WO2015013836A1 - 一种稀土永磁体生产工艺及设备 - Google Patents

一种稀土永磁体生产工艺及设备 Download PDF

Info

Publication number
WO2015013836A1
WO2015013836A1 PCT/CN2013/000901 CN2013000901W WO2015013836A1 WO 2015013836 A1 WO2015013836 A1 WO 2015013836A1 CN 2013000901 W CN2013000901 W CN 2013000901W WO 2015013836 A1 WO2015013836 A1 WO 2015013836A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
grinding chamber
gas
outlet
rare earth
Prior art date
Application number
PCT/CN2013/000901
Other languages
English (en)
French (fr)
Inventor
蔡报贵
毛华云
金小平
李为
周铁夫
刘鸿钢
Original Assignee
江西金力永磁科技有限公司
吉林市凯尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西金力永磁科技有限公司, 吉林市凯尔科技有限公司 filed Critical 江西金力永磁科技有限公司
Priority to PCT/CN2013/000901 priority Critical patent/WO2015013836A1/zh
Publication of WO2015013836A1 publication Critical patent/WO2015013836A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • B22F2009/047Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling by rolling

Definitions

  • the invention relates to a production process and a production device for a rare earth permanent magnet alloy.
  • the sintered magnet of the rare earth alloy is produced by pressing a magnetic alloy powder of a pulverized rare earth alloy, followed by a sintering process and an aging process.
  • rare earth alloy sintered magnets two types of samarium-cobalt-based magnets and neodymium-iron-boron-based magnets are widely used in various fields.
  • a neodymium iron boron-based magnet (hereinafter referred to as an R-TB-based magnet, R is a rare earth element including Y, T is iron, or a transition metal replacing a part of iron and iron, and B is boron.) It shows the highest magnetic energy product, and the price is relatively cheap, so it is actively used in various electronic devices.
  • the transition metal included in T for example, Co can be used.
  • a part of boron may also be substituted with carbon.
  • the rare earth alloy sintered magnet blanks are mainly produced by smelting, hydrogen crushing, milling, stirring, forming and sintering processes.
  • the main equipment of the milling process is airflow grinding.
  • the principle is to use airflow to accelerate the powder particles to supersonic speed so that they collide with each other and break.
  • the pressure 0. 6-0.
  • 7MPa of protective gas nitrogen, inert gas
  • nitrogen, inert gas is injected into the collision comminution zone through the nozzle to fluidize the material, and under the action of supersonic flow, the material is produced at the intersection of the nozzles. Collision, thereby breaking the powder particles.
  • the crushed particles are sorted by the ascending airflow through the sorting wheel, and the powder is sorted to a predetermined size Dc (the powder diameters mentioned in the present invention are all equivalent diameters measured by laser interference; Dc is usable).
  • the critical size of the powder particles sorted by the selection wheel is generally 13 microns; Do is the critical size of the powder particles sorted by the cyclone separator, generally 1 micrometer), and the particles larger than the specified size Dc cannot pass, return to the collision crushing zone, and continue to pulverize.
  • particles smaller than the predetermined size Dc are separated by a transfer line cyclone, and the powder smaller than the size Do is separated.
  • the volume fraction of the particles having a size of 1 to 7 ⁇ m is more than 70%, and the mass fraction of the particles having a size of less than 1 ⁇ m is less than 4% by mass.
  • the volume fraction of the particles having a size of less than 1 ⁇ m is more than 23%.
  • the powder that is fed into the feed port for processing is called coarse powder
  • the powder obtained from the powder outlet for subsequent production is called fine powder
  • the powder obtained from the ultrafine powder outlet is called ultrafine powder.
  • Fine powders are generally not used for production.
  • the traditional airflow mill structure is shown in Figure 1. It consists of a gas compressor, a grinding chamber, a cyclone separator, and a filter. The four parts are connected by pipes, which transport both gas and powder.
  • the working process is as follows: The coarse powder enters the grinding chamber uniformly through the feeding device, and the compressed gas supplied by the gas compressor reaches the grinding chamber through the pipeline, and passes through the supersonic nozzle to become a supersonic airflow, which drives the coarse powder to collide with each other. The coarse powder is crushed.
