による充電速度を向上させることができる。
 なお、スラリーの混合・混練の工程で、撥水剤が水素吸蔵合金から脱落や剥離する可能性があるため、図1Dに示すように、水素吸蔵合金粒子表面を撥水剤で被覆することが好ましい。
(撥水剤)
 水素吸蔵合金と撥水剤との割合は、水素吸蔵合金100質量%に対して、撥水剤が0.1~20質量%の割合であることが好ましい。これは、撥水剤の量が少なすぎると、撥水効果が充分でないため、水素吸蔵合金に電解液が付着し、水素ガスによる充電が困難になる。逆に、撥水剤の量が多すぎると水素吸蔵合金の電子導電性が著しく低下し、電池反応に寄与されにくくなるためである。そのため、より好ましい撥水剤の割合は、0.2~10質量%で、0.5~7質量%がさらに好ましい。
 撥水性水素吸蔵合金は、粒子上の水素吸蔵合金の表面全体が撥水剤で被覆されていることが好ましいが、一部撥水剤で覆われていない部分があってもよい。
 撥水剤は、フッ素系樹脂、シリコン系樹脂、ポリオレフィン系樹脂、パラフィン系ワックス、アスファルトピッチ、金属石鹸、フッ素系オイル、フルオロシリコーンオイル、シリコーンオイル、アルキルシラン、灯油、窒化ホウ素などが使用可能である。撥水剤に求められる特性としては次のものがある。すなわち、スラリーの混合・混練の工程で親水性水素吸蔵合金表面に撥水剤が付着されにくいこと、撥水性を必要としない導電剤やバインダに撥水剤が付着されにくいこと、耐アルカリ性・耐還元性を有すること。これらの観点から、撥水剤としてフッ素樹脂が好ましい。
 フッ素樹脂には、フッ化炭素、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンフルオライド(PVdF)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオエチレン・エチレン共重合体(ECTFE)、ポリパーフルオロブテニノビニルエーテル等が挙げられる。耐摩耗性と耐アルカリ性、耐還元性の観点から、撥水剤はPTFEが好ましい。これらを1種単独又は2種以上を用いてもよい。
 水素吸蔵合金に撥水性を添加する方法としては、例えば、水素吸蔵合金と撥水剤とを含む原料物質を混合し、メカニカルミリング処理を行う方法が挙げられる。原料物質は、水素吸蔵合金からなるA粉末と、撥水剤からなるB粉末とから成る。そして、メカニカルミリング処理とは、衝撃・引張り・摩擦・圧縮・せん断等の外力を原料粉末(A粉末成分及びB粉末)に与える処理であって、転動ミル、振動ミル、遊星ミル、揺動ミル、水平ミル、アトライターミル、ジェットミル、擂潰機、ホモジナイザー、フルイダイザー、ペイントシェイカー、ミキサー等による方法が挙げられる。
 例えば、遊星ミルは、原料粉末とボールとを共に容器に入れ、自転と公転をさせることによって生じる力学的エネルギーにより、原料粉末を粉砕・混合又は固相反応させるものである。この方法によれば、水素吸蔵合金と撥水剤の複合体が得られる。撥水剤は、水素吸蔵合金と比べて硬度が低いものが多いため、水素吸蔵合金よりも撥水剤が粉砕されやすい。そのため、微粒子となった撥水剤粉末が水素吸蔵合金粉末の表面にボールにより圧着して、水素吸蔵合金を撥水剤で被覆することが可能である。
 ただし、撥水剤が水素吸蔵合金よりも少ない場合には、水素吸蔵合金に撥水剤が被覆されにくいため、蒸発法を採用することが好ましい。
 蒸発法とは、撥水剤を溶解又は分散した溶液に水素吸蔵合金の粉末を混合した後、その混合溶液を加熱、減圧等で、蒸発させて、溶媒を除去するとともに、水素吸蔵合金粒子表面に撥水剤を被覆する工程を備える製造方法である。また、取扱いの容易性を鑑みると、溶媒としては工業的に水が最も優れているが、有機溶媒を使用しても差し支えない。加熱、減圧の条件としては、特に制限されないが、それぞれ20~250℃程度、10-7~10-5Pa程度とすればよい。また、水以外の溶媒を使用する場合には、溶媒としては、例えば、メタノール、エタノール、プロパノール、酢酸、酒石酸、アセトン、ベンゼン、トルエン、キシレン、二硫化炭素、四塩化炭素、エーテル等を使用できる。
 なお、撥水剤を被覆する際に、導電剤や結着剤を撥水剤に添加させてもよい。その方法としては、撥水剤が溶解した溶液中に導電剤及び/又は結着剤を分散させておけばよい。撥水剤に導電剤及び/又は結着剤を含ませることで、導電性や膨張収縮による耐久性を上昇させて、電池の高率放電特性を大幅に向上させ、サイクル寿命特性を大幅に向上させることができる。
(導電剤)
