WO2015012268A1 - ガラスフィルムの製造方法およびガラスフィルムの剥離方法 - Google Patents

ガラスフィルムの製造方法およびガラスフィルムの剥離方法 Download PDF

Info

Publication number
WO2015012268A1
WO2015012268A1 PCT/JP2014/069333 JP2014069333W WO2015012268A1 WO 2015012268 A1 WO2015012268 A1 WO 2015012268A1 JP 2014069333 W JP2014069333 W JP 2014069333W WO 2015012268 A1 WO2015012268 A1 WO 2015012268A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass film
glass
peeling
wedge body
support
Prior art date
Application number
PCT/JP2014/069333
Other languages
English (en)
French (fr)
Inventor
山崎 博樹
光 冨田
誠一 伊澤
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2014535843A priority Critical patent/JPWO2015012268A1/ja
Publication of WO2015012268A1 publication Critical patent/WO2015012268A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/54Article strippers, e.g. for stripping from advancing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B2037/0092Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding in which absence of adhesives is explicitly presented as an advantage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/60In a particular environment
    • B32B2309/68Vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0007Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
    • B32B37/003Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality to avoid air inclusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/446Assisting moving, forwarding or guiding of material
    • B65H2301/4461Assisting moving, forwarding or guiding of material by blowing air towards handled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2406/00Means using fluid
    • B65H2406/10Means using fluid made only for exhausting gaseous medium
    • B65H2406/12Means using fluid made only for exhausting gaseous medium producing gas blast
    • B65H2406/122Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2601/00Problem to be solved or advantage achieved
    • B65H2601/20Avoiding or preventing undesirable effects
    • B65H2601/25Damages to handled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/61Display device manufacture, e.g. liquid crystal displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements

