WO2015008866A1 - トリアジン化合物及びそれを含有する有機電界発光素子 - Google Patents
トリアジン化合物及びそれを含有する有機電界発光素子 Download PDFInfo
- Publication number
- WO2015008866A1 WO2015008866A1 PCT/JP2014/069243 JP2014069243W WO2015008866A1 WO 2015008866 A1 WO2015008866 A1 WO 2015008866A1 JP 2014069243 W JP2014069243 W JP 2014069243W WO 2015008866 A1 WO2015008866 A1 WO 2015008866A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- triazine compound
- triazine
- mmol
- general formula
- Prior art date
Links
- ZNHIZSXRHUYQNO-UHFFFAOYSA-N CC1(C)OB(c2cc(-c3cc(cccc4)c4c4ccccc34)cc(-c3nc(-c4ccccc4)nc(-c4ccccc4)n3)c2)OC1(C)C Chemical compound CC1(C)OB(c2cc(-c3cc(cccc4)c4c4ccccc34)cc(-c3nc(-c4ccccc4)nc(-c4ccccc4)n3)c2)OC1(C)C ZNHIZSXRHUYQNO-UHFFFAOYSA-N 0.000 description 2
- CYJZJGYYTFQQBY-UHFFFAOYSA-N Brc1cccc2cnccc12 Chemical compound Brc1cccc2cnccc12 CYJZJGYYTFQQBY-UHFFFAOYSA-N 0.000 description 1
- FNMVYTWTGWHRAY-UHFFFAOYSA-N Clc1cc(-c2cc(cccc3)c3c3ccccc23)cc(-c2nc(-c3ccccc3)nc(-c3ccccc3)n2)c1 Chemical compound Clc1cc(-c2cc(cccc3)c3c3ccccc23)cc(-c2nc(-c3ccccc3)nc(-c3ccccc3)n2)c1 FNMVYTWTGWHRAY-UHFFFAOYSA-N 0.000 description 1
- BLKKWMCDZNDYEQ-UHFFFAOYSA-N Clc1cc(Br)cc(-c2nc(-c3ccccc3)nc(-c3ccccc3)n2)c1 Chemical compound Clc1cc(Br)cc(-c2nc(-c3ccccc3)nc(-c3ccccc3)n2)c1 BLKKWMCDZNDYEQ-UHFFFAOYSA-N 0.000 description 1
- OFUFXTHGZWIDDB-UHFFFAOYSA-N Clc1ccc(cccc2)c2n1 Chemical compound Clc1ccc(cccc2)c2n1 OFUFXTHGZWIDDB-UHFFFAOYSA-N 0.000 description 1
- ODQBFVPXJFIYIT-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c2cc(-c3cc4ccccc4c4ccccc34)cc(-c3nc(cccc4)c4cc3)c2)nc(-c2ccccc2)n1 Chemical compound c(cc1)ccc1-c1nc(-c2cc(-c3cc4ccccc4c4ccccc34)cc(-c3nc(cccc4)c4cc3)c2)nc(-c2ccccc2)n1 ODQBFVPXJFIYIT-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D251/00—Heterocyclic compounds containing 1,3,5-triazine rings
- C07D251/02—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
- C07D251/12—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D251/14—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
- C07D251/24—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/622—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
- H10K50/171—Electron injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
Definitions
- the present invention relates to a triazine compound useful as a constituent component of an organic electroluminescent device, and an organic electroluminescent device containing the triazine compound.
- An organic electroluminescent element is formed by sandwiching a light-emitting layer containing a light-emitting material between a hole transport layer and an electron transport layer, and further attaching an anode and a cathode to the outside, and recombination of holes and electrons injected into the light-emitting layer. It is an element that utilizes light emission (fluorescence or phosphorescence) when the excitons that are generated are deactivated, and is applied not only to small displays but also to large televisions and lighting.
- the hole transport layer is divided into a hole transport layer and a hole injection layer
- the light emitting layer is divided into an electron blocking layer, a light emitting layer and a hole blocking layer
- the electron transport layer is divided into an electron transport layer and an electron injection layer. May be configured.
- a co-deposited film doped with a metal, an organometallic compound, or another organic compound may be used as the carrier transport layer (electron transport layer or hole transport layer) of the organic electroluminescence device.
- organic electroluminescent elements have higher driving voltage than inorganic light-emitting diodes, low luminance and luminous efficiency, and extremely low element lifetime, so that they have not been put to practical use in a wide range of fields.
- organic electroluminescence devices although the above-mentioned defects are gradually improved, excellent materials are required for the purpose of further improving the light emission efficiency characteristics, driving voltage characteristics, and long life characteristics.
- improvement of element lifetime is an urgent need for widespread use in a wide range of fields, and material development is required for this purpose.
- Examples of the electron transport material having excellent long life for organic electroluminescence devices include the triazine compound disclosed in Patent Document 1. However, further improvements have been demanded in terms of device lifetime.
- An object of the present invention is to provide a specific triazine compound capable of remarkably improving the lifetime of an organic electroluminescent device as compared with a conventionally known triazine compound, and an organic electroluminescent device using the triazine compound. .
- an organic electroluminescent element represented by the following general formula (1) which has a triazine compound as an electron transport material.
- the present inventors have found that the lifetime characteristic or the high luminous efficiency is remarkably exhibited, and the present invention has been completed.
- the present invention relates to a triazine compound represented by the following general formula (1) (hereinafter referred to as triazine compound (1)) and an organic electroluminescence device containing the same.
- a triazine compound represented by the general formula (1) (A represents a group selected from the groups represented by the following general formulas (2) to (4).) (Ar represents a phenyl group, a pyridyl group, a naphthyl group, or an azanaphthyl group.
- X represents a single bond or a phenylene group.
- the triazine compound of the present invention it is possible to provide an organic electroluminescence device that has a longer life than a conventionally known triazine compound, can be driven at a lower voltage, and is remarkably excellent in luminous efficiency.
- the present invention relates to the triazine compound represented by the general formula (1), and the substituents in the triazine compound (1) are defined as follows.
- Ar represents a phenyl group, a pyridyl group, a naphthyl group, or an azanaphthyl group.
- the pyridyl group is not particularly limited, and examples thereof include a 2-pyridyl group, a 3-pyridyl group, and a 4-pyridyl group. Among these, a 2-pyridyl group or a 3-pyridyl group is preferable from the viewpoint of excellent lifetime of the organic electroluminescence device.
- the naphthyl group is not particularly limited, and examples thereof include a 1-naphthyl group and a 2-naphthyl group. Of these, a 1-naphthyl group is preferable in terms of excellent lifetime of the organic electroluminescent device.
- the azanaphthyl group is not particularly limited, and examples thereof include a 2-quinolyl group, a 3-quinolyl group, a 4-quinolyl group, a 5-quinolyl group, a 6-quinolyl group, a 7-quinolyl group, and an 8- Examples include quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, 4-isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group and the like. Among these, a 3-quinolyl group or a 4-isoquinolyl group is preferable from the viewpoint of excellent lifetime of the organic electroluminescence device.
- Ar is preferably a phenyl group, a 2-pyridyl group, a 3-pyridyl group, a 1-naphthyl group, a 3-quinolyl group, or a 4-isoquinolyl group from the viewpoint of excellent lifetime of the organic electroluminescence device. More preferred is a phenyl group, a 2-pyridyl group, a 3-pyridyl group, or a 3-quinolyl group.
- X represents a single bond or a phenylene group.
- the phenylene group is not particularly limited, and examples thereof include an o-phenylene group, an m-phenylene group, and a p-phenylene group.
- X is preferably a single bond or a p-phenylene group from the viewpoint of excellent lifetime of the organic electroluminescence device.
- X 1 and X 2 represent a nitrogen atom or CH, and one of X 1 and X 2 is a nitrogen atom, and the other is Represents CH.
- Preferred examples of the triazine compound represented by the general formula (1) include compounds represented by the following general formula (5), (7), or (9). (Ar represents a phenyl group, a pyridyl group, a naphthyl group, or an azanaphthyl group. X represents a single bond or a phenylene group.)
- X 1 and X 2 represents a nitrogen atom or CH, with either one of X 1 and X 2 is a nitrogen atom and the other represents a CH.
- the triazine compound represented by the general formula (5) is preferably a triazine compound represented by the following general formula (6) from the viewpoint of excellent lifetime of the organic electroluminescence device.
- triazine compound represented by the general formula (5) examples include the following (A-1) to (A-76), but the present invention is not limited thereto.
- the triazine compound represented by the general formula (7) is preferably a triazine compound represented by the following general formula (8) from the viewpoint of excellent lifetime of the organic electroluminescence device.
- triazine compound represented by the general formula (7) examples include the following (B-1) to (B-120), but the present invention is not limited thereto.
- X 1 and X 2 are the same as the group represented by the general formula (4).
- the triazine compound represented by the general formula (9) is preferably a triazine compound represented by the following general formula (10) from the viewpoint of excellent lifetime of the organic electroluminescent device.
- X 1 and X 2 are the same as those in the general formula (9).
- triazine compound represented by the general formula (10) include the following (C-1) to (C-28), but the present invention is not limited thereto.
- triazine compound represented by General formula (10) can be manufactured based on the method described in WO2011 / 021689 gazette or WO2013 / 069762 gazette.
- the triazine compound (1) of the present invention is preferably used as a part of the constituent components of the organic electroluminescence device.
- effects such as longer life, higher efficiency, and lower voltage can be obtained than conventional devices.
- the triazine compound (1) of this invention when used as an organic electroluminescent element material, it is also possible to use it as a co-deposition film
- the light emitting layer in an organic electroluminescent element refers to a layer that emits light when a current is passed through an electrode composed of a cathode and an anode. Specifically, it refers to a layer containing a fluorescent compound that emits light when an electric current is passed through an electrode composed of a cathode and an anode.
- an organic electroluminescent element has a structure in which a light emitting layer is sandwiched between a pair of electrodes.
- the organic electroluminescent element of the present invention has a hole transport layer, an electron transport layer, an anode buffer layer, a cathode buffer layer, etc. in addition to the light emitting layer as required, and has a structure sandwiched between a cathode and an anode. Specific examples include the structures shown below.
- a conventionally known light-emitting material can be used for the light-emitting layer in the organic electroluminescent element of the present invention.
- a method for forming the light emitting layer for example, there is a method of forming a thin film by a known method such as a vapor deposition method, a spin coating method, a casting method, or an LB method.
- a vacuum evaporation method is possible. Film formation by the vacuum evaporation method can be performed by using a general-purpose vacuum evaporation apparatus.
- the vacuum degree of the vacuum chamber when forming a film by the vacuum deposition method is determined by taking into account the manufacturing tact time and manufacturing cost of manufacturing the organic electroluminescence device, and commonly used diffusion pumps, turbo molecular pumps, cryopumps, etc. Can be reached.
- the degree of vacuum is preferably about 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 6 Pa, and more preferably 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 6 Pa.
- the deposition rate is preferably 0.005 to 1.0 nm / second, and more preferably 0.01 to 0.3 nm / second, depending on the thickness of the film to be formed.
- the triazine compound (1) of the present invention has high heat resistance, thermal decomposition does not easily occur even during high-speed film formation, and the influence on device performance is small.
- the triazine compound (1) of the present invention is dissolved in chloroform, dichloromethane, 1,2-dichloroethane, chlorobenzene, toluene, ethyl acetate, tetrahydrofuran, etc., and used for a spin coating method, an inkjet method, Film formation by a casting method, a dip method or the like is also possible.
- the light emitting layer can be obtained by dissolving the light emitting material in a solvent together with a binder such as a resin to form a solution, and then applying the solution by a spin coating method or the like to form a thin film.
- the film thickness of the light emitting layer formed in this manner is not particularly limited and can be appropriately selected depending on the situation, but is usually in the range of 5 nm to 5 ⁇ m, preferably 5 nm to 1 ⁇ m.
- the hole injection layer and the hole transport layer have a function of transmitting holes injected from the anode to the light emitting layer, and the hole injection layer and the hole transport layer are interposed between the anode and the light emitting layer. By doing so, many holes are injected into the light emitting layer with a lower electric field.
- electrons injected from the cathode and transported from the electron injection layer and / or the electron transport layer to the light-emitting layer are generated by the electron barrier existing at the interface between the light-emitting layer and the hole injection layer or the hole transport layer. Without leaking to the injection layer or the hole transport layer, it is accumulated at the interface in the light emitting layer, and the device has excellent light emitting performance such as improved light emission efficiency.
- the hole injection material and the hole transport material have either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
- Examples of the hole injection material and hole transport material include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, Examples thereof include oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers.
- hole injection material and the hole transport material it is preferable to use a porphyrin compound, an aromatic tertiary amine compound or a styrylamine compound, and it is particularly preferable to use an aromatic tertiary amine compound.
- aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-Di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminoph
- inorganic compounds such as p-type-Si and p-type-SiC can also be used as hole injection materials, hole transport materials, and the like.
- These hole injection layer and hole transport layer are formed by thinning the hole injection material or the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. Can be formed.
- the thickness of the hole injection layer and the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 1 ⁇ m.
- the hole injection layer and the hole transport layer may have a single layer structure composed of one or more of the above materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
- the electron transport layer contains a triazine compound represented by the general formula (1).
