WO2015012235A1 - 粒状洗剤組成物およびその製造方法 - Google Patents

粒状洗剤組成物およびその製造方法 Download PDF

Info

Publication number
WO2015012235A1
WO2015012235A1 PCT/JP2014/069242 JP2014069242W WO2015012235A1 WO 2015012235 A1 WO2015012235 A1 WO 2015012235A1 JP 2014069242 W JP2014069242 W JP 2014069242W WO 2015012235 A1 WO2015012235 A1 WO 2015012235A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
zeolite
detergent composition
mass
granular detergent
Prior art date
Application number
PCT/JP2014/069242
Other languages
English (en)
French (fr)
Inventor
佐々木 大輔
利彦 立川
Original Assignee
ライオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライオン株式会社 filed Critical ライオン株式会社
Priority to KR1020157020946A priority Critical patent/KR101944345B1/ko
Priority to JP2015528276A priority patent/JP6414986B2/ja
Publication of WO2015012235A1 publication Critical patent/WO2015012235A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/02Preparation in the form of powder by spray drying
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds

Definitions

  • the present invention relates to a granular detergent composition and a method for producing the same.
  • This application claims priority on July 22, 2013 based on Japanese Patent Application No. 2013-151505 for which it applied to Japan, and uses the content here.
  • spray-dried particles obtained by spray-drying a slurry containing a surfactant, a detergency builder (water-soluble inorganic salt, etc.) are used as granular detergents used for washing clothes and the like at home and the like.
  • spray-dried particles are bulky, and at present, instead of granular detergents composed of spray-dried particles, granular detergents having a higher bulk density of detergent particles, so-called compact detergents, are the mainstream.
  • the above-mentioned spray-dried particles, other components and water are kneaded with a kneader or the like, and the resulting kneaded product is pulverized.
  • a method of impregnating spray-dried particles with a large amount of a surfactant is known.
  • the granular detergent generally contains detergent particles and inorganic peroxide particles such as sodium percarbonate as a bleaching agent.
  • Zeolites are often blended into granular detergents because they have various merits for the quality and production of granular detergents. For example, there are many merits in terms of quality, such as improvement in cleaning performance by capturing Ca ions in tap water, exudation of surfactant and the accompanying solidification, and improvement in fluidity.
  • zeolite is added to the slurry used for the production of spray-dried particles and contributes to the formation of a skeleton of the detergent particles. Further, it is also used as a lubricant or a grinding aid to ensure the fluidity of detergent particles in the production process.
  • zeolite has a problem of causing deterioration in storage stability of functional components, particularly inorganic peroxides, in granular detergents including detergent particles and inorganic peroxide particles.
  • Various techniques for improving the stability of inorganic peroxides have been studied for such problems (for example, Patent Documents 1 and 2). However, there is still room for improvement in the effect.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a granular detergent composition having improved storage stability of inorganic peroxide in the presence of zeolite and a method for producing the same.
  • the inventors of the present invention have reduced the proportion of zeolite that has undergone the spray drying step out of the zeolite blended in the granular detergent (that is, increased the proportion of zeolite that has not undergone the spray drying step). It has been found that the storage stability of the inorganic peroxide in the detergent is improved.
  • the present invention is based on the above findings and has the following aspects.
  • the particles (X) include spray-dried particles obtained by spray-drying a slurry containing a part of the zeolite (c),
  • the zeolite (c) content is 5 to 15% by mass, Of the zeolite (c), the mass ratio (c1 / c2) of the zeolite (c1) blended in the slurry to the zeolite (c2) other than the zeolite (c1) is 0.7 or less.
  • a granular detergent composition comprising a surfactant (a), an inorganic peroxide (b), and a zeolite (c), Particles containing the surfactant (a) and not containing the inorganic peroxide (b) are obtained by spray-drying a slurry containing a part of the zeolite (c) to obtain spray-dried particles.
  • the amount of the zeolite (c) used is an amount that is 5 to 15% by mass with respect to the total mass of the granular detergent composition to be produced, Of the zeolite (c), the mass ratio (c1 / c2) of the zeolite (c1) blended in the slurry to the zeolite (c2) other than the zeolite (c1) is 0.7 or less.
  • a method for producing a granular detergent composition is an amount that is 5 to 15% by mass with respect to the total mass of the granular detergent composition to be produced.
  • the granular detergent composition is: Particles (X) containing the surfactant (a) and spray-dried particles obtained by spray-drying a slurry containing a part of the zeolite (c) and not containing the inorganic peroxide (b) , Particles (Y) containing the inorganic peroxide (b);
  • the content of the zeolite (c) is 5 to 15% by mass with respect to the total mass of the granular detergent composition;
  • the zeolite (c) is composed of zeolite (c1) blended in the slurry and zeolite (c2) other than the zeolite (c1), and is a mass ratio of the zeolite (c1) to the zeolite (c2)
  • a method for producing a granular detergent composition comprising a surfactant (a), an inorganic peroxide (b), and a zeolite (c),
  • the manufacturing method includes: Obtaining particles (X); A mixing step of mixing the particles (Y) containing the inorganic peroxide (b) and the particles (X), The step of obtaining the particles (X) Spray drying a slurry containing a part of the zeolite (c) to obtain spray-dried particles; Obtaining the particles (X) containing the surfactant (a) but not the inorganic peroxide (b) from the obtained spray-dried particles,
  • the amount of the zeolite (c) used is an amount of 5 to 15% by mass based on the total mass of the granular detergent composition to be produced;
  • the zeolite (c) is composed of zeolite (c1) blended in the slurry and zeolite (c2) other than the zeolite (c1), and is a mass ratio of the
  • a granular detergent composition having improved storage stability of an inorganic peroxide in the presence of zeolite and a method for producing the same.
  • One aspect of the granular detergent composition according to the first aspect of the present invention is a surfactant (a) (hereinafter also referred to as component (a)) and an inorganic peroxide (b) (hereinafter referred to as (b).
  • a granular detergent composition containing zeolite (c) (hereinafter also referred to as component (c)),
  • the granular detergent composition contains particles (X) containing the component (a) and not containing the component (b), and particles (Y) containing the component (b), Further, the particles (X) include spray-dried particles obtained by spray-drying a slurry containing a part of the component (c),
  • the content of the component (c) is 5 to 15% by mass with respect to the total mass of the granular detergent composition
  • a granule having a mass ratio (c1 / c2) of zeolite (c1) blended in the slurry to zeolite (c2) other than the zeolite (c1) is more than 0 and 0.7 or less It is a detergent composition.
  • a granular detergent composition comprising a surfactant (a), an inorganic peroxide (b) and a zeolite (c),
  • the granular detergent composition includes the surfactant (a) and spray-dried particles obtained by spray-drying a slurry containing a part of the zeolite (c), and includes the inorganic peroxide (b).
  • the content of the zeolite (c) is 5 to 15% by mass with respect to the total mass of the granular detergent composition;
  • the zeolite (c) is composed of zeolite (c1) blended in the slurry and zeolite (c2) other than the zeolite (c1), and is a mass ratio of the zeolite (c1) to the zeolite (c2) / C2 is a granular detergent composition of more than 0 and 0.7 or less.
  • ⁇ Ingredients constituting the granular detergent composition As a component which comprises the granular detergent composition which is one embodiment of this invention, the following (a) component, (b) component, and (c) component are mentioned at least.
  • the granular detergent composition may further contain components other than the components (a) to (c) as necessary.
  • the surfactant as the component (a) is not particularly limited, and examples thereof include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
  • the anionic surfactant is not particularly limited as long as it is an anionic surfactant used in a granular detergent, and examples thereof include the following anionic surfactants (1) to (12).
  • the type of the ⁇ -sulfo fatty acid alkyl ester salt is not particularly limited, and any of the ⁇ -sulfo fatty acid alkyl ester salts used in general granular detergent compositions can be suitably used, and is represented by the following formula (11). ⁇ -sulfo fatty acid alkyl ester salts are preferred.
  • R 11 is a linear or branched alkyl group having 8 to 20 carbon atoms, or a linear or branched alkenyl group having 8 to 20 carbon atoms, preferably It is a linear or branched alkyl group having 14 to 16 carbon atoms.
  • R 12 is an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, and an isopropyl group. A methyl group, an ethyl group, and a propyl group are preferable because the detergency is further improved, and a methyl group is particularly preferable.
  • M represents a counter ion, and examples thereof include alkali metal salts such as sodium and potassium; amine salts such as monoethanolamine, diethanolamine, and triethanolamine; ions that form ammonium salts and the like. Of these, ions that form alkali metal salts are preferred.
  • alkali metal salts such as sodium and potassium
  • amine salts such as monoethanolamine, diethanolamine, and triethanolamine
  • ions that form alkali metal salts are preferred.
  • ⁇ -sulfo fatty acid alkyl ester salt for example, ⁇ -sulfo fatty acid methyl ester sodium salt (MES) is preferable.
  • MES ⁇ -sulfo fatty acid methyl ester sodium salt
  • EO ethylene oxide
  • PO propylene oxide
  • the nonionic surfactant is not particularly limited as long as it is a nonionic surfactant conventionally used for a granular detergent, and examples thereof include the following nonionic surfactants.
  • polyoxyalkylene alkyl (or alkenyl) ether More preferably 5 to 20 mol, particularly preferably 12 to 20 mol, most preferably 14 to 18 mol) polyoxyalkylene alkyl (or alkenyl) ether.
  • polyoxyethylene alkyl (or alkenyl) ether and polyoxyethylene polyoxypropylene alkyl (or alkenyl) ether are preferable.
  • the aliphatic alcohol used here include primary alcohols and secondary alcohols.
  • the alkyl group may have a branched chain.
  • a primary alcohol is preferable.
  • Polyoxyethylene alkyl (or alkenyl) phenyl ether are preferable.
  • Polyoxyethylene fatty acid ester. Polyoxyethylene hydrogenated castor oil.
  • Examples of the fatty acid alkyl ester alkoxylate (3) include those represented by the following general formula (31). R 9 CO (OA) q R 10 (31)
  • R 9 CO is a fatty acid residue having 6 to 22 carbon atoms, preferably 8 to 18, more preferably 10 to 16, particularly preferably 12 to 14.
  • OA is an addition unit (oxyalkylene group) of an alkylene oxide having 2 to 4 carbon atoms, preferably an alkylene oxide having 2 to 3 carbon atoms, and more preferably ethylene oxide or propylene oxide.
  • q represents the average number of moles of alkylene oxide added, and is 3 to 30, preferably 5 to 20. Note that q may be an integer or may include a decimal.
  • R 10 represents an alkyl group having 1 to 4 carbon atoms which may have a substituent.
  • nonionic surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the nonionic surfactant of the above (1) is preferable, and in particular, an aliphatic alcohol having 12 to 16 carbon atoms and an alkylene oxide having 2 to 4 carbon atoms in an average of 5 to 20, preferably 12
  • Polyoxyalkylene alkyl (or alkenyl) added in an amount of ⁇ 20 mol, more preferably 14 to 18 mol (that is, the average number of added moles is 5 to 20, preferably 12 to 20 mol, more preferably 14 to 18 mol) Ether is preferred.
  • polyoxyethylene alkyl (or alkenyl) ether polyoxyethylene polyoxypropylene alkyl (or alkenyl) ether, fatty acid methyl ester in which ethylene oxide is added to fatty acid methyl ester having a melting point of 50 ° C. or less and an HLB of 9 to 16
  • ethoxylate, a fatty acid methyl ester ethoxypropoxylate obtained by adding ethylene oxide and propylene oxide to a fatty acid methyl ester, and the like are preferably used.
  • HLB of nonionic surfactant means a value determined by the Griffin method (Yoshida, Shindo, Ogaki, Yamanaka Co-ed., “New Edition Surfactant Handbook”, Industrial Book Stock) Company, 1991, page 234).
  • the “melting point” in the present specification means a value measured by the melting point measurement method described in JIS K0064-1992 “Method for measuring the melting point and melting range of chemical products”.
  • Examples of the cationic surfactant include the following cationic surfactants.
  • Dilong chain alkyl dishort chain alkyl type quaternary ammonium salt Dilong chain alkyl dishort chain alkyl type quaternary ammonium salt.
  • Mono long chain alkyl tri short chain alkyl type quaternary ammonium salt Tri long chain alkyl mono short chain alkyl type quaternary ammonium salt.
  • long-chain alkyl refers to an alkyl group having 12 to 26 carbon atoms, preferably 14 to 18 carbon atoms.
  • the “short chain alkyl” includes a substituent such as a phenyl group, a benzyl group, a hydroxy group, and a hydroxyalkyl group, and may have an ether bond between carbons.
  • an alkyl group having 1 to 4 carbon atoms preferably 1 to 2 carbon atoms
  • a benzyl group preferably a hydroxyalkyl group having 2 to 4 carbon atoms, preferably 2 to 3 carbon atoms
  • Oxyalkylene groups are listed as suitable short chain alkyls.
  • amphoteric surfactants examples include imidazoline amphoteric surfactants and amide betaine amphoteric surfactants. Specifically, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine and amidopropyl betaine laurate are preferable amphoteric surfactants.
  • the content of the component (a) in the granular detergent composition according to an embodiment of the present invention is preferably 5 to 30% by mass, more preferably 5 to 15% by mass, based on the total mass of the granular detergent composition. 7 to 11% by mass is particularly preferable. When it is 5% by mass or more, sufficient washing performance as a granular detergent can be obtained. When the content is 30% by mass or less, the fluidity of the particles after high-humidity storage is good.
  • the component (b) is an inorganic peroxide.
  • the component (b) functions mainly as a bleaching component.
  • inorganic peroxides conventionally used in granular detergents and the like can be used.
  • percarbonate such as sodium percarbonate particles; sodium perborate particles, sodium perborate trihydrate Perborate such as products.
  • sodium percarbonate is preferable from the viewpoint of solubility during use and stability during storage.
  • the content of the component (b) in the granular detergent composition according to one embodiment of the present invention is preferably 3 to 20% by mass, more preferably 3 to 15% by mass, based on the total mass of the granular detergent composition. 7 to 15% by mass is particularly preferred.
  • the content is 3% by mass or more, the effect (improving detergency against bleaching, sterilization, stain stain, etc.) by the component (b) is sufficiently obtained. If it exceeds 20% by mass, the amount of other cleaning components may be reduced and the cleaning power may be reduced.
  • the component (c) is zeolite.
  • “Zeolite” is a general term for aluminosilicate, and the zeolite in the present invention is preferably an aluminosilicate that is crystalline and has a structure from the viewpoint of cation exchange ability.
  • Examples of the crystalline aluminosilicate zeolite include A-type, X-type, Y-type, and P-type zeolite. In the present invention, any zeolite can be used.
  • the content of the component (c) in the granular detergent composition according to one embodiment of the present invention is 5 to 15% by mass, preferably 8 to 15% by mass, based on the total mass of the granular detergent composition.
  • the stability of the component (b) is good. Further, it is difficult for fine powder to be generated, and the fluidity is not easily lowered. In addition, the washing liquid is not noticeably cloudy during washing, and the rinsing property is improved.
  • the effect of the component (c) (that is, improvement in cleaning performance by capturing Ca ions present in the washing liquid during washing, stain of the surfactant) Suppression of solidification and accompanying solidification, improvement of fluidity of the particle group, etc.) can be sufficiently obtained.
  • a part of the component (c) that is, zeolite (c1) described later
  • the spray-dried particles are obtained by spray drying.
  • the spray-dried particles are used as they are, or added to the spray-dried particles with water and other components as necessary, and then kneaded and pulverized to form particles (X), which is one embodiment of the present invention. Is blended into the product.
  • zeolite (c1) that is, zeolite that has undergone a spray drying process blended in the slurry
  • the zeolite (c1) And other zeolite (c2) that is, zeolite not subjected to a spray drying step.
  • (c) component consists of zeolite (c1) mix
  • the total amount of zeolite (c1) is contained in the particles (X).
  • Zeolite (c2) may be blended in any manner in the granular detergent composition as long as it does not undergo a spray drying process.
  • zeolite (c2) may be added to the spray-dried particles together with a surfactant, water, etc., and wet granulation, for example, kneading, pulverizing, etc. may be performed to contain the zeolite (c2) in the particles (X). .
  • Zeolite (c2) may be used as a grinding aid during the grinding.
  • the powdery zeolite (c2) may be dry-mixed with the particles (X), the particles (Y), etc. and exist as independent particles.
  • the mass ratio of the zeolite (c1) to the zeolite (c2) is 0.7 or less, preferably 0.5 or less, .4 or less is more preferable.
  • the blending amount of zeolite in the slurry tends to be maintained in order to ensure the stability of the slurry while reducing the blending amount of the zeolite as a whole to ensure the stability of the component (b).
  • c1 / c2 tends to increase.
  • the stability of the component (b) is improved by reducing c1 / c2 to 0.7 or less.
  • the lower limit of c1 / c2 is not particularly limited in terms of the stability of component (b), and may be more than 0. However, if the proportion of zeolite (c1) is too low, the fluidity of particles (X) decreases. Since there exists a possibility, 0.2 or more are preferable. That is, c1 / c2 is more than 0 and 0.7 or less, preferably 0.2 or more and 0.7 or less, more preferably 0.2 or more and 0.5 or less, and more preferably 0.2 or more and 0. 4 or less is particularly preferable.
  • the content of zeolite (c2) is preferably 3% by mass or more and less than 15% by mass with respect to the total mass of the granular detergent composition, and 5% by mass or more and 10% by mass. Less than% is more preferable.
  • zeolite fine powder is hardly generated in the granular detergent composition, fluidity is hardly decreased, and the stability of the component (b) is improved.
  • the content of the zeolite (c2) is less than 3% by mass, the content of the zeolite (c1) is relatively reduced, the content of the component (c) as a whole is reduced, and the content of the component (c) There is a possibility that the effects (that is, improvement in cleaning performance, exudation of surfactant and suppression of solidification accompanying it, improvement in fluidity, etc.) may not be sufficiently obtained.
  • the granular detergent composition which is one embodiment of the present invention may further contain other components other than the components (a) to (c) as required, as long as the effects of the present invention are not impaired.
  • the various components conventionally used for granular detergent can be used, for example, (c) Other detergency builders other than component, organic peracid precursor, metal salt, sequestering agent, fragrance, Examples thereof include dyes, fluorescent brighteners, enzymes, enzyme stabilizers, anti-staining agents, anti-caking agents, pH adjusters, and binders.
  • detergency builders examples include inorganic builders other than component (c), organic builders, and the like.
  • Other inorganic builders include, for example, alkali metal carbonates such as sodium carbonate, potassium carbonate, sodium bicarbonate and sodium sesquicarbonate; alkali metal sulfites such as sodium sulfite and potassium sulfite; crystalline layered sodium silicate [eg Clariant Crystalline alkali metal silicates such as “Na-SKS-6” ( ⁇ -Na 2 O.2SiO 2 ) manufactured by Japan; amorphous alkali metal silicates; sulfates such as sodium sulfate and potassium sulfate Alkali metal chlorides such as sodium chloride and potassium chloride; phosphates such as orthophosphate, pyrophosphate, tripolyphosphate, metaphosphate, hexametaphosphate, phytate; sodium carbonate and amorphous alkali metal Silicate composites (for example
  • sodium carbonate, sodium bicarbonate, potassium salts (such as potassium carbonate and potassium sulfate) and alkali metal chlorides (such as potassium chloride and sodium chloride) are preferable, and sodium bicarbonate is particularly preferable.
  • the content of the other inorganic builder in the granular detergent composition is preferably 10 to 70 mass%, more preferably 10 to 40 mass%, particularly preferably 15 to 25 mass%, based on the total mass of the granular detergent composition. .
  • organic builder examples include hydroxycarboxylic acids such as hydroxyacetic acid, tartaric acid, citric acid, gluconic acid, hydroxyiminodisuccinic acid, and salts thereof; cyclocarboxylic acids such as pyromellitic acid, benzopolycarboxylic acid, and cyclopentanetetracarboxylic acid; Salts thereof; carboxymethyl tartronate, carboxymethyl oxysuccinate, oxydisuccinate, ether carboxylic acid such as tartaric acid mono- or disuccinate and salts thereof; polyacrylic acid, acrylic acid-allyl alcohol copolymer, acrylic acid-malein Polyacetal carboxylic acids such as acid copolymers and polyglyoxylic acids and salts thereof; Acrylic acid polymers or copolymers such as hydroxyacrylic acid polymers and polysaccharide-acrylic acid copolymers and salts thereof; maleic acid and itaconic acid , Huma Polymers or copolymers of acid,
  • hydroxycarboxylic acids and salts thereof polyacetal carboxylic acids and salts thereof (for example, polyacetal carboxylic acids and salts described in JP-A No. 54-52196) are preferable.
  • hydroxycarboxylic acid and its salt citric acid, citrate, hydroxyiminodisuccinate and the like are preferable, and citric acid and citrate are more preferable.
  • polyacrylic acid salt acrylic acid-maleic acid copolymer salt, polyglyoxylic acid and the like are preferable, and acrylic acid-maleic acid copolymer salt having a weight average molecular weight of 1,000 to 80,000, More preferred are polyacrylates having a weight average molecular weight of 1,000 to 80,000, polyglyoxylic acid having a weight average molecular weight of 800 to 1,000,000 (preferably 5000 to 200,000), and the like.
  • Organic peracid precursor functions as a bleach activator.
  • organic peracid precursor conventionally known organic peracid precursors are used. For example, decanoyloxybenzoic acid, dodecanoyloxybenzenesulfonic acid, sodium dodecanoyloxybenzenesulfonate, sodium nonanoyloxybenzenesulfonate Etc.
  • An organic peracid precursor may be used individually by 1 type, and 2 or more types may be used in combination.
  • the organic peracid precursor can be blended as particles containing the organic peracid precursor (hereinafter also referred to as “organic peracid precursor particles”).
  • the organic peracid precursor particles can be produced by a known production method.
  • the organic peracid precursor particles can be obtained by the following production method.
  • the organic peracid precursor and surfactant powder are dispersed in a binder material that is solid at room temperature, such as polyethylene glycol (weight average molecular weight 3000 to 20000, preferably 4000 to 6000).
  • a binder material that is solid at room temperature, such as polyethylene glycol (weight average molecular weight 3000 to 20000, preferably 4000 to 6000).
  • the organic peracid precursor particles are obtained by extruding with an extrusion molding machine or the like to obtain a noodle shape having a diameter of about 1 mm and further pulverizing to a length of about 0.5 to 3 mm.
  • the organic peracid precursor particles thus obtained can be suitably used from the viewpoint of preventing classification in a high bulk density granular detergent composition.
  • the surfactant olefin sulfonates, alkylbenzene sulfonates, alkyl sulfate esters and the like are preferable, and ⁇ -olefin sulfonates having an alkyl chain length of 14 are more preferable.
  • Metal salt As the metal salt, conventionally known metal salts are used, for example, manganese compounds such as manganese nitrate, manganese sulfate, manganese chloride, manganese acetate, manganese perchlorate, manganese acetylacetonate; copper nitrate, copper sulfide, copper sulfate , Copper chloride, copper acetate, copper cyanide, copper chloride ammonium, copper gluconate, copper tartrate, copper perchlorate, etc .; zinc nitrate, zinc sulfide, zinc sulfate, zinc chloride, zinc acetate, zinc cyanide, Examples thereof include zinc compounds such as ammonium zinc chloride, zinc gluconate, zinc tartrate, and zinc perchlorate.
  • manganese compounds such as manganese nitrate, manganese sulfate, manganese chloride, manganese acetate, manganese perchlorate, manganese acet
  • a metal salt may be used individually by 1 type, and 2 or more types may be used in combination.
  • manganese sulfate, manganese chloride, copper sulfate, copper chloride, copper gluconate, zinc sulfate, and zinc chloride are preferable, and copper sulfate and zinc sulfate are more preferable in terms of handleability, cost, raw material supply capability, and the like.
  • sequestering agent conventionally known sequestering agents are used, such as nitrilotriacetate, ethylenediaminetetraacetate, ⁇ -alanine diacetate, aspartate diacetate, methylglycine diacetate, iminodisuccinate and the like.
  • Aminocarboxylic acid salts aminocarboxylic acid type sequestering agents such as serine diacetate, hydroxyiminodisuccinate, hydroxyethylethylenediamine triacetate, and hydroxyaminocarboxylate such as dihydroxyethylglycine; 1-hydroxyethane 1,1-diphosphonic acid, ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, hydroxyethane-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1, 2-diphosphonic acid, hydroxymethanephosphonic acid, ethylenediamine Organic phosphonic acid derivatives such as tiger (methylenephosphonic acid), nitrilotri (methylenephosphonic acid), 2-hydroxyethyliminodi (methylenephosphonic acid), hexamethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) Salts thereof: organic acids such
  • One sequestering agent may be used alone, or two or more sequestering agents may be used in combination.
  • aminocarboxylates are preferable and methylglycine diacetate is more preferable in terms of cleaning effect.
  • an aminocarboxylate type sequestering agent in combination with the above metal salt from the viewpoint of further enhancing the activity of the component (b).
  • flavor is used as a fragrance
  • flavor composition) which consists of a fragrance
  • a fragrance for example, the fragrances described in JP-A Nos. 2002-146399 and 2003-89800 can be used.
  • flavor may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content of the fragrance in the granular detergent composition is preferably 0.01 to 0.5% by mass relative to the total mass of the granular detergent composition.
  • pigment either a dye or a pigment can be used.
  • pigments are preferred, and compounds having oxidation resistance such as oxides are particularly preferred. Examples of such compounds include titanium oxide, iron oxide, copper phthalocyanine, cobalt phthalocyanine, ultramarine, bitumen, cyanine blue, cyanine green and the like.
  • dye may be used individually by 1 type, and 2 or more types may be combined and used for it.
  • optical brightener examples include 4,4′-bis- (2-sulfostyryl) -biphenyl salt, 4,4′-bis- (4-chloro-3-sulfostyryl) -biphenyl salt, 2- ( Examples thereof include fluorescent whitening agents such as styrylphenyl) naphthothiazole derivatives, 4,4′-bis (triazol-2-yl) stilbene derivatives, and bis- (triazinylaminostilbene) disulfonic acid derivatives.
  • the fluorescent brightening agent one kind may be used alone, or two or more kinds may be used in combination.
  • the content of the optical brightener in the granular detergent composition is preferably 0.01 to 0.5% by mass relative to the total mass of the granular detergent composition.
  • Enzymes are classified according to the reactivity of the enzyme, and include hydrolases, oxidoreductases, lyases, transferases, and isomerases, and any of them can be applied in the present invention. Of these, protease, esterase, lipase, nuclease, cellulase, amylase, pectinase and the like are preferable.
  • An enzyme may be used individually by 1 type and may be used in combination of 2 or more type.
  • the enzyme content in the granular detergent composition is preferably 0.1 to 1.0% by mass relative to the total mass of the granular detergent composition.
  • Enzyme stabilizer As an enzyme stabilizer, calcium salt, magnesium salt, a polyol, formic acid, a boron compound etc. can be mix
  • An enzyme stabilizer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the anti-staining agent examples include cellulose derivatives such as carboxymethylcellulose and hydroxypropylmethylcellulose.
  • a recontamination inhibitor may be used individually by 1 type, and 2 or more types may be used in combination.
  • the content of the anti-staining agent in the granular detergent composition is preferably 0.1 to 2.0% by mass with respect to the total mass of the granular detergent composition.
  • Anti-caking agent examples include p-toluenesulfonate, xylenesulfonate, acetate, sulfosuccinate, talc, fine powder silica, clay, magnesium oxide and the like.
  • the anti-caking agent may be used alone or in combination of two or more.
  • pH adjuster examples include alkanolamines such as monoethanolamine, diethanolamine and triethanolamine, alkali agents such as sodium hydroxide and potassium hydroxide, alkali metal dihydrogen phosphates such as potassium dihydrogen phosphate, and lactic acid. And acid agents such as succinic acid, malic acid, gluconic acid or polycarboxylic acids thereof, carbonic acid, sulfuric acid and hydrochloric acid.
  • a pH adjuster may be used individually by 1 type, and 2 or more types may be used in combination.
  • the pH value is defined as a value at 20 ° C. unless otherwise specified. That is, even if the pH value is outside the range specified in the present specification, it is included in the scope of the present invention as long as the pH value is within the range specified in the present specification when corrected to the pH value at 20 ° C. .
  • binder A conventionally well-known binder can be used as a binder, For example, polyethyleneglycol, polypropylene glycol, etc. are mentioned.
  • the granular detergent composition is an aggregate of a plurality of particles that exist independently of each other.
  • the granular detergent composition of the present invention contains at least the following particles (X) and particles (Y) as different particles. If necessary, particles other than the particles (X) and (Y) may be further included.
  • the particles (X) are particles that contain the component (a) and do not contain the component (b).
  • the component (a) contained in the particle (X) the above-mentioned various surfactants can be used, and from the viewpoint of enhancing the detergency, anionic surfactants and nonionic surfactants are preferable, and anionic surfactants are more preferable. preferable.
  • the component (a) contained in the particles (X) may be one type or two or more types.
  • the content of the component (a) in the particles (X) is determined in consideration of the type and the like. Is more preferable, and 5 to 15% by mass is particularly preferable.
  • Part of the component (c) is further contained in the particles (X).
  • At least a part of the component (c) contained in the particles (X) is zeolite (c1). That is, the particles (X) include spray-dried particles obtained by spray-drying a slurry containing a part of the component (c), and the component (c) contained in the spray-dried particles is zeolite (c1).
  • Particle (X) contains the total amount of zeolite (c1) among components (c).
  • the particles (X) may further include some or all of the zeolite (c2), or may not.
  • one side surface of the particle (X) is a particle that includes the component (a) and a part of the component (c) and does not include the component (b), and is included in the particle (X).
  • the component c) includes the entire amount of zeolite (c1), and may further include a part or all of zeolite (c2).
  • the presence of zeolite (c2) on the surface of the particles (X) improves the stability of the component (b) and the fluidity of the granular detergent composition.
  • the particles (X) having zeolite (c2) on the surface can be obtained by using zeolite (c2) as a grinding aid when the particles (X) are produced by crushing granulation, for example. Most of the zeolite (c2) used as a grinding aid covers the surface of the granulated particles.
  • the content of the component (c) in the particles (X) is not particularly limited and is determined in consideration of the content of the particles (X) in the granular detergent composition and the like, but for example, the total mass of the particles (X) On the other hand, it is preferably 3 to 15% by mass, and more preferably 5 to 15% by mass.
  • the particles (X) may further contain components (arbitrary components) other than the components (a) to (c). As said other component, it can select suitably from the components quoted above as arbitrary components.
  • the particles (X) preferably contain other detergency builders as other components.
  • the other detergency builder may be an inorganic builder other than the component (c) or an organic builder, and these may be used in combination.
  • the content of the other detergency builder in the particles (X) is determined in consideration of the type thereof, and is preferably 10 to 70% by mass, for example, 30 to 60% by mass with respect to the total mass of the particles (X). % Is more preferable. When it is at least the above lower limit, the effect of blending with other cleaning builders can be sufficiently obtained.
  • the surfactant content is reduced and the detergency may be reduced.
  • the content of the organic builder is determined in consideration of the type thereof, and is preferably 1 to 10% by mass, for example, 3 to 5% by mass with respect to the total mass of the particles (X). Is more preferable.
  • the particles (X) include spray-dried particles obtained by spray-drying the slurry.
  • the spray-dried particles include at least zeolite (c1) among the components (that is, the component (a), the component (c), and the optional component) constituting the particles (X).
  • zeolite (c1) among the components (that is, the component (a), the component (c), and the optional component) constituting the particles (X).
  • (X1) granulated particles obtained by granulating spray-dried particles obtained by spray-drying a slurry containing a part of the raw materials constituting the particles (X) together with the remaining raw materials (X2): spray-dried particles obtained by spray-drying a slurry containing all the components constituting the particles (X), and the like.
  • the particles (X) are high in bulk density, easy to handle with less powdering, and stable by mixing later without spray-drying components with low heat resistance.
  • (X1) granulated particles are preferable from the viewpoint that they can be blended with the above.
  • the particles (X) can be produced by a conventionally known production method. The method for producing the particles (X) will be described in detail later.
  • the bulk density of the particles (X) is not particularly limited, but is 0.7 g / cm 3 or more, preferably 0.7 ⁇ 1.5g / cm 3, more preferably 0.7 ⁇ 1.2g / cm 3 . If it is 0.7 g / cm 3 or more, it is easy to handle with less dusting, and if it is 1.5 g / cm 3 or less, the solubility in water is good.
  • the “bulk density” in this specification means a value measured according to JIS K3362.
  • the average particle diameter of the particles (X) is not particularly limited, but is preferably 200 to 1500 ⁇ m, more preferably 250 to 1000 ⁇ m, and further preferably 300 to 700 ⁇ m. If it is 200 ⁇ m or more, the granular detergent composition is hardly solidified, and if it is 1500 ⁇ m or less, the solubility in water is good.
  • the “average particle size” in the present specification means a value calculated from the particle size distribution by sieving according to the particle size test described in the Japanese Pharmacopoeia. That is, the average particle diameter can be measured by a classification operation using a 9-stage sieve having openings of 1680 ⁇ m, 1410 ⁇ m, 1190 ⁇ m, 1000 ⁇ m, 710 ⁇ m, 500 ⁇ m, 350 ⁇ m, 250 ⁇ m, and 149 ⁇ m and a tray.
  • a small sieve sieve is stacked on a tray in the order of a large sieve sieve, and a sample of 100 g / time is placed on the top of the top 1680 ⁇ m sieve, the lid is capped, and a low-tap sieve shaker (stock) (Made by Iida Seisakusho, tapping: 156 times / minute, rolling: 290 times / minute), and after shaking for 10 minutes, the samples remaining on the respective sieves and trays were collected for each sieve. Measure the mass.
  • the opening of the first sieve where the integrated mass frequency is 50% or more is “a ⁇ m”
  • the opening of the sieve that is one step larger than a ⁇ m is “ b ⁇ m ”
  • the integrated value of the mass frequency from the tray to the a ⁇ m sieve is“ c% ”
  • the mass frequency on the a ⁇ m sieve is“ d% ”.
  • the particles (X) one type may be used alone, or two or more types may be used in combination.
  • the content of the particles (X) in the granular detergent composition according to one embodiment of the present invention is preferably 50 to 90% by mass and more preferably 50 to 80% by mass with respect to the total mass of the granular detergent composition. If it exceeds 90% by mass, the amount of zeolite (c2) in the granular detergent composition is insufficient, and there is a concern that the effect of improving the stability of the component (b) becomes insufficient. There exists a possibility that the cleaning power of a granular detergent composition may become inadequate that it is less than 50 mass%.
  • the mass ratio of the particles (X) to the zeolite (c2) contained in the granular detergent composition is: 5 to 25 is preferable, and 5 to 15 is more preferable.
  • the particle (X) / zeolite (c2) is 25 or less, the effect of improving the stability of the component (b) and the fluidity of the granular detergent composition can be sufficiently obtained.
  • the particle (X) / zeolite (c2) is less than 5, there is a concern that the stability of the component (b) is lowered.
  • the particles (Y) are particles containing the component (b).
  • the particles (Y) may contain a component (a).
  • Examples of the particles (Y) include particles of percarbonate such as sodium percarbonate, and particles of perborate such as sodium perborate and sodium perborate trihydrate.
  • sodium percarbonate particles are preferable from the viewpoint of solubility during use and storage stability, and coated sodium percarbonate particles (that is, coated sodium percarbonate particles) are more preferable.
  • the coated sodium percarbonate particles have a smooth surface and are excellent in fluidity as compared to the uncoated sodium percarbonate particles.
