WO2024053565A1 - 配線基板の製造方法 - Google Patents

配線基板の製造方法 Download PDF

Info

Publication number
WO2024053565A1
WO2024053565A1 PCT/JP2023/031958 JP2023031958W WO2024053565A1 WO 2024053565 A1 WO2024053565 A1 WO 2024053565A1 JP 2023031958 W JP2023031958 W JP 2023031958W WO 2024053565 A1 WO2024053565 A1 WO 2024053565A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carrier
less
rigid plate
manufacturing
Prior art date
Application number
PCT/JP2023/031958
Other languages
English (en)
French (fr)
Inventor
未希子 小宮
利美 中村
有紀子 北畠
宜範 松浦
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2024053565A1 publication Critical patent/WO2024053565A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H41/00Machines for separating superposed webs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a method for manufacturing a wiring board.
  • multilayer printed wiring boards have become widely used in order to increase the packaging density and downsize printed wiring boards.
  • Such multilayer printed wiring boards are used in many portable electronic devices for the purpose of reducing weight and size.
  • This multilayer printed wiring board is required to further reduce the thickness of the interlayer insulating layer and to further reduce the weight of the wiring board.
  • the coreless buildup method is a method in which insulating layers and wiring layers are alternately stacked (buildup) to form a multilayer structure without using a so-called core substrate.
  • the coreless buildup method it has been proposed to use a metal foil with a carrier so that the support and the multilayer printed wiring board can be easily separated.
  • Patent Document 1 Japanese Unexamined Patent Publication No.
  • an insulating resin layer is pasted on the carrier surface of a carrier-attached copper foil to serve as a support, and a photoresist is applied to the ultra-thin copper layer side of the carrier-attached copper foil.
  • Patent Document 1 International Publication No. 2017/150283 discloses a carrier in which a release layer, an antireflection layer, and an ultra-thin copper layer (e.g., 300 nm thick) are formed by sputtering on a carrier such as a glass sheet. A coated copper foil is disclosed. Furthermore, in Patent Document 3 (International Publication No.
  • an intermediate layer for example, an adhesion metal layer and a peeling auxiliary layer
  • a peeling layer for example, a film thickness of 300 nm
  • an ultra-thin copper layer for example, a film thickness of 300 nm
  • Patent Documents 2 and 3 disclose that an intermediate layer made of a predetermined metal is interposed to provide excellent stability in the mechanical peel strength of the carrier, and that the antireflection layer exhibits a desirable dark color to improve image quality. It has also been taught to improve visibility during examinations (eg, automated imaging inspection (AOI)).
  • AOI automated imaging inspection
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2015-35551 describes the formation of a metal release layer on the main surface of a support made of glass or silicon wafer, the formation of an insulating resin layer thereon, and the formation of an insulating resin layer thereon. Formation of a redistribution layer including a build-up layer, mounting and sealing of a semiconductor integrated circuit thereon, exposing a peeling layer by removing the support, exposing secondary mounting pads by removing the peeling layer, Furthermore, a method for manufacturing a semiconductor device is disclosed, which includes forming solder bumps on the surface of a secondary mounting pad and secondary mounting.
  • Patent Document 5 International Publication No. 2017/075151 describes a method of processing a first substrate bonded to a second substrate, in which a wire is moved along the interface to propagate a peeling leading edge. , discloses a method of peeling a first substrate from a second substrate. The method disclosed in Patent Document 5 uses a thin flexible wire to reduce bending of the first substrate during peeling.
  • the flexibility of the wire allows it to conform to the peeling leading edge, relieving stresses that may develop due to interaction with shape changes that may occur due to scratches in the glass. There is.
  • Patent Document 6 Japanese Patent Application Laid-open No. 2015-145306 discloses that in a method for manufacturing an electronic device, the peeling step includes applying a knife to the interface between the first substrate and the second substrate by a predetermined amount from the end surface of the laminate. It is disclosed that the method includes a step of inserting the layer to create a peeling starting part at the interface, and a step of sequentially peeling the interface from the peeling starting part as a starting point along the peeling progress direction from one end side of the laminate to the other end side. has been done. Patent Document 6 also discloses that the step of creating a peeling start portion is characterized in that inclusions such as liquid are supplied to the knife and the knife with the inclusions attached is inserted into the interface. According to this method, even if the knife is removed from the interface between the first substrate and the second substrate, a separation starting portion can be reliably created by the liquid that has entered the interface.
  • the present inventors have recently discovered that, in a laminated sheet including a carrier, a release layer, and a wiring layer having a predetermined flexural modulus in this order, a peeling starting point is formed between the wiring layer and the carrier, and the peeling starting point is We have found that by inserting a predetermined rigid plate and then moving the rigid plate along the peeling layer, it is possible to easily and reliably peel off the carrier and manufacture a wiring board.
  • an object of the present invention is to provide a method for manufacturing a wiring board that allows the carrier to be easily and reliably peeled off.
  • a method for manufacturing a wiring board comprising: a step of preparing a laminated sheet having a release layer and a wiring layer in this order on a carrier; forming a step or a gap between the wiring layer and the carrier to serve as a peeling starting point; a step of inserting a rigid plate having an elongated portion into the peeling starting point portion from the elongated portion, the elongated portion being longer than the width of the laminated sheet; advancing the peeling of the wiring layer from the carrier by moving the rigid plate from the peeling starting point along the peeling layer; including; A method for manufacturing a wiring board, wherein the wiring layer has a bending elastic modulus of 0.3 GPa or more and 300 GPa or less at 25° C., as measured in accordance with JIS K6911-1995.
  • Aspect 2 The method for manufacturing a wiring board according to aspect 1, wherein the wiring layer has a bending strength of 5 MPa or more and 1000 MPa or less at 25° C., as measured in accordance with JIS K6911-1995.
  • Aspect 3 The method for manufacturing a wiring board according to aspect 1 or 2, wherein the rigid plate has a Rockwell hardness of R135 or less at 25° C., as measured in accordance with JIS Z2245:2016.
  • Aspect 4 The method for manufacturing a wiring board according to any one of aspects 1 to 3, wherein the rigid plate has a breaking strength of 0.50 kgf or more at 25° C., as measured in accordance with JIS K7161-1:2014.
  • the rigid plate has an aspect in which, when viewed in cross section, the tip angle of the long portion side is 0° or more and 90° or less, or the tip of the long portion side has a curvature of 0.1 mm or more and 10 mm or less.
  • Aspects 1 to 8, wherein the total angle of the insertion angle of the rigid plate with respect to the main surface of the carrier and the tip angle of the long part when the rigid plate is viewed in cross section is 0° or more and 120° or less.
  • Aspect 14 The method for manufacturing a wiring board according to any one of aspects 1 to 13, wherein the wiring layer includes at least one selected from the group consisting of a metal layer, a semiconductor element, and a resin-containing layer.
  • Aspect 15 The method for manufacturing a wiring board according to any one of aspects 1 to 14, wherein the wiring layer has a thickness of 0.1 ⁇ m or more and 5.0 mm or less.
  • Aspect 16 The method for manufacturing a wiring board according to any one of aspects 1 to 15, wherein the wiring layer includes a metal layer and a resin-containing layer.
  • Aspect 17 The method for manufacturing a wiring board according to any one of aspects 1 to 15, wherein the wiring layer includes a resin-containing layer, and the resin-containing layer includes a filler.
  • Aspect 18 The method for manufacturing a wiring board according to any one of aspects 14 to 17, wherein the resin-containing layer has a filler content of 95% by weight or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated sheet used in the present invention.
  • 1 is a process flowchart showing an example of the method for manufacturing a wiring board of the present invention in a schematic top view, and corresponds to the initial steps (steps (i) and (ii)).
  • 2A is a process flowchart showing a process corresponding to FIG. 2A in a schematic cross-sectional view.
  • FIG. 2A is a process flowchart showing an example of the method for manufacturing a wiring board of the present invention in a schematic top view, and corresponds to the later steps (steps (iii) to (v)) following the step shown in FIG. 2A.
  • FIG. 3A is a process flowchart showing a process corresponding to FIG.
  • FIG. 3A in a schematic cross-sectional view.
  • FIG. FIG. 3 is a schematic cross-sectional view for explaining the tip angle ⁇ of the rigid plate.
  • FIG. 2 is a schematic cross-sectional view showing an example of a conventional carrier peeling method using a wire.
  • 1 is a photograph of the intermediate layer (copper layer) and metal layer (titanium layer) after carrier peeling in the laminated sheet produced in Example 1. It is a photograph taken of the intermediate layer (copper layer) and metal layer (titanium layer) after carrier peeling in the laminated sheet produced in Example 2 (comparison).
  • the present invention relates to a method for manufacturing a wiring board.
  • the method of the present invention includes (1) preparing a laminated sheet, (2) forming a peeling starting point, (3) inserting a rigid plate, (4) moving the rigid plate, and (5) peeling the carrier as desired. Including each process.
  • FIG. 1 An example of the laminated sheet used in the present invention is shown in FIG. 1, and an example of the method for manufacturing the wiring board of the invention is shown in FIGS. 2A to 3B.
  • FIGS. 2A to 3B An example of the method for manufacturing the wiring board of the invention is shown in FIGS. 2A to 3B.
  • a laminate sheet 10 having a release layer 16 and a wiring layer 26 in this order on a carrier 12 is prepared.
  • the peeling layer 16 is a layer that is provided on the carrier 12 and contributes to peeling between the carrier 12 and the wiring layer 26.
  • the wiring layer 26 is a layer that is provided on the peeling layer 16 and includes a wiring conductor.
  • the laminated sheet 10 may further include an intermediate layer 14 between the carrier 12 and the release layer 16.
  • Each of the intermediate layer 14, peeling layer 16, and wiring layer 26 may be a single layer composed of one layer, or may be a multilayer composed of two or more layers.
  • the laminated sheet 10 can be prepared, for example, as follows. First, a carrier-attached metal foil including an intermediate layer 14, a peeling layer 16, and a metal layer 18 is prepared on a carrier 12. Next, a first wiring layer is formed on the surface of the metal layer 18. Thereafter, a rewiring layer 20 is constructed based on the first wiring layer. Formation of the first wiring layer and construction of the rewiring layer 20 may be performed by a known method, and for example, the above-mentioned coreless buildup method can be preferably employed. Further, if necessary, the semiconductor element 22 may be mounted on the first wiring layer (or on the rewiring layer 20 constructed based on the first wiring layer) (see FIG. 1).
  • the semiconductor element 22 is electrically connected to the rewiring layer 20 by joining the electrodes of the semiconductor element 22 to the wiring of the rewiring layer 20 .
  • the semiconductor element 22 is covered with a resin-containing layer 24 after being mounted on the rewiring layer 20 .
  • the term "wiring layer” is defined to include not only the rewiring layer 20 (which can also be called a wiring layer in a narrow sense), but also the metal layer 18, the semiconductor element 22, and the resin-containing layer 24, and includes the "device layer”. ” can also be called.
  • the carrier 12, the intermediate layer 14 (if present), the release layer 16, and the metal layer 18 may be collectively referred to as "metal foil with carrier.” Preferred embodiments of the carrier-attached metal foil will be described later.
  • the wiring layer 26 may include at least one selected from the group consisting of the metal layer 18, the semiconductor element 22, and the resin-containing layer 24, as described above.
  • the wiring layer 26 preferably includes at least the resin-containing layer 24, and more preferably includes the metal layer 18 and the resin-containing layer 24.
  • the bending elastic modulus of the wiring layer 26 is 0.3 GPa or more and 300 GPa or less, preferably 0.7 GPa or more and 200 GPa or less, more preferably 1.0 GPa or more and 100 GPa or less, still more preferably 1.5 GPa or more and 70 GPa or less, and particularly preferably 2 0 GPa or more and 28 GPa or less.
  • the bending strength of the wiring layer 26 is preferably 5 MPa or more and 1000 MPa or less, more preferably 8 MPa or more and 700 MPa or less, even more preferably 15 MPa or more and 500 MPa or less, particularly preferably 25 MPa or more and 350 MPa or less, and most preferably 70 MPa or more and 200 MPa or less. It is as follows.
  • the flexural modulus and flexural strength in this specification are values measured at 25° C. in accordance with JIS K6911-1995. In this way, even in devices where the wiring layer 26 has a high bending modulus and/or bending strength, in other words, is hard and brittle, the method of the present invention can effectively suppress damage or destruction of the wiring layer 26.
  • the carrier 12 can be peeled off at the same time. Note that when the wiring layer 26 includes the resin-containing layer 24, at least the bending elastic modulus and/or bending strength of the resin-containing layer 24 may be within the above range.
  • the thickness of the wiring layer 26 is preferably 0.1 ⁇ m or more and 5.0 mm or less, more preferably 0.1 ⁇ m or more and 3.0 mm or less, still more preferably 0.4 ⁇ m or more and 2.0 mm or less, particularly preferably 0.1 ⁇ m or more and 3.0 mm or less, and even more preferably 0.4 ⁇ m or more and 2.0 mm or less. It is 8 ⁇ m or more and 1.0 mm or less.
  • the thickness of the resin-containing layer 24 is preferably 2.0 mm or less, more preferably 5 ⁇ m or more and 1.0 mm or less, even more preferably 8 ⁇ m or more and 500 ⁇ m or less, Particularly preferably, the thickness is 15 ⁇ m or more and 350 ⁇ m or less. Even when the wiring layer 26 is thin as described above, according to the method of the present invention, the carrier 12 can be peeled off while effectively suppressing damage or destruction of the wiring layer 26 (particularly the resin-containing layer 24). can.
  • the resin-containing layer 24 is a layer containing resin, and is typically a layer (mold layer) for sealing and protecting a semiconductor element (chip).
  • Preferred examples of the resin constituting the resin-containing layer 24 include epoxy resins and resins containing epoxy resins.
  • the resin-containing layer 24 preferably contains a filler from the viewpoint of improving the flexural modulus and/or the flexural strength.
  • Preferred examples of fillers include silica and titania.
  • the filler content in the resin-containing layer 24 is preferably 0 to 95 weight%, more preferably 50 to 93 weight%, and even more preferably 82 to 91 weight%.
  • the average particle diameter D50 of the filler is preferably 1.0 ⁇ m or more and 70 ⁇ m or less, more preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the average particle size D50 means a particle size at which the cumulative volume from the small particle size side is 50% in the particle size distribution obtained by laser diffraction scattering.
  • a step or gap is formed between the wiring layer 26 and the carrier 12 to form a peeling starting point S (see FIG. 2B(ii)).
  • this peeling starting point S as a trigger to insert and move a rigid plate, which will be described later, the carrier 12 can be peeled off smoothly.
  • the resin-containing layer 24 has a trapezoidal cross section in FIGS. 2B(i) and (ii), it may have a rectangular or rectangular shape.
  • the peeling starting point S is preferably formed at the end of the wiring layer 26 and/or the end of the carrier 12 from the viewpoint of facilitating insertion of the rigid plate. Further, when the laminated sheet 10 has a polygonal shape (for example, a rectangular shape), it is more preferable that the peeling starting point S is formed at a corner of the wiring layer 26 and/or a corner of the carrier 12.
  • the method of forming the peeling starting point S is not particularly limited, and any method may be used. For example, inserting a thin piece between the wiring layer 26 and the carrier 12 (near the peeling layer 16), or applying force to the end of the laminated sheet 10 in a direction that separates the wiring layer 26 and the carrier 12. By partially peeling off the region including the end of the peeling layer 16, the peeling starting point S can be formed.
  • the end of the peeling layer 16 is covered with the metal layer 18, it may be difficult to form the peeling starting point S.
  • the formation of the peeling starting point S can be performed without any liquid (for example, chemical liquid such as lubricant) being attached to the step or gap. By doing so, it is possible to prevent problems caused by liquid adhering to the metal portion of the wiring layer 26 and fluctuations in the etching rate of the adhering portion. In other words, it is possible to suppress the occurrence of etching unevenness caused by insufficiently etched portions, longer time required for predetermined etching, or coexistence of such regions.