- the electron transport layer can be formed by forming the triazine compound represented by the general formula (1) by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. .
- the thickness of the electron transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably 5 nm to 1 ⁇ m.
- this electron transport layer includes a triazine compound represented by the general formula (1), may include a conventionally known electron transport material, and may have a single-layer structure composed of one or more types, A laminated structure composed of a plurality of layers having the same composition or different compositions may be used.
- the light emitting material is not limited to the light emitting layer, but may be contained in a hole transporting layer adjacent to the light emitting layer, or an electron transporting layer, thereby further adding an organic electroluminescent device. The luminous efficiency can be increased.
- the substrate preferably used for the organic electroluminescent element of the present invention is not particularly limited, and examples thereof include glass and plastic, and any substrate can be used.
- the substrate preferably used include glass, quartz, and a light transmissive plastic film.
- the light transmissive plastic film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, and polycarbonate (PC). , Cellulose triacetate (TAC), cellulose acetate propionate (CAP) and the like.
- a method for producing a device comprising the above-mentioned anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described below.
- a thin film made of a desired electrode material such as an anode material
- a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm. Is made.
- a thin film comprising a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer, which are element materials, is formed on the thin film.
- a buffer layer may exist between the anode and the light emitting layer or the hole injection layer and between the cathode and the light emitting layer or the electron injection layer.
- layers having other functions may be stacked as necessary. For example, you may have functional layers, such as a hole block layer and an electronic block layer.
- an electrode material made of a material selected from metals, alloys, electrically conductive compounds (conductive materials) and mixtures thereof having a high work function (4 eV or more) is preferably used.
- an electrode substance include a conductive transparent material such as a metal such as Au, CuI, indium-tin oxide (ITO), SnO 2 , and ZnO.
- a thin film of these electrode materials may be formed by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or through a mask having a desired shape during vapor deposition or sputtering. A pattern may be formed.
- the cathode a material having a material selected from a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof is preferably used.
- electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
- a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, A magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, and the like are suitable.
- the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- a thin film made of a desired electrode material for example, an anode material is formed on a substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
- a thin film made of each of a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer is formed on the anode, and then a thin film made of a cathode material is 1 ⁇ m or less thereon.
- the cathode is provided by a method such as vapor deposition or sputtering so that the film thickness is preferably in the range of 50 to 200 nm to obtain a desired organic electroluminescent element.
- the organic electroluminescence device of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
- the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
- 2- (3-bromo-5-chlorophenyl) -4,6-diphenyl-1,3,5-triazine 9.3 g, 22.2 mmol
- 3-quinolineboronic acid 5.0 g, 28 0.9 mmol
- 1,2-dimethoxyethane 100 mL
- 10 wt% NaOH aqueous solution 26.6 g, 66.6 mmol
- Phosphine palladium 513 mg, 0.44 mmol
- a 20 wt% K 2 CO 3 aqueous solution (17 g, 24.8 mmol) was added dropwise thereto over 5 minutes, followed by stirring at 70 ° C. for 14 hours. After allowing to cool to room temperature, water (150 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed successively with pure water, methanol, and hexane to obtain a green powder.
- 2- (3-bromo-5-chlorophenyl) -4,6-diphenyl-1,3,5-triazine (18.8 g, 44.4 mmol), 4-isoquinolineboronic acid (10.0 g, 57 .8 mmol) and 1,2-dimethoxyethane (320 mL) were added to a 1 L three-necked flask, and a 10 wt% NaOH aqueous solution (53 g, 133 mmol) was added dropwise over 5 minutes, and then tetrakistriphenylphosphine palladium (1 0.03 g, 0.89 mmol) was added, and the mixture was stirred at 90 ° C. for 15 hours.
- a 20 wt% aqueous K 2 CO 3 solution (9.9 g, 14.3 mmol) was added dropwise thereto over 5 minutes, followed by stirring at 70 ° C. for 8 hours. After allowing to cool to room temperature, water (50 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed successively with pure water, methanol, and hexane to obtain a yellow powder.
- a 20 wt% K 2 CO 3 aqueous solution (9.5 g, 13.8 mmol) was added dropwise thereto over 5 minutes, followed by stirring at 70 ° C. for 8 hours. After allowing to cool to room temperature, water (50 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed successively with pure water, methanol, and hexane to obtain a gray powder.
- the obtained gray powder was purified by washing with toluene, and the desired product 4,6-diphenyl-2- [3- (4-isoquinolyl) -5- (triphenylene-2-yl) phenyl] -1, A gray powder (yield 3.30 g, yield 93.9%, LC purity 99.72%) of 3,5-triazine (compound B-8) was obtained.
- a 20 wt% aqueous K 2 CO 3 solution (17.1 g, 24.7 mmol) was added dropwise thereto over 5 minutes, and the mixture was stirred at 70 ° C. for 14 hours. After allowing to cool to room temperature, water (50 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed successively with pure water, methanol, and hexane to obtain a gray powder.
- a 20 wt% K 2 CO 3 aqueous solution (21 g, 30.9 mmol) was added dropwise thereto over 5 minutes, and the mixture was stirred at 70 ° C. for 12 hours. After allowing to cool to room temperature, water (100 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed successively with pure water, methanol, and hexane to obtain a gray powder.
- the obtained gray powder was purified by recrystallization from toluene, and 4,6-diphenyl-2- [5- (triphenylene-2-yl) -biphenyl-3-yl] -1,3, which was the target product, was purified.
- a gray powder (yield 6.7 g, yield 92%, LC purity 99.53%) of 5-triazine (compound B-1) was obtained.
- the obtained gray powder was purified by recrystallization from toluene, and the desired product, 4,6-diphenyl-2- [3- (1-naphthyl) -5- (triphenylene-2-yl) phenyl] -1 , 3,5-triazine (Compound B-5) was obtained as a gray powder (yield 6.82 g, yield 81%, LC purity 98.75%).
- Element Example-1 As the substrate, a glass substrate with an ITO transparent electrode on which a 2 mm wide indium-tin oxide (ITO) film (thickness 110 nm) was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface treated by ozone ultraviolet cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light emission area of 4 mm 2 having a schematic cross-sectional view shown in FIG. 1 was produced. Each organic material was formed by a resistance heating method. First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa.
- ITO indium-tin oxide
- a hole injection layer 2 a charge generation layer 3, a hole transport layer 4, a light-emitting layer 5, an electron transport layer 6, and a cathode layer are formed as an organic compound layer on the glass substrate with an ITO transparent electrode shown by 1 in FIG. 7 were formed while being laminated in this order by vacuum deposition.
- a sublimated HIL film having a thickness of 65 nm was formed at a rate of 0.15 nm / second.
- sublimation-purified HAT was deposited to a thickness of 5 nm at a rate of 0.05 nm / second.
- HTL hole transport layer 4
- HTL hole transport layer 4
- EML-1 and EML-2 were deposited at a ratio of 95: 5 (weight ratio) to 25 nm (deposition rate of 0.18 nm / second).
- the cathode layer 7 is formed of silver / magnesium (weight ratio 1/10) and silver in this order at 80 nm (film formation rate 0.5 nm / second) and 20 nm (film formation rate 0.2 nm / second), respectively. And it was set as the 2 layer structure.
- Each film thickness was measured with a stylus type film thickness meter (DEKTAK). Furthermore, this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less. For the sealing, a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin (manufactured by Nagase ChemteX Corporation) were used.
- a direct current was applied to the produced organic electroluminescence device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
- V voltage
- cd / A current efficiency
- element lifetime h
- the initial luminance was measured 800 cd / m 2 luminance decay time at the time of continuous lighting when driven in, the luminance (cd / m 2) was measured the time taken for reducing 30%.
- the element lifetime was expressed as a relative value when the element reference example-1 shown below was taken as 100. The results are shown in Table 1.