  • the coated sodium percarbonate particles include sodium percarbonate particles coated with at least one component selected from the group consisting of silicic acid, silicate and boric acid, and borate, and surfactants such as LAS Sodium percarbonate particles coated in combination with an inorganic compound are preferred. Specifically, as described in Japanese Patent No. 2918991, at least one selected from the group consisting of silicic acid, an alkali metal silicate aqueous solution and boric acid, and an alkali metal borate aqueous solution. Sodium percarbonate particles coated by spraying components; consisting of aromatic hydrocarbon sulfonic acid such as Japanese Patent No.
  • alkali silicate having an average particle size of 10 to 500 ⁇ m, carbonate, bicarbonate and sulfate
  • Examples include sodium percarbonate particles coated with at least one component selected from the group; sodium percarbonate particles coated with a water-insoluble organic compound such as paraffin and wax.
  • a water-insoluble organic compound such as paraffin and wax.
  • the particles (Y) were coated with sodium percarbonate particles coated with sodium percarbonate with silicic acid and sodium borate, aromatic hydrocarbon sulfonic acids and alkali silicates, carbonates, bicarbonates and sulfates.
  • Sodium percarbonate particles are more preferred.
  • the bulk density of the particles (Y) is not particularly limited, but is preferably 0.7 g / cm 3 or more, and more preferably 0.7 to 1.5 g / cm 3 . If it is 0.7 g / cm 3 or more, it is easy to handle with less dusting, and if it is 1.5 g / cm 3 or less, the solubility in water is good.
  • the average particle size of the particles (Y) is not particularly limited, but is preferably 200 to 1000 ⁇ m, more preferably 500 to 1000 ⁇ m. When it is 200 ⁇ m or more, the stability and fluidity during long-term storage are good, and when it is 1000 ⁇ m or less, the solubility in water is good. In addition, in order to improve solubility and stability, the particles having a particle diameter of less than 125 ⁇ m and the particles having a particle diameter of more than 1400 ⁇ m are preferably 10% by mass or less with respect to the total mass of the particles (Y). More preferably not.
  • the particles (Y) one type may be used alone, or two or more types may be used in combination.
  • the content of the particles (Y) in the granular detergent composition according to one embodiment of the present invention is preferably 3 to 20% by mass and more preferably 3 to 15% by mass with respect to the total mass of the granular detergent composition. When it is 3% by mass or more, effects such as improvement of detergency against bleaching, sterilization, stain stain, etc. are sufficiently obtained, and fluidity is also good. If it exceeds 20% by mass, the amount of other cleaning components may be reduced and the cleaning power may be reduced.
  • the granular detergent composition which is one embodiment of the present invention may be a granular detergent composition comprising particles (X) and particles (Y), and if necessary, other than particles (X) and (Y). It may further contain particles.
  • the other particles include zeolite (c2) particles, optional component (for example, inorganic builder) particles, granulated particles containing at least two of them, and other active agent-containing particles. It is done.
  • the granular detergent composition which is one embodiment of the present invention can be produced by the method for producing a granular detergent composition which is one embodiment of the present invention described later.
  • the bulk density of the granular detergent composition according to one embodiment of the present invention is not particularly limited, but is preferably 0.7 g / cm 3 or more, preferably 0.7 to 1.6 g / cm 3 , and 0.7 to 1 More preferred is 2 g / cm 3 .
  • it is 0.7 g / cm 3 or more, powdering is small and handling is easy, and when it is 1.6 g / cm 3 or less, solubility in water is good.
  • the average particle size of the granular detergent composition according to an embodiment of the present invention is not particularly limited, but is preferably 200 to 1200 ⁇ m, more preferably 250 to 900 ⁇ m, and further preferably 300 to 700 ⁇ m. When it is 200 ⁇ m or more, dusting during use is suppressed, and when it is 1200 ⁇ m or less, the solubility in water is excellent.
  • the water content in the granular detergent composition according to one embodiment of the present invention is preferably 3 to 8% by mass, more preferably 3 to 7% by mass, based on the total mass of the granular detergent composition.
  • it exceeds 8 mass% there are concerns such as a decrease in the stability of the component (b) and a decrease in the fluidity of the granular detergent composition.
  • the amount is less than 3% by mass, there are concerns such as a decrease in solubility in water and a deterioration in dust generation.
  • the “moisture content of the granular detergent composition” means a value measured under the condition of a sample surface temperature of 130 ° C. for 20 minutes by an infrared moisture meter (for example, a Kett moisture meter manufactured by Kett Science Laboratory).
  • One aspect of the method for producing a granular detergent composition according to the second aspect of the present invention is a method for producing a granular detergent composition containing the component (a), the component (b), and the component (c).
  • a step of spray-drying a slurry containing a part of the component (c) to obtain spray-dried particles, and obtaining particles (X) from the spray-dried particles (hereinafter also referred to as particle (X) production step); , A step of mixing the particles (Y) and the particles (X) (hereinafter also referred to as a mixing step),
  • the amount of the component (c) used is an amount that is 5 to 15% by mass with respect to the total mass of the granular detergent composition to be produced,
  • a granule having a mass ratio (c1 / c2) of zeolite (c1) blended in the slurry to zeolite (c2) other than the zeolite (c1) is more than 0 and 0.7 or less It is a manufacturing method of a detergent composition.
  • a method for producing a granular detergent composition comprising a surfactant (a), an inorganic peroxide (b) and a zeolite (c),
  • the production method includes a step of obtaining particles (X), and a mixing step of mixing the particles (Y) containing the inorganic peroxide (b) and the particles (X).
  • the step of obtaining the particles (X) A step of obtaining a spray-dried particle by spray-drying a slurry containing a part of the zeolite (c), and the inorganic peroxide (b) containing the surfactant (a) from the obtained spray-dried particle.
  • the amount of the zeolite (c) used is an amount of 5 to 15% by mass based on the total mass of the granular detergent composition to be produced;
  • the zeolite (c) is composed of zeolite (c1) blended in the slurry and zeolite (c2) other than the zeolite (c1), and is a mass ratio of the zeolite (c1) to the zeolite (c2).
  • / C2 is a manufacturing method of a granular detergent composition which is more than 0 and 0.7 or less.
  • the description of the components (a) to (c), the particles (X) and the particles (Y) is as described above.
  • the amount of component (a) used is preferably 5 to 15% by mass based on the total mass of the granular detergent composition to be produced.
  • Component (b) is preferably used in an amount of 3 to 20% by mass relative to the total mass of the granular detergent composition to be produced.
  • the amount of (c) used is preferably 5 to 15% by mass based on the total mass of the granular detergent composition to be produced.
  • the amount of the optional component used is preferably 10 to 40% by mass based on the total mass of the granular detergent composition to be produced.
  • the particles (X) can be produced by a conventionally known production method.
  • a part of the raw materials that is, the component (a), the component (c), and the optional component constituting the particle (X) are simultaneously obtained.
  • disperse and dissolve in water to prepare a slurry (slurry preparation step), dry the slurry with a spray dryer (spray drying step), and do not use the resulting spray-dried particles for the preparation of the slurry Granulate with the remaining raw materials (granulation process). Thereafter, the granulated particles may be sieved as necessary to adjust to the desired average particle size and particle size distribution (sieving step).
  • the particles (X) are spray-dried particles of the above (X2), in the slurry preparation step, all the raw materials constituting the particles (X) are dispersed and dissolved in water to prepare a slurry, and spray drying is performed using the slurry. Perform the process.
  • the spray-dried particles thus obtained can be used as particles (X). That is, one aspect of the method for producing the particle (X) is that a part of the raw materials (that is, the component (a), the component (c), and the optional component) constituting the particle (X) are simultaneously or sequentially added to water.
  • another aspect of the method for producing the particles (X) includes a slurry adjustment step of preparing a slurry by dispersing and dissolving all the raw materials constituting the particles (X) in water; and spray drying using the slurry A drying step.
  • grains of said (X1) are demonstrated more concretely.
  • ⁇ Slurry preparation process At least a part of the component (c) is blended in the slurry.
  • the component (c) blended in the slurry becomes zeolite (c1).
  • the water content of the component (c) before blending into the slurry is preferably 5% or more and 10% or less. When the water content is 10% or less, the stability of the component (b) in the obtained granular detergent composition is good.
  • the “moisture content of component (c)” means a value measured by an infrared moisture meter (for example, a Kett moisture meter manufactured by Kett Scientific Laboratory) at a sample surface temperature of 130 ° C. for 20 minutes.
  • the water content of the adjusted slurry is preferably 30 to 50% by mass with respect to the total mass of the slurry.
  • the component (a) and the optional component may each be blended in the slurry in a total amount; may be blended with the spray-dried particles in the subsequent granulation step; a portion is blended in the slurry and in the subsequent granulation step The remaining components that were not blended in the slurry may be blended with the spray dried particles.
  • the component having low heat resistance is preferably blended with the spray-dried particles in the subsequent granulation step.
  • a high temperature gas is supplied into the spray drying tower of the spray dryer.
  • This hot gas is supplied from, for example, the lower part of the spray drying tower and discharged from the top of the spray drying tower.
  • the temperature of the high-temperature gas supplied into the spray drying tower is preferably 170 to 300 ° C, more preferably 200 to 280 ° C. If it is the said range, a slurry can fully be dried and the spray-drying particle
  • the temperature of the gas discharged from the spray-drying tower is usually preferably 70 to 125 ° C, more preferably 70 to 115 ° C.
  • the amount of water in the spray-dried particles obtained in the spray-drying step is preferably 2 to 7% by weight, more preferably 3 to 7% by weight, based on the total weight of the spray-dried particles.
  • the water content in the spray-dried particles is 7% by mass or less, the fluidity of the spray-dried particles is good.
  • the amount of water in the spray-dried particles is less than 2%, there is a concern that the solubility in water is reduced and the generation of dust is concerned.
  • “Moisture content in spray-dried particles” means a value measured by an infrared moisture meter (for example, a Kett moisture meter manufactured by Kett Scientific Laboratory) at a sample surface temperature of 130 ° C. for 20 minutes.
  • the obtained spray-dried particles are granulated together with the remaining raw materials that were not used in the slurry adjustment step (that is, raw materials not mixed in the slurry among the raw materials constituting the particles (X)).
  • a granulation process can be implemented using conventionally well-known methods, such as pulverization granulation, stirring granulation, rolling granulation, and fluidized bed granulation.
  • the spray-dried particles and the remaining raw material not used in the slurry adjustment step are kneaded, and are cut while being extruded to obtain a pellet-shaped molded product, and the molded product is pulverized.
  • granulated particles can be obtained. That is, one aspect of the granulation process is to knead the spray-dried particles and the remaining raw material not used in the slurry adjustment process, and cut the kneaded kneaded product while extruding it to form a pellet. And obtaining granulated particles (particles (X)) by pulverizing the molded product.
  • the remaining raw material which was not used for the said slurry adjustment process may contain (c) component.
  • the component (c) blended in the remaining raw materials not used in the slurry adjustment step corresponds to zeolite (c2).
  • component (c) may be used as a granulation aid.
  • a part of the component (c) may be used as a pulverization aid during pulverization.
  • the component (c) used as a granulation aid may be partially distributed in the granulated particles, but many of them cover the surface of the granulated particles.
  • the component (c) used as a granulation aid corresponds to zeolite (c2).
  • the water content in the component (c) used as a granulation aid in the granulation step is preferably 5% by mass or more and 10% by mass or less with respect to the total mass of the component (C).
  • the stability of the component (b) in the obtained granular detergent composition is good. Moreover, it is preferable that the moisture content in (c) component used as a granulation adjuvant is smaller than the moisture content in granulated particle.
  • the stability of the component (b) in the granular detergent composition obtained is further improved by coating the surface of the granulated particles having a relatively large amount of volatilized water with the component (c) having a small amount of water.
  • a sieving step for example, a plurality of types of sieves are prepared and stacked in the order of a sieve having a small mesh size to a sieve having a large mesh size to form a sieve unit. There is a method of sieving by vibrating the sieve unit. By collecting the granulated particles remaining on each sieve for each sieve and mixing the collected granulated particles, granulated particles having a desired average particle diameter or particle size distribution can be obtained.
  • the obtained particles (X) are subjected to the next mixing step.
  • the amount of water in the particles (X) is preferably 4 to 9% by mass, and more preferably 5 to 8% by mass with respect to the total mass of the particles (X).
  • the water content of the particles (X) exceeds 9% by mass, there is a concern that, after mixing with the particles (Y), the stability of the component (b) is lowered and the fluidity is lowered.
  • the water content of the particles (X) is less than 4% by mass, there are concerns such as a decrease in solubility in water and a decrease in dust generation.
  • “Moisture content in particles (X)” means a value measured by an infrared moisture meter (for example, a Kett moisture meter manufactured by Kett Science Laboratory Co., Ltd.) at a sample surface temperature of 130 ° C. for 20 minutes.
  • the particles (X) obtained in the particle (X) production step, the particles (Y), and other particles are mixed as necessary.
  • Commercially available particles may be used as the particles (Y) and other particles, and particles produced by a known production method may be used.
  • grain should just be a method which can be mixed so that at least particle
  • a conventionally well-known powder mixing apparatus for example, horizontal cylinder type
  • the order in which the particles (X) and particles (Y) are charged is not particularly limited, and the particles (X) and particles (Y) may be charged in advance in a mixing device and mixed, or the particles (X) and particles may be mixed. (Y) may be sequentially added to the mixing apparatus and mixed. In addition, when other particles are blended, the other particles may be mixed in advance with either the particles (X) or the particles (Y), or together with the particles (X) and the particles (Y). Other particles may be charged in a mixing apparatus in advance and mixed. For example, when the zeolite (c2) is mixed as other particles, the particles (X) and the particles (Y) are mixed first, and the zeolite (c2) is mixed at the end.
  • Zeolite (c2) may be mixed and finally the particles (Y) may be mixed.
  • mixing the particles (Y) and the zeolite (c2) first and mixing the particles (X) lastly leads to a decrease in the stability of the component (b), which is not preferable.
  • one aspect of the mixing step includes mixing the particles (X) obtained in the manufacturing step of the particles (X), the particles (Y), and optionally other particles, The mixing may include premixing the other particles with the particles (X) or the particles (Y); The particle (X), the particle (Y), and the other particles may be mixed together.
  • the mixing may include mixing the particles (X) and the particles (Y) and then mixing the zeolite (c2); Mixing the particles (Y) after mixing the particles (X) and the zeolite (c2); After mixing the particles (X) and the zeolite (c2), the particles (X) and the zeolite (c2) are allowed to stand under a certain condition (for example, in an environment of 20 ° C. and a relative humidity of 50% RH for 5 minutes or more and 30 minutes or less). ).
  • a certain condition for example, in an environment of 20 ° C. and a relative humidity of 50% RH for 5 minutes or more and 30 minutes or less.
  • grain (Y) can exist as an independent particle
  • the particles (Y) after mixing the particles (X) and the zeolite (c2), the particles (Y) after being allowed to stand under a certain condition (for example, in an environment of 20 ° C. and a relative humidity of 50% RH for 5 minutes to 30 minutes). It is preferable to mix the component (b) because the effect of improving the stability of the component (b) is large.
  • a granular detergent composition is obtained as described above.
  • the amount of the component (c) to be added in the step after preparing the spray-dried particles that is, the amount of the zeolite (c2) is the particle (X).
  • the amount of zeolite (c2) is preferably 5-25.
  • the value of particle (X) / zeolite (c2) is more preferably 5 to 15 as described above.
  • the zeolite (c2) is added in the granulating step because the component (b) is excellent in the stability improvement effect.
  • a large amount of the component (a) aqueous solution that is, the aqueous solution in which the component (a) is dissolved in water
  • the bulk density of the spray-dried particles is greatly changed by impregnation.
  • the amount of water increases and the free water of the particles obtained in the granulation step increases.
  • the manufacturing method of the granular detergent composition which is one embodiment of this invention, it is the process after preparing spray-dried particle
  • the water (that is, crystal water) contained in the zeolite (c1) in the spray-dried particles immediately after production is less likely to volatilize, and the influence on the stability of the component (b) is small.
  • the amount of water derived from the water added in the step after preparing the spray-dried particles is “the amount of water (mass%) of the entire particle (X)” and “spray-dried particles immediately after being obtained by spray-drying” It is calculated
  • the granular detergent composition according to the first aspect of the present invention (that is, the granular detergent composition obtained by the production method according to the second aspect) can be used for washing laundry.
  • a washing method for an object to be washed using the granular detergent composition for example, a washing liquid in which the concentration of the granular detergent composition is 0.02 to 2% by mass with respect to the total mass of the washing liquid is used.
  • Conventionally known cleaning methods such as a method of cleaning the object to be cleaned and a method of immersing the object to be cleaned in a cleaning liquid can be used.
  • the articles to be washed include textiles such as clothing, fabrics, curtains, and sheets.
  • one aspect of the method of using the granular detergent composition is: Adjusting the washing liquid in which the concentration of the granular detergent composition is 0.02 to 2 mass% with respect to the total mass of the washing liquid in the washing machine; Washing with the washing machine; rinsing the article washed with the washing liquid with water; and optionally dehydrating the article rinsed with water.
  • Another aspect of the method of using the granular detergent composition is that the cleaning liquid having a concentration of the granular detergent composition of 0.02 to 2% by mass is adjusted with respect to the total mass of the cleaning liquid; Immersing the article to be washed for a desired time; rinsing the article to be washed with water; and optionally dehydrating the article to be washed with water.
  • the granular detergent composition (the granular detergent composition obtained by the production method of the second aspect) according to the first aspect of the present invention has a mass ratio (c1 / c2) of zeolite (c1) to zeolite (c2).
  • c1 / c2 mass ratio of zeolite (c1) to zeolite (c2).
  • the reason why the stability of the component (b) is improved by setting c1 / c2 to be 0.7 or less is considered that the movement of water adsorption and release in the component (c) is reduced. That is, since the zeolite (c1) that has undergone the spray drying process is dried with high heat (for example, 200 ° C. or more), the amount of moisture that can be adsorbed is large. Therefore, when a granular detergent composition having a high proportion of zeolite (c1) is stored at a high temperature, a large amount of water is released, and the stability of the component (b) is lowered by this water.
  • the zeolite (c2) not subjected to the spray drying step has a smaller amount of water that can be adsorbed than the zeolite (c1), and therefore the amount of water released during high-temperature storage is also small. Less likely to cause a decrease in stability. Therefore, by increasing the ratio of zeolite (c2), it is considered that the influence of moisture on the component (b) is reduced and the stability is improved.
  • a granular detergent composition comprising a surfactant (a), an inorganic peroxide (b), a zeolite (c), and optionally an optional component
  • the granular detergent composition contains the surfactant (a) and spray-dried particles obtained by spray-drying a slurry containing a part of the zeolite (c), but does not contain the inorganic peroxide (b).
  • the content of the surfactant (a) is 5 to 30% by mass
  • the content of the inorganic peroxide (b) is 3 to 20% by mass
  • the content of the zeolite (c) is 5 to 15% by mass, and the total content of the respective components does not exceed 100% by mass
  • the zeolite (c) is composed of zeolite (c1) blended in the slurry and zeolite (c2) other than the zeolite (c1), and is a mass ratio of the zeolite (c1) to the zeolite (c2)
  • the granular detergent composition whose / c2 is more than 0 and 0.7 or less.
  • a granular detergent composition comprising a surfactant (a), an inorganic peroxide (b), a zeolite (c), and optionally an optional component
  • the granular detergent composition contains the surfactant (a) and spray-dried particles obtained by spray-drying a slurry containing a part of the zeolite (c), but does not contain the inorganic peroxide (b).
  • the content of the surfactant (a) is 7 to 11% by mass
  • the content of the inorganic peroxide (b) is 7 to 15% by mass
  • the content of the zeolite (c) is 8 to 15% by mass, and the total content of the respective components does not exceed 100% by mass
  • the zeolite (c) is composed of zeolite (c1) blended in the slurry and zeolite (c2) other than the zeolite (c1), and is a mass ratio of the zeolite (c1) to the zeolite (c2)
  • the granular detergent composition whose / c2 is more than 0 and 0.7 or less.
  • a granular detergent composition comprising a surfactant (a), an inorganic peroxide (b), a zeolite (c), and optionally an optional component
  • the granular detergent composition contains the surfactant (a) and spray-dried particles obtained by spray-drying a slurry containing a part of the zeolite (c), but does not contain the inorganic peroxide (b).
  • the content of the surfactant (a) is 5 to 30% by mass
  • the content of the inorganic peroxide (b) is 3 to 20% by mass
  • the content of the zeolite (c) is 5 to 15% by mass, and the total content of the respective components does not exceed 100% by mass
  • the content of the particles (X) is 50 to 90% by mass
  • the content of the particles (Y) is 3 to 20% by mass, and the total content of the particles does not exceed 100% by mass
  • the zeolite (c) is composed of zeolite (c1) blended in the slurry and zeolite (c2) other than the zeolite (c1), and is a mass ratio of the zeolite (c1) to the zeolite (c2)
  • the granular detergent composition whose
  • a granular detergent composition comprising a surfactant (a), an inorganic peroxide (b), a zeolite (c), and optionally an optional component
  • the granular detergent composition contains the surfactant (a) and spray-dried particles obtained by spray-drying a slurry containing a part of the zeolite (c), but does not contain the inorganic peroxide (b).
  • the surfactant (a) is at least one component selected from the group consisting of an anionic surfactant and a nonionic surfactant
  • the inorganic peroxide (b) is at least one component selected from the group consisting of sodium percarbonate particles, sodium perborate particles, and sodium perborate trihydrate
  • the zeolite (c) is at least one component selected from the group consisting of A-type zeolite, X-type zeolite, Y-type zeolite, and P-type zeolite
  • the optional component is at least one component selected from the group consisting of inorganic builders, organic builders, optical brighteners, anti-staining agents, metal salts, sequestering agents, organic peracid precursors, and enzymes.
  • the surfactant (a), the inorganic peroxide (b), the content of the zeolite (c), and the content of the optional component optionally contained, the content of the particles (X), the particles The content of (Y) and the content of the other particles contained as desired are the same as described above,
  • the granular detergent composition whose c1 / c2 which is mass ratio of the said zeolite (c1) with respect to the said zeolite (c2) is the same as the above is mentioned.
  • a granular detergent composition comprising a surfactant (a), an inorganic peroxide (b), a zeolite (c), and optionally an optional component
  • the granular detergent composition contains the surfactant (a) and spray-dried particles obtained by spray-drying a slurry containing a part of the zeolite (c), but does not contain the inorganic peroxide (b).
  • the surfactant (a) is selected from the group consisting of a sodium salt of a linear alkylbenzene sulfonic acid having 10 to 14 carbon atoms and a polyoxyethylene alkyl (carbon number 12 to 14) ether having an average addition mole number of ethylene oxide of 15.
  • the inorganic peroxide (b) is sodium percarbonate-containing particles
  • the zeolite (c) is A-type zeolite
  • the optional component includes acrylic acid / maleic anhydride copolymer sodium salt, sodium carbonate, potassium carbonate, sodium sulfate, 4,4′-bis- (2-sulfostyryl) -biphenyl salt, sodium carboxymethylcellulose, zinc sulfate, At least one component selected from the group consisting of trisodium tilglycine diacetate, citric acid, sodium 4-dodecanoyloxybenzenesulfonate, sodium bicarbonate, and enzyme;
  • the surfactant (a), the inorganic peroxide (b), the content of the zeolite (c), and the content of the optional component optionally contained, the content of the particles (X), the particles The content of (Y) and the content of the other particles contained as desired are the same as described above,
  • a method for producing a granular detergent composition comprising a surfactant (a), an inorganic peroxide (b), a zeolite (c), and optionally an optional component
  • the manufacturing method includes: Obtaining particles (X); A mixing step of mixing the particles (Y) containing the inorganic peroxide (b), the particles (X), and optionally other particles other than the particles (X) and the particles (Y); Have The step of obtaining the particles (X) Slurry preparation for preparing a slurry by dispersing or dissolving a part of the raw material constituting the particle (X) containing the component (a), the component (c), and the optional component in water simultaneously or sequentially.
  • a spray drying step of spray drying the slurry A granulation step of granulating the spray-dried particles obtained by the spray drying together with the rest of the raw materials constituting the particles (X) not used in the slurry adjustment step; Sieving the granulated granulated particles, and adjusting the desired average particle size and particle size distribution
  • the mixing step includes Mixing the particles (X) with the other particles and then mixing the particles (Y); mixing the particles (X), the particles (Y) and the other particles simultaneously; or After mixing the particles (X) and the other particles, the particles (X) are allowed to stand under a certain condition (for example, in an environment of 20 ° C. and a relative humidity of 50% RH for 5 minutes or more), and then the particles (Y) are further mixed.
  • the amount of the zeolite (c) used is an amount of 5 to 15% by mass based on the total mass of the granular detergent composition to be produced;
  • the zeolite (c) is composed of zeolite (c1) blended in the slurry and zeolite (c2) other than the zeolite (c1), and is a mass ratio of the zeolite (c1) to the zeolite (c2). / C2 is more than 0 and 0.7 or less,
  • the manufacturing method of a granular detergent composition is mentioned.
  • PC agent (trade name SPCC, manufactured by JINKE, sodium percarbonate-containing particles, bulk density 1.05 g / cm 3 , average particle size 870 ⁇ m).
  • ⁇ Zeolite> Type A zeolite manufactured by Thai silicate, water content 4%. Using an infrared moisture meter, the measured value (weight loss) after 20 minutes at a sample surface temperature of 130 ° C. was taken as the moisture content of the zeolite.
  • C represents the number of carbon atoms.
  • LMAO LMAO-90 (trade name, manufactured by Nippon Shokubai) [polyoxyethylene (EO15) alkyl (C12-14) ether]. (EO15) indicates that the average number of moles of ethylene oxide added is 15, and (C12-14) indicates that the alkyl group has 12 to 14 carbon atoms.
  • CMC sodium carboxymethyl cellulose
  • trade name CMC Daicel 1170, manufactured by Daicel Chemical Industries, Ltd.
  • Zinc sulfate ZnSO 4 .1H 2 O (zinc sulfate monohydrate, manufactured by Shinyo Co., Ltd.)).
  • MGDA Trisodium methylglycine diacetate
  • trade name Trilon M Compactate (pure content: 86%), manufactured by BASF.
  • OBS sodium 4-dodecanoyloxybenzenesulfonate. OBS was blended as a granulated product (OBS particles) synthesized in Production Example 1 below.
  • This extruded product (60 ° C.) and 5 parts by mass of A-type zeolite powder are supplied to Fitzmill DKA-3 type (trade name, manufactured by Hosokawa Micron Co., Ltd.), pulverized and granulated (average particle size of about 700 ⁇ m) OBS particles) were obtained.
  • Spray dried particles (A-1 particles to A-4 particles) having the composition shown in Table 1 were produced by the following procedure.
  • the composition shown in Table 1 is mass% with respect to the total mass of the spray-dried particles.
  • Water was put into a jacketed mixing tank equipped with a stirring device, and the temperature of the water in the mixing tank was adjusted to 60 ° C.
  • LAS-Na and soap were added and stirred for 10 minutes.
  • the MA agent was added.
  • zeolite for spray drying zeolite (c1)
  • sodium carbonate, potassium carbonate and alkali metal sulfate were added.
  • the mixture is further stirred for 20 minutes to prepare a slurry for spray drying having a water content of 38% by mass with respect to the total mass of the slurry for spray drying, and then using the countercurrent spray drying tower at a hot air temperature of 280 ° C.
  • the slurry for spray drying was spray dried to obtain spray dried particles.
  • the obtained spray-dried particles were measured for the weight loss after 20 minutes at a sample surface temperature of 130 ° C. using an infrared moisture meter, and the measured value was taken as the amount of water in the spray-dried particles.
  • X-1-1 particles granulated particles comprising A-1 particles, ⁇ -sulfo fatty acid methyl ester Na (hereinafter referred to as “MES”), LMAO, water, and zeolite (c2) (the total mass of the granulated particles) On the other hand, the water content is 7% by mass).
  • MES ⁇ -sulfo fatty acid methyl ester Na
  • c2 zeolite
  • X-1-2 particles Granulated particles comprising A-1 particles, MES, LMAO, water, and zeolite (c2) (water content 5 mass% with respect to the total mass of the granulated particles).
  • X-2 particles Granulated particles comprising A-2 particles, MES, LMAO, water, and zeolite (c2) (water content: 7% by mass with respect to the total mass of the granulated particles).
  • X-3 particles Granulated particles composed of A-3 particles, MES, LMAO, water, and zeolite (c2) (water content 6 mass% with respect to the total mass of the granulated particles).
  • X-4 particles Granulated particles composed of A-4 particles, MES, LMAO, water, and zeolite (c2) (water content: 7% by mass with respect to the total mass of the granulated particles).
  • the content of MES in these particles (X) is such that when the granular detergent composition containing particles (X) is produced in the amount described below, the MES content in the granular detergent composition is the granular. The amount was 9% by mass relative to the total mass of the detergent composition.
  • the content of LMAO in the particles (X) is such that when the granular detergent composition containing the particles (X) is produced in the amount described below, the content of LMAO in the granular detergent composition is the granular detergent composition. The amount was 2% by mass relative to the total mass of the product.
  • Fitzmill manufactured by Hosokawa Micron Corporation, DKA-3 arranged in three stages in series in the presence of zeolite (zeolite (c2)) and cold air (10 ° C., 15 m / s) in the obtained pellet-shaped molded product.
  • zeolite zeolite (c2)
  • cold air 10 ° C., 15 m / s
  • the amount of zeolite used during pulverization was the amount shown in Tables 2 to 3 as “Zeolite (c2) used in granulation step”.
  • Zeolite (c2) used in this granulation step is a ratio (% by mass) to the total mass of the granular detergent composition.
  • the sample surface temperature 130 degreeC and the weight loss amount after 20 minutes were measured using the infrared moisture meter, and the measured value was made into the moisture content in particle
  • Moisture content not derived from spray-dried particles (mass%) (water content in particles (X) ⁇ water content of spray-dried particles)
  • Particles (X) and zeolite are charged into a rotating container cylindrical mixer, mixed at a rate of 15 kg / min, immediately after that, a PC agent is charged, and LMAO is added to the total mass of the granular detergent composition. LMAO was added so as to be 1% by mass and mixed for 2 minutes to obtain a granular detergent composition.
  • the container rotating cylindrical mixer used has a container with a diameter of 0.7 m, a length of 1.4 m, an inclination angle of 3.0 °, an outlet weir height of 0.15 m, an internal mixing blade of a height of 0.1 m, and a length. This is a mixer with a specification of four 1.4 m flat blades attached every 90 °.
  • the constant temperature and humidity chamber was repeatedly operated at 45 ° C. and 75% RH for 8 hours and at 25 ° C. and 55% RH for 16 hours.
  • the box containing the granular detergent composition was taken out of the constant temperature and humidity chamber and left for 6 hours at a temperature of 25 ° C. and a relative humidity of 60%.
  • the entire granular detergent composition was sufficiently mixed, and then the granular detergent composition was sampled by the following procedure to measure the residual rate of sodium percarbonate.
  • Effective oxygen amount (%) ⁇ f ⁇ p ⁇ (1/2) ⁇ (1/1000) ⁇ 16 ⁇ / g ⁇ 100 [Wherein, f is a factor of a 1 mol / L sodium thiosulfate solution, p is a titration amount (unit: mL) of the 1 mol / L sodium thiosulfate solution, and g is a mass of the sample (unit: g)). ]
  • the effective oxygen content of the remaining half of the sample was determined by the above method. These average values were used as the effective oxygen amount of the sample.
  • the effective oxygen amount (%) of the PC agent used for the production of the granular detergent composition was measured.
  • the box containing the granular detergent composition was allowed to stand on a horizontal base, and a spoonful of the granular detergent composition (about 50 g) was sprinkled from the center using a spoon.
  • the amount of the PC agent contained in the granular detergent composition was defined as “PC amount at the beginning of use”. Further, the granular detergent composition was rubbed one cup at a time so as not to continue the same portion. Then, the amount of the PC agent contained in the granular detergent composition that was sown just before it was no longer squeezed with a spoon without tilting the box was defined as “PC amount immediately before use”.
  • the ratio of the difference between the “PC amount at the beginning of use” and the “PC amount immediately before the end of use” was calculated and used as a classification evaluation of the granular detergent composition.
  • the amount of the PC agent contained in the sample was quantified by the following method. About 25 g of the soaked granular detergent composition (sample) was precisely weighed to 10 mg, and the amount of effective oxygen (%) was determined in the same manner as described above. The effective oxygen content of the remaining half of the sample, approximately 25 g, was determined by the above method. These average values were used as the effective oxygen amount of the sample.
  • PC agent classification ratio (%) amount of PC agent contained in sample at first use / amount of PC agent contained in sample immediately before use ⁇ 100 (%)
  • the unit of the blending amount is mass%, and the blending ratio is the mass ratio.
  • the ratio of particles (X) / zeolite (c2) is “total amount of zeolite used in granulation step and zeolite used in mixing step (ie, zeolite (c2)) (mass%) in the granular detergent composition. "Particle (X) blending amount (% by mass)”.
  • the amount of water not derived from the spray-dried particles in the particles (X) is “the amount of water in the particles (X) (mass%)” and “the amount of water in the spray-dried particles immediately after spray drying ( It is a value obtained as a difference between “mass%) ⁇ the ratio of spray-dried particles in the particles (X) (mass%) / 100”.
  • Examples 11 to 15> A granular detergent composition having the composition shown in Table 4 was produced by the following procedure. The unit of the blending amount and moisture content in the table is mass%. First, except that zinc sulfate, MGDA, and citric acid were further added to the slurry for spray drying, ⁇ 1. Preparation of spray-dried particles Spray-dried particles were produced in the same manner as described above. Using the obtained spray-dried particles, particles (X) are produced in the same manner as in the above (granulating step) except that a fluorescent brightener is added together with spray-dried particles, MES mixed concentrate, LMAO and water. did.
  • the obtained particle (X), zeolite, PC agent, sodium bicarbonate and CMC are simultaneously charged into a container rotating cylindrical mixer and mixed at a speed of 15 kg / min.
  • An LMAO aqueous solution having a concentration of 1% by mass was sprayed and left for 2 minutes in an environment of 20 ° C. and 50% RH.
  • an enzyme and OBS were added and mixed for 2 minutes to obtain a granular detergent composition.
  • the container rotating cylindrical mixer the same air-fuel mixture as in the production method (1) was used.
  • a granular detergent composition having improved storage stability of inorganic peroxide in the presence of zeolite and a method for producing the same can be provided, which is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