  • the diameter of the crushed powder When the diameter of the crushed powder is less than Dc, it is transported together with the gas stream through a sorting wheel to a cyclone. In the cyclone, the powder with the required diameter is discharged from the powder outlet as a production. Using a powder having a diameter smaller than Do, it continues to be piped to the filter together with the gas stream, the gas stream is filtered back to the compressor, and the powder having a diameter smaller than Do flows out of the ultrafine powder outlet. Since the chemical properties of the rare earth alloy are relatively active, the fine powder and the ultrafine powder obtained by the air mill grinding powder are extremely easily oxidized or burned, so the powder must be solved in the milling process. Explain the problem of oxidation at the end of the book.
  • the magnetic properties of rare earth alloy sintered permanent magnets are sensitive to the material structure, if the fine powder has a size less than 1 micron, the coarse grains will be formed and the magnetic properties will be lowered.
  • the present invention aims to provide a novel rare earth permanent magnet production apparatus to reduce the output of ultrafine powder.
  • the solution of the invention is:
  • a rare earth permanent magnet production device is composed of a gas compressor, a grinding chamber and a separation and filtering device.
  • the gas outlet of the gas compressor is connected with a plurality of nozzles of the grinding chamber through a pipeline, and the outlet of the grinding chamber is connected to the separation and filtering device through the pipeline, and is separated.
  • a gas outlet of the filtering device is connected to the gas compressor inlet through a pipe;
  • the upper part of the grinding chamber is provided with a feeding port, and a plurality of nozzles are arranged at the bottom and the periphery, and the outlet direction of the nozzle intersects in the grinding chamber; the upper part of the grinding chamber is provided with a sorting wheel, and the sorting wheel is evenly distributed with a strip in the circumferential direction.
  • the circular shape of the grid, the sorting wheel is closed at one end and connected to the motor, and the other end is open and communicates with the air outlet of the grinding chamber, and the sorting wheel is used for filtering powder or particles having a diameter larger than Dc;
  • the separation and filtering device is directly connected by a filter and a cyclone separator, the cyclone separator is arranged at the bottom, the upper part is connected with the gas outlet of the grinding chamber, and the bottom is a powder outlet; the filter is vertically arranged above the cyclone, the bottom
  • the gas inlet is connected to the cyclone separator, the top gas outlet is connected to the gas compressor inlet through the pipeline, and the separation filter is used for separating the gas.
  • Powder particles in the body is 190-250 mm
  • the length of the grid is 120-140 mm
  • 55-57 grids are evenly distributed in the circumferential direction.
  • the nozzles have a total of four, one is disposed at the bottom and three are disposed on the wall of the grinding chamber and symmetrically distributed on the same plane.
  • the present invention also provides a process for producing a rare earth permanent magnet, comprising the steps of: adding a rare earth permanent magnet powder into a grinding chamber through a feed port; starting a gas compressor, compressing a gas book
  • the body reaches the grinding chamber through the pipeline, and passes through the nozzle to become a supersonic airflow, which drives the powder to collide with each other to break the powder; the sorting wheel rotates under the motor to realize the sorting of the powder; the crushed powder has a diameter smaller than Dc. , together with the air flow through the sorting wheel, and then through the pipeline to the cyclone separator, in the cyclone separator, the powder with a diameter larger than Do falls directly into the powder outlet, and the powder directly smaller than Do rotates along the separator.
  • the sorting wheel has a rotational speed of 3000-4500 rpm.
  • the oxygen volume content is not more than 1%.
  • DRAWINGS BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view of the structure of a conventional airflow mill.
