WO2015012055A1 - 焼結軸受及びその製造方法 - Google Patents

焼結軸受及びその製造方法 Download PDF

Info

Publication number
WO2015012055A1
WO2015012055A1 PCT/JP2014/066877 JP2014066877W WO2015012055A1 WO 2015012055 A1 WO2015012055 A1 WO 2015012055A1 JP 2014066877 W JP2014066877 W JP 2014066877W WO 2015012055 A1 WO2015012055 A1 WO 2015012055A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
copper powder
sintered
particles
bearing
Prior art date
Application number
PCT/JP2014/066877
Other languages
English (en)
French (fr)
Inventor
哲弥 栗村
冬木 伊藤
慎治 小松原
土広 内山
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201480041234.9A priority Critical patent/CN105393005B/zh
Priority to US14/899,896 priority patent/US9989092B2/en
Priority to EP14829542.1A priority patent/EP3026280A4/en
Publication of WO2015012055A1 publication Critical patent/WO2015012055A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/0633Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being retained in a gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Definitions

  • the present invention relates to a sintered bearing, in particular, a sintered bearing formed using a mixed metal powder containing copper powder and iron powder, and a method for manufacturing the same.
  • Sintered bearings are used with internal holes impregnated with lubricating oil, and with the relative rotation with the shaft to be supported, the lubricating oil impregnated inside exudes to the sliding part with the shaft to form an oil film.
  • the shaft is rotationally supported through this oil film.
  • Such sintered bearings are used as bearings for rotating and supporting small motors such as HDDs, LBP polygon scanner motors, or fan motors because of their high rotational accuracy and quietness.
  • the metal powder used as a raw material for the sintered bearing is refined (the maximum particle diameter of tin powder is 25 ⁇ m or less, and the maximum particle diameter of copper powder and SUS powder is 50 ⁇ m or less).
  • the surface opening formed in the bearing surface by the melting of the tin powder is refined, thereby preventing the dynamic pressure loss.
  • the problem to be solved by the present invention is to sufficiently suppress the dynamic pressure drop from the bearing surface of the sintered bearing and increase the bearing rigidity.
  • the present invention made to solve the above problems is a sintered bearing made of a sintered metal formed using a mixed metal powder containing copper powder and iron powder, wherein the mixed metal powder has an average particle size 80 wt% or more of particles less than 45 ⁇ m are contained, the copper powder contains electrolytic copper powder, and the electrolytic copper powder contains 40 number% or more of particles having a circularity of 0.64 or more.
  • the present invention made to solve the above problems includes a compression molding step of compression molding a mixed metal powder containing copper powder and iron powder to form a green compact, and the green compact is subjected to predetermined sintering.
  • a sintered bearing manufacturing method that is performed through a sintering step of sintering at a temperature, wherein the mixed metal powder includes 80 wt% or more of particles having an average particle size of less than 45 ⁇ m, and the copper powder includes electrolytic copper powder.
  • the electrolytic copper powder contains 40% by number or more of particles having a circularity of 0.64 or more.
  • circularity means the ratio of the equivalent circular area diameter to the equivalent circular diameter of the two-dimensional projection image of each particle (JIS H7008: 2002).
  • average particle diameter refers to an average value of the equivalent circular area diameter of the two-dimensional projected area of each particle. Actually, the average particle diameter is obtained by measuring the projected area of a statistically effective proportion of the target particles and obtaining the average value of the equivalent circle area diameters calculated from the measured values.
  • the mixed metal powder used as the raw material of the sintered metal a fine powder containing 80 wt% or more of particles having an average particle diameter of less than 45 ⁇ m is used to increase the density of the sintered bearing and reduce the internal pores. As a result, the surface opening of the bearing surface can be reduced.
  • copper powder has types, such as electrolytic copper powder and atomized powder, since electrolytic copper powder has comprised the dendritic complicated shape, the shrinkage
  • the fluidity of the mixed metal powder usually decreases.
  • the electrolytic copper powder contains particles having a high degree of circularity at a certain level or more, so that a decrease in fluidity of the mixed metal powder can be suppressed.
  • the mixed metal powder can be smoothly poured into the cavity of the forming mold, so that the mixed metal powder can be uniformly filled in the cavity, and the internal pores of the sintered bearing can be uniformly dispersed to remove the rough air holes. Formation can be prevented.
  • a copper powder containing 15 wt% or more of particles having an average particle size of less than 45 ⁇ m It is preferable to use a copper powder containing 15 wt% or more of particles having an average particle size of less than 45 ⁇ m. As described above, the copper powder contains almost no coarse particles having an average particle diameter of 45 ⁇ m or more, thereby suppressing the formation of coarse pores due to the coarse particles and uniforming the size of the surface opening of the sintered bearing.
  • a copper powder having an average particle size of less than 10 ⁇ m and less than 10 wt%.
  • liquidity of mixed metal powder can further be improved because copper powder hardly contains the ultrafine particle
  • the electrolytic copper powder for example, one having an apparent density of 1.4 to 1.7 g / cm 3 can be used.
  • the mixed metal powder contains 50 wt% or more of electrolytic copper powder, there is a greater concern about the decrease in fluidity of the mixed metal powder, so it is effective to include particles having a high degree of circularity as described above. Moreover, when the electrolytic copper powder contained in the mixed metal powder exceeds 60 wt%, the ratio of the copper component becomes excessive, and the strength of the bearing may be insufficient. From the above, the electrolytic copper powder in the mixed metal powder is preferably 50 to 60 wt%.
  • the iron powder preferably contains 80 wt% or more of particles having an average particle size of less than 45 ⁇ m.
  • reduced iron powder can be used.
  • the above sintered bearing is formed of a sintered metal mainly composed of copper and iron, and specifically includes, for example, 38 to 42 wt% of iron and 1 to 3 wt% of tin, with the balance being copper and inevitable impurities. Made of some sintered metal.
  • the fine mixed metal powder is used, and the copper powder contains electrolytic copper powder, whereby the density of the sintered bearing is increased and the surface opening is reduced.
  • the electrolytic copper powder contains particles having a high degree of circularity at a certain level or more, the fluidity of the mixed metal powder is improved, and the mixed metal powder can be uniformly filled in the cavity of the forming mold.
  • the internal pores of the sintered bearing are made finer and uniform, so that the dynamic pressure loss can be sufficiently suppressed and the bearing rigidity can be increased.
  • Fig. 1 shows a fan motor of an information device such as a mobile phone or a tablet terminal.
  • This fan motor includes a fluid dynamic bearing device 1 that supports a shaft member 2 in a non-contact manner, a rotor 3 that is mounted on the shaft member 2, a blade 4 that is attached to an outer diameter end of the rotor 3, and a radius.
  • a stator coil 6a and a rotor magnet 6b that are opposed to each other with a gap in a direction (radial direction), and a casing 5 that accommodates the stator coil 6a and the upper end surface and a part of a side surface thereof are provided.
  • the stator coil 6 a is attached to the outer periphery of the fluid dynamic bearing device 1, and the rotor magnet 6 b is attached to the inner periphery of the rotor 3.
  • the stator coil 6a By energizing the stator coil 6a, the rotor 3, the blades 4, and the shaft member 2 rotate together, thereby generating an axial or outer diameter airflow.
  • the fluid dynamic bearing device 1 includes a shaft member 2, a housing 7, a bearing sleeve 8 as a sintered bearing, a seal member 9, and a thrust receiver 10.