  • any liquid for example, chemical liquid such as lubricant
  • the rigid plate 28 having an elongated portion is inserted into the formed peeling starting point S from the elongated portion (see FIG. 3A(iii) and FIG. 3B(iii)).
  • the rigid plate 28 is a plate having desired rigidity, and may be in the form of a film or a sheet.
  • at least the elongated portion of the rigid plate 28 is longer than the width of the laminated sheet 10.
  • the rigid plate 28 can be moved, which will be described later, while gripping the vicinity of both ends of the long portion of the rigid plate 28. As a result, it becomes easier to apply a uniform force to the wiring layer 26 without bending the rigid plate 28, and the carrier 12 can be peeled off efficiently.
  • the long part of the rigid plate 28 only needs to be longer than the short side of the laminated sheet 10, and may include the long side or include the short side. It may be something.
  • the laminated sheet 10 is disc-shaped, it is preferable that the length of the long portion of the rigid plate 28 is larger than the diameter of the laminated sheet 10. In any case, the length of the long portion of the rigid plate 28 may be changed as appropriate depending on the size of the laminated sheet 10.
  • the insertion angle of the rigid plate 28 with respect to the main surface of the carrier 12 is preferably 0° or more and 90° or less, more preferably 0° or more and 65° or less, still more preferably 3° or more and 30° or less, and particularly preferably 5°.
  • the angle is at least 15 degrees. This makes it easier to apply force to the wiring layer 26 at a desired peeling angle when inserting and moving the rigid plate 28 into the laminated sheet 10, making it easier to progress the peeling of the wiring layer 26 from the carrier 12. .
  • This insertion angle is determined at the point where the tip of the rigid plate 28 (or an imaginary line passing through the tip) contacts the surface of the carrier 12 (the surface of the intermediate layer 14 if present) when the laminated sheet 10 is viewed in cross section. It is defined as the angle between the tip of the rigid plate 28 and the surface of the carrier 12.
  • the rigid plate 28 preferably has a tip angle ⁇ of 0° or more and 90° or less on the long side (the side that contacts the wiring layer 26) when viewed in cross section, and more preferably is more than 0° and less than 45°, more preferably more than 5° and less than 45°.
  • the total angle of the insertion angle of the rigid plate 28 and the tip angle of the rigid plate 28 is preferably 0° or more and 120° or less, more preferably more than 0° and 90° or less, Most preferably, the angle is greater than 45°.
  • the tip of the long side of the rigid plate 28 may have a curvature of 0.1 mm or more and 10 mm or less, more preferably 0.2 mm or more and 10 mm or less, and further Preferably, it has a curvature of 0.5 mm or more and 5.0 mm or less. This makes it easier to peel off the wiring layer 26 from the carrier 12, and more effectively suppresses damage to the wiring layer 26 when the rigid plate 28 comes into contact with the wiring layer 26.
  • the Rockwell hardness of the rigid plate 28 at 25° C. is preferably R135 or less, more preferably R132 or less, still more preferably R130 or less, particularly preferably R128 or less. be.
  • the lower limit of Rockwell hardness is not particularly limited, but is typically R50 or higher.
  • the breaking strength of the rigid plate 28 at 25° C. is preferably 0.50 kgf or more, more preferably 0.80 kgf or more, even more preferably 2.0 kgf or more, Particularly preferably, it is 4.0 kgf or more.
  • the upper limit of the breaking strength is not particularly limited, but is typically 10 kgf or less.
  • the peel strength when peeling the wiring layer 26 from the carrier 12 is preferably 0.10 gf/cm or more and 50 gf/cm or less, more preferably 1.0 gf/cm or more and 30 gf/cm or less, and even more preferably It is 1.5 gf/cm or more and 10 gf/cm or less, particularly preferably 2.0 gf/cm or more and 5.0 gf/cm or less.
  • the bending elastic modulus of the rigid plate 28 is preferably 0.1 GPa or more and 20 GPa or less, more preferably 0.3 GPa or more and 10 GPa or less, still more preferably 0.5 GPa or more and 7.0 GPa or less, particularly preferably 1.0 GPa or more. It is 5.0 GPa or less.
  • the width (short side length) of the rigid plate 28 is preferably 1.0 mm or more and 300 mm or less, more preferably 2.0 mm or more and 100 mm or less, still more preferably 3.0 mm or more and 50 mm or less, particularly preferably 4.0 mm. It is not less than 30 mm. As a result, even if the rigid plate 28 is thin, the strength can be improved, and it becomes easier to apply force to the wiring layer 26, so that the carrier 12 can be peeled off more efficiently. Note that the width of the rigid plate 28 may be the same as the length of the elongated portion (that is, the rigid plate 28 has a square shape).
  • the thickness of the rigid plate 28 is preferably 0.040 mm or more and 10 mm or less, more preferably 0.060 mm or more and 8.0 mm or less, still more preferably 0.080 mm or more and 5.0 mm or less, particularly preferably 0.20 mm or more. It is 3.0 mm or less. With such a thin rigid plate 28, the wiring layer 26 can be easily peeled off from the carrier 12 at a desired peeling angle, and cracking and destruction caused by bending of the wiring layer 26 can be more effectively suppressed.
  • the rigid plate 28 is preferably made of resin because it can easily impart desired rigidity, Rockwell hardness, breaking strength, and the like.
  • resins include polyethylene terephthalate (PET), ultra-high molecular weight polyethylene, rigid polyethylene (HPE), polypropylene (PP), polystyrene (PS), methacrylic (MA), acrylonitrile butadiene styrene ( ABS), polyamide (nylon 6, 6N), monomer cast nylon (MC), polyacetal (POM), polycarbonate (PC), polytetrafluoroethylene (PTFE), rigid vinyl chloride (PVC), polyphenylene oxide (PPO) and polyurethane (PUR) is mentioned.
  • PET polyethylene terephthalate
  • HPE rigid polyethylene
  • PP polypropylene
  • PS polystyrene
  • MA methacrylic
  • ABS acrylonitrile butadiene styrene
  • ABS polyamide
  • MC monomer cast nylon
  • POM polyacetal
  • the rigid plate 28 is made of at least one member selected from the group consisting of polyethylene terephthalate (PET), ultra-high molecular weight polyethylene (UHMW), hard polyethylene (HPE), polypropylene (PP), and polystyrene (PS). It is preferably composed of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the elastic modulus of the resin constituting the rigid plate 28 is preferably 4 ⁇ 10 3 kgf/cm 2 or more and 70 ⁇ 10 3 kgf/cm 2 or less, more preferably 10 ⁇ 10 3 kgf/cm 2 or more and 40 ⁇ 10 3 kgf/cm 2 or less, more preferably 25 ⁇ 10 3 kgf/cm 2 or more and 35 ⁇ 10 3 kgf/cm 2 or less.
  • the elastic modulus in the present invention is a value measured in accordance with JIS K6911-1995.
  • the rigid plate 28 is inserted into the peeling starting point S without any liquid (for example, a chemical such as a lubricant) being attached to the rigid plate 28. By doing so, it is possible to prevent the liquid from adhering to and reacting with the metal portion of the wiring layer 26, and it is possible to avoid interfering with metal etching that may be performed in a subsequent process.
  • a liquid for example, a chemical such as a lubricant
  • the rigid plate 28 is moved along the peeling layer 16 from the peeling starting point S (see FIG. 3A(iv) and FIG. 3B(iv)). This progresses the separation of the wiring layer 26 from the carrier 12. That is, by moving the rigid plate 28 inserted into the peeling starting point S in a direction substantially parallel to the main surface of the carrier 12, a force (peeling force) is applied to the wiring layer 26 in the direction of separating it from the carrier 12. . As a result, the step or gap between the wiring layer 26 and the carrier 12 gradually expands, and as a result, peeling of the carrier 12 progresses.
  • a peeling starting point S is formed between the wiring layer 26 and the carrier 12, and this peeling After inserting a predetermined rigid plate 28 into the starting point S, by moving the rigid plate 28 along the peeling layer 16, the carrier 12 can be peeled off easily and reliably to manufacture a wiring board.
  • FIG. 5 shows an example of a conventional carrier peeling method using a wire.
  • a wire W is inserted between the carrier 112 and the wiring layer 126 to promote separation between the two.
  • a force greater than the force required for peeling is applied to the surface of the wiring layer 126, which may damage or destroy the wiring layer 126.
  • the wire W breaks due to insufficient strength, the peeling process will be interrupted.
  • the wiring layer 126 is greatly curved, which increases the risk that the wiring layer 126 will crack. In particular, this problem becomes significant when the wiring layer 126 includes a thin resin-containing layer (for example, a resin-containing layer containing filler) with a large bending modulus.
  • the knife may damage the carrier or the metal layer that may be included in the wiring layer, resulting in a product that cannot be used as a wiring board. , there are problems such as a decrease in yield. Further, when a knife or the like to which a chemical liquid or the like is attached is used, the metal constituting the wiring layer reacts with the adhered chemical liquid, thereby interfering with metal etching performed in a subsequent process.
  • the rigid plate 28 having a long portion is used for the progress of peeling, a large force can be applied to the wiring layer 26 without causing breakage of the rigid plate 28 itself.
  • the strength can be increased by increasing the width of the rigid plate 28, and therefore the carrier 12 can be peeled off while suppressing the curvature of the wiring layer 26. can.
  • the carrier 12 can be peeled off without damaging the wiring layer 26 without using a liquid such as a lubricant. is also no longer necessary. Therefore, it is preferable that the step of developing peeling be performed without adhering liquid to the steps or gaps formed in the laminated sheet 10.
  • the rigid plate 28 may be moved manually or automatically by a machine or the like. In any case, it is preferable to move the rigid plate 28 while holding the rigid plate 28 near both ends of the elongated portion (by hand, machine, etc.). This makes it easier to apply a uniform force to the wiring layer 26 without bending the rigid plate 28, and the carrier 12 can be peeled off more efficiently. Further, it is preferable that the rigid plate 28 be moved while the carrier-side surface of the laminated sheet 10 is fixed.
  • the process may further include a step of peeling the carrier 12 from the laminated sheet 10 (see FIG. 3A(v) and FIG. 3B(v)).
  • the wiring layer 26 and the carrier 12 can be completely separated.
  • a force is applied to the laminated sheet 10 in the direction in which the carrier 12 and the wiring layer 26 are separated.
  • the wiring layer 26 may be peeled off from the wiring layer 12.
  • the metal layer 18 exposed after the carrier 12 is peeled off may be removed by etching. This exposes the wiring (buried wiring) formed on the surface of the metal layer 18, making it more suitable for forming further circuits thereon by a photolithography process. Etching of the metal layer 18 may be performed based on a known method and is not particularly limited.
  • the metal foil with a carrier optionally used in the method of the present invention includes, in order, the carrier 12, the optional intermediate layer 14, the release layer 16, and the metal layer 18.
  • the carrier 12 may be made of glass, ceramics, silicon, resin, or metal, but is preferably a silicon-containing substrate or a glass substrate.
  • the substrate containing silicon may be any substrate as long as it contains Si as an element, such as a SiO 2 substrate, a SiN substrate, a Si single crystal substrate, a Si polycrystalline substrate, etc. More preferably, a glass carrier, a single crystal silicon substrate or a polycrystalline silicon substrate is used.
  • the carrier 12 has a disc shape with a diameter of 100 mm or more, more preferably a disc shape with a diameter of 200 mm or more and 450 mm or less.
  • the carrier 12 has a rectangular shape with a short side of 100 mm or more, more preferably a short side of 150 mm or more and 650 mm or less.
  • the rectangular carrier 12 may be a roll-shaped carrier whose long sides are sufficiently longer than its short sides, but preferably the long sides are 200 mm or more and 650 mm or less.
  • the carrier 12 may be in the form of a sheet, film, or plate. Further, the carrier 12 may be a stack of these sheets, films, plates, etc.
  • the carrier 12 may be something that can function as a rigid support such as a glass plate, a ceramic plate, a silicon wafer, a metal plate, or it may be a non-rigid form such as a metal foil or a resin film. Good too.
  • metals constituting the carrier 12 include copper, titanium, nickel, stainless steel, and aluminum.
  • Preferred examples of ceramics include alumina, zirconia, silicon nitride, aluminum nitride, and various other fine ceramics.
  • the resin examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyamide, polyimide, nylon, liquid crystal polymer, polyetheretherketone (PEEK (registered trademark)), polyamideimide, polyethersulfone, Examples include polyphenylene sulfide, polytetrafluoroethylene (PTFE), and ethylenetetrafluoroethylene (ETFE). More preferably, the coefficient of thermal expansion (CTE) is less than 25 ppm/K (typically 1.0 ppm/K or more and 23 ppm/K or less) from the viewpoint of preventing the coreless support from warping due to heating when mounting a semiconductor element.
  • CTE coefficient of thermal expansion
  • the carrier 12 preferably has a Vickers hardness of 100 HV or more, more preferably 150 HV or more and 2500 HV or less.
  • the carrier 12 is preferably made of glass, silicon, or ceramics, more preferably glass or ceramics, and particularly preferably glass.
  • An example of the carrier 12 made of glass is a glass plate.
  • the carrier 12 When glass is used as the carrier 12, it is lightweight, has a low coefficient of thermal expansion, has high insulation properties, is rigid, and has a flat surface, so there are advantages such as the ability to make the surface of the metal layer 18 extremely smooth.
  • the carrier 12 when the carrier 12 is made of glass, it has surface flatness (coplanarity) that is advantageous for forming fine circuits, and has chemical resistance in desmear and various plating processes in the wiring manufacturing process. There are advantages.
  • Preferred examples of the glass constituting the carrier 12 include quartz glass, borosilicate glass, alkali-free glass, soda lime glass, aluminosilicate glass, and combinations thereof, and more preferably alkali-free glass, soda lime glass, and a combination thereof, particularly preferably alkali-free glass.
  • Alkali-free glass is a glass whose main components are silicon dioxide, aluminum oxide, boron oxide, and alkaline earth metal oxides such as calcium oxide and barium oxide, and which also contains boric acid and which does not substantially contain alkali metals. That's true.
  • This alkali-free glass has a low and stable thermal expansion coefficient of 3 ppm/K or more and 5 ppm/K or less over a wide temperature range from 0°C to 350°C, so it minimizes glass warping in processes that involve heating. There is an advantage that it can be done.
  • the thickness of the carrier 12 is preferably 100 ⁇ m or more and 2000 ⁇ m or less, more preferably 300 ⁇ m or more and 1800 ⁇ m or less, and still more preferably 400 ⁇ m or more and 1100 ⁇ m or less. If the carrier 12 has a thickness within this range, it is possible to achieve thinner wiring and reduce warping that occurs when electronic components are mounted, while ensuring appropriate strength that does not impede handling.
  • the intermediate layer 14 provided as desired may have a single layer structure or may have a two or more layer structure.
  • the intermediate layer 14 includes a first intermediate layer provided directly above the carrier 12 and a second intermediate layer provided adjacent to the release layer 16. including.
  • the first intermediate layer is preferably a layer made of at least one metal selected from the group consisting of Ti, Cr, Al, and Ni in order to ensure adhesion with the carrier 12.
  • the first intermediate layer may be made of pure metal or an alloy.
  • the thickness of the first intermediate layer is preferably 5 nm or more and 500 nm or less, more preferably 10 nm or more and 300 nm or less, still more preferably 18 nm or more and 200 nm or less, particularly preferably 20 nm or more and 100 nm or less.
  • the second intermediate layer is preferably a layer made of Cu in order to control the peel strength with the release layer 16 to a desired value.
  • the thickness of the second intermediate layer is preferably 5 nm or more and 500 nm or less, more preferably 10 nm or more and 400 nm or less, still more preferably 15 nm or more and 300 nm or less, particularly preferably 20 nm or more and 200 nm or less.
  • Another intervening layer may exist between the first intermediate layer and the second intermediate layer, and examples of constituent materials of the intervening layer include Ti, Cr, Mo, Mn, W, and Ni. Examples include alloys of at least one metal selected from the group consisting of Cu and Cu.
  • the intermediate layer 14 has a one-layer structure, the first intermediate layer described above may be used as the intermediate layer, or the first intermediate layer and the second intermediate layer may be formed of one intermediate alloy layer. May be replaced.
  • This intermediate alloy layer has a content of at least one metal selected from the group consisting of Ti, Cr, Mo, Mn, W, Al, and Ni of 1.0 at% or more, and a Cu content of 30 at%. % or more of a copper alloy.
  • the thickness of the intermediate alloy layer is preferably 5 nm or more and 500 nm or less, more preferably 10 nm or more and 400 nm or less, still more preferably 15 nm or more and 300 nm or less, particularly preferably 20 nm or more and 200 nm or less.