Definitions

  • the present invention relates to a glass film manufacturing method and a glass film peeling method, and more particularly to a technique for peeling a glass film from a supporting glass in a glass film laminate used for manufacturing an electronic device or the like.
  • the organic EL display has a characteristic that it can be bent and wound up, and is easy to carry and can be used not only on a flat surface but also on a curved surface. It is expected to be used for various purposes.
  • a light emitter used in an organic EL display is deteriorated by reacting with a gas such as oxygen or water vapor. Therefore, since a high gas barrier property is required for a substrate used for an organic EL display, a glass substrate is mainly used. However, unlike a resin film, a glass substrate is low in flexibility, and if the tensile stress generated on the surface of the glass substrate by bending the glass substrate exceeds the breaking stress, the glass substrate is damaged, so flexibility is required. In many applications, it was difficult to employ a glass substrate.
  • Patent Document 1 proposes a glass film having a thickness of 200 ⁇ m or less, and such an extremely thin glass film has such flexibility that it can be used for an organic EL display, for example.
  • a glass substrate used for an electronic device such as a flat panel display or a solar cell is subjected to various processing related to electronic device manufacturing (hereinafter referred to as electronic device manufacturing related processing) such as processing and cleaning.
  • electronic device manufacturing related processing such as processing and cleaning.
  • a glass film having a thickness of 200 ⁇ m or less is rich in flexibility, so that it is difficult to perform positioning during processing, and there is a problem that displacement occurs during patterning.
  • glass is a brittle material and thus breaks, and there is a problem that handling is very difficult when performing the various electronic device manufacturing related processes described above.
  • Patent Document 2 proposes a glass film laminate in which a glass film is laminated on a supporting glass. According to this, even if a glass film having low rigidity is used alone, the supporting glass has high rigidity, so that the entire glass film laminate can be easily positioned during processing. And it is possible to obtain the glass film (namely, electronic device) which gave the electronic device manufacture related process by peeling a glass film from support glass after completion
  • Patent Document 3 a glass film laminate in which at least one of the contact surface of the glass film and the contact surface of the supporting glass is provided with a region having a relatively large surface roughness and a region having a small surface roughness.
  • the supporting glass protrudes from the glass film and is laminated, and the supporting glass has a peeling start portion for exposing at least one corner portion of the glass film from the supporting glass from the edge of the supporting glass.
  • a glass film laminate provided in a spaced manner has been proposed.
  • the supporting glass protrudes from the glass film and is laminated, and an end piece of the supporting glass is provided with a thin portion, and at least a part of the end piece of the glass film is supported on the thin portion.
  • a glass film laminate that is spaced from the glass has been proposed.
  • JP 2010-132531 A International Publication No. 2011/048979 JP 2011-162432 A JP 2012-30404 A JP 2012-131664 A
  • the present invention has been made to solve the above-described problems of the prior art, and a glass film manufacturing method and a glass film that can be peeled from a supporting glass without damaging the glass film in a short time.
  • An object of the present invention is to provide a peeling method.
  • the first invention in the present application includes a first step of laminating a glass film substrate and a supporting glass, which are glass films before processing related to electronic device manufacturing, to produce a glass film laminate, and the glass film lamination.
  • a third step of separating the glass film and the supporting glass obtained in the third step wherein in the third step, the blade has a cutting edge formed linearly, and the cutting edge
  • a wedge body configured to be able to eject a fluid from a spout formed in the glass film laminate and the front of the glass film in the glass film laminate The glass film laminate so that the wedge body is inserted into the interface with the support glass from the blade edge side, and then the blade edge is displaced toward the unpeeled portion side at the interface while ejecting fluid from the ejection port. And the relative position of the wedge body is changed, and the glass film is peeled from the support glass.
  • the second invention in the present application is characterized in that the fluid is air.
  • a third invention in this application is characterized in that the fluid contains water.
  • the “water” mentioned here includes water vapor (the same applies hereinafter).
  • the fifth invention in this application is characterized in that the glass film substrate has a thickness of 0.2 mm or less.
  • the sixth invention of the present application is characterized in that the wedge body has a thickness of 3.0 mm or less.
  • the seventh invention of the present application is characterized in that the angle of the edge of the wedge body is 5 degrees or less.
  • 8th invention in this application is a peeling method of the glass film which peels the said glass film from the glass film laminated body produced by laminating
  • the wedge body is configured from the blade edge side to the interface between the glass film and the support glass in the glass film laminate using a wedge body configured to be able to eject a fluid from a jet port formed in the blade edge. And then changing the relative position of the glass film laminate and the wedge body so as to displace the blade edge toward the unpeeled portion side at the interface while ejecting fluid from the ejection port.
  • the glass film is peeled off.
  • the glass film and the supporting glass and the wedge body are prevented from coming into contact with each other.
  • the glass film can be efficiently peeled from the supporting glass in a short time by applying a uniform pressure to the interface with a fluid while preventing the above.
  • the momentum when the fluid collides with the interface is prevented from excessively increasing, and the glass film and the supporting glass are reliably prevented from being damaged. Can do.
  • the hydrolysis reaction is accelerated by the moisture contained in the fluid, the fixing force between the glass film and the supporting glass is weakened, and the glass film is efficiently peeled from the supporting glass in a short time. can do.
  • the glass film laminated body in which the adhesive force of the glass film and support glass has increased by the electronic device manufacture related process with a heating is object,
  • the glass film can be efficiently peeled in a short time while preventing breakage.
  • the sixth invention of the present application by reducing the thickness of the wedge body, the lifting of the glass film at the time of peeling is suppressed, and the damage to the glass film at the time of peeling is reduced, thereby ensuring the breakage of the glass film. Can be prevented.
  • the seventh invention of the present application by reducing the angle of the edge of the wedge body, the curvature of the glass film at the time of peeling and the change in curvature are suppressed, and by reducing the damage given to the glass film at the time of peeling, Film breakage can be reliably prevented.
  • the glass film and the supporting glass and the wedge body are prevented from coming into contact with each other.
  • the glass film can be efficiently peeled from the supporting glass in a short time by applying a uniform pressure to the interface with a fluid while preventing the above.
  • the side view schematic diagram which shows the manufacturing method of the glass film which concerns on one Embodiment of this invention.
  • the side view cross-sectional schematic diagram which shows the preparation methods (overflow downdraw method) of a glass film.
  • the perspective schematic diagram which shows the preparation conditions of a glass film laminated body. The figure which shows the formation condition of a peeling start part, (a) When forming a recessed part in support glass, (b) When forming a thin-plate part in support glass.
  • the side view schematic diagram which shows an electronic device with support glass.
  • the schematic diagram which shows the wedge used for the manufacturing method of the glass film which concerns on one Embodiment of this invention (a) Whole perspective schematic diagram, (b) Side view cross-sectional schematic diagram.
  • the schematic diagram which shows a wedge body (a) The plane view schematic diagram which shows the component of a wedge body, (b) The plane view schematic diagram which shows the overlapping condition of a wedge body.
  • Schematic diagram for explaining the bonding mechanism between the glass film and the supporting glass (a) a diagram showing the situation of hydrogen bonding between hydroxyl groups, (b) a diagram showing the situation of hydrogen bonding via water molecules, (c) heating The figure which shows the increase
  • tool used for the manufacturing method of the glass film which concerns on one Embodiment of this invention (a) The schematic diagram which shows the peeling jig
  • tool (the aspect which comprises a wedge body so that a displacement is possible) which concerns on 3rd embodiment used for the manufacturing method of the glass film which concerns on one Embodiment of this invention.
  • the schematic diagram which shows the detail of the peeling jig
  • tool (The form which comprises a glass film laminated body so that displacement and rotation are possible) which concerns on the 4th form used for the manufacturing method of the glass film which concerns on one Embodiment of this invention, (a) Whole schematic The schematic diagram which shows the rotation condition of the mounting part of a figure and (b) glass film laminated body.
  • the figure which shows the peeling condition by the peeling jig used for the manufacturing method of the glass film which concerns on one Embodiment of this invention (a) The schematic diagram which shows the insertion condition of the wedge body with respect to a peeling start part, (b) The expansion of a peeling start part The schematic diagram which shows a condition.
  • the figure which shows the peeling condition by the peeling jig used for the manufacturing method of the glass film which concerns on one Embodiment of this invention (a) The schematic diagram which shows the condition at the time of the expansion end of a peeling start part, (b) Enlarging a peeling start part The schematic diagram which shows the arrangement
  • the figure which shows the peeling condition by the peeling jig used for the manufacturing method of the glass film which concerns on one Embodiment of this invention (a) The schematic diagram which shows the progress of peeling from the enlarged peeling start part, (b) The schematic diagram which shows the condition at the time of completion of peeling.
  • the method for producing a glass film according to the present invention includes a first step of laminating a glass film 11 and a supporting glass 12 to produce a glass film laminate 1, and heating to the glass film 11.
  • the device 51 is formed on the glass film 11 of the glass film laminate 1 by performing an electronic device manufacturing-related process involving the process, and the device 51 is sealed with the cover glass 2 to produce the electronic device 3 with supporting glass.
  • the surface roughness Ra of the side which the glass film 11 and the support glass 12 contact mutually is 2.0 nm or less, respectively.
  • silicate glass is used, preferably silica glass or borosilicate glass is used, and most preferably alkali-free glass is used.
  • the alkali-free glass referred to here is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass having an alkali component of 1000 ppm or less. .
  • the content of alkali components in the alkali-free glass used in the present invention is preferably 500 ppm or less, more preferably 300 ppm or less.
  • the thickness of the glass film 11 is preferably 5 to 200 ⁇ m, more preferably 5 to 100 ⁇ m. Thus, appropriate flexibility can be provided by making the thickness of the glass film 11 thinner. The glass film 11 having a smaller thickness is difficult to handle and is likely to cause problems such as mispositioning and bending at the time of patterning. Device manufacturing related processing and the like can be easily performed. If the thickness of the glass film 11 is less than 5 ⁇ m, the strength of the glass film 11 tends to be insufficient, and the glass film 11 may be difficult to peel from the support glass 12.
  • the support glass 12 is made of silicate glass, silica glass, borosilicate glass, non-alkali glass, or the like, similar to the glass film 11.
  • the thickness of the support glass 12 is preferably 400 ⁇ m or more. When the thickness of the supporting glass 12 is less than 400 ⁇ m, there is a possibility that a problem may occur in terms of strength when the supporting glass 12 is handled alone.
  • the thickness of the supporting glass 12 is preferably 400 to 700 ⁇ m, and most preferably 500 to 700 ⁇ m. This makes it possible to reliably support the glass film 11 with the support glass 12 and to effectively suppress breakage of the glass film 11 that may occur when the glass film 11 is peeled from the support glass 12. It becomes. When the glass film laminate 1 is placed on a setter (not shown) during the electronic device manufacturing related process, the thickness of the support glass 12 may be less than 400 ⁇ m (for example, 300 ⁇ m or the like, the same thickness as the glass film 11). .
  • the glass film 11 and the supporting glass 12 used in the present invention are preferably formed by a down draw method, and more preferably formed by an overflow down draw method.
  • the overflow downdraw method shown in FIG. 2 is a molding method in which both surfaces of the glass plate do not come into contact with the molded member at the time of molding, and the both surfaces (translucent surface) of the obtained glass plate are hardly scratched and polished. Even if not, high surface quality can be obtained.
  • the glass film 11 and the supporting glass 12 used in the present invention may be formed by a float method, a slot down draw method, a roll out method, an up draw method, a redraw method, or the like. In the overflow down draw method shown in FIG.
  • the glass ribbon G immediately after flowing down from the lower end 61 of the wedge-shaped molded body 60 is stretched downward while the shrinkage in the width direction is restricted by the cooling rollers 62 and 62.
  • the glass ribbon G having reached the predetermined thickness is gradually cooled in a slow cooling furnace (annealer) (not shown), the thermal distortion of the glass ribbon G is removed, and the glass ribbon G is cut into a predetermined size.
  • a slow cooling furnace (annealer) (not shown) (not shown) (not shown), the thermal distortion of the glass ribbon G is removed, and the glass ribbon G is cut into a predetermined size.
  • Each of the support glasses 12 is formed.
  • the first step in the method for producing a glass film according to the present invention is a glass film 11 and a supporting glass 12 whose surface roughness Ra on the side in contact with each other is 2.0 nm or less.
  • a step of producing the glass film laminate 1 When the surface roughness Ra of the contact surface 11a of the glass film 11 with the support glass 12 and the contact surface 12a of the support glass 12 with the glass film 11 exceeds 2.0 nm, the adhesion between the contact surface 11a and the contact surface 12a is increased.
  • the glass film 11 and the supporting glass 12 may be difficult to be firmly laminated without an adhesive.
  • the surface roughness Ra of the contact surfaces 11a and 12a of the glass film 11 and the support glass 12 used in the present invention is 1 respectively. It is preferably 0.0 nm or less, more preferably 0.5 nm or less, and most preferably 0.2 nm or less.
  • the surface roughness of the effective surface 11b of the glass film 11 shown in FIG. 1 and FIG. 3 is not particularly limited, but the effective surface 11b is subjected to processing related to electronic device manufacturing such as film formation in the second step described later. Since it performs, it is preferable that surface roughness Ra is 2.0 nm or less, 1.0 nm or less is more preferable, 0.5 nm or less is further more preferable, and 0.2 nm or less is the most preferable.
  • the surface roughness of the conveyance surface 12b of the support glass 12 is not particularly limited.
  • the peeling start part 14 used as the starting point at the time of peeling the edge part of the glass film 11 is provided. It is preferable to provide it.
  • the peeling start portion 14 is provided with a concave portion 14a in the support glass 12 corresponding to at least one corner portion of the glass film 11, and the corner of the glass film 11 in the concave portion 14a. The thing of the aspect which spaces apart a part and the support glass 12 is employable.
  • the peeling start part 14 as shown in FIG.4 (b), the thin part 14b is provided in the at least one edge of the support glass 12, and at least one part of the edge of the glass film 11 is a thin part.
  • the thing of the aspect spaced apart from the support glass 12 on 14b is also employable.
  • the aspect of the peeling start part 14 is not limited to the aspect shown to Fig.4 (a) (b), If a clue which inserts the wedge body 4 in the interface 13 is used, a various aspect will be employ
  • the first step of laminating the glass film 11 on the supporting glass 12 may be performed under reduced pressure. Thereby, the bubble produced when the glass film 11 and the support glass 12 are laminated
  • the 2nd process in the manufacturing method of the glass film which concerns on this invention is the glass of the glass film laminated body 1 produced at the 1st process as shown in FIG. 5 by performing the electronic device manufacture related process with a heating.
  • the element 51 is formed on the effective surface 11b of the film 11 and the element 51 formed on the effective surface 11b of the glass film 11 is sealed with a sealing substrate to produce the electronic device 3 with supporting glass.
  • Examples of the electronic device manufacturing related process involving heating in the second step include a film forming process by a CVD method, sputtering, or the like.
  • liquid crystal elements As elements formed on the effective surface 11b of the glass film 11, liquid crystal elements, organic EL elements, touch panel elements, solar cell elements, piezoelectric elements, light receiving elements, battery elements such as lithium ion secondary batteries, MEMS elements, and semiconductors An element etc. are mentioned.
  • the cover glass 2 made of silicate glass, silica glass, borosilicate glass, non-alkali glass or the like is used as in the glass film 11 described above.
  • the cover glass 2 it is preferable to use a glass having a difference in thermal expansion coefficient at 30 to 380 ° C. with respect to the glass film 11 within 5 ⁇ 10 ⁇ 7 / ° C. Thereby, even if the temperature of the surrounding environment of the produced electronic device 5 changes, it is hard to produce the thermal warp by the difference of an expansion coefficient, the crack of the glass film 11 and the cover glass 2, etc., and it is set as the electronic device 5 which is hard to be damaged. It becomes possible. And it is the most preferable to use the glass which has the same composition as the cover glass 2 and the glass film 11 from a viewpoint of suppressing the difference in an expansion coefficient.
  • the thickness of the cover glass 2 is preferably 5 to 200 ⁇ m, more preferably 5 to 100 ⁇ m. Thereby, thickness of a cover glass can be made thinner and appropriate flexibility can be provided. When the thickness of the cover glass 2 is less than 5 ⁇ m, the strength of the cover glass 2 tends to be insufficient.
  • an organic EL panel is shown in FIG.
  • the anode layer 52a, the hole transport layer 52b, the light emitting layer 52c, the electron transport layer 52d, and the cathode layer 52e are stacked in this order on the effective surface 11b of the glass film 11 by a known film formation method such as CVD or sputtering.
  • the organic EL element 52 which is an example of 51 is formed.
  • the organic EL element 52 is sealed by bonding the cover glass 2 and the glass film 11 using a known laser sealing or the like, and the electronic device 3 with supporting glass (here, organic EL with supporting glass). Panel).
  • the cover glass 2 and the glass film 11 are directly bonded. However, even if the cover glass 2 and the glass film 11 are bonded appropriately using a known glass frit, a spacer, or the like. good.
  • the 3rd process in the manufacturing method of the glass film which concerns on this invention inserts the wedge body 4 in the interface 13 of the glass film 11 and the support glass 12 of the electronic device 3 with a support glass as shown in FIG. This is a step of peeling the electronic device 5 from the support glass 12. Further, when the wedge body 4 is inserted into the interface 13, the fluid 41 is ejected from the wedge body 4. That is, one embodiment of the glass film laminate 1 is the device 3 with supporting glass, and one embodiment of the glass film 11 is the electronic device 5, and the glass film laminate 1 and the device with supporting glass in the following description. 3 and the glass film 11 and the electronic device 5 in the following description can be read each other.
  • the peeling start portion 14 (see FIGS. 4A and 4B) is used as a starting point. That is, the insertion of the wedge body 4 is started from the interface 13 in the peeling start portion 14. Moreover, when the peeling start part 14 is not formed, one side of the glass film is supported by inserting a wedge body 4 or a resin sheet (not shown) into the interface 13 between the support glass 12 and the glass film 11. It may be lifted from the glass 12 to serve as a starting point for peeling.
  • the “wedge body” as used herein is not limited to the shape in which the wedge body is inserted in the insertion direction, the thickness of the wedge body monotonically increasing from the blade edge toward the root, and the thickness from the blade edge toward the root. After monotonously increasing, the concept includes a shape that has a certain thickness from a predetermined position.
  • the wedge body 4 is a plate-like member that is rectangular (rectangular) when viewed in the plate thickness direction, and has an inclined portion 4a that descends toward the long side portion on one side. And it has the shape of a substantially sword blade with a straight blade edge 4b formed at the lower end of the inclined portion 4a.
  • the cutting edge 4b is formed in a straight line shape, but the shape of the cutting edge 4b is not limited to this, and may be formed in a gentle concave curve shape or a convex curve shape. . 6 (a) and 6 (b), the wedge body 4 has a plurality of jet nozzles 4c, 4c,...
  • the nozzles 4c, 4c,... are in communication with supply ports 4d, 4d that are holes for supplying the fluid 41 formed on the upper surface of the wedge body 4.
  • the spout 4c can adopt not only a mode divided into a plurality of portions as shown in the present embodiment but also a slit-like mode in which the whole is a single opening.
  • the wedge body 4 is supplied with fluid 41 (air in this embodiment) from the supply ports 4d and 4d by a fluid supply means (not shown).
  • the fluid 41 can be ejected from the.
  • an air pipe connected to an air source such as a compressor can be employed as the fluid supply means.
  • the wedge body 4 has four members, a bottom member 42, a comb-like member 43, a header member 44, and a lid member 45, which are stacked in this order from below.
  • a fastening member such as one
  • the comb-like member 43 is a member having a comb-like shape by forming a plurality of substantially U-shaped concave portions 43a, 43a,.
  • the bottom member 42 is a flat plate-like member, and is configured so as to close below the concave portions 43a, 43a,.
  • the header member 44 is a member formed by forming a gap portion 44 a that is a hole penetrating in a plate thickness direction with respect to a flat plate-like member, and the header member 44 is disposed so as to overlap the comb-like member 43.
  • the lid member 45 is a flat plate-like member, and is configured so as to close the space 44 a by being placed on the header member 44.
  • the lid member 45 has supply ports 4d and 4d formed at positions where the lid member 45 is disposed on the header member 44 and communicated with the gap portion 44a.
  • the supply ports 4d and 4d pass through the supply ports 4d and 4d.
  • the fluid 41 can be supplied.
  • the wedge body 4 is configured such that the open ends of the recesses 43a, 43a,... Appear at the cutting edge 4b of the wedge body 4 as jets 4c, 4c,. It is comprised so that the fluid 41 supplied to the part 44a can be ejected from each ejection port 4c * 4c ....
  • the wedge body 4 makes the wedge body 4 with respect to the interface 13 and the peeling start part 14 in the glass film laminated body 1 by reducing the thickness of the inclined portion 4a at the blade edge 4b (that is, sharpening the blade edge 4b). It is configured so that it can be easily inserted.
  • the thickness of the wedge body 4 used in the method for producing a glass film according to the present invention is preferably 3.0 mm or less.
  • the wedge body 4 preferably has a blade angle of 5 degrees or less at the blade edge 4b. In the present embodiment, the wedge body 4 has a blade angle of 5 degrees or less at the blade edge 4b.
  • the glass film manufacturing method according to the present invention is characterized in that the thickness of the wedge body 4 used in the manufacturing method is 3.0 mm or less. And by reducing the thickness of the wedge body 4 in this way, it is possible to suppress the glass film 11 from being lifted at the time of peeling, to reduce the damage given to the glass film 11, and to ensure that the glass film 11 is broken. It is possible to prevent.