  • the bottom 7b side of the bottomed cylindrical housing 7 is referred to as the lower side, and the opening side is referred to as the upper side.
  • the shaft member 2 is formed in a cylindrical shape with a metal material such as stainless steel.
  • the shaft member 2 has a cylindrical outer peripheral surface 2a and a spherical convex portion 2b provided at the lower end.
  • the housing 7 has a substantially cylindrical side portion 7a and a bottom portion 7b that closes an opening below the side portion 7a.
  • the side portion 7a and the bottom portion 7b are integrally injection-molded with resin.
  • the casing 5 and the stator coil 6a are fixed to the outer peripheral surface 7a2 of the side portion 7a.
  • the outer peripheral surface 8d of the bearing sleeve 8 is fixed to the inner peripheral surface 7a1 of the side portion 7a.
  • a shoulder surface 7b2 positioned above the inner diameter portion is provided at the outer diameter end of the upper end surface 7b1 of the bottom portion 7b, and the lower end surface 8c of the bearing sleeve 8 is in contact with the shoulder surface 7b2.
  • a thrust receiver 10 is disposed at the center of the upper end surface 7b of the bottom 7b.
  • the bearing sleeve 8 has a cylindrical shape, and is fixed to the inner peripheral surface 7a1 of the side portion 7a of the housing 7 by appropriate means such as gap bonding, press-fitting, and press-fitting adhesion.
  • the inner diameter of the bearing sleeve 8 is about 0.6 to 2.0 mm, and the outer diameter is about 1.5 to 4.0 mm.
  • the bearing sleeve 8 is made of a sintered metal containing copper and iron as main components.
  • the bearing sleeve 8 of the present embodiment is made of sintered metal containing 38 to 42 wt% of iron and 1 to 3 wt% of tin, with the balance being copper and inevitable impurities.
  • the density of the bearing sleeve 8 is 6.9 to 7.3 g / cm 3 in a dry state (a state in which the internal pores are not impregnated with oil).
  • the bearing sleeve 8 has countless fine internal pores that are uniformly dispersed.
  • the oil permeability of the bearing sleeve 8 is less than 0.02 g / 10 min, preferably less than 0.015 g / 10 min. Further, the oil permeability of the bearing sleeve 8 is set to 0.005 g / 10 min or more.
  • the oil permeability refers to the oil when the whole surface of both end faces 8b, 8c of the bearing sleeve 8 is sealed and the oil is pumped at 0.4 MPa for 10 minutes from the inner diameter to the outer diameter of the bearing sleeve 8. The amount of transmission.
  • the oil used at this time has a viscosity of 40 mm at 45 mm 2 / s.
  • a dynamic pressure groove as a radial dynamic pressure generating portion is formed on the inner peripheral surface 8a of the bearing sleeve 8 serving as a radial bearing surface.
  • herringbone-shaped dynamic pressure grooves 8 a 1 and 8 a 2 are formed at two locations separated in the axial direction of the inner peripheral surface 8 a.
  • the dynamic pressure grooves 8a1 and 8a2 are formed between the hill portions indicated by cross hatching in FIG.
  • the upper dynamic pressure groove 8a1 is formed to be axially asymmetric with respect to the annular portion provided in the substantially central portion in the axial direction of the hill, and the axial dimension X1 of the upper region from the annular portion is the axis of the lower region.
  • the lower dynamic pressure groove 8a2 is formed symmetrically in the axial direction.
  • the seal member 9 is formed in an annular shape with resin or metal, and is fixed to the upper end portion of the inner peripheral surface 7a1 of the side portion 7a of the housing 7.
  • the seal member 9 is in contact with the upper end surface 8 b of the bearing sleeve 8.
  • the inner peripheral surface 9a of the seal member 9 faces the outer peripheral surface 2a of the shaft member 2 in the radial direction, and a seal space S is formed therebetween.
  • the seal space S prevents leakage of the lubricating oil inside the bearing to the outside.
  • the fluid dynamic bearing device 1 is assembled in the following procedure. First, the thrust receiver 10 is disposed on the upper end surface 7 b 1 of the bottom 7 b of the housing 7. Then, a bearing sleeve 8 in which internal pores are previously impregnated with lubricating oil is inserted into the inner periphery of the side portion 7a of the housing 7, and the lower end surface 8c of the bearing sleeve 8 is brought into contact with the shoulder surface 7b2 of the bottom portion 7b. In this state, the outer peripheral surface 8d of the bearing sleeve 8 is fixed to the inner peripheral surface 7a1 of the side portion 7a. Thereafter, the seal member 9 is fixed to the upper end of the inner peripheral surface 7 a 1 of the side portion 7 a of the housing 7.
  • the seal member 9 is press-fitted into the side portion 7a of the housing 7, and the bearing sleeve 8 is clamped from both sides in the axial direction by the seal member 9 and the shoulder surface 7b2 of the bottom portion 7b of the housing 7, thereby Can be constrained in direction.
  • the lubricating oil is dropped on the inner periphery of the bearing sleeve 8 and the shaft member 2 is inserted, whereby the assembly of the fluid dynamic bearing device 1 is completed.
  • the lubricating oil fills the internal space of the housing 7 (including the internal holes of the bearing sleeve 8) sealed by the seal member 9, and the oil level is maintained within the range of the seal space S.
  • a radial bearing gap is formed between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a of the shaft member 2. Then, the dynamic pressure grooves 8a1 and 8a2 formed on the inner peripheral surface 8a of the bearing sleeve 8 generate a dynamic pressure action on the lubricating oil in the radial bearing gap, thereby supporting the shaft member 2 in the radial direction.
  • a bearing portion R1 and a second radial bearing portion R2 are configured.
  • the thrust bearing part T which supports the shaft member 2 in a thrust direction is comprised because the convex part 2b of the lower end of the shaft member 2 and the thrust receiver 10 slide in contact.
  • the oil permeability of the bearing sleeve 8 is set to be less than 0.02 g / 10 min, the dynamic pressure loss from the radial bearing surface is suppressed, and the bearing rigidity in the radial direction is increased.
  • load loads in various directions are applied to the shaft member 2, so that the oil permeability is low as described above.
  • the oil permeability of the bearing sleeve 8 is set to 0.005 g / 10 min or more, a certain amount of oil can be circulated through the internal pores of the bearing sleeve 8, and local deterioration and negative oil are prevented. Generation of pressure can be prevented.
  • the bearing sleeve 8 is performed through a mixing process, a compression molding (forming) process, a sintering process, and a dynamic pressure groove sizing process.
  • the following copper powder, iron powder, tin powder, and graphite are mixed at a predetermined ratio to create a mixed metal powder as a raw material for the bearing sleeve 8.
  • the copper powder includes electrolytic copper powder.
  • 50 wt% or more of electrolytic copper powder is contained with respect to the entire mixed metal powder.
  • all copper powder is electrolytic copper powder.
  • the copper powder contains 85 to 95 wt% of particles having an average particle size of less than 45 ⁇ m.
  • grains with an average particle diameter of less than 10 micrometers contained in copper powder are less than 10 wt%.
  • the copper powder contains 40-50% by number of particles having a circularity of 0.64 or more.
  • the apparent density of the copper powder is 1.4 to 1.7 g / cm 3 .
  • the iron powder for example, reduced iron powder is used.
  • the iron powder contains 80 to 90 wt% of particles having an average particle size of less than 45 ⁇ m.
  • the particles having an average particle size of less than 10 ⁇ m contained in the iron powder are less than 10 wt%.
  • the average particle size of the entire iron powder is slightly larger than the average particle size of the entire copper powder.
  • tin powder for example, atomized powder is used. Particles with an average particle size of less than 45 ⁇ m contained in the tin powder are 98% or more. The particles having an average particle size of less than 10 ⁇ m contained in the tin powder are less than 10 wt%.
  • the copper powder, iron powder, and tin powder are mixed at a predetermined ratio to produce a mixed metal powder.
  • the composition of the mixed metal powder is such that the iron powder is 38 to 42 wt%, the tin powder is 1 to 3 wt%, and the balance is copper and inevitable impurities.