 界面活性剤(a)と無機過酸化物(b)とゼオライト(c)とを含有する粒状洗剤組成物であって、この粒状洗剤組成物は、この界面活性剤(a)とこのゼオライト(c)の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子とを含み、かつこの無機過酸化物(b)を含まない、粒子(X)と、この無機過酸化物(b)を含む粒子(Y)と、を含有し;このゼオライト(c)の含有量は、この粒状洗剤組成物の総質量に対して、5~15質量%であり;このゼオライト(c)は、このスラリーに配合されるゼオライト(c1)とこのゼオライト(c1)以外のゼオライト(c2)とからなり、このゼオライト(c1)のこのゼオライト(c2)に対する質量比であるc1/c2が0超、0.7以下である粒状洗剤組成物。

Description

粒状洗剤組成物およびその製造方法
 本発明は、粒状洗剤組成物およびその製造方法に関する。
 本願は、2013年7月22日に、日本に出願された特願2013-151505号に基づき優先権を主張し、その内容をここに援用する。
 従来、家庭等で衣料等の洗濯に用いられる粒状洗剤としては、界面活性剤、洗浄性ビルダー(水溶性無機塩等)等を含有するスラリーを噴霧乾燥した噴霧乾燥粒子が用いられている。しかし噴霧乾燥粒子は嵩高く、現在では噴霧乾燥粒子からなる粒状洗剤にかわって、洗剤粒子の嵩密度を高めた粒状洗剤、いわゆるコンパクト洗剤が主流となっている。高嵩密度の洗剤粒子の製造方法としては、例えば、前記の噴霧乾燥粒子と他の成分と水とを捏和機(ニーダー)等で捏和し、得られた捏和物を粉砕する方法や、噴霧乾燥粒子に界面活性剤を多量に含浸する方法が知られている。
 粒状洗剤には一般に、洗剤粒子のほか、漂白剤として過炭酸ナトリウム等の無機過酸化物粒子が配合されている。
 ゼオライトは、粒状洗剤の品質面、および製造面に対して様々なメリットがあるため、粒状洗剤に配合されることが多い。例えば、品質面のメリットとしては、水道水中のCaイオンの捕捉による洗浄性能の向上、界面活性剤の染み出しとそれに伴う固化の抑制、流動性の向上等多岐にわたる。また、製造面では、ゼオライトは、噴霧乾燥粒子の製造に用いられるスラリーに配合され、洗剤粒子の骨格形成に寄与する。また、製造工程における洗剤粒子の流動性を確保するために滑剤や粉砕助剤としても用いられる。
 しかしゼオライトは、洗剤粒子と無機過酸化物粒子とを含む粒状洗剤において、機能性成分、特に無機過酸化物の保存安定性の低下を引き起こす問題がある。
 このような問題に対し、無機過酸化物の安定性を向上させる技術が種々検討されている(例えば特許文献1~2)。しかしその効果には未だ改善の余地がある。
特開2000-256699号公報 特開2010-215814号公報
 本発明は、上記事情に鑑みてなされたものであって、ゼオライトの併存下での無機過酸化物の保存安定性が向上した粒状洗剤組成物およびその製造方法を提供することを目的とする。
 本発明者らは、鋭意検討の結果、粒状洗剤に配合するゼオライトのうち、噴霧乾燥工程を経るゼオライトの割合を低くする(即ち、噴霧乾燥工程を経ないゼオライトの割合を高める)ことによって、粒状洗剤中の無機過酸化物の保存安定性が向上することを見出した。
 本発明は、上記知見に基づくものであり、以下の態様を有する。
 [1]界面活性剤(a)と無機過酸化物(b)とゼオライト(c)とを含有する粒状洗剤組成物であって、
 前記界面活性剤(a)を含み前記無機過酸化物(b)を含まない粒子(X)と、前記無機過酸化物(b)を含む粒子(Y)と、を含有し、
 前記粒子(X)が、前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子を含み、
 前記ゼオライト(c)の含有量が5~15質量%であり、
 前記ゼオライト(c)のうち、前記スラリーに配合されるゼオライト(c1)の、前記ゼオライト(c1)以外のゼオライト(c2)に対する質量比(c1/c2)が0.7以下であることを特徴とする粒状洗剤組成物。
 [2]界面活性剤(a)と無機過酸化物(b)とゼオライト(c)とを含有する粒状洗剤組成物の製造方法であって、
 前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させて噴霧乾燥粒子を得て、前記噴霧乾燥粒子から、前記界面活性剤(a)を含み前記無機過酸化物(b)を含まない粒子(X)を得る工程と、
 前記無機過酸化物(b)を含む粒子(Y)と前記粒子(X)とを混合する工程と、を有し、
 前記ゼオライト(c)の使用量が、製造する粒状洗剤組成物の総質量に対して5~15質量%となる量であり、
 前記ゼオライト(c)のうち、前記スラリーに配合されるゼオライト(c1)の、前記ゼオライト(c1)以外のゼオライト(c2)に対する質量比(c1/c2)が0.7以下であることを特徴とする粒状洗剤組成物の製造方法。
 即ち、本発明は以下に関する。
[1’] 界面活性剤(a)と無機過酸化物(b)とゼオライト(c)とを含有する粒状洗剤組成物であって、
 前記粒状洗剤組成物は、
前記界面活性剤(a)と前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子とを含み、かつ前記無機過酸化物(b)を含まない、粒子(X)と、
前記無機過酸化物(b)を含む粒子(Y)と、を含有し;
 前記ゼオライト(c)の含有量が、前記粒状洗剤組成物の総質量に対して、5~15質量%であり;
前記ゼオライト(c)が、前記スラリーに配合されるゼオライト(c1)と前記ゼオライト(c1)以外のゼオライト(c2)とからなり、前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が、0超、0.7以下である粒状洗剤組成物。
 [2’] 界面活性剤(a)と無機過酸化物(b)とゼオライト(c)とを含有する粒状洗剤組成物の製造方法であって、
前記製造方法は、
 粒子(X)を得る工程と、
 前記無機過酸化物(b)を含む粒子(Y)と、前記粒子(X)と、を混合する混合工程と、を有し、
 前記粒子(X)を得る工程は、
 前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させて噴霧乾燥粒子を得る工程と、
得られた前記噴霧乾燥粒子から、前記界面活性剤(a)を含むが前記無機過酸化物(b)を含まない粒子(X)を得る工程と、を含み、
前記ゼオライト(c)の使用量が、製造される前記粒状洗剤組成物の総質量に対して5~15質量%となる量であり、
前記ゼオライト(c)は、前記スラリーに配合されるゼオライト(c1)と前記ゼオライト(c1)以外のゼオライト(c2)とからなり、前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が、0超、0.7以下である、
粒状洗剤組成物の製造方法。
 本発明によれば、ゼオライトの併存下での無機過酸化物の保存安定性が向上した粒状洗剤組成物およびその製造方法を提供できる。
(粒状洗剤組成物)
 本発明の第一の態様である粒状洗剤組成物の1つの側面は、界面活性剤(a)(以下、(a)成分ともいう。)と無機過酸化物(b)(以下、(b)成分ともいう。)とゼオライト(c)(以下、(c)成分ともいう。)とを含有する粒状洗剤組成物であって、
 前記粒状洗剤組成物は、前記(a)成分を含みかつ前記(b)成分を含まない粒子(X)と、前記(b)成分を含む粒子(Y)と、を含有し、
 さらに、前記粒子(X)が、前記(c)成分の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子を含み、
 前記(c)成分の含有量が、前記粒状洗剤組成物の総質量に対して、5~15質量%であり、
 前記(c)成分のうち、前記スラリーに配合されるゼオライト(c1)の、前記ゼオライト(c1)以外のゼオライト(c2)に対する質量比(c1/c2)が0超、0.7以下である粒状洗剤組成物である。
本発明の第一の態様である粒状洗剤組成物の別の側面は、
界面活性剤(a)と無機過酸化物(b)とゼオライト(c)とを含有する粒状洗剤組成物であって、
 前記粒状洗剤組成物は、前記界面活性剤(a)と前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子とを含み、かつ前記無機過酸化物(b)を含まない、粒子(X)と、
前記無機過酸化物(b)を含む粒子(Y)と、を含有し;
 前記ゼオライト(c)の含有量が、前記粒状洗剤組成物の総質量に対して、5~15質量%であり;
前記ゼオライト(c)が、前記スラリーに配合されるゼオライト(c1)と前記ゼオライト(c1)以外のゼオライト(c2)とからなり、前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が、0超、0.7以下である粒状洗剤組成物である。
<粒状洗剤組成物を構成する成分>
 本発明の一実施態様である粒状洗剤組成物を構成する成分としては、少なくとも下記の(a)成分と(b)成分と(c)成分が挙げられる。前記粒状洗剤組成物は、必要に応じて、(a)~(c)成分以外の他の成分をさらに含んでもよい。
≪(a)成分≫
 (a)成分の界面活性剤としては、特に限定されず、アニオン界面活性剤、ノニオン界面活性剤、カチオン界面活性剤、両性界面活性剤等が挙げられる。
 アニオン界面活性剤としては、粒状洗浄剤に用いられるアニオン界面活性剤であれば特に限定されず、例えば、以下(1)~(12)のアニオン界面活性剤が挙げられる。
 (1)α-スルホ脂肪酸アルキルエステル塩。
 α-スルホ脂肪酸アルキルエステル塩の種類は特に制限されず、一般の粒状洗剤組成物に使用されるα-スルホ脂肪酸アルキルエステル塩のいずれも好適に使用することができ、下記式(11)で表されるα-スルホ脂肪酸アルキルエステル塩が好ましい。
 R11-CH(SOM)-COOR12 ・・・(11)
 式(11)中、R11は、炭素数8~20の直鎖状もしくは分岐鎖状のアルキル基、または炭素数8~20の直鎖状もしくは分岐鎖状のアルケニル基であり、好ましくは、炭素数14~16の直鎖状もしくは分岐鎖状のアルキル基である。
 R12は炭素数1~6のアルキル基であり、炭素数1~3であることが好ましい。具体的にはメチル基、エチル基、プロピル基、イソプロピル基が挙げられ、洗浄力がより向上することからメチル基、エチル基、プロピル基が好ましく、メチル基が特に好ましい。
 Mは、対イオンを表し、例えば、ナトリウム、カリウム等のアルカリ金属塩;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン塩;アンモニウム塩等を形成するイオンが挙げられる。なかでもアルカリ金属塩を形成するイオンが好ましい。
 α-スルホ脂肪酸アルキルエステル塩として、例えば、α-スルホ脂肪酸メチルエステルナトリウム塩(MES)が好ましい。
 (2)炭素数8~18のアルキル基を有する直鎖状または分岐鎖状のアルキルベンゼンスルホン酸塩(LASまたはABS)。
 (3)炭素数10~20のアルカンスルホン酸塩。
 (4)炭素数10~20のα-オレフィンスルホン酸塩(AOS)。
 (5)炭素数10~20のアルキル硫酸塩または炭素数10~20のアルケニル硫酸塩(AS)。
 (6)炭素数2~4のアルキレンオキシドのいずれか、またはエチレンオキシド(EO)とプロピレンオキシド(PO)(モル比EO/PO=0.1/9.9~9.9/0.1)を、平均0.5~10モル付加した(即ち、平均付加モル数が0.5~10である)炭素数10~20の直鎖状または分岐鎖状のアルキル基(またはアルケニル基)を有する、アルキル(またはアルケニル)エーテル硫酸塩(AES)。 
(7)炭素数2~4のアルキレンオキシドのいずれか、またはエチレンオキシド(EO)とプロピレンオキシド(PO)(モル比EO/PO=0.1/9.9~9.9/0.1)を、平均3~30モル付加した(即ち、平均付加モル数が3~30である)炭素数10~20の直鎖状または分岐鎖状のアルキル基(またはアルケニル基)を有する、アルキル(またはアルケニル)フェニルエーテル硫酸塩。
(8)炭素数2~4のアルキレンオキシドのいずれか、またはエチレンオキシド(EO)とプロピレンオキシド(PO)(モル比EO/PO=0.1/9.9~9.9/0.1)を、平均0.5~10モル付加した(即ち、平均付加モル数が0.5~10である)炭素数10~20の直鎖状または分岐鎖状のアルキル基(またはアルケニル基)を有する、アルキル(またはアルケニル)エーテルカルボン酸塩。
(9)炭素数10~20のアルキルグリセリルエーテルスルホン酸等のアルキル多価アルコールエーテル硫酸塩。
 (10)長鎖モノアルキル、ジアルキルまたはセスキアルキルリン酸塩。
 (11)ポリオキシエチレンモノアルキル、ジアルキルまたはセスキアルキルリン酸塩。
 (12)炭素数10~20の高級脂肪酸塩(石鹸)。
 これらのアニオン界面活性剤は、ナトリウム塩、カリウム塩等のアルカリ金属塩;アミン塩;アンモニウム塩等として用いることができる。
 これらのアニオン界面活性剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 ノニオン界面活性剤としては、従来、粒状洗浄剤に用いられるノニオン界面活性剤であれば特に限定されず、例えば、以下のノニオン界面活性剤が挙げられる。
 (1)炭素数6~22、好ましくは8~18、より好ましくは10~16、特に好ましくは12~14の脂肪族アルコールに、炭素数2~4のアルキレンオキシドを平均3~30モル、好ましくは3~20モル、さらに好ましくは5~20モル、特に好ましくは12~20モル、最も好ましくは14~18モル付加した(即ち、平均付加モル数が3~30モル、好ましくは3~20モル、さらに好ましくは5~20モル、特に好ましくは12~20モル、最も好ましくは14~18モルである)ポリオキシアルキレンアルキル(またはアルケニル)エーテル。この中でも、ポリオキシエチレンアルキル(またはアルケニル)エーテル、ポリオキシエチレンポリオキシプロピレンアルキル(またはアルケニル)エーテルが好適である。
ここで使用される脂肪族アルコールとしては、第1級アルコールや、第2級アルコールが挙げられる。また、そのアルキル基は、分岐鎖を有していてもよい。脂肪族アルコールとしては、第1級アルコールが好ましい。
 (2)ポリオキシエチレンアルキル(またはアルケニル)フェニルエーテル。
 (3)長鎖脂肪酸アルキルエステルのエステル結合間にアルキレンオキシドが付加した脂肪酸アルキルエステルアルコキシレート。
 (4)ポリオキシエチレンソルビタン脂肪酸エステル。
 (5)ポリオキシエチレンソルビット脂肪酸エステル。
 (6)ポリオキシエチレン脂肪酸エステル。
 (7)ポリオキシエチレン硬化ヒマシ油。
 (8)グリセリン脂肪酸エステル。
 上記(3)の脂肪酸アルキルエステルアルコキシレートとしては、例えば下記一般式(31)で表されるものが挙げられる。 
CO(OA)10 ・・・(31)
 式(31)中、RCOは、炭素数6~22の脂肪酸残基であり、好ましくは8~18、より好ましくは10~16、特に好ましくは12~14の脂肪酸残基である。
OAは、炭素数2~4のアルキレンオキシドの付加単位(オキシアルキレン基)であり、炭素数2~3のアルキレンオキシドであることが好ましく、エチレンオキシド、プロピレンオキシド等がより好ましい。
qはアルキレンオキシドの平均付加モル数を示し、3~30であり、好ましくは5~20である。なお、qは整数であってもよく、小数を含んでもよい。
10は置換基を有してもよい炭素数1~4のアルキル基を示す。
 これらのノニオン界面活性剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 上記のノニオン界面活性剤の中でも、上記(1)のノニオン界面活性剤が好ましく、特に、炭素数12~16の脂肪族アルコールに炭素数2~4のアルキレンオキサイドを平均5~20、好ましくは12~20モル、より好ましくは14~18モル付加した(即ち、平均付加モル数が5~20、好ましくは12~20モル、より好ましくは14~18モルである)ポリオキシアルキレンアルキル(またはアルケニル)エーテルが好ましい。
 また、融点が50℃以下でHLBが9~16の、ポリオキシエチレンアルキル(またはアルケニル)エーテル、ポリオキシエチレンポリオキシプロピレンアルキル(またはアルケニル)エーテル、脂肪酸メチルエステルにエチレンオキサイドが付加した脂肪酸メチルエステルエトキシレート、脂肪酸メチルエステルにエチレンオキサイドとプロピレンオキサイドが付加した脂肪酸メチルエステルエトキシプロポキシレート等が好適に用いられる。
 なお、本明細書における「ノニオン界面活性剤のHLB」とは、Griffinの方法により求められた値を意味する(吉田、進藤、大垣、山中共編、「新版界面活性剤ハンドブック」、工業図書株式会社、1991年、第234頁参照)。
 本明細書における「融点」とは、JISK0064-1992「化学製品の融点および溶融範囲測定方法」に記載されている融点測定法によって測定された値を意味する。
 カチオン界面活性剤としては、例えば、以下のカチオン界面活性剤を挙げることができる。
 (1)ジ長鎖アルキルジ短鎖アルキル型4級アンモニウム塩。
 (2)モノ長鎖アルキルトリ短鎖アルキル型4級アンモニウム塩。
 (3)トリ長鎖アルキルモノ短鎖アルキル型4級アンモニウム塩。
 ただし、上記の「長鎖アルキル」とは、炭素数12~26、好ましくは14~18のアルキル基を示す。
 「短鎖アルキル」とは、フェニル基、ベンジル基、ヒドロキシ基、ヒドロキシアルキル基等の置換基を包含し、炭素間にエーテル結合を有していてもよい。なかでも、炭素数1~4、好ましくは1~2のアルキル基;ベンジル基;炭素数2~4、好ましくは2~3のヒドロキシアルキル基;炭素数2~4、好ましくは2~3のポリオキシアルキレン基が好適な短鎖アルキルとして挙げられる。
 両性界面活性剤としては、例えば、イミダゾリン系の両性界面活性剤、アミドベタイン系の両性界面活性剤等を挙げることができる。具体的には、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウリン酸アミドプロピルベタインが好適な両性界面活性剤として挙げられる。
 本発明の一実施態様である粒状洗剤組成物中の(a)成分の含有量は、粒状洗剤組成物の総質量に対し、5~30質量%が好ましく、5~15質量%がより好ましく、7~11質量%が特に好ましい。5質量%以上であると、粒状洗剤として充分な洗浄性能が得られる。30質量%以下であると、多湿保管後の粒子の流動性が良好である。
≪(b)成分≫
 (b)成分は無機過酸化物である。(b)成分は主に漂白成分として機能する。
 (b)成分としては、粒状洗剤等に従来用いられている無機過酸化物を使用でき、例えば、過炭酸ナトリウム粒子等の過炭酸塩;過ホウ酸ナトリウム粒子、過ホウ酸ナトリウム・3水和物等の過ホウ酸塩が挙げられる。これらの中でも、使用時の溶解性や貯蔵時の安定性の点から、過炭酸ナトリウムが好ましい。
 本発明の一実施態様である粒状洗剤組成物中の(b)成分の含有量は、粒状洗剤組成物の総質量に対し、3~20質量%が好ましく、3~15質量%がより好ましく、7~15質量%が特に好ましい。3質量%以上であると、(b)成分による効果(漂白、殺菌、染み汚れ等に対する洗浄力の向上等)が充分に得られる。20質量%を超えると、他の洗浄成分の量が少なくなって洗浄力が低下するおそれがある。
≪(c)成分≫

