WO2015008369A1 - 中性子吸収ガラス及びそれを用いた中性子吸収材料、並びにこれらを適用した溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 - Google Patents
中性子吸収ガラス及びそれを用いた中性子吸収材料、並びにこれらを適用した溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 Download PDFInfo
- Publication number
- WO2015008369A1 WO2015008369A1 PCT/JP2013/069577 JP2013069577W WO2015008369A1 WO 2015008369 A1 WO2015008369 A1 WO 2015008369A1 JP 2013069577 W JP2013069577 W JP 2013069577W WO 2015008369 A1 WO2015008369 A1 WO 2015008369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- neutron
- neutron absorbing
- glass
- absorbing glass
- molten fuel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
- G21C9/02—Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F1/00—Shielding characterised by the composition of the materials
- G21F1/02—Selection of uniform shielding materials
- G21F1/06—Ceramics; Glasses; Refractories
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the present invention relates to a neutron absorbing glass, a neutron absorbing material using the neutron absorbing glass, a molten fuel management method, a molten fuel take-out method, and a reactor shutdown method using the same.
- a plurality of fuel assemblies including nuclear fuel material are loaded in the reactor core.
- nuclear fuel material uranium pellets
- the fuel assembly is designed to be of a size that is not critical as a whole, so there is a risk that it will become critical if the fuel assembly is unloaded one by one. And can be safely carried out.
- molten fuel molten nuclear fuel material
- This molten fuel is accumulated in the reactor pressure vessel or leaked into the containment vessel. Further, the molten fuel is obtained by melting uranium pellets in the fuel rods inside the nuclear reactor together with surrounding structures. In addition, it is necessary to cut the molten fuel and carry it out of the nuclear reactor. In such a case, a removal method for preventing the occurrence of criticality is indispensable.
- Patent Document 1 discloses SiO 2 , B 2 O 3 , Al 2 O 3 , La 2 O 3, Gd 2 O 3, and the like for transparent window glass having the ability to shield radiation such as X-rays and ⁇ -rays. Including glass compositions have been proposed. From Examples of Patent Document 1, SiO 2 is 18 to 30 mol%, B 2 O 3 is 18 to 38 mol%, Al 2 O 3 is 2.8 to 19.8 mol%, La 2 O 3 is 6 to 13 mol%, and Seven types of glass compositions with Gd 2 O 3 in the range of 15-20 mol% are specifically disclosed.
- B boron
- boric acid reacts with water to produce boric acid
- glass containing B if glass containing B is present in water, B may be dissolved from the glass to form boric acid and dissolve in water.
- boric acid dissolves in water, the inside of the furnace becomes an acidic corrosive environment, which may corrode the internal structure and peripheral equipment.
- the glass composition described in Patent Document 1 has improved detergent resistance and acid resistance so that no burns will occur even if it is washed.
- This glass composition contains a large amount of neutron absorption Gd (gadolinium) and B, so it can absorb neutrons, but the water resistance of the glass is low, and the problem that B dissolves when used for a long time in the state of being immersed in water. is there.
- the present invention aims to improve the water resistance of neutron absorbing glass.
- the present invention provides a neutron absorbing glass as possible put into water, gadolinium oxide, boron oxide, silicon oxide, include zirconium oxide and alkali metal oxide, B 2 O in the following in terms of oxide 3 to 40 to 60 mol% and R 2 O (R: alkali metal) 5 to 20 mol%.
- the water resistance of the neutron absorbing glass can be improved.
- the B 4 C powder which is an example of a schematic external view of a neutron absorbing material sintered at neutron absorbing glass.
- the B 4 C particulate which is an example of a schematic cross-sectional view of a neutron absorbing material coated with a neutron absorbing glass. It is an example of the schematic sectional drawing of the state which the neutron absorber (neutron absorption glass or neutron absorption material) contacted the surface of the molten fuel. It is an example of the schematic sectional drawing of the method of taking out safely the molten fuel inside a nuclear reactor to the exterior of a nuclear reactor. It is a differential thermal analysis (DTA) curve of a typical glass. It is an example of the schematic sectional drawing of the installation which produces neutron absorption glass. It is an example of the schematic sectional drawing of the installation which produces a neutron absorption material.
- DTA differential thermal analysis
- the present invention relates to a neutron absorbing glass and a neutron absorbing material that are used in a reactor using water as a moderator, and is particularly suitable when used by being put into water in the reactor.
- the present invention also relates to a molten fuel management method, a molten fuel take-out method, and a reactor shutdown method to which the neutron absorbing glass or the neutron absorbing material is applied.
- the neutron absorbing glass of the present embodiment includes gadolinium oxide, boron oxide, silicon oxide, zirconium oxide and an alkali metal oxide, and B 2 O 3 is 40 to 60 mol% and R 2 O (R : Alkaline metal) is 5 to 20 mol%, and good water resistance and neutron absorption performance can be obtained.
- the improved water resistance makes it easier for B to absorb neutrons to dissolve in water, thus facilitating water treatment and disposal. Note that when the oxide is described as “x to y mol%” in the text, it indicates that “x mol% to y mol%” (x mol% ⁇ oxide ⁇ y mol%). The same applies to the following.