  • the mixed metal powder M may be blended with a solid lubricant such as graphite.
  • the mixed metal powder M contains 80 wt% or more of particles having an average particle size of less than 45 ⁇ m. Moreover, the particle
  • the electrolytic copper powder in the mixed metal powder contains 40% by number or more of particles having a circularity of 0.64 or more, so that a decrease in the apparent density of the mixed metal powder M can be suppressed (specifically, 2.0 to 2.3 g / cm 3 ), and the decrease in fluidity of the mixed metal powder M can be suppressed (specifically, the fluidity is 80 to 90 sec / 50 g).
  • the fluidity is measured according to JIS Z2502: 2012 “Metal powder—fluidity measurement method”.
  • the mixed metal powder M mixed in the mixing step is compression molded into a predetermined shape (cylindrical shape in the illustrated example) to form a green compact.
  • a predetermined shape cylindrical shape in the illustrated example
  • the inner peripheral surface 11a of the forming die 11, the outer peripheral surface 12a of the core rod 12, and the upper end surface 13a of the lower punch 13 are defined.
  • the mixed metal powder M is poured into the cavity.
  • the mixed metal powder M can be smoothly poured into the cavity, and the mixed metal powder M can be uniformly filled in the entire cavity. it can.
  • the upper punch 14 is lowered and the metal powder M is compressed from above to form a cylindrical green compact Ma ⁇ see FIG. 4 (b) ⁇ .
  • the green compact Ma is released from the mold by moving the die 11 downward relative to the green compact Ma (see FIG. 4C).
  • the mixed metal powder M a fine one containing 80 wt% or more of particles having an average particle diameter of less than 45 ⁇ m is used, so that the density of the green compact Ma can be increased and the internal pores can be refined. Further, as described above, since the mixed metal powder M is uniformly filled in the entire cavity, the internal pores of the green compact Ma can be uniformly dispersed.
  • the green compact Ma is sintered at a predetermined sintering temperature to form a sintered body.
  • the temperature during sintering is set to be lower than the melting point of copper (1085 ° C.), for example, 850 to 900 ° C., and in this embodiment, 870 ° C.
  • the mixed metal powder M contains the electrolytic copper powder, the sintering of the copper powder is promoted, and the internal pores of the sintered body are further refined.
  • radial dynamic pressure generating portions (dynamic pressure grooves 8a1 and 8a2) shown in FIG. 3 are molded on the inner peripheral surface of the sintered body.
  • the core rod is inserted into the inner periphery of the sintered body, and the both ends of the sintered body in the axial direction are constrained by upper and lower punches, and the sintered body and the core rod are placed inside the die.
  • the inner peripheral surface of the sintered body is pressed against a molding die formed on the outer peripheral surface of the core rod.
  • the shape of the molding die is transferred to the inner peripheral surface of the sintered body, and the dynamic pressure grooves 8a1 and 8a2 are molded. Thereafter, by pulling out the sintered body and the core rod from the inner periphery of the die, the sintered body is spring-backed toward the outer diameter, and the inner peripheral surface of the sintered body is peeled off from the outer peripheral surface of the core rod. Then, the core rod is pulled out from the inner periphery of the sintered body, and the bearing sleeve 8 is completed.
  • the internal pores of the bearing sleeve 8 are made finer and uniform by making the mixed metal powder particles finer and using the electrolytic copper powder. It is set to less than 02 g / 10 min. Thereby, without giving a sealing process to a bearing surface, the dynamic pressure loss from a bearing surface (especially radial bearing surface) can be suppressed and bearing rigidity can be improved.
  • the sealing treatment is not necessarily omitted, and if there is no problem in production efficiency and cost, sealing such as rotational sizing and shot blasting is performed on the inner peripheral surface of the sintered body before the dynamic pressure groove sizing. A hole treatment may be applied. In this case, the surface opening of the bearing surface can be further reduced, and the bearing rigidity can be further improved.
  • the implementation product and the comparative product have a cylindrical shape with an inner diameter of 1.5 mm, an outer diameter of 3.0 mm, and an axial dimension of 3.0 mm.
  • Table 2 below shows the particle size distribution and circularity distribution of the copper powders A and B (electrolytic powders) in Table 1.
  • the electrolytic copper powder A included in the product contains 85 wt% or more of particles having an average particle size of less than 45 ⁇ m, whereas the electrolytic copper powder B included in the comparative product has an average particle size of 45 ⁇ m. Less than 55-75% of the particles. That is, the electrolytic copper powder A contains more fine particles than the electrolytic copper powder B. Further, the electrolytic copper powder A contains about 46% by number of particles having a circularity of 0.64 or more, whereas the electrolytic copper powder B contains about 35% by number of particles having a circularity of 0.64 or more.
  • the electrolytic copper powder A contains more particles that are closer to a circle than the electrolytic copper powder B.
  • the electrolytic copper powder A containing a lot of fine particles has a lower apparent density than the electrolytic copper powder B.
  • the electrolytic copper powder A is more apparent than the electrolytic copper powder B. The density is high. This is considered because the electrolytic copper powder A contains more particles having a high degree of circularity.
  • Table 3 shows the particle size distribution of iron powder A (reduced powder) and iron powder B (atomized powder) in Table 1.
  • the iron powder A contained in the practical product contains about 85% of particles having an average particle size of less than 45 ⁇ m, whereas the iron powder B contained in the comparative product has an average particle size of 45 ⁇ m. About 17% of less than particles. That is, the iron powder A contains more fine particles than the iron powder B.
  • Table 4 shows the particle size distribution of the tin powders A and B (atomized powder) in Table 1. As shown in Table 4, both the tin powders A and B are fine particles containing 90% or more of particles having an average particle diameter of less than 45 ⁇ m. However, the tin powder A is finer than the tin powder B. Including many.
  • the oil permeability of the implemented product is lower than that of the comparative product. This is presumably because the internal vacancies of the actual product and the surface opening of the bearing surface are miniaturized by miniaturizing the raw material powder.
  • the copper powder, iron powder, and tin powder of the practical products all have a proportion of finer particles than that of the comparative copper powder, iron powder, and tin powder. high. In this case, it is considered that the raw material powder of the practical product has a significantly lower apparent density than the raw material powder of the comparative product.
  • the copper powder of the implementation product contains a lot of particles that are close to a circle, despite the fact that the proportion of fine particles is higher than the copper powder of the comparison product, The apparent density is high.
  • the fluidity of the raw material powder of the practical product is suppressed to a level slightly higher than that of the comparative product, and is required to form a sintered bearing of the size of the above embodiment (for example, 90 sec / 50 g or less).
  • the implementation product of the present invention can reduce the oil permeability by using finer powder than the comparative product (the effect of suppressing dynamic pressure loss is enhanced), and the copper powder is a particle having a nearly circular shape. It was confirmed that the decrease in fluidity of the raw material powder can be suppressed by containing a large amount of the raw material powder (the raw material powder can be uniformly filled in the cavity).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Power Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明の焼結軸受は、銅粉末及び鉄粉末を含む混合金属粉末を用いて形成された焼結金属からなる。混合金属粉末は、平均粒径45μm未満の粒子を80wt%以上含む。銅粉末は電解銅粉を含み、該電解銅粉は、円形度0.64以上の粒子を40個数%以上含む。