 (c)成分はゼオライトである。「ゼオライト」とは、アルミノ珪酸塩の総称であり本発明におけるゼオライトとしては、カチオン交換能の点から、結晶性であり構造体であるアルミノ珪酸塩が好ましい。結晶性アルミノ珪酸塩のゼオライトとしては、A型、X型、Y型、P型ゼオライト等が挙げられ、本発明においては、いずれのゼオライトも使用できる。 
 本発明の一実施態様である粒状洗剤組成物中の(c)成分の含有量は、粒状洗剤組成物の総質量に対し、5~15質量%であり、8~15質量%が好ましい。
 (c)成分の含有量が15質量%以下であると、(b)成分の安定性が良好である。また、微粉が発生しにくく流動性が低下しにくい。また、洗濯時に洗濯液の顕著な濁りがみられず、すすぎ性が良好になる。
 (c)成分の含有量が5質量%以上であると、(c)成分による効果(即ち、洗濯時に洗液中に存在するCaイオンを捕捉することによる洗浄性能の向上、界面活性剤の染み出しやそれに伴う固化の抑制、粒子群の流動性の向上等)が充分に得られる。
 本発明の一実施態様である粒状洗剤組成物において、(c)成分の一部(即ち、後述するゼオライト(c1))は、水、および必要に応じて他の成分と共に配合されてスラリーとされ、噴霧乾燥により噴霧乾燥粒子とされる。この噴霧乾燥粒子はそのまま、またはこの噴霧乾燥粒子に、水、および必要に応じて他の成分を加えて、捏和、粉砕して粒子(X)として本発明の一実施態様である粒状洗剤組成物に配合される。
 つまり、本発明の一実施態様である粒状洗剤組成物には、(c)成分として、前記スラリーに配合されるゼオライト(c1)(即ち、噴霧乾燥工程を経るゼオライト)と、前記ゼオライト(c1)以外のゼオライト(c2)(即ち、噴霧乾燥工程を経ないゼオライト)とが含まれる。
 即ち、(c)成分は、前記スラリーに配合されるゼオライト(c1)と、前記ゼオライト(c1)以外のゼオライト(c2)とからなる。
 ゼオライト(c1)は、その全量が粒子(X)に含まれる。
 ゼオライト(c2)は、噴霧乾燥工程を経ない限り、粒状洗剤組成物にどのように配合されてもよい。例えば、噴霧乾燥粒子に界面活性剤や水等と共にゼオライト(c2)を添加し、湿式造粒、例えば捏和、粉砕等を行って粒子(X)中にゼオライト(c2)を含有させてもよい。前記粉砕時に粉砕助剤としてゼオライト(c2)を使用してもよい。また、粉末状のゼオライト(c2)を粒子(X)、粒子(Y)等と乾式混合して、独立した粒子として存在させてもよい。
 本発明の一実施態様である粒状洗剤組成物中、ゼオライト(c2)に対するゼオライト(c1)の質量比(即ち、c1/c2)は、0.7以下であり、0.5以下が好ましく、0.4以下がより好ましい。従来は一般的に、(b)成分の安定性を確保するため全体としてのゼオライトの配合量を低減しつつ、スラリーの安定性を確保するためスラリーへのゼオライトの配合量は維持される傾向があり、c1/c2は大きくなる傾向がある。しかしながら、本発明者らの検討によれば、意外にも、c1/c2を0.7以下と小さくすることにより、(b)成分の安定性が向上する。
 c1/c2の下限は、(b)成分の安定性の点では特に限定されず、0超であればよいが、ゼオライト(c1)の割合が低すぎると粒子(X)の流動性が低下するおそれがあるため、0.2以上が好ましい。
 即ち、c1/c2としては、0超、0.7以下であり、0.2以上、0.7以下が好ましく、0.2以上、0.5以下がより好ましく、0.2以上、0.4以下が特に好ましい。
 本発明の一実施態様である粒状洗剤組成物中、ゼオライト(c2)の含有量は、粒状洗剤組成物の総質量に対し、3質量%以上15質量%未満が好ましく、5質量%以上10質量%未満がより好ましい。ゼオライト(c2)の含有量が15質量%未満であると、粒状洗剤組成物中にゼオライトの微粉が生じにくく、流動性の低下が生じにくく、(b)成分の安定性等が向上する。ゼオライト(c2)の含有量が3質量%未満であると、相対的にゼオライト(c1)の含有量も少なくなり、全体としての(c)成分の含有量が少なくなって、(c)成分による効果(即ち、洗浄性能の向上、界面活性剤の染み出しやそれに伴う固化の抑制、流動性の向上等)が充分に得られないおそれがある。
≪任意成分≫
 本発明の一実施態様である粒状洗剤組成物は、必要に応じて、本発明の効果を損なわない範囲で、(a)~(c)成分以外の他の成分をさらに含有してもよい。前記他の成分としては、粒状洗剤に従来用いられている各種成分が使用でき、例えば(c)成分以外の他の洗浄性ビルダー、有機過酸前駆体、金属塩、金属イオン封鎖剤、香料、色素、蛍光増白剤、酵素、酵素安定剤、再汚染防止剤、ケーキング防止剤、pH調整剤、バインダー等が挙げられる。
[他の洗浄性ビルダー]
 他の洗浄性ビルダーとしては、(c)成分以外の他の無機ビルダー、有機ビルダー等が挙げられる。
 他の無機ビルダーとしては、例えば、炭酸ナトリウム、炭酸カリウム、重炭酸ナトリウム、セスキ炭酸ナトリウム等のアルカリ金属炭酸塩;亜硫酸ナトリウム、亜硫酸カリウム等のアルカリ金属亜硫酸塩;結晶性層状珪酸ナトリウム[例えば、クラリアントジャパン社製の商品名「Na-SKS-6」(δ-NaO・2SiO)等の結晶性アルカリ金属珪酸塩];非晶質アルカリ金属珪酸塩;硫酸ナトリウム、硫酸カリウム等の硫酸塩;塩化ナトリウム、塩化カリウム等のアルカリ金属塩化物;オルソリン酸塩、ピロリン酸塩、トリポリリン酸塩、メタリン酸塩、ヘキサメタリン酸塩、フィチン酸塩等のリン酸塩;炭酸ナトリウムと非晶質アルカリ金属珪酸塩の複合体(例えば、Rhodia社の商品名「NABION15」)等が挙げられる。
 上記の中でも、炭酸ナトリウム、重炭酸ナトリウム、カリウム塩(炭酸カリウム、硫酸カリウム等)、アルカリ金属塩化物(塩化カリウム、塩化ナトリウム等)が好ましく、重炭酸ナトリウムが特に好ましい。