- Device reference example-1 In Device Example 1, instead of compound A-22, 4,6-diphenyl-2- [5- (9-phenanthryl) -4 ′-(2-pyrimidyl) described in JP-A-2011-63584 An organic electroluminescent device was produced in the same manner as in Device Example 1 except that biphenyl-3-yl] -1,3,5-triazine (ETL-1) was used.
- ETL-1 biphenyl-3-yl] -1,3,5-triazine
- the organic electroluminescence device of the device example using the azine compound of the present invention has a significantly superior device life as compared with the device reference example. Moreover, it turned out that the organic electroluminescent element of an element Example is excellent in the characteristic of a drive voltage and current efficiency compared with the element reference example.
- the organic electroluminescent device using a material containing a triazine compound having a novel structure according to the present invention can be driven at a low voltage, have a high efficiency and have a long life, and industrially project lamps and images for illumination and exposure light sources. It is useful as a projection device that performs such a display, a display device that directly recognizes still images and moving images, and the like.
- Japanese Patent Application No. 2013-150870 filed on July 19, 2013, Japanese Patent Application No. 2013-153872 filed on July 24, 2013, Japanese Patent Application filed on July 30, 2013 The entire contents of Japanese Patent Application No. 2013-210743, Japanese Patent Application No. 2013-210743 filed on Oct. 8, 2013, the entire contents of claims, drawings and abstracts are incorporated herein by reference. It is incorporated as a disclosure of the document.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
従来トリアジン化合物に比べて、有機電界発光素子寿命を顕著に向上させる特定のトリアジン化合物を提供する。 式(1)で示されるトリアジン化合物(Aは、以下の一般式(2)~(4)で示される基から選ばれる基を表す)及びこれを構成成分とする有機電界発光素子。 (1)(2) (Arはフェニル基、ピリジル基、ナフチル基、又はアザナフチル基を表す。Xは単結合又はフェニレン基を表す。*は結合位置を表す。) (3)(Arはフェニル基、ピリジル基、ナフチル基、又はアザナフチル基を表す。Xは単結合又はフェニレン基を表す。*は結合位置を表す。)(4)(X1及びX2は、窒素原子又はCHを表し、X1及びX2のうち何れか一方が窒素原子で、もう一方はCHを表す。*は結合位置を表す。)
Description
本発明は、有機電界発光素子の構成成分として有用なトリアジン化合物、及びそれを含有する有機電界発光素子に関するものである。
有機電界発光素子は、発光材料を含有する発光層を、正孔輸送層と電子輸送層で挟み、さらにその外側に陽極と陰極を取付け、発光層に注入された正孔及び電子の再結合により生ずる励起子が失活する際の光の放出(蛍光又はりん光)を利用する素子であり、小型のディスプレイだけでなく大型テレビや照明等へ応用されている。なお、正孔輸送層は正孔輸送層と正孔注入層に、発光層は、電子ブロック層と発光層と正孔ブロック層に、電子輸送層は電子輸送層と電子注入層に分割して構成される場合もある。
また、有機電界発光素子のキャリア輸送層(電子輸送層又は正孔輸送層)として、金属、有機金属化合物又はその他有機化合物をドープした共蒸着膜を用いる場合もある。
また、有機電界発光素子のキャリア輸送層(電子輸送層又は正孔輸送層)として、金属、有機金属化合物又はその他有機化合物をドープした共蒸着膜を用いる場合もある。
従来の有機電界発光素子は、無機発光ダイオードに比べて駆動電圧が高く、発光輝度や発光効率も低く、素子寿命も著しく低く、幅広い分野での実用化には至っていなかった。
最近の有機電界発光素子において、前記欠点が徐々に改良されてはいるものの、発光効率特性、駆動電圧特性、長寿命特性の更なる改善を目的として、優れた材料が求められている。中でも、素子寿命の改善が幅広い分野での普及に急務となっており、そのための材料開発が求められている。
最近の有機電界発光素子において、前記欠点が徐々に改良されてはいるものの、発光効率特性、駆動電圧特性、長寿命特性の更なる改善を目的として、優れた材料が求められている。中でも、素子寿命の改善が幅広い分野での普及に急務となっており、そのための材料開発が求められている。
有機電界発光素子用の長寿命性に優れる電子輸送材料として、特許文献1で開示されたトリアジン化合物が挙げられる。しかしながら、素子寿命の点で更なる改良が求められていた。
本発明は、従来公知のトリアジン化合物に比べて、有機電界発光素子の寿命を顕著に向上させることができる特定のトリアジン化合物と、該トリアジン化合物を用いてなる有機電界発光素子の提供を目的とする。
本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、下記一般式(1)で表される、トリアジン化合物を電子輸送材料として有することを特徴とする有機電界発光素子が、従来公知の材料を用いたときに比べて、顕著に長寿命特性又は高発光効率を示すことを見出し、本発明を完成するに至った。
すなわち本発明は、下記一般式(1)で表されるトリアジン化合物(以下、トリアジン化合物(1)と称する)及びそれを含有する有機電界発光素子に関するものである。
一般式(1)で表されるトリアジン化合物。
(Aは、以下の一般式(2)~(4)で示される基から選ばれる基を表す。)
(Arはフェニル基、ピリジル基、ナフチル基、又はアザナフチル基を表す。Xは単結合又はフェニレン基を表す。*は結合位置を表す。)
(Arはフェニル基、ピリジル基、ナフチル基、又はアザナフチル基を表す。Xは単結合又はフェニレン基を表す。*は結合位置を表す。)
(X1及びX2は、窒素原子又はCHを表し、X1及びX2のうち何れか一方が窒素原子で、もう一方はCHを表す。*は結合位置を表す。)
一般式(1)で表されるトリアジン化合物。
本発明のトリアジン化合物を用いることにより、従来公知のトリアジン化合物に比べて、寿命が長く、駆動電圧の低電圧化が可能で、発光効率が顕著に優れる有機電界発光素子を提供することができる。
本発明は、前記一般式(1)で示されるトリアジン化合物に関するものであり、該トリアジン化合物(1)における置換基は、それぞれ以下のように定義される。
トリアジン化合物(1)の一般式(2)及び一般式(3)で表される基において、Arはフェニル基、ピリジル基、ナフチル基、又はアザナフチル基を表す。
前記ピリジル基としては、特に限定するものではないが、例えば、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。このうち、有機電界発光素子の寿命に優れる点で、2-ピリジル基、又は3-ピリジル基が好ましい。
トリアジン化合物(1)の一般式(2)及び一般式(3)で表される基において、Arはフェニル基、ピリジル基、ナフチル基、又はアザナフチル基を表す。
前記ピリジル基としては、特に限定するものではないが、例えば、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。このうち、有機電界発光素子の寿命に優れる点で、2-ピリジル基、又は3-ピリジル基が好ましい。
また、前記ナフチル基としては、特に限定するものではないが、例えば、1-ナフチル基、又は2-ナフチル基が挙げられる。このうち、有機電界発光素子の寿命に優れる点で、1-ナフチル基が好ましい。
また、前記アザナフチル基としては、特に限定するものではないが、例えば、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基等が挙げられる。このうち、有機電界発光素子の寿命に優れる点で、3-キノリル基、又は4-イソキノリル基が好ましい。
また、前記アザナフチル基としては、特に限定するものではないが、例えば、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基等が挙げられる。このうち、有機電界発光素子の寿命に優れる点で、3-キノリル基、又は4-イソキノリル基が好ましい。
すなわち、Arは、有機電界発光素子の寿命に優れる点で、フェニル基、2-ピリジル基、3-ピリジル基、1-ナフチル基、3-キノリル基、又は4-イソキノリル基であることが好ましく、フェニル基、2-ピリジル基、3-ピリジル基、又は3-キノリル基であることがより好ましい。
トリアジン化合物(1)の一般式(2)及び一般式(3)で表される基において、Xは単結合又はフェニレン基を表す。前記フェニレン基としては、特に限定するものではないが、例えば、o-フェニレン基、m-フェニレン基、p-フェニレン基が挙げられる。
なお、Xとしては、有機電界発光素子の寿命に優れる点で、単結合又はp-フェニレン基が好ましい。
トリアジン化合物(1)の一般式(4)で表される基において、X1及びX2は、窒素原子又はCHを表し、X1及びX2のうち何れか一方が窒素原子で、もう一方はCHを表す。
なお、Xとしては、有機電界発光素子の寿命に優れる点で、単結合又はp-フェニレン基が好ましい。
トリアジン化合物(1)の一般式(4)で表される基において、X1及びX2は、窒素原子又はCHを表し、X1及びX2のうち何れか一方が窒素原子で、もう一方はCHを表す。
一般式(1)で示されるトリアジン化合物は、下記の一般式(5)、(7)、又は(9)で表される化合物が好ましい例として挙げられる。
(Arはフェニル基、ピリジル基、ナフチル基、又はアザナフチル基を表す。Xは単結合又はフェニレン基を表す。)
一般式(5)で示されるトリアジン化合物において、Ar及びXは、前記一般式(2)で表される基と同様であり、好ましい例についても同様である。
一般式(5)で表されるトリアジン化合物は、有機電界発光素子の寿命に優れる点で、下記一般式(6)で表されるトリアジン化合物であることが好ましい。
一般式(5)で表されるトリアジン化合物は、有機電界発光素子の寿命に優れる点で、下記一般式(6)で表されるトリアジン化合物であることが好ましい。
一般式(5)で示されるトリアジン化合物の具体例としては、以下の(A-1)~(A-76)を例示できるが、本発明はこれらに限定されるものではない。
これらの化合物のうち、有機電界発光素子の寿命に優れる点で、下記式(A-1)、(A-3)、(A-5)、(A-8)、(A-15)、又は(A-22)で表される化合物が好ましい。
上記した一般式(7)で示されるトリアジン化合物において、Ar及びXは、前記一般式(3)で表される基と同様であり、好ましい例についても同様である。
一般式(7)で表されるトリアジン化合物は、有機電界発光素子の寿命に優れる点で、下記一般式(8)で表されるトリアジン化合物であることが好ましい。
一般式(7)で表されるトリアジン化合物は、有機電界発光素子の寿命に優れる点で、下記一般式(8)で表されるトリアジン化合物であることが好ましい。
一般式(7)で示されるトリアジン化合物の具体例としては、以下の(B-1)~(B-120)を例示できるが、本発明はこれらに限定されるものではない。
これらの化合物のうち、有機電界発光素子の寿命に優れる点で、下記(B-1)、(B-3)、(B-5)、(B-8)、(B-15)、又は(B-22)で表される化合物が好ましい。
上記した一般式(9)で示されるトリアジン化合物において、X1及びX2は、前記一般式(4)で表される基と同様である。
一般式(9)で表されるトリアジン化合物は、有機電界発光素子の寿命に優れる点で、下記一般式(10)で表されるトリアジン化合物であることが好ましい。
一般式(9)で表されるトリアジン化合物は、有機電界発光素子の寿命に優れる点で、下記一般式(10)で表されるトリアジン化合物であることが好ましい。
一般式(10)で示されるトリアジン化合物の具体例としては、以下の(C-1)~(C-28)を例示できるが、本発明はこれらに限定されるものではない。
これらの化合物のうち、有機電界発光素子の寿命に優れる点で、下記式(C-1)、(C-2)、(C-4)、(C-5)、(C-7)、(C-9)、(C-14)又は(C-23)で表される化合物が好ましい。
なお、一般式(10)で表されるトリアジン化合物は、WO2011/021689公報又はWO2013/069762公報等に記載された方法に基づいて製造することができる。
本発明のトリアジン化合物(1)は、有機電界発光素子の構成成分の一部として好ましく用いられる。特に、電子輸送層として用いた時に、従来の素子よりも長寿命化、高効率化、低電圧化等の効果が得られる。
また、本発明のトリアジン化合物(1)を有機電界発光素子用材料として用いる際は、任意の有機金属種、有機化合物又は無機化合物との共蒸着膜として用いることも可能である。
本発明のトリアジン化合物(1)は、良好な電子輸送特性を示すため、有機電界発光素子における、発光層、電子輸送層、電子注入層等の電子輸送性を有する有機薄膜層の材料として好ましく用いることができる。
また、本発明のトリアジン化合物(1)を有機電界発光素子用材料として用いる際は、任意の有機金属種、有機化合物又は無機化合物との共蒸着膜として用いることも可能である。
本発明のトリアジン化合物(1)は、良好な電子輸送特性を示すため、有機電界発光素子における、発光層、電子輸送層、電子注入層等の電子輸送性を有する有機薄膜層の材料として好ましく用いることができる。
有機電界発光素子における発光層は、広義の意味では、陰極と陽極からなる電極に電流を流した際に発光する層のことを指す。具体的には、陰極と陽極からなる電極に電流を流した際に発光する蛍光性化合物を含有する層のことを指す。通常、有機電界発光素子は一対の電極の間に発光層を挟持した構造をとる。
本発明の有機電界発光素子は、必要に応じ発光層の他に、正孔輸送層、電子輸送層、陽極バッファー層、陰極バッファー層等を有し、陰極と陽極で挟持された構造をとる。具体的には以下に示される構造が挙げられる。
(i)陽極/発光層/陰極、
(ii)陽極/正孔輸送層/発光層/陰極、
(iii)陽極/発光層/電子輸送層/陰極、
(iv)陽極/正孔輸送層/発光層/電子輸送層/陰極、
(v)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極。
(i)陽極/発光層/陰極、
(ii)陽極/正孔輸送層/発光層/陰極、
(iii)陽極/発光層/電子輸送層/陰極、
(iv)陽極/正孔輸送層/発光層/電子輸送層/陰極、
(v)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極。
本発明の有機電界発光素子における発光層には、従来公知の発光材料を用いることができる。発光層を形成する方法としては、例えば蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により薄膜を形成する方法がある。
本発明のトリアジン化合物(1)を含んでなる有機電界発光素子用の薄膜の製造方法は、特に制限はないが、真空蒸着法による成膜が可能である。真空蒸着法による成膜は、汎用の真空蒸着装置を用いることにより行うことができる。真空蒸着法で膜を形成する際の真空槽の真空度は、有機電界発光素子作製の製造タクトタイムや製造コストを考慮すると、一般的に用いられる拡散ポンプ、タ-ボ分子ポンプ、クライオポンプ等により到達することが可能である。真空度としては、1×10-2~1×10-6Pa程度が望ましく、1×10-4~1×10-6Paがより望ましい。
蒸着速度は、形成する膜の厚さによるが、0.005~1.0nm/秒が望ましく、0.01~0.3nm/秒がより望ましい。尚、本発明のトリアジン化合物(1)は耐熱性が高い為、高速成膜時においても熱分解を生じにくく、素子性能への影響も小さい。
本発明のトリアジン化合物(1)を含んでなる有機電界発光素子用の薄膜の製造方法は、特に制限はないが、真空蒸着法による成膜が可能である。真空蒸着法による成膜は、汎用の真空蒸着装置を用いることにより行うことができる。真空蒸着法で膜を形成する際の真空槽の真空度は、有機電界発光素子作製の製造タクトタイムや製造コストを考慮すると、一般的に用いられる拡散ポンプ、タ-ボ分子ポンプ、クライオポンプ等により到達することが可能である。真空度としては、1×10-2~1×10-6Pa程度が望ましく、1×10-4~1×10-6Paがより望ましい。
蒸着速度は、形成する膜の厚さによるが、0.005~1.0nm/秒が望ましく、0.01~0.3nm/秒がより望ましい。尚、本発明のトリアジン化合物(1)は耐熱性が高い為、高速成膜時においても熱分解を生じにくく、素子性能への影響も小さい。
本発明のトリアジン化合物(1)は、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、トルエン、酢酸エチル、テトラヒドロフラン等に溶解させることによって、汎用の装置を用いた、スピンコ-ト法、インクジェット法、キャスト法、ディップ法等による成膜も可能である。
又、この発光層は、樹脂などの結着材と共に発光材料を溶剤に溶かして溶液とした後、これをスピンコート法などにより塗布して薄膜形成することにより得ることができる。
このようにして形成された発光層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、通常は5nm~5μm、好ましくは5nm~1μmの範囲である。
このようにして形成された発光層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、通常は5nm~5μm、好ましくは5nm~1μmの範囲である。
次に正孔注入層、正孔輸送層、電子注入層、電子輸送層等、発光層と組み合わせて有機電界発光素子を構成するその他の層について説明する。
正孔注入層、及び正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔注入層、及び正孔輸送層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔が発光層に注入される。
また、陰極から注入され、電子注入層及び/又は電子輸送層より発光層に輸送された電子は、発光層と正孔注入層もしくは正孔輸送層の界面に存在する電子の障壁により、正孔注入層もしくは正孔輸送層に漏れることなく、発光層内の界面に累積され、発光効率が向上するなど発光性能の優れた素子となる。
正孔注入層、及び正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔注入層、及び正孔輸送層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔が発光層に注入される。
また、陰極から注入され、電子注入層及び/又は電子輸送層より発光層に輸送された電子は、発光層と正孔注入層もしくは正孔輸送層の界面に存在する電子の障壁により、正孔注入層もしくは正孔輸送層に漏れることなく、発光層内の界面に累積され、発光効率が向上するなど発光性能の優れた素子となる。
正孔注入材料、及び正孔輸送材料は、正孔の注入もしくは輸送、又は電子の障壁性の何れかを有するものであり、有機物、又は無機物の何れであってもよい。この正孔注入材料、及び正孔輸送材料としては、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、特にチオフェンオリゴマーなどが挙げられる。