 導電剤としては、電子導電性があるものであれば特に限定されない。例えば、カーボン系、ニッケル、銅、クロム、コバルト、ジルコニウム、タングステン、モリブデン、パラジウム、鉄、銀、金、白金、ステンレス鋼、導電性高分子、導電性ガラスなど挙げられるが、このうち、高い電子導電性と耐アルカリ性、耐還元性、材料コストの観点から、カーボン系、ニッケル、銅、クロム、コバルトが好ましい。過放電や過充電により、電解液への溶出がない点から、導電剤はカーボン系であることがさらに好ましい。
 カーボン系には、グラファイト、ソフトカーボン、ハードカーボン、ガラスカーボン、アセチレンブラック(AB)、ファーネスブラック、チャンネルブラック、サーマルブラック、ケッチンブラック(KB)、気相成長炭素繊維(VGCF)、カーボンナノチューブ(CNT)、グラフェン、活性炭、などの材料がある。これらは1種又は2種以上で用いても良い。
 導電剤の添加量としては、導電剤の種類にもよるが、例えば、導電剤がカーボン系材料である場合、水素吸蔵合金を100質量%とした場合、導電材は、0.1~20質量%含有することが好ましく、0.5~5質量%含有することがより好ましい。含有量が0.1~20質量%であれば、充分な導電性改善効果が得られ、高率放電特性を向上させることができる。
(結着剤)
 結着剤としては、フッ素樹脂、スチレン-ブチレンゴム(SBR)、ポリビニルアルコール(PVA)、ポリエチレン(PE)、ポリプロピレン(PP)、スチレン系共重合体、セルロースエステル類等の汎用の材料を用いることができるがこれに限定されるものでない。このうち、フッ素樹脂は、撥水剤としての効果もあるため用いることが好ましいが、この撥水効果により、添加される導電剤を均一に分散させることが困難な場合があるので、界面活性剤を用いてエマルジョン化させることが好ましい。その際に用いる界面活性剤は、サポニン、リン脂質、ペプチド、PEG、アルキル硫酸ナトリウム等が有効で、撥水剤が溶解した溶液全体に対して0.1~3質量%程度を添加すればよい。結着剤のうち、PTFEが最もよい電池特性を示し、サイクル寿命の良好な電池が得られる。撥水剤と結着剤の混合割合は、撥水剤と結着剤の合計質量を100%としたとき、0.5~10質量%が好ましく、1~5質量%がより好ましい。結着剤の混合量を上記範囲内とすることで、電極内抵抗が小さいので高率放電特性を悪化させることなく、サイクル特性を改善することができる。
<親水性水素吸蔵合金>
 水素吸蔵合金は親水性を有しているので、水素吸蔵合金に撥水剤を付着させなければ親水性水素吸蔵合金を得ることができる。もっとも、親水剤を付着させた水素吸蔵合金や親水処理を行った水素吸蔵合金であれば好ましい。
 親水剤には、ポリアミド、アクリル酸、メタクリル酸、ポリビニルアルコール、エチレンビニルアルコール、などの親水基を有する有機材料であってもよく、アルミナ、シリカ、ジルコニア、チタニア、イットリアなどの無機材料であってもよい。これらは1種又は2種以上で用いても良い。水素吸蔵合金の親水処理には、スルホン化処理、カルボキシル化処理、アミド化処理、界面活性剤処理、硫酸処理等が挙げられる。
<負極材料>
 電池用の負極材料は、撥水性水素吸蔵合金と親水性水素吸蔵合金との合計量を100質量%とした場合、撥水性水素吸蔵合金が10~90質量%であることが好ましい。これは、撥水性水素吸蔵合金が、親水性水素吸蔵合金に対して、少なすぎると、撥水効果が充分に得られず、水素ガスによる充電効率が悪くなる。逆に、多すぎると親水性水素吸蔵合金の割合が低下するため、電解液と接触する面積が相対的に低下し、電池反応に寄与する割合が低下する。そのため、撥水性水素吸蔵合金の割合は、20~80質量%であることが好ましく、30~70質量%であることがさらに好ましい。
 負極材料は、上述した撥水性水素吸蔵合金と親水性水素吸蔵合金を混合して用いてもよいが、撥水性水素吸蔵合金と親水性水素吸蔵合金とを造粒した複合粒子であることが好ましい。
(造粒)
 これは、造粒することにより、撥水性と親水性を併せ持つ複合粒子ができるためで、二次粒子1つ1つで、「気相反応」と「電気化学的反応」の両方の充電が可能となり、充電速度が飛躍的に向上し、電池の出力特性と寿命特性が向上する。加えて、粒子間の空間が少なく塗布性に優れるとともに組成均一性に優れた負極材料を得ることができる効果もある。
 造粒粒子は、平均粒子径(レーザー散乱粒度分布測定法による粒径D50)が、10~500μmであることが好ましい。これは、粒子径が小さすぎると、負極材料を基材に塗布する工程でエネルギー密度が低くなる傾向がある。逆に大きすぎると、スラリー塗布の工程で、集電体に負極材料を均一に塗布又は充填できない、もしくは負極材料が集電体から剥離・脱落したりする。そのため、より好ましい造粒粒子の粒径は、50~300μmである。
 造粒された負極材料は、球状の造粒体であることが好ましい。球状の造粒体であることで、粉としての流動性が向上し、混合・混練の工程で負極材料の分散性を改善し、均一性にすぐれる負極材料となりうる。