 粒状洗剤組成物中の他の無機ビルダーの含有量は、粒状洗剤組成物の総質量に対し、10~70質量%が好ましく、10~40質量%がより好ましく、15~25質量%が特に好ましい。 
 有機ビルダーとしては、ヒドロキシ酢酸、酒石酸、クエン酸、グルコン酸、ヒドロキシイミノジコハク酸等のヒドロキシカルボン酸およびその塩;ピロメリット酸、ベンゾポリカルボン酸、シクロペンタンテトラカルボン酸等のシクロカルボン酸およびその塩;カルボキシメチルタルトロネート、カルボキシメチルオキシサクシネート、オキシジサクシネート、酒石酸モノまたはジサクシネート等のエーテルカルボン酸およびその塩;ポリアクリル酸、アクリル酸-アリルアルコール共重合体、アクリル酸-マレイン酸共重合体、ポリグリオキシル酸等のポリアセタールカルボン酸およびその塩;ヒドロキシアクリル酸重合体、多糖類-アクリル酸共重合体等のアクリル酸重合体または共重合体およびその塩;マレイン酸、イタコン酸、フマル酸、テトラメチレン1,2-ジカルボン酸、コハク酸、アスパラギン酸等の重合体または共重合体およびその塩;デンプン、セルロース、アミロース、ペクチン等の多糖類酸化物等の多糖類誘導体等が挙げられる。
 上記の中でも、ヒドロキシカルボン酸およびその塩、ポリアセタールカルボン酸およびその塩(例えば、特開昭54-52196号公報に記載のポリアセタールカルボン酸およびその塩)が好ましい。ヒドロキシカルボン酸およびその塩としては、クエン酸、クエン酸塩、ヒドロキシイミノジコハク酸塩等が好ましく、クエン酸、およびクエン酸塩がより好ましい。ポリアセタールカルボン酸の塩としては、ポリアクリル酸塩、アクリル酸-マレイン酸共重合体の塩、ポリグリオキシル酸等が好ましく、重量平均分子量が1000~80000のアクリル酸-マレイン酸共重合体の塩、重量平均分子量が1000~80000のポリアクリル酸塩、重量平均分子量が800~1000000(好ましくは5000~200000)のポリグリオキシル酸等がより好ましい。
[有機過酸前駆体]
 有機過酸前駆体は、漂白活性化剤として機能する。
 有機過酸前駆体としては、従来公知の有機過酸前駆体が用いられ、例えば、デカノイルオキシ安息香酸、ドデカノイルオキシベンゼンスルホン酸、ドデカノイルオキシベンゼンスルホン酸ナトリウム、ノナノイルオキシベンゼンスルホン酸ナトリウム等が挙げられる。有機過酸前駆体は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 有機過酸前駆体は、有機過酸前駆体を含有する粒子(以下「有機過酸前駆体粒子」ともいう。)として配合することができる。有機過酸前駆体粒子は、公知の製造方法で製造できる。製造方法としては、例えば、押出造粒法や、ブリケット機を用いた錠剤形状による造粒法が挙げられる。具体的には、有機過酸前駆体粒子は、次の製造方法により得ることができる。
 ポリエチレングリコール(重量平均分子量3000~20000、好ましくは4000~6000)等、常温で固体のバインダー物質を加熱溶融した中に、有機過酸前駆体と界面活性剤の粉末を分散する。その後、押出成型機等により押し出して、直径1mm程度のヌードル状とし、さらに長さ0.5~3mm程度に粉砕することで有機過酸前駆体粒子を得る。こうして得られた有機過酸前駆体粒子は、高嵩密度粒状洗剤組成物での分級を防止する観点から好適に使用できる。
前記界面活性剤としては、オレフィンスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩等が好ましく、アルキル鎖長14のα-オレフィンスルホン酸塩がより好ましい。
[金属塩]
 金属塩としては、従来公知の金属塩が用いられ、例えば、硝酸マンガン、硫酸マンガン、塩化マンガン、酢酸マンガン、過塩素酸マンガン、マンガンアセチルアセトナート等のマンガン化合物;硝酸銅、硫化銅、硫酸銅、塩化銅、酢酸銅、シアン化銅、塩化アンモニウム銅、グルコン酸銅、酒石酸銅、過塩素酸銅等の銅化合物;硝酸亜鉛、硫化亜鉛、硫酸亜鉛、塩化亜鉛、酢酸亜鉛、シアン化亜鉛、塩化アンモニウム亜鉛、グルコン酸亜鉛、酒石酸亜鉛、過塩素酸亜鉛等の亜鉛化合物等が挙げられる。金属塩は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 上記の中でも、取り扱い性、コスト、原料供給性等の点で、硫酸マンガン、塩化マンガン、硫酸銅、塩化銅、グルコン酸銅、硫酸亜鉛、塩化亜鉛が好ましく、硫酸銅、硫酸亜鉛がより好ましい。
[金属イオン封鎖剤]
 金属イオン封鎖剤としては、従来公知の金属イオン封鎖剤が用いられ、ニトリロトリ酢酸塩、エチレンジアミンテトラ酢酸塩、β-アラニンジ酢酸塩、アスパラギン酸ジ酢酸塩、メチルグリシンジ酢酸塩、イミノジコハク酸塩等のアミノカルボン酸塩;セリンジ酢酸塩、ヒドロキシイミノジコハク酸塩、ヒドロキシエチルエチレンジアミン三酢酸塩、ジヒドロキシエチルグリシン塩等のヒドロキシアミノカルボン酸塩等のアミノカルボン酸型金属イオン封鎖剤;1-ヒドロキシエタン-1,1-ジホスホン酸、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、ヒドロキシエタン-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、ヒドロキシメタンホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ニトリロトリ(メチレンホスホン酸)、2-ヒドロキシエチルイミノジ(メチレンホスホン酸)、ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等の有機ホスホン酸誘導体またはその塩;ジグリコール酸、酒石酸、シュウ酸、グルコン酸等の有機酸類またはその塩等が挙げられる。金属イオン封鎖剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 上記の中でも、洗浄効果の点で、アミノカルボン酸塩が好ましく、メチルグリシンジ酢酸塩がより好ましい。
 特に、アミノカルボン酸塩型の金属イオン封鎖剤と上記の金属塩とを併用することが、(b)成分の活性がより高められる点で好ましい。
[香料]
 香料としては、従来公知の香料が用いられ、例えば香料成分、溶剤、香料安定化剤等からなる混合物(香料組成物)が使用できる。かかる香料としては、例えば、特開2002-146399号公報、特開2003-89800号公報に記載の香料等を用いることができる。香料は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 粒状洗剤組成物中の香料の含有量は、粒状洗剤組成物の総質量に対し、0.01~0.5質量%が好ましい。
[色素]
 色素としては、染料、顔料のいずれも使用できる。保存安定性の点から、顔料が好ましく、酸化物等、耐酸化性を有する化合物が特に好ましい。かかる化合物としては、酸化チタン、酸化鉄、銅フタロシアニン、コバルトフタロシアニン、群青、紺青、シアニンブルー、シアニングリーン等が挙げられる。色素は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
[蛍光増白剤]
 蛍光増白剤としては、例えば、4,4’-ビス-(2-スルホスチリル)-ビフェニル塩、4,4’-ビス-(4-クロロ-3-スルホスチリル)-ビフェニル塩、2-(スチリルフェニル)ナフトチアゾール誘導体、4,4’-ビス(トリアゾール-2-イル)スチルベン誘導体、ビス-(トリアジニルアミノスチルベン)ジスルホン酸誘導体等の蛍光増白剤が挙げられる。蛍光増白剤としては、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
粒状洗剤組成物中の蛍光増白剤の含有量は、粒状洗剤組成物の総質量に対し、0.01~0.5質量%が好ましい。
[酵素]
 酵素としては、酵素の反応性から分類すると、ハイドロラーゼ類、オキシドレダクターゼ類、リアーゼ類、トランスフェラーゼ類、およびイソメラーゼ類が挙げられ、本発明においてはいずれも適用できる。中でも、プロテアーゼ、エステラーゼ、リパーゼ、ヌクレアーゼ、セルラーゼ、アミラーゼ、ペクチナーゼ等が好ましい。酵素は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
粒状洗剤組成物中の酵素の含有量は、粒状洗剤組成物の総質量に対し、0.1~1.0質量%が好ましい。
[酵素安定剤]
 酵素安定剤としては、例えば、カルシウム塩、マグネシウム塩、ポリオール、蟻酸、ホウ素化合物等を配合することができる。酵素安定剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
[再汚染防止剤]
 再汚染防止剤としては、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体等が挙げられる。再汚染防止剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
粒状洗剤組成物中の再汚染防止剤の含有量は、粒状洗剤組成物の総質量に対し、0.1~2.0質量%が好ましい。
[ケーキング防止剤]
 ケーキング防止剤としては、例えば、パラトルエンスルホン酸塩、キシレンスルホン酸塩、酢酸塩、スルホコハク酸塩、タルク、微粉末シリカ、粘土、酸化マグネシウム等が挙げられる。ケーキング防止剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
[pH調整剤]
 pH調整剤としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン、水酸化ナトリウム、水酸化カリウム等のアルカリ剤、リン酸2水素カリウム等のアルカリ金属リン酸2水素塩、乳酸、コハク酸、リンゴ酸、グルコン酸またはそれらのポリカルボン酸、炭酸、硫酸、塩酸等の酸性剤等が挙げられる。pH調整剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 粒状洗浄剤組成物は、洗浄力を高める観点から、前記粒状洗浄剤組成物の1質量%水溶液の20℃におけるpHが8以上であることが好ましく、9~11であることがより好ましい。
なお、前記pHの値は、特に断りのない限り、20℃における値で定義する。すなわち、本明細書に規定した範囲外のpH値であっても、20℃におけるpH値に補正したとき本明細書に規定した範囲のpH値であれば、それらは本発明の範囲に含まれる。
[バインダー]
 バインダーとしては、従来公知のバインダーを用いことができ、例えば、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。
<粒状洗剤組成物を構成する粒子>
 粒状洗剤組成物は、それぞれ独立して存在する複数の粒子の集合体である。
 本発明の粒状洗剤組成物には、少なくとも下記の粒子(X)と粒子(Y)とが異なる粒子として含まれる。必要に応じて、粒子(X)および(Y)以外の他の粒子がさらに含まれてもよい。
≪粒子(X)≫
 粒子(X)は、(a)成分を含み(b)成分を含まない粒子である。
 粒子(X)に含まれる(a)成分としては、前述した各種界面活性剤が使用でき、洗浄力を高める観点から、アニオン界面活性剤、およびノニオン界面活性剤が好ましく、アニオン界面活性剤がより好ましい。
 粒子(X)に含まれる(a)成分は1種でも2種以上でもよい。
 粒子(X)中の(a)成分の含有量は、その種類等を勘案して決定され、例えば、粒子(X)の総質量に対し、5~40質量%が好ましく、5~30質量%がより好ましく、5~15質量%が特に好ましい。
 粒子(X)には、さらに(c)成分の一部が含まれる。
 粒子(X)に含まれる(c)成分の少なくとも一部はゼオライト(c1)である。すなわち、粒子(X)は、(c)成分の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子を含み、前記噴霧乾燥粒子に含まれる(c)成分はゼオライト(c1)である。粒子(X)には、(c)成分のうち、ゼオライト(c1)の全量が含まれる。粒子(X)は、ゼオライト(c2)の一部または全部をさらに含んでもよいし、含まなくてもよい。
 即ち、粒子(X)の1つの側面は、(a)成分と、(c)成分の一部を含み、かつ(b)成分を含まない粒子であり、前記粒子(X)に含まれる前記(c)成分は、ゼオライト(c1)の全量を含み、さらにゼオライト(c2)の一部または全部を含んでもよい。
 本発明の効果の点では、ゼオライト(c2)の少なくとも一部が粒子(X)の表面に存在することが好ましい。粒子(X)の表面にゼオライト(c2)が存在することで、(b)成分の安定性、および粒状洗剤組成物の流動性が向上する。
 表面にゼオライト(c2)が存在する粒子(X)は、例えば粒子(X)を破砕造粒により製造する際に、粉砕助剤としてゼオライト(c2)を使用することにより得られる。粉砕助剤として用いたゼオライト(c2)の大部分は造粒粒子の表面を被覆する。
 粒子(X)中の(c)成分の含有量は、粒状洗剤組成物中の粒子(X)の含有量等を勘案して決定され特に限定されないが、例えば、粒子(X)の総質量に対し、3~15質量%が好ましく、5~15質量%がより好ましい。粒子(X)中の(c)成分の含有量が3質量%以上であると、(b)成分安定性や粒子(X)自身の流動性が向上し、15質量%以下であると、(b)成分安定性が向上する。
 粒子(X)は、(a)~(c)成分以外の他の成分(任意成分)をさらに含有してもよい。前記他の成分としては、任意成分として前記で挙げた成分のなかから適宜選択できる。
 粒子(X)は、他の成分として、他の洗浄性ビルダーを含有することが好ましい。他の洗浄性ビルダーは、(c)成分以外の他の無機ビルダーでも有機ビルダーでもよく、これらを併用してもよい。
 粒子(X)中の他の洗浄性ビルダーの含有量は、その種類等を勘案して決定され、例えば、粒子(X)の総質量に対し、10~70質量%が好ましく、30~60質量%がより好ましい。上記下限値以上であると、他の洗浄ビルダーの配合効果が充分に得られる。上記上限値を超えると、界面活性剤の含有量が少なくなり洗浄力が低下するおそれがある。
 他の洗浄性ビルダーのうち、有機ビルダーの含有量は、その種類等を勘案して決定され、例えば、粒子(X)の総質量に対し、1~10質量%が好ましく、3~5質量%がより好ましい。
 粒子(X)は、スラリーを噴霧乾燥させてなる噴霧乾燥粒子を含む。前記噴霧乾燥粒子には、粒子(X)を構成する成分(即ち、(a)成分、(c)成分、および任意成分)のうち、少なくともゼオライト(c1)が含まれる。
 粒子(X)としては、(X1):粒子(X)を構成する原料の一部を含むスラリーを噴霧乾燥して得られた噴霧乾燥粒子を、残りの原料と共に造粒してなる造粒粒子、(X2):粒子(X)を構成する成分全てを含むスラリーを噴霧乾燥して得られた噴霧乾燥粒子、等が挙げられる。
 これらのうち、粒子(X)としては、粒子が高嵩密度化し、粉立ちが少なく取扱いが容易になる点、耐熱性の低い成分を噴霧乾燥せず、後で配合することで前記成分を安定に配合できる点等から、(X1)の造粒粒子が好ましい。
 粒子(X)は、従来公知の製造方法により製造できる。粒子(X)の製造方法については後で詳細に説明する。
 粒子(X)の嵩密度は、特に限定されないが、0.7g/cm以上であり、0.7~1.5g/cmが好ましく、0.7~1.2g/cmがより好ましい。0.7g/cm以上であると粉立ちが少なく取扱いが容易であり、1.5g/cm以下であれば水への溶解性が良好である。
 本明細書における「嵩密度」とは、JIS K3362に準拠して測定される値を意味する。
 粒子(X)の平均粒子径は、特に限定されないが、200~1500μmが好ましく、250~1000μmがより好ましく、300~700μmがさらに好ましい。200μm以上であると、粒状洗剤組成物の固化が生じにくく、1500μm以下であると水への溶解性が良好である。
 なお、本明細書における「平均粒子径」とは、日本薬局方に記載された粒度の試験に準じた篩い分けによる粒度分布から算出される値を意味する。
 すなわち、平均粒子径は、目開き1680μm、1410μm、1190μm、1000μm、710μm、500μm、350μm、250μm、および149μmの9段の篩と、受け皿とを用いた分級操作により測定できる。分級操作は、受け皿に、目開きの小さな篩から目開きの大きな篩の順に積み重ね、最上部の1680μmの篩の上から100g/回のサンプルを入れ、蓋をしてロータップ型篩い振盪機(株式会社飯田製作所製、タッピング:156回/分間、ローリング:290回/分間)に取り付け、10分間振動させた後、それぞれの篩および受け皿上に残留したサンプルを篩目ごとに回収して、サンプルの質量を測定する。そして、受け皿と各篩との質量頻度を積算していくと、積算の質量頻度が50%以上となる最初の篩の目開きを「aμm」とし、aμmよりも一段大きい篩の目開きを「bμm」とし、受け皿からaμmの篩までの質量頻度の積算値を「c%」、また、aμmの篩上の質量頻度を「d%」として、下記式(I)により平均粒子(50質量%粒径)を求め、サンプルの平均粒子径とする。
Figure JPOXMLDOC01-appb-M000001
 粒子(X)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の一実施態様である粒状洗剤組成物中の粒子(X)の含有量は、粒状洗剤組成物の総質量に対し、50~90質量%が好ましく、50~80質量%がより好ましい。90質量%を超えると、粒状洗剤組成物中のゼオライト(c2)の量が不足し、(b)成分の安定性向上効果が不充分になる懸念がある。50質量%未満であると、粒状洗剤組成物の洗浄力が不充分になる懸念がある。
<粒子(X)/ゼオライト(c2)>
 本発明の一実施態様である粒状洗剤組成物において、この粒状洗剤組成物中に含まれるゼオライト(c2)に対する粒子(X)の質量比(即ち、粒子(X)/ゼオライト(c2))は、5~25であることが好ましく、5~15であることがより好ましい。粒子(X)/ゼオライト(c2)が25以下であると、(b)成分の安定性や粒状洗剤組成物の流動性の向上効果が充分に得られる。粒子(X)/ゼオライト(c2)が5未満になると、(b)成分の安定性が低下する懸念がある。
≪粒子(Y)≫
 粒子(Y)は、(b)成分を含む粒子である。粒子(Y)は、(a)成分を含んでいてもよい。
 粒子(Y)としては、過炭酸ナトリウム等の過炭酸塩の粒子、過ホウ酸ナトリウム、過ホウ酸ナトリウム・3水和物等の過ホウ酸塩の粒子等が挙げられる。中でも、使用時の溶解性や貯蔵時の安定性の点から、過炭酸ナトリウム粒子が好ましく、被覆が施された過炭酸ナトリウム粒子(即ち、被覆過炭酸ナトリウム粒子)がより好ましい。この被覆過炭酸ナトリウム粒子は、表面が滑らかであり、被覆が施されていない過炭酸ナトリウム粒子に比べて、流動性に優れる。
 被覆過炭酸ナトリウム粒子としては、ケイ酸、ケイ酸塩およびホウ酸、ならびにホウ酸塩からなる群から選択される少なくとも1つの成分で被覆された過炭酸ナトリウム粒子や、LAS等の界面活性剤と無機化合物とを組み合わせて被覆された過炭酸ナトリウム粒子が好ましい。具体的には、特許第2918991号公報等に記載されているように、ケイ酸、ケイ酸アルカリ金属塩水溶液およびホウ酸、ならびにホウ酸アルカリ金属塩水溶液等からなる群から選択される少なくとも1つの成分を噴霧して被覆した過炭酸ナトリウム粒子;特許第2871298号公報等の芳香族炭化水素スルホン酸、平均粒子径が10~500μmである珪酸アルカリ塩、炭酸塩、重炭酸塩および硫酸塩からなる群から選択される少なくとも1つの成分で被覆した過炭酸ナトリウム粒子;パラフィンやワックス等の水不溶性有機化合物で被覆した過炭酸ナトリウム粒子等が挙げられる。非危険物化のために、炭酸ナトリウムや炭酸水素ナトリウム等、種々の無機物等と粉体ブレンドして用いてもよい。
 さらに、粒子(Y)としては、過炭酸ナトリウムにケイ酸およびホウ酸ナトリウムでコーティングした過炭酸ナトリウム粒子、芳香族炭化水素スルホン酸および珪酸アルカリ塩、炭酸塩、重炭酸塩および硫酸塩で被覆した過炭酸ナトリウム粒子がより好ましい。
 被覆過炭酸ナトリウム粒子としては、特開昭59-196399号公報、USP4526698号(何れも過炭酸ナトリウムをホウ酸塩で被覆)の他に特開平4-31498号公報、特開平6-40709号公報、特開平7-118003号公報、特許第2871298号公報に掲載されている方法により製造された被覆過炭酸ナトリウム粒子が挙げられる。
 粒子(Y)の嵩密度は、特に限定されないが、0.7g/cm以上が好ましく、0.7~1.5g/cmが好ましい。0.7g/cm以上であると粉立ちが少なく取扱いが容易であり、1.5g/cm以下であれば水への溶解性が良好である。
 粒子(Y)の平均粒子径は、特に限定されないが、200~1000μmが好ましく、500~1000μmがより好ましい。200μm以上であると、長期保管時の安定性や流動性が良好で、1000μm以下であると水への溶解性が良好である。
 また、溶解性および安定性の向上のため、粒子径125μm未満の粒子および粒子径1400μm超の粒子は、粒子(Y)の総質量に対して、10質量%以下であることが好ましく、含まれないことがより好ましい。
 粒子(Y)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の一実施態様である粒状洗剤組成物中の粒子(Y)の含有量は、粒状洗剤組成物の総質量に対し、3~20質量%が好ましく、3~15質量%がより好ましい。3質量%以上であると、漂白、殺菌、染み汚れ等に対する洗浄力の向上等の効果が充分に得られ、流動性も良好である。20質量%を超えると、他の洗浄成分の量が少なくなって洗浄力が低下するおそれがある。
≪他の粒子≫
 本発明の一実施態様である粒状洗剤組成物は、粒子(X)と粒子(Y)とからなる粒状洗剤組成物でもよく、必要に応じて、粒子(X)および(Y)以外の他の粒子をさらに含んでもよい。
 前記他の粒子としては、例えば、ゼオライト(c2)の粒子、前述した任意成分(例えば無機ビルダー)の粒子、それらのうち少なくとも2種の成分を含む造粒粒子、その他活性剤含有粒子等が挙げられる。
 本発明の一実施態様である粒状洗剤組成物は、後述する本発明の一実施態様である粒状洗剤組成物の製造方法により製造できる。
 本発明の一実施態様である粒状洗剤組成物の嵩密度は、特に限定されないが、0.7g/cm以上が好ましく、0.7~1.6g/cmが好ましく、0.7~1.2g/cmがより好ましい。0.7g/cm以上であると粉立ちが少なく取扱いが容易であり、1.6g/cm以下であれば水への溶解性が良好である。
 本発明の一実施態様である粒状洗剤組成物の平均粒子径は、特に限定されないが、200~1200μmが好ましく、250~900μmがより好ましく、300~700μmがさらに好ましい。200μm以上であると、使用時の粉立ちが抑制され、1200μm以下であると水への溶解性に優れる。