正孔注入材料、正孔輸送材料としては、ポルフィリン化合物、芳香族第三級アミン化合物又はスチリルアミン化合物を用いることが好ましく、特に芳香族第三級アミン化合物を用いることが好ましい。
正孔注入材料、正孔輸送材料としては、ポルフィリン化合物、芳香族第三級アミン化合物又はスチリルアミン化合物を用いることが好ましく、特に芳香族第三級アミン化合物を用いることが好ましい。
芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-〔1,1’-ビフェニル〕-4,4’-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、4,4’-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、4,4’,4’’-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)などが挙げられる。
さらに、p型-Si、p型-SiCなどの無機化合物も正孔注入材料、正孔輸送材料等として使用することができる。これらの正孔注入層、及び正孔輸送層は、上記正孔注入材料、又は正孔輸送材料を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により、薄膜化することにより形成することができる。正孔注入層、及び正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~1μmである。この正孔注入層、及び正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。
本発明の有機電界発光素子において、電子輸送層は上記一般式(1)で表されるトリアジン化合物を含むものである。
電子輸送層は、上記一般式(1)で表されるトリアジン化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の薄膜形成法により製膜して形成することができる。電子輸送層の膜厚は特に制限はないが、通常は5nm~5μmの範囲、好ましくは5nm~1μmである。
電子輸送層は、上記一般式(1)で表されるトリアジン化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の薄膜形成法により製膜して形成することができる。電子輸送層の膜厚は特に制限はないが、通常は5nm~5μmの範囲、好ましくは5nm~1μmである。
また、この電子輸送層は、一般式(1)で表されるトリアジン化合物を含み、かつ従来公知の電子輸送材料を含んでいてもよく、一種又は二種以上からなる一層構造であっても、同一組成又は異種組成の複数層からなる積層構造であってもよい。
また、本発明においては、発光材料は発光層のみに限定することはなく、発光層に隣接した正孔輸送層、又は電子輸送層に1種含有させてもよく、それにより更に有機電界発光素子の発光効率を高めることができる。
また、本発明においては、発光材料は発光層のみに限定することはなく、発光層に隣接した正孔輸送層、又は電子輸送層に1種含有させてもよく、それにより更に有機電界発光素子の発光効率を高めることができる。
本発明の有機電界発光素子に好ましく用いられる基板は、特に限定はなく、ガラス、プラスチックなどが挙げられ、透明のものであればよい。好ましく用いられる基板としては例えばガラス、石英、光透過性プラスチックフィルムなどを挙げることができる。
光透過性プラスチックフィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルムが挙げられる。
光透過性プラスチックフィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルムが挙げられる。
本発明の有機電界発光素子の好適な例として、前記の陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる素子の作製法について、以下に説明する。
まず、基板上に、所望の電極用物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10~200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させて陽極を作製する。次に、この薄膜上に素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層/電子注入層からなる薄膜を形成させる。
まず、基板上に、所望の電極用物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10~200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させて陽極を作製する。次に、この薄膜上に素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層/電子注入層からなる薄膜を形成させる。
なお、陽極と発光層又は正孔注入層の間、及び、陰極と発光層又は電子注入層との間にはバッファー層(電極界面層)を存在させてもよい。
更に、上記基本構成層の他に、必要に応じて、その他の機能を有する層を積層してもよい。例えば、正孔ブロック層、電子ブロック層などのような機能層を有していてもよい。
更に、上記基本構成層の他に、必要に応じて、その他の機能を有する層を積層してもよい。例えば、正孔ブロック層、電子ブロック層などのような機能層を有していてもよい。
次に、本発明の有機電界発光素子の電極について説明する。有機電界発光素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物(導電性材料)及びこれらの混合物から選ばれる材料を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Auなどの金属、CuI、酸化インジウム-スズ(ITO)、SnO2、ZnOなどの導電性透明材料が挙げられる。
陽極は、これらの電極物質の薄膜を、蒸着やスパッタリングなどの方法により形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、或いは蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
陽極は、これらの電極物質の薄膜を、蒸着やスパッタリングなどの方法により形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、或いは蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物から選ばれる材料を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属などが挙げられる。これらの中で、電子注入性、酸化などに対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物などが好適である。陰極は、これらの電極物質を蒸着やスパッタリングなどの方法で薄膜を形成させることにより作製することができる。
上記のように、まず、基板上に所望の電極用物質、例えば陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させて陽極を作製する。次いで、該陽極上に、正孔注入層、正孔輸送層、発光層、及び電子輸送層/電子注入層からなる各層薄膜を形成させ、その後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリングなどの方法により形成させて陰極を設け、所望の有機電界発光素子を得る。
本発明の有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
また、異なる発光色を有する本発明の有機電界発光素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
また、異なる発光色を有する本発明の有機電界発光素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらにより何ら限定して解釈されるものではない。
1H-NMRの測定は、Gemini200(バリアン社製)を用いて行った。
有機電界発光素子の発光特性は、室温下、作製した素子に直流電流を印加し、LUMINANCEMETER(BM-9)(TOPCON社製)の輝度計を用いて評価した。
有機電界発光素子の発光特性は、室温下、作製した素子に直流電流を印加し、LUMINANCEMETER(BM-9)(TOPCON社製)の輝度計を用いて評価した。
窒素気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(9.3g,22.2mmol)、3-キノリンボロン酸(5.0g,28.9mmol)、及び1,2-ジメトキシエタン(100mL)を300mL4つ口フラスコに加え、これに10重量%NaOH水溶液(26.6g,66.6mmol)を3分間かけて滴下した後、テトラキストリフェニルホスフィンパラジウム(513mg,0.44mmol)を加え、80℃で10時間撹拌した。室温まで放冷後、反応混合物に水(100mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、白色粉末を得た。次いで、得られた白色粉末をトルエンで再結晶することにより精製し、目的物である2-[5-クロロ-3-(3-キノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色粉末(収量9.5g,収率90%)を得た。
窒素気流下、合成例-1で得られた2-[5-クロロ-3-(3-キノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(4.5g,9.5mmol)、3-フルオランテンボロン酸(3.5g,14.3mmol)、酢酸パラジウム(21mg,0.09mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(91mg、0.19mmol)、及びテトラヒドロフラン(90mL)を300mL4つ口フラスコに加え、60℃に加熱した。これに20重量%K2CO3水溶液(17g,24.8mmol)を5分かけて滴下した後、70℃で14時間撹拌した。室温まで放冷後、反応混合物に水(150mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、緑色粉末を得た。得られた緑色粉末をトルエンで再結晶することにより精製し、目的物である4,6-ジフェニル-2-[3-(3-キノリル)-5-(フルオランテン-3-イル)フェニル]-1,3,5-トリアジン(化合物 A-15)の緑色粉末(収量5.4g,収率88%,LC純度98.33%)を得た。
1H-NMR(CDCl3)δ(ppm):7.41-7.43(m,2H),7.54-7.63(m,6H),7.66-7.71(m,2H),7.82(d,J=7.0Hz,1H),7.86(brt,J=7.8Hz,1H),7.94-7.98(m,2H),8.00-8.02(m,3H),8.08(d,J=7.2Hz,1H),8.16(t,J=1.7Hz,1H),8.37(brs,1H),8.66(brs,1H),8.78(dd,J=8.4Hz,1.4Hz,4H),9.09(t,J=1.4Hz,1H),9.18(t,J=1.8Hz,1H),9.45(d,J=2.3Hz,1H).
1H-NMR(CDCl3)δ(ppm):7.41-7.43(m,2H),7.54-7.63(m,6H),7.66-7.71(m,2H),7.82(d,J=7.0Hz,1H),7.86(brt,J=7.8Hz,1H),7.94-7.98(m,2H),8.00-8.02(m,3H),8.08(d,J=7.2Hz,1H),8.16(t,J=1.7Hz,1H),8.37(brs,1H),8.66(brs,1H),8.78(dd,J=8.4Hz,1.4Hz,4H),9.09(t,J=1.4Hz,1H),9.18(t,J=1.8Hz,1H),9.45(d,J=2.3Hz,1H).
窒素気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(18.8g,44.4mmol)、4-イソキノリンボロン酸(10.0g,57.8mmol)、及び1,2-ジメトキシエタン(320mL)を1L3つ口フラスコに加え、これに10重量%NaOH水溶液(53g,133mmol)を5分間かけて滴下した後、テトラキストリフェニルホスフィンパラジウム(1.03g,0.89mmol)を加え、90℃で15時間撹拌した。室温まで放冷後、反応混合物に水(200mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、灰色粉末を得た。次いで、得られた灰色粉末をトルエンで再結晶することにより精製し、目的物である2-[5-クロロ-3-(4-イソキノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの灰白色粉末(収量15.8g,収率76.0%, LC純度99.80%)を得た。
窒素気流下、合成例-2で得られた2-[5-クロロ-3-(4-イソキノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(2.59g,5.50mmol)、3-フルオランテンボロン酸(2.04g,8.25mmol)、酢酸パラジウム(12mg,0.055mmol)、2-ジシクロヘキシルフォスフィノ-2’,4’,6’-トリイソプロピルビフェニル(52mg、0.110mmol)、及びテトラヒドロフラン(55mL)を200mL4つ口フラスコに加え、60℃に加熱した。これに20重量%K2CO3水溶液(9.9g,14.3mmol)を5分かけて滴下した後、70℃で8時間撹拌した。室温まで放冷後、反応混合物に水(50mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、黄色粉末を得た。得られた黄色粉末をトルエンで洗浄することにより精製し、目的物である4,6-ジフェニル-2-[3-(4-イソキノリル)-5-(フルオランテン-3-イル)フェニル]-1,3,5-トリアジン(化合物 A-8)の黄色粉末(収量3.20g,収率91.3%,LC純度99.53%)を得た。
1H-NMR(CDCl3)δ(ppm):7.40-7.43(m,2H),7.52-7.62(m,6H),7.69(dd,J=7.8Hz,7.0Hz,1H),7.82(d,J=7.2Hz,1H),7.89(brt,J=7.5Hz,1H),7.93-8.03(m,6H),8.08(d,J=7.1Hz,1H),8.25(brd,J=8.4Hz,1H),8.30(brd,J=7.9Hz,1H),8.73-8.76(m,1H),8.75(dd,J=8.5Hz,1.3Hz,4H),8.97(t,J=1.6Hz,1H),9.19(t,J=1.6Hz,1H),9.48(s,1H).
窒素気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(66.2g,156.7mmol)、4-(2-ピリジル)フェニルボロン酸(40.5g,203.5mmol)、及びテトラヒドロフラン(1000mL)を2Lセパラブルフラスコに加え、これに10重量%NaOH水溶液(136g,470mmol)を5分間かけて滴下した後、テトラキストリフェニルホスフィンパラジウム(2.72g,2.35mmol)を加え、70℃で5時間撹拌した。室温まで放冷後、反応混合物に水(660mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、灰色粉末を得た。次いで、得られた灰色粉末をトルエンで再結晶することにより精製し、目的物である2-[5-クロロ-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジンの灰白色粉末(収量60.0g,収率77.1%, LC純度99.67%)を得た。
窒素気流下、合成例-3で得られた2-[5-クロロ-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(2.50g,5.03mmol)、3-フルオランテンボロン酸(2.48g,10.1mmol)、酢酸パラジウム(34mg,0.151mmol)、2-ジシクロヘキシルフォスフィノ-2’,4’,6’-トリイソプロピルビフェニル(144mg、0.302mmol)、及びテトラヒドロフラン(30mL)を100mL4つ口フラスコに加え、60℃に加熱した。これに20重量%K2CO3水溶液(13.9g,20.1mmol)を5分かけて滴下した後、70℃で5時間撹拌した。室温まで放冷後、反応混合物に水(30mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、黄色粉末を得た。得られた黄色粉末をトルエンで2回再結晶することにより精製し、目的物である4,6-ジフェニル-2-[4’-(2-ピリジル)-5-(フルオランテン-3-イル)ビフェニル-3-イル]-1,3,5-トリアジン(化合物 A-22)の淡黄色粉末(収量2.00g,収率60.1%,LC純度99.22%)を得た。
1H-NMR(CDCl3)δ(ppm):7.26-7.30(m,1H),7.40-7.43(m,2H),7.54-7.62(m,6H),7.67(dd,J=8.2Hz,7.0Hz,1H),7.82(d,J=7.1Hz,2H),7.82(brt,J=7.1Hz,1H),7.95(d,J=8.0Hz,2H),7.95-7.98(m,2H),8.00(d,J=6.8Hz,1H),8.03(d,J=8.4Hz,1H),8.08(d,J=7.2Hz,1H),8.12(t,J=1.7Hz,1H)8.19(d,J=8.3Hz,2H),8.74(brd,J=5.1Hz,1H),8.78(dd,J=8.3Hz,1.7Hz,4H),8.99(t,J=1.6Hz,1H),9.13(t,J=1.7Hz,1H).
窒素気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(3.00g,7.10mmol)、3-ピリジルボロン酸(1.13g,9.19mmol)、及び1,2-ジメトキシエタン(50mL)を100mL2つ口フラスコに加え、これに10重量%NaOH水溶液(6.15g,21.3mmol)を3分間かけて滴下した後、テトラキストリフェニルホスフィンパラジウム(82mg,0.071mmol)を加え、70℃で8時間撹拌した。室温まで放冷後、反応混合物に水(20mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、灰色粉末を得た。得られた灰色粉末をトルエンで再結晶することにより精製し、目的物である2-[5-クロロ-3-(3-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの灰白色粉末(収量2.41g,収率80.6%, LC純度99.55%)を得た。
窒素気流下、合成例-4で得られた2-[5-クロロ-3-(3-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(10.0g,23.8mmol)、3-フルオランテンボロン酸(7.03g,28.6mmol)、酢酸パラジウム(54mg,0.241mmol)、2-ジシクロヘキシルフォスフィノ-2’,4’,6’-トリイソプロピルビフェニル(227mg、0.476mmol)、及びテトラヒドロフラン(200mL)を500mL2つ口フラスコに加え、60℃に加熱した。これに20重量%K2CO3水溶液(42.8g,61.9mmol)を5分かけて滴下した後、70℃で5時間撹拌した。室温まで放冷後、反応混合物に水(150mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、淡緑色粉末を得た。得られた淡緑色粉末をトルエンで2回再結晶することにより精製し、目的物である4,6-ジフェニル-2-[3-(3-ピリジル)-5-(フルオランテン-3-イル)フェニル]-1,3,5-トリアジン(化合物 A-3)の淡緑色粉末(収量11.7g,収率83.8%,LC純度99.49%)を得た。
1H-NMR(CDCl3)δ(ppm):7.41-7.44(m,2H),7.54-7.63(m,6H),7.68(dd,J=7.7Hz,6.8Hz,1H),7.79(d,J=7.2Hz,1H),7.84(brt,J=6.7Hz,1H),7.94(d,J=7.9Hz,1H),9.74-7.98(m,2H),8.01(d,J=6.7Hz,1H),8.04(t,J=1.7Hz,1H),8.08(d,J=7.1Hz,1H),8.53(brd,J=7.2Hz,1H),8.76(dd,J=8.2Hz,1.4Hz,4H),8.76-8.78(m,1H),9.06(t,J=1.6Hz,1H),9.13(t,J=1.5Hz,1H),9.17(brd,J=1.9Hz,1H).