  • FIG. 2 is a schematic structural view of a production apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a grinding chamber according to an embodiment of the present invention.
  • FIG. 4 is a half cross-sectional side view of the sorting wheel of the embodiment of the present invention.
  • FIG. 5 is a schematic front, cross-sectional view showing the sorting wheel of the embodiment of the present invention.
  • the rare earth permanent magnet production device is composed of a gas compressor 1, a grinding chamber 2 and a separation filter device 3.
  • the gas outlet of the gas compressor communicates with the plurality of nozzles 22 of the grinding chamber through a pipe, and the gas outlet of the grinding chamber is connected to the separation filter device through a pipe.
  • a gas outlet of the separation filter device is connected to the gas compressor inlet through a pipe;
  • the upper part of the grinding chamber is provided with a feeding port 21, and the nozzles 22 have four in total, one is arranged at the bottom, three are arranged on the wall of the grinding chamber, and are symmetrically distributed on the same plane, and the outlet directions of the four nozzles are in the grinding chamber. Intersect; the upper part of the grinding chamber is provided with a sorting wheel 23.
  • an improved sorting wheel is required, and the sorting wheel is uniformly uniform in the circumferential direction.
  • a circular strip with a strip-shaped grid is distributed, and the sorting wheel is closed at one end and connected to and driven by the motor 24, and the other end is open and communicates with the air outlet of the grinding chamber, wherein the outer diameter of the circular shape is 190-250 let, the grid
  • the length is O-hide, and 55-57 grids are evenly distributed in the circumferential direction. It is installed above the airflow grinding chamber at a speed of 3000-4500 rpm.
  • the separation and filtering device is directly connected by a filter 31 and a cyclone separator 32.
  • the cyclone separator is disposed at the bottom, the upper portion thereof communicates with the gas outlet of the grinding chamber, and the bottom is a powder outlet 33; the filter is vertically disposed in the cyclone separator Above, the bottom gas inlet is in communication with the cyclone, and the top gas outlet is in communication with the gas compressor inlet through the conduit.
  • the production process of the device comprises the steps of: adding a rare earth permanent magnet powder into the grinding chamber through the feeding port; starting the gas compressor, the compressed gas reaches the grinding chamber through the pipeline, and passes through the nozzle to become a supersonic gas stream, causing the powder to collide with each other. Breaking the powder; sorting the book
  • the crushed powder which is smaller than Dc
  • the sorting wheel passes through the sorting wheel together with the airflow, and is then piped to the cyclone.
  • the diameter is larger than Do.
  • the powder falls directly into the powder outlet, and the powder directly smaller than Do rises into the filter with the spiraling airflow along the separator wall, and is blocked by the filter, and falls back to the center of the cyclone by gravity, through the cyclone
  • the powder outlet at the bottom of the separator flows out; the filtered gas stream enters the gas compressor inlet through the pipe.
  • the powder having a diameter smaller than Dc, including the ultrafine powder smaller than Do, is filtered at the separation filter device, unified It flows out from the powder outlet at the bottom.
  • the main component of the supersonic gas stream used in the grinding chamber is nitrogen or an inert gas, wherein the volume content of oxygen is not more than 1%.
  • the invention combines the cyclone separator and the filter, mainly utilizing the structural characteristics of the cyclone separator.
  • the cyclone separator is separated by using a rotating air flow, and the center position is substantially free of air flow, so the above structure can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种稀土永磁体生产工艺及设备。设备由气体压缩机、磨室和分离过滤装置组成,气体压缩机的出气口与磨室的多个喷嘴通过管道连通,磨室出气口通过管道连接分离过滤装置,分离过滤装置的气体出口通过管道与气体压缩机进气口连通。生产工艺步骤包括磨室碰撞破碎、分选轮筛选、旋风分离器分离和过滤器过滤。其有益效果在于,改变了通用的气流磨结构,取消超细粉出口,全部粉料均从粉料出口流出,得出细粉,简化了产品结构,提高了材料利用率;磨室内分选轮的结构,保证得到的细粉中直径小于1微米的粉末的体积分数小于4%。