 負極材料を造粒する場合、水素吸蔵合金の1次粒子の平均粒径は、造粒粒子の粒径にもよるが、0.1~100μmであるのが好ましい。造粒前の1次粒子が、小さすぎると負極材料の比表面積が大きいため酸化されやすい。逆に、大きすぎると造粒体の充填密度と体積容量密度が低くなる。そのため、より好ましい粒径は、0.5~50μmであり、1μm~40μmであるのがさらに好ましい。
 なお、1次粒子の平均粒径は、走査電子顕微鏡(SEM)を使用し、加速電圧20kV、倍率2000~10000倍にて観察し、電子顕微鏡写真の1次粒子像を画像解析ソフト(例えば、OLYMPUS製 analysis FIVE)を用い、50個以上の粒子を計測・算出して求めることができる。
(造粒助剤)
 負極材料は、さらに造粒助剤を含んでいることが好ましい。造粒助剤は、造粒効率を高めるための材料である。例えば、エチレン酢酸ビニル共重合体(EVA)、アクリル系樹脂、イソブチレンと無水マレイン酸との共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリエチレングリコール、ポリビニルピロリデン、ハイドロキシプロピルセルロース、カルボキシルメチルセルロース、コーンスターチ、ゼラチン、リグニンなどが挙げられる。このうち、造粒効率が高く、耐アルカリ性、耐還元性、負極の寿命特性の観点から、EVAが好ましい。
 造粒助剤の添加方法は、粉末状態で添加するよりも、水もしくはアルコール、アセトン、キシレン、トルエン等の有機溶媒に溶解させて噴霧するなどの方法で添加して造粒することが好ましい。造粒助剤の添加量としては、撥水性水素吸蔵合金と、親水性水素吸蔵合金と造粒助剤の合計を100質量%とした場合に、造粒助剤が、0.1~20質量%であることが好ましい。
 造粒助剤には、さらに導電剤を添加することが好ましい。造粒助剤に導電性が付与されれば、造粒体の電子導電性がよくなり、電池の出力特性が向上する。
(導電剤)
 導電剤は、電子導電性があるものであれば特に限定されない。例えば、カーボン系、ニッケル、銅、クロム、コバルト、ジルコニウム、タングステン、モリブデン、パラジウム、鉄、銀、金、白金、ステンレス鋼、導電性高分子、導電性ガラスなどが挙げられるが、このうち、高い電子導電性と耐アルカリ性、耐還元性、材料コストの観点から、カーボン系、ニッケル、銅、クロム、コバルトが好ましい。過放電や過充電により、電解液への溶出がない点から、導電剤はカーボン系であることがさらに好ましい。
 カーボン系には、グラファイト、ソフトカーボン、ハードカーボン、ガラスカーボン、アセチレンブラック(AB)、カーボンブラック(CB)、ファーネスブラック、チャンネルブラック、サーマルブラック、ケッチンブラック(KB)、気相成長炭素繊維(VGCF)、カーボンナノチューブ(CNT)、グラフェン、活性炭、などの材料がある。これらは1種又は2種以上で用いても良い。
 導電剤の添加量としては、導電剤の種類にもよるが、例えば、導電剤がカーボン系材料である場合、造粒助剤と、導電剤の合計を100質量%とした際に、導電材が、40~70質量%であることが好ましい。導電剤が少なすぎると、造粒体の電子導電性の付与が充分でない。逆に多すぎると、造粒助剤の効果を充分に引き出せない。
(造粒法)
 造粒は、造粒体を得ることができれば、特に限定されない。例えば、スプレードライ法、転動造粒法、凝集粉砕法などにより造粒体を得てもよい。撥水性水素吸蔵合金の造粒体と、親水性水素吸蔵合金の造粒体からなる複合粒子のイメージを図2に示す。すなわち、ほぼ同量の撥水性水素吸蔵合金3と親水性水素吸蔵合金4とに、導電剤6を添加した造粒助剤5を含有させて造粒して、複合粒子7を構成する。
 スプレードライ法とは、撥水性水素吸蔵合金と、親水性水素吸蔵合金と、必要に応じて添加される造粒助剤と、導電剤が分散した溶液とから成る原液をドライヤー本体内のノズルまたは高速回転円盤で微粒化して、単位体積あたりの表面積を増加させて、連続的に熱風に接触させて、瞬間的に乾燥させて二次粒子である複合粒子を得る方法である。
<電極(負極)>
 以上のように作製した負極材料を用いて電池を構成することができる。
 負極は、例えば、上記の負極材料の他に、必要に応じて導電性を付与するための導電剤、結着性を付与するためのバインダを添加してもよい。撥水性水素吸蔵合金中に導電剤等を添加する方法として、水素吸蔵合金と導電剤とを溶媒中に分散混合してスラリー状の負極材料含有組成物とし、この組成物を集電体表面に塗布又は充填し、乾燥後に、プレスすることで集電体表面に負極材料含有層を形成する。このとき溶媒として、N-メチル-2-ピロリドン(NMP)、水、アルコール、キシレン、トルエン等が使用可能である。導電剤としては、通常用いられるもの、例えば、上記負極材料、導電剤及び結着剤等を含む混合物に、適当な溶剤を加えて充分に混練して得られるペースト状もしくはスラリー状の負極合剤を、集電体表面に塗布して乾燥することで、所望の厚みと密度に制御しつつ形成することができる。このような負極を用いて、他の電池要素である正極、セパレーターおよび電解液等と組み合わせて、通常用いられる方法に従って、角型、円筒型、コイン型、ボタン型等の電池を組み立てる。