  • tip 4b of the wedge body 4 used for the manufacturing method shall be 5 degrees or less. And by reducing the angle of the cutting edge 4b of the wedge body 4 in this way, the curvature and curvature change of the glass film 11 at the time of peeling are suppressed, the damage given to the glass film 11 is reduced, and the glass film 11 is broken. It is possible to surely prevent this.
  • the insertion state of the wedge body 4 with respect to the interface 13 in the third step will be described.
  • the fluid 41 is ejected from the respective ejection ports 4c, 4c, in the third step. It is set as the structure inserted in the interface 13 of the electronic device 5 (namely, glass film 11) and the supporting glass 12 in the electronic device 3 with supporting glass (namely, glass film laminated body 1).
  • air is used as the fluid 41.
  • the wedge body 4 is fixed, and the glass film laminated body 1 is displaced in the direction of the arrow ⁇ , so that the blade edge 4b of the wedge body 4 is relatively displaced in the direction of the unpeeled portion. 11 peeling progresses.
  • the glass film laminate 1 may be fixed and the wedge body 4 may be displaced in the direction of the arrow ⁇ to relatively displace the cutting edge 4b of the wedge body 4 in the direction of the unpeeled portion, or
  • the glass film laminate 1 may be displaced in the direction of the arrow ⁇ , the wedge body 4 may be displaced in the direction of the arrow ⁇ , and the cutting edge 4b of the wedge body 4 may be relatively displaced in the direction of the unpeeled portion.
  • the fluid 41 ejected from each of the ejection ports 4c, 4c,... flows toward the open portions on the left and right and the rear of the ejection direction of the fluid 41, and the glass film 11 And discharged from the space surrounded by the support glass 12. And while raising the pressure in the space enclosed by the glass film 11 and the support glass 12 with the fluid 41, and applying the impact force by directly applying the fluid 41 to the interface 13, the glass film 11 is removed from the support glass 12. It is set as the structure which peels.
  • the peeling procedure when the wedge body 4 is used will be described.
  • the cutting edge 4 b of the wedge body 4 is first set to the glass film 11 and the supporting glass 12, starting from the peeling start portion 14 formed in the glass film laminate 1. Is inserted into the interface 13.
  • the insertion operation at this time is performed by fixing the glass film laminate 1 and displacing the wedge body 4 so that the wedge body 4 is inserted into the interface 13 or the wedge body 4 is fixed.
  • Any of the embodiments in which the wedge body 4 is inserted into the interface 13 by displacing the glass film laminate 1 may be used (the same applies hereinafter).
  • the wedge body 4 is further inserted into the interface 13 so that the cutting edge 4b is inserted over the entire length of the selected one side of the glass film laminate 1.
  • the fluid 41 is ejected from each of the ejection ports 4c, 4c,. Then, the wedge body 4 or the glass film laminate 1 is displaced, and the displacement is continued until the blade edge 4b comes into contact with the opposite side, whereby the glass film 11 and the supporting glass 12 are peeled off.
  • the glass film which concerns on this invention, it is set as the structure which peels the glass film 11 using the wedge body 4 in a 3rd process, By such structure, it is very thin (thickness is 200 micrometers or less) glass film. Even if it is 11, it can be efficiently peeled off in a short time without being damaged.
  • the manufacturing method of the glass film which concerns on this invention even if the thickness of the glass film 11 is 200 micrometers or less, it has the characteristics in the point which can peel favorably, The glass film which concerns on this invention According to this manufacturing method, even the glass film 11 having an extremely small thickness can be favorably peeled without being damaged.
  • the fluid 41 ejected from the ejection port 4c is air, and the momentum when the fluid 41 collides with the interface 13 is excessively increased.
  • the momentum when the fluid 41 collides with the interface 13 is excessively increased.
  • the fluid 41 ejected from the ejection ports 4c, 4c... Is air (air).
  • air air
  • water said here is the concept containing water vapor
  • the fluid 41 is most preferably air containing water, but a gas other than air, a liquid, or a mixture of liquid and gas (gas-liquid mixture) may be used.
  • a fluid 41 containing water (more specifically, air containing water) is sprayed on the interface 13 between the glass film 11 and the support glass 12 to separate the glass film 11 and the support glass 12. .
  • the glass film 11 and the supporting glass 12 can be peeled particularly well by spraying the fluid 41 containing water, it is speculated that the reason is as follows.
  • the hydroxyl group on the surface of the glass film 11 and the hydroxyl group on the surface of the supporting glass 12 are in a state where water molecules present at the interface 13 between the glass film 11 and the supporting glass 12 are interposed. It is considered that the glass film 11 and the supporting glass 12 may be fixed to each other by bonding by hydrogen bonding.
  • the electronic device manufacturing process includes a device manufacturing-related process including heating such as a film forming process, it is manufactured with a heating process of at least 100 ° C. or higher. For example, in a TFT manufacturing process of a liquid crystal display or an organic EL display, an amorphous silicon TFT is heated to 300 ° C.
  • a low temperature polysilicon TFT is heated to at least 400 ° C. or higher.
  • a TFT composed of indium, gallium, zinc, and oxygen it is heated to at least 300 ° C. or higher.
  • the touch sensor substrate is heated to at least 150 ° C. in the manufacturing process.
  • the fixing force between the glass film 11 and the support glass 12 becomes stronger as the heating temperature becomes higher and as the heating holding time becomes longer, and in the step of peeling the glass film 11 from the support glass 12. It has been proved by the present inventors that the glass film 11 is broken and the success probability of peeling of the glass film 11 decreases. Therefore, the present inventors conducted research to establish a method for peeling without destroying the glass film 11 and the supporting glass 12 after undergoing production-related treatment with heating, and as a result of earnest efforts, When peeling is performed in a state in which a liquid containing at least water is applied to the interface 13 between the glass film 11 and the support glass 12 on the glass film laminate 1 that has undergone the electronic device manufacturing related process accompanied by heating, the glass film 11 and the support are supported. The present inventors have found that the glass 12 can be easily peeled off and have reached the present invention.
  • the method is optimal as a method for peeling the glass film 11 and the supporting glass 12 after the electronic device manufacturing-related process accompanied by heating without damaging them.
  • the mode of the fluid 41 composed of air and moisture in this case is a gas-liquid mixture of air and water, a mode in which the air contains mist-like water, a mixed gas of air and steam, or the like The aspect of this can be employ
  • the dehydration reaction and hydrolysis reaction of the Si—OH group at the interface 13 between the glass film 11 and the support glass 12 described above are not limited to Si, but include Al, In, Sn, Zn, Ti, Zr, Ga, and the like. It is considered that the OH group present is similarly generated. Therefore, on the support glass 12, SiO, SiO 2, Al 2 O 3, MgO, Y 2 O 3, La 2 O 3, Pr 6 O 11, Sc 2 O 3, WO 3, HfO 2, In 2 O 3 Even when an inorganic thin film such as ITO, ZnO 2 , Nd 2 O 3 , Ta 2 O 5 , CeO 2 , Nb 2 O 5 , TiO, TiO 2 , Ti 3 O 5 , NiO, or ZnO is formed. A similar effect can be expected.
  • an inorganic thin film such as ITO, ZnO 2 , Nd 2 O 3 , Ta 2 O 5 , CeO 2 , Nb 2 O 5 , TiO, TiO 2 , Ti 3 O 5
  • the glass film 11 and the support glass 12 can be easily peeled easily even if an electronic device manufacturing related process involving heating is performed.
  • the glass film 11 and the support glass 12 can be more easily peeled off more efficiently.
  • the fluid 41 ejected from the ejection port 4c is air containing water, and the fluid 41 contains water. According to such a configuration, the moisture contained in the fluid 41 accelerates the hydrolysis reaction, weakens the adhesion between the glass film 11 and the support glass 12, and allows the glass film 11 to be removed from the support glass 12 in a short time. It becomes possible to peel efficiently.
  • the wedge body 4 is inserted into the interface 13 of the electronic device 3 with supporting glass while the fluid 41 is ejected from the ejection ports 4c, 4c,. ing.
  • the desired electronic device 5 can be finally manufactured by peeling the support glass 12 from the electronic device 3 with a support glass by a 3rd process.
  • the element 51 (specifically organic EL element 52) is formed on the glass film 11, and the case where the glass film 11 which comprises the electronic device 5, and the support glass 12 are peeled is illustrated.
  • the glass film 11 and the supporting glass 12 can be peeled by the method according to the present invention even when the element 51 is not formed on the glass film 11.
  • the glass film laminate 1 is produced by directly laminating the glass film 11 and the supporting glass 12 before the treatment with heating, the glass film laminate 1 is subjected to the treatment with heating. Even if it did, according to the method concerning this invention, the glass film 11 and the support glass 12 after heat processing can be peeled, and the glass film 11 by which heat processing was performed easily can be manufactured.
  • the electronic device manufacturing method according to the present invention can perform the first step, the second step, and the third step in succession.
  • the manufacturing method of the electronic device which concerns on this invention is not limited to the structure performed continuously from a 1st process to a 3rd process,
  • the glass film laminated body 1 manufactured after the 1st process is used.
  • the configuration may be such that the second process and the third process are performed by packing and shipping and separately in the electronic device manufacturing related processing facility.
  • the electronic device 3 with supporting glass manufactured after the second step is packaged and shipped, and the third step is performed in a separate facility, whereby the glass film 11 is peeled off from the supporting glass 12 and the electronic device. 5 may be manufactured.
  • the method for producing a glass film according to one embodiment of the present invention is a method for producing a glass film laminate 1 by laminating a glass film substrate and a supporting glass 12 that are glass films before processing related to electronic device production.
  • 1 step the second step of performing an electronic device manufacturing-related process on the glass film substrate in the glass film laminate 1, and the glass film laminate 1 after the electronic device manufacturing-related process are used as the glass film substrate.
  • the wedge body 4 is inserted into the interface 13 between the glass film 11 and the supporting glass 12 from the side of the blade edge 4b, and then the fluid edge 41 is ejected from the ejection ports 4c, 4c.
  • the glass film 11 is peeled from the support glass 12 by changing the relative position of the glass film laminate 1 and the wedge body 4 so as to be displaced toward the peeling portion.
  • the manufacturing method of the glass film which concerns on this invention, by forming the layer of the fluid 41 between the glass film 11, the support glass 12, and the wedge body 4, the glass film 11, the support glass 12, and the wedge body
  • the glass film 11 is peeled from the supporting glass 12 efficiently in a short time by applying a uniform pressure to the interface 13 with the fluid 41 while preventing the glass film 11 from being damaged by suppressing contact with the glass 4. be able to.
  • an electronic device manufacture related process is performed at a 2nd process, and the heating with respect to the glass film 11 is characterized.
  • the manufacturing method of the glass film which concerns on this invention even if it is a case where the adhering force of the glass film 11 and the support glass 12 is increasing, the damage of the glass film 11 is prevented in a 3rd process. However, it becomes possible to peel the glass film 11 efficiently in a short time.
  • the peeling method of the glass film which concerns on this invention is with respect to the glass film 11. It goes without saying that the peeling method is effective even when heating is not performed.
  • the glass film peeling method is a peeling method for peeling the glass film 11 from the glass film laminate 1 produced by laminating the glass film 11 and the supporting glass 12.
  • the glass film laminate 1 includes a wedge body 4 which has a cutting edge 4b formed in a straight line and is configured to be able to eject a fluid 41 from the ejection ports 4c, 4c... Formed in the cutting edge 4b.
  • the wedge body 4 is inserted into the interface 13 between the glass film 11 and the supporting glass 12 from the side of the blade edge 4b, and then the fluid edge 41 is ejected from the nozzle 4c, 4c,.
  • the glass film 11 is peeled from the support glass 12 by changing the relative position of the glass film laminate 1 and the wedge body 4 so as to be displaced toward the unpeeled portion side. And according to the peeling method of the glass film which concerns on this invention, the contact between the glass film 11, the support glass 12, and the wedge body 4 is suppressed regardless of the presence or absence of the heating with respect to the glass film 11, and the glass film 11
  • the glass film 11 can be efficiently peeled from the support glass 12 in a short time by applying a uniform pressure to the interface 13 with the fluid 41 while preventing breakage.
  • the peeling jig 20 is a jig that can easily realize the glass film peeling method according to the present invention using the wedge body 4, as shown in FIGS. 10 (a) and 10 (b).
  • the base portion 21 is a plate-like member that constitutes a main skeleton portion of the peeling jig 20, and a placement portion 21 a that is a flat portion for placing the glass film laminate 1 is formed on the upper surface portion. ing.
  • the base portion 21 is a portion for supporting the wedge body 4 in the peeling jig 20, and forms a predetermined gap between the wedge body 4 supported by the base portion 21 and the placement portion 21 a.
  • the predetermined gap is a distance that substantially matches the thickness of the support glass 12 that constitutes the glass film laminate 1, and the position of the cutting edge 4b of the wedge body 4 by disposing the glass film laminate 1 on the mounting portion 21a. However, it is configured so that it can be made to substantially coincide with the height of the interface 13 easily.
  • the pressing part 23 is a site
  • the pressing portion 23 is a pressing roller that is rotatably supported by the support portion 22 in the peeling jig 20 (referred to as a peeling jig 20 ⁇ / b> A) according to the first embodiment. It is set as the structure provided with 23a * 23b.
  • the peeling jig 20A includes two pressing rollers 23a and 23b.
  • the first pressing roller 23a is disposed above the wedge body 4, and the second pressing roller 23b is disposed above the separator 24. It is assumed to be configured.
  • the separator 24 is a part for placing the peeled glass film 11 along the surface thereof, and is fixed to the base part 21 via the support legs 25.
  • the peeling jig 20A the peeled glass film 11 is brought into contact with the pressing rollers 23a and 23b so that the glass film 11 can be smoothly transferred to the separator 24 while preventing the glass film 11 from floating excessively. Yes.
  • tool 20 (it calls the peeling jig
  • the fan 23 c is configured to be able to adjust the air blowing angle with respect to the glass film 11 via the angle adjusting part 22 a of the support part 22.
  • tool 20B while the wedge body 4 is inserted and the glass film 11 immediately after peeling is pressed below with the ventilation
  • the peeling jig 30 is a jig that can easily realize the glass film peeling method according to the present invention using the wedge body 4, and as shown in FIG. 31, a support portion 32, a holding portion 33, a lifting prevention portion 34, and the like, and is used in a state where the wedge body 4 is fixed to the support portion 32.
  • the base portion 31 is a plate-like member that constitutes a main skeleton portion in the peeling jig 30, and a placement portion 31 a that is a flat portion for placing the glass film laminate 1 is formed on the upper surface portion.
  • the support part 32 is a part for supporting the wedge body 4, and forms a predetermined gap A between the wedge body 4 supported by the support part 32 and the placement part 31a.
  • the predetermined gap A is a distance that substantially matches the thickness of the support glass 12 constituting the glass film laminate 1, and the blade edge of the wedge body 4 by placing the glass film laminate 1 on the placement portion 31 a.
  • 4b is configured so as to be able to easily coincide with the position of the interface 13 easily.
  • the support part 32 is comprised so that it can reciprocate in the direction orthogonal to the formation direction of the blade edge
  • the grip portion 33b is for gripping the end portion of the peeled glass film 11, and is configured to restrain the end portion of the glass film 11 by the grip portion 33b.
  • the groove part 31b is formed in parallel with the surface of the mounting part 31a, and the support part 32 is configured to be able to be displaced in a direction parallel to the surface of the mounting part 31a. . With such a configuration, the wedge body 4 can be accurately inserted deeper into the interface 13 by displacing the support portion 32 in a state where the cutting edge 4b is inserted into the interface 13.
  • the holding part 33 is a part for holding and fixing the glass film 11, and as shown in FIG. 11, the holding part 33 includes a support leg 33a, a gripping part 33b, and the like.
  • the support leg 33a is supported in a displaceable state along a groove 31c formed in the base 31, and the grip 33b is rotated around the shaft 33c by a shaft 33c fixed to the support leg 33a. It is supported in a rotatable state.
  • the shaft portion 33c is supported in a direction parallel to the forming direction of the cutting edge 4b of the wedge body 4, and is configured so that the angle of the grip portion 33b with respect to the glass film 11 can be changed.
  • the peeling edge part of the glass film 11 is made into the reverse direction with respect to the peeling advancing direction, It is comprised so that tension
  • the peeling length said here means the length which peeling peels naturally, when the peeling edge part of the glass film 11 is lifted from the support glass 12.
  • FIG. 4 As a mechanism for applying tension to the contact surface 12a of the support glass 12 in the direction opposite to the peeling progress direction in the peeling end portion of the glass film 11, for example, FIG. 4, a mechanism constituted by combining the spring 33d and the slider 33e and connecting the spring 33d to the support leg 33a (see FIG. 11) can be employed.
  • the floating prevention unit 34 is a part for holding the peeled glass film 11 at a predetermined position, and includes a plurality of suction pads 34a, 34a, 34a.
  • the suction pad 34a regulates the height of the glass film 11 peeled off from the support glass 12 and adsorbs the glass film 11 to prevent the glass film 11 from reattaching to the support glass 12. It is configured.
  • tool 30 peels the electronic device 5 (namely, glass film 11) from the electronic device 3 with support glass. Used.
  • the pressing force by the pressing means 35 at this time is not a strong pressing force that does not cause peeling, but a pressing force that can peel the glass film 11 against the pressing force.
  • the pressing force by the pressing means 35 at this time is not a strong pressing force that does not cause peeling, but a pressing force that can peel the glass film 11 against the pressing force.
  • a phenomenon in which peeling suddenly develops is often observed.
  • the edge part by the side of the peeling end of the glass film 11 peels off suddenly, the curvature change may arise in the glass film 11 and it may be damaged.
  • FIG. 12 (b) the sharp end of the glass film 11 is prevented from changing sharply by completing the peeling while pressing the end of the glass film 11 with the pressing means 35. As a result, breakage of the glass film 11 can be prevented.
  • the wedge body 4 is used, and the spout 4c * 4c *. * At the interface 13 of the glass film 11 and the support glass 12 in the glass film laminated body 1 is used.
  • the relative position of the glass film laminate 1 and the wedge body 4 so that the wedge body 4 can be easily inserted from the blade edge 4b side while the fluid 41 is ejected from and the blade edge 4b is displaced to the unpeeled portion side at the interface 13 It is possible to easily peel the glass film 11 from the support glass 12 by changing the above.
  • a peeling jig 70 according to the fourth embodiment is a jig that can easily realize the glass film peeling method according to the present invention using the wedge body 4, and as shown in FIG. A mounting portion 71 for mounting is provided.
  • the mounting part 71 is a part for mounting the glass film laminate 1, and a groove part (not shown) as an adsorption mechanism is engraved on the mounting surface 71 a.
  • the vacuum exhaust means (not shown) is connected with the groove part, and it is set as the structure which adsorb
  • the mounting portion 71 is supported by the displacement mechanism 72 so as to be reciprocally displaced in the direction of arrow ⁇ .
  • the displacement mechanism 72 is configured to be driven by a micrometer head (not shown). By manually operating the micrometer head, the glass film laminated body 1 is minutely moved along the rail member 72a (that is, in the direction of the arrow ⁇ ). It is comprised so that it can be displaced to.
  • the mounting portion 71 is supported by the displacement mechanism 72 in a rotatable state via the rotation mechanism 73, and the angle of the glass film laminate 1 with respect to the wedge body 4 is set. It is configured so that it can be adjusted.
  • the peeling jig 70 is configured so that the wedge body 4 is supported via a displacement mechanism (not shown) and can be displaced in the direction of the arrow ⁇ shown in FIG. And according to the formation position of the peeling start part 14 in the glass film laminated body 1, it has comprised so that the arrangement
  • the mounting portion 71 is rotated about 45 degrees by the rotation mechanism 73, so that the glass film laminate 1.
  • the corner is made to face the cutting edge 4 b of the wedge body 4.
  • the height of the blade edge 4b is made to substantially coincide with the height of the interface 13 (see FIG. 8) of the glass film laminate 1.
  • the placing portion 71 is displaced toward the wedge body 4 (in the direction of the arrow ⁇ 1) by the displacement mechanism 72, and the cutting edge 4b is inserted into the corner portion, whereby the peeling start portion 14 is produced.
  • the placement mechanism 71 is further displaced toward the wedge body 4 (in the direction of the arrow ⁇ 1) by the displacement mechanism 72, and the glass film 11 is peeled off at the start side. The peeling of the glass film 11 is advanced until one end is peeled over the entire width.
  • the placement mechanism 71 is temporarily displaced by the displacement mechanism 72 to the side away from the wedge body 4 (in the direction of arrow ⁇ 2), and the wedge body 4 is removed from the glass film laminate 1. Separate. Then, as shown in FIG. 15 (b), the mounting portion 71 is rotated by the rotation mechanism 73, and the posture of the glass film laminate 1 is adjusted so that one end of the glass film 11 and the blade edge 4 b are parallel to each other. adjust.
  • the placement mechanism 71 is again displaced toward the wedge body 4 (in the direction of the arrow ⁇ 1) by the displacement mechanism 72, and the blade edge 4b is again inserted into the peeling start end side. Furthermore, the placement mechanism 71 is displaced toward the wedge body 4 by the displacement mechanism 72. And as shown in FIG.16 (b), until the glass film 1 peels over the full length, the mounting part 71 is again displaced to the wedge body 4 side (direction of arrow (beta) 1) by the displacement mechanism 72. FIG. The glass film 1 is peeled from the supporting glass 2 while the peeling of the glass film 1 is progressed at a minute speed.
  • the wedge body 4 is once separated from the glass film laminate 1 as shown in FIG. 15A, but without separating the wedge body 4 from the glass film laminate 1. 14B, the rotation mechanism 73 continues the rotation as it is, and after the one end portion of the glass film 11 and the blade edge 4b become parallel, the displacement mechanism until the glass film 11 is peeled over the entire length.
  • the glass film 1 may be peeled by displacing the placing portion 71 toward the wedge body 4 (in the direction of arrow ⁇ 1) by 72.
  • the peeling start portion 14 is produced by inserting the cutting edge 4b of the wedge body 4, but when the adhesive force between the glass film 11 and the support glass 12 is strong, although not shown, the peeling start portion 14 may be manufactured by inserting a peeling start member that is thinner than the peeling jig 70. In addition, the entire width on the peeling start end side of the glass film laminate 1 may be peeled in advance with a thin peeling start member (not shown).
  • the present invention relates to a peeling method effective when peeling a glass film from a glass film laminate, but is not limited to a case where the object to be peeled is a glass film, and peels a thin sheet-like member from a substrate. It is possible to apply to cases.