Description

说 明 书 一种稀土永磁体生产工艺及设备
技术领域
本发明涉及稀土永磁合金的生产工艺及生产设备。
背景技术
稀土合金的烧结磁体是将粉碎稀土合金的磁性合金粉末压制成 型后, 经过烧结过程和时效过程而制成的。 现在, 作为稀土合金烧结 磁铁, 钐钴系磁铁和钕铁硼系磁铁的两种在各种领域广泛使用。 其中 钕铁硼系磁铁(以下, 称为 R- T-B系磁铁, R是包括 Y的稀土元素, T是铁, 或者是取代铁和铁的一部分的过渡金属, B是硼。 )在各种 磁铁中显示最高的磁能积, 价格也比较便宜, 因而在各种电子设备中 正积极地釆用。 作为在 T 中包括的过渡金属, 例如可以使用 Co。 此 外, 硼的一部分也可以用碳取代。
稀土合金烧结磁体毛坯制作的主要有熔炼、氢破碎、磨粉、搅拌、 成型、 烧结工序。 目前磨粉工序的主要设备为气流磨, 其原理是利用 气流将粉末颗粒加速到超音速使之相互对撞而破碎。气流磨磨室内有 多个喷嘴, 可在磨室内形成物料流态化的区域, 磨室设有进料口, 顶 部设有分选轮。 将压力为 0. 6-0. 7MPa的保护性气体(氮气、 惰性气 体)通过喷嘴射入对撞粉碎区, 使物料流态化, 并在超音速气流作用 下, 让物料在喷嘴交汇处产生对撞, 从而使粉末颗粒破碎。 已被破碎 的颗粒随上升气流通过分选轮, 对粉末进行分选, 使达到规定尺寸 Dc (本发明中提到的粉末直径均为通过激光干涉方式测得的当量直 径; Dc为可使用分选轮分选的粉末颗粒的临界尺寸,一般为 1 3微米; Do为使用旋风分离器分选的粉末颗粒的临界尺寸, 一般为 1微米) 的颗粒通过, 大于规定尺寸 Dc的颗粒则不能通过, 又返回对撞粉碎 区, 继续进行粉碎。 而小于规定尺寸 Dc的颗粒经输送管道旋风分离 器中进行分离, 将小于尺寸 Do的粉末分离。 最终从粉料出口得到的 粉末中, 尺寸为 1-7微米的颗粒的体积分数大于 70%, 尺寸小于 1微 米的颗粒的质量分数小于 4说%。 而从超细粉出口得到的粉末中, 尺寸 小于 1微米的颗粒的体积分数大于 23%。
一般将送入进料口用于加工的粉末称为粗粉,将粉料出口得到的 用于后续生产的粉末称为细粉,将从超细粉出口得到的粉末称为超细 粉, 超细粉一般不能用于生产。 传统的气流磨结构如图 1所示, 由气体压缩机、 磨室、 旋风分离 器、 过滤器四大部分组成, 四部分之间使用管道连接, 管道既输送气 体, 也输送粉料。 其工作过程如下: 粗粉由通过喂料装置均匀的进入磨室中,同时气体压缩机提供的 压缩气体经由管道到达磨室, 经过超音速喷嘴后成为超音速气流, 带 动粗粉进行相互碰撞, 使粗粉破碎, 当破碎后的粉末的直径小于 Dc 时, 便和气流一起通过分选轮经由管道输送到旋风分离器, 在旋风分 离器中, 直径符合要求的粉末从粉料出口流出作为生产使用, 直径小 于 Do的粉末, 继续同气流一起经由管道输送到过滤器中, 气流经过 滤后回压缩机, 直径小于 Do的粉末从超细粉出口流出。 由于稀土合金的化学性质比较活泼,所以通过气流磨磨粉得到的 细粉和超细粉极其容易氧化或者燃烧,故在磨粉工艺中必须要解决粉 说 明 书 末氧化的问题。
由于稀土合金烧结永磁体的磁性能对材料组织敏感,若细粉中尺 寸小于 1微米的粉料过多, 会形成粗晶粒, 降低磁性能。
此外, 由于稀土的巿场价格较高, 为了降低生产成本, 需要尽量 的减少超细粉的产出。
发明内容
针对上述问题,本发明旨在提供一种新型的稀土永磁体生产设备, 以减少超细粉的产出。
为实现该技术目的, 本发明的方案是:
一种稀土永磁体生产设备, 由气体压缩机、磨室和分离过滤装置 组成, 气体压缩机的出气口与磨室的多个喷嘴通过管道连通, 磨室出 气口通过管道连接分离过滤装置,分离过滤装置的气体出口通过管道 与气体压缩机进气口连通;
所述磨室上部设有进料口, 底部及周边设有若干喷嘴, 喷嘴的出 口方向在磨室内相交; 磨室上部设有分选轮, 分选轮为一圆周方向上 均匀分布有带条状栅格的圆简, 分选轮一端封闭且连接电机, 另一端 开口并与磨室出气口连通, 分选轮用于过滤直径大于 Dc的粉末或颗 粒;
所述分离过滤装置由过滤器和旋风分离器直接连接而成,旋风分 离器设在底部, 其上部与磨室出气口连通, 底部为粉料出口; 过滤器 垂直设在旋风分离器上方, 底部气体入口与旋风分离器连通, 顶部气 体出口通过管道与气体压缩机进气口连通,分离过滤装置用于分离气 体中的粉末颗粒。 优选的, 所述分选轮的圆简外径为 190-250mm, 栅格的长度为 120-140mm, 并且在圆周方向上均匀分布 55-57个栅格。 优选的, 所述喷嘴共有 4个,一个设于底部,三个设于磨室壁上, 且在同一平面上对称分布。 此外,本发明还提供了一说种稀土永磁体生产工艺,包括以下步骤: 通过进料口往磨室内加入稀土永磁体粉末; 启动气体压缩机, 压缩气 书