 本発明の一実施態様である粒状洗剤組成物中の水分量は、粒状洗剤組成物の総質量に対して、3~8質量%が好ましく、3~7質量%がより好ましい。8質量%を超えると、(b)成分の安定性の低下、粒状洗剤組成物の流動性の低下等の懸念がある。3質量%未満になると、水への溶解性の低下、発塵性の悪化等の懸念がある。
 「粒状洗剤組成物の水分量」とは、赤外線水分計(例えば株式会社ケツト科学研究所製Kett水分計)により試料表面温度130℃、20分間の条件で測定される値を意味する。
(粒状洗剤組成物の製造方法)
 本発明の第二の態様である粒状洗剤組成物の製造方法の1つの側面は、(a)成分と(b)成分と(c)成分とを含有する粒状洗剤組成物の製造方法であって、
 前記(c)成分の一部を含むスラリーを噴霧乾燥させて噴霧乾燥粒子を得て、前記噴霧乾燥粒子から、粒子(X)を得る工程(以下、粒子(X)製造工程ともいう。)と、
 前記粒子(Y)と前記粒子(X)とを混合する工程(以下、混合工程ともいう。)と、を有し、
 前記(c)成分の使用量が、製造される前記粒状洗剤組成物の総質量に対して5~15質量%となる量であり、
 前記(c)成分のうち、前記スラリーに配合されるゼオライト(c1)の、前記ゼオライト(c1)以外のゼオライト(c2)に対する質量比(c1/c2)が0超、0.7以下である粒状洗剤組成物の製造方法である。
 本発明の第二の態様である粒状洗剤組成物の製造方法の別の側面は、
 界面活性剤(a)と無機過酸化物(b)とゼオライト(c)とを含有する粒状洗剤組成物の製造方法であって、
前記製造方法は、粒子(X)を得る工程と、前記無機過酸化物(b)を含む粒子(Y)と前記粒子(X)とを混合する混合工程と、を有し、
 前記粒子(X)を得る工程は、
 前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させて噴霧乾燥粒子を得る工程と、得られた前記噴霧乾燥粒子から、前記界面活性剤(a)を含むが前記無機過酸化物(b)を含まない粒子(X)を得る工程と、を含み、
前記ゼオライト(c)の使用量が、製造される前記粒状洗剤組成物の総質量に対して5~15質量%となる量であり、
前記ゼオライト(c)は、前記スラリーに配合されるゼオライト(c1)と前記ゼオライト(c1)以外のゼオライト(c2)とからなり、前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が、0超、0.7以下である、粒状洗剤組成物の製造方法である。
 (a)~(c)成分、粒子(X)および粒子(Y)についての説明は前記のとおりである。
(a)成分の使用量は、製造する粒状洗剤組成物の総質量に対して、5~15質量%となる量であることが好ましい。
(b)成分の使用量は、製造する粒状洗剤組成物の総質量に対して、3~20質量%となる量であることが好ましい。
(c)の使用量は、製造される前記粒状洗剤組成物の総質量に対して5~15質量%となる量であることが好ましい。
任意成分の使用量は、製造する粒状洗剤組成物の総質量に対して、10~40質量%となる量であることが好ましい。
<粒子(X)製造工程>
 粒子(X)は、従来公知の製造方法により製造できる。
 例えば、粒子(X)が前記(X1)の造粒粒子の場合、粒子(X)を構成する原料(即ち、(a)成分、(c)成分、および任意成分)の一部を、同時に、または順次に、水に分散・溶解してスラリーを調製し(スラリー調製工程)、前記スラリーを噴霧乾燥機により乾燥し(噴霧乾燥工程)、得られた噴霧乾燥粒子を前記スラリーの調整に用いなかった残りの原料と共に造粒する(造粒工程)。その後、必要に応じて造粒粒子を篩い分けて、所望する平均粒子径、および粒度分布に調整してもよい(篩分工程)。
 粒子(X)が前記(X2)の噴霧乾燥粒子の場合、スラリー調製工程で、粒子(X)を構成する原料全てを水に分散・溶解してスラリーを調製し、前記スラリーを用いて噴霧乾燥工程を行う。これにより得られた噴霧乾燥粒子を粒子(X)として用いることができる。
 即ち、粒子(X)の製造方法の1つの側面は、粒子(X)を構成する原料(即ち(a)成分、(c)成分、および任意成分)の一部を水に、同時に又は順次に、分散・溶解してスラリーを調製するスラリー調製工程と;前記スラリーを噴霧乾燥する噴霧乾燥工程と;前記噴霧乾燥して得られた噴霧乾燥粒子を、前記スラリー調整工程に用いなかった残りの原料と共に造粒する造粒工程と;所望により、前記造粒した造粒粒子を篩い分けて、所望する平均粒子径および粒度分布に調整する篩分工程と、を含む。
 また、粒子(X)の製造方法の別の側面は、粒子(X)を構成する原料全てを水に分散・溶解してスラリーを調製するスラリー調整工程と;前記スラリーを用いて噴霧乾燥する噴霧乾燥工程と、を含む。
 以下、粒子(X)が前記(X1)の造粒粒子の場合の、粒子(X)の製造方法をより具体的に説明する。
 ≪スラリー調製工程≫
 スラリーには、(c)成分の一部が少なくとも配合される。スラリーに配合された(c)成分がゼオライト(c1)となる。
 スラリーへの配合前の(c)成分の水分量(即ち、粒状洗剤組成物を製造する際の(c)成分中の水分量)は、5%以上、10%以下が好ましい。水分量が10%以下であると、得られる粒状洗剤組成物における(b)成分の安定性が良好である。
 「(c)成分の水分量」とは、赤外線水分計(例えば株式会社ケツト科学研究所製Kett水分計)により試料表面温度130℃、20分間の条件で測定される値を意味する。
 また、調整後のスラリーの水分量は、スラリーの総質量に対して、30~50質量%が好ましい。
 (a)成分および任意成分はそれぞれ、全量がスラリーに配合されてもよく;その後の造粒工程において噴霧乾燥粒子と共に配合されてもよく;一部がスラリーに配合され、その後の造粒工程において、スラリーに配合されなかった残りの成分が噴霧乾燥粒子と共に配合されてもよい。耐熱性の低い成分は、後の造粒工程で噴霧乾燥粒子と共に配合されることが好ましい。 
 ≪噴霧乾燥工程≫
 スラリーの噴霧乾燥時においては、噴霧乾燥機の噴霧乾燥塔内に高温ガスが供給される。この高温ガスは、例えば噴霧乾燥塔の下部より供給され、噴霧乾燥塔の塔頂より排出される。
 噴霧乾燥塔内に供給される高温ガスの温度としては、170~300℃であることが好ましく、200~280℃であることがより好ましい。前記範囲であれば、スラリーを充分に乾燥することができ、所望とする水分量の噴霧乾燥粒子を容易に得ることができる。
 噴霧乾燥塔より排出されるガスの温度は、通常、70~125℃であることが好ましく、70~115℃であることがより好ましい。
 噴霧乾燥工程で得られる噴霧乾燥粒子中の水分量は、噴霧乾燥粒子の総質量に対して、2~7質量%が好ましく、3~7質量%がより好ましい。
噴霧乾燥粒子中の水分量が7質量%以下であると、噴霧乾燥粒子の流動性が良好である。噴霧乾燥粒子中の水分量が2%未満になると水への溶解性の低下、発塵の懸念がある。
 「噴霧乾燥粒子中の水分量」とは、赤外線水分計(例えば株式会社ケツト科学研究所製Kett水分計)により試料表面温度130℃、20分間の条件で測定される値を意味する。
 ≪造粒工程≫
 造粒工程では、得られた噴霧乾燥粒子を、スラリー調整工程に用いなかった残りの原料(即ち、粒子(X)を構成する原料のうちスラリーに配合されなかった原料。)と共に造粒する。
 造粒工程は、粉砕造粒、攪拌造粒、転動造粒、流動層造粒等の従来公知の方法を用いて実施できる。例えば、粉砕造粒の場合、噴霧乾燥粒子と前記スラリー調整工程に用いなかった残りの原料とを捏和し、これを押し出しつつ切断してペレット状の成形物を得、前記成形物を粉砕することにより造粒粒子(粒子(X))を得ることができる。
 即ち、造粒工程の1つの側面は、噴霧乾燥粒子とスラリー調整工程に用いなかった残りの原料とを捏和すること、前記捏和した捏和物を押し出しつつ切断してペレット状の成形物を得ること、および前記成形物を粉砕することにより造粒粒子(粒子(X))を得ること、を含む。
 このとき、前記スラリー調整工程に用いなかった残りの原料が、(c)成分を含んでもよい。前記スラリー調整工程に用いなかった残りの原料に配合された(c)成分は、ゼオライト(c2)に相当する。
 造粒工程では、造粒助剤として(c)成分を使用してもよい。例えば粉砕造粒の場合、粉砕時に、(c)成分の一部を粉砕助剤として用いてもよい。造粒助剤として用いられた(c)成分は、一部造粒粒子内に分布することもあるが、その多くは造粒粒子の表面を被覆する。造粒助剤として用いられた(c)成分はゼオライト(c2)に相当する。
 造粒工程にて造粒助剤として用いられる(c)成分中の水分量は、(C)成分の総質量に対して、5質量%以上、10質量%以下が好ましい。
水分量が10質量%以下であると、得られる粒状洗剤組成物における(b)成分の安定性が良好である。
 また、造粒助剤として用いられる(c)成分中の水分量は、造粒粒子中の水分量よりも少ないことが好ましい。揮発する水分量が相対的に多い造粒粒子の表面が水分量の少ない(c)成分で被覆されることで、得られる粒状洗剤組成物における(b)成分の安定性がさらに向上する。
 ≪篩分工程≫
 篩分工程としては、例えば、複数種の目開きの篩を用意し、目開きの小さな篩から目開きの大きな篩の順に積み重ねて篩ユニットとし、前記篩ユニットの上部に造粒粒子を投入し、篩ユニットを振動して篩い分ける方法が挙げられる。各篩上に残存した造粒粒子を篩毎に回収し、回収した造粒粒子を混合することにより、所望する平均粒子径または粒度分布の造粒粒子を得ることができる。
 得られた粒子(X)は次の混合工程に供される。
 粒子(X)中の水分量は、粒子(X)の総質量に対して、4~9質量%が好ましく、5~8質量%がより好ましい。粒子(X)の水分量が9質量%を超えると、粒子(Y)との混合後に、(b)成分の安定性の低下、流動性の低下等の懸念がある。粒子(X)の水分量が4質量%未満になると、水への溶解性の低下、発塵性の悪化等の懸念がある。
 「粒子(X)中の水分量」とは、赤外線水分計(例えば株式会社ケツト科学研究所製Kett水分計)により試料表面温度130℃、20分間の条件で測定される値を意味する。
<混合工程>
 混合工程では、粒子(X)製造工程で得られた粒子(X)と、粒子(Y)と、必要に応じて他の粒子と、を混合する。
 粒子(Y)、および他の粒子としてはそれぞれ、市販の粒子を用いてもよく、公知の製造方法により製造した粒子を用いてもよい。
 各粒子の混合方法は、少なくとも粒子(X)および粒子(Y)がそれぞれ独立した粒子として存在するように混合できる方法であればよく、例えば、従来公知の粉体混合装置(例えば、水平円筒型転動混合機やV型ミキサー)に粒子(X)と粒子(Y)とを投入し、これを混合する方法が挙げられる。粒子(X)、粒子(Y)の投入順序は、特に限定されず、粒子(X)、粒子(Y)を混合装置に予め仕込み、これを混合してもよいし、粒子(X)、粒子(Y)を順次、混合装置に投入して混合してもよい。 加えて、他の粒子を配合する場合には、前記他の粒子を粒子(X)、粒子(Y)のいずれかと予め混合しておいてもよいし、粒子(X)、粒子(Y)と共に他の粒子を混合装置に予め仕込み、これを混合してもよい。例えば、他の粒子としてゼオライト(c2)を混合する場合、最初に粒子(X)と粒子(Y)とを混合し、最後にゼオライト(c2)を混合しても、最初に粒子(X)とゼオライト(c2)とを混合し、最後に粒子(Y)を混合してもよい。ただし、最初に粒子(Y)とゼオライト(c2)とを混合し、最後に粒子(X)を混合することは、(b)成分の安定性の低下に繋がり好ましくない。
 即ち、混合工程の1つの側面は、粒子(X)の製造工程で得られた粒子(X)と、粒子(Y)と、所望により他の粒子と、を混合することを含み、
 前記混合は、前記他の粒子を、前記粒子(X)または前記粒子(Y)と予め混合することを含んでもよく;
前記粒子(X)、前記粒子(Y)および前記他の粒子を共に混合することを含んでいてもよい。
また、前記他の粒子がゼオライト(c2)である場合、前記混合は、前記粒子(X)と前記粒子(Y)とを混合した後にゼオライト(c2)を混合することを含んでもよく;
前記粒子(X)とゼオライト(c2)とを混合した後に、前記粒子(Y)を混合することを含んでもよく;
前記粒子(X)とゼオライト(c2)とを混合した後に、一定条件(例えば、20℃・相対湿度50%RHの環境で5分間以上、30分間以下)に放置し、その後、前記粒子(Y)を混合することを含んでもよい。
 また、粒子(X)および粒子(Y)がそれぞれ独立した粒子として存在し得る限り、粒子(X)、粒子(Y)を混合した後に、(a)成分溶液、香料等の液状成分を噴霧する等して添加し、混合してもよい。また、ベルトコンベア上で各粒子を定量フィードする方法等も利用できる。
 (b)成分の安定性の観点から、混合工程では、最初に粒子(X)とゼオライト(c2)とを混合し、最後に粒子(Y)を混合することが好ましい。特に、粒子(X)とゼオライト(c2)とを混合してから、一定条件(例えば、20℃・相対湿度50%RHの環境で5分間以上、30分間以下)に放置した後に粒子(Y)を混合することが、(b)成分の安定性向上効果が大きく好ましい。
 上記のようにして粒状洗剤組成物が得られる。
 本発明の一実施態様である粒状洗剤組成物の製造方法においては、噴霧乾燥粒子を調製した後の工程で添加する(c)成分の量、つまりゼオライト(c2)の量は、粒子(X)/ゼオライト(c2)の値が5~25になる量とすることが好ましい。粒子(X)/ゼオライト(c2)の値は、上述したように、5~15であることがより好ましい。
 粒子(X)を、前述するスラリー調製工程、噴霧乾燥工程、造粒工程を経て製造し、その後、混合工程を経て粒状洗剤組成物を製造する場合、「噴霧乾燥粒子を調製した後の工程」とは、造粒工程以降の工程(造粒工程、混合工程等)を意味する。
 本発明の一実施態様である粒状洗剤組成物の製造方法においては、(b)成分安定性向上効果に優れることから、ゼオライト(c2)の少なくとも一部は造粒工程で添加されることが好ましい。
 造粒工程では、50℃以上、65℃以下にした多量の(a)成分水溶液(即ち、(a)成分を水に溶解した水溶液)を、噴霧乾燥粒子と混練したり、噴霧乾燥粒子に対して含浸させたりすることで、前記噴霧乾燥粒子の嵩密度を大きく変化させることが行われる。この工程では水分量が増加し、造粒工程で得られる粒子の自由水が増加する。また、50℃以上の(a)成分水溶液を多量(例えば、7質量%以上)に用いているため、前記噴霧乾燥粒子の温度が高まる。そのために、自由水が捕捉されやすい状態にある。この工程でゼオライト(c2)を前記噴霧乾燥粒子に添加しておくと、自由水を捕捉して粒上洗剤組成物における(b)成分安定性を向上させやすい。
 混合工程では、造粒工程と同様に50℃以上にした(a)成分水溶液や香料等の液体成分を添加することはあるが、その添加量は少なく(例えば、5質量%未満)、混合工程で増加する自由水の量は非常に少ない。またこのときの温度も高い温度ではない。そのため、もともと自由水の捕捉力は強く、混合工程でのゼオライト(c2)の添加効果は、造粒工程に比べて小さい。
 本発明の一実施態様である粒状洗剤組成物の製造方法においては、(b)成分の安定性の点から、粒子(X)中の水分量のうち、噴霧乾燥粒子を調製した後の工程で添加された水分に由来する水分量を、噴霧乾燥粒子に由来する水分量よりも少なくすることが好ましい。
 噴霧乾燥工程では、ゼオライトに含まれる水分のうち、揮発しにくい結晶水以外の水分が揮発する。そのため、製造直後の噴霧乾燥粒子中のゼオライト(c1)に含まれる水分(即ち、結晶水)は揮発しにくく、(b)成分の安定性への影響は少ない。しかし、噴霧乾燥粒子を調製した後の工程で噴霧乾燥粒子に添加される水分(即ち、界面活性剤溶液中に含まれる水分、捏和の際に必要となる水分等)は、揮発しやすく、(b)成分の安定性を悪化させやすい。噴霧乾燥粒子を調製した後の工程で添加された水分に由来する水分量(即ち、噴霧乾燥粒子に由来しない水分量)を、噴霧乾燥粒子に由来する水分量よりも少なくすることで、(b)成分の安定性がより優れる。
 噴霧乾燥粒子を調製した後の工程で添加された水分に由来する水分量は、「粒子(X)全体での水分量(質量%)」と、「噴霧乾燥により得られた直後の噴霧乾燥粒子中の水分量(質量%)×粒子(X)中の噴霧乾燥粒子の割合(質量%)/100の値」との差として求められる。
(粒状洗剤組成物の使用方法)
 本発明の第一の態様である粒状洗剤組成物(即ち、第二の態様の製造方法により得られた粒状洗剤組成物)は、被洗物の洗濯に用いることができる。
 粒状洗剤組成物を用いた被洗物の洗濯方法としては、例えば、粒状洗剤組成物の濃度が、洗浄液の総質量に対して、0.02~2質量%である洗浄液を用い、洗濯機で被洗物を洗浄したり、洗浄液に被洗物を浸け置く等の方法等、従来公知の洗浄方法が挙げられる。
 被洗物としては、例えば、衣料、布帛、カーテン、シーツ等の繊維製品が挙げられる。
 即ち、粒状洗剤組成物の使用方法の1つの側面は、
洗濯機内に、洗浄液の総質量に対して、粒状洗剤組成物の濃度が0.02~2質量%である洗浄液を調整すること;前記洗浄液が調整された前記洗濯機内に被洗物を投入し、前記洗濯機により洗濯すること;前記洗浄液で洗濯された被洗物を水で濯ぐこと;および、所望により前記水で濯いだ被洗物を脱水すること、を含む。
 また、粒状洗剤組成物の使用方法の別の側面は、洗浄液の総質量に対して、粒状洗剤組成物の濃度が0.02~2質量%である洗浄液を調整すること;前記調整した洗浄液に被洗物を所望の時間浸け置くこと;前記浸け置いた被洗物を水で濯ぐこと;および、所望により前記水で濯いだ被洗物を脱水すること、を含む。
(作用効果)
 本発明の第一の態様である粒状洗剤組成物(第二の態様の製造方法により得られた粒状洗剤組成物)は、ゼオライト(c2)に対するゼオライト(c1)の質量比(c1/c2)を0超、0.7以下としたことで、(c)成分の併存下での(b)成分の保存安定性が従来よりも向上している。また、流動性も良好である。さらに、(a)~(c)成分を含有するため、被洗物を良好に洗浄できる。
 c1/c2を0.7以下とすることで(b)成分の安定性が向上する理由としては、(c)成分における水の吸着、および放出の動きが少なくなっていることが考えられる。つまり、噴霧乾燥工程を経るゼオライト(c1)は、高熱(例えば200℃以上)で乾燥されているため、吸着し得る水分量が多い。そのため、ゼオライト(c1)の割合が多い粒状洗剤組成物を高温保存した時に多くの水分が放出され、この水分によって(b)成分の安定性が低下する。一方、噴霧乾燥工程を経ないゼオライト(c2)は、ゼオライト(c1)に比べて吸着し得る水分量が少ないため、高温保存時に放出される水分量も少なく、上記のような(b)成分の安定性の低下を引き起こしにくい。そのため、ゼオライト(c2)の比率を高めることで、(b)成分への水分の影響が低減され、安定性が向上すると考えられる。
本発明のその他の態様としては、
界面活性剤(a)と無機過酸化物(b)とゼオライト(c)と、所望により任意成分と、を含有する粒状洗剤組成物であって、
 前記粒状洗剤組成物は、前記界面活性剤(a)と前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子とを含むが前記無機過酸化物(b)を含まない粒子(X)と、
前記無機過酸化物(b)を含む粒子(Y)と、を含有し;
前記粒状洗剤組成物の総質量に対して、
前記界面活性剤(a)の含有量が、5~30質量%であり、
前記無機過酸化物(b)の含有量が、3~20質量%であり、
前記ゼオライト(c)の含有量が、5~15質量%であり、、かつ
前記各成分の含有量の合計は100質量%を超えず、
前記ゼオライト(c)が、前記スラリーに配合されるゼオライト(c1)と前記ゼオライト(c1)以外のゼオライト(c2)とからなり、前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が、0超、0.7以下である粒状洗剤組成物、が挙げられる。
本発明のその他の態様としては、
界面活性剤(a)と無機過酸化物(b)とゼオライト(c)と、所望により任意成分と、を含有する粒状洗剤組成物であって、
 前記粒状洗剤組成物は、前記界面活性剤(a)と前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子とを含むが前記無機過酸化物(b)を含まない粒子(X)と、
前記無機過酸化物(b)を含む粒子(Y)と、を含有し;
前記粒状洗剤組成物の総質量に対して、
前記界面活性剤(a)の含有量が、7~11質量%であり、
前記無機過酸化物(b)の含有量が、7~15質量%であり、
前記ゼオライト(c)の含有量が、8~15質量%であり、かつ
前記各成分の含有量の合計は100質量%を超えず、
前記ゼオライト(c)が、前記スラリーに配合されるゼオライト(c1)と前記ゼオライト(c1)以外のゼオライト(c2)とからなり、前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が、0超、0.7以下である粒状洗剤組成物、が挙げられる。
本発明のその他の態様としては、
界面活性剤(a)と無機過酸化物(b)とゼオライト(c)と、所望により任意成分と、を含有する粒状洗剤組成物であって、
 前記粒状洗剤組成物は、前記界面活性剤(a)と前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子とを含むが前記無機過酸化物(b)を含まない粒子(X)と、
前記無機過酸化物(b)を含む粒子(Y)と、
所望により前記粒子(X)および前記粒子(Y)以外の他の粒子と、を含有し;
前記粒状洗剤組成物の総質量に対して、
前記界面活性剤(a)の含有量が、5~30質量%であり、
前記無機過酸化物(b)の含有量が、3~20質量%であり、
前記ゼオライト(c)の含有量が、5~15質量%であり、かつ
前記各成分の含有量の合計は100質量%を超えず、
前記粒状洗剤組成物の総質量に対して、
前記粒子(X)の含有量が、50~90質量%であり、
前記粒子(Y)の含有量が、3~20質量%であり、かつ、前記各粒子の含有量の合計は100質量%を超えず、
前記ゼオライト(c)が、前記スラリーに配合されるゼオライト(c1)と前記ゼオライト(c1)以外のゼオライト(c2)とからなり、前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が、0超、0.7以下である粒状洗剤組成物、が挙げられる。
本発明のその他の態様としては、
界面活性剤(a)と無機過酸化物(b)とゼオライト(c)と、所望により任意成分と、を含有する粒状洗剤組成物であって、
 前記粒状洗剤組成物は、前記界面活性剤(a)と前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子とを含むが前記無機過酸化物(b)を含まない粒子(X)と、
前記無機過酸化物(b)を含む粒子(Y)と、
所望により前記粒子(X)および前記粒子(Y)以外の他の粒子と、を含有し;
前記界面活性剤(a)は、アニオン界面活性剤およびノニオン界面活性剤からなる群から選択される少なくとも1つの成分であり、