Abstract

【課題】支持ガラスからガラスフィルムを短時間で破損することなく剥離可能とするガラスフィルムの製造方法およびガラスフィルムの剥離方法を提供する。 【解決手段】電子デバイス製造関連処理後のガラスフィルム積層体1をガラスフィルム11と支持ガラス12とに分離する工程において、直線状の刃先4bを有し、該刃先4bに形成された噴出口4c・4c・・・から流体41を噴出可能に構成される楔体4を用いて、ガラスフィルム積層体1におけるガラスフィルム11と支持ガラス12との界面13に、刃先4b側から楔体4を挿入し、その後、噴出口4c・4c・・・から流体41を噴出させつつ、刃先4bを界面13における未剥離部側に変位させるようにガラスフィルム積層体1と楔体4の相対位置を変更して、支持ガラス12からガラスフィルム11を剥離する。

Description

ガラスフィルムの製造方法およびガラスフィルムの剥離方法
 本発明は、ガラスフィルムの製造方法およびガラスフィルムの剥離方法に関し、より詳しくは、電子デバイス等の製造に際して用いられるガラスフィルム積層体において、支持ガラスからガラスフィルムを剥離するための技術に関する。
 省スペース化の観点から、従来普及していたCRT型ディスプレイに替わり、近年は液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイが普及している。
 そして、これらのフラットパネルディスプレイにおいては、更なる薄型化へのニーズが存在している。
 特に、有機ELディスプレイは、湾曲させたり、巻き取ったりすることが可能であるという特性を有しており、持ち運びを容易にするとともに、平面だけでなく曲面にも使用することが可能であるため、様々な用途への活用が期待されている。
 また、平面だけでなく曲面への使用が期待されているのはディスプレイには限られず、例えば、自動車の車体表面や建築物の屋根、柱や外壁等、曲面を有する物体の表面に太陽電池を形成したり、有機EL照明を形成したりすることができれば、その用途が広がることとなる。
 従って近年、これらのデバイスに使用される基板やカバーガラスには、更なる薄化と高い可撓性を実現することへのニーズが高まっている。
 有機ELディスプレイに使用される発光体は、酸素や水蒸気等の気体と反応することにより劣化する。従って、有機ELディスプレイに使用される基板には高いガスバリア性が求められるため、主にガラス基板が使用されている。
 しかしながら、ガラス基板は、樹脂フィルムとは異なり可撓性が低く、ガラス基板を曲げることによりガラス基板表面に生じた引っ張り応力が破壊応力を上回ると破損に至るため、可撓性が要求されるような用途にはガラス基板を採用することが困難であった。
 ガラス基板に可撓性を付与するには、ガラス基板を薄化するのが有効である。
 下記特許文献1には、厚み200μm以下のガラスフィルムが提案されており、斯かる極めて薄いガラスフィルムは、例えば、有機ELディスプレイへの使用が可能な程度の可撓性を有している。
 フラットパネルディスプレイや太陽電池等の電子デバイスに使用されるガラス基板には、加工処理や洗浄処理等、様々な電子デバイス製造関連の処理(以下、電子デバイス製造関連処理と呼ぶ)がなされる。
 ところが、これら電子デバイスに使用されるガラス基板を薄化すると、厚み200μm以下のガラスフィルムは可撓性に富むため、処理を行う際に位置決めを行い難く、パターニング時にずれ等が生じるという問題がある。加えて、変形により局所的に大きな応力が加わると、ガラスは脆性材料であるため破損に至り、上述した各種電子デバイス製造関連処理を行う際に、取扱いが大変困難であるという問題がある。
 ガラスフィルムの取り扱い性を向上させるために、下記特許文献2では、支持ガラス上にガラスフィルムを積層させたガラスフィルム積層体が提案されている。
 これによれば、単体では剛性の低いガラスフィルムを用いても、支持ガラスの剛性が高いため、処理の際にガラスフィルム積層体全体として位置決めが容易となる。
 そして、処理終了後にガラスフィルムを支持ガラスから剥離することによって、電子デバイス製造関連処理を施したガラスフィルム(即ち、電子デバイス)を得ることが可能となっている。
 またこの場合、ガラスフィルム積層体の厚みを従来のガラス基板の厚みと同一とすれば、従来のガラス基板用の電子デバイス製造ラインを共用して、電子デバイスを製造することも可能になる。
 一方、前記した様々な電子デバイス製造関連処理には、透明導電膜の成膜処理や封止処理等、加熱を伴うものが存在している。
 加熱を伴う処理を行った場合、直接積層している支持ガラスとガラスフィルムとの固着力が増すため、支持ガラスからガラスフィルムを剥離することが困難になるという問題が特に生じる。
 この問題を解決するために、下記特許文献3では、ガラスフィルムの接触面と支持ガラスの接触面のうち少なくとも一方に、表面粗さが相対的に大きい領域と小さい領域を設けたガラスフィルム積層体が提案されている。
 また、下記特許文献4では、支持ガラスがガラスフィルムから食み出して積層され、支持ガラスには、ガラスフィルムの少なくとも一つのコーナー部を支持ガラスから露出させる剥離開始部を支持ガラスの端辺から離間して設けたガラスフィルム積層体が提案されている。
 さらに、下記特許文献5では、支持ガラスがガラスフィルムから食み出して積層され、支持ガラスの端片には薄肉部が設けられ、ガラスフィルムの端片の少なくとも一部が、薄肉部上で支持ガラスから離間しているガラスフィルム積層体が提案されている。
 そして、このような特許文献3~特許文献5に係るガラスフィルム積層体では、ガラスフィルム積層体に対して加熱を伴う電子デバイス製造関連処理を行ったとしても、電子デバイス製造関連処理後に支持ガラスからガラスフィルムを剥離することが可能となっている。
特開2010-132531号公報 国際公開第2011/048979号 特開2011-162432号公報 特開2012-30404号公報 特開2012-131664号公報
 しかしながら、特許文献3~特許文献5に係るガラスフィルム積層体を用いた場合であっても、ガラスフィルムと支持ガラスの固着力が強力であるために、剥離に時間を要し、また力加減によっては、剥離の際にガラスフィルムを破損してしまう場合があった。
 従って、ガラスフィルムの剥離作業の効率化および歩留まりの改善を図るべく、ガラスフィルム積層体から支持ガラスとガラスフィルムとを短時間で破損することなく剥離することができる技術の開発が望まれている。
 本発明は、上述したような従来技術の問題点を解決するためになされたものであって、支持ガラスからガラスフィルムを短時間で破損することなく剥離可能とするガラスフィルムの製造方法およびガラスフィルムの剥離方法を提供することを目的とする。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、本願における第1の発明は、電子デバイス製造関連処理前のガラスフィルムであるガラスフィルム基材と支持ガラスとを積層してガラスフィルム積層体を作製する第1の工程と、前記ガラスフィルム積層体における前記ガラスフィルム基材に電子デバイス製造関連処理を行う第2の工程と、前記電子デバイス製造関連処理後の前記ガラスフィルム積層体を、前記ガラスフィルム基材に前記電子デバイス製造関連処理を施して得たガラスフィルムと前記支持ガラスとに分離する第3の工程と、を有するガラスフィルムの製造方法であって、前記第3の工程において、直線状に形成された刃先を有し、該刃先に形成された噴出口から流体を噴出可能に構成される楔体を用いて、前記ガラスフィルム積層体における前記ガラスフィルムと前記支持ガラスとの界面に、前記刃先側から前記楔体を挿入し、その後、前記噴出口から流体を噴出させつつ、前記刃先を前記界面における未剥離部側に変位させるように前記ガラスフィルム積層体と前記楔体の相対位置を変更して、前記支持ガラスから前記ガラスフィルムを剥離する、ことを特徴とする。
 本願における第2の発明は、前記流体は、エアである、ことを特徴とする。
 本願における第3の発明は、前記流体は、水を含有する、ことを特徴とする。
 尚、ここで言う「水」には、水蒸気も含まれるものとする(以下同じ)。
 本願における第4の発明は、前記電子デバイス製造関連処理は、前記ガラスフィルム基材に対する加熱を伴う、ことを特徴とする。
 本願における第5の発明は、前記ガラスフィルム基材の厚みは、0.2mm以下である、ことを特徴とする。
 本願における第6の発明は、前記楔体の厚みは、3.0mm以下である、ことを特徴とする。
 本願における第7の発明は、前記楔体の刃先の角度は、5度以下である、ことを特徴とする。
 本願における第8の発明は、ガラスフィルムと支持ガラスとを積層して作製したガラスフィルム積層体から前記ガラスフィルムを剥離するガラスフィルムの剥離方法であって、直線状に形成された刃先を有し、該刃先に形成された噴出口から流体を噴出可能に構成される楔体を用いて、前記ガラスフィルム積層体における前記ガラスフィルムと前記支持ガラスとの界面に、前記刃先側から前記楔体を挿入し、その後、前記噴出口から流体を噴出させつつ、前記刃先を前記界面における未剥離部側に変位させるように前記ガラスフィルム積層体と前記楔体の相対位置を変更して、前記支持ガラスから前記ガラスフィルムを剥離する、ことを特徴とする。
 本発明の効果として、以下に示すような効果を奏する。
 本願における第1の発明によれば、ガラスフィルムおよび支持ガラスと楔体との間に流体の層を形成することにより、ガラスフィルムおよび支持ガラスと楔体とが接触しないようにしてガラスフィルムの破損を防止しつつ、流体で界面に均一な圧力を作用させることにより、短時間で効率良く支持ガラスからガラスフィルムを剥離することができる。
 本願における第2の発明によれば、流体をエアとすることで、流体が界面に衝突するときの勢いが過度に高まるのを防止して、ガラスフィルムおよび支持ガラスの破損を確実に防止することができる。
 本願における第3の発明によれば、流体に含まれる水分によって、加水分解反応を促進して、ガラスフィルムと支持ガラス間の固着力を弱めて、支持ガラスからガラスフィルムを短時間で効率良く剥離することができる。
 本願における第4の発明によれば、加熱を伴う電子デバイス製造関連処理により、ガラスフィルムと支持ガラスの固着力が増大しているガラスフィルム積層体を対象とする場合であっても、ガラスフィルムの破損を防止しつつ、短時間で効率良くガラスフィルムを剥離することができる。
 本願における第5の発明によれば、厚みが極めて小さいガラスフィルムであっても、破損することなく剥離することができる。
 本願における第6の発明によれば、楔体の厚みを小さくすることにより、剥離時におけるガラスフィルムの浮き上がりを抑制し、剥離時にガラスフィルムに与えるダメージを小さくすることによって、ガラスフィルムの破損を確実に防止することができる。
 本願における第7の発明によれば、楔体の刃先の角度を小さくすることにより、剥離時におけるガラスフィルムの曲率および曲率変化を抑制し、剥離時にガラスフィルムに与えるダメージを小さくすることによって、ガラスフィルムの破損を確実に防止することができる。
 本願における第8の発明によれば、ガラスフィルムおよび支持ガラスと楔体との間に流体の層を形成することにより、ガラスフィルムおよび支持ガラスと楔体とが接触しないようにしてガラスフィルムの破損を防止しつつ、流体で界面に均一な圧力を作用させることにより、短時間で効率良く支持ガラスからガラスフィルムを剥離することができる。
本発明の一実施形態に係るガラスフィルムの製造方法を示す側面視模式図。 ガラスフィルムの作製方法(オーバーフローダウンドロー法)を示す側面視断面模式図。 ガラスフィルム積層体の作製状況を示す斜視模式図。 剥離開始部の形成状況を示す図、(a)支持ガラスに凹部を形成する場合、(b)支持ガラスに薄板部を形成する場合。 支持ガラス付電子デバイスを示す側面視模式図。 本発明の一実施形態に係るガラスフィルムの製造方法に用いる楔体を示す模式図、(a)全体斜視模式図、(b)側面視断面模式図。 楔体を示す模式図、(a)楔体の構成部品を示す平面視模式図、(b)楔体の重ね合わせ状況を示す平面視模式図。 楔体を用いたガラスフィルムの剥離状況を示す側面視断面模式図。 ガラスフィルムと支持ガラスの接合メカニズムを説明するための模式図、(a)水酸基同士の水素結合の状況を示す図、(b)水分子を介在する水素結合の状況を示す図、(c)加熱に伴う脱水反応による共有結合の増強状況を示す図。 本発明の一実施形態に係るガラスフィルムの製造方法に用いる剥離治具を示す模式図、(a)第一の実施形態に係る剥離治具(押圧ローラを備える態様)を示す模式図、(b)第二の実施形態に係る剥離治具(ファンを備える態様)を示す模式図。 本発明の一実施形態に係るガラスフィルムの製造方法に用いる第三の実施形態に係る剥離治具(楔体を変位可能に構成する態様)を示す模式図。 本発明の一実施形態に係るガラスフィルムの製造方法に用いる剥離治具の細部を示す模式図、(a)ガラスフィルムの剥離始端側の端部に張力をかけている状態を示す図、(b)ガラスフィルムの剥離終端側の端部を押圧している状態を示す図。 本発明の一実施形態に係るガラスフィルムの製造方法に用いる第四の形態に係る剥離治具(ガラスフィルム積層体を変位可能および回転可能に構成する形態)を示す模式図、(a)全体模式図、(b)ガラスフィルム積層体の載置部の回転状況を示す模式図。 本発明の一実施形態に係るガラスフィルムの製造方法に用いる剥離治具による剥離状況を示す図、(a)剥離開始部に対する楔体の挿入状況を示す模式図、(b)剥離開始部の拡大状況を示す模式図。 本発明の一実施形態に係るガラスフィルムの製造方法に用いる剥離治具による剥離状況を示す図、(a)剥離開始部の拡大終了時の状況を示す模式図、(b)剥離開始部を拡大したガラスフィルム積層体に対する楔体の配置状況を示す模式図。 本発明の一実施形態に係るガラスフィルムの製造方法に用いる剥離治具による剥離状況を示す図、(a)拡大した剥離開始部からの剥離の進行状況を示す模式図、(b)ガラスフィルムの剥離完了時の状況を示す模式図。
 以下、本発明に係るガラスフィルムの製造方法の好適な実施形態について、図面を参照しつつ説明する。
 本発明に係るガラスフィルムの製造方法は、図1に示すように、ガラスフィルム11と支持ガラス12とを積層してガラスフィルム積層体1を作製する第1の工程と、ガラスフィルム11への加熱を伴う電子デバイス製造関連処理を行うことでガラスフィルム積層体1のガラスフィルム11上に素子51を形成し、カバーガラス2で素子51を封止することで支持ガラス付電子デバイス3を作製する第2の工程と、支持ガラス付電子デバイス3のガラスフィルム11と支持ガラス12との界面13に楔体4を挿入することで電子デバイス5を支持ガラス12から剥離する第3の工程と、を備えている。
 また、本実施形態では、ガラスフィルム11と支持ガラス12の相互に接触する側の表面粗さRaを夫々2.0nm以下としている。
 ガラスフィルム11としては、ケイ酸塩ガラスが用いられ、好ましくはシリカガラス、ホウケイ酸ガラスが用いられ、最も好ましくは無アルカリガラスが用いられる。