体经由管道到达磨室, 经过喷嘴后成为超音速气流, 带动粉末进行相 互碰撞,使粉末破碎;分选轮在电机驱动下旋转,实现对粉末的分选; 破碎后的粉末, 直径小于 Dc的, 同气流一起通过分选轮, 再经由管 道输送到旋风分离器, 在旋风分离器中, 直径大于 Do的粉末直接落 入到粉料出口, 直接小于 Do的粉末随沿着分离器内旋转上升的气流 上升至过滤器内, 并被过滤器阻挡, 通过重力作用落回至旋风分离器 中心位置, 经由旋风分离器底部的粉料出口流出; 过滤后的气流通过 管道进入气体压缩机进气口。 优选的, 分选轮转速为 3000-4500转 /分钟。 优选的, 超音速气流中, 氧气体积含量不大于 1%。 本发明的有益效果在于, 改变了通用的气流磨结构, 取消超细粉 出口, 全部粉料均从粉料出口流出, 得到细粉, 简化了产品结构, 提 高了材料利用率; 磨室内分选轮的结构, 保证得到的细粉中直接小于 1微米的粉末的体积分数小于 4%。 附图说明 说 明 书 图 1为传统气流磨的结构示意图。
图 2为本发明实施例生产设备的结构示意图。
图 3为本发明实施例磨室的结构示意图。
图 4为本发明实施例分选轮的侧面半剖示意图。
图 5为本发明实施例分选轮的正面全剖示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细说明。
如图 1所示,
稀土永磁体生产设备, 由气体压缩机 1、 磨室 2和分离过滤装置 3组成, 气体压缩机的出气口与磨室的多个喷嘴 22通过管道连通, 磨室出气口通过管道连接分离过滤装置,分离过滤装置的气体出口通 过管道与气体压缩机进气口连通;
所述磨室上部设有进料口 21 , 喷嘴 22共有四个,一个设于底部, 三个设于磨室壁上,且在同一平面上对称分布, 这四个喷嘴的出口方 向在磨室内相交; 磨室上部设有分选轮 23。
由于取消了超细粉的分离,为了保证粉料中当量直径在 1微米以 下的颗粒占粉料总体的体积分数小于 4%, 需要使用改进的分选轮, 分选轮为一圆周方向上均匀分布有带条状栅格的圆简,分选轮一端封 闭且连接电机 24并由其驱动, 另一端开口并与磨室出气口连通, 其 中圆简的外径为 190-250讓, 栅格的长度为 O- 隱, 并且在圆周 方向上均匀分布 55-57个栅格。使用时安装在气流磨磨室上方, 转速 为 3000-4500转 /分钟。 所述分离过滤装置由过滤器 31和旋风分离器 32直接连接而成, 旋风分离器设在底部, 其上部与磨室出气口连通, 底部为粉料出口 33; 过滤器垂直设在旋风分离器上方, 底部气体入口与旋风分离器连 通, 顶部气体出口通过管道与气体压缩机进气口连通。 该设备的生产工艺包括以下步骤:通过进料口往磨室内加入稀土 永磁体粉末; 启动气体压缩机说, 压缩气体经由管道到达磨室, 经过喷 嘴后成为超音速气流, 带动粉末进行相互碰撞, 使粉末破碎; 分选轮 书
在电机驱动下旋转, 实现对粉末的分选; 破碎后的粉末, 直径小于 Dc 的, 同气流一起通过分选轮, 再经由管道输送到旋风分离器, 在 旋风分离器中, 直径大于 Do的粉末直接落入到粉料出口, 直接小于 Do 的粉末随沿着分离器壁螺旋上升的气流上升至过滤器内, 并被过 滤器阻挡, 通过重力作用落回至旋风分离器中心位置, 经由旋风分离 器底部的粉料出口流出;过滤后的气流通过管道进入气体压缩机进气 口。 通过这样的工艺, 直径大于 Dc的粉末或颗粒在分选轮处被过滤, 返回磨室继续碰撞, 直径小于 Dc的粉末, 包括小于 Do的超细粉, 均 在分离过滤装置处被过滤, 统一从底部的粉料出口流出。 为了防止粉料的氧化,在磨室使用的超音速气流的主要成分是氮 气或惰性气体, 其中氧的体积含量不大于 1%。 本发明将旋风分离器和过滤器合为一体,主要是利用了旋风分离 器的结构特点, 旋风分离器是使用旋转的气流进行分离, 中心位置基 本无气流, 故可以使用上述结构。 也有人提出取消旋风分离器, 直接使用过滤器过滤全部粉料, 但 说 明 书 是由于过滤器在单位时间内的过滤能力有限, 若取消旋风分离器, 则 会导致过滤器在很短时间内堵死, 故不可行。
以上所述, 仅为本发明的较佳实施例, 并不用以限制本发明, 凡 是依据本发明的技术实质对以上实施例所作的任何细微修改、等同替 换和改进, 均应包含在本发明技术方案的保护范围之内。