窒素気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(12.0g,28.3mmol)、フェニルボロン酸(4.5g,36.8mmol)、及び1,2-ジメトキシエタン(120mL)を500mL4つ口フラスコに加え、これに10重量%NaOH水溶液(34.0g,85.1mmol)を3分間かけて滴下した後、テトラキストリフェニルホスフィンパラジウム(655mg,0.56mmol)を加え、80℃で14時間撹拌した。室温まで放冷後、反応混合物に水(150mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、白色粉末を得た。その後、得られた白色粉末をトルエンで再結晶することにより精製し、目的物である2-(5-クロロ-ビフェニル-3-イル)―4,6-ジフェニル-1,3,5-トリアジンの白色粉末(収量11.5g,収率96%, LC純度99.70%)を得た。
窒素気流下、合成例-5で得られた2-(5-クロロビフェニル-3-イル)―4,6-ジフェニル-1,3,5-トリアジン(5.0g,11.9mmol)、3-フルオランテンボロン酸(4.4g,17.8mmol)、酢酸パラジウム(26mg,0.11mmol)、2-ジシクロヘキシルフォスフィノ-2’,4’,6’-トリイソプロピルビフェニル(113mg、0.23mmol)、及びテトラヒドロフラン(100mL)を300mL4つ口フラスコに加え、60℃に加熱した。これに20重量%K2CO3水溶液(21g,30.9mmol)を5分かけて滴下した後、70℃で10時間撹拌した。室温まで放冷後、反応混合物に水(100mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、緑色粉末を得た。得られた緑色粉末をトルエンで再結晶することにより精製し、目的物である4,6-ジフェニル-2-[5-(フルオランテン-3-イル)ビフェニル-3-イル]-1,3,5-トリアジン(化合物 A-1)の緑色粉末(収量4.9g,収率70%,LC純度98.82%)を得た。
1H-NMR(CDCl3)δ(ppm):7.40-7.65(m,2H),7.45(d,J=7.4Hz,1H),7.53-7.62(m,8H),7.66(dd,J=8.3Hz,6.8Hz,1H),7.81(d,J=7.2Hz,1H),7.83(dd,J=8.4Hz,1.4Hz,2H),7.94-7.98(m,2H),8.00(d,J=6.6Hz,1H),8.03(d,J=8.5Hz,1H),8.06-8.07(m,1H),8.08(d,J=7.0Hz,1H),8.78(dd,J=8.2Hz,1.8Hz,4H),8.98(t,J=1.6Hz,1H),9.07(t,J=1.7Hz,1H).
アルゴン気流下、合成例-1と同様な方法で合成した2-[5-クロロ-3-(フルオランテン-3-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(163mg,0.30mmol)、1-ナフタレンボロン酸(67.1mg,0.39mmol)、酢酸パラジウム(2.02mg,0.0090mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(8.58mg,0.018mmol)を、テトラヒドロフラン(4.8mL)に懸濁し、20重量%K2CO3水溶液(0.65mL、1.17mmol)を滴下し、次いで75℃で18時間撹拌した。室温まで放冷後、反応溶液に、水(15mL)を加え、析出した固体を濾別した。得られた固体を水(20mL)、メタノール(20mL)、ヘキサン(30mL)で順次洗浄した。この固体を再結晶(トルエン)で精製し、目的物である4,6-ジフェニル-2-[5-(フルオランテン-3-イル)-3-(1-ナフチル)フェニル]-1,3,5-トリアジン(化合物 A-5)の黄色固体(収量175mg,収率92.0%)を得た。
1H-NMR(CDCl3)δ(ppm):7.41-7.43(m,2H),7.52-7.70(m,11H),7.85(d,J=7.1Hz,1H),7.95-8.01(m,6H),8.08(d,J=7.1Hz,1H),8.11(d,J=8.2Hz,2H),8.76(d,J=6.8Hz,4H),8.99(s,1H),9.10(s,1H).
窒素気流下、合成例-1で得られた2-[5-クロロ-3-(3-キノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(4.5g,9.5mmol)、2-トリフェニレニルボロン酸(3.0g,12.2mmol)、酢酸パラジウム(21mg,0.09mmol)、2-ジシクロヘキシルフォスフィノ-2’,4’,6’-トリイソプロピルビフェニル(91mg、0.19mmol)、及びテトラヒドロフラン(120mL)を300mL4つ口フラスコに加え、60℃に加熱した。これに20重量%K2CO3水溶液(17g,24.8mmol)を5分かけて滴下した後、70℃で14時間撹拌した。室温まで放冷後、反応混合物に水(150mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、灰色粉末を得た。得られた灰色粉末をトルエンで再結晶することにより精製し、目的物である4,6-ジフェニル-2-[3-(3-キノリル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-15)の灰色粉末(収量5.7g,収率90%,LC純度99.27%)を得た。
1H-NMR(CDCl3)δ(ppm):7.57-7.72(m,11H),7.81(t,J=8.0Hz,1H),8.01(d,J=7.9Hz,1H),8.11(dd,J=8.5Hz,1.8Hz,1H),8.27(d,J=8.2Hz,1H),8.33(t,J=1.7Hz,1H),8.61(s,1H),8.68-8.78(m,3H),8.80-8.85(m,6H),9.04(d,J=1.8Hz,1H),9.15(t,J=1.6Hz,1H),9.24(t,J=1.7Hz,1H),9.47(d,J=2.5Hz,1H).
窒素気流下、合成例-2で得られた2-[5-クロロ-3-(4-イソキノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(2.50g,5.30mmol)、2-トリフェニレニルボロン酸(1.88g,6.89mmol)、酢酸パラジウム(12mg,0.053mmol)、2-ジシクロヘキシルフォスフィノ-2’,4’,6’-トリイソプロピルビフェニル(52mg、0.106mmol)、及びテトラヒドロフラン(55mL)を200mL4つ口フラスコに加え、60℃に加熱した。これに20重量%K2CO3水溶液(9.5g,13.8mmol)を5分かけて滴下した後、70℃で8時間撹拌した。室温まで放冷後、反応混合物に水(50mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、灰色粉末を得た。得られた灰色粉末をトルエンで洗浄することにより精製し、目的物である4,6-ジフェニル-2-[3-(4-イソキノリル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-8)の灰色粉末(収量3.30g,収率93.9%,LC純度99.72%)を得た。
1H-NMR(CDCl3)δ(ppm):7.55-7.64(m,6H),7.69-7.72(m,4H),8.03(t,J=7.5Hz,1H),8.08(dd,J=8.6Hz,1.8Hz,1H),8.12(t,J=1.8Hz,1H),8.16(t,J=7.9Hz,1H),8.33(d,J=8.8Hz,1H),8.44(d,J=8.2Hz,1H),8.68-8.73(m,3H),8.75(s,1H),8.77-8.80(m,5H),8.84(d,J=8.7Hz,1H),8.91(t,J=1.6Hz,1H),9.00(d,J=1.8Hz,1H),9.40(s,1H),9.57(s,1H).
窒素気流下、合成例-3で得られた2-[5-クロロ-4’-(2-ピリジル)ビフェニル-3-イル]―4,6-ジフェニル-1,3,5-トリアジン(5.00g,10.1mmol)、2-トリフェニレニルボロン酸(3.57g,13.1mmol)、酢酸パラジウム(45mg,0.200mmol)、2-ジシクロヘキシルフォスフィノ-2’,4’,6’-トリイソプロピルビフェニル(193mg、0.405mmol)、及びテトラヒドロフラン(100mL)を300mL3つ口フラスコに加え、60℃に加熱した。これに20重量%K2CO3水溶液(18.1g,26.3mmol)を5分かけて滴下した後、70℃で15時間撹拌した。室温まで放冷後、反応混合物に水(50mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、灰色粉末を得た。得られた灰色粉末をトルエンで再結晶することにより精製し、目的物である4,6-ジフェニル-2-[4’-(2-ピリジル)-5-(トリフェニレン-2-イル)ビフェニル-3-イル]-1,3,5-トリアジン(化合物 B-22)の灰白色粉末(収量6.50g,収率93.4%,LC純度99.79%)を得た。
1H-NMR(CDCl3)δ(ppm):7.29(t,J=6.1Hz,1H),7.57-7.65(m,6H),7.67-7.72(m,4H),7.82(t,J=8.3Hz,1H),7.86(d,J=7.8Hz,1H),7.98(d,J=8.4Hz,2H),8.10(dd,J=8.7Hz,1H),8.22(d,J=8.6Hz,2H),8.28(t,J=1.7Hz,1H),8.68-8.76(m,4H),8.81-8.84(m,2H),8.82(dd,J=8.2Hz,1.4Hz,4H),9.03(d,J=1.7Hz,1H),9.09(t,J=1.5Hz,1H),9.17(t,J=1.6Hz,1H).
窒素気流下、合成例-4で得られた2-[5-クロロ-3-(3-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(4.00g,9.50mmol)、2-トリフェニレニルボロン酸(3.36g,12.3mmol)、酢酸パラジウム(32mg,0.143mmol)、2-ジシクロヘキシルフォスフィノ-2’,4’,6’-トリイソプロピルビフェニル(136mg、0.285mmol)、及びテトラヒドロフラン(95mL)を200mL2つ口フラスコに加え、60℃に加熱した。これに20重量%K2CO3水溶液(17.1g,24.7mmol)を5分かけて滴下した後、70℃で14時間撹拌した。室温まで放冷後、反応混合物に水(50mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、灰色粉末を得た。得られた灰色粉末をトルエンで再結晶することにより精製し、目的物である4,6-ジフェニル-2-[3-(3-ピリジル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-3)の灰白色粉末(収量5.46g,収率93.8%,LC純度98.85%)を得た。
1H-NMR(CDCl3)δ(ppm):7.57-7.65(m,6H),7.69-7.72(m,4H),8.00(d,J=6.3Hz,1H),8.03(dd,J=8.7Hz,1.6Hz,1H),8.16(t,J=1.8Hz,1H),8.67-8.71(m,3H),8.73(d,J=8.4Hz,1H),8.77-8.82(m,3H),8.78(dd,J=8.2Hz,1.7Hz,4H),8.95-8.97(m,2H),9.17(d,J=1.6Hz,1H),9.30(t,J=1.4Hz,1H).
窒素気流下、合成例-5で得られた2-(5-クロロ-ビフェニル-3-イル)-4,6-ジフェニル-1,3,5-トリアジン(5.0g,11.9mmol)、2-トリフェニレニルボロン酸(4.2g,15.5mmol)、酢酸パラジウム(26mg,0.11mmol)、2-ジシクロヘキシルフォスフィノ-2’,4’,6’-トリイソプロピルビフェニル(113mg、0.23mmol)、及びテトラヒドロフラン(80mL)を300mL4つ口フラスコに加え、60℃に加熱した。これに20重量%K2CO3水溶液(21g,30.9mmol)を5分かけて滴下した後、70℃で12時間撹拌した。室温まで放冷後、反応混合物に水(100mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、灰色粉末を得た。得られた灰色粉末をトルエンで再結晶することにより精製し、目的物である4,6-ジフェニル-2-[5-(トリフェニレン-2-イル)-ビフェニル-3-イル]-1,3,5-トリアジン(化合物 B-1)の灰色粉末(収量6.7g,収率92%,LC純度99.53%)を得た。
1H-NMR(CDCl3)δ(ppm):7.47(t,J=7.5Hz,1H),7.56-7.64(m,8H),7.69-7.71(m,4H),7.86(dd,J=8.3Hz,1.4Hz,2H),8.09(dd,J=8.7Hz,2.0Hz,1H),8.23(t,J=1.8Hz,1H),8.68-8.74(m,3H),8.82(dd,J=7.9Hz,1.4Hz,4H),8.82-8.84(m,2H),9.02(d,J=1.9Hz,1H),9.03(t,J=1.6Hz,1H),9.15(t,J=1.7Hz,1H).