 これは、ガラスフィルム11にアルカリ成分が含有されていると、表面において陽イオンの脱落が発生し、いわゆるソーダ吹きの現象が生じ、構造的に粗となるからである。この場合、ガラスフィルム11を湾曲させて使用していると、経年劣化により粗となった部分から破損する可能性がある。
 尚、ここでいう無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分が1000ppm以下のガラスのことである。
 本発明で用いる無アルカリガラスのアルカリ成分の含有量は、好ましくは500ppm以下であり、より好ましくは300ppm以下である。
 ガラスフィルム11の厚みは、好ましくは5~200μm、より好ましくは5~100μmである。
 このようにガラスフィルム11の厚みをより薄くすることで、適切な可撓性を付与することができる。
 厚みをより薄くしたガラスフィルム11は、ハンドリング性が困難で、かつ、位置決めミスやパターニング時の撓み等の問題が生じやすいが、後述する支持ガラス12を使用することで、第2の工程で電子デバイス製造関連処理等を容易に行うことができる。
 尚、ガラスフィルム11の厚みが5μm未満であると、ガラスフィルム11の強度が不足がちになり、支持ガラス12からガラスフィルム11を剥離し難くなるおそれがある。
 支持ガラス12は、ガラスフィルム11と同様、ケイ酸塩ガラス、シリカガラス、ホウケイ酸ガラス、無アルカリガラス等が用いられる。
 支持ガラス12については、ガラスフィルム11との30~380℃における熱膨張係数の差が、5×10-7/℃以内のガラスを使用することが好ましい。
 これにより、電子デバイス製造関連処理の際に熱処理を伴ったとしても、膨張率の差による熱反りやガラスフィルム11の割れ等を生じ難くすることができ、ガラスフィルム積層体1の安定した積層状態を維持することが可能になる。
 そして、膨張率の差を抑える観点から、支持ガラス12とガラスフィルム11とは、同一の組成を有するガラスを使用することが最も好ましい。
 支持ガラス12の厚みは、400μm以上であることが好ましい。支持ガラス12の厚みが400μm未満であると、支持ガラス12を単体で取り扱う場合に、強度の面で問題が生じるおそれがある。支持ガラス12の厚みは、400~700μmであることが好ましく、500~700μmであることが最も好ましい。
 これにより、支持ガラス12でガラスフィルム11を確実に支持することが可能となるとともに、支持ガラス12からガラスフィルム11を剥離する際に生じ得るガラスフィルム11の破損を効果的に抑制することが可能となる。
 尚、電子デバイス製造関連処理時に、図示しないセッター上に、ガラスフィルム積層体1を載置する場合は、支持ガラス12の厚みは400μm未満(例えば300μm等、ガラスフィルム11と同一の厚み)でも良い。
 本発明に使用されるガラスフィルム11および支持ガラス12は、ダウンドロー法によって成形されていることが好ましく、オーバーフローダウンドロー法によって成形されていることがより好ましい。
 特に、図2に示すオーバーフローダウンドロー法は、成形時にガラス板の両面が、成形部材と接触しない成形法であり、得られたガラス板の両面(透光面)には傷が生じ難く、研磨しなくても高い表面品位を得ることができる。無論、本発明に使用されるガラスフィルム11および支持ガラス12は、フロート法やスロットダウンドロー法、ロールアウト法、アップドロー法、リドロー法等によって成形されたものであってもよい。
 図2に示すオーバーフローダウンドロー法において、断面が楔型の成形体60の下端部61から流下した直後のガラスリボンGは、冷却ローラ62・62によって幅方向の収縮が規制されながら下方へ引き伸ばされて所定の厚みまで薄くなる。次に、前記所定厚みに達したガラスリボンGを図示しない徐冷炉(アニーラ)で徐々に冷却し、ガラスリボンGの熱歪を除き、ガラスリボンGを所定寸法に切断することにより、ガラスフィルム11および支持ガラス12が夫々成形される。
 図1および図3に示す通り、本発明に係るガラスフィルムの製造方法における第1の工程は、相互に接触する側の表面粗さRaが夫々2.0nm以下であるガラスフィルム11と支持ガラス12とを積層してガラスフィルム積層体1を作製する工程である。
 ガラスフィルム11の支持ガラス12との接触面11aと、支持ガラス12のガラスフィルム11との接触面12aの表面粗さRaが2.0nmを超えると、接触面11aと接触面12aの密着性が低下し、ガラスフィルム11と支持ガラス12とを接着剤無しでは強固に積層することが困難となるおそれがある。
 ガラスフィルム11と支持ガラス12とを接着剤無しで強固に積層するためには、本発明において使用するガラスフィルム11および支持ガラス12の夫々の接触面11a、12aの表面粗さRaは、夫々1.0nm以下であることが好ましく、0.5nm以下であることがより好ましく、0.2nm以下であることが最も好ましい。
 一方、図1および図3に示すガラスフィルム11の有効面11bの表面粗さは特には限定されないが、有効面11bには、後述する第2の工程において成膜等の電子デバイス製造関連処理を行うことから、表面粗さRaが2.0nm以下であることが好ましく、1.0nm以下がより好ましく、0.5nm以下がさらに好ましく、0.2nm以下が最も好ましい。支持ガラス12の搬送面12bの表面粗さは、特には限定されない。
 そして、第1の工程で作製されるガラスフィルム積層体1においては、図4(a)(b)に示すように、ガラスフィルム11の端部を剥離する際の起点となる剥離開始部14を設けるのが好ましい。
 剥離開始部14としては、図4(a)に示すように、ガラスフィルム11の少なくとも一つのコーナー部に対応させて、支持ガラス12に凹部14aを設けて、該凹部14aにおいてガラスフィルム11のコーナー部と支持ガラス12を離間させる態様のものを採用することができる。
 また、剥離開始部14としては、図4(b)に示すように、支持ガラス12の少なくとも一つの端辺に薄肉部14bを設けて、ガラスフィルム11の端辺の少なくとも一部が、薄肉部14b上で支持ガラス12から離間させる態様のものを採用することもできる。
 尚、剥離開始部14の態様は、図4(a)(b)に示す態様に限定されず、界面13に楔体4を挿入する手掛かりとなるものであれば、種々の態様を採用することができる。
 また、支持ガラス12上にガラスフィルム11を積層する第1の工程は、減圧下で行っても良い。これにより、ガラスフィルム11と支持ガラス12とを積層させた際に生じる気泡を低減させることができる。
 本発明に係るガラスフィルムの製造方法における第2の工程は、加熱を伴う電子デバイス製造関連処理を行うことで、図5に示す通り、第1の工程で作製されたガラスフィルム積層体1のガラスフィルム11の有効面11b上に素子51を形成し、封止基板でガラスフィルム11の有効面11b上に形成された素子51を封止することで支持ガラス付電子デバイス3を作製する工程である。
 第2の工程における加熱を伴う電子デバイス製造関連処理としては、例えば、CVD法やスパッタリング等による成膜処理等が挙げられる。
 ガラスフィルム11の有効面11b上に形成される素子としては、液晶素子、有機EL素子、タッチパネル素子、太陽電池素子、圧電素子、受光素子、リチウムイオン2次電池等の電池素子、MEMS素子、半導体素子等が挙げられる。
 そして、素子51の封止に用いる封止基板としては、前述のガラスフィルム11と同様、ケイ酸塩ガラス、シリカガラス、ホウケイ酸ガラス、無アルカリガラス等からなるカバーガラス2が用いられる。
 カバーガラス2については、ガラスフィルム11との30~380℃における熱膨張係数の差が、5×10-7/℃以内のガラスを使用することが好ましい。
 これにより、作製された電子デバイス5の周辺環境の温度が変化したとしても、膨張率の差による熱反りやガラスフィルム11およびカバーガラス2の割れ等が生じ難く、破損し難い電子デバイス5とすることが可能となる。
 そして、膨張率の差を抑える観点から、カバーガラス2とガラスフィルム11とは、同一の組成を有するガラスを使用することが最も好ましい。
 カバーガラス2の厚みは、好ましくは5~200μm、より好ましくは5~100μmである。これによりカバーガラスの厚みをより薄くして、適切な可撓性を付与することができる。カバーガラス2の厚みが5μm未満であると、カバーガラス2の強度が不足がちになるおそれがある。
 第2の工程で作製される支持ガラス付電子デバイス3の一例として、図5に有機ELパネルを示す。
 ガラスフィルム11の有効面11b上にCVD法やスパッタリング等の公知の成膜方法により、陽極層52a、正孔輸送層52b、発光層52c、電子輸送層52d、陰極層52eの順に積層して素子51の一例である有機EL素子52の形成を行う。
 その後に、公知のレーザー封止等を使用してカバーガラス2とガラスフィルム11とを接着することにより、有機EL素子52を封止し、支持ガラス付電子デバイス3(ここでは支持ガラス付有機ELパネル)を作製する。
 尚、図5に示す形態では、カバーガラス2とガラスフィルム11とを直接接着しているが、適宜公知のガラスフリットやスペーサ等を使用してカバーガラス2とガラスフィルム11とを接着しても良い。
 本発明に係るガラスフィルムの製造方法における第3の工程は、図1に示す通り、支持ガラス付電子デバイス3のガラスフィルム11と支持ガラス12との界面13に、楔体4を挿入することにより、電子デバイス5を支持ガラス12から剥離する工程である。
 また、界面13に楔体4を挿入するときには、楔体4から流体41を噴出させながら行うようにしている。
 即ち、ガラスフィルム積層体1の一実施態様が支持ガラス付デバイス3であり、また、ガラスフィルム11の一実施態様が電子デバイス5であり、以下の説明におけるガラスフィルム積層体1と支持ガラス付デバイス3、および、以下の説明におけるガラスフィルム11と電子デバイス5は、それぞれ相互に読み替えることが可能である。
 尚、第3の工程で界面13に楔体4を挿入するときには、剥離開始部14(図4(a)(b)参照)を起点とする。つまり、剥離開始部14における界面13から楔体4の挿入を開始する。
 また、剥離開始部14が形成されていない場合については、支持ガラス12とガラスフィルム11との界面13に、楔体4や図示しない樹脂シート等を挿入することで、ガラスフィルムの1辺を支持ガラス12から浮かして、剥離の起点としても良い。
 ここで、楔体4について説明をする。
 尚、ここで言う「楔体」とは、該楔体の挿入方向における形状が、刃先から根元に向けてその厚みが単調増加する形状のもののみならず、刃先から根元に向けてその厚みが単調増加した後に、所定の位置からは一定の厚みとなるような形状をも含む概念としている。
 図6(a)に示す如く、楔体4は、板厚方向視において矩形(長方形)である板状の部材であり、一側の長辺部に向けて先下がりとなる傾斜部4aを有し、該傾斜部4aの下端部において直線状の刃先4bが形成された略刀刃状の形状を有している。
 尚、図6(a)では、刃先4bは、直線状に形成されているが、刃先4bの形状はこれには限定されず、緩やかな凹曲線状や凸曲線状に形成されていても良い。
 また、図6(a)(b)に示す如く、楔体4は、刃先4bにおいて、板厚方向および長辺方向に直交する方向に向けて開口された複数の噴出口4c・4c・・・を有しており、各噴出口4c・4c・・・は、楔体4の上面に形成された流体41を供給するための孔である供給口4d・4dと連通している。
 尚、噴出口4cは、本実施形態に示すように複数に分割されている態様だけでなく、全体が一つの開口部となっているスリット状の態様等を採用することもできる。
 そして楔体4は、図6(b)に示すように、図示しない流体供給手段によって供給口4d・4dから流体41(本実施形態ではエア)を供給することによって、各噴出口4c・4c・・・から流体41を噴出させることができるように構成されている。
 尚、流体41としてエアを採用する場合には、流体供給手段として、コンプレッサー等のエア源に接続されたエア配管を採用することができる。
 図7(a)(b)に示す如く、楔体4は、下方から順に、底部材42、櫛状部材43、ヘッダー部材44、蓋部材45、の4つの部材を重ね合わせて、ボルト・ナット等の締結部材を用いて一体化することによって、刀刃状に構成されている。
 櫛状部材43は、平板状の部材に対して、複数の略U字状の凹部43a・43a・・・を互いに平行に形成することで櫛状とした部材である。
 底部材42は、平板状の部材であり、櫛状部材43の下に重ねて配置することで、各凹部43a・43a・・・の下方を塞ぐように構成されている。
 ヘッダー部材44は、平板状の部材に対して、板厚方向に貫通する孔である空隙部44aを形成してなる部材であり、ヘッダー部材44を櫛状部材43の上に重ねて配置することで、空隙部44aによって、櫛状部材43に形成された各凹部43a・43a・・・を連通するとともに、該ヘッダー部材44の空隙部44a以外の部位で、凹部43a・43a・・・の上方を塞ぐように構成されている。
 蓋部材45は、平板状の部材であり、ヘッダー部材44の上に重ねて配置することで、空隙部44aの上方を塞ぐように構成されている。
 また、蓋部材45には、ヘッダー部材44上に配置した状態で空隙部44aに連通する位置に供給口4d・4dが形成されており、該供給口4d・4dを通じて、楔体4の内部に流体41を供給することができるように構成されている。
 そして、楔体4は、各凹部43a・43a・・・の開放端部が、噴出口4c・4c・・・として楔体4の刃先4bに現れるように構成され、供給口4d・4dを通じて空隙部44aに供給された流体41を各噴出口4c・4c・・・から噴出させることができるように構成されている。
 そして楔体4は、傾斜部4aの刃先4bにおける厚みを小さくする(即ち、刃先4bを尖らせる)ことにより、ガラスフィルム積層体1における界面13および剥離開始部14に対して、楔体4を容易に挿入することができるように構成されている。
 また楔体4の厚みを薄くすることによって、界面13に楔体4を挿入したときのガラスフィルム11の浮き上がり量を小さく抑えるようにしており、これにより、剥離時においてガラスフィルム11に与えるダメージを低減するようにしている。
 本発明に係るガラスフィルムの製造方法において用いる楔体4の厚みは、3.0mm以下とするのが好ましい。
 また、楔体4は、その刃先4bにおける刃の角度を5度以下とするのが好ましく、本実施形態では、楔体4では、刃先4bにおける刃の角度を5度以下としている。
 即ち、本発明に係るガラスフィルムの製造方法では、その製造方法に用いる楔体4の厚みが3.0mm以下であることを特徴としている。
 そして、このように楔体4の厚みを小さくすることによって、剥離時におけるガラスフィルム11の浮き上がりを抑制し、ガラスフィルム11に与えるダメージを小さくして、ガラスフィルム11が破損されるのを確実に防止することが可能になっている。
 また、本発明に係るガラスフィルムの製造方法では、その製造方法に用いる楔体4の刃先4bの角度を5度以下とすることを特徴としている。