  • the thickness of each layer described above is a value measured by analyzing a layer cross section with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
  • the metal constituting the intermediate layer 14 may contain unavoidable impurities resulting from raw material components, film forming processes, and the like. Further, when the intermediate layer 14 is exposed to the atmosphere after being formed, the presence of oxygen mixed therein is allowed.
  • the intermediate layer 14 may be manufactured by any method, but a layer formed by magnetron sputtering using a metal target is particularly preferable since uniformity in film thickness distribution can be achieved.
  • the peeling layer 16 is a layer that enables or facilitates peeling of the carrier 12 and, if present, the intermediate layer 14.
  • the peeling layer 16 may be one that can be peeled off by applying physical force, or it may be one that can be peeled off by a laser peeling method (laser lift-off, LLO).
  • LLO laser lift-off
  • the release layer 16 may be made of a resin whose interface adhesive strength is reduced by laser beam irradiation after curing, or it may be modified by laser beam irradiation. It may also be a layer of silicon, silicon carbide, metal oxide, etc., which is made of silicon, silicon carbide, or metal oxide.
  • the release layer 16 may be either an organic release layer or an inorganic release layer.
  • organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids, and the like.
  • nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like.
  • examples of the inorganic component used in the inorganic release layer include at least one of Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn, Ga, and Mo.
  • the release layer 16 is preferably a layer mainly containing carbon from the viewpoint of ease of release and layer formation, more preferably a layer mainly containing carbon or hydrocarbon, and even more preferably a layer mainly containing carbon.
  • This layer is made of amorphous carbon, which is a carbon film.
  • the release layer 16 i.e. carbon-containing layer
  • the release layer 16 preferably has a carbon concentration measured by XPS of 60 atomic % or more, more preferably 70 atomic % or more, still more preferably 80 atomic % or more, particularly preferably It is 85 atomic % or more.
  • the upper limit of the carbon concentration is not particularly limited and may be 100 atomic %, but 98 atomic % or less is realistic.
  • the release layer 16 may contain unavoidable impurities (eg, oxygen, carbon, hydrogen, etc. originating from the surrounding environment such as the atmosphere). Further, metal atoms of a type other than the metal contained in the release layer 16 may be mixed into the release layer 16 due to the method of forming the metal layer 18 and the like that will be laminated later.
  • a carbon-containing layer is used as the release layer 16
  • interdiffusion and reactivity with the carrier are low, and even when subjected to press processing at temperatures exceeding 300°C, there is no bonding between the metal layer and the bonding interface. Interdiffusion of metal elements due to high-temperature heating can be prevented, and a state in which the carrier can be easily peeled off and removed can be maintained.
  • the release layer 16 be a layer formed by a vapor phase method such as sputtering, from the viewpoint of suppressing excessive impurities in the release layer 16 and from the viewpoint of continuous productivity of other layers.
  • the thickness is preferably 1 nm or more and 20 nm or less, more preferably 1 nm or more and 10 nm or less. This thickness is a value measured by analyzing a cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
  • TEM-EDX energy dispersive X-ray spectrometer
  • the release layer 16 may include either or both of a metal oxide layer and a carbon-containing layer, or may include both a metal oxide and carbon.
  • the metal foil with a carrier includes the intermediate layer 14
  • the carbon-containing layer contributes to stable peeling of the carrier 12
  • the metal oxide layer contributes to heating of the metal elements originating from the intermediate layer 14 and the metal layer 18.
  • the associated diffusion can be more effectively suppressed, and as a result, stable releasability can be maintained even after heating at a high temperature of 350° C. or higher.
  • the metal oxide layer includes oxides of metals consisting of Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn, Ga, Mo, and combinations thereof.
  • the metal oxide layer is a layer. It is particularly preferable that the metal oxide layer be formed by a reactive sputtering method in which sputtering is performed in an oxidizing atmosphere using a metal target, since the film thickness can be easily controlled by adjusting the film formation time. .
  • the thickness of the metal oxide layer is preferably 0.1 nm or more and 100 nm or less.
  • the upper limit of the thickness of the metal oxide layer is more preferably 60 nm or less, still more preferably 30 nm or less, particularly preferably 10 nm or less. This thickness is a value measured by analyzing a cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
  • TEM-EDX energy dispersive X-ray spectrometer
  • the order in which the metal oxide layer and the carbon layer are stacked as the release layer 16 is not particularly limited.
  • the peeling layer 16 may exist in a mixed phase state (that is, a layer containing both metal oxide and carbon) in which the boundary between the metal oxide layer and the carbon-containing layer is not clearly specified.
  • the peeling layer 16 is a metal-containing layer whose surface adjacent to the metal layer 18 is a fluoridated surface and/or a nitrided surface. It may be.
  • the metal-containing layer has a region in which the sum of the fluorine content and nitrogen content is 1.0 atomic % or more (hereinafter referred to as "(F+N) region") over a thickness of 10 nm or more. , (F+N) regions are preferably present on the metal layer 18 side of the metal-containing layer.
  • the thickness (in terms of SiO 2 ) of the (F+N) region is a value specified by performing elemental analysis in the depth direction of the carrier-attached metal foil using XPS.
  • the fluorinated surface or nitrided surface can be preferably formed by reactive ion etching (RIE) or reactive sputtering.
  • the metal element contained in the metal-containing layer preferably has a negative standard electrode potential.
  • Preferred examples of metal elements contained in the metal-containing layer include Cu, Ag, Sn, Zn, Ti, Al, Nb, Zr, W, Ta, Mo, and combinations thereof (e.g., alloys and intermetallic compounds). .
  • the content of the metal element in the metal-containing layer is preferably 50 atomic % or more and 100 atomic % or less.
  • the metal-containing layer may be a single layer consisting of one layer, or may be a multilayer consisting of two or more layers.
  • the thickness of the entire metal-containing layer is preferably 10 nm or more and 1000 nm or less, more preferably 30 nm or more and 500 nm or less, even more preferably 50 nm or more and 400 nm or less, particularly preferably 100 nm or more and 300 nm or less.
  • the thickness of the metal-containing layer itself is a value measured by analyzing a cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
  • TEM-EDX energy dispersive X-ray spectrometer
  • the release layer 16 may be a metal oxynitride-containing layer instead of a carbon layer or the like.
  • the surface of the metal oxynitride-containing layer on the side opposite to the carrier 12 contains at least one metal oxynitride selected from the group consisting of TaON, NiON, TiON, NiWON, and MoON. is preferred.
  • the surface of the metal oxynitride-containing layer on the carrier 12 side is made of Cu, Ti, Ta, Cr, Ni, Al, Mo, Zn, W, It is preferable that at least one member selected from the group consisting of TiN and TaN is included.
  • the thickness of the metal oxynitride-containing layer is preferably 5 nm or more and 500 nm or less, more preferably 10 nm or more and 400 nm or less, even more preferably 20 nm or more and 200 nm or less, particularly preferably 30 nm or more and 100 nm or less. This thickness is a value measured by analyzing a cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
  • TEM-EDX energy dispersive X-ray spectrometer
  • the metal layer 18 is a layer made of metal.
  • the metal layer 18 may have a single layer structure, or may have a two or more layer structure.
  • the metal layer 18 includes a first metal layer to an m-th metal layer (m is 2 or more) on the side of the peeling layer 16 opposite to the carrier 12. It is possible to have a structure in which metal layers up to (an integer) are sequentially stacked.
  • the thickness of the entire metal layer 18 is preferably 1 nm or more and 2000 nm or less, preferably 100 nm or more and 1500 nm or less, more preferably 200 nm or more and 1000 nm or less, even more preferably 300 nm or more and 800 nm or less, and particularly preferably 350 nm or more and 500 nm or less.
  • the thickness of the metal layer 18 is a value measured by analyzing a cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
  • TEM-EDX energy dispersive X-ray spectrometer
  • the first metal layer imparts desired functions such as an etching stopper function and an antireflection function to the carrier-attached metal foil.
  • Preferred examples of the metal constituting the first metal layer include Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, Mo, and combinations thereof, more preferably Ti, Zr, Al, Cr, W, Ni, Mo and combinations thereof, more preferably Ti, Al, Cr, Ni, Mo and combinations thereof, particularly preferably Ti, Mo and combinations thereof.
  • These elements have a property of being difficult to dissolve in a flash etching solution (for example, a copper flash etching solution), and as a result, they can exhibit excellent chemical resistance to the flash etching solution.
  • the first metal layer becomes a layer that is less likely to be etched by the flash etching solution than the second metal layer described later, and therefore can function as an etching stopper layer that can delay the progress of etching.
  • the first metal layer since the above-mentioned metal constituting the first metal layer also has a function of preventing light reflection, the first metal layer has a function of preventing reflection of light. It can also function as a preventive layer.
  • the first metal layer may be a pure metal or an alloy.
  • the metal constituting the first metal layer may contain unavoidable impurities resulting from raw material components, film forming processes, and the like. Further, the upper limit of the content of the metal is not particularly limited, and may be 100 atomic %.
  • the first metal layer is preferably a layer formed by physical vapor deposition (PVD), more preferably a layer formed by sputtering.
  • the thickness of the first metal layer is preferably 1 nm or more and 500 nm or less, more preferably 10 nm or more and 400 nm or less, even more preferably 30 nm or more and 300 nm or less, particularly preferably 50 nm or more and 200 nm or less.
  • Preferred examples of metals constituting the second metal layer include transition elements of Group 4, Group 5, Group 6, Group 9, Group 10, and Group 11, Al, and combinations thereof (for example, alloys). and intermetallic compounds), more preferably transition elements of group 4 and group 11, Al, Nb, Co, Ni, Mo, and combinations thereof, still more preferably transition elements of group 11, Ti, Al, Mo, and combinations thereof, particularly preferably Cu, Ti, Mo, and combinations thereof, most preferably Cu.
  • the second metal layer may be manufactured by any method, such as wet film formation methods such as electroless metal plating and electrolytic metal plating, physical vapor deposition (PVD) methods such as sputtering and vacuum evaporation,
  • the metal foil may be formed by chemical vapor deposition or a combination thereof.
  • a particularly preferable second metal layer is a metal layer formed by a physical vapor deposition (PVD) method such as a sputtering method or a vacuum evaporation method, from the viewpoint of easily responding to fine pitch formation by ultrathinning, and most preferably a metal layer formed by a physical vapor deposition (PVD) method such as a sputtering method or a vacuum evaporation method.
  • PVD physical vapor deposition
  • the second metal layer is preferably a metal layer that has not been subjected to roughening treatment, but it may be subjected to secondary roughening treatment, soft etching treatment, cleaning treatment, or oxidation-reduction treatment as long as it does not interfere with wiring pattern formation.
  • the thickness of the second metal layer is preferably 10 nm or more and 1000 nm or less, more preferably 20 nm or more and 900 nm or less, still more preferably 30 nm or more and 700 nm or less, and even more preferably 50 nm or more and 600 nm or less.
  • the thickness is particularly preferably 70 nm or more and 500 nm or less, most preferably 100 nm or more and 400 nm or less. It is preferable to manufacture a metal layer having a thickness within such a range by a sputtering method from the viewpoint of in-plane uniformity of the film-forming thickness and productivity in the form of a sheet or roll.
  • the metal layer 18 has a one-layer structure, it is preferable to use the second metal layer described above as the metal layer 18 as is.
  • the metal layer 18 has an n-layer (n is an integer of 3 or more) configuration, the first metal layer to the (n-1)th metal layer of the metal layer 18 have the above-mentioned configuration. It is preferable that the outermost layer of the metal layer 18, that is, the n-th metal layer, have the structure of the second metal layer described above.
  • the metal layer 18, optionally the intermediate layer 14, and optionally the release layer 16 extend to the end surface of the carrier 12 so that the end surface is coated.
  • the end surface is coated.
  • the covered area on the end face of the carrier 12 is preferably an area of 0.1 mm or more, more preferably an area of 0.2 mm or more from the surface of the carrier 12 in the thickness direction (that is, a direction perpendicular to the carrier surface). , more preferably over the entire end surface of the carrier 12.
  • Example 1 Using the method of the present invention, the production of a laminated sheet and the peeling of the carrier were performed as follows.
  • a glass substrate material: soda lime glass
  • a thickness of 1.1 mm was prepared.
  • a titanium layer thickness 50 nm
  • a copper layer thickness 200 nm
  • an amorphous carbon layer thickness 6 nm
  • a titanium layer thickness 100 nm
  • a copper layer thickness 300 nm
  • the metal layer 18 was formed to extend to the end surface of the carrier 12 to cover the end of the release layer 16.
  • a rewiring layer 20 with a size of 98 mm x 68 mm and a thickness of 20 ⁇ m was formed on the metal layer 18 of the metal foil with a carrier. Specifically, first, a photosensitive dry film was attached to the surface of the carrier-attached metal foil on the metal layer 18 side, and exposure and development were performed to form a photoresist layer in a predetermined pattern. Next, patterned electrolytic copper plating was performed on the exposed surface of the metal layer 18 (that is, the portion not masked by the photoresist layer) to form an electrolytic copper plating layer, and then the photoresist layer was peeled off.
  • the metal layer 18 and the electrolytic copper plating layer were left in the form of a wiring pattern, while the portions of the metal layer 18 where these wiring patterns were not formed were exposed. Thereafter, a wiring layer was formed by removing unnecessary portions of the exposed metal layer 18 using an etching solution. Furthermore, by laminating an insulating resin material (photosensitive insulating material, AR-5100 manufactured by Showa Denko Materials Co., Ltd.) on the wiring layer side of the metal foil with a carrier, and performing a heat curing treatment at 230 ° C. for 60 minutes, An insulating layer was formed. In this way, a rewiring layer 20 including a wiring layer and an insulating layer was formed.
  • an insulating resin material photosensitive insulating material, AR-5100 manufactured by Showa Denko Materials Co., Ltd.
  • An epoxy-containing resin containing SiO 2 filler (bending strength and flexural modulus are shown in Table 1) is applied on the redistribution layer 20 to form a resin-containing layer 24 with a size of 90 mm x 60 mm and a thickness of 0.2 mm. was formed.
  • a laminate sheet 10 was produced which included the carrier 12, the intermediate layer 14, the release layer 16, the metal layer 18 as the wiring layer 26, the rewiring layer 20, and the resin-containing layer 24 in this order.
  • the peel strength when this laminated sheet 10 was separated into the carrier 12 and the wiring layer 26 by the peel layer 16 was 6.5 gf/cm.
  • the laminated sheet 10 was trimmed, and the portion of the metal layer 18 that covered the end of the release layer 16 was removed. Then, at one end (corner portion) of the laminated sheet 10, a cutter was inserted near the exposed release layer 16 to form a gap, thereby forming a release starting point S.
  • Example 2 (comparison) Instead of the PET film as the rigid plate 28, a wire with a cross-sectional diameter of approximately 0.23 mm (manufactured by Nippon Himobuto Trading Co., Ltd., Super Nylon Tegs, product number: A10-13, material: nylon, flexural modulus: 11 GPa, Rockwell hardness) was used as the rigid plate 28.
  • a laminated sheet was prepared and the carrier was peeled off in the same manner as in Example 1, except that the sheet was inserted into the peeling starting point and moved using a laminate sheet (R120, breaking strength: 0.41 kgf).
  • Examples 3-12 In producing the laminated sheet, the thickness of the resin-containing layer 24 and/or the characteristics (filler content, bending strength, and bending modulus) of the epoxy resin constituting the resin-containing layer 24 were changed as shown in Table 1. Except for the above, the laminated sheet was prepared and the carrier was peeled off in the same manner as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