2-[5-クロロ-3-(1-ナフチル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンを合成例-5と同様な方法で合成した。窒素気流下、2-[5-クロロ-3-(1-ナフチル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(6.00g,12.8mmol)、2-トリフェニレニルボロン酸(4.34g,16.0mmol)、酢酸パラジウム(57.5mg,0.256mmol)、2-ジシクロヘキシルフォスフィノ-2’,4’,6’-トリイソプロピルビフェニル(244mg、0.512mol)、及びテトラヒドロフラン(90mL)を300mL4つ口フラスコに加え、75℃に加熱した。これに20重量%K2CO3水溶液(23g,33.3mmol)を5分かけて滴下した後、75℃で17時間撹拌した。室温まで放冷後、反応混合物に水(90mL)を加え、析出物をろ取した。ろ取した析出物を純水、メタノール、ヘキサンで順次洗浄し、灰色粉末を得た。得られた灰色粉末をトルエンで再結晶することにより精製し、目的物である4,6-ジフェニル-2-[3-(1-ナフチル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-5)の灰色粉末(収量6.82g,収率81%,LC純度98.75%)を得た。
1H-NMR(CDCl3)δ(ppm):7.48-7.70(m,14H),7.98(brd,J=7.9Hz,2H),8.06(brd,J=7.8Hz,1H),8.12(dd,J=8.5Hz,1.8Hz,1H),8.17(t,J=1.8Hz,1H),8.67-8.73(m,3H),8.77-8.82(m,6H),8.93(t,J=1.5Hz,1H),9.03(d,J=1.9Hz,1H),9.26(t,J=1.6Hz,1H).
アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(70.0g,0.166mol)、9-フェナントレンボロン酸(38.6g,0.174mol)、及びテトラキス(トリフェニルホスフィン)パラジウム(3.83g,3.31mmol)をテトラヒドロフラン(1000mL)に懸濁し、得られた懸濁液を4.0M―水酸化ナトリウム水溶液(124mL,0.497mol)に滴下した。得られた混合物を70℃で24時間撹拌した。放冷後、水(550mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンで順次洗浄した。さらに、再結晶(トルエン)することで、反応中間体である2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量78.9g、収率92%)を得た。
アルゴン気流下、合成例-6で得られた2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(5.20g,10mmol)、ビスピナコラートジボロン(3.81g,15mmol)、酢酸パラジウム(22.5mg,0.10mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(95.4mg,0.20mmol)、及び酢酸カリウム(2.95g,30mmol)を1,4-ジオキサン(200mL)に懸濁し、100℃で4時間撹拌した。放冷後、濾過により沈殿成分を除去した。クロロホルム(200mL)、水(100mL)を加えて撹拌した後、水層と有機層を分離した。更に、水層をクロロホルム(50mL)で3回抽出し、有機層と合わせた。得られた有機層から低沸点成分を減圧濃縮し、乾固して粗生成物を得た。次いで、ヘキサンを加えて0℃に冷却しながら撹拌・懸濁させ、得られた固体を濾取した。得られた固体を減圧乾燥することで、2-[3-{(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル}-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの乳白色粉末(収量6.07g,収率99%)を得た。
1H―NMR(CDCl3)δ(ppm):1.43(s,12H),7.51―7.75(m,10H),7.82(s,1H),7.89―7.98(m,2H),8.23(brs,1H),8.75―8.81(m,5H),8.83(brd,J=8.2Hz,1H),9.01(brs,1H),9.24(brs,1H).
アルゴン気流下、合成例-6で得られた2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(7.00g,13.5mmol)、4-イソキノリンボロン酸(4.12g,16.2mmol)、酢酸パラジウム(90.7mg,0.40mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(385mg,0.81mmol)を、テトラヒドロフラン(200mL)に懸濁し、2.0M-炭酸カリウム水溶液(20.2mL)を滴下し、次いで70℃で2時間撹拌した。得られた溶液に、酢酸パラジウム(90.7mg,0.40mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(385mg,0.81mmol)をTHF(30mL)に溶解させた溶液を加えて4時間撹拌した。放冷後、メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンで順次洗浄した。さらに、再結晶(トルエン)で精製し、目的物である4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4-イソキノリル)フェニル]-1,3,5-トリアジン(化合物C-2)の白色固体(収量7.83g,収率95%)を得た。
1H-NMR(CDCl3)δ(ppm):7.50-7.65(m,7H),7.68(brd,J=7.5Hz,1H),7.73(brt,J=7.7Hz,2H),7.89(brs,1H),7.91(t,J=1.7Hz,1H),7.96-8.00(m,3H),8.11(t,J=8.2Hz,1H),8.32(d,J=8.5Hz,1H),8.39(d,J=8.2Hz,1H),8.73(dd,J=8.5Hz,1.5Hz,4H),8.73-8.75(m,1H),8.77(d,J=8.5Hz,1H),8.84(d,J=8.4Hz,1H),8.99(t,J=1.7Hz,1H),9.16(t,J=1.6Hz,1H),9.53(s,1H).
アルゴン気流下、合成例-6で得られた2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(8.00g,15.4mmol)、3-キノリンボロン酸(3.19g,18.5mmol)、酢酸パラジウム(104mg,0.46mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(220mg,0.92mmol)を、テトラヒドロフラン(250mL)に懸濁し、2.0M-炭酸カリウム水溶液(23.1mL)を滴下し、次いで70℃で4時間撹拌した。放冷後、メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンで順次洗浄した。さらに、再結晶(トルエン)で精製し、目的物である4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(3-キノリル)フェニル]-1,3,5-トリアジン(化合物C-9)の白色固体(収量8.40g,収率89%)を得た。
1H-NMR(CDCl3)δ(ppm):7.52-7.68(m,9H),7.72(brt,J=7.7Hz,2H),7.78(brt,J=7.7Hz,1H),7.89(s,1H),7.95(brd,J=8.4Hz,1H),7.97(brd,J=7.8Hz,1H),8.01(d,J=8.2Hz,1H),8.13(t,J=1.6Hz,1H),8.23(brd,J=8.3Hz,1H),8.55(brs,1H),8.77(dd,J=8.5Hz,1.7Hz,4H),8.77-8.79(m,1H),8.84(d,J=8.2Hz,1H),9.01(t,J=1.6Hz,1H),9.23(t,J=1.6Hz,1H),9.45(brs,1H).
アルゴン気流下、合成例-7で得られた2-[3-{(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル}-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(4.00g,6.5mmol)、5-ブロモキノリン(1.63g,7.9mmol)、酢酸パラジウム(44.1mg,0.20mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(187mg,0.39mmol)を、1,4-ジオキサン(65mL)に懸濁し、2.0M-炭酸カリウム水溶液(6.5mL)を滴下し、次いで85℃で2.5時間撹拌した。放冷後、メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンで順次洗浄した。さらに、再結晶(トルエン)で精製して、目的物である4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(5-キノリル)フェニル]-1,3,5-トリアジン(化合物C-4)の白色固体(収量3.33g,収率74%)を得た。
1H-NMR(CDCl3)δ(ppm):7.50-7.76(m,13H),7.92(brd,J=7.9Hz,1H),7.91(s,1H),7.91(t,J=1.6Hz,1H),7.94(brd,J=8.1Hz,1H),7.98(dd,J=1.3,7.8Hz,1H),8.07(dd,J=0.8,8.1Hz,1H),8.75(d,J=7.0Hz,4H),8.79(d,J=8.2Hz,1H),8.86(d,J=8.2Hz,1H),8.98(t,J=1.6Hz,1H),9.00(dd,J=1.6,4.4Hz,1H),9.07(t,J=1.6Hz,1H).
アルゴン気流下、合成例-7で得られた2-[3-{(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル}-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(4.00g,6.5mmol)、5-ブロモイソキノリン(1.63g,7.9mmol)、酢酸パラジウム(44.1mg,0.20mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(187mg,0.39mmol)を、1,4-ジオキサン(65mL)に懸濁し、2.0M-炭酸カリウム水溶液(6.5mL)を滴下し、次いで85℃で3.5時間撹拌した。放冷後、メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンで順次洗浄した。さらに、再結晶(トルエン)で精製して、目的物である4,6-ジフェニル-2-[3-(5-イソキノリル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(化合物C-5)の白色固体(収量3.10g,収率69%)を得た。
1H-NMR(CDCl3)δ(ppm):7.52-7.56(m,4H),7.59-7.64(m,3H),7.66-7.77(m,3H),7.90(s,2H),7.97(dd,J=1.2,7.9Hz,1H),8.01(dd,J=1.0,8.3Hz,1H),8.14(dd,J=7.3,8.3Hz,1H),8.35(dd,J=1.0,7.3Hz,1H),8.41(d,J=8.2Hz,1H),8.54(dd,J=6.7,10.7Hz,2H),8.73(dd,J=1.2,8.3Hz,4H),8.77-8.80(m,1H),8.86(d,J=5.3Hz,1H),8.96(t,J=1.7Hz,1H),9.14(t,J=1.6Hz,1H),9.61(s,1H).
アルゴン気流下、合成例-7で得られた2-[3-{(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル}-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(4.00g,6.5mmol)、1-クロロイソキノリン(1.63g,7.9mmol)、酢酸パラジウム(44.1mg,0.20mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(187mg,0.39mmol)を、1,4-ジオキサン(65mL)に懸濁し、2.0M-炭酸カリウム水溶液(6.5mL)を滴下し、次いで85℃で16時間撹拌した。放冷後、メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンで順次洗浄した。さらに、カラムクロマトグラフィー(クロロホルム:ヘキサン(1:1))で精製して、目的物である4,6-ジフェニル-2-[3-(1-イソキノリル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(化合物C-1)の白色固体(収量2.32g,収率51%)を得た。
1H-NMR(CDCl3)δ(ppm):7.50-7.78(m,13H),7.94(s,1H),7.96(d,J=6.0Hz,1H),7.98(dd,J=1.1,7.5Hz,1H),8.11(dd,J=1.1,8.3Hz,1H),8.14(t,J=1.6Hz,1H),8.32(dd,J=0.5,8.5Hz,1H),8.73(d,J=5.8Hz,1H),8.76(d,J=8.6Hz,4H),8.78(d,J=6.0Hz,1H),8,84(d,J=8.2Hz,1H),9.10(t,J=1.6Hz,1H),9.22(t,J=1.6Hz,1H).
アルゴン気流下、合成例-6で得られた2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(3.00g,5.8mmol)、8-キノリンボロン酸(1.20g,6.9mmol)、酢酸パラジウム(38.9mg,0.17mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(165mg,0.35mmol)を、テトラヒドロフラン(58mL)に懸濁し、2.0M-炭酸カリウム水溶液(8.7mL)を滴下し、次いで70℃で15時間撹拌した。放冷後、メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンで順次洗浄した。さらに、再結晶(トルエン)で精製して、目的物である2-[3-(8-キノリル)-5-(9-フェナントリル)]-4,6-ジフェニル-1,3,5-トリアジン(化合物C-7)の白色固体(収量3.73g,収率94%)を得た。
1H-NMR(CDCl3)δ(ppm):7.50-7.75(m,13H),7.94(d,J=8.1Hz,1H),7.97-8.04(m,3H),8.16(t,J=1.6Hz,1H),8.30(t,J=8.4Hz,2H),8.76(d,J=8.3Hz,4H),8.78(d,J=8.0Hz,1H),8.83(d,J=8.0Hz,1H),9.03(t,J=1.6Hz,1H),9.20(t,J=1.6Hz,1H).
アルゴン気流下、合成例-7で得られた2-[3-{(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル}-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(10.0g,16.7mmol)、2-クロロキノリン(3.29g,20.1mmol)、酢酸パラジウム(75.1mg,0.334mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(319mg,0.669mmol)、及び炭酸カリウム(6.94g,50.2mmol)を、テトラヒドロフラン(330mL)及び水(50mL)の混合溶媒に懸濁し、次いで、70℃で18時間撹拌した。その後、酢酸パラジウム(150mg,0.668mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(638mg,0.669mmol)をTHF(30mL)に溶解させた溶液を、反応溶液中に滴下し、70℃で10時間撹拌した。放冷後、水(300mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンで順次洗浄した。得られた固体を、トルエンによる再結晶で精製して、目的物である4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(2-キノリル)フェニル]-1,3,5-トリアジン(化合物C-14)の白色固体(収量7.17g,収率69.9%)を得た。
1H-NMR(CDCl3)δ(ppm): 7.53-7.62(m,8H),7.66(dt,J=7.2Hz,1.2Hz,1H),7.69-7.77(m,3H),7.87(brd,J=8.1Hz,1H),7.92(s,1H),7.98(dd,J=8.1Hz,1.4Hz,1H),8.02(dd,J=8.5Hz,1.2Hz,1H),8.13(d,J=8.8Hz,1H),8.21(brd,J=8.8Hz,1H),8.33(d,J=8.3Hz,1H),8.65(t,J=1.8Hz,1H),8.78-8.81(m,5H),8.84(brd,J=8.2Hz,1H),9.03(t,J=1.6Hz,1H),9.60(t,J=1.8Hz,1H).