 そして、このように楔体4の刃先4bの角度を小さくすることによって、剥離時におけるガラスフィルム11の曲率および曲率変化を抑制し、ガラスフィルム11に与えるダメージを小さくして、ガラスフィルム11が破損されるのを確実に防止することが可能になっている。
 次に、第3の工程における界面13に対する楔体4の挿入状況について説明をする。
 図8に示す如く、本発明に係るガラスフィルムの製造方法では、第3の工程において、刃先4bに形成した各噴出口4c・4c・・・から流体41を噴出させながら、該楔体4を支持ガラス付電子デバイス3(即ち、ガラスフィルム積層体1)における電子デバイス5(即ち、ガラスフィルム11)と支持ガラス12の界面13に挿入する構成としている。
 そして、本実施形態では、流体41としてエアを採用している。
 この状態から、楔体4を固定しておいて、ガラスフィルム積層体1を矢印αの方向に変位させることで、楔体4の刃先4bを未剥離部の方向に相対変位させて、ガラスフィルム11の剥離を進展させる。
 また、ガラスフィルム積層体1を固定しておいて、楔体4を矢印βの方向に変位させることで、楔体4の刃先4bを未剥離部の方向に相対変位させてもよく、あるいは、ガラスフィルム積層体1を矢印αの方向に変位させ、かつ、楔体4を矢印βの方向に変位させて、楔体4の刃先4bを未剥離部の方向に相対変位させてもよい。
 各噴出口4c・4c・・・から噴出された流体41は、逃げ場を求めて各方向に拡散し、該流体41の噴出方向に対する左右や後方に存在する開放部に向けて流れ、ガラスフィルム11と支持ガラス12によって囲まれた空間から排出される。
 そして、ガラスフィルム11と支持ガラス12によって囲まれた空間内の圧力を流体41によって高めるとともに、該流体41を界面13に直接当てて衝撃力を付与することによって、支持ガラス12からガラスフィルム11を剥離する構成としている。
 さらに詳述すると、各噴出口4c・4c・・・から流体41が噴出されたとき、楔体4の上面および下面には、流体41の層が形成され、楔体4とガラスフィルム11および支持ガラス12との間における接触が抑制されるようにしている。
 これにより、界面13に対して楔体4をスムーズに挿入することが可能になるとともに、ガラスフィルム11および支持ガラス12に対する楔体4の接触機会を低減させて、ガラスフィルム11および支持ガラス12の破損を防止するようにしている。
 ここで、楔体4を用いた場合の剥離手順について説明をする。
 楔体4を用いてガラスフィルム11の剥離を行う場合、ガラスフィルム積層体1に形成された剥離開始部14を起点(手掛かり)として、まず楔体4の刃先4bをガラスフィルム11と支持ガラス12の界面13に挿入する。
 尚、このときの挿入動作は、ガラスフィルム積層体1を固定しておき、楔体4を変位させることで、界面13に楔体4を挿入する態様、あるいは、楔体4を固定しておき、ガラスフィルム積層体1を変位させることで、界面13に楔体4を挿入する態様のいずれであってもよい(以下同じ)。
 次に、さらに界面13に対して楔体4を挿入して、ガラスフィルム積層体1の選択した1辺の全長に亘って、刃先4bが挿入された状態とする。
 そして、その刃先4bが全長に亘って挿入された1辺から、該1辺の対辺に刃先4bが接近するように、刃先4bの各噴出口4c・4c・・・から流体41を噴出させつつ、楔体4あるいはガラスフィルム積層体1を変位させて、前記対辺に刃先4bが接するまで当該変位を継続させることで、ガラスフィルム11と支持ガラス12を剥離するようにしている。
 本発明に係るガラスフィルムの製造方法では、第3の工程において、楔体4を用いてガラスフィルム11を剥離する構成としており、このような構成により、非常に薄い(厚みが200μm以下)ガラスフィルム11であっても、破損することなく、短時間で効率よく剥離することを可能にしている。
 また、本発明に係るガラスフィルムの製造方法においては、ガラスフィルム11の厚みが、200μm以下であっても、良好に剥離することができる点に特徴を有しており、本発明に係るガラスフィルムの製造方法によれば、厚みが極めて小さいガラスフィルム11であっても、破損することなく良好に剥離することができる。
 さらに、本発明に係るガラスフィルムの製造方法においては、噴出口4cから噴出させる流体41が、エアであることを特徴としており、流体41が界面13に衝突するときの勢いが過度に高まるのを防止して、ガラスフィルム11および支持ガラス12の破損を確実に防止することを可能にしている。
 尚、本実施形態では、噴出口4c・4c・・・から噴出させる流体41をエア(空気)としているが、流体41としては、水を含有するエアを用いることがより好ましい。
 そして、ここで言う「水」は、水蒸気を含む概念である(以下同じ)。
 また、流体41としては、水を含むエアが最も好適であるが、エア以外の気体を用いたり、液体を用いたり、あるいは液体と気体の混合体(気液混合体)を用いてもよい。
 図8では、ガラスフィルム11と支持ガラス12との界面13に、水を含む流体41(より詳しくは、水を含むエア)を吹き付けて、ガラスフィルム11と支持ガラス12との剥離を行っている。
 これにより、加熱を伴う電子デバイス製造関連処理を行ったとしても、より円滑にガラスフィルム11と支持ガラス12とを剥離することが可能となる。
 ガラスフィルム11と支持ガラス12とが水を含む流体41を吹き付けることでとりわけ良好に剥離できるのは、詳細には解明されていないが、以下の理由によると推察されている。
 ガラスフィルム11と支持ガラス12の各接触面11a・12aの表面粗さRaが2.0nm以下となるように平滑化すると、これらの2つの平滑なガラス基板を密着させた場合にガラス基板同士が接着剤なしに固着してガラスフィルム積層体1となる。この現象は次のメカニズムによると推察される。
 図9(a)に示すように、ガラスフィルム11の表面(接触面11a)と支持ガラス12の表面(接触面12a)に形成された水酸基同士の水素結合により引き付けあうと考えられる。あるいは、図9(b)のように、ガラスフィルム11の表面の水酸基と支持ガラス12の表面の水酸基とが、ガラスフィルム11と支持ガラス12の界面13に存在する水分子が介在した状態で、水素結合により結合することにより、ガラスフィルム11と支持ガラス12とが互いに固着することもあると考えられている。
 このような状態下で、ガラスフィルム積層体1が加熱されると、図9(c)に示す通り、ガラスフィルム11と支持ガラス12の界面13において、
 Si-OH + HO-Si → Si-O-Si + H
の脱水反応が起こり、共有結合が増えることでガラスフィルム11と支持ガラス12の固着力が強くなると考えられる。
 上述の電子デバイスの作製工程では、成膜処理等の加熱を伴うデバイス製造関連処理工程を有するため、少なくとも100℃以上の加熱工程を伴って製造される。
 例えば、液晶ディスプレイや有機ELディスプレイのTFT作製工程では、アモルファスシリコンTFTの場合300℃以上に加熱され、低温ポリシリコンTFTの場合、少なくとも400℃以上に加熱される。インジウム・ガリウム・亜鉛・酸素から構成されるTFTの場合、少なくとも300℃以上に加熱される。また、タッチセンサー基板の製造プロセスでは少なくとも150℃以上に加熱される。
 ガラスフィルム11と支持ガラス12との固着力は、加熱温度が高くなるに連れて、また加熱の保持時間が長くなるにつれて、より強固なものとなり、支持ガラス12からのガラスフィルム11の剥離工程でガラスフィルム11が破損してしまい、ガラスフィルム11の剥離の成功確率が低下することが、本発明者らの研究により判明していた。
 そこで本発明者らは、加熱を伴った製造関連処理を経た後のガラスフィルム11と支持ガラス12を破壊することなく剥離するための方法を確立するべく研究をし、鋭意努力を重ねた結果、加熱を伴った電子デバイス製造関連処理を経たガラスフィルム積層体1に、ガラスフィルム11と支持ガラス12との界面13に少なくとも水を含む液体を付与した状態で剥離を行うと、ガラスフィルム11と支持ガラス12とを容易に剥離することができることを見出して本発明に至った。
 ガラスフィルム11と支持ガラス12との界面13に水を含む流体41を付与すると、
 Si-O-Si + HO → Si-OH + HO-Si
の加水分解反応を促進し、ガラスフィルム11と支持ガラス12とを剥離し易くすることができると考えられている。
 そして、本実施形態に示すように、楔体4の噴出口4cから噴出させる流体41として水を含むエアを選択することにより、上述の水による加水分解反応の効果と流体41の勢いによる加圧効果が相まって、効率的に剥離が起こるため、加熱を伴った電子デバイス製造関連処理を経た後のガラスフィルム11と支持ガラス12を破損することなく剥離するための方法として最適である。
 また、この場合におけるエアと水分で構成される流体41の態様は、エアと水の気液混合体や、エアにミスト状の水が含まれている態様、あるいは、エアと蒸気の混合気体等の態様を採用することができる。
 尚、上述したガラスフィルム11と支持ガラス12との界面13におけるSi-OH基の脱水反応および加水分解反応は、Siだけに限られず、Al、In、Sn、Zn、Ti、Zr、Ga等に存在するOH基でも同様に生じていると考えられる。従って、支持ガラス12上に、SiO、SiO、Al、MgO、Y、La、Pr11、Sc、WO、HfO、In、ITO、ZnO、Nd、Ta、CeO、Nb、TiO、TiO、Ti、NiO、ZnO等の無機薄膜を形成した場合であったとしても、同様の効果が期待できる。
 また、支持ガラス12上に無機薄膜を形成することで、加熱を伴う電子デバイス製造関連処理を行ったとしても、ガラスフィルム11と支持ガラス12とを容易に剥離し易くすることができる。特にガラスフィルム11のSiとは異なる原子を有する無機薄膜を支持ガラス12上に形成すると、より効率的にガラスフィルム11と支持ガラス12とを剥離し易くすることができる。
 即ち、本発明に係るガラスフィルムの製造方法においては、噴出口4cから噴出させる流体41が水を含むエアであり、流体41が水を含有していることを特徴としている。
 このような構成によれば、流体41に含まれる水分によって、加水分解反応を促進して、ガラスフィルム11と支持ガラス12間の固着力を弱めて、支持ガラス12からガラスフィルム11を短時間で効率良く剥離することが可能になる。
 第3の工程は、支持ガラス付電子デバイス3の界面13に、図8に示すように、刃先4bの各噴出口4c・4c・・・から流体41を噴出させつつ、楔体4を挿入している。
 そして、図1および図8に示すように、第3の工程により、支持ガラス付電子デバイス3から支持ガラス12を剥離することで、最終的に所望の電子デバイス5を製造することができる。
 尚、本実施形態では、ガラスフィルム11上に素子51(具体的には有機EL素子52)が形成されており、電子デバイス5を構成するガラスフィルム11と、支持ガラス12を剥離する場合を例示しているが、ガラスフィルム11上に素子51が形成されない場合であっても、本発明に係る方法でガラスフィルム11と支持ガラス12を剥離することが可能であるのは言うまでもない。
 換言すれば、加熱を伴う処理が施される前のガラスフィルム11と支持ガラス12を直接積層してガラスフィルム積層体1を作製した場合において、そのガラスフィルム積層体1に加熱を伴う処理を施した場合でも、本発明に係る方法によれば、加熱処理後のガラスフィルム11と支持ガラス12とを剥離して、容易に加熱処理が施されたガラスフィルム11を製造することができる。
 本発明に係る電子デバイスの製造方法は、図1に模式的に示すように、第1の工程、第2の工程、および第3の工程を連続して行うことができる。
 また、本発明に係る電子デバイスの製造方法は、第1の工程から第3の工程まで連続して行う構成には限定されず、例えば、第1の工程後に製造されたガラスフィルム積層体1を梱包、出荷し、別途電子デバイス製造関連処理施設において、第2の工程および第3の工程を行う構成であっても良い。
 勿論、第2の工程後に製造された支持ガラス付電子デバイス3を梱包、出荷して、別途の施設で第3の工程を行うことにより、支持ガラス12からガラスフィルム11を剥離して、電子デバイス5を製造しても良い。
 即ち、本発明の一実施形態に係るガラスフィルムの製造方法は、電子デバイス製造関連処理前のガラスフィルムであるガラスフィルム基材と支持ガラス12とを積層してガラスフィルム積層体1を作製する第1の工程と、ガラスフィルム積層体1におけるガラスフィルム基材に電子デバイス製造関連処理を行う第2の工程と、前記電子デバイス製造関連処理後のガラスフィルム積層体1を、前記ガラスフィルム基材に前記電子デバイス製造関連処理を施して得たガラスフィルム11と支持ガラス12とに分離する第3の工程と、を有するものであって、第3の工程において、直線状に形成された刃先4bを有し、該刃先4bに形成された噴出口4c・4c・・・から流体41を噴出可能に構成される楔体4を用いて、ガラスフィルム積層体1におけるガラスフィルム11と支持ガラス12との界面13に、刃先4b側から楔体4を挿入し、その後、噴出口4c・4c・・・から流体41を噴出させつつ、刃先4bを界面13における未剥離部側に変位させるようにガラスフィルム積層体1と楔体4の相対位置を変更して、支持ガラス12からガラスフィルム11を剥離することを特徴としている。
 そして、本発明に係るガラスフィルムの製造方法によれば、ガラスフィルム11および支持ガラス12と楔体4との間に流体41の層を形成することにより、ガラスフィルム11および支持ガラス12と楔体4との間の接触を抑制してガラスフィルム11の破損を防止しつつ、流体41で界面13に均一な圧力を作用させることにより、短時間で効率良く支持ガラス12からガラスフィルム11を剥離することができる。
 また、本発明に係るガラスフィルムの製造方法では、第2の工程で電子デバイス製造関連処理が行われ、ガラスフィルム11に対する加熱を伴うことを特徴としている。
 そして、本発明に係るガラスフィルムの製造方法によれば、ガラスフィルム11と支持ガラス12の固着力が増大している場合であっても、第3の工程において、ガラスフィルム11の破損を防止しつつ、短時間で効率良くガラスフィルム11を剥離することが可能になる。
 尚、本発明に係るガラスフィルムの製造方法では、第2の工程において加熱を伴う処理が行われる場合を例示しているが、本発明に係るガラスフィルムの剥離方法は、ガラスフィルム11に対して加熱が行われない場合であっても、その剥離方法が有効であることは言うまでもない。
 即ち、本発明の一実施形態に係るガラスフィルムの剥離方法は、ガラスフィルム11と支持ガラス12とを積層して作製したガラスフィルム積層体1からガラスフィルム11を剥離するための剥離方法であって、直線状に形成された刃先4bを有し、該刃先4bに形成された噴出口4c・4c・・・から流体41を噴出可能に構成される楔体4を用いて、ガラスフィルム積層体1におけるガラスフィルム11と支持ガラス12との界面13に、刃先4b側から楔体4を挿入し、その後、噴出口か4c・4c・・・ら流体41を噴出させつつ、刃先4bを界面13における未剥離部側に変位させるようにガラスフィルム積層体1と楔体4の相対位置を変更して、支持ガラス12からガラスフィルム11を剥離することを特徴としている。