簡便かつ確実にキャリアを剥離可能な、配線基板の製造方法が提供される。この配線基板の製造方法は、キャリア上に剥離層及び配線層を順に備えた積層シートを用意する工程と、配線層とキャリアとの間に段差又は隙間を形成して剥離起点部とする工程と、剥離起点部に対して長尺部を有する剛性板をその長尺部から挿入する工程であって、長尺部が積層シートの幅よりも長い工程と、剛性板を剥離起点部から剥離層に沿って移動させることにより、キャリアからの配線層の剥離を進展させる工程とを含み、JIS K6911-1995に準拠して測定される、25℃における配線層の曲げ弾性率が0.3GPa以上300GPa以下である。

Description

配線基板の製造方法
 本発明は、配線基板の製造方法に関する。
 近年、プリント配線板の実装密度を上げて小型化するために、プリント配線板の多層化が広く行われるようになってきている。このような多層プリント配線板は、携帯用電子機器の多くで、軽量化や小型化を目的として利用されている。そして、この多層プリント配線板には、層間絶縁層の更なる厚さの低減、及び配線板としてのより一層の軽量化が要求されている。
 このような要求を満たす技術として、コアレスビルドアップ法を用いた多層プリント配線板の製造方法が採用されている。コアレスビルドアップ法とは、いわゆるコア基板を用いることなく、絶縁層と配線層とを交互に積層(ビルドアップ)して多層化する方法である。コアレスビルドアップ法においては、支持体と多層プリント配線板との剥離を容易に行えるように、キャリア付金属箔を使用することが提案されている。例えば、特許文献1(特開2005-101137号公報)には、キャリア付銅箔のキャリア面に絶縁樹脂層を貼り付けて支持体とし、キャリア付銅箔の極薄銅層側にフォトレジスト加工、パターン電解銅めっき、レジスト除去等の工程により第一の配線導体を形成した後、ビルドアップ配線層を形成し、キャリア付支持基板を剥離し、極薄銅層を除去することを含む、半導体素子搭載用パッケージ基板の製造方法が開示されている。
 また、特許文献1に示されるような埋め込み回路の微細化のため、金属層の厚さを1μm以下としたキャリア付金属箔が望まれる。そこで、金属層の厚さ低減を実現するため、スパッタリング等の気相法により金属層を形成することが提案されている。例えば、特許文献2(国際公開第2017/150283号)には、ガラスシート等のキャリア上に、剥離層、反射防止層、及び極薄銅層(例えば膜厚300nm)がスパッタリングにより形成されたキャリア付銅箔が開示されている。また、特許文献3(国際公開第2017/150284号)には、ガラスシート等のキャリア上に、中間層(例えば密着金属層及び剥離補助層)、剥離層及び極薄銅層(例えば膜厚300nm)がスパッタリングにより形成されたキャリア付銅箔が開示されている。特許文献2及び3には、所定の金属で構成される中間層を介在させることでキャリアの機械的剥離強度の優れた安定性をもたらすことや、反射防止層が望ましい暗色を呈することで、画像検査(例えば自動画像検査(AOI))における視認性を向上させることも教示されている。
 とりわけ、電子デバイスのより一層の小型化及び省電力化に伴い、半導体チップ及びプリント配線板の高集積化及び薄型化へのニーズが高まっている。かかるニーズを満たす次世代パッケージング技術として、FO-WLP(Fan-Out Wafer Level Packaging)やPLP(Panel Level Packaging)の採用が近年検討されている。そして、FO-WLPやPLPにおいても、コアレスビルドアップ法の採用が検討されている。そのような工法の一つとして、コアレス支持体表面に配線層及び必要に応じてビルドアップ配線層を形成した後にチップの実装及び封止を行い、その後に支持体を剥離する、RDL-First(Redistribution Layer-First)法と呼ばれる工法がある。例えば、特許文献4(特開2015-35551号公報)には、ガラス又はシリコンウェハからなる支持体の主面への金属剥離層の形成、その上への絶縁樹脂層の形成、その上へのビルドアップ層を含む再配線層(Redistribution Layer)の形成、その上への半導体集積回路の実装及び封止、支持体の除去による剥離層の露出、剥離層の除去による2次実装パッドの露出、並びに2次実装パッドの表面への半田バンプの形成、並びに2次実装を含む、半導体装置の製造方法が開示されている。
 ところで、コアレスビルドアップ法等を用いて作製した配線層付キャリアから、キャリアを剥離する際、配線層が大きく湾曲して断線や剥離を引き起こす結果、配線層の接続信頼性が低下することが起こりうる。そこで、かかる問題に対処したキャリアの除去方法が提案されている。例えば、特許文献5(国際公開第2017/075151号)には、第2基板に接合された第1基板を加工する方法であって、界面に沿ってワイヤを移動させて剥離前縁を伝播させ、第1基板を第2基板から剥離する方法が開示されている。特許文献5に開示される方法では、剥離の間における第1基板の屈曲を減らすために細い柔軟なワイヤを用いている。剥離の間における第1基板の曲げが減ると、相対的に少ない曲げ応力が剥離プロセスの間に第1基板に加えられる。さらに、ワイヤの柔軟性により、そのワイヤを剥離前縁に適合させることができ、ガラスの傷のため生じうる形状変化との相互作用により成長することがある応力を解放することができるとされている。
 また、特許文献6(特開2015-145306号公報)には、電子デバイスの製造方法において、剥離工程が、第1の基板と第2の基板との界面に積層体の端面からナイフを所定量挿入して界面に剥離開始部を作成する工程と、剥離開始部を起点として界面を積層体の一端側から他端側に向けた剥離進行方向に沿って順次剥離する工程とを有することが開示されている。剥離開始部作成工程では、ナイフに液体等の介在物を供給し、介在物が付着したナイフを界面に挿入することを特徴とすることも特許文献6には開示されている。かかる方法によれば、第1の基板と第2の基板との界面からナイフを抜脱しても、界面に浸入した液体によって剥離開始部を確実に作成できるとされている。
特開2005-101137号公報 国際公開第2017/150283号 国際公開第2017/150284号 特開2015-35551号公報 国際公開第2017/075151号 特開2015-145306号公報
 しかしながら、特許文献5に開示される方法は、剥離により形成した隙間を進展させる際に、使用しているワイヤの強度が足りずに破断が生じ、剥離工程が中断されることがあった。また、基板(例えば樹脂を含む配線層)の曲げ弾性率が高いものである場合に、剥離工程において基板が破壊され、あるいは割れてしまうといった問題があった。一方、特許文献6に開示される方法では、薬液等を付着させたナイフを使用して剥離を進展させるため、基板を構成する金属に薬液が付着して反応し、後工程で行われる金属エッチングの妨げになることがあった。このように、従来の方法は簡便かつ確実なキャリアの剥離という観点から改善の余地がある。
 本発明者らは、今般、キャリア、剥離層及び所定の曲げ弾性率を有する配線層を順に備えた積層シートに対して、配線層及びキャリア間に剥離起点部を形成し、この剥離起点部に所定の剛性板を挿入した後、剛性板を剥離層に沿って移動させることにより、簡便かつ確実にキャリアを剥離して配線基板を製造できるとの知見を得た。
 したがって、本発明の目的は、簡便かつ確実にキャリアを剥離可能な、配線基板の製造方法を提供することにある。
 本発明によれば、以下の態様が提供される。
[態様1]
 配線基板の製造方法であって、
 キャリア上に剥離層及び配線層を順に備えた積層シートを用意する工程と、
 前記配線層と前記キャリアとの間に段差又は隙間を形成して剥離起点部とする工程と、
 前記剥離起点部に対して長尺部を有する剛性板をその長尺部から挿入する工程であって、前記長尺部が前記積層シートの幅よりも長い、工程と、
 前記剛性板を前記剥離起点部から前記剥離層に沿って移動させることにより、前記キャリアからの前記配線層の剥離を進展させる工程と、
を含み、
 JIS K6911-1995に準拠して測定される、25℃における前記配線層の曲げ弾性率が0.3GPa以上300GPa以下である、配線基板の製造方法。
[態様2]
 JIS K6911-1995に準拠して測定される、25℃における前記配線層の曲げ強さが5MPa以上1000MPa以下である、態様1に記載の配線基板の製造方法。
[態様3]
 JIS Z2245:2016に準拠して測定される、25℃における前記剛性板のロックウェル硬さがR135以下である、態様1又は2に記載の配線基板の製造方法。
[態様4]
 JIS K7161-1:2014に準拠して測定される、25℃における前記剛性板の破断強度が0.50kgf以上である、態様1~3のいずれか一つに記載の配線基板の製造方法。
[態様5]
 前記キャリアからの前記配線層を剥離する際の剥離強度が0.10gf/cm以上50gf/cm以下である、態様1~4のいずれか一つに記載の配線基板の製造方法。
[態様6]
 前記剥離起点部が前記配線層の端部及び/又は前記キャリアの端部に形成される、態様1~5のいずれか一つに記載の配線基板の製造方法。
[態様7]
 前記キャリアの主面に対する前記剛性板の挿入角度が0°以上90°以下である、態様1~6のいずれか一つに記載の配線基板の製造方法。
[態様8]
 前記剛性板は、断面視した場合に、前記長尺部側の先端角度が0°以上90°以下である、又は前記長尺部側の先端が0.1mm以上10mm以下の曲率を有する、態様1~7のいずれか一つに記載の配線基板の製造方法。
[態様9]
 前記キャリアの主面に対する前記剛性板の挿入角度と、前記剛性板を断面視した場合における、前記長尺部側の先端角度との合計角度が0°以上120°以下である、態様1~8のいずれか一つに記載の配線基板の製造方法。
[態様10]
 前記剛性板の幅が1.0mm以上300mm以下である、態様1~9のいずれか一つに記載の配線基板の製造方法。
[態様11]
 前記剛性板の厚さが0.040mm以上10mm以下である、態様1~10のいずれか一つに記載の配線基板の製造方法。
[態様12]
 前記剛性板が樹脂で構成される、態様1~11のいずれか一つに記載の配線基板の製造方法。
[態様13]
 前記剥離起点部を形成する工程、及び/又は前記剥離を進展させる工程が、前記段差又は隙間に液体を付着させずに行われる、態様1~12のいずれか一つに記載の配線基板の製造方法。
[態様14]
 前記配線層が、金属層、半導体素子及び樹脂含有層からなる群から選択される少なくとも1種を含む、態様1~13のいずれか一つに記載の配線基板の製造方法。
[態様15]
 前記配線層の厚さが0.1μm以上5.0mm以下である、態様1~14のいずれか一つに記載の配線基板の製造方法。
[態様16]
 前記配線層が金属層及び樹脂含有層を備える、態様1~15のいずれか一つに記載の配線基板の製造方法。
[態様17]
 前記配線層が樹脂含有層を備え、前記樹脂含有層がフィラーを含む、態様1~15のいずれか一つに記載の配線基板の製造方法。
[態様18]
 前記樹脂含有層のフィラー含有率が、95重量%以下である、態様14~17のいずれか一つに記載の配線基板の製造方法。
本発明で用いる積層シートの一例を示す模式断面図である。 本発明の配線基板の製造方法の一例を模式上面図で示す工程流れ図であり、初期の工程(工程(i)及び(ii))に相当する。 図2Aと対応する工程を模式断面図で示す工程流れ図である。 本発明の配線基板の製造方法の一例を模式上面図で示す工程流れ図であり、図2Aに示される工程に続く後期の工程(工程(iii)~(v))に相当する。 図3Aと対応する工程を模式断面図で示す工程流れ図である。 剛性板の先端角度θを説明するための模式断面図である。 ワイヤを用いた従来のキャリア剥離方法の一例を示す模式断面図である。 例1で作製した積層シートにおける、キャリア剥離後の中間層(銅層)及び金属層(チタン層)を撮影した写真である。 例2(比較)で作製した積層シートにおける、キャリア剥離後の中間層(銅層)及び金属層(チタン層)を撮影した写真である。
 配線基板の製造方法
 本発明は配線基板の製造方法に関する。本発明の方法は、(1)積層シートの用意、(2)剥離起点部の形成、(3)剛性板の挿入、(4)剛性板の移動、及び(5)所望により行われるキャリアの剥離の各工程を含む。
 本発明で用いる積層シートの一例を図1に示すとともに、本発明の配線基板の製造方法の一例を図2A~3Bに示す。以下、図面を参照しながら、工程(1)~(5)の各々について説明する。
(1)積層シートの用意
 図1、図2A(i)及び図2B(i)に示されるように、キャリア12上に剥離層16及び配線層26を順に備えた積層シート10を用意する。剥離層16は、キャリア12上に設けられ、キャリア12と配線層26との剥離に寄与する層である。配線層26は、剥離層16上に設けられる配線導体を含む層である。
 積層シート10は、キャリア12と剥離層16との間に中間層14をさらに有していてもよい。中間層14、剥離層16及び配線層26の各々は、1層から構成される単層であってもよく、2層以上から構成される複層であってもよい。
 積層シート10は、例えば以下のようにして用意することができる。まず、キャリア12上に、中間層14、剥離層16、及び金属層18を備えたキャリア付金属箔を用意する。次いで、金属層18の表面に第1配線層を形成する。その後、第1配線層を基礎として再配線層20を構築する。第1配線層の形成及び再配線層20の構築は、公知の手法によって行えばよく、例えば上述したコアレスビルドアップ法を好ましく採用することができる。また、必要に応じて第1配線層上(あるいは第1配線層を基礎として構築された再配線層20上)に半導体素子22を実装してもよい(図1参照)。半導体素子22の電極が再配線層20の配線に接合されることで、半導体素子22は再配線層20と電気的に接続される。半導体素子22は再配線層20上に実装された後、樹脂含有層24で覆われるのが好ましい。本明細書において「配線層」とは、再配線層20(狭義の配線層ともいえる)のみならず、金属層18、半導体素子22及び樹脂含有層24を包含するものとして定義され、「デバイス層」と称することもできる。なお、本明細書において、キャリア12、中間層14(存在する場合)、剥離層16及び金属層18を「キャリア付金属箔」と総称することがある。キャリア付金属箔の好ましい態様については後述するものとする。
 配線層26は、上述したとおり金属層18、半導体素子22及び樹脂含有層24からなる群から選択される少なくとも1種を含むものであってよい。配線層26は少なくとも樹脂含有層24を備えるのが好ましく、より好ましくは金属層18及び樹脂含有層24を備える。