Description

焼結軸受及びその製造方法
 本発明は、焼結軸受、特に、銅粉末及び鉄粉末を含む混合金属粉末を用いて形成された焼結軸受及びその製造方法に関する。
 焼結軸受は、内部空孔に潤滑油を含浸させて使用され、支持すべき軸との相対回転に伴い内部に含浸された潤滑油が軸との摺動部に滲み出して油膜を形成し、この油膜を介して軸を回転支持するものである。このような焼結軸受は、その高回転精度および静粛性から、HDD、LBPポリゴンスキャナモータ、あるいはファンモータなどの小型モータを回転支持する軸受として用いられている。
 上記のような電子機器の薄型化が進み、焼結軸受の軸方向寸法が益々小さくなっている。このような軸方向寸法の小さい焼結軸受では、軸受剛性(特に、ラジアル方向の軸受剛性)を確保することが課題となる。特に、焼結軸受が携帯電話やタブレット型端末等に組み込まれる場合、これらの機器は様々な姿勢で使用されるため、焼結軸受に要求される軸受剛性も高くなっている。しかし、焼結軸受は、無数の気孔が軸受面に開口しているため、摺動部の油膜が軸受面の開口部から焼結軸受の内部へ抜ける、いわゆる動圧抜けが発生し、所望の軸受剛性が得られない恐れがある。このような事態は、焼結軸受を形成した後、軸受面にショットブラストや回転サイジング等による封孔処理を施すことにより回避できるが、この場合、工数増による製造コストの高騰を招く。
 そこで、例えば下記の特許文献1では、焼結軸受の原料となる金属粉末を微細化(錫粉末の最大粒径を25μm以下、銅粉末及びSUS粉末の最大粒径を50μm以下)とすることで、錫粉末の溶融により軸受面に形成される表面開孔を微細化し、これにより動圧抜けの防止を図っている。
特開2009-197903号公報
 しかし、上記特許文献1のように、単に微細な粉末を用いるだけでは、動圧抜けを十分に抑えられるとは言えない。
 本発明が解決すべき課題は、焼結軸受の軸受面からの動圧抜けを十分に抑えて、軸受剛性を高めることにある。
 前記課題を解決するためになされた本発明は、銅粉末及び鉄粉末を含む混合金属粉末を用いて形成された焼結金属からなる焼結軸受であって、前記混合金属粉末が、平均粒径45μm未満の粒子を80wt%以上含み、前記銅粉末が電解銅粉を含み、該電解銅粉が、円形度0.64以上の粒子を40個数%以上含むことを特徴とするものである。
 また、前記課題を解決するためになされた本発明は、銅粉末及び鉄粉末を含む混合金属粉末を圧縮成形して圧粉体を形成する圧縮成形工程と、前記圧粉体を所定の焼結温度で焼結する焼結工程とを経て行われる焼結軸受の製造方法であって、前記混合金属粉末が、平均粒径45μm未満の粒子を80wt%以上含み、前記銅粉末が電解銅粉を含み、該電解銅粉が、円形度0.64以上の粒子を40個数%以上含むことを特徴とするものである。 
 尚、「円形度」とは、各粒子の二次元投影像の円面積相当径と円周相当径との比を言う(JIS H7008:2002)。また、粒子の「平均粒径」とは、各粒子の二次元投影面積の円面積相当径の平均値のことを言う。実際には、対象となる粒子のうち、統計上有効な割合の粒子の投影面積を測定し、この測定値から算出した円面積相当径の平均値を求めることで、平均粒径が求められる。
 このように、焼結金属の原料となる混合金属粉末として、平均粒径45μm未満の粒子を80wt%以上含む微細なものを使用することで、焼結軸受の密度を高めて内部気孔を低減し、その結果、軸受面の表面開孔を低減することができる。また、銅粉末は、電解銅粉やアトマイズ粉などの種類があるが、電解銅粉は、樹枝状の複雑な形状を成しているため、焼結による収縮が進みやすい。従って、上記混合金属粉末中の銅粉末が電解銅粉を含むことで、銅粉末の焼結が促進されて焼結軸受の密度がさらに高められ、軸受面の表面開孔をさらに低減できる。上記のように、混合金属粉末を微細化したり電解銅粉を用いたりすると、通常、混合金属粉末の流動性が低下する。しかし、本発明者らの鋭意検討により、電解銅粉が、円形度の高い粒子を一定以上含むことで、混合金属粉末の流動性の低下が抑えられることが明らかになった。これにより、フォーミング金型のキャビティに混合金属粉末をスムーズに流し入れることができるため、キャビティに混合金属粉末を均一に充填することができ、焼結軸受の内部気孔を均一に分散させて粗大気孔の形成を防止できる。
 上記の銅粉末は、平均粒径45μm未満の粒子を15wt%以上含むものを使用することが好ましい。このように、銅粉末が、平均粒径45μm以上の粗大な粒子をほとんど含まないことで、粗大な粒子に起因した粗大な気孔の形成を抑え、焼結軸受の表面開孔の大きさを均一化することができる。
 また、上記の銅粉末は、平均粒径10μm未満の粒子が10wt%未満であるものを使用することが好ましい。このように、銅粉末が、平均粒径10μm未満の超微細な粒子をほとんど含まないことで、混合金属粉末の流動性をさらに高めることができる。
 上記の電解銅粉は、例えば、見かけ密度が1.4~1.7g/cm3のものを使用することができる。
 上記の混合金属粉末が電解銅粉を50wt%以上含む場合、混合金属粉末の流動性の低下の懸念が大きくなるため、上記のように円形度の高い粒子を一定以上含めることが効果的となる。また、上記の混合金属粉末に含まれる電解銅粉が60wt%を超えると、銅成分の割合が過剰となって軸受の強度が不足する恐れがある。以上より、混合金属粉末中の電解銅粉は50~60wt%とすることが好ましい。
 上記の鉄粉末は、平均粒径45μm未満の粒子を80wt%以上含むものを使用することが好ましい。
 上記の鉄粉末としては、例えば還元鉄粉を使用することができる。
 上記の焼結軸受は、銅及び鉄を主成分とした焼結金属で形成され、具体的には、例えば鉄を38~42wt%、錫を1~3wt%含み、残部が銅及び不可避不純物である焼結金属で形成される。
 以上のように、本発明によれば、微細な混合金属粉末を用い、且つ、銅粉末が電解銅粉を含むことで、焼結軸受の密度が高められ、表面開孔が減じられる。また、電解銅粉が、円形度の高い粒子を一定以上含むことで、混合金属粉末の流動性が高められ、フォーミング金型のキャビティに混合金属粉末を均一に充填することができる。このように、焼結軸受の内部気孔が微細化且つ均一化されることで、動圧抜けを十分に抑えて軸受剛性を高めることができる。
ファンモータの断面図である。 上記ファンモータに組み込まれる流体動圧軸受装置の断面図である。 上記流体動圧軸受装置に組み込まれる軸受スリーブ(焼結軸受)の断面図である。 上記軸受スリーブの圧縮成形工程において、キャビティに金属粉末を充填した様子を示す断面図である。 上記軸受スリーブの圧縮成形工程において、金属粉末を圧縮する様子を示す断面図である。 上記軸受スリーブの圧縮成形工程において、圧粉体を金型から取り出す様子を示す断面図である。
 図1に、携帯電話やタブレット型端末等の情報機器のファンモータを示す。このファンモータは、軸部材2を回転自在に非接触支持する流体動圧軸受装置1と、軸部材2に装着されたロータ3と、ロータ3の外径端に取付けられた羽根4と、半径方向(ラジアル方向)のギャップを介して対向させたステータコイル6aおよびロータマグネット6bと、これらを収容し、上端面および側面の一部が開口したケーシング5とを備えるものである。ステータコイル6aは、流体動圧軸受装置1の外周に取付けられ、ロータマグネット6bはロータ3の内周に取付けられる。ステータコイル6aに通電することにより、ロータ3、羽根4、及び軸部材2が一体に回転し、これにより軸方向あるいは外径方向の気流が発生する。