前記無機過酸化物(b)は、過炭酸ナトリウム粒子、過ホウ酸ナトリウム粒子、および過ホウ酸ナトリウム・3水和物からなる群から選択される少なくとも1つの成分であり、
前記ゼオライト(c)は、A型ゼオライト、X型ゼオライト、Y型ゼオライト、およびP型ゼオライトからなる群から選択される少なくとも1つの成分であり、
前記任意成分は、無機ビルダー、有機ビルダー、蛍光増白剤、再汚染防止剤、金属塩、金属イオン封鎖剤、有機過酸前駆体、および酵素からなる群から選択される少なくとも1つの成分であり、
前記粒状洗剤組成物の総質量に対して、
前記界面活性剤(a)、前記無機過酸化物(b)、前記ゼオライト(c)の含有量、および所望により含有される前記任意成分の含有量、前記粒子(X)の含有量、前記粒子(Y)の含有量、および前記所望により含有される前記他の粒子の含有量が、前記と同様であり、
前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が前記と同様である粒状洗剤組成物、が挙げられる。
本発明のその他の態様としては、
界面活性剤(a)と無機過酸化物(b)とゼオライト(c)と、所望により任意成分と、を含有する粒状洗剤組成物であって、
 前記粒状洗剤組成物は、前記界面活性剤(a)と前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子とを含むが前記無機過酸化物(b)を含まない粒子(X)と、
前記無機過酸化物(b)を含む粒子(Y)と、
所望により前記粒子(X)および前記粒子(Y)以外の他の粒子と、を含有し;
前記界面活性剤(a)は、炭素数10~14の直鎖アルキルベンゼンスルホン酸のナトリウム塩およびエチレンオキシドの平均付加モル数が15であるポリオキシエチレンアルキル(炭素数12~14)エーテルからなる群から選択される少なくとも1つの成分であり、
前記無機過酸化物(b)は、過炭酸ナトリウム含有粒子であり、
前記ゼオライト(c)は、A型ゼオライトであり、
前記任意成分は、アクリル酸/無水マレイン酸共重合体ナトリウム塩、炭酸ナトリウム、炭酸カリウム、硫酸ナトリウム、4,4’-ビス-(2-スルホスチリル)-ビフェニル塩、カルボキシメチルセルロースナトリウム、硫酸亜鉛、チルグリシンジ酢酸3ナトリウム、クエン酸、4-ドデカノイルオキシベンゼンスルホン酸ナトリウム、重炭酸ナトリウム、および酵素からなる群から選択される少なくとも1つの成分であり、
前記粒状洗剤組成物の総質量に対して、
前記界面活性剤(a)、前記無機過酸化物(b)、前記ゼオライト(c)の含有量、および所望により含有される前記任意成分の含有量、前記粒子(X)の含有量、前記粒子(Y)の含有量、および前記所望により含有される前記他の粒子の含有量が、前記と同様であり、
前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が前記と同様である粒状洗剤組成物、が挙げられる。
本発明のその他の態様としては、
界面活性剤(a)と無機過酸化物(b)とゼオライト(c)と、所望により任意成分とを含有する粒状洗剤組成物の製造方法であって、
前記製造方法は、
 粒子(X)を得る工程と、
前記無機過酸化物(b)を含む粒子(Y)と、前記粒子(X)と、所望により前記粒子(X)および前記粒子(Y)以外の他の粒子と、を混合する混合工程と、を有し、
 前記粒子(X)を得る工程は、
前記(a)成分、前記(c)成分、および前記任意成分を含む前記粒子(X)を構成する原料の一部を水に、同時に又は順次に、分散・溶解してスラリーを調製するスラリー調製工程と、
前記スラリーを噴霧乾燥する噴霧乾燥工程と、
前記噴霧乾燥して得られた噴霧乾燥粒子を、前記スラリー調整工程に用いなかった前記粒子(X)を構成する原料の残りと共に造粒する造粒工程と;
前記造粒した造粒粒子を篩い分けて、所望する平均粒子径および粒度分布に調整する篩分工程と、を含み、
前記混合工程は、
前記粒子(X)と前記他の粒子とを混合した後に前記粒子(Y)を混合すること;前記粒子(X)、前記粒子(Y)および前記他の粒子を同時に混合すること;または、前記粒子(X)と前記他の粒子とを混合した後に、一定条件(例えば、20℃・相対湿度50%RHの環境で5分間以上)に放置し、その後、前記粒子(Y)をさらに混合することを含み、
前記ゼオライト(c)の使用量が、製造される前記粒状洗剤組成物の総質量に対して5~15質量%となる量であり、
前記ゼオライト(c)は、前記スラリーに配合されるゼオライト(c1)と前記ゼオライト(c1)以外のゼオライト(c2)とからなり、前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が、0超、0.7以下である、
粒状洗剤組成物の製造方法、が挙げられる。
 本発明について、実施例を示してさらに具体的に説明する。ただし本発明はこれらに限定されるものではない。
 以下の各例で使用した原料を以下に示す。
<粒子(Y)>
 PC剤:(商品名SPCC、JINKE社製、過炭酸ナトリウム含有粒子、嵩密度1.05g/cm、平均粒子径870μm)。
<ゼオライト>
 A型ゼオライト(タイシリケート社製、水分量4%)。
 赤外水分計を用いて、試料表面温度130℃、20分間後の測定値(重量減少量)をゼオライトの水分量とした。
<他の原料>
 LAS-Na:LAS-H(直鎖アルキル(炭素数10~14)ベンゼンスルホン酸、商品名=ライポンLH-200(純分96質量%)ライオン株式会社製)を濃度48質量%水酸化ナトリウム水溶液で中和したもの(表中の配合量は、LAS-Naとしての質量%を示す))。
 石鹸:炭素数12~18の脂肪酸ナトリウム(純分;67質量%、タイター;40~45℃、脂肪酸組成;C12=11.7質量%、C14=0.4質量%、C16=29.2質量%、C18F0(ステアリン酸)=0.7質量%、C18F1(オレイン酸)=56.8質量%、C18F2(リノール酸)=1.2質量%、分子量;289、ライオン株式会社製)。なお、上記における「C」は炭素数を示す。
 LMAO:LMAO-90(商品名、日本触媒製)[ポリオキシエチレン(EO15)アルキル(C12-14)エーテル]。なお、(EO15)はエチレンオキシドの平均付加モル数が15であることを示し、(C12-14)はアルキル基の炭素数が12~14であることを示す。
 MA剤:アクリル酸/無水マレイン酸共重合体ナトリウム塩、商品名=アクアリックTL-400、純分40質量%水溶液、日本触媒株式会社製。
 炭酸ナトリウム:商品名=粒灰、嵩密度=1.07g/cm、ソーダアッシュジャパン株式会社製。
 炭酸カリウム:商品名=炭酸カリウム(粉末)、嵩密度1.30g/cm、旭硝子株式会社製。
 硫酸ナトリウム:商品名=中性無水芒硝、嵩密度=1.52g/cm、四国化成工業株式会社製。
 蛍光増白剤:4,4’-ビス-(2-スルホスチリル)-ビフェニル塩、商品名=CBS-X、BASF社製。
 CMC:カルボキシメチルセルロースナトリウム、商品名=CMCダイセル1170、ダイセル化学工業社製。
 硫酸亜鉛:ZnSO・1HO(硫酸亜鉛1水和物、信陽株式会社製))。
 MGDA:メチルグリシンジ酢酸3ナトリウム、商品名=Trilon M Compactate(純分:86%)、BASF社製。
 クエン酸:商品名=液体クエン酸、扶桑化学工業(株)社製。
 OBS:4-ドデカノイルオキシベンゼンスルホン酸ナトリウム。OBSは、下記製造例1で合成した造粒物(OBS粒子)として配合した。
 重炭酸ナトリウム:商品名=SODIUM BICARBONATE FOOD GRADE COARSE GRANULAR、Penrice社製。
 酵素:エバラーゼ8T/セルクリーン4500T/ライペックス50T=5/3/2(質量比)の混合物、ノボザイムズ社製。
≪製造例1:OBS粒子の製造方法≫
 予め脱水処理した4-ヒドロキシベンゼンスルホン酸ナトリウム(関東化学株式会社製、試薬)3000g(15.3mol)をN,N-ジメチルホルムアミド(関東化学株式会社製、試薬)9000g中に分散し、スターラーで撹拌しながらラウリン酸クロライド(東京化成工業株式会社製、試薬)3347g(15.3mol)を50℃で30分間かけて滴下した。滴下終了から3時間後、N,N-ジメチルホルムアミドを減圧下(0.5~1mmHg(66.7~133.3Pa))、100℃で留去した。アセトン(関東化学株式会社製、試薬)で洗浄した後、水/アセトン(=1/1mol)溶媒中にて再結晶を行って精製し、4-ドデカノイルオキシベンゼンスルホン酸ナトリウムの結晶を得た。収率は90質量%であった。
 合成した4-ドデカノイルオキシベンゼンスルホン酸ナトリウム70質量部、PEG(ポリエチレングリコール#6000M(商品名)、ライオン株式会社製)20質量部、炭素数14のα-オレフィンスルホン酸ナトリウム粉末品(リポランPJ-400(商品名)、ライオン株式会社製)5質量部の割合で、合計5000gをエクストルード・オーミックスEM-6型(商品名、ホソカワミクロン株式会社製)に投入し、混練押出して、径が0.8mmφのヌードル状の押出品を得た。この押出品(60℃)と、A型ゼオライト粉末5質量部とをフィッツミルDKA-3型(商品名、ホソカワミクロン株式会社製)に供給し、粉砕して平均粒子径約700μmの造粒物(OBS粒子)を得た。
<実施例1~10、比較例1~3>
 以下の手順で粒状洗剤組成物を製造した。
≪1.噴霧乾燥粒子の製造≫
 表1に示す組成の噴霧乾燥粒子(A-1粒子~A-4粒子)を以下の手順で製造した。
表1に示す組成は、噴霧乾燥粒子の総質量に対する質量%である。
 撹拌装置を具備したジャケット付き混合槽に水を入れ、混合槽中の水の温度を60℃に調整した。これに、LAS-Naおよび石鹸を添加し、10分間撹拌した。続いてMA剤を添加した。さらに10分間撹拌した後、噴霧乾燥用のゼオライト(ゼオライト(c1))、炭酸ナトリウム、炭酸カリウムおよび硫酸アルカリ金属塩を添加した。さらに20分間撹拌して、噴霧乾燥用スラリーの総質量に対して、水分が38質量%の噴霧乾燥用スラリーを調製した後、向流式噴霧乾燥塔を用いて熱風温度280℃の条件で前記噴霧乾燥用スラリーを噴霧乾燥し、噴霧乾燥粒子を得た。
 得られた噴霧乾燥粒子について、赤外水分計を用いて、試料表面温度130℃、20分間後の重量減少量を測定し、その測定値を噴霧乾燥粒子中の水分量とした。
Figure JPOXMLDOC01-appb-T000002
≪2.粒子(X)の製造≫
 得られた噴霧乾燥粒子(A-1粒子~A-4粒子)を用いて、粒子(X)として下記の粒子(X-1-1粒子、X-1-2粒子、X-2粒子、X-3粒子、X-4粒子)を下記の手順で製造した。
 X-1-1粒子:A-1粒子とα-スルホ脂肪酸メチルエステルNa(以下「MES」という。)とLMAOと水とゼオライト(c2)とからなる造粒粒子(造粒粒子の総質量に対して、水分量7質量%)。
 X-1-2粒子:A-1粒子とMESとLMAOと水とゼオライト(c2)とからなる造粒粒子(造粒粒子の総質量に対して、水分量5質量%)。
 X-2粒子:A-2粒子とMESとLMAOと水とゼオライト(c2)とからなる造粒粒子(造粒粒子の総質量に対して、水分量7質量%)。
 X-3粒子:A-3粒子とMESとLMAOと水とゼオライト(c2)とからなる造粒粒子(造粒粒子の総質量に対して、水分量6質量%)。
 X-4粒子:A-4粒子とMESとLMAOと水とゼオライト(c2)とからなる造粒粒子(造粒粒子の総質量に対して、水分量7質量%)。
 なお、これらの粒子(X)中のMESの含有量は、後述の配合量で粒子(X)を含む粒状洗剤組成物を製造した時に、前記粒状洗剤組成物中のMESの含有量が前記粒状洗剤組成物の総質量に対して9質量%になる量とした。また、粒子(X)中のLMAOの含有量は、後述の配合量で粒子(X)を含む粒状洗剤組成物を製造した時に、前記粒状洗剤組成物中のLMAOの含有量が前記粒状洗剤組成物の総質量に対して2質量%になる量とした。
(MES混合濃縮物の調製)
 脂肪酸エステルをスルホン化し、これを水酸化ナトリウムで中和して、MESが水に分散したMESスラリー(MESスラリー中の水分含量25質量%)を得た。このMESスラリーに、LMAOの一部を加え、MESスラリー中の水分含量が11質量%になるまで薄膜式乾燥機で減圧濃縮して、MESとLMAOとの混合濃縮物(以下、MES混合濃縮物ということがある)を得た。
 ここで使用した脂肪酸エステルは、炭素数16:炭素数18=80:20(質量比)の脂肪酸メチルエステルスルフォネートのナトリウム塩(ライオン株式会社製、AI(純度)=70質量%、残部は未反応脂肪酸メチルエステル、硫酸ナトリウム、メチルサルフェート、過酸化水素、水等)である。
(造粒工程)
 次いで、噴霧乾燥粒子、MES混合濃縮物、LMAO、および水を連続ニーダー(KRC-S12型、株式会社栗本鐵工所製)に投入し、ニーダーの回転数135rpm、ジャケット温度60℃の条件で捏和し、界面活性剤を含有する捏和物を得た。
 前記捏和物を、穴径10mmのダイスを具備したペレッターダブル(不二パウダル株式会社製、EXDFJS-100型)で押し出しつつ、カッターで切断(カッター周速は5m/s)し、長さ5~30mm程度のペレット状成形物を得た。
 次いで、得られたペレット状成形物に、ゼオライト(ゼオライト(c2))および冷風(10℃、15m/s)の共存下で、直列3段に配置したフィッツミル(ホソカワミクロン株式会社製、DKA-3)を用いて粉砕(スクリーン穴径:1段目/2段目/3段目=12mm/6mm/3mm、回転数:1段目/2段目/3段目いずれも4700rpm)した。これにより、粒子(X)(X-1-1粒子、X-1-2粒子、X-2粒子、X-3粒子またはX-4粒子)を得た。
 粉砕時のゼオライトの使用量は、「造粒工程で用いたゼオライト(c2)」として表2~3に示す量とした。この造粒工程で用いたゼオライト(c2)は、粒状洗剤組成物の総質量に対する割合(質量%)である。
 得られた粒子(X)について、赤外水分計を用いて、試料表面温度130℃、20分間後の重量減少量を測定し、その測定値を粒子(X)中の水分量とした。その測定値と、前記で測定した噴霧乾燥粒子中の水分量から、下記式により、粒子(X)中の、噴霧乾燥粒子に由来しない水分量(質量%)を求めた。
 噴霧乾燥粒子に由来しない水分量(質量%)=(粒子(X)中の水分量-噴霧乾燥粒子の水分量)
≪3.粒状洗剤組成物の調製(混合工程)≫
 粒子(X)とPC剤とゼオライト(ゼオライト(c2))とを、表2~3に示す組成となるように、以下の製法(1)、(2)または(3)により混合して粒状洗剤組成物を得た。各例で適用した製法は表2~3に併記した。
[製法(1)]
 容器回転式円筒型混合機に、粒子(X)とゼオライトとを投入し、15kg/minの速度で混合し、その直後にPC剤を投入し、さらに粒状洗剤組成物の総質量に対してLMAOが1質量%となるようLMAOを添加し、2分間混合して粒状洗剤組成物を得た。使用した容器回転式円筒型混合機は、容器が直径0.7m、長さ1.4m、傾斜角3.0°、出口堰高さ0.15m、内部混合羽根が高さ0.1m、長さ1.4mの平羽根を90°毎に4枚取り付けた仕様の混合機である。
[製法(2)]
 容器回転式円筒型混合機に、粒子(X)とPC剤とゼオライトとを同時に投入し、15kg/minの速度で混合し、さらに粒状洗剤組成物の総質量に対してLMAOが1質量%となるようLMAOを添加し、さらに2分間混合して粒状洗剤組成物を得た。容器回転式円筒型混合機は製法(1)と同じ混合機を使用した。
[製法(3)]
 容器回転式円筒型混合機に、粒子(X)とゼオライトとを同時に投入し、15kg/minの速度で混合し、その直後に、粒状洗剤組成物の総質量に対してLMAOが1質量%となるようLMAOを添加し、20℃・相対湿度50%RHの環境で2分間放置した。続いて、PC剤を投入し2分間混合して粒状洗剤組成物を得た。容器回転式円筒型混合機は製法(1)と同じ混合機を使用した。
 得られた粒状洗剤組成物について、以下の評価を行った。結果を表2~3に併記する。
≪(b)成分安定性≫
 得られた粒状洗剤組成物について、下記の保存安定性試験を行った。
 外側からコートボール紙(坪量:350g/m)、ワックスサンド紙(坪量:30g/m)、クラフトパルプ紙(坪量:70g/m)の3層からなる紙を用いて、長さ15cm×巾9.3cm×高さ18.5cmの箱を作製し、この箱に粒状洗剤組成物1.0kgを入れた。粒状洗剤組成物を入れた箱に封をして恒温恒湿室で30日間保存した。恒温恒湿室は、45℃、75%RH8時間と、25℃、55%RH16時間との繰り返し運転を行った。30日間の保存後、粒状洗剤組成物を入れた箱を恒温恒湿室から取り出し、温度25℃、相対湿度60%で6時間放置した。
 上記の保存安定性試験終了後に、粒状洗剤組成物全体を充分に混合した後、下記の手順で、粒状洗剤組成物をサンプリングし、過炭酸ナトリウムの残存率を測定した。
[過炭酸ナトリウムの残存率の測定]
 粒状洗剤組成物が入った箱を水平台に静地させ、スプーンを用いて中心部からスプーンすり切り1杯(約50g)の粒状洗剤組成物を掬った。掬った粒状洗剤組成物(試料)から約25gを、10mgまで精秤した。
 精秤した試料約25gを1Lビーカーに入れ、33質量%酢酸水溶液200mLを加え、マグネチックスターラーで攪拌して溶解させた。次いで10質量%ヨウ素カリウム水溶液40mLを添加し、得られた溶液を、1mol/Lのチオ硫酸ナトリウム溶液で滴定した。途中、溶液が無色になったところで飽和モリブデン酸アンモニウムを2~3滴加え、溶液が淡黄色になったところでさらに滴定を続け、再び溶液が無色になった時点で滴定を終了した。滴定開始から滴定終了までに滴下した1mol/Lチオ硫酸ナトリウム溶液の滴定量p(mL)から、下記式により有効酸素量(%)を求めた。
 有効酸素量(%)={f×p×(1/2)×(1/1000)×16}/g×100
〔式中、fは1mol/Lのチオ硫酸ナトリウム溶液のファクター、pは1mol/Lチオ硫酸ナトリウム溶液の滴定量(単位:mL)、gは試料の質量(単位:g)。〕
 試料の残りの半量約25gも上記方法にて有効酸素量を求めた。これらの平均値を試料の有効酸素量とした。
 別途、粒状洗剤組成物の製造に用いたPC剤の有効酸素量(%)を測定した。PC剤の有効酸素量は、上記と同様の有効酸素量を求める式より、PC剤の有効酸素量(%)の測定を行うことで算出した。
 これらの有効酸素量から、下記式により過炭酸ナトリウムの残存率(%)を求めた。
 過炭酸ナトリウムの残存率(%)=(試料の有効酸素量(%)/PC剤の有効酸素量(%))×100(%)
≪流動性≫
 上記保存安定性試験の終了後に、粒状洗剤組成物を入れた箱を水平台に静地させ、スプーンを用いて中心部からスプーンすり切り1杯(約50g)の粒状洗剤組成物を掬った。
この粒状洗剤組成物に含まれるPC剤の量を、「使い始めのPC量」とした。さらに同じ箇所を続けて掬わないように、粒状洗剤組成物をスプーンすり切り1杯ずつ掬い続けていった。そして、箱を傾けずにスプーンですり切り1杯掬えなくなった直前に掬った粒状洗剤組成物に含まれるPC剤の量を「使い終わり直前のPC量」とした。この「使い始めのPC量」と「使い終わり直前のPC量」の差の割合を算出し、粒状洗剤組成物の分級評価とした。
 試料中に含まれるPC剤の量は、以下の方法で定量した。
 掬った粒状洗剤組成物(試料)から約25gを10mgまで精秤し、上記と同様にして有効酸素量(%)を求めた。試料の残りの半量約25gも上記方法にて有効酸素量を求めた。これらの平均値を試料の有効酸素量とした。
 これらの有効酸素量から、上記と同様にして過炭酸ナトリウムの残存率(%)を算出し、「使い始め」、「使い終わり直前」それぞれの試料中に含有するPC剤の量を定量し、下記式により、PC剤の分級割合(%)を算出し、下記の評価基準で粒状洗剤組成物の流動性を評価した。
 PC剤の分級割合(%)=使い始めの試料に含まれるPC剤の量/使い終わり直前の試料に含まれるPC剤の量×100(%)
〔評価基準〕
 A:PC剤の分級割合が5%以下。
  B:PC剤の分級割合が5%超10%以下。
  C:PC剤の分級割合が10%超15%以下。
  D:PC剤の分級割合が15%超20%以下。
  E:PC剤の分級割合が20%超。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2~3中、配合量の単位は質量%であり、配合量比は質量比である。
 粒子(X)/ゼオライト(c2)の比は、粒状洗剤組成物中の「造粒工程で用いたゼオライトと混合工程で用いたゼオライトとの合計量(即ち、ゼオライト(c2))(質量%)」に対する「粒子(X)の配合量(質量%)」の割合である。
 粒子(X)中の、噴霧乾燥粒子に由来しない水分量は、「粒子(X)中の水分量(質量%)」と、「噴霧乾燥により得られた直後の噴霧乾燥粒子中の水分量(質量%)×粒子(X)中の噴霧乾燥粒子の割合(質量%)/100の値」との差として求めた値である。
 製法(1)で製造した実施例1~8、比較例1~3を対比すると、実施例1~8の粒状洗剤組成物は、比較例1~3に比べて、(b)成分安定性が良好であった。特に、粒子(X)中の、噴霧乾燥粒子に由来しない水分量が、前記粒子(X)の製造に用いた噴霧乾燥粒子中の水分量よりも少ない実施例1~7の結果が良好であった。また、実施例1~8の粒状洗剤組成物は、保存安定性試験中の粒子の分級が抑制されていた。
 一方、ゼオライト(c2)に対するゼオライト(c1)の質量比(c1/c2)が0.7を超える比較例1~2、粒状洗剤組成物中の(c)成分の含有量(ゼオライト(c1)+ゼオライト(c2))が19.8%の比較例3は、(b)成分安定性が低かった。特に比較例1~2は、保存安定性試験中の粒子の分級も顕著であった。
 上記のうち、実施例1と、組成が同じで製法のみ異なる実施例9、10を対比すると、製法(3)により各粒子を混合した実施例9の結果が特に良好であった。
<実施例11~15>
 表4に示す組成の粒状洗剤組成物を以下の手順で製造した。表中の配合量および水分量の単位は質量%である。
 まず、噴霧乾燥用スラリーに硫酸亜鉛、MGDA、クエン酸をさらに配合したこと以外は前記≪1.噴霧乾燥粒子の製造≫と同様にして噴霧乾燥粒子を製造した。
 得られた噴霧乾燥粒子を用い、噴霧乾燥粒子、MES混合濃縮物、LMAOおよび水とともに蛍光増白剤を加えて捏和した以外は前記(造粒工程)と同様にして粒子(X)を製造した。
 容器回転式円筒型混合機に、得られた粒子(X)と、ゼオライトと、PC剤と、重炭酸ナトリウムと、CMCとを同時に投入し、15kg/minの速度で混合し、その直後に、濃度1質量%のLMAO水溶液を噴霧し、20℃・相対湿度50%RHの環境で2分間放置した。続いて、酵素、OBSを投入し2分間混合して粒状洗剤組成物を得た。容器回転式円筒型混合機は製法(1)と同じ混合気機を使用した。
Figure JPOXMLDOC01-appb-T000005
 本発明によれば、ゼオライトの併存下での無機過酸化物の保存安定性が向上した粒状洗剤組成物およびその製造方法を提供できるので、産業上極めて有用である。