 結着剤は、通常用いられているもの、例えば、EVA、アクリル系樹脂、イソブチレンと無水マレイン酸との共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリエチレングリコール、ポリビニルピロリデン、ハイドロキシプロピルセルロース、スチレンブタジエンゴム(SBR)、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、ポリイミド(PI)、ポリテトラフルオロエチレン(PTFE)、ポリアミド、ポリアミドイミド、ポリフッ化ビニリデン(PVdF)、アルギン酸ナトリウム、カルボキシルメチルセルロース、ポリエチレン(PE)、ポリプロピレン(PP)などが挙げられ、1種単独で用いてもよく、2種以上を併用してもよい。このうち、結着力が強く、耐アルカリ性、耐還元性、負極の寿命特性の観点から、EVA又は、SBRが好ましい。
 負極合剤に添加する導電剤としては、炭素材料を含む。炭素材料の種類、構造は特に限定されない。例えば、グラファイト、ソフトカーボン、ハードカーボン、ガラスカーボン、アセチレンブラック(AB)、ファーネスブラック、チャンネルブラック、サーマルブラック、ケッチンブラック(KB)、気相成長炭素繊維(VGCF)、カーボンナノチューブ(CNT)、グラフェン、活性炭、等の炭素材料を、1種単独で用いてもよいし、または2種以上を併用してもよい。より好ましくは、複合粉末中に導電性の3次元網目構造を形成できるものが好ましい。導電性の3次元網目構造が形成されていれば、水素を活物質とする二次電池用負極材料として充分な集電効果が得られるとともに、水素吸蔵時の電極、特に合金成分の体積膨張を効果的に抑制できる。
 負極材料、導電剤と結着剤の合計を100質量%とした場合、負極材料が50~99質量%、導電剤量が0.5~40質量%、結着剤量が0.5~20質量%であることが好ましい。
(集電体)
 集電体は、電子導電性を有し、保持した負極材料に通電しうる材料であれば特に限定されない。例えば、カーボン、チタン、クロム、ニッケル、銅、モリブデン、ルテニウム、ロジウム、タンタル、タングステン、オスミウム、イリジウム、白金、金等の金属が挙げられる。またこれら金属を2種類以上を含有する合金、例えば、ステンレス鋼、アンビロイ鋼、ハステロイ鋼や炭素被覆されたステンレス鋼等を使用することができる。
 集電体は、耐アルカリ性と耐還元性をもつ金属又は合金材料で構成されていることが好ましい。
 その他、耐アルカリ性と耐還元性を有さない金属又は合金材料の表面に耐アルカリ性と耐還元性をもつ金属又は合金材料を被覆した金属又は合金材料であっても構わない。例えば、鋼にニッケルを被覆したような2層以上の金属からなるものであってもよい。
 電子導電性が高く、耐アルカリ性、耐還元性の観点から、集電体としてはカーボン、チタン、クロム、ニッケル、銅、金、ステンレス鋼、鋼にニッケルを被覆したもの等が好ましく、さらに材料コストの観点からカーボン、ニッケル、銅、ステンレス鋼、鋼にニッケルを被覆したもの等が好ましい。集電体の形状には線状、棒状、板状、箔状、網状、織布、不織布、エキスパンド、多孔体又は発泡体があり、このうち充填密度を高めることができること、出力特性が良好なことからエキスパンド、多孔体又は発泡体が好ましい。
 このように作製した負極材料は、集電体上に被着形成することで、電池用の負極として良好に機能させることができる。
 被着形成するとは、集電体と本発明の負極材料とを接触させた状態で固定することである。すなわち、集電体に負極材料を充填すること、集電体である金属網等に負極材料を固定すること等が該当する。被着方法としては特に限定されないが、例えば、圧着法、スラリー法、ペースト法、電気泳動法、ディッピング法、スピンコート法、エアロゾルデポジション法等があげられる。なかでも、発泡状ニッケルのような金属発泡体を集電体として用いる場合は、充填密度、電極製造速度等の観点から、スラリー法又はペースト法が好ましい。
<電池>
(対極)
 このような負極を用いて二次電池とする場合、その対極としては、水酸化ニッケル正極、水酸化マンガン正極、二酸化マンガン正極等の既存のものが用いることができる。一方、燃料電池や空気電池等として用いる場合は、空気正極、酸素正極を対極として用いることができる。