 配線層26の曲げ弾性率は0.3GPa以上300GPa以下であり、好ましくは0.7GPa以上200GPa以下、より好ましくは1.0GPa以上100GPa以下、さらに好ましくは1.5GPa以上70GPa以下、特に好ましくは2.0GPa以上28GPa以下である。また、配線層26の曲げ強さは5MPa以上1000MPa以下であるのが好ましく、より好ましくは8MPa以上700MPa以下、さらに好ましくは15MPa以上500MPa以下、特に好ましくは25MPa以上350MPa以下、最も好ましくは70MPa以上200MPa以下である。本明細書における曲げ弾性率及び曲げ強さは、JIS K6911-1995に準拠して、25℃の条件下で測定される値とする。このように配線層26の曲げ弾性率及び/又は曲げ強さが大きい、換言すれば硬く脆いデバイスであっても、本発明の方法によれば配線層26の損傷又は破壊を効果的に抑制しながらキャリア12の剥離を行うことができる。なお、配線層26が樹脂含有層24を備える場合には、少なくとも樹脂含有層24の曲げ弾性率及び/又は曲げ強さが上記範囲内であればよい。
 配線層26の厚さは0.1μm以上5.0mm以下であるのが好ましく、より好ましくは0.1μm以上3.0mm以下、さらに好ましくは0.4μm以上2.0mm以下、特に好ましくは0.8μm以上1.0mm以下である。また、配線層26が樹脂含有層24を備える場合、樹脂含有層24の厚さは2.0mm以下であるのが好ましく、より好ましくは5μm以上1.0mm以下、さらに好ましくは8μm以上500μm以下、特に好ましくは15μm以上350μm以下である。このように配線層26が薄い場合であっても、本発明の方法によれば配線層26(特に樹脂含有層24)の損傷又は破壊を効果的に抑制しながらキャリア12の剥離を行うことができる。
 樹脂含有層24は樹脂を含む層であり、典型的には半導体素子(チップ)を封止して保護するための層(モールド層)である。樹脂含有層24を構成する樹脂の好ましい例としてはエポキシ樹脂、及びエポキシ樹脂を含む樹脂が挙げられる。樹脂含有層24はフィラーを含むのが曲げ弾性率及び/又は曲げ強さを向上させる観点から好ましい。フィラーの好ましい例としてはシリカ及びチタニアが挙げられる。樹脂含有層24におけるフィラーの含有量は0重量%以上95重量%以下が好ましく、より好ましくは50重量%以上93重量%以下、さらに好ましくは82重量%以上91重量%以下である。フィラーの平均粒径D50は、好ましくは1.0μm以上70μm以下、より好ましくは10μm以上25μm以下である。なお、本明細書において、平均粒径D50は、レーザー回折散乱法によって得られる粒度分布において小粒径側からの積算体積が50%になる粒径を意味するものとする。
(2)剥離起点部の形成
 配線層26とキャリア12との間に段差又は隙間を形成して剥離起点部Sとする(図2B(ii)参照)。この剥離起点部Sをきっかけとして、後述する剛性板の挿入及び移動を行うことで、キャリア12の剥離をスムーズに行うことができる。なお、図2B(i)、(ii)では樹脂含有層24の断面を台形状としているが、矩形又は長方形の形状としても良い。
 剥離起点部Sは、配線層26の端部及び/又はキャリア12の端部に形成されることが剛性板の挿入を容易とする観点から好ましい。また、積層シート10が多角形状(例えば矩形状)である場合、剥離起点部Sは配線層26の角部分及び/又はキャリア12の角部分に形成されるのがより好ましい。
 剥離起点部Sの形成手法は特に限定されず、いかなる手法を用いたものであってよい。例えば、配線層26とキャリア12との間(剥離層16付近)に薄片を挿入することや、積層シート10の端部に対して配線層26とキャリア12とが離間する方向に力を加えること等により、剥離層16の端部を含む領域を一部剥離させることで、剥離起点部Sを形成することができる。
 一方、図1に示されるように、剥離層16の端部が金属層18で被覆されている場合、剥離起点部Sの形成が困難となり得る。この場合には、図2A(ii)に示すように積層シート10の周囲をトリミングすることにより、剥離層16の端部を露出させることが好ましい。具体的には、積層シート10を断面視した場合に、金属層18、剥離層16及び中間層14(存在する場合)を貫通するように、積層シート10のキャリア12と反対側の面から切込みを入れることが好ましい。このようにして金属層18における剥離層16の端部を覆う箇所を除去することで、剥離層16の端面を露出させることができる。
 剥離起点部Sの形成は、段差又は隙間に液体(例えば潤滑剤等の薬液)を全く付着させずに行うことができる。こうすることで配線層26の金属部分に液体が付着し、付着した部分のエッチングレートが変動することに起因する不具合を防止できる。すなわち、エッチングが不十分な部分が生じたり、所定のエッチングを行うのにより長い時間を要したり、こうした領域が混在することで生じるエッチングむらの発生を抑制することができる。
(3)剛性板の挿入
 形成された剥離起点部Sに対して長尺部を有する剛性板28をその長尺部から挿入する(図3A(iii)及び図3B(iii)参照)。剛性板28は所望の剛性を有する板であり、フィルム状又はシート状の形態であってもよい。ここで、剛性板28の少なくとも長尺部は積層シート10の幅よりも長いものである。これにより、剛性板28における長尺部の両端付近を把持した状態で、後述する剛性板28の移動を行うことができる。その結果、剛性板28が撓むことなく配線層26に対して均一な力を加えやすくなり、キャリア12の剥離を効率的に行うことができる。積層シート10が矩形状である場合、剛性板28の長尺部は、積層シート10の短辺の長さよりも長ければよく、長辺を含むものであってもよいし、あるいは短辺を含むものであってもよい。一方、積層シート10が円板状である場合、剛性板28の長尺部の長さは、積層シート10の直径よりも大きいのが好ましい。いずれにしても、剛性板28の長尺部の長さは、積層シート10のサイズに応じて適宜変更してよい。
 キャリア12の主面に対する剛性板28の挿入角度は0°以上90°以下であるのが好ましく、より好ましくは0°を超え65°以下、さらに好ましくは3°以上30°以下、特に好ましくは5°以上15°以下である。これにより、剛性板28を積層シート10に挿入して移動させる際に、配線層26に対して所望の剥離角度で力を加えやすくなり、キャリア12からの配線層26の剥離を進展させやすくなる。この挿入角度は、積層シート10を断面視した場合に、剛性板28の先端部(又は先端部を通る仮想線)がキャリア12表面(存在する場合には中間層14表面)に接する箇所において、剛性板28の先端部とキャリア12表面とがなす角として定義される。
 剛性板28は、図4に示されるように、断面視した場合に長尺部側(配線層26と接触する側)の先端角度θが0°以上90°以下であるのが好ましく、より好ましくは0°を超え45°以下、さらに好ましくは5°を超え45°以下である。また、上記剛性板28の挿入角度と、上記剛性板28の先端角度との合計角度は0°以上120°以下であることが好ましく、0°を超え90°以下とすることがより好ましく、5°を超え45°以下とすることが最も好ましい。あるいは、剛性板28の長尺部側(配線層26と接触する側)の先端は0.1mm以上10mm以下の曲率を有するものであってもよく、より好ましくは0.2mm以上10mm以下、さらに好ましくは0.5mm以上5.0mm以下の曲率を有する。これにより、キャリア12からの配線層26の剥離をより一層進展させやすくなるとともに、剛性板28が配線層26と接触する際に、配線層26の損傷をより効果的に抑制することができる。
 JIS Z2245:2016に準拠して測定される、25℃における剛性板28のロックウェル硬さがR135以下であるのが好ましく、より好ましくはR132以下、さらに好ましくはR130以下、特に好ましくはR128以下である。ロックウェル硬さの下限値は特に限定されないが、典型的にはR50以上である。このような軟らかい材料とすることで、剛性板28を積層シート10に挿入して移動させる際に、配線層26に対して傷をつけにくくなり、キャリア12からの配線層26の剥離を進展させた際の、剛性板28との接触に伴う配線層26の損傷をより効果的に抑制することができる。
 JIS K7161-1:2014に準拠して測定される、25℃における剛性板28の破断強度が0.50kgf以上であるのが好ましく、より好ましくは0.80kgf以上、さらに好ましくは2.0kgf以上、特に好ましくは4.0kgf以上である。破断強度の上限値は特に限定されないが、典型的には10kgf以下である。このような強度を有する材料とすることで、剛性板28を積層シート10に挿入して移動させ、キャリア12からの配線層26の剥離を進展させた際にも剛性板28の破断を抑制し、工程の中断を効果的に防ぐことができる。
 キャリア12からの配線層26を剥離する際の剥離強度は0.10gf/cm以上50gf/cm以下であるのが好ましく、より好ましくは1.0gf/cm以上30gf/cm以下であり、さらに好ましくは1.5gf/cm以上10gf/cm以下であり、特に好ましくは2.0gf/cm以上5.0gf/cm以下である。このような剥離強度を有する材料を用いることで、剛性板28を積層シート10に挿入して移動させ、キャリア12からの配線層26の剥離を進展させた際にも、キャリア12からの配線層26の剥離を進展させやすくなるとともに、剛性板28との接触に伴う配線層26の損傷をより効果的に抑制し、さらには剛性板28の破断を防止し工程の中断を効果的に防ぐことができる。
 剛性板28の曲げ弾性率は、0.1GPa以上20GPa以下であるのが好ましく、より好ましくは0.3GPa以上10GPa以下、さらに好ましくは0.5GPa以上7.0GPa以下、特に好ましくは1.0GPa以上5.0GPa以下である。剛性板28をこのような曲げ弾性率を有する材料とすることで、剛性板28を積層シート10に挿入して移動させ、キャリア12からの配線層26の剥離を進展させた際にも配線層26の破壊や破断などの損傷をより効果的に抑制し、歩留りの低下や工程中断を効果的に防ぐことができる。
 剛性板28の幅(短辺長さ)は1.0mm以上300mm以下であるのが好ましく、より好ましくは2.0mm以上100mm以下、さらに好ましくは3.0mm以上50mm以下、特に好ましくは4.0mm以上30mm以下である。これにより、薄い剛性板28であっても強度を向上することができ、配線層26に対して力を加えやすくなる結果、キャリア12の剥離をより効率的に行うことができる。なお、剛性板28の幅は、長尺部の長さと同一(つまり正方形状の剛性板28)であってもよい。
 剛性板28の厚さは0.040mm以上10mm以下であるのが好ましく、より好ましくは0.060mm以上8.0mm以下、さらに好ましくは0.080mm以上5.0mm以下、特に好ましくは0.20mm以上3.0mm以下である。このように薄い剛性板28であると、配線層26を望ましい剥離角度でキャリア12から引き剥がしやすくなり、配線層26の湾曲に伴う割れ及び破壊をより効果的に抑制することができる。
 剛性板28は、所望の剛性やロックウェル硬さ、破断強度などを付与しやすい点から樹脂で構成されるのが好ましい。このような樹脂の例としては、ポリエチレンテレフタラート(PET)、超高分子量ポリエチレン、硬質ポリエチレン(HPE)、ポリプロピレン(PP)、ポリスチレン(PS)、メタアクリル(MA)、アクリルニトリル・ブタジエン・スチレン(ABS)、ポリアミド(ナイロン6、6N)、モノマーキャスティングナイロン(MC)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリテトラフルオロエチレン(PTFE)、硬質塩化ビニール(PVC)、ポリフェニレンオキサイド(PPO)及びポリウレタン(PUR)が挙げられる。特に、剛性板28は、ポリエチレンテレフタラート(PET)、超高分子量ポリエチレン(UHMW)、硬質ポリエチレン(HPE)、ポリプロピレン(PP)及びポリスチレン(PS)からなる群から選択される少なくとも1種で構成されるのが好ましく、より好ましくはポリエチレンテレフタラート(PET)で構成される。剛性板28を構成する樹脂の弾性係数は4×10kgf/cm以上70×10kgf/cm以下であるのが好ましく、より好ましくは10×10kgf/cm以上40×10kgf/cm以下、さらに好ましくは25×10kgf/cm以上35×10kgf/cm以下である。これにより、剛性板28を積層シート10に挿入して移動させる際に、配線層26に対して力を加えやすくなり、キャリア12からの配線層26の剥離を進展させやすくなるとともに、剛性板28との接触に伴う配線層26の損傷をより効果的に抑制することができる。なお、本発明における弾性係数はJIS K6911-1995に準拠して測定される値とする。
 剛性板28の剥離起点部Sへの挿入は、剛性板28に液体(例えば潤滑剤等の薬液)を付着させずに行われるのが好ましい。こうすることで配線層26の金属部分に液体が付着して反応することを防止することができ、後工程で行われうる金属エッチングを阻害することを避けることができる。
(4)剛性板の移動
 剛性板28を剥離起点部Sから剥離層16に沿って移動させる(図3A(iv)及び図3B(iv)参照)。これにより、キャリア12からの配線層26の剥離を進展させる。すなわち、剥離起点部Sに挿入された剛性板28が、キャリア12の主面と略平行方向に移動することにより、配線層26に対してキャリア12と引き離される方向の力(剥離力)が加わる。これにより配線層26及びキャリア12間の段差又は隙間が順次拡大する結果、キャリア12の剥離が進行する。このように、キャリア12、剥離層16及び所定の曲げ弾性率を有する配線層26を順に備えた積層シート10に対して、配線層26及びキャリア12間に剥離起点部Sを形成し、この剥離起点部Sに所定の剛性板28を挿入した後、剛性板28を剥離層16に沿って移動させることにより、簡便かつ確実にキャリア12を剥離して配線基板を製造することができる。
 この点、特許文献5(国際公開第2017/075151号)及び特許文献6(特開2015-145306号公報)に開示されるような従来の配線基板の製造方法は、簡便かつ確実なキャリアの剥離という観点から十分なものとはいえなかった。ここで、図5には、ワイヤを用いた従来のキャリア剥離方法の一例が示される。図5に示される従来例では、キャリア112及び配線層126を備えた積層シート110において、キャリア112と配線層126との間にワイヤWを挿入して両者の剥離を進展させている。この点、剥離位置(支点)とワイヤWの位置(力点)との距離が短いほど配線層126に大きな力が掛かり、剥離を進展させやすくなる。しかしながら、ワイヤWは剥離の進展方向にたわみ易いため、配線層126の表面に剥離に必要な力より大きな力が掛かかり、配線層126を傷付ける又は破壊するおそれがある。また、ワイヤWの強度が足りずに破断が生じた場合、剥離工程が中断されることになる。一方、ワイヤの強度を上げるべく、断面径が太いワイヤW’に変更した場合でも、配線層126が大きく湾曲することにより、配線層126が割れてしまうおそれが高まる。特に、曲げ弾性率が大きく薄い樹脂含有層(例えばフィラーを含む樹脂含有層)を配線層126が備える場合、この問題は顕著となる。