アルゴン気流下、合成例―1と同様な方法で合成した2-[3-クロロ-5-(2-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(5.30g,10.2mmol)、3-キノリンボロン酸(3.35g,19.4mmol)、酢酸パラジウム(74.9mg,0.33mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(0.268g,0.56mmol)を、テトラヒドロフラン(360mL)に懸濁した。次いで、該懸濁液に2Mの炭酸カリウム水溶液(14.3mL、28.6mmol)を滴下し、次いで、75℃で96時間撹拌した。室温まで放冷後、反応溶液に、水(200mL)、及びメタノール(20mL)を加え、析出した固体を濾別した。得られた固体を水(100mL)、メタノール(100mL)、ヘキサン(100mL)で順次洗浄した。この固体を再結晶(トルエン)で精製して、目的物である2-[5-(2-フェナントリル)-3-(3-キノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(C-23)の白色固体(収量5.70g,収率91%)を得た。
1H-NMR(CDCl3)δ(ppm):7.59-7.75(m,9H),7.83-7.94(m,3H),7.96(d,J=7.8Hz,1H),8.06(d,J=8.1Hz,1H),8.13-8.17(dd,J=8.7Hz,2.0Hz,1H),8.32(t,J=1.8Hz,1H),8.34(d,J=1.9Hz,1H),8.36(brs,1H),8.69(brs,1H),8.78(d,J=8.2Hz,1H),8.82-8.85(m,4H),8.89(d,J=8.7Hz,1H),9.15(t,J=1.7Hz,1H),9.24(t,J=1.6Hz,1H),9.48(d,J=2.1Hz,1H).
素子実施例-1
基板には、2mm幅の酸化インジウム-スズ(ITO)膜(膜厚110nm)がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、図1に示す断面模式図を有する、発光面積が4mm2の有機電界発光素子を作製した。なお、各有機材料は抵抗加熱方式により成膜した。
まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。
基板には、2mm幅の酸化インジウム-スズ(ITO)膜(膜厚110nm)がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、図1に示す断面模式図を有する、発光面積が4mm2の有機電界発光素子を作製した。なお、各有機材料は抵抗加熱方式により成膜した。
まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。
その後、図1の1で示すITO透明電極付きガラス基板上に有機化合物層として、正孔注入層2、電荷発生層3、正孔輸送層4、発光層5、電子輸送層6、及び陰極層7を、いずれも真空蒸着で、この順番に積層させながら成膜した。
正孔注入層2としては、昇華精製したHILを0.15nm/秒の速度で65nm成膜した。
電荷発生層3としては、昇華精製したHATを0.05nm/秒の速度で5nm成膜した。
正孔輸送層4としては、HTLを0.15nm/秒の速度で10nm成膜した。
発光層5としては、EML-1とEML-2を95:5(重量比)の割合で25nm成膜した(成膜速度0.18nm/秒)。
正孔注入層2としては、昇華精製したHILを0.15nm/秒の速度で65nm成膜した。
電荷発生層3としては、昇華精製したHATを0.05nm/秒の速度で5nm成膜した。
正孔輸送層4としては、HTLを0.15nm/秒の速度で10nm成膜した。
発光層5としては、EML-1とEML-2を95:5(重量比)の割合で25nm成膜した(成膜速度0.18nm/秒)。
電子輸送層6としては、合成実施例-3で得られた4,6-ジフェニル-2-[4’-(2-ピリジル)-5-(フルオランテン-3-イル)ビフェニル-3-イル]-1,3,5-トリアジン(化合物 A-22)及びLiqを50:50(重量比)の割合で30nm成膜した(成膜速度0.15nm/秒)。
最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層7を成膜した。陰極層7は、銀/マグネシウム(重量比1/10)と銀を、この順番に、それぞれ80nm(成膜速度0.5nm/秒)と20nm(成膜速度0.2nm/秒)で製膜し、2層構造とした。
最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層7を成膜した。陰極層7は、銀/マグネシウム(重量比1/10)と銀を、この順番に、それぞれ80nm(成膜速度0.5nm/秒)と20nm(成膜速度0.2nm/秒)で製膜し、2層構造とした。
それぞれの膜厚は、触針式膜厚測定計(DEKTAK)で測定した。
さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cm2を流した時の電圧(V)、及び電流効率(cd/A)を測定し、連続点灯時の素子寿命(h)を測定した。なお、初期輝度を800cd/m2で駆動したときの連続点灯時の輝度減衰時間を測定し、輝度(cd/m2)が30%減じるまでに要した時間を測定した。素子寿命は、下記に示す素子参考例-1を100とした時の相対値で表した。結果を表1に示す。
素子実施例-2
素子実施例-1において、化合物 A-22の代わりに合成実施例-4で得られた4,6-ジフェニル-2-[3-(3-ピリジル)-5-(フルオランテン-3-イル)フェニル]-1,3,5-トリアジン(化合物 A-3)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-4で得られた4,6-ジフェニル-2-[3-(3-ピリジル)-5-(フルオランテン-3-イル)フェニル]-1,3,5-トリアジン(化合物 A-3)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-3
素子実施例-1において、化合物 A-22の代わりに合成実施例-5で得られた4,6-ジフェニル-2-[5-(フルオランテン-3-イル)ビフェニル-3-イル]-1,3,5-トリアジン(化合物 A-1)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-5で得られた4,6-ジフェニル-2-[5-(フルオランテン-3-イル)ビフェニル-3-イル]-1,3,5-トリアジン(化合物 A-1)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-4
素子実施例-1において、化合物 A-22の代わりに合成実施例-2で得られた4,6-ジフェニル-2-[3-(4-イソキノリル)-5-(フルオランテン-3-イル)フェニル]-1,3,5-トリアジン(化合物 A-8)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-2で得られた4,6-ジフェニル-2-[3-(4-イソキノリル)-5-(フルオランテン-3-イル)フェニル]-1,3,5-トリアジン(化合物 A-8)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-5
素子実施例-1において、化合物 A-22の代わりに合成実施例-1で得られた4,6-ジフェニル-2-[3-(3-キノリル)-5-(フルオランテン-3-イル)フェニル]-1,3,5-トリアジン(化合物 A-15)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-1で得られた4,6-ジフェニル-2-[3-(3-キノリル)-5-(フルオランテン-3-イル)フェニル]-1,3,5-トリアジン(化合物 A-15)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-6
素子実施例-1において、化合物 A-22の代わりに合成実施例-9で得られた4,6-ジフェニル-2-[4’-(2-ピリジル)-5-(トリフェニレン-2-イル)ビフェニル-3-イル]-1,3,5-トリアジン(化合物 B-22)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-9で得られた4,6-ジフェニル-2-[4’-(2-ピリジル)-5-(トリフェニレン-2-イル)ビフェニル-3-イル]-1,3,5-トリアジン(化合物 B-22)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-7
素子実施例-1において、化合物 A-22の代わりに合成実施例-10で得られた4,6-ジフェニル-2-[3-(3-ピリジル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-3)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-10で得られた4,6-ジフェニル-2-[3-(3-ピリジル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-3)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-8
素子実施例-1において、化合物 A-22の代わりに合成実施例-7で得られた4,6-ジフェニル-2-[3-(3-キノリル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-15)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-7で得られた4,6-ジフェニル-2-[3-(3-キノリル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-15)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-9
素子実施例-1において、化合物 A-22の代わりに合成実施例-8で得られた4,6-ジフェニル-2-[3-(4-イソキノリル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-8)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-8で得られた4,6-ジフェニル-2-[3-(4-イソキノリル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-8)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-10
素子実施例-1において、化合物 A-22の代わりに合成実施例-12で得られた4,6-ジフェニル-2-[3-(1-ナフチル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-5)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-12で得られた4,6-ジフェニル-2-[3-(1-ナフチル)-5-(トリフェニレン-2-イル)フェニル]-1,3,5-トリアジン(化合物 B-5)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-11
素子実施例-1において、化合物 A-22の代わりに合成実施例-11で得られた4,6-ジフェニル-2-[5-(トリフェニレン-2-イル)-ビフェニル-3-イル]-1,3,5-トリアジン(化合物 B-1)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-11で得られた4,6-ジフェニル-2-[5-(トリフェニレン-2-イル)-ビフェニル-3-イル]-1,3,5-トリアジン(化合物 B-1)を用いた以外は、素子実施例-1と同様に素子を作製した。
素子実施例-12
素子実施例-1において、化合物 A-22の代わりに合成実施例-13で得られた4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4-イソキノリル)フェニル]-1,3,5-トリアジン(化合物C-2)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-13で得られた4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4-イソキノリル)フェニル]-1,3,5-トリアジン(化合物C-2)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-13
素子実施例-1において、化合物 A-22の代わりに合成実施例-14で得られた4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(3-キノリル)フェニル]-1,3,5-トリアジン(化合物C-9)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-14で得られた4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(3-キノリル)フェニル]-1,3,5-トリアジン(化合物C-9)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-14
素子実施例-1において、化合物 A-22の代わりに合成実施例-15で得られた4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(5-キノリル)フェニル]-1,3,5-トリアジン(化合物C-4)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-15で得られた4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(5-キノリル)フェニル]-1,3,5-トリアジン(化合物C-4)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-15
素子実施例-1において、化合物 A-22の代わりに合成実施例-16で得られた4,6-ジフェニル-2-[3-(5-イソキノリル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(化合物C-5)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-16で得られた4,6-ジフェニル-2-[3-(5-イソキノリル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(化合物C-5)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-16
素子実施例-1において、化合物 A-22の代わりに合成実施例-17で得られた4,6-ジフェニル-2-[3-(1-イソキノリル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(化合物C-1)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-17で得られた4,6-ジフェニル-2-[3-(1-イソキノリル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(化合物C-1)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-17
素子実施例-1において、化合物 A-22の代わりに合成実施例-19で得られた4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(2-キノリル)フェニル]-1,3,5-トリアジン(化合物C-14)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-19で得られた4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(2-キノリル)フェニル]-1,3,5-トリアジン(化合物C-14)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-18
素子実施例-1において、化合物 A-22の代わりに合成実施例-20で得られた2-[5-(2-フェナントリル)-3-(3-キノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物C-23)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-1において、化合物 A-22の代わりに合成実施例-20で得られた2-[5-(2-フェナントリル)-3-(3-キノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物C-23)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子参考例-1
素子実施例-1において、化合物 A-22の代わりに、特開2011-63584に記載されている4,6-ジフェニル-2-[5-(9-フェナントリル)-4’-(2-ピリミジル)ビフェニル-3-イル]-1,3,5-トリアジン(ETL-1)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-2~素子実施例-18、及び素子参考例-1の評価も素子実施例-1と同様に行った、その結果を、表1にまとめて示す。
素子実施例-1において、化合物 A-22の代わりに、特開2011-63584に記載されている4,6-ジフェニル-2-[5-(9-フェナントリル)-4’-(2-ピリミジル)ビフェニル-3-イル]-1,3,5-トリアジン(ETL-1)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
素子実施例-2~素子実施例-18、及び素子参考例-1の評価も素子実施例-1と同様に行った、その結果を、表1にまとめて示す。
表1より、素子参考例に比べて、本発明のアジン化合物を用いた素子実施例の有機電界発光素子は、素子寿命が顕著に優れていることが分かった。また、素子実施例の有機電界発光素子は、素子参考例に比べて、駆動電圧及び電流効率の特性が優れていることが分かった。
本発明の新規構造を有するトリアジン化合物を含む材料を用いた有機電界発光素子は、低電圧駆動、高効率化及び長寿命化が可能となり、産業上、照明用や露光光源のランプ、画像を投影するプロジェクション装置、静止画像や動画像を直接視認する表示装置などとして有用である。
なお、2013年7月19日に出願された日本特許出願2013-150870号、2013年7月24日に出願された日本特許出願2013-153872号、2013年7月30日に出願された日本特許出願2013-158164号、及び2013年10月8日に出願された日本特許出願2013-210743号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として取り入れるものである。
なお、2013年7月19日に出願された日本特許出願2013-150870号、2013年7月24日に出願された日本特許出願2013-153872号、2013年7月30日に出願された日本特許出願2013-158164号、及び2013年10月8日に出願された日本特許出願2013-210743号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として取り入れるものである。
1.ITO透明電極付きガラス基板 2.正孔注入層
3.電荷発生層 4.正孔輸送層
5.発光層 6.電子輸送層
7.陰極層
3.電荷発生層 4.正孔輸送層
5.発光層 6.電子輸送層
7.陰極層
Claims (24)
- Arがフェニル基、2-ピリジル基、3-ピリジル基、1-ナフチル基、3-キノリル基、又は4-イソキノリル基である請求項2又は3に記載のトリアジン化合物。
- Xが単結合又はp-フェニレン基である請求項2~4のいずれか一項に記載のトリアジン化合物。
- 前記トリアジン化合物を電子輸送層に含有することを特徴とする、請求項7に記載の有機電界発光素子。
- 前記トリアジン化合物と、Liq(8-ヒドロキシキノリノナトリチウム)との共蒸着膜によって成膜される電子輸送層を有することを特徴とする請求項7又は8に記載の有機電界発光素子。
- Arがフェニル基、2-ピリジル基、3-ピリジル基、1-ナフチル基、3-キノリル基、又は4-イソキノリル基である請求項10又は11に記載のトリアジン化合物。
- Xが単結合又はp-フェニレン基である請求項10~12のいずれか一項に記載のトリアジン化合物。
- 前記トリアジン化合物を電子輸送層に含有することを特徴とする、請求項15に記載の有機電界発光素子。
- 前記トリアジン化合物と、Liq(8-ヒドロキシキノリノナトリチウム)との共蒸着によって成膜される電子輸送層を有することを特徴とする請求項15又は16に記載の有機電界発光素子。
- 前記トリアジン化合物を電子輸送層に含有することを特徴とする、請求項21に記載の有機電界発光素子。