 流体動圧軸受装置1は、図2に示すように、軸部材2と、ハウジング7と、焼結軸受としての軸受スリーブ8と、シール部材9と、スラスト受け10とを備える。尚、以下では、有底筒状のハウジング7の底部7b側を下側、開口側を上側と言う。
 軸部材2は、ステンレス鋼等の金属材料で円柱状に形成される。軸部材2は、円筒状の外周面2aと、下端に設けられた球面状の凸部2bとを有する。
 ハウジング7は、略円筒状の側部7aと、側部7aの下方の開口部を閉塞する底部7bとを有する。図示例では、側部7aと底部7bとが樹脂で一体に射出成形される。側部7aの外周面7a2には、ケーシング5及びステータコイル6aが固定される。側部7aの内周面7a1には、軸受スリーブ8の外周面8dが固定される。底部7bの上側端面7b1の外径端には、内径部よりも上方に位置する肩面7b2が設けられ、この肩面7b2に軸受スリーブ8の下側端面8cが当接する。底部7bの上側端面7bの中央部には、スラスト受け10が配される。
 軸受スリーブ8は、円筒状を成し、ハウジング7の側部7aの内周面7a1に、隙間接着、圧入、圧入接着等の適宜の手段で固定される。軸受スリーブ8の内径は0.6~2.0mm程度、外径は1.5~4.0mm程度とされる。軸受スリーブ8は、銅及び鉄を主成分として含む焼結金属からなる。本実施形態の軸受スリーブ8は、鉄を38~42wt%、錫を1~3wt%含み、残部が銅及び不可避不純物である焼結金属で構成される。軸受スリーブ8の密度は、ドライ状態(内部気孔に油を含浸させていない状態)で6.9~7.3g/cm3とされる。
 軸受スリーブ8は、均一に分散された無数の微細な内部気孔を有する。軸受スリーブ8の通油度は、0.02g/10min未満、好ましくは0.015g/10min未満とされる。また、軸受スリーブ8の通油度は、0.005g/10min以上とされる。尚、ここで言う通油度は、軸受スリーブ8の両端面8b,8cの全面を密封し、軸受スリーブ8の内径から外径へむけて、油を0.4MPaで10分間圧送したときの油の透過量を言う。このときの油は、40℃粘度が45mm2/sであるものを使用する。
 ラジアル軸受面となる軸受スリーブ8の内周面8aには、ラジアル動圧発生部としての動圧溝が形成される。この実施形態では、例えば図3に示すように、内周面8aの軸方向に離隔した2箇所に、ヘリングボーン形状の動圧溝8a1、8a2が形成される。動圧溝8a1、8a2は、図3のクロスハッチングで示す丘部の間に形成される。上側の動圧溝8a1は、丘部の軸方向略中央部に設けられた環状部分に対して軸方向非対称に形成されており、環状部分より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(X1>X2)。これにより、ラジアル軸受隙間の潤滑油を下方に押し込んで軸受内部の潤滑油を強制的に循環させ、軸受内部の圧力バランスを適正に保つことができる。一方、下側の動圧溝8a2は、軸方向対称に形成されている。
 シール部材9は、樹脂あるいは金属で環状に形成され、ハウジング7の側部7aの内周面7a1の上端部に固定される。シール部材9は、軸受スリーブ8の上側端面8bと当接している。シール部材9の内周面9aは、軸部材2の外周面2aと半径方向で対向し、これらの間にシール空間Sが形成される。軸部材2の回転時には、シール空間Sにより、軸受内部の潤滑油の外部への漏れ出しが防止される。
 上記の流体動圧軸受装置1は、以下のような手順で組み立てられる。まず、ハウジング7の底部7bの上側端面7b1にスラスト受け10を配置する。そして、ハウジング7の側部7aの内周に、予め内部気孔に潤滑油を含浸させた軸受スリーブ8を挿入し、軸受スリーブ8の下側端面8cを底部7bの肩面7b2に当接させた状態で、軸受スリーブ8の外周面8dを側部7aの内周面7a1に固定する。その後、シール部材9をハウジング7の側部7aの内周面7a1の上端に固定する。このとき、シール部材9をハウジング7の側部7aに圧入し、シール部材9とハウジング7の底部7bの肩面7b2とで軸受スリーブ8を軸方向両側から挟持することで、軸受スリーブ8を軸方向で拘束することができる。その後、軸受スリーブ8の内周に潤滑油を点滴し、軸部材2を挿入することで、流体動圧軸受装置1の組立が完了する。このとき、潤滑油はシール部材9で密封されたハウジング7の内部空間(軸受スリーブ8の内部空孔を含む)に充満し、油面はシール空間Sの範囲内に維持される。
 上記構成の流体動圧軸受装置1において、軸部材2が回転すると、軸受スリーブ8の内周面8aと軸部材2の外周面2aとの間にラジアル軸受隙間が形成される。そして、軸受スリーブ8の内周面8aに形成された動圧溝8a1、8a2が、ラジアル軸受隙間の潤滑油に動圧作用を発生させることにより、軸部材2をラジアル方向に支持する第1ラジアル軸受部R1及び第2ラジアル軸受部R2が構成される。また、軸部材2の下端の凸部2bとスラスト受け10とが接触摺動することで、軸部材2をスラスト方向に支持するスラスト軸受部Tが構成される。
 このとき、上記のように、軸受スリーブ8の通油度が0.02g/10min未満に設定されていることにより、ラジアル軸受面からの動圧抜けが抑えられ、ラジアル方向の軸受剛性が高められる。特に本実施形態のように、携帯電話やタブレット型端末に組み込まれる流体動圧軸受装置1の場合、軸部材2には様々な方向の負荷荷重が加わるため、上記のように通油度を低くして軸受剛性を高めることが好ましい。また、軸受スリーブ8の通油度が0.005g/10min以上に設定されていることにより、軸受スリーブ8の内部気孔を介してある程度の油が流通可能とされ、局部的な油の劣化や負圧の発生を防止できる。
 以下、上記の軸受スリーブ8の製造方法を説明する。軸受スリーブ8は、混合工程、圧縮成形(フォーミング)工程、焼結工程、及び動圧溝サイジング工程を経て行われる。
 混合工程では、下記の銅粉末、鉄粉末、錫粉末、及び黒鉛を所定の割合で混合して、軸受スリーブ8の原料となる混合金属粉末を作成する。
 銅粉末は電解銅粉を含む。本実施形態では、混合金属粉末全体に対して電解銅粉が50wt%以上含まれる。また、本実施形態では、銅粉末が全て電解銅粉である。銅粉末には、平均粒径45μm未満の粒子が85~95wt%含まれる。また、銅粉末に含まれる平均粒径10μm未満の粒子は10wt%未満である。銅粉末は、円形度0.64以上の粒子を、40~50個数%含む。銅粉末の見かけ密度は、1.4~1.7g/cm3とされ
る。
 鉄粉末は、例えば還元鉄粉が用いられる。鉄粉末には、平均粒径45μm未満の粒子が80~90wt%含まれる。鉄粉末に含まれる平均粒径10μm未満の粒子は、10wt%未満である。鉄粉末全体の平均粒径は、銅粉末全体の平均粒径よりも若干大きい。
 錫粉末は、例えばアトマイズ粉が用いられる。錫粉末に含まれる平均粒径45μm未満の粒子は、98%以上とされる。錫粉末に含まれる平均粒径10μm未満の粒子は10wt%未満である。