 他方、ナイフなどを用いた従来のキャリア剥離方法では、剥離を進展させる際にキャリアや配線層に含まれうる金属層等をナイフで傷付けてしまう場合があり、配線基板として使用できないものが製造され、歩留が低下する等の問題がある。また、薬液等を付着させたナイフなどを使用した場合には、配線層を構成する金属と付着した薬液とが反応し、後工程で行われる金属エッチングの妨げとなる。
 これに対して、本発明では剥離の進展に長尺部を有する剛性板28を用いるため、剛性板28自体の破断を生じさせずに、配線層26に大きな力を加えることができる。また、剛性板28が薄い場合であっても、剛性板28の幅を大きくすることで強度を増すことができ、それ故、配線層26の湾曲を抑制しながらキャリア12の剥離を行うこともできる。さらに、本発明では潤滑剤等の液体を使用しなくても、配線層26を傷付けずにキャリア12の剥離を行うことができるため、後工程であるエッチング処理工程において、潤滑剤等の除去作業も不要となる。したがって、剥離を進展させる工程は、積層シート10に形成された段差又は隙間に液体を付着させずに行われるのが好ましい。
 剛性板28の移動は、手動で行うものであってもよく、機械等により自動で行うものであってもよい。いずれにしても、剛性板28の移動は、剛性板28における長尺部の両端付近を(手又は機械等により)把持した状態で行うのが好ましい。これにより、剛性板28が撓むことなく配線層26に対して均一な力を加えやすくなり、キャリア12の剥離をより効率的に行うことができる。また、剛性板28の移動は、積層シート10のキャリア側の面を固定した状態で行われるのが好ましい。
(5)キャリアの剥離(任意工程)
 所望により、積層シート10からキャリア12を剥離する工程をさらに含むものであってもよい(図3A(v)及び図3B(v)参照)。例えば、上述した剛性板28の移動を、積層シート10の剥離起点部Sと反対側の端部まで継続することにより、配線層26とキャリア12とを完全に分離させることができる。あるいは、剛性板28の移動によってキャリア12からの配線層26の剥離をある程度進展させた後、積層シート10に対して、キャリア12と配線層26とが離間する方向に力を加えることにより、キャリア12から配線層26を引き剥がしてもよい。
 配線層26が金属層18を備える場合、キャリア12の剥離後に露出した金属層18をエッチングにより除去してもよい。こうすることで金属層18表面に形成された配線(埋め込み配線)が露出するため、その上にフォトリソグラフィプロセスによる更なる回路を形成するのにより適したものとなる。金属層18のエッチングは公知の手法に基づき行えばよく、特に限定されない。
 キャリア付金属箔
 図1を参照しつつ上述したとおり、本発明の方法において所望により用いられるキャリア付金属箔は、キャリア12、所望により中間層14、剥離層16、及び金属層18を順に備える。
 キャリア12は、ガラス、セラミックス、シリコン、樹脂、及び金属のいずれで構成されるものであってもよいが、好ましくはシリコンを含む基板又はガラス基板である。シリコンを含む基板としては、元素としてSiを含むものであればどのような基板でもよく、SiO基板、SiN基板、Si単結晶基板、Si多結晶基板等が適用できる。より好ましくは、ガラスキャリア、単結晶シリコン基板又は多結晶シリコン基板である。本発明の好ましい態様によれば、キャリア12は、直径100mm以上の円板状であり、より好ましくは直径200mm以上450mm以下の円板状である。本発明の別の好ましい態様によれば、キャリア12は、短辺が100mm以上の矩形状であり、より好ましくは短辺が150mm以上650mm以下である。矩形状のキャリア12は、短辺に比して長辺が十分に長いロール形状のものでも良いが、好ましくは長辺が200mm以上650mm以下である。
 キャリア12の形態はシート、フィルム及び板のいずれであってもよい。また、キャリア12はこれらのシート、フィルム及び板等が積層されたものであってもよい。例えば、キャリア12はガラス板、セラミックス板、シリコンウェハ、金属板等といった剛性を有する支持体として機能しうるものであってもよいし、金属箔や樹脂フィルム等といった剛性を有しない形態であってもよい。キャリア12を構成する金属の好ましい例としては、銅、チタン、ニッケル、ステンレススチール、アルミニウム等が挙げられる。セラミックスの好ましい例としては、アルミナ、ジルコニア、窒化ケイ素、窒化アルミニウム、その他各種ファインセラミックス等が挙げられる。樹脂の好ましい例としては、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリアミド、ポリイミド、ナイロン、液晶ポリマー、ポリエーテルエーテルケトン(PEEK(登録商標))、ポリアミドイミド、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリテトラフルオロエチレン(PTFE)、エチレンテトラフルオロエチレン(ETFE)等が挙げられる。より好ましくは、半導体素子を搭載する際の加熱に伴うコアレス支持体の反り防止の観点から、熱膨張係数(CTE)が25ppm/K未満(典型的には1.0ppm/K以上23ppm/K以下)の材料であり、そのような材料の例としては、上述したような各種樹脂(特にポリイミド、液晶ポリマー等の低熱膨張樹脂)、ガラス、シリコン及びセラミックス等が挙げられる。また、ハンドリング性やチップ実装時の平坦性確保の観点から、キャリア12はビッカース硬度が100HV以上であるのが好ましく、より好ましくは150HV以上2500HV以下である。これらの特性を満たす材料として、キャリア12はガラス、シリコン又はセラミックスで構成されるのが好ましく、より好ましくはガラス又はセラミックスで構成され、特に好ましくはガラスで構成される。ガラスから構成されるキャリア12としては、例えばガラス板が挙げられる。ガラスをキャリア12として用いた場合、軽量で、熱膨脹係数が低く、絶縁性が高く、剛直で表面が平坦なため、金属層18の表面を極度に平滑にできる等の利点がある。また、キャリア12がガラスである場合、微細回路形成に有利な表面平坦性(コプラナリティ)を有している点、配線製造工程におけるデスミアや各種めっき工程において耐薬品性を有している点等の利点がある。キャリア12を構成するガラスの好ましい例としては、石英ガラス、ホウケイ酸ガラス、無アルカリガラス、ソーダライムガラス、アルミノシリケートガラス、及びそれらの組合せが挙げられ、より好ましくは無アルカリガラス、ソーダライムガラス、及びそれらの組合せであり、特に好ましくは無アルカリガラスである。無アルカリガラスは、二酸化ケイ素、酸化アルミニウム、酸化ホウ素、及び酸化カルシウムや酸化バリウム等のアルカリ土類金属酸化物を主成分とし、更にホウ酸を含有する、アルカリ金属を実質的に含有しないガラスのことである。この無アルカリガラスは、0℃から350℃までの広い温度帯域において熱膨脹係数が3ppm/K以上5ppm/K以下の範囲で低く安定しているため、加熱を伴うプロセスにおけるガラスの反りを最小限にできるとの利点がある。キャリア12の厚さは100μm以上2000μm以下が好ましく、より好ましくは300μm以上1800μm以下、さらに好ましくは400μm以上1100μm以下である。キャリア12がこのような範囲内の厚さであると、ハンドリングに支障を来さない適切な強度を確保しながら配線の薄型化、及び電子部品搭載時に生じる反りの低減を実現することができる。
 所望により設けられる中間層14は、1層構成であってもよいし、2層以上の構成であってもよい。中間層14が2層以上の層で構成される場合には、中間層14は、キャリア12直上に設けられた第1中間層と、剥離層16に隣接して設けられた第2中間層とを含む。第1中間層は、キャリア12との密着性を確保する点から、Ti、Cr、Al及びNiからなる群から選択される少なくとも1種の金属で構成される層であるのが好ましい。第1中間層は、純金属であってもよいし、合金であってもよい。第1中間層の厚さは5nm以上500nm以下であるのが好ましく、より好ましくは10nm以上300nm以下、さらに好ましくは18nm以上200nm以下、特に好ましくは20nm以上100nm以下である。第2中間層は、剥離層16との剥離強度を所望の値に制御する点から、Cuで構成される層であるのが好ましい。第2中間層の厚さは5nm以上500nm以下であるのが好ましく、より好ましくは10nm以上400nm以下、さらに好ましくは15nm以上300nm以下、特に好ましくは20nm以上200nm以下である。第1中間層と第2中間層との間には、別の介在層が存在していてもよく、介在層の構成材料の例としては、Ti、Cr、Mo、Mn、W及びNiからなる群から選択される少なくとも1種の金属とCuとの合金等が挙げられる。一方、中間層14が1層構成の場合には、上述した第1中間層を中間層としてそのまま採用してもよいし、第1中間層及び第2中間層を、1層の中間合金層で置き換えてもよい。この中間合金層は、Ti、Cr、Mo、Mn、W、Al及びNiからなる群から選択される少なくとも1種の金属の含有量が1.0at%以上であり、かつ、Cu含有量が30at%以上である銅合金で構成されるのが好ましい。中間合金層の厚さは5nm以上500nm以下であるのが好ましく、より好ましくは10nm以上400nm以下、さらに好ましくは15nm以上300nm以下、特に好ましくは20nm以上200nm以下である。なお、上述した各層の厚さは、層断面を透過型電子顕微鏡のエネルギー分散型X線分光分析器(TEM-EDX)で分析することにより測定される値とする。中間層14を構成する金属は原料成分や成膜工程等に起因する不可避的不純物を含んでいてもよい。また、中間層14の成膜後に大気に暴露される場合、それに起因して混入する酸素の存在は許容される。中間層14は、いかなる方法で製造されたものであってもよいが、金属ターゲットを用いたマグネトロンスパッタリング法により形成された層であるのが膜厚分布の均一性を具備できる点で特に好ましい。
 剥離層16は、キャリア12、及び存在する場合には中間層14の剥離を可能ないし容易とする層である。剥離層16は、物理的に力を加える方法により剥離が可能なもののほか、レーザーにより剥離する方法(レーザーリフトオフ、LLO)により剥離が可能となるものでも良い。剥離層16がレーザーリフトオフにより剥離が可能となる材質で構成される場合、剥離層16は硬化後のレーザー光線照射により界面の接着強度が低下する樹脂で構成されてもよく、あるいはレーザー光線照射により改質がされるケイ素、炭化ケイ素、金属酸化物等の層であってもよい。また、剥離層16は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Cu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga、Moの少なくとも一種類以上を含む金属酸化物若しくは金属酸窒化物、又は炭素等が挙げられる。これらの中でも、剥離層16は主として炭素を含んでなる層であるのが剥離容易性や層形成性の点等から好ましく、より好ましくは主として炭素又は炭化水素からなる層であり、さらに好ましくは硬質炭素膜であるアモルファスカーボンからなる層である。この場合、剥離層16(すなわち炭素含有層)はXPSにより測定される炭素濃度が60原子%以上であるのが好ましく、より好ましくは70原子%以上、さらに好ましくは80原子%以上、特に好ましくは85原子%以上である。炭素濃度の上限値は特に限定されず100原子%であってもよいが、98原子%以下が現実的である。剥離層16は不可避的不純物(例えば雰囲気等の周囲環境に由来する酸素、炭素、水素等)を含みうる。また、剥離層16には後に積層される金属層18等の成膜手法に起因して、剥離層16として含有された金属以外の種類の金属原子が混入しうる。剥離層16として炭素含有層を用いた場合にはキャリアとの相互拡散性及び反応性が小さく、300℃を超える温度でのプレス加工等を受けても、金属層と接合界面との間での高温加熱による金属元素の相互拡散を防止して、キャリアの引き剥がし除去が容易な状態を維持することができる。剥離層16はスパッタリング等の気相法により形成された層であるのが剥離層16中の過度な不純物を抑制する点、他の層の連続生産性の点などから好ましい。剥離層16として炭素含有層を用いた場合の厚さは1nm以上20nm以下が好ましく、より好ましくは1nm以上10nm以下である。この厚さは、層断面を透過型電子顕微鏡のエネルギー分散型X線分光分析器(TEM-EDX)で分析することにより測定される値とする。
 剥離層16は、金属酸化物層又は炭素含有層のいずれかまたは両方の層を含むか、又は金属酸化物及び炭素の双方を含む層であってもよい。特に、キャリア付金属箔が中間層14を含む場合、炭素含有層がキャリア12の安定的な剥離に寄与するとともに、金属酸化物層によって中間層14及び金属層18に由来する金属元素の加熱に伴う拡散をより効果的に抑制することができ、結果として例えば350℃以上もの高温で加熱された後においても、安定した剥離性を保持することが可能となる。金属酸化物層はCu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga、Mo及びそれらの組合せで構成される金属の酸化物を含む層であるのが好ましい。金属酸化物層は金属ターゲットを用い、酸化性雰囲気下でスパッタリングを行う反応性スパッタリング法により形成された層であるのが、成膜時間の調整によって膜厚を容易に制御可能な点から特に好ましい。金属酸化物層の厚さは0.1nm以上100nm以下であるのが好ましい。金属酸化物層の厚さの上限値としては、より好ましくは60nm以下、さらに好ましくは30nm以下、特に好ましくは10nm以下である。この厚さは、層断面を透過型電子顕微鏡のエネルギー分散型X線分光分析器(TEM-EDX)で分析することにより測定される値とする。このとき、剥離層16として金属酸化物層及び炭素層が積層される順は特に限定されない。また、剥離層16は、金属酸化物層及び炭素含有層の境界が明瞭には特定されない混相(すなわち金属酸化物及び炭素の双方を含む層)の状態で存在していてもよい。