- 前記トリアジン化合物と、Liq(8-ヒドロキシキノリノナトリチウム)との共蒸着によって成膜される電子輸送層を有することを特徴とする請求項21又は22に記載の有機電界発光素子。
- 請求項1に記載のトリアジン化合物を含んでなる電子輸送材用、電子注入材料、又は発光ホスト材料。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-150870 | 2013-07-19 | ||
JP2013150870 | 2013-07-19 | ||
JP2013-153872 | 2013-07-24 | ||
JP2013153872 | 2013-07-24 | ||
JP2013-158164 | 2013-07-30 | ||
JP2013158164 | 2013-07-30 | ||
JP2013-210743 | 2013-10-08 | ||
JP2013210743 | 2013-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015008866A1 true WO2015008866A1 (ja) | 2015-01-22 |
Family
ID=52346306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/069243 WO2015008866A1 (ja) | 2013-07-19 | 2014-07-18 | トリアジン化合物及びそれを含有する有機電界発光素子 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015008866A1 (ja) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015182547A1 (ja) * | 2014-05-28 | 2015-12-03 | 東レ株式会社 | フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子 |
DE102015202709A1 (de) * | 2015-02-13 | 2016-08-18 | Chemex Gmbh | Verwendung eines Speisereinsatzes und Verfahren zum Herstellen einer Gießform mit vertikaler Formteilung |
WO2016175292A1 (ja) * | 2015-04-28 | 2016-11-03 | 出光興産株式会社 | 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器 |
EP3147961A1 (en) | 2015-09-28 | 2017-03-29 | Novaled GmbH | Organic electroluminescent device |
EP3182478A1 (en) | 2015-12-18 | 2017-06-21 | Novaled GmbH | Electron injection layer for an organic light-emitting diode (oled) |
EP3208861A1 (en) | 2016-02-19 | 2017-08-23 | Novaled GmbH | Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled) |
EP3232490A1 (en) | 2016-04-12 | 2017-10-18 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
EP3252841A1 (en) | 2016-05-30 | 2017-12-06 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
EP3252837A1 (en) | 2016-05-30 | 2017-12-06 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
DE102017122928A1 (de) | 2016-10-11 | 2018-01-18 | FEV Europe GmbH | Verfahren zum Bestimmen eines Effizienzwertes einer Turbine mit einer variablen Geometrie |
DE102017122932A1 (de) | 2016-10-12 | 2018-01-18 | FEV Europe GmbH | Verfahren zum Bestimmen eines Drehmoments einer Turbine mit einer variablen Geometrie |
EP3291319A1 (en) | 2016-08-30 | 2018-03-07 | Novaled GmbH | Method for preparing an organic semiconductor layer |
JP2019127440A (ja) * | 2018-01-22 | 2019-08-01 | 東ソー株式会社 | 共役ピリジル基を有するトリアジン化合物 |
JP2019528562A (ja) * | 2017-03-08 | 2019-10-10 | エルジー・ケム・リミテッド | 有機発光素子 |
USRE47654E1 (en) | 2010-01-15 | 2019-10-22 | Idemitsu Koasn Co., Ltd. | Organic electroluminescence device |
US10461258B2 (en) | 2015-12-24 | 2019-10-29 | Idemitsu Kosan Co., Ltd. | Compound |
JP2020147543A (ja) * | 2019-03-15 | 2020-09-17 | 東ソー株式会社 | 2’−アリールビフェニリル基を有するトリアジン化合物 |
US10790449B2 (en) | 2015-06-16 | 2020-09-29 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device |
US11165024B2 (en) | 2016-02-18 | 2021-11-02 | Samsung Display Co., Ltd. | Organic light-emitting device |
US11189800B2 (en) | 2017-07-10 | 2021-11-30 | Lg Chem, Ltd. | Heterocyclic compound and organic light emitting device comprising the same |
WO2024205330A1 (ko) * | 2023-03-31 | 2024-10-03 | 주식회사 엘지화학 | 유기 화합물 및 이를 포함하는 유기 발광 소자 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007527361A (ja) * | 2003-02-28 | 2007-09-27 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | エレクトロルミネセンス素子 |
JP2010045034A (ja) * | 2008-08-18 | 2010-02-25 | Samsung Mobile Display Co Ltd | 光効率改善層を具備した有機発光素子 |
WO2011021689A1 (ja) * | 2009-08-21 | 2011-02-24 | 東ソー株式会社 | 環状アジン誘導体とそれらの製造方法、ならびにそれらを構成成分とする有機電界発光素子 |
WO2012137958A1 (ja) * | 2011-04-07 | 2012-10-11 | 三菱化学株式会社 | 有機化合物、電荷輸送材料、該化合物を含有する組成物、有機電界発光素子、表示装置及び照明装置 |
WO2013069762A1 (ja) * | 2011-11-11 | 2013-05-16 | 東ソー株式会社 | 含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれを構成成分とする有機電界発光素子 |
-
2014
- 2014-07-18 WO PCT/JP2014/069243 patent/WO2015008866A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007527361A (ja) * | 2003-02-28 | 2007-09-27 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | エレクトロルミネセンス素子 |
JP2010045034A (ja) * | 2008-08-18 | 2010-02-25 | Samsung Mobile Display Co Ltd | 光効率改善層を具備した有機発光素子 |
WO2011021689A1 (ja) * | 2009-08-21 | 2011-02-24 | 東ソー株式会社 | 環状アジン誘導体とそれらの製造方法、ならびにそれらを構成成分とする有機電界発光素子 |
WO2012137958A1 (ja) * | 2011-04-07 | 2012-10-11 | 三菱化学株式会社 | 有機化合物、電荷輸送材料、該化合物を含有する組成物、有機電界発光素子、表示装置及び照明装置 |
WO2013069762A1 (ja) * | 2011-11-11 | 2013-05-16 | 東ソー株式会社 | 含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれを構成成分とする有機電界発光素子 |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE47654E1 (en) | 2010-01-15 | 2019-10-22 | Idemitsu Koasn Co., Ltd. | Organic electroluminescence device |
WO2015182547A1 (ja) * | 2014-05-28 | 2015-12-03 | 東レ株式会社 | フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子 |
US11130169B2 (en) | 2015-02-13 | 2021-09-28 | Chemex Foundry Solutions Gmbh | Use of a feeder insert and method for manufacturing a casting mold having a vertical mold separation |
DE102015202709A1 (de) * | 2015-02-13 | 2016-08-18 | Chemex Gmbh | Verwendung eines Speisereinsatzes und Verfahren zum Herstellen einer Gießform mit vertikaler Formteilung |
US10589346B2 (en) | 2015-02-13 | 2020-03-17 | Huettenes-Albertus Chemische Werke Gmbh | Use of a feeder insert and method for manufacturing a casting mold having a vertical mold separation |
WO2016175292A1 (ja) * | 2015-04-28 | 2016-11-03 | 出光興産株式会社 | 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器 |
US10797244B2 (en) | 2015-04-28 | 2020-10-06 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device |
US10790449B2 (en) | 2015-06-16 | 2020-09-29 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device |
EP3147961A1 (en) | 2015-09-28 | 2017-03-29 | Novaled GmbH | Organic electroluminescent device |
EP3182478A1 (en) | 2015-12-18 | 2017-06-21 | Novaled GmbH | Electron injection layer for an organic light-emitting diode (oled) |
US10461258B2 (en) | 2015-12-24 | 2019-10-29 | Idemitsu Kosan Co., Ltd. | Compound |
US11165024B2 (en) | 2016-02-18 | 2021-11-02 | Samsung Display Co., Ltd. | Organic light-emitting device |
WO2017140780A1 (en) | 2016-02-19 | 2017-08-24 | Novaled Gmbh | Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled) |
EP3208861A1 (en) | 2016-02-19 | 2017-08-23 | Novaled GmbH | Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled) |
EP3232490A1 (en) | 2016-04-12 | 2017-10-18 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
WO2017178392A1 (en) | 2016-04-12 | 2017-10-19 | Novaled Gmbh | Organic light emitting diode comprising an organic semiconductor layer |
EP3252837A1 (en) | 2016-05-30 | 2017-12-06 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
EP3252841A1 (en) | 2016-05-30 | 2017-12-06 | Novaled GmbH | Organic light emitting diode comprising an organic semiconductor layer |
EP3291319A1 (en) | 2016-08-30 | 2018-03-07 | Novaled GmbH | Method for preparing an organic semiconductor layer |
WO2018041864A1 (en) | 2016-08-30 | 2018-03-08 | Novaled Gmbh | Method for preparing an organic semiconductor layer and an organic electronic device |
DE102017122928A1 (de) | 2016-10-11 | 2018-01-18 | FEV Europe GmbH | Verfahren zum Bestimmen eines Effizienzwertes einer Turbine mit einer variablen Geometrie |
DE102017122932A1 (de) | 2016-10-12 | 2018-01-18 | FEV Europe GmbH | Verfahren zum Bestimmen eines Drehmoments einer Turbine mit einer variablen Geometrie |
JP2019528562A (ja) * | 2017-03-08 | 2019-10-10 | エルジー・ケム・リミテッド | 有機発光素子 |
US11239425B2 (en) | 2017-03-08 | 2022-02-01 | Lg Chem, Ltd. | Organic light emitting device |
US11189800B2 (en) | 2017-07-10 | 2021-11-30 | Lg Chem, Ltd. | Heterocyclic compound and organic light emitting device comprising the same |
JP2019127440A (ja) * | 2018-01-22 | 2019-08-01 | 東ソー株式会社 | 共役ピリジル基を有するトリアジン化合物 |
JP7192211B2 (ja) | 2018-01-22 | 2022-12-20 | 東ソー株式会社 | 共役ピリジル基を有するトリアジン化合物 |
JP2020147543A (ja) * | 2019-03-15 | 2020-09-17 | 東ソー株式会社 | 2’−アリールビフェニリル基を有するトリアジン化合物 |
JP7285663B2 (ja) | 2019-03-15 | 2023-06-02 | 東ソー株式会社 | 2’-アリールビフェニリル基を有するトリアジン化合物 |
WO2024205330A1 (ko) * | 2023-03-31 | 2024-10-03 | 주식회사 엘지화학 | 유기 화합물 및 이를 포함하는 유기 발광 소자 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015008866A1 (ja) | トリアジン化合物及びそれを含有する有機電界発光素子 | |
JP7339320B2 (ja) | 有機エレクトロルミネセンス材料及びデバイス | |
JP7319758B2 (ja) | 有機エレクトロルミネセンス材料及びデバイス | |
JP2022184867A (ja) | 有機エレクトロルミネセンス材料及びデバイス | |
JP2019069965A (ja) | カルバゾール含有化合物 | |
KR100923309B1 (ko) | 스파이로형 유기 재료 및 이를 이용한 유기 전기발광 소자 | |
WO2011105161A1 (ja) | 有機電界発光素子 | |
JP2015074649A (ja) | 4−ピリジル基を有するトリアジン化合物及びそれを含有する有機電界発光素子 | |
JP2017141216A (ja) | 環状アジン化合物、及びその用途 | |
JP6969118B2 (ja) | トリアジン化合物及びそれを含有する有機電界発光素子 | |
JP7361564B2 (ja) | 第14族元素を有するトリアジン化合物 | |
US9024304B2 (en) | Naphthalene derivative, organic material including the same, and organic electroluminescent device including the same | |
CN106255695B (zh) | 化合物及包含其的有机发光元件 | |
JP6350065B2 (ja) | フルオランテニル基を有するトリアジン化合物及びそれを含有する有機電界発光素子 | |
WO2016002921A1 (ja) | 環状アジン化合物、その製造方法、及びその用途 | |
JP7110778B2 (ja) | オルト構造を有する新規トリアジン化合物 | |
WO2021020285A1 (ja) | 環状アジン化合物、有機電界発光素子用材料、有機電界発光素子用電子輸送材料、および有機電界発光素子 | |
JP6428010B2 (ja) | トリフェニレニル基を有するトリアジン化合物及びそれを含有する有機電界発光素子 | |
WO2014098043A1 (ja) | ピリミジン化合物及びそれを含有する有機電界発光素子 | |
JP2018115125A (ja) | フルオレン骨格基を有するトリアジン化合物 | |
JP6638428B2 (ja) | フェナントリジニル基を有するトリアジン化合物及びその用途 | |
JP2015034148A (ja) | アントリル基を有するトリアジン化合物及びそれを含有する有機電界発光素子 | |
JP6977567B2 (ja) | ベンゾイミダゾール基を有するトリアジン化合物 | |
JP6169556B2 (ja) | 有機電界発光素子及びその製造方法 | |
JP7192211B2 (ja) | 共役ピリジル基を有するトリアジン化合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14827096 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14827096 Country of ref document: EP Kind code of ref document: A1 |