Claims

权 利 要 求 书
1. 一种稀土永磁体生产设备, 其特征在于: 由气体压缩机、 磨 室和分离过滤装置组成,气体压缩机的出气口与磨室的多个喷嘴通过 管道连通, 磨室出气口通过管道连接分离过滤装置, 分离过滤装置的 气体出口通过管道与气体压缩机进气口连通;
所述磨室上部设有进料口, 底部及周边设有若干喷嘴, 喷嘴的出 口方向在磨室内相交; 磨室上部设有分选轮, 分选轮为一圆周方向上 均匀分布有带条状栅格的圆简, 分选轮一端封闭且连接电机, 另一端 开口并与磨室出气口连通;
所述分离过滤装置由过滤器和旋风分离器直接连接而成,旋风分 离器设在底部, 其上部与磨室出气口连通, 底部为粉料出口; 过滤器 垂直设在旋风分离器上方, 底部气体入口与旋风分离器连通, 顶部气 体出口通过管道与气体压缩机进气口连通。
2.根据权利要求 1所述的稀土永磁体生产设备, 其特征在于: 所 述分选轮的圆简外径为 190-250mm, 栅格的长度为 120-140mm, 并且 在圆周方向上均匀分布 55-57个栅格。
3.根据权利要求 1所述的稀土永磁体生产设备, 其特征在于: 所 述喷嘴共有 4个,一个设于底部,三个设于磨室壁上,且在同一平面上 对称分布。
4. 一种稀土永磁体生产工艺, 包括以下步骤: 通过进料口往磨 室内加入稀土永磁体粉末; 同时由气体压缩机驱动的压缩气体经由管 道到达磨室, 经过喷嘴后成为超音速气流, 带动粉末进行相互碰撞, 使粉末破碎; 分选轮在电机驱动下旋转, 实现对粉末的分选; 破碎后 权 利 要 求 书
的粉末, 直径小于 Dc的, 同气流一起通过分选轮, 再经由管道输送 到旋风分离器, 在旋风分离器中, 直径大于 Do的粉末直接落入到粉 料出口, 直接小于 Do的粉末随沿着分离器壁螺旋上升的气流上升至 过滤器内, 并被过滤器阻挡, 通过重力作用落回至旋风分离器中心位 置, 经由旋风分离器底部的粉料出口流出; 过滤后的气流通过管道进 入气体压缩机进气口。
5.如权利要求 1所述的稀土永磁体生产工艺, 其特征在于, 分选 轮转速为 3000- 4500转 /分钟。
6. 如权利要求 1所述的稀土永磁体生产工艺, 其特征在于, 超 音速气流中, 氧气体积含量不大于 1%。
PCT/CN2013/000901 2013-07-31 2013-07-31 一种稀土永磁体生产工艺及设备 WO2015013836A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/000901 WO2015013836A1 (zh) 2013-07-31 2013-07-31 一种稀土永磁体生产工艺及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/000901 WO2015013836A1 (zh) 2013-07-31 2013-07-31 一种稀土永磁体生产工艺及设备