 上記の銅粉末、鉄粉末、及び錫粉末を所定の割合で混合して、混合金属粉末が作成される。混合金属粉末の組成は、鉄粉末が38~42wt%、錫粉末が1~3wt%とされ、残部が銅及び不可避不純物とされる。尚、圧縮成形時の成形性、あるいは完成品の摺動特性を改善する目的で、上記混合金属粉末Mに黒鉛(グラファイト)などの固体潤滑剤を配合してもよい。混合金属粉末Mは、平均粒径45μm未満の粒子を80wt%以上含む。また、混合金属粉末Mに含まれる平均粒径10μm未満の粒子は、10wt%未満である。このように、混合金属粉末Mを微細な粒子で構成することで、見かけ密度が低くなり、混合金属粉末Mの流動性の低下が懸念される。しかし、上記のように混合金属粉末中の電解銅粉が、円形度0.64以上の粒子を40個数%以上含むことで、混合金属粉末Mの見かけ密度の低下が抑えられ(具体的には2.0~2.3g/cm3)、混合金属粉末Mの流動性の低下を抑えることができる(具体的には、流動度80~90sec/50g)。尚、流動度は、JIS Z2502:2012「金属粉-流動度測定方法」で測定される。
 圧縮成形工程では、上記混合工程で混合した混合金属粉末Mを所定形状(図示例では円筒形状)に圧縮成形し、圧粉体を形成する。具体的には、まず、図4(a)に示すように、フォーミング金型のダイ11の内周面11aと、コアロッド12の外周面12aと、下パンチ13の上端面13aとで画成されたキャビティ内に、混合金属粉末Mを流し入れる。このとき、混合金属粉末Mの流動度が90sec/50g以下に抑えられていることで、キャビティ内へ混合金属粉末Mがスムーズに流し入れられ、キャビティ全体に混合金属粉末Mを均一に充填することができる。
 そして、上パンチ14を下降させ、金属粉末Mを上方から圧縮し、円筒状の圧粉体Maが成形される{図4(b)参照}。その後、ダイ11を圧粉体Maに対して下方へ相対移動させることにより、金型から圧粉体Maを離型する{図4(c)参照}。このとき、混合金属粉末Mとして、平均粒径45μm未満の粒子を80wt%以上含む微細なものを使用しているため、圧粉体Maの密度を高めて内部気孔を微細化することができる。また、上記のように、キャビティ全体に均一に混合金属粉末Mが充填されているため、圧粉体Maの内部気孔を均一に分散させることができる。
 焼結工程では、圧粉体Maを所定の焼結温度で焼結することで、焼結体が形成される。焼結時の温度(焼結温度)は、銅の融点(1085℃)未満に設定され、例えば850~900℃、本実施形態では870℃とされる。このとき、混合金属粉末Mに電解銅粉が含まれていることで、銅粉末の焼結が促進され、焼結体の内部気孔がさらに微細化される。 
 動圧溝サイジング工程では、焼結体の内周面に、図3に示すラジアル動圧発生部(動圧溝8a1、8a2)を型成形する。具体的には、図示は省略するが、焼結体の内周にコアロッドを挿入すると共に、焼結体の軸方向両端面を上下パンチで拘束した状態で、焼結体及びコアロッドをダイの内周に圧入することで、焼結体の内周面を、コアロッドの外周面に形成された成形型に押し付ける。これにより、焼結体の内周面に成形型の形状が転写され、動圧溝8a1、8a2が成形される。その後、ダイの内周から焼結体及びコアロッドを引き抜くことにより、焼結体を外径向きにスプリングバックさせ、焼結体の内周面をコアロッドの外周面から剥離する。そして、焼結体の内周からコアロッドを引き抜き、軸受スリーブ8が完成する。
 以上のように、混合金属粉末の粒子を微細化し、且つ、電解銅粉を用いることで、軸受スリーブ8の内部気孔が微細化且つ均一化され、これにより軸受スリーブ8の通油度が0.02g/10min未満に設定される。これにより、軸受面に封孔処理を施すことなく、軸受面(特にラジアル軸受面)からの動圧抜けを抑えて軸受剛性を高めることができる。尚、封孔処理は必ずしも省略しなければならないわけではなく、生産効率やコスト面で問題なければ、動圧溝サイジングを施す前の焼結体の内周面に回転サイジングやショットブラスト等の封孔処理を施しても良い。この場合、軸受面の表面開孔をさらに減じることができ、軸受剛性をより一層向上させることができる。
 本発明の効果を確認するために、以下の試験を行った。まず、下記の表1に示す組成からなる実施品及び比較品を形成した。実施品及び比較品は、内径1.5mm、外径3.0mm、軸方向寸法3.0mmの円筒形状を成す。
Figure JPOXMLDOC01-appb-T000001
 下記の表2は、表1の銅粉A,B(電解粉)の粒度分布及び円形度の分布を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施品に含まれる電解銅粉Aは、平均粒径45μm未満の粒子を85wt%以上含むのに対し、比較品に含まれる電解銅粉Bは、平均粒径45μm未満の粒子を55~75%含む。すなわち、電解銅粉Aは、電解銅粉Bよりも、微細な粒子を多く含む。また、電解銅粉Aは、円形度が0.64以上の粒子を約46個数%含むのに対し、電解銅粉Bは、円形度が0.64以上の粒子を約35個数%含む。すなわち、電解銅粉Aは、電解銅粉Bよりも、円形に近い粒子を多く含む。通常、微細な粒子を多く含む電解銅粉Aの方が、電解銅粉Bよりも見かけ密度が低くなると思われるが、本実施形態では、電解銅粉Aの方が電解銅粉Bよりも見かけ密度が高くなっている。これは、電解銅粉Aが円形度の高い粒子をより多く含むためと考えられる。
 下記の表3は、表1の鉄粉A(還元粉)及び鉄粉B(アトマイズ粉)の粒度分布を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、実施品に含まれる鉄粉Aは、平均粒径が45μm未満の粒子を約85%含むのに対し、比較品に含まれる鉄粉Bは、平均粒径が45μm未満の粒子を約17%含む。すなわち、鉄粉Aは、鉄粉Bよりも、微細な粒子を多く含む。
 表4は、表1の錫粉A,B(アトマイズ粉)の粒度分布を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、錫粉A,B共に、平均粒径45μm未満の粒子を90%以上含む微細なものであるが、錫粉Aの方が、錫粉Bよりも、微細な粒子を多く含む。
 上記の実施品及び比較品の原料となる各混合金属粉末について、見かけ密度及び流動度を測定した。また、これらの混合金属粉末を用いて形成した焼結体(実施品及び比較品)について、通油度を測定した。その結果を下記の表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、実施品の通油度は比較品よりも低くなる。これは、原料粉末を微細化することで、実施品の内部空孔、ひいては軸受面の表面開口が微細化されるためと考えられる。一方、表1~表4に示されるように、実施品の銅粉、鉄粉、及び錫粉は、何れも、比較品の銅粉、鉄粉、及び錫粉よりも微細な粒子の割合が高い。この場合、実施品の原料粉末は比較品の原料粉末よりも見かけ密度が大幅に低くなると思われる。しかし、本実施形態では、表2に示すように、実施品の銅粉が、円形に近い粒子を多く含むことで、比較品の銅粉よりも微細な粒子の割合が高いにも関わらず、見かけ密度が高くなっている。これにより、実施品の原料粉末の流動度は、比較品よりも若干高い程度で抑えられ、上記実施形態のサイズの焼結軸受を成形する際に必要とされる程度(例えば90sec/50g以下)に抑えられる。以上より、本発明の実施品は、比較品よりも微細な粉末を用いることで通油度を低くすることができる(動圧抜けの抑制効果が高められる)と共に、銅粉が円形に近い粒子を多く含むことで原料粉末の流動性の低下が抑えられる(原料粉末をキャビティに均一に充填できる)ことが確認された。
1     流体動圧軸受装置
2     軸部材
7     ハウジング
8     軸受スリーブ(焼結軸受)
9     シール部材
R1,R2    ラジアル軸受部
T     スラスト軸受部
S     シール空間