 そして、本発明に係るガラスフィルムの剥離方法によれば、ガラスフィルム11に対する加熱の有無を問わず、ガラスフィルム11および支持ガラス12と楔体4との間の接触を抑制してガラスフィルム11の破損を防止しつつ、流体41で界面13に均一な圧力を作用させることにより、短時間で効率良く支持ガラス12からガラスフィルム11を剥離することができる。
 次に、楔体4を用いた剥離方法に用いる剥離治具の構成について説明をする。
 ここではまず、楔体4を固定しておき、楔体4の刃先4bに対してガラスフィルム積層体1の界面13を位置決めしつつ、ガラスフィルム積層体1を変位させて、界面13に楔体4を挿入して支持ガラス12からガラスフィルム11を剥離する態様の剥離治具20について説明をする。
 剥離治具20は、楔体4を用いた本発明に係るガラスフィルムの剥離方法を容易に実現することができる治具であって、図10(a)(b)に示す如く、基台部21、支持部22、押圧部23、セパレータ24等を備えており、基台部21に楔体4を固定した状態で使用される。
 そして、このような剥離治具20は、本発明の一実施形態に係るガラスフィルムの製造方法における第3の工程において、支持ガラス付電子デバイス3から電子デバイス5(ガラスフィルム11)を剥離するために用いられる。
 基台部21は、剥離治具20における主要な骨格部分を構成する板状部材であり、上面部において、ガラスフィルム積層体1を載置するための平面部である載置部21aが形成されている。
 また基台部21は、剥離治具20における楔体4を支持するための部位であり、基台部21により支持される楔体4と載置部21aとの間に所定の隙間を形成する。
 所定の隙間は、ガラスフィルム積層体1を構成する支持ガラス12の厚みに略一致する距離であり、載置部21aにガラスフィルム積層体1を配置することで、楔体4の刃先4bの位置が、界面13の高さに容易に略一致させることができるように構成されている。
 押圧部23は、支持ガラス12から剥離された後のガラスフィルム11を下方に向けて押圧して、剥離後のガラスフィルム11が過度に浮き上がるのを防止するための部位である。
 押圧部23は、例えば、図10(a)に示すように、第一の実施形態に係る剥離治具20(剥離治具20Aと呼ぶ)では、支持部22において回転可能に支持された押圧ローラ23a・23bを備える構成としている。
 剥離治具20Aにおいては、二つの押圧ローラ23a・23bを備えており、第一の押圧ローラ23aは、楔体4の上方に配置され、第二の押圧ローラ23bは、セパレータ24の上方に配置される構成としている。
 セパレータ24は、剥離したガラスフィルム11をその面に沿わせて載置しておくための部位であり、支持脚25を介して、基台部21に固定されている。
 そして、剥離治具20Aでは、剥離したガラスフィルム11を各押圧ローラ23a・23bに接触させることで、ガラスフィルム11が過度に浮き上がるのを防止しつつ、セパレータ24にスムーズに乗り移るように構成している。
 また、図10(b)に示すように、第二の実施形態に係る剥離治具20(剥離治具20Bと呼ぶ)は、ファン23cを備える構成としている。
 ファン23cは、支持部22の角度調整部22aを介して、ガラスフィルム11に対しる送風角度を調整することができるように構成されている。
 そして、剥離治具20Bでは、楔体4が挿入され、剥離した直後のガラスフィルム11をファン23cによる送風で下方に押圧して、過度に浮き上がるのを防止するとともに、さらに剥離したガラスフィルム11が、セパレータ24に乗り移ったときに浮き上がるのを、ファン23cによる送風で押圧して防止する構成としている。
 次に、楔体4を用いた剥離治具のさらに別の実施形態(第三の実施形態)について、説明をする。
 ここでは、ガラスフィルム積層体1を固定しておき、楔体4の刃先4bに対して界面13を位置決めしつつ、楔体4を変位させることにより、界面13に楔体4を挿入して支持ガラス12からガラスフィルム11を剥離する態様の剥離治具30について説明をする。
 図11に示す如く、剥離治具30は、楔体4を用いた本発明に係るガラスフィルムの剥離方法を容易に実現することができる治具であって、図11に示す如く、基台部31、支持部32、保持部33、浮き上がり防止部34等を備えており、支持部32に対して楔体4を固定した状態で使用される。
 基台部31は、剥離治具30における主要な骨格部分を構成する板状部材であり、上面部において、ガラスフィルム積層体1を載置するための平面部である載置部31aが形成されている。
 支持部32は、楔体4を支持するための部位であり、支持部32により支持される楔体4と載置部31aとの間に所定の隙間Aを形成する。
 所定の隙間Aは、ガラスフィルム積層体1を構成する支持ガラス12の厚みに略一致する距離であり、載置部31a上にガラスフィルム積層体1を載置することで、楔体4の刃先4bが、界面13の位置に容易に略一致させることができるように構成されている。
 また支持部32は、基台部31に形成された溝部31bに沿って、刃先4bの形成方向に直交する方向に往復変位することができるように構成されている。
 把持部33bは、剥離されたガラスフィルム11の端部を把持するためのものであり、該把持部33bによって、ガラスフィルム11の端部を拘束する構成としている。
 さらに溝部31bは、載置部31aの面に対して平行に形成しており、支持部32は、載置部31aの面に対して平行な方向に変位することができるように構成されている。
 このような構成により、刃先4bを界面13に挿入した状態で、支持部32を変位させることによって、楔体4を正確に界面13のさらに奥深くに挿入することができる。
 保持部33は、ガラスフィルム11を保持して固定しておくための部位であり、図11に示すように、支持脚33a、把持部33b等を備える構成としている。
 支持脚33aは、基台部31に形成された溝部31cに沿って変位可能な状態で支持されており、把持部33bは、支持脚33aに固定された軸部33cによって、該軸部33c回りに回動可能な状態で支持されている。
 軸部33cは、楔体4の刃先4bの形成方向と平行な向きに支持されており、ガラスフィルム11に対する把持部33bの角度を変更することができるように構成されている。
 尚、保持部33は、図12(a)に示すように、軸部33c周りに回動可能に構成するとともに、ガラスフィルム11の剥離端部を、剥離進行方向に対して逆の向きに、支持ガラス12の接触面12aに対して平行に張力をかけることができるように構成されており、これにより、剥離長さを増大させることができ、速やかな剥離を実現することができる。
 尚、ここで言う剥離長さとは、ガラスフィルム11の剥離端部を、支持ガラス12から持ち上げたときに、自然に剥離が進行する長さを言う。
 また、ガラスフィルム11の剥離端部を、剥離進行方向に対して逆の向きに、支持ガラス12の接触面12aに対して平行に張力をかけるための機構としては、例えば、図12(a)に示すように、バネ33dとスライダ33eを組み合わせて、支持脚33a(図11参照)にバネ33dを接続することによって構成される機構を採用することができる。
 浮き上がり防止部34は、剥離されたガラスフィルム11を所定の位置で保持するための部位であり、複数の吸着パッド34a・34a・34aを備える構成としている。
 そして、吸着パッド34aは、支持ガラス12から剥離され浮き上がってきたガラスフィルム11の高さを規制するとともに、ガラスフィルム11を吸着して、ガラスフィルム11が支持ガラス12に再付着するのを防止する構成としている。
 そして、剥離治具30は、本発明の一実施形態に係るガラスフィルムの製造方法における第3の工程において、支持ガラス付電子デバイス3から電子デバイス5(即ち、ガラスフィルム11)を剥離するために用いられる。
 また、ガラスフィルム11を剥離するときには、図12(b)に示すように、ガラスフィルム11の剥離終了側の端部を、押圧手段35によって押圧しながら剥離を完了することが好ましい。このときの押圧手段35による押圧力は、剥離が生じないほどの強い押圧力ではなく、押圧力に抗して、ガラスフィルム11を剥離させることができる程度の押圧力とする。
 ガラスフィルム11の剥離終了側の端部においては、ガラスフィルム11の剥離が完了するときに、剥離が急に進展する現象がよくみられる。そして、ガラスフィルム11の剥離終了側の端部が急に剥離すると、ガラスフィルム11に急激な曲率変化が生じて破損する場合がある。しかしながら、図12(b)に示すように、ガラスフィルム11の剥離終了側の端部を、押圧手段35によって押圧しながら剥離を完了することによって、ガラスフィルム11の急激な曲率変化を防止することができ、ひいては、ガラスフィルム11の破損を防止することができる。
 そして、このような各剥離治具20・30を用いることによって、楔体4を用いて、ガラスフィルム積層体1におけるガラスフィルム11と支持ガラス12との界面13に、噴出口4c・4c・・・から流体41を噴出させつつ刃先4b側から楔体4を容易に挿入し、かつ、刃先4bを界面13における未剥離部側に変位させるようにガラスフィルム積層体1と楔体4の相対位置を変更して、支持ガラス12からガラスフィルム11を剥離することが、容易に可能になる。
 また、本発明の一実施形態に係るガラスフィルムの剥離方法では、剥離治具として、図13(a)に示すような第四の実施形態に係る剥離治具70を用いるのが好適である。
 剥離治具70は、楔体4を用いた本発明に係るガラスフィルムの剥離方法を容易に実現することができる治具であって、図13(a)に示す如く、ガラスフィルム積層体1を載置するための載置部71を備えている。
 載置部71は、ガラスフィルム積層体1を載置するための部位であり、その載置面71aには、吸着機構たる溝部(図示せず)が刻設されている。そして、その溝部には、真空排気手段(図示せず)が連結されており、溝部内を排気することによって、載置面71a上にガラスフィルム積層体1を吸着して、固定する構成としている。尚、溝部は、複数のエリアに分けて、それぞれ独立して排気できる態様で形成することが好適である。
 溝部を複数のエリアに分けて形成する構成とすれば、一つの載置部71によって、種々の大きさのガラスフィルム積層体1に対応することが可能になる。
 また載置部71は、変位機構72によって、矢印βの方向に往復変位することができるように支持されている。
 変位機構72は、図示しないマイクロメータヘッドによって駆動する構成としており、マイクロメータヘッドを手動操作することによって、レール部材72aに沿って(即ち、矢印βの方向に)、ガラスフィルム積層体1を微小に変位させることができるように構成している。
 また載置部71は、図13(b)に示すように、変位機構72に対して、回転機構73を介して回転可能な状態で支持され、楔体4に対するガラスフィルム積層体1の角度を調整することができるように構成している。
 さらに、剥離治具70では、楔体4が、変位機構(図示せず)を介して支持されており、図13(a)に示す矢印γの方向に変位することができるように構成しており、ガラスフィルム積層体1における剥離開始部14の形成位置に応じて、ガラスフィルム積層体1に対する楔体4の配置を調整することができるように構成している。
 このような剥離治具70を用いてガラスフィルム11を剥離する手順について、説明をする。尚、剥離治具70を用いてガラスフィルム11を剥離する場合、楔体4の刃先4bから適宜エア等の流体を噴出させながら剥離を行うのが好適である。
 図14(a)に示す如く、剥離治具70を用いてガラスフィルム11を剥離するときには、まず始めに、回転機構73により載置部71を約45度回転させて、ガラスフィルム積層体1の角部を楔体4の刃先4bに対面させる。このとき、刃先4bの高さは、ガラスフィルム積層体1の界面13(図8参照)の高さに略一致させておく。
 次に、変位機構72により載置部71を楔体4側(矢印β1の方向)に変位させていき、角部に刃先4bを入り込ませることで、剥離開始部14を作製する。
 そして、その状態から、図14(b)に示す如く、さらに変位機構72により、載置部71を楔体4側(矢印β1の方向)に変位させていき、ガラスフィルム11の剥離始端側の一端が全幅に亘って剥離されるまで、ガラスフィルム11の剥離を進展させる。
 次に、図15(a)に示す如く、変位機構72により載置部71を楔体4から離間する側(矢印β2の方向)に一旦変位させて、ガラスフィルム積層体1から楔体4を離間させる。
 そして次に、図15(b)に示す如く、回転機構73により載置部71を回転させて、ガラスフィルム11の一端部と刃先4bが平行になるように、ガラスフィルム積層体1の姿勢を調整する。
 次に、図16(a)に示す如く、再度、変位機構72により載置部71を楔体4側(矢印β1の方向)に変位させていき、再度剥離開始端側に刃先4bを入り込ませ、さらに変位機構72により、載置部71を楔体4側に変位させていく。
 そして、図16(b)に示す如く、ガラスフィルム1が全長に亘って剥離されるまで、再度、変位機構72により載置部71を楔体4側(矢印β1の方向)に変位させていき、ガラスフィルム1の剥離を微小な速度で進展させながら、支持ガラス2からガラスフィルム1を剥離する。
 このような剥離治具70によれば、剥離開始部14を起点として、ガラスフィルム11を破損することなく、その一端部を全幅に亘って剥離することが容易になり、また、その後、剥離を進展させる段階においても、微小な剥離速度を容易に維持しつつ、剥離することができるため、ガラスフィルム11を、破損することなく確実に剥離することができる。
 上述の剥離治具70による剥離方法では、図15(a)のように一旦ガラスフィルム積層体1から楔体4を離間させているが、楔体4をガラスフィルム積層体1から離間させることなく、図14(b)の状態からそのまま回転機構73による回転を継続し、ガラスフィルム11の一端部と刃先4bが平行になった後に、ガラスフィルム11が全長に亘って剥離されるまで、変位機構72により載置部71を楔体4側(矢印β1の方向)に変位させてガラスフィルム1の剥離を行っても良い。
 上述の剥離治具70による剥離方法では、楔体4の刃先4bを入り込ませることで剥離開始部14を作製しているが、ガラスフィルム11と支持ガラス12との接着力が強い場合には、図示はしないが、別途剥離治具70よりも薄肉の剥離開始部材を入り込ませることで剥離開始部14を作製しても良い。加えて、予めガラスフィルム積層体1の剥離開始端側の全幅を、別途図示しない薄肉の剥離開始部材で剥離させても良い。
 本願発明は、ガラスフィルム積層体からガラスフィルムを剥離する場合に有効な剥離方法に関するものであるが、剥離する対象がガラスフィルムである場合に限らず、基材から薄いシート状の部材を剥離する場合に適用することが可能である。
 1  ガラスフィルム積層体
 3  支持ガラス付電子デバイス
 4  楔体
 4b 刃先
 4c 噴出口
 5  電子デバイス
 11 ガラスフィルム
 12 支持ガラス
 13 界面
 41 流体