(セパレータ)
 セパレータとしては、公知の水素を活物質とする電池に用いられるものが使用できる。セパレータの形状としては、微多孔膜、織布、不織布、圧粉体が挙げられ、このうち、出力特性と製造コストの観点から不織布が好ましい。セパレータの材質としては、特に限定されないが、耐アルカリ性を有し、耐酸化性、耐還元性を有するセパレータであることが好ましい。例えば、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)、ポリアミド、ポリアミドイミド、アラミド、ポリエチレン、ポリプロピレン等の材料が挙げられる。また、これらのセパレータにセラミックスを被覆し、耐熱性、親液性、ガス透過性などを向上させたセパレータであってもよい。
(電解液)
 電解液は、水素を活物質とする電池で用いられるものであれば特に限定されないが、例えば、水酸化カリウム(KOH)、水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)などの塩を水に溶かしたものが好適である。電池の出力特性の観点から、電解液は水酸化カリウム水溶液であることが好ましい。
 また、電解質は、上述した水溶媒の他、非水溶媒、固体電解質、ゲル電解質やイオン性液体等であっても構わない。
 負極と正極をセパレータを介して重ね合わせて電池容器に収納して、密閉して電池を組立てる。電池の組立完了後に真空引きして、電池内部の空気を排除する。次に、負極、正極、セパレータを収納後の電池内の空間の20~50%に相当する量の電解液を電池内部に供給する。電池を製作する際に、電池内部に水素ガスを封入してもよい。例えば、電池の外部に設置した水素ガスボンベを電池に接続して、電解液を供給後の電池に、水素ガスを圧送してもよい。圧送された水素ガスは、負極に存在する空隙や、負極とセパレータの間に充満して、水素吸蔵合金に接触する。水素吸蔵合金は外部から供給された水素ガスにより充電されることとなる。いわゆる気相反応による水素ガスの貯蔵である。本発明の負極材料は、効率的に水素ガスにより充電されることが可能となり、電池寿命の向上を図ることができる。
 電池に外部電源を接続して、電極に電流を供給すれば、負極を充電することができる。電気化学的反応で負極に水素を貯蔵することが可能である。
<電池の製作と試験結果>
 試験に用いた電池の製作と試験結果について説明する。
(撥水性水素吸蔵合金の作製)
 表1に示す配合比となるように、水素吸蔵合金粒子(MmNiCoMnAl系合金、平均粒径D50:35μm)表面を撥水剤で被覆した。撥水剤の被覆は、各撥水剤を分散した溶液を作製し、水素吸蔵合金を加えて混合後、その混合溶液を50℃で加熱し、溶媒を除去することで得た。
Figure JPOXMLDOC01-appb-T000001
(親水性水素吸蔵合金の作製)
 表2に示す配合比となるよう水素吸蔵合金(MmNiCoMnAl系合金、平均粒径D50:35μm)と親水剤とを、乳鉢を用いて混合後、乾燥し親水性水素吸蔵合金を作製した。
Figure JPOXMLDOC01-appb-T000002
(負極材料の作製)
 撥水性水素吸蔵合金(撥水MH)と親水性水素吸蔵合金(親水MH)とを混合し、負極材料とした。表3に作製した負極材料の要目表を示す。なお造粒は、造粒助剤に倍量のキシレン(100℃)と導電剤とを加え、振動を与えながら混合を行ったものを用いた。すなわち、表3に示す造粒体組成となるよう負極材料、導電剤および造粒助剤を調合し、乳鉢で混合しながら乾燥・粉砕を行った。次に、得られた粉砕物を、ふるいを用いて50~75μmの造粒粒子を取り出し、これを負極材料として用いた。また、比較として、撥水水素吸蔵合金のみを負極材料として用いた負極を比較例1、親水水素吸蔵合金のみを負極材料として用いた負極を比較例2とした。
Figure JPOXMLDOC01-appb-T000003
(負極の作製)
 実施例1~15、比較例1、比較例2の各負極材料を、厚さ800μmの発泡ニッケル基材に塗布し、加圧プレス機を用いて200μmになるまで調圧し、造粒粒子を発泡ニッケル基材に被着形成して、負極を得た。
(電池の作製)
 対極は、水酸化ニッケルにカルボキシメチルセルロースを増粘剤として添加したスラリーを、発泡ニッケル基材に充填して水酸化ニッケル正極を用いた。電解液としては、30質量%の水酸化カリウム水溶液を用い、セパレータとしては、親水処理した厚さ150μmのポリプロピレン不織布を用いて、捲回体を作製した。この捲回体を耐圧容器に入れ、水素ガスを0.4MPaになるまで封入し、電池を作製した。なお、作製した電池は、0.1C率で、SOC105%、となるよう3サイクル充放電を行って活性化処理した。
(試験結果)