 同様に、高温での熱処理後においても安定した剥離性を保持する観点から、剥離層16は、金属層18に隣接する側の面がフッ化処理面及び/又は窒化処理面である金属含有層であってもよい。金属含有層にはフッ素の含有量及び窒素の含有量の和が1.0原子%以上である領域(以下、「(F+N)領域」と称する)が10nm以上の厚さにわたって存在するのが好ましく、(F+N)領域は金属含有層の金属層18側に存在するのが好ましい。(F+N)領域の厚さ(SiO換算)は、XPSを用いてキャリア付金属箔の深さ方向元素分析を行うことにより特定される値とする。フッ化処理面ないし窒化処理面は、反応性イオンエッチング(RIE:Reactive ion etching)、又は反応性スパッタリング法により好ましく形成することができる。一方、金属含有層に含まれる金属元素は、負の標準電極電位を有するのが好ましい。金属含有層に含まれる金属元素の好ましい例としては、Cu、Ag、Sn、Zn、Ti、Al、Nb、Zr、W、Ta、Mo及びそれらの組合せ(例えば合金や金属間化合物)が挙げられる。金属含有層における金属元素の含有率は50原子%以上100原子%以下であることが好ましい。金属含有層は1層から構成される単層であってもよく、2層以上から構成される多層であってもよい。金属含有層全体の厚さは、10nm以上1000nm以下であることが好ましく、より好ましくは30nm以上500nm以下、さらに好ましくは50nm以上400nm以下、特に好ましくは100nm以上300nm以下である。金属含有層自体の厚さは、層断面を透過型電子顕微鏡のエネルギー分散型X線分光分析器(TEM-EDX)で分析することにより測定される値とする。
 あるいは、剥離層16は、炭素層等に代えて、金属酸窒化物含有層であってもよい。金属酸窒化物含有層のキャリア12と反対側(すなわち金属層18側)の表面は、TaON、NiON、TiON、NiWON及びMoONからなる群から選択される少なくとも1種の金属酸窒化物を含むのが好ましい。また、キャリア12と金属層18との密着性を確保する点から、金属酸窒化物含有層のキャリア12側の表面は、Cu、Ti、Ta、Cr、Ni、Al、Mo、Zn、W、TiN及びTaNからなる群から選択される少なくとも1種を含むのが好ましい。こうすることで、金属層18表面の異物粒子数を抑制して回路形成性を向上し、かつ、高温で長時間加熱された後においても、安定した剥離強度を保持することが可能となる。金属酸窒化物含有層の厚さは5nm以上500nm以下であるのが好ましく、より好ましくは10nm以上400nm以下、さらに好ましくは20nm以上200nm以下、特に好ましくは30nm以上100nm以下である。この厚さは、層断面を透過型電子顕微鏡のエネルギー分散型X線分光分析器(TEM-EDX)で分析することにより測定される値とする。
 金属層18は金属で構成される層である。金属層18は、1層構成であってもよいし、2層以上の構成であってもよい。金属層18が2層以上の層で構成される場合には、金属層18は、剥離層16のキャリア12と反対の面側に、第1金属層から第m金属層(mは2以上の整数)までの各金属層が順に積層した構成とすることができる。金属層18全体の厚さは1nm以上2000nm以下であることが好ましく、好ましくは100nm以上1500nm以下、より好ましくは200nm以上1000nm以下、さらに好ましくは300nm以上800nm以下、特に好ましくは350nm以上500nm以下である。金属層18の厚さは、層断面を透過型電子顕微鏡のエネルギー分散型X線分光分析器(TEM-EDX)で分析することにより測定される値とする。以下、金属層18が第1金属層及び第2金属層の2層で構成される例について説明する。
 第1金属層は、キャリア付金属箔に対してエッチングストッパー機能や反射防止機能等の所望の機能を付与するものであることが好ましい。第1金属層を構成する金属の好ましい例としては、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、Mo及びそれらの組合せが挙げられ、より好ましくはTi、Zr、Al、Cr、W、Ni、Mo及びそれらの組合せ、さらに好ましくはTi、Al、Cr、Ni、Mo及びそれらの組合せ、特に好ましくはTi、Mo及びそれらの組合せである。これらの元素は、フラッシュエッチング液(例えば銅フラッシュエッチング液)に対して溶解しにくいという性質を有し、その結果、フラッシュエッチング液に対して優れた耐薬品性を呈することができる。したがって、第1金属層は、後述する第2金属層よりもフラッシュエッチング液によってエッチングされにくい層となり、それ故、エッチングの進行を遅延可能なエッチングストッパー層として機能しうる。また、第1金属層を構成する上述の金属は光の反射を防止する機能も有するため、第1金属層は、画像検査(例えば自動画像検査(AOI))において視認性を向上させるための反射防止層としても機能しうる。第1金属層は、純金属であってもよいし、合金であってもよい。第1金属層を構成する金属は原料成分や成膜工程等に起因する不可避的不純物を含んでいてもよい。また、上記金属の含有率の上限は特に限定されず、100原子%であってもよい。第1金属層は物理気相堆積(PVD)法により形成された層であるのが好ましく、より好ましくはスパッタリングにより形成された層である。第1金属層の厚さは、1nm以上500nm以下であることが好ましく、より好ましくは10nm以上400nm以下、さらに好ましくは30nm以上300nm以下、特に好ましくは50nm以上200nm以下である。
 第2金属層を構成する金属の好ましい例としては、第4族、第5族、第6族、第9族、第10族及び第11族の遷移元素、Al、並びにそれらの組合せ(例えば合金や金属間化合物)が挙げられ、より好ましくは第4族及び第11族の遷移元素、Al、Nb、Co、Ni、Mo、並びにそれらの組合せ、さらに好ましくは第11族の遷移元素、Ti、Al、Mo、及びそれらの組合せ、特に好ましくはCu、Ti、Mo、及びそれらの組合せ、最も好ましくはCuである。第2金属層は、いかなる方法で製造されたものでよく、例えば、無電解金属めっき法及び電解金属めっき法等の湿式成膜法、スパッタリング及び真空蒸着等の物理気相堆積(PVD)法、化学気相成膜、又はそれらの組合せにより形成した金属箔であってよい。特に好ましい第2金属層は、極薄化によるファインピッチ化に対応しやすい観点から、スパッタリング法や真空蒸着等の物理気相堆積(PVD)法により形成された金属層であり、最も好ましくはスパッタリング法により製造された金属層である。また、第2金属層は、粗化処理をしていない金属層が好ましいが、配線パターン形成に支障を来さないかぎり予備的粗化処理やソフトエッチング処理や洗浄処理、酸化還元処理により二次的な粗化処理が施されたものであってもよい。ファインピッチ化に対応する観点から、第2金属層の厚さは10nm以上1000nm以下であることが好ましく、より好ましくは20nm以上900nm以下、さらに好ましくは30nm以上700nm以下、さらにより好ましくは50nm以上600nm以下、特に好ましくは70nm以上500nm以下、最も好ましくは100nm以上400nm以下である。このような範囲内の厚さの金属層はスパッタリング法により製造されるのが成膜厚さの面内均一性や、シート状やロール状での生産性の観点で好ましい。
 金属層18が1層構成の場合には、上述した第2金属層を金属層18としてそのまま採用することが好ましい。一方、金属層18がn層(nは3以上の整数)構成である場合には、金属層18の第1金属層から第(n-1)金属層までを上述した第1金属層の構成とすることが好ましく、金属層18の最外層、すなわち第n金属層を上述した第2金属層の構成とすることが好ましい。
 金属層18、所望により中間層14、及び所望により剥離層16(すなわち少なくとも金属層18、例えば金属層18及び中間層14)が、キャリア12の端面にまで延出することにより、当該端面が被覆されるのが好ましい。すなわち、キャリア12の表面のみならず端面も少なくとも金属層18で被覆されていることが好ましい。端面も被覆することで、配線基板の製造工程におけるキャリア12への薬液の浸入を防止することができる他、キャリア付金属箔又は積層シート10をハンドリングする際の側端部における剥離によるチッピング、すなわち剥離層16上の皮膜(すなわち金属層18)の欠けを強固に防止させることができる。キャリア12の端面における被覆領域は、キャリア12の表面から厚さ方向(すなわちキャリア表面に対して垂直な方向)に向かって、好ましくは0.1mm以上の領域、より好ましくは0.2mm以上の領域、さらに好ましくはキャリア12の端面全域にわたるものとする。
 本発明を以下の例によってさらに具体的に説明する。
 例1
 本発明の方法により、積層シートの作製及びキャリアの剥離を以下のようにして行った。
(1)積層シートの作製
 キャリア12として、98mm×68mmのサイズで厚さ1.1mmのガラス基板(材質:ソーダライムガラス)を用意した。このキャリア12上に、2層構成の中間層14としてのチタン層(厚さ50nm)及び銅層(厚さ200nm)、剥離層16としてのアモルファスカーボン層(厚さ6nm)、並びに2層構成の金属層18としてのチタン層(厚さ100nm)及び銅層(厚さ300nm)をスパッタリングでこの順に成膜して、キャリア付金属箔を得た。このとき、金属層18をキャリア12の端面にまで延出するように成膜することで、剥離層16の端部を被覆した。
 キャリア付金属箔の金属層18上に、98mm×68mmのサイズで厚さ20μmの再配線層20を形成した。具体的には、まず、キャリア付金属箔の金属層18側の表面に感光性ドライフィルムを貼り付け、露光及び現像を行い、所定パターンのフォトレジスト層を形成した。次いで、金属層18の露出表面(すなわちフォトレジスト層でマスキングされていない部分)にパターン電解銅めっきを行い、電解銅めっき層を形成した後、フォトレジスト層を剥離した。こうすることで、金属層18及び電解銅めっき層を配線パターン状に残す一方、これらの配線パターンを形成しない部分の金属層18を露出させた。その後、露出した金属層18の不要部分をエッチング液で除去することにより配線層を形成した。さらに、キャリア付金属箔の配線層側に、絶縁樹脂材料(感光性絶縁材料、昭和電工マテリアルズ株式会社製AR-5100)を積層し、230℃で60分間の熱硬化処理を行うことにより、絶縁層を形成した。このようにして、配線層及び絶縁層を含む再配線層20を形成した。
 再配線層20上にSiOフィラーを含むエポキシ含有樹脂(曲げ強さ及び曲げ弾性率は表1に示されるとおり)を適用して90mm×60mmのサイズで厚さ0.2mmの樹脂含有層24を形成した。このエポキシ含有樹脂は、液状ビスフェノールF型エポキシ樹脂と、フェノールビフェニルアラルキル樹脂(硬化剤)とをエポキシ基/フェノール性水酸基=1.0のモル比で混合し、得られた樹脂混合物14重量部にSiOフィラー86重量部を配合して得られたものである。こうしてキャリア12、中間層14、剥離層16、及び配線層26としての金属層18、再配線層20及び樹脂含有層24をこの順に備えた積層シート10を作製した。この積層シート10を剥離層16でキャリア12と配線層26とに分離した際の剥離強度は、6.5gf/cmであった。
(2)剥離起点部の形成
 積層シート10のキャリア12側の面を市販の両面テープにより作業台に固定した。次いで、積層シート10の金属層18表面から、カッターの刃(材質:タングステン)をキャリア12の主面に対して略垂直方向に入れることで、切込みを形成した。この切込みは、積層シート10を平面視した場合に、樹脂含有層24を取り囲むように矩形状のパターン(4辺の線状パターン)とした。また、この切込みは、積層シート10を断面視した場合に、金属層18、剥離層16及び中間層14を貫通し、かつ、キャリア12を貫通しない深さとした。こうして積層シート10のトリミングを行い、金属層18における剥離層16の端部を覆う箇所を除去した。そして、積層シート10の一端(角部分)において、露出した剥離層16付近にカッターを差し入れて隙間を形成し、剥離起点部Sとした。
(3)剛性板の挿入
 積層シート10に形成された剥離起点部Sに対し、剛性板28として、10mm×150mmのサイズで厚さ0.073mmの長尺状PETフィルム(曲げ弾性率:3.1GPa、曲げ強さ:130MPa、ロックウェル硬さ:R125、破断強度:6.3kgf、弾性係数:30.7×10kgf/cm)を用いて、PETフィルムの長尺部から挿入した。このとき、剛性板28の挿入角度は0°(キャリア12の主面と平行)とした。
(4)剛性板の移動
 剛性板28の長尺部の両端付近を手で把持した状態で、剛性板28を剥離起点部Sから剥離層16に沿って移動させた。剛性板28の移動を積層シート10の剥離起点部Sと反対側の端部まで継続し、それにより配線層26とキャリア12とを完全に分離させた。なお、剥離起点部の形成並びに剛性板の挿入及び移動の各工程において、潤滑剤等の液体は使用しなかった。
 例2(比較)
 剛性板28としてのPETフィルムに代えて、断面径約0.23mmのワイヤ(日本紐釦貿易株式会社製、スーパーナイロンテグス、品番:A10-13、材質:ナイロン、曲げ弾性率:11GPa、ロックウェル硬さ:R120、破断強度:0.41kgf)を用いて剥離起点部への挿入及び移動を行ったこと以外は、例1と同様にして積層シートの作製及びキャリアの剥離を行った。
 例3~12
 積層シートの作製において、樹脂含有層24の厚さ、及び/又は樹脂含有層24を構成するエポキシ樹脂の特性(フィラー含有量、曲げ強さ及び曲げ弾性率)を表1に示すように変更したこと以外は、例1と同様にして積層シートの作製及びキャリアの剥離を行った。
 評価
 キャリア剥離後の積層シートについて、以下に示される各種評価を行った。
(a)割れ及び傷の確認
 キャリア12剥離後の配線層26について、割れの有無を目視で確認した。その結果、例1~12のいずれにおいても配線層26に割れは確認されなかった。また、積層シート10の剥離面、つまり中間層14の銅層側表面及び金属層18のチタン層側表面における傷の有無を目視で観察した。その結果、例1及び3~12については、積層シート10の剥離面に傷の発生は確認されなかった。一方、例2(比較)については、中間層14の銅層側表面及び金属層18のチタン層側表面のいずれにも傷が生じているのが確認された。参考のため、例1及び2における剥離後の中間層14の銅層及び金属層18のチタン層を撮影した写真を図6及び7にそれぞれ示す。
(b)エッチング後の変色
 金属層18のチタン層側表面(配線層26の剥離面)に対してチタンエッチング液(メルテックス株式会社製、メルストリップ TI-3991)を用いて金属エッチングを150秒間実施した。その後、配線層26の金属エッチングを行った側の表面を目視で観察し、変色(色の濃淡によるまだら模様の発生)の有無を確認した。その結果、例1~12のいずれにおいても配線層26に変色は確認されなかった。
Figure JPOXMLDOC01-appb-T000001