Claims (11)

  1.  銅粉末及び鉄粉末を含む混合金属粉末を用いて形成された焼結金属からなる焼結軸受であって、
     前記混合金属粉末が、平均粒径45μm未満の粒子を80wt%以上含み、
     前記銅粉末が電解銅粉を含み、該電解銅粉が、円形度0.64以上の粒子を40個数%以上含むことを特徴とする焼結軸受。
  2.  前記銅粉末が、平均粒径45μm未満の粒子を85wt%以上含む請求項1記載の焼結軸受。
  3.  前記銅粉末に含まれる平均粒径10μm未満の粒子が10wt%未満である請求項1又は2記載の焼結軸受。
  4.  前記電解銅粉の見かけ密度が1.4~1.7g/cm3である請求項1~3の何れかに記載の焼結軸受。
  5.  前記混合金属粉末に、前記電解銅粉が50~60wt%含まれる請求項1~4の何れかに記載の焼結軸受。
  6.  前記鉄粉末が、平均粒径45μm未満の粒子を80wt%以上含む請求項1~5の何れかに記載の焼結軸受。
  7.  前記鉄粉が還元鉄粉である請求項1~6の何れかに記載の焼結軸受。
  8.  鉄を38~42wt%、錫を1~3wt%含み、残部が銅及び不可避不純物である焼結金属からなる請求項1~7の何れかに記載の焼結軸受。
  9.  請求項1~8の何れかに記載の焼結軸受と、前記焼結軸受の内周に挿入された軸部材と、前記焼結軸受の内周面と前記軸部材の外周面との間に形成されるラジアル軸受隙間に満たされた潤滑油とを備えた流体動圧軸受装置。
  10.  請求項9に記載の流体動圧軸受装置と、ステータコイルと、ロータマグネットとを備えたモータ。
  11.  銅粉末及び鉄粉末を含む混合金属粉末を圧縮成形して圧粉体を形成する圧縮成形工程と、前記圧粉体を所定の焼結温度で焼結する焼結工程とを経て行われる焼結軸受の製造方法であって、
     前記混合金属粉末が、平均粒径45μm未満の粒子を80wt%以上含み、
     前記銅粉末が電解銅粉を含み、該電解銅粉が、円形度0.64以上の粒子を40個数%以上含むことを特徴とする焼結軸受の製造方法。
PCT/JP2014/066877 2013-07-22 2014-06-25 焼結軸受及びその製造方法 WO2015012055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480041234.9A CN105393005B (zh) 2013-07-22 2014-06-25 烧结轴承及其制造方法
US14/899,896 US9989092B2 (en) 2013-07-22 2014-06-25 Sintered bearing and method of manufacturing same
EP14829542.1A EP3026280A4 (en) 2013-07-22 2014-06-25 Sintered bearing and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-151697 2013-07-22
JP2013151697A JP6199106B2 (ja) 2013-07-22 2013-07-22 焼結軸受及びその製造方法、並びに焼結軸受を備えた流体動圧軸受装置

Publications (1)

Publication Number Publication Date
WO2015012055A1 true WO2015012055A1 (ja) 2015-01-29

Family

ID=52393107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066877 WO2015012055A1 (ja) 2013-07-22 2014-06-25 焼結軸受及びその製造方法

Country Status (5)