 実施例1~15、比較例1、比較例2の電池のサイクル寿命特性を表4にまとめた。充放電試験条件としては、環境温度25℃、SOC100%、放電カットオフ電位0.8V、充放電電流レート1C率とした。ここに、容量維持率とは電池容量に対するその時点における電池の電気量の百分比である。
Figure JPOXMLDOC01-appb-T000004
 撥水剤の被覆量が異なる各撥水性水素吸蔵合金(撥水MH1~5)を用いた実施例1,4,7,8のうち、実施例1、4は、実施例7よりも容量維持率が高い値を示し、実施例8よりも高い容量維持率値を示した。
 撥水剤の種類が異なる撥水性水素吸蔵合金(撥水MH2,6,7,8)を用いた実施例4,10,11,12のうち、フッ素系樹脂を用いた実施例4、10、11は、シリコン系樹脂(シリコン)を用いた実施例12よりも高い容量維持率を示した。なかでも、撥水剤としてPTFEを用いた実施例4が高い容量維持率を示した。
 撥水性水素吸蔵合金と親水性水素吸蔵合金の配合比が異なる実施例2,3,4,5,6のうち、撥水性水素吸蔵合金と親水性水素吸蔵合金との質量比が、30:70~70:30である実施例3,4,5は、質量比10:90の実施例2よりも高い容量維持率を示し、質量比90:10の実施例6よりも高い容量維持率を示した。
 PVAを被覆した親水性水素吸蔵合金(親水性MH2)を用いた実施例13は、何も被覆していない水素吸蔵合金(親水性MH1)を用いた実施例4と比較して、高い容量維持率を示した。
 導電剤にVGCFを用いた実施例14は、CBを用いた実施例4よりも高い容量維持率を示した。
 造粒助剤にEVAを用いた実施例4は、造粒助剤にPVdFを用いた実施例15よりも、高い容量維持率を示した。
 一例として、実施例1~15のうち、最も電池特性が良好であった実施例14の10サイクル目の充放電曲線を図3に示す。図中1で示す曲線が充電特性であり、2で示す曲線が放電特性である。縦軸が電池電圧であり、横軸が電池容量である。図3から、放電電圧が高いので、エネルギー効率がよいが分かる。また、電池容量に対するプラトー領域が広いのが特徴であり、この領域で電圧の低下が小さいことが分かる。つまり、90%の放電容量において、1.3Vに放電プラトーを有している
 電池の充放電試験時における電池の内部圧力の測定結果を図4および図5に示す。用いた電池は、負極材料100%に対して、導電剤が3%、造粒助剤が3%である点を除いて、実施例5と同じ組成である。負極容量41mAhに対して正極容量228mAhである。封入水素ガス圧力は0.8MPaである。図4は充電時の試験結果であり、図5は放電時の試験結果である。いずれも上側のグラフが電池の内部圧力であり、下側が電池の電位である。また図中の数字は充放電レートを示す。図4は、充電が進むにつれて電池内部の水素ガス圧力が上昇していることを示している。これは充電により負極から水素ガスが発生しているためである。図5は、放電が進むにつれて電池内部の水素ガス圧力が減少していることを示している。これは放電時に電池内部の水素ガスが負極に取り込まれ、その結果水素ガス圧力が減少しているためである。
<本実施例の効果>
 上記の試験結果から、下記の知見を得ることができた。
 (1)撥水性水素吸蔵合金だけでは、容量維持率が低く、また親水性水素吸蔵合金だけでは、容量維持率が低い。撥水性水素吸蔵合金と親水性水素吸蔵合金とを用いることで、電池容量と容量維持率の両者を改善することができる。
 (2)撥水剤をPTFEとし、被覆量を0.1質量%以上20質量%以下の範囲内にすることで、電池容量と容量維持率を向上させることができる。
(3)撥水性水素吸蔵合金に用いられる撥水剤は、フッ素系樹脂を用いることで容量維持率が向上させることができる。なかでも、PTFEが高い容量維持率を示す。
(4)撥水性水素吸蔵合金と親水性水素吸蔵合金の配合比は、撥水性水素吸蔵合金が10質量%以上90質量%以下、親水性水素吸蔵合金の配合比が90質量%以下10質量%以上の範囲内にすることで、容量維持率を向上させることができる。中でも、撥水性水素吸蔵合金と親水性水素吸蔵合金の配合比が.30:70~70:30であるものが高い容量維持率を示す。
 (5)親水性水素吸蔵合金は、何も被覆していないものよりも、親水剤(PVA)を被覆することで高い電池容量を示す。
 (6)造粒助剤は、EVAを用いることで容量維持率が向上させることができる。
 (7)撥水剤にPTFEを用いた電池は、すぐれた寿命特性を有する。
 以上に述べた負極を具備した水素を活物質とする電池は、長寿命でかつ高容量であることから、電気を使用する乗り物を含む様々な電気機器の電源として利用することができる。
1 水素吸蔵合金
2 撥水剤
3 撥水性水素吸蔵合金
4 親水性水素吸蔵合金
5 造粒助剤
6 導電剤
7 複合粒子
 