Claims (18)

  1.  配線基板の製造方法であって、
     キャリア上に剥離層及び配線層を順に備えた積層シートを用意する工程と、
     前記配線層と前記キャリアとの間に段差又は隙間を形成して剥離起点部とする工程と、
     前記剥離起点部に対して長尺部を有する剛性板をその長尺部から挿入する工程であって、前記長尺部が前記積層シートの幅よりも長い、工程と、
     前記剛性板を前記剥離起点部から前記剥離層に沿って移動させることにより、前記キャリアからの前記配線層の剥離を進展させる工程と、
    を含み、
     JIS K6911-1995に準拠して測定される、25℃における前記配線層の曲げ弾性率が0.3GPa以上300GPa以下である、配線基板の製造方法。
  2.  JIS K6911-1995に準拠して測定される、25℃における前記配線層の曲げ強さが5MPa以上1000MPa以下である、請求項1に記載の配線基板の製造方法。
  3.  JIS Z2245:2016に準拠して測定される、25℃における前記剛性板のロックウェル硬さがR135以下である、請求項1又は2に記載の配線基板の製造方法。
  4.  JIS K7161-1:2014に準拠して測定される、25℃における前記剛性板の破断強度が0.50kgf以上である、請求項1又は2に記載の配線基板の製造方法。
  5.  前記キャリアからの前記配線層を剥離する際の剥離強度が0.10gf/cm以上50gf/cm以下である、請求項1又は2に記載の配線基板の製造方法。
  6.  前記剥離起点部が前記配線層の端部及び/又は前記キャリアの端部に形成される、請求項1又は2に記載の配線基板の製造方法。
  7.  前記キャリアの主面に対する前記剛性板の挿入角度が0°以上90°以下である、請求項1又は2に記載の配線基板の製造方法。
  8.  前記剛性板は、断面視した場合に、前記長尺部側の先端角度が0°以上90°以下である、又は前記長尺部側の先端が0.1mm以上10mm以下の曲率を有する、請求項1又は2に記載の配線基板の製造方法。
  9.  前記キャリアの主面に対する前記剛性板の挿入角度と、前記剛性板を断面視した場合における、前記剛性板の前記長尺部側の先端角度との合計角度が0°以上120°以下である、請求項1又は2に記載の配線基板の製造方法。
  10.  前記剛性板の幅が1.0mm以上300mm以下である、請求項1又は2に記載の配線基板の製造方法。
  11.  前記剛性板の厚さが0.040mm以上10mm以下である、請求項1又は2に記載の配線基板の製造方法。
  12.  前記剛性板が樹脂で構成される、請求項1又は2に記載の配線基板の製造方法。
  13.  前記剥離起点部を形成する工程、及び/又は前記剥離を進展させる工程が、前記段差又は隙間に液体を付着させずに行われる、請求項1又は2に記載の配線基板の製造方法。
  14.  前記配線層が、金属層、半導体素子及び樹脂含有層からなる群から選択される少なくとも1種を含む、請求項1又は2に記載の配線基板の製造方法。
  15.  前記配線層の厚さが0.1μm以上5.0mm以下である、請求項14に記載の配線基板の製造方法。
  16.  前記配線層が金属層及び樹脂含有層を備える、請求項14に記載の配線基板の製造方法。
  17.  前記配線層が樹脂含有層を備え、前記樹脂含有層がフィラーを含む、請求項14に記載の配線基板の製造方法。
  18.  前記樹脂含有層のフィラー含有率が、95重量%以下である、請求項17に記載の配線基板の製造方法。

     
PCT/JP2023/031958 2022-09-05 2023-08-31 配線基板の製造方法 WO2024053565A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-140984 2022-09-05
JP2022140984 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024053565A1 true WO2024053565A1 (ja) 2024-03-14

Family

ID=90191104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031958 WO2024053565A1 (ja) 2022-09-05 2023-08-31 配線基板の製造方法

Country Status (2)

Country Link
TW (1) TW202423218A (ja)
WO (1) WO2024053565A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012268A1 (ja) * 2013-07-23 2015-01-29 日本電気硝子株式会社 ガラスフィルムの製造方法およびガラスフィルムの剥離方法
JP2019140150A (ja) * 2018-02-06 2019-08-22 アオイ電子株式会社 半導体装置の製造方法
WO2022102182A1 (ja) * 2020-11-11 2022-05-19 三井金属鉱業株式会社 配線基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012268A1 (ja) * 2013-07-23 2015-01-29 日本電気硝子株式会社 ガラスフィルムの製造方法およびガラスフィルムの剥離方法
JP2019140150A (ja) * 2018-02-06 2019-08-22 アオイ電子株式会社 半導体装置の製造方法
WO2022102182A1 (ja) * 2020-11-11 2022-05-19 三井金属鉱業株式会社 配線基板の製造方法

Also Published As

Publication number Publication date
TW202423218A (zh) 2024-06-01

Similar Documents

Publication Publication Date Title
KR102493697B1 (ko) 다층 배선판의 제조 방법
JP6415760B2 (ja) キャリア付銅箔、並びに配線層付コアレス支持体及びプリント配線板の製造方法
KR102426429B1 (ko) 캐리어를 구비한 구리박 및 그 제조 방법, 그리고 배선층을 구비한 코어리스 지지체 및 프린트 배선판의 제조 방법
JPWO2018066114A1 (ja) 多層配線板の製造方法
WO2018066113A1 (ja) 多層配線板の製造方法
JP6836689B2 (ja) ガラスキャリア付銅箔及びその製造方法
WO2022124116A1 (ja) キャリア付金属箔及びその製造方法
CN111511543B (zh) 带玻璃载体的铜箔及其制造方法
JP7212210B2 (ja) 配線基板の製造方法
WO2024053565A1 (ja) 配線基板の製造方法
TWI807546B (zh) 配線基板及其修整方法、以及多層配線板
JP7239789B1 (ja) 配線基板の製造方法
JP7427846B1 (ja) キャリア付金属箔
EP4318567A1 (en) Multilayer substrate manufacturing method and wiring substrate
CN117652212A (zh) 布线基板的制造方法
JP7142774B2 (ja) キャリア付金属箔並びにその使用方法及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863103

Country of ref document: EP

Kind code of ref document: A1