Country Link
US (1) US9989092B2 (ja)
EP (1) EP3026280A4 (ja)
JP (1) JP6199106B2 (ja)
CN (1) CN105393005B (ja)
WO (1) WO2015012055A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047765A1 (ja) * 2016-09-06 2018-03-15 Ntn株式会社 すべり軸受
JP2018040401A (ja) * 2016-09-06 2018-03-15 Ntn株式会社 すべり軸受
JP2018040458A (ja) * 2016-09-09 2018-03-15 Ntn株式会社 動圧軸受およびその製造方法
JP2018091369A (ja) * 2016-11-30 2018-06-14 Ntn株式会社 動圧軸受及びその製造方法
US10350680B2 (en) * 2015-03-31 2019-07-16 Sanyo Specia Steel Co., Ltd. Metal powder composed of spherical particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078183A (ja) * 2015-10-19 2017-04-27 Ntn株式会社 焼結軸受
JP6812113B2 (ja) * 2016-02-25 2021-01-13 Ntn株式会社 焼結含油軸受及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269508A (ja) * 1998-03-19 1999-10-05 Komatsu Ltd 複層焼結摺動部材およびその製造方法
JP2006214003A (ja) * 2005-01-06 2006-08-17 Ntn Corp 焼結金属材およびこの金属材で形成された焼結含油軸受
JP2009197903A (ja) 2008-02-21 2009-09-03 Ntn Corp 焼結軸受
JP2012241728A (ja) * 2011-05-16 2012-12-10 Ntn Corp 焼結軸受及びこれを備えた流体動圧軸受装置
JP2013092163A (ja) * 2011-10-24 2013-05-16 Hitachi Powdered Metals Co Ltd 焼結含油軸受およびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689834B2 (ja) * 1992-12-11 1997-12-10 株式会社日立製作所 モートル,ミラーモートルおよびレーザビームプリンター
US6091051A (en) * 1996-12-28 2000-07-18 Minolta Co., Ltd. Heating device
US20030132678A1 (en) * 2000-03-10 2003-07-17 Samsung Electro-Mechanics Co., Ltd. Sintered oilless bearing and motor using the same
KR100455261B1 (ko) * 2002-07-04 2004-11-06 삼성전기주식회사 소결 함유 베어링 및 그 제조방법
JP4211045B2 (ja) * 2002-07-25 2009-01-21 三菱マテリアルPmg株式会社 摺動部品の製造方法
CN102588428B (zh) 2005-01-05 2014-12-10 Ntn株式会社 流体润滑轴承装置和具有其的电机
DE102005015467C5 (de) * 2005-04-04 2024-02-29 Diehl Brass Solutions Stiftung & Co. Kg Verwendung einer Kupfer-Zink-Legierung
GB2429070B (en) * 2005-08-10 2010-03-10 Elster Metering Ltd Fluid flow meter
JP2007177808A (ja) * 2005-12-27 2007-07-12 Hitachi Powdered Metals Co Ltd 動圧軸受ユニット
US20070231182A1 (en) * 2006-03-02 2007-10-04 Scm Metal Products, Inc. Low cost bronze powder for high performance bearings
US20080247689A1 (en) * 2007-04-06 2008-10-09 Nidec Corporation Motor
JP5545208B2 (ja) * 2008-03-14 2014-07-09 コニカミノルタ株式会社 有機圧電材料、それを用いた超音波振動子、その製造方法、超音波探触子及び超音波医用画像診断装置
DE102009028180A1 (de) * 2009-08-03 2011-02-10 Henkel Ag & Co. Kgaa Verfahren zum Befestigen eines Magneten auf oder in einem Rotor oder Stator
JP5606459B2 (ja) * 2010-02-05 2014-10-15 信越化学工業株式会社 アキシャルギャップ型永久磁石回転機
US8449697B2 (en) * 2010-03-16 2013-05-28 Sudhari Sahu Wear and corrosion resistant Cu—Ni alloy
JP5619550B2 (ja) 2010-09-27 2014-11-05 Ntn株式会社 焼結軸受及びこれを備えた流体動圧軸受装置、並びに焼結軸受の製造方法
WO2013042664A1 (ja) * 2011-09-22 2013-03-28 Ntn株式会社 焼結軸受およびその製造方法
CN106402145B (zh) * 2011-09-22 2019-05-10 Ntn株式会社 烧结轴承及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269508A (ja) * 1998-03-19 1999-10-05 Komatsu Ltd 複層焼結摺動部材およびその製造方法
JP2006214003A (ja) * 2005-01-06 2006-08-17 Ntn Corp 焼結金属材およびこの金属材で形成された焼結含油軸受
JP2009197903A (ja) 2008-02-21 2009-09-03 Ntn Corp 焼結軸受
JP2012241728A (ja) * 2011-05-16 2012-12-10 Ntn Corp 焼結軸受及びこれを備えた流体動圧軸受装置
JP2013092163A (ja) * 2011-10-24 2013-05-16 Hitachi Powdered Metals Co Ltd 焼結含油軸受およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3026280A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10350680B2 (en) * 2015-03-31 2019-07-16 Sanyo Specia Steel Co., Ltd. Metal powder composed of spherical particles
WO2018047765A1 (ja) * 2016-09-06 2018-03-15 Ntn株式会社 すべり軸受
JP2018040401A (ja) * 2016-09-06 2018-03-15 Ntn株式会社 すべり軸受
CN109642611A (zh) * 2016-09-06 2019-04-16 Ntn株式会社 滑动轴承
CN109642611B (zh) * 2016-09-06 2021-05-25 Ntn株式会社 滑动轴承
US11428266B2 (en) 2016-09-06 2022-08-30 Ntn Corporation Slide bearing
JP2018040458A (ja) * 2016-09-09 2018-03-15 Ntn株式会社 動圧軸受およびその製造方法
JP2018091369A (ja) * 2016-11-30 2018-06-14 Ntn株式会社 動圧軸受及びその製造方法

Also Published As

Publication number Publication date
JP6199106B2 (ja) 2017-09-20
EP3026280A1 (en) 2016-06-01
US20160138651A1 (en) 2016-05-19
EP3026280A4 (en) 2017-04-12
US9989092B2 (en) 2018-06-05
CN105393005A (zh) 2016-03-09
JP2015021586A (ja) 2015-02-02
CN105393005B (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
JP6199106B2 (ja) 焼結軸受及びその製造方法、並びに焼結軸受を備えた流体動圧軸受装置
JP6568578B2 (ja) 焼結含油軸受及びその製造方法
JP5384014B2 (ja) 焼結軸受
JP6816079B2 (ja) 振動モータ
JP6302259B2 (ja) 焼結軸受の製造方法
US10753395B2 (en) Oil-impregnated sintered bearing and method for manufacturing same
JP2015200337A (ja) 焼結軸受及びこれを備えた流体動圧軸受装置、並びに焼結軸受の製造方法
JP6836364B2 (ja) 焼結軸受およびその製造方法
WO2018047923A1 (ja) 焼結軸受及びその製造方法
JP7076266B2 (ja) 焼結含油軸受の製造方法
WO2017159345A1 (ja) 動圧軸受及びその製造方法
JP6026123B2 (ja) 焼結金属軸受
WO2018047765A1 (ja) すべり軸受
JP2017078183A (ja) 焼結軸受
JP4188288B2 (ja) 動圧型多孔質含油軸受の製造方法
JP6836366B2 (ja) 焼結軸受およびその製造方法
JP2022134339A (ja) 焼結含油軸受とこの軸受を備えた流体動圧軸受装置
CN117628053A (zh) 烧结含油轴承
JP2019157918A (ja) 焼結金属製動圧軸受
JP2018091369A (ja) 動圧軸受及びその製造方法
JP2018179018A (ja) 多孔質動圧軸受
JP2010060099A (ja) 滑り軸受及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041234.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14899896

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014829542

Country of ref document: EP