Claims (11)

  1. 水素を貯蔵することが可能な負極材料であり、
    前記負極材料が、撥水性水素吸蔵合金と、親水性水素吸蔵合金とを含んでいる、
    電池用負極材料。
  2. 前記撥水性水素吸蔵合金が、その表面に撥水剤が配置されている、請求項1に記載の電池用負極材料。
  3. 前記撥水剤が、フッ素樹脂を含んでいる、請求項2に記載の電池用負極材料。
  4.  前記負極材料が、撥水性水素吸蔵合金の造粒粒子と親水性水素吸蔵合金の造粒粒子を含んでいる、請求項1に記載の電池用負極材料。
  5. 前記造粒粒子は造粒助剤を含んでおり、
    前記撥水性水素吸蔵合金と、前記親水性水素吸蔵合金と、前記造粒助剤との合計を100質量%とした場合に、前記造粒助剤が、0.1~20質量%である、請求項4に記載の電池用負極材料。
  6. 前記造粒助剤が、EVAを含んでいる、請求項5に記載の電池用負極材料。
  7. 前記造粒助剤に、導電剤が添加されていて、
    前記造粒助剤と、前記導電剤の合計を100質量%とした場合に、前記造粒助剤が、30~60質量%である、請求項5または6のいずれか一項に記載の電池用負極材料。
  8. 請求項1~7のいずれか一項に記載の電池用の負極材料用いた電池用負極。
  9. 請求項8に記載の電池用負極を用いた電池。
  10. 電池内部に水素ガスが充填されていることを特徴とする、請求項9に記載の電池。
  11. 撥水剤が溶解又は分散した溶液中に、水素吸蔵合金粒子を分散した後、溶媒を除去し、前記水素吸蔵合金粒子の表面を前記撥水剤で覆うことにより撥水性水素吸蔵合金を製造する第1工程と、
    前記撥水性水素吸蔵合金と前記水素吸蔵合金とを混合して造粒する第2工程とを備える、電池用負極材料の製造方法。
PCT/JP2013/070399 2013-07-27 2013-07-27 電池用負極材料、電池用負極および電池 WO2015015540A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/070399 WO2015015540A1 (ja) 2013-07-27 2013-07-27 電池用負極材料、電池用負極および電池
JP2015522810A JP5875095B2 (ja) 2013-07-27 2013-07-27 電池用負極材料、電池用負極および電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070399 WO2015015540A1 (ja) 2013-07-27 2013-07-27 電池用負極材料、電池用負極および電池