Claims (8)

  1.  電子デバイス製造関連処理前のガラスフィルムであるガラスフィルム基材と支持ガラスとを積層してガラスフィルム積層体を作製する第1の工程と、
     前記ガラスフィルム積層体における前記ガラスフィルム基材に電子デバイス製造関連処理を行う第2の工程と、
     前記電子デバイス製造関連処理後の前記ガラスフィルム積層体を、前記ガラスフィルム基材に前記電子デバイス製造関連処理を施して得たガラスフィルムと前記支持ガラスとに分離する第3の工程と、
     を有するガラスフィルムの製造方法であって、
     前記第3の工程において、
     直線状に形成された刃先を有し、該刃先に形成された噴出口から流体を噴出可能に構成される楔体を用いて、
     前記ガラスフィルム積層体における前記ガラスフィルムと前記支持ガラスとの界面に、前記刃先側から前記楔体を挿入し、その後、前記噴出口から流体を噴出させつつ、前記刃先を前記界面における未剥離部側に変位させるように前記ガラスフィルム積層体と前記楔体の相対位置を変更して、前記支持ガラスから前記ガラスフィルムを剥離する、
     ことを特徴とするガラスフィルムの製造方法。
  2.  前記流体は、エアである、
     ことを特徴とする請求項1に記載のガラスフィルムの製造方法。
  3.  前記流体は、水を含有する、
     ことを特徴とする請求項1または請求項2に記載のガラスフィルムの製造方法。
  4.  前記電子デバイス製造関連処理は、
     前記ガラスフィルム基材に対する加熱を伴う、
     ことを特徴とする請求項1~請求項3の何れか一項に記載のガラスフィルムの製造方法。
  5.  前記ガラスフィルム基材の厚みを、
     200μm以下とする、
     ことを特徴とする請求項1~請求項4の何れか一項に記載のガラスフィルムの製造方法。
  6.  前記楔体の厚みを、
     3.0mm以下とする、
     ことを特徴とする請求項1~請求項5の何れか一項に記載のガラスフィルムの製造方法。
  7.  前記楔体の刃先の角度を、
     5度以下とする、
     ことを特徴とする請求項1~請求項6の何れか一項に記載のガラスフィルムの製造方法。
  8.  ガラスフィルムと支持ガラスとを積層して作製したガラスフィルム積層体から前記ガラスフィルムを剥離するガラスフィルムの剥離方法であって、
     直線状に形成された刃先を有し、該刃先に形成された噴出口から流体を噴出可能に構成される楔体を用いて、
     前記ガラスフィルム積層体における前記ガラスフィルムと前記支持ガラスとの界面に、前記刃先側から前記楔体を挿入し、その後、前記噴出口から流体を噴出させつつ、前記刃先を前記界面における未剥離部側に変位させるように前記ガラスフィルム積層体と前記楔体の相対位置を変更して、前記支持ガラスから前記ガラスフィルムを剥離する、
     ことを特徴とするガラスフィルムの剥離方法。
PCT/JP2014/069333 2013-07-23 2014-07-22 ガラスフィルムの製造方法およびガラスフィルムの剥離方法 WO2015012268A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014535843A JPWO2015012268A1 (ja) 2013-07-23 2014-07-22 ガラスフィルムの製造方法およびガラスフィルムの剥離方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013153093 2013-07-23
JP2013-153093 2013-07-23

Publications (1)

Publication Number Publication Date
WO2015012268A1 true WO2015012268A1 (ja) 2015-01-29

Family

ID=52393303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069333 WO2015012268A1 (ja) 2013-07-23 2014-07-22 ガラスフィルムの製造方法およびガラスフィルムの剥離方法

Country Status (3)

Country Link
JP (1) JPWO2015012268A1 (ja)
TW (1) TW201518229A (ja)
WO (1) WO2015012268A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217386A1 (ja) * 2016-06-13 2017-12-21 旭硝子株式会社 剥離方法及び剥離装置
KR20180032561A (ko) * 2015-07-24 2018-03-30 니폰 덴키 가라스 가부시키가이샤 유리 필름의 제조 방법, 및 유리 필름을 포함하는 전자 디바이스의 제조 방법
US11260646B2 (en) 2016-11-15 2022-03-01 Corning Incorporated Methods for processing a substrate
WO2024053565A1 (ja) * 2022-09-05 2024-03-14 三井金属鉱業株式会社 配線基板の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201641282A (zh) * 2015-05-25 2016-12-01 中華映管股份有限公司 疊層結構的脫層方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108966A (ja) * 1994-10-07 1996-04-30 Sharp Corp 基板剥離装置
JP2003335454A (ja) * 2002-05-15 2003-11-25 Sharp Corp フィルム剥離装置およびフィルム剥離方法
JP2007072101A (ja) * 2005-09-06 2007-03-22 N Tech:Kk フィルム剥離装置
WO2010079688A1 (ja) * 2009-01-09 2010-07-15 旭硝子株式会社 ガラス積層体およびその製造方法
WO2011048979A1 (ja) * 2009-10-20 2011-04-28 旭硝子株式会社 ガラス積層体及びその製造方法、並びに表示パネルの製造方法及びその製造方法により得られる表示パネル
WO2011086991A1 (ja) * 2010-01-12 2011-07-21 日本電気硝子株式会社 ガラスフィルム積層体及びその製造方法並びにガラスフィルムの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108966A (ja) * 1994-10-07 1996-04-30 Sharp Corp 基板剥離装置
JP2003335454A (ja) * 2002-05-15 2003-11-25 Sharp Corp フィルム剥離装置およびフィルム剥離方法
JP2007072101A (ja) * 2005-09-06 2007-03-22 N Tech:Kk フィルム剥離装置
WO2010079688A1 (ja) * 2009-01-09 2010-07-15 旭硝子株式会社 ガラス積層体およびその製造方法
WO2011048979A1 (ja) * 2009-10-20 2011-04-28 旭硝子株式会社 ガラス積層体及びその製造方法、並びに表示パネルの製造方法及びその製造方法により得られる表示パネル
WO2011086991A1 (ja) * 2010-01-12 2011-07-21 日本電気硝子株式会社 ガラスフィルム積層体及びその製造方法並びにガラスフィルムの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180032561A (ko) * 2015-07-24 2018-03-30 니폰 덴키 가라스 가부시키가이샤 유리 필름의 제조 방법, 및 유리 필름을 포함하는 전자 디바이스의 제조 방법
KR102457961B1 (ko) 2015-07-24 2022-10-24 니폰 덴키 가라스 가부시키가이샤 유리 필름의 제조 방법, 및 유리 필름을 포함하는 전자 디바이스의 제조 방법
WO2017217386A1 (ja) * 2016-06-13 2017-12-21 旭硝子株式会社 剥離方法及び剥離装置
US11260646B2 (en) 2016-11-15 2022-03-01 Corning Incorporated Methods for processing a substrate
WO2024053565A1 (ja) * 2022-09-05 2024-03-14 三井金属鉱業株式会社 配線基板の製造方法

Also Published As

Publication number Publication date
JPWO2015012268A1 (ja) 2017-03-02
TW201518229A (zh) 2015-05-16

Similar Documents

Publication Publication Date Title
WO2015012261A1 (ja) ガラスフィルムの製造方法およびガラスフィルムの剥離方法
US9333724B2 (en) Glass film laminate
JP5794325B2 (ja) 電子デバイス用ガラス基板の製造方法、及び、電子デバイス用カバーガラスの製造方法
WO2015012268A1 (ja) ガラスフィルムの製造方法およびガラスフィルムの剥離方法
WO2011034034A1 (ja) ガラスフィルムの製造方法及びガラスフィルムの処理方法並びにガラスフィルム積層体
JP5692513B2 (ja) ガラスフィルム積層体
WO2010110002A1 (ja) ガラスフィルム積層体、該積層体のガラスロール、ガラスフィルムの端面保護方法、及びガラスロールの製造方法
WO2014073455A1 (ja) ガラスフィルム積層体及び電子・電気デバイスの製造方法
WO2015046490A1 (ja) フィルム状ガラスの製造方法、電子デバイスの製造方法、及びガラスフィルム積層体の製造方法
JP5585937B2 (ja) ガラスフィルム積層体
JP6350277B2 (ja) ガラスフィルムの製造方法及び電子デバイスの製造方法
JP2010215436A (ja) ガラスフィルム積層体
WO2014133007A1 (ja) 電子デバイスの製造方法
JP6327580B2 (ja) ガラスフィルム積層体および電子デバイスの製造方法
JP6327437B2 (ja) 電子デバイスの製造方法
WO2014178405A1 (ja) ガラスフィルム積層体および電子デバイスの製造方法
JP2016060135A (ja) ガラスフィルム積層体、及び、電子デバイスの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014535843

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829733

Country of ref document: EP

Kind code of ref document: A1