Publications (1)

Publication Number Publication Date
WO2015013836A1 true WO2015013836A1 (zh) 2015-02-05

Family

ID=52430798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000901 WO2015013836A1 (zh) 2013-07-31 2013-07-31 一种稀土永磁体生产工艺及设备

Country Status (1)

Country Link
WO (1) WO2015013836A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391193A (zh) * 2016-11-30 2017-02-15 广东技术师范学院 一种稀土氧化物高效破碎装置
CN114918025A (zh) * 2022-06-13 2022-08-19 赣州嘉源新材料有限公司 一种用于稀土材料生产的气流粉碎机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2558457Y (zh) * 2002-07-16 2003-07-02 董中天 钕铁硼永磁材料制粉用气流磨粉机
CN1431935A (zh) * 2000-06-01 2003-07-23 大金工业株式会社 粉碎树脂粒子的制造方法和装置
CN102728841A (zh) * 2012-07-10 2012-10-17 交城县融和磁材有限公司 一种烧结钕铁硼永磁材料的气流磨制粉装置及方法
CN103025433A (zh) * 2010-07-30 2013-04-03 细川密克朗集团股份有限公司 喷射式磨机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431935A (zh) * 2000-06-01 2003-07-23 大金工业株式会社 粉碎树脂粒子的制造方法和装置
CN2558457Y (zh) * 2002-07-16 2003-07-02 董中天 钕铁硼永磁材料制粉用气流磨粉机
CN103025433A (zh) * 2010-07-30 2013-04-03 细川密克朗集团股份有限公司 喷射式磨机
CN102728841A (zh) * 2012-07-10 2012-10-17 交城县融和磁材有限公司 一种烧结钕铁硼永磁材料的气流磨制粉装置及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391193A (zh) * 2016-11-30 2017-02-15 广东技术师范学院 一种稀土氧化物高效破碎装置
CN114918025A (zh) * 2022-06-13 2022-08-19 赣州嘉源新材料有限公司 一种用于稀土材料生产的气流粉碎机
CN114918025B (zh) * 2022-06-13 2023-03-14 赣州嘉源新材料有限公司 一种用于稀土材料生产的气流粉碎机

Similar Documents

Publication Publication Date Title
CN100464906C (zh) 采用气流粉碎、分级生产碳化钨粉的方法
CN202061677U (zh) 烧结钕铁硼磁体材料的粉末筛分装置
CN102698847A (zh) 深冷气流粉碎系统
CN106076562A (zh) 流化床气流粉碎机
CN103397248B (zh) 一种稀土永磁体生产工艺及设备
WO2015013836A1 (zh) 一种稀土永磁体生产工艺及设备
CN105855012B (zh) 一种气流磨粉碎机和一种气流粉碎的方法
JP2012135749A (ja) 超微粉砕装置および超微粉砕方法
CN103537357A (zh) 一种节能型粉碎分级设备
CN108906289B (zh) 一种以自身物料为气流介质的复合型超细粉气流粉碎机
CN103781560B (zh) 粒状物料分离器
RU94170U1 (ru) Центробежная мельница
CN109046717B (zh) 一种复合型超细粉气流粉碎机
CN105817294A (zh) 一种粉碎氧化铁粉的二次进风超细粉碎装置
CN205361577U (zh) 一种稀土抛光粉气流粉碎系统
CN215694651U (zh) 一种超细色粉气流粉碎装置
CN203316722U (zh) 铁基稀土永磁材料制粉设备
CN104308165A (zh) 一种气流磨机
JP2017176956A (ja) 磁性高硬金属粒子の粉砕装置
CN217663776U (zh) 一种流化床气碎除磁装置
JP7379904B2 (ja) サイクロン捕集装置、希土類磁石合金粉砕システム、及びr-t-b系焼結磁石の製造方法
CN104549643A (zh) 一种新型节能粉碎分级设备
JP2020151645A (ja) サイクロン捕集装置、希土類磁石合金粉砕システム、及びr−t−b系焼結磁石の製造方法
JP7272029B2 (ja) サイクロン捕集装置、希土類磁石合金粉砕システム、及びr-t-b系焼結磁石の製造方法
CN205361670U (zh) 一种碳化硅颗粒分级装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890537

Country of ref document: EP

Kind code of ref document: A1