Publications (1)

Publication Number Publication Date
WO2015015540A1 true WO2015015540A1 (ja) 2015-02-05

Family

ID=52431122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070399 WO2015015540A1 (ja) 2013-07-27 2013-07-27 電池用負極材料、電池用負極および電池

Country Status (2)

Country Link
JP (1) JP5875095B2 (ja)
WO (1) WO2015015540A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151646A (zh) * 2017-05-18 2017-09-12 西安交通大学 一种基于发电细胞的活性生物电池构建方法
CN109768225A (zh) * 2017-11-10 2019-05-17 Fdk株式会社 镍氢二次电池用的负极以及包含该负极的镍氢二次电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089188B2 (ja) * 2015-04-24 2017-03-08 エクセルギー・パワー・システムズ株式会社 第3電極を備えた水素製造装置および水素製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237626A (ja) * 1996-02-29 1997-09-09 Toyota Autom Loom Works Ltd 水素吸蔵合金電極及びその製造方法
JPH10255775A (ja) * 1997-03-11 1998-09-25 Sanyo Electric Co Ltd 水素吸蔵合金電極及びその作製方法
JP2012134110A (ja) * 2010-12-24 2012-07-12 Fdk Twicell Co Ltd アルカリ二次電池用の負極及びこの負極を用いたアルカリ二次電池
JP2013020955A (ja) * 2011-06-15 2013-01-31 Univ Of Tokyo リバーシブル燃料電池
JP2013093146A (ja) * 2011-10-25 2013-05-16 Univ Of Tokyo 燃料電池正極およびこれを用いた燃料電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008519B2 (ja) * 1991-03-14 2000-02-14 松下電器産業株式会社 水素吸蔵電極とその製造方法およびそれを用いた酸化金属−水素蓄電池
JP3260972B2 (ja) * 1993-06-30 2002-02-25 松下電器産業株式会社 水素吸蔵合金電極および同電極を用いた密閉型ニッケル−水素蓄電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237626A (ja) * 1996-02-29 1997-09-09 Toyota Autom Loom Works Ltd 水素吸蔵合金電極及びその製造方法
JPH10255775A (ja) * 1997-03-11 1998-09-25 Sanyo Electric Co Ltd 水素吸蔵合金電極及びその作製方法
JP2012134110A (ja) * 2010-12-24 2012-07-12 Fdk Twicell Co Ltd アルカリ二次電池用の負極及びこの負極を用いたアルカリ二次電池
JP2013020955A (ja) * 2011-06-15 2013-01-31 Univ Of Tokyo リバーシブル燃料電池
JP2013093146A (ja) * 2011-10-25 2013-05-16 Univ Of Tokyo 燃料電池正極およびこれを用いた燃料電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151646A (zh) * 2017-05-18 2017-09-12 西安交通大学 一种基于发电细胞的活性生物电池构建方法
CN107151646B (zh) * 2017-05-18 2021-07-09 西安交通大学 一种基于发电细胞的活性生物电池构建方法
CN109768225A (zh) * 2017-11-10 2019-05-17 Fdk株式会社 镍氢二次电池用的负极以及包含该负极的镍氢二次电池
CN109768225B (zh) * 2017-11-10 2022-09-20 Fdk株式会社 镍氢二次电池用的负极以及包含该负极的镍氢二次电池

Also Published As

Publication number Publication date
JPWO2015015540A1 (ja) 2017-03-02
JP5875095B2 (ja) 2016-03-02

Similar Documents

Publication Publication Date Title
Guo et al. Nanostructured materials for electrochemical energy conversion and storage devices
JP5927372B2 (ja) アルカリ二次電池およびアルカリ二次電池の製造方法
JP2004185810A (ja) リチウム二次電池用の電極材料、該電極材料を有する電極構造体、該電極構造体を有する二次電池、前記電極材料の製造方法、前記電極構造体の製造方法、及び前記二次電池の製造方法
JP2017528868A (ja) 二次電池用シリコン系活物質粒子の製造方法、及びシリコン系活物質粒子
CN1542997A (zh) 电极材料、具有该材料的构造体和具有该构造体的二次电池
JP2006216277A (ja) リチウム二次電池用電極材料の製造方法、電極構造体および二次電池
JP2011048992A (ja) 炭素材料、電極材料及びリチウムイオン二次電池負極材料
JP5448555B2 (ja) リチウムイオン二次電池用負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極作製用のスラリー、リチウムイオン二次電池用負極の製造方法
US10347902B2 (en) Fabricating method of lithium electrode and lithium secondary battery including the same
JP6056936B2 (ja) 水素製造装置および水素製造方法
JP5087842B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法
CA3155336A1 (en) Composite graphene energy storage methods, devices, and systems
JP5875095B2 (ja) 電池用負極材料、電池用負極および電池
US9088048B2 (en) Silicon whisker and carbon nanofiber composite anode
JP5487384B2 (ja) ファイバー電池用合金負極
CN108666532B (zh) 锂离子电池阳极的制备方法
JPH0969362A (ja) 二次電池及び二次電池を用いた電源
JP2009272091A (ja) ニッケル水素蓄電池
JP4524998B2 (ja) ニッケル−水素蓄電池
CN113964318A (zh) 二次电池用多层电极
JP7223999B2 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
WO2020125442A1 (zh) 铝碳复合材料及其制备方法、负极、二次电池和用电设备
JP5532389B2 (ja) 水素吸蔵合金及びニッケル水素蓄電池
Pan et al. Performance evaluation of carbon/PrBaCo2O5+ δ composite electrodes for Li–O2 batteries
JP2010050011A (ja) ニッケル水素蓄電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522810

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890485

Country of ref document: EP

Kind code of ref document: A1