Claims (3)

  1.  界面活性剤(a)と無機過酸化物(b)とゼオライト(c)とを含有する粒状洗剤組成物であって、
     前記粒状洗剤組成物は、
    前記界面活性剤(a)と前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させてなる噴霧乾燥粒子とを含み、かつ前記無機過酸化物(b)を含まない、粒子(X)と、
    前記無機過酸化物(b)を含む粒子(Y)と、を含有し;
     前記ゼオライト(c)の含有量は、前記粒状洗剤組成物の総質量に対して、5~15質量%であり;
    前記ゼオライト(c)は、前記スラリーに配合されるゼオライト(c1)と前記ゼオライト(c1)以外のゼオライト(c2)とからなり、
    前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が0超、0.7以下である粒状洗剤組成物。
  2.  界面活性剤(a)と無機過酸化物(b)とゼオライト(c)とを含有する粒状洗剤組成物の製造方法であって、
    前記製造方法は、
     粒子(X)を得る工程と、
     前記無機過酸化物(b)を含む粒子(Y)と、前記粒子(X)と、を混合する混合工程と、を有し、
     前記粒子(X)を得る工程は、
     前記ゼオライト(c)の一部を含むスラリーを噴霧乾燥させて噴霧乾燥粒子を得る工程と、
    前記得られた噴霧乾燥粒子から、前記界面活性剤(a)を含むが前記無機過酸化物(b)を含まない粒子(X)を得る工程、とを含み、 前記ゼオライト(c)の使用量が、製造される粒状洗剤組成物の総質量に対して5~15質量%となる量であり、
    前記ゼオライト(c)は、前記スラリーに配合されるゼオライト(c1)と前記ゼオライト(c1)以外のゼオライト(c2)とからなり、
    前記ゼオライト(c1)の前記ゼオライト(c2)に対する質量比であるc1/c2が、0超、0.7以下である粒状洗剤組成物の製造方法。
  3. さらに所望により任意成分を含み、
    前記粒状洗剤組成物の総質量に対して、
    前記界面活性剤(a)の含有量が、5~30質量%であり、
    前記無機過酸化物(b)の含有量が、3~20質量%であり、かつ
    前記各成分の含有量の合計は100質量%を超えず、
    前記粒状洗剤組成物の総質量に対して、
    前記粒子(X)の含有量が、50~90質量%であり、
    前記粒子(Y)の含有量が、3~20質量%であり、かつ、前記各粒子の含有量の合計は100質量%を超えない、
    請求項1に記載の粒状洗剤組成物。
PCT/JP2014/069242 2013-07-22 2014-07-18 粒状洗剤組成物およびその製造方法 WO2015012235A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157020946A KR101944345B1 (ko) 2013-07-22 2014-07-18 입상 세제 조성물 및 그 제조 방법
JP2015528276A JP6414986B2 (ja) 2013-07-22 2014-07-18 粒状洗剤組成物およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-151505 2013-07-22
JP2013151505 2013-07-22

Publications (1)

Publication Number Publication Date
WO2015012235A1 true WO2015012235A1 (ja) 2015-01-29

Family

ID=52393274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069242 WO2015012235A1 (ja) 2013-07-22 2014-07-18 粒状洗剤組成物およびその製造方法

Country Status (3)

Country Link
JP (1) JP6414986B2 (ja)
KR (1) KR101944345B1 (ja)
WO (1) WO2015012235A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183726A1 (ja) * 2016-04-22 2017-10-26 四国化成工業株式会社 固形漂白剤含有物及び洗浄剤組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102075408B1 (ko) 2019-12-12 2020-02-10 김근태 친환경 세제 조성물의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215814A (ja) * 2009-03-17 2010-09-30 Lion Corp 高嵩密度粒状洗剤組成物
JP2011219739A (ja) * 2010-03-26 2011-11-04 Lion Corp 粒状洗剤組成物の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT891417E (pt) * 1996-03-27 2002-08-30 Solvay Interox Sa Composicoes que contem percarbonato de sodio
JP2000256699A (ja) 1999-03-05 2000-09-19 Kao Corp 漂白洗浄剤の製法
GB2355722A (en) * 1999-10-28 2001-05-02 Procter & Gamble Detergent compositions and methods for cleaning
JP4246011B2 (ja) * 2003-08-07 2009-04-02 花王株式会社 洗浄剤組成物
JP2013253118A (ja) * 2010-10-01 2013-12-19 Lion Corp アミノカルボン酸(塩)含有粒子及び粒状洗剤組成物
JP2013213184A (ja) * 2012-03-09 2013-10-17 Kao Corp 粉末洗浄剤組成物
JP2013213185A (ja) * 2012-03-09 2013-10-17 Kao Corp 粉末洗浄剤組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215814A (ja) * 2009-03-17 2010-09-30 Lion Corp 高嵩密度粒状洗剤組成物
JP2011219739A (ja) * 2010-03-26 2011-11-04 Lion Corp 粒状洗剤組成物の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183726A1 (ja) * 2016-04-22 2017-10-26 四国化成工業株式会社 固形漂白剤含有物及び洗浄剤組成物
KR20180135902A (ko) * 2016-04-22 2018-12-21 시코쿠가세이고교가부시키가이샤 고형 표백제 함유물 및 세정제 조성물
JPWO2017183726A1 (ja) * 2016-04-22 2019-02-28 四国化成工業株式会社 固形漂白剤含有物及び洗浄剤組成物
JP2020097752A (ja) * 2016-04-22 2020-06-25 四国化成工業株式会社 固形漂白剤含有物及び洗浄剤組成物
US11078450B2 (en) 2016-04-22 2021-08-03 Shikoku Chemicals Corporation Material containing solid bleaching agent, and detergent composition
KR102296477B1 (ko) * 2016-04-22 2021-08-31 시코쿠가세이고교가부시키가이샤 고형 표백제 함유물 및 세정제 조성물

Also Published As

Publication number Publication date
JP6414986B2 (ja) 2018-10-31
KR20160033066A (ko) 2016-03-25
JPWO2015012235A1 (ja) 2017-03-02
KR101944345B1 (ko) 2019-01-31

Similar Documents

Publication Publication Date Title
JP7098644B2 (ja) 固体メチルグリシン二酢酸(mgda)アルカリ金属塩の製造方法、及び固体粒子
US20090176681A1 (en) Bleach composition and bleaching detergent composition
EP1254950A2 (en) Effervescence compositions and dry effervescent granules
WO2011027892A1 (ja) 除菌剤組成物および除菌方法
JP5358091B2 (ja) 漂白性組成物
JP2004331816A (ja) 漂白洗浄剤組成物
JP5903340B2 (ja) 粒状洗浄剤
KR101995593B1 (ko) 의료용 세제 조성물
JP4525895B2 (ja) 漂白性組成物及びその製造方法
JP6414986B2 (ja) 粒状洗剤組成物およびその製造方法
JP2012131836A (ja) 粒状洗剤組成物
JP5809970B2 (ja) 繊維製品用洗浄剤
JP2010168534A (ja) 漂白性組成物
JP5795993B2 (ja) 粒状洗剤の製造方法
JP2010180284A (ja) 粒状洗剤組成物及びその製造方法
JP5645558B2 (ja) 除菌剤組成物および除菌方法
JP5809874B2 (ja) 繊維製品用洗浄剤
JP2013249384A (ja) 粒状洗剤及びその製造方法
JP5783760B2 (ja) 漂白性組成物
JP5347156B2 (ja) 高嵩密度粒状洗剤組成物
JP2008001736A (ja) 粉末漂白剤組成物
JP5331550B2 (ja) 高嵩密度粒状洗剤組成物およびその製造方法
JP2011001429A (ja) 漂白性洗浄剤組成物
JP2010215814A (ja) 高嵩密度粒状洗剤組成物
JP5470022B2 (ja) 高嵩密度粒状洗剤組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157020946

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015528276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829599

Country of ref document: EP

Kind code of ref document: A1