- Gd is expensive, it is an element having a neutron absorption cross section about 60 times that of B. By containing Gd in glass, neutron absorption can be increased. Gadolinium oxide and boron oxide are mainly responsible for neutron absorption. Table 1 shows elements with large neutron absorption and their neutron absorption cross sections. Although depending on the state of radiated neutrons, elements with a larger neutron absorption cross section tend to have higher neutron absorption performance.
- the B 2 O 3 content (40-60 mol%) is increased, but on the other hand, the water resistance decreases, so silicon oxide and zirconium oxide are effective in improving water resistance. And an alkali metal oxide.
- R 2 O an appropriate amount of R 2 O (5 to 20 mol%), a boric acid abnormal phenomenon peculiar to glass is expressed, and a decrease in water resistance is suppressed or prevented.
- the preferred composition range of the neutron absorbing glass is 5 to 12 mol% of Gd 2 O 3 , 40 to 60 mol% of B 2 O 3 , 8 to 35 mol% of SiO 2 , and 3 of ZrO 2 in terms of the following oxides. ⁇ 12 mol% and R 2 O 5-20 mol%. More preferably, Gd 2 O 3 is 6 to 9 mol%, B 2 O 3 is 45 to 55 mol%, SiO 2 is 15 to 30 mol%, ZrO 2 is 5 to 10 mol% in terms of the following oxides: R 2 O is 5 to 15 mol%.
- R 2 O desirably contains at least Li 2 O.
- Li is smaller than the neutron absorption cross sections of Gd and B as shown in Table 1, but is one of the elements with a large neutron absorption. Therefore, the neutron absorption glass contains Li 2 O, so the neutron absorption performance is improved. Can be improved.
- R 2 O for example, Li 2 O and Na 2 O, Li 2 O and K 2 O, etc.
- a mixed alkali effect peculiar to glass can be expressed, and glass manufacturability and water resistance are improved. it can.
- excessive addition of R 2 O significantly increases the volatilization amount of B during glass production, it is necessary to be careful.
- the density of the neutron absorbing glass is 3.0 to 3.7 g / cm 3 , it is possible to settle stably even if it is put into water.
- suitable shape and size it does not fly underwater by the circulation of water, but can be deposited on molten fuel stably.
- the shape include (a) spherical, (b) tablet, (c) granular, or (d) bead-like neutron absorbing glass 1 as shown in FIG.
- glass is a material with good thermoformability, and thus the shapes (a) to (d) can be produced at low cost.
- an appropriate average size is less than 10 mm mesh and 1 mm mesh or more. If the size is too large, there is a possibility that the molten fuel will not catch on the molten fuel due to being caught in the middle or difficult to contact the molten fuel. On the other hand, if the size is too small, there is a possibility that the water will fly underwater. A more preferred average size is less than 7 mm mesh and 3 mm mesh or more.
- the neutron absorbing material of the present embodiment is a neutron absorbing material 3 obtained by sintering B 4 C (boron carbide) particles 2 containing a large number of B having high neutron absorption performance with neutron absorbing glass 1 ′ as shown in FIG. . Further, as shown in FIG. 3, a neutron absorbing material 3 ′ in which the surface of granular B 4 C particles 2 ′ is covered with neutron absorbing glass 1 ′.
- B 4 C is one of the commonly known neutron absorbing materials and is widely used in nuclear reactors as a neutron shielding material and a nuclear reaction control material. For example, in boiling water reactors, control rods packed with B 4 C are used to control nuclear fission reactions during normal operation and emergencies.
- B 4 C is difficult to sinter by itself, and B may elute into water due to surface oxidation or the like, which may create an acidic corrosive environment.
- B 4 C and the neutron absorption glass of the present embodiment it becomes easy to obtain a desired shape and size, and good water resistance and neutron absorption performance can be obtained.
- FIG. 4 shows a state in which a neutron absorber 18 (neutron absorbing glass 1 or neutron absorbing material 3 or 3 ′) is in contact with the surface of the molten fuel 5 accumulated in the reactor pressure vessel or leaking into the containment vessel. Indicates.
- the neutron absorber 18 is introduced into the underwater 4 from above the molten fuel 5 managed in the underwater 4.
- the neutron absorber 18 is in contact with the molten fuel 5 or is present in the vicinity of the molten fuel 5
- the neutron from the molten fuel 5 can be absorbed and the subcritical state of the molten fuel 5 can be maintained.
- Fig. 5 shows a schematic cross-sectional view of a method for safely taking out the molten fuel in which the uranium pellets and the like in the fuel rod are dissolved together with the surrounding structures to the outside of the reactor.
- the molten fuel 5 is excavated from the state shown in FIG. 4 (the state where the neutron absorber 18 is in contact with the surface of the molten fuel 5). Molten fuel 5 'flies underwater due to excavation, but the neutron absorber 18 also flies along with the molten fuel 5' to prevent recriticality and safely take out the molten fuel 5 'outside the reactor. Can do.
- the excavator 8 having the suction pipe 7 around the drill 6 is used, the excavated molten fuel 5 ′ can be sucked while being cut, so the amount scattered around is reduced, and the outside of the reactor can be more safely removed. It is possible to take it out.
- the reactor shutdown method of the present embodiment is a method of shutting down the reactor in an emergency, and the neutron absorbing glass or neutron absorbing material of the present embodiment is introduced into the reactor, When the neutron absorbing glass or neutron absorbing material of the present embodiment is deposited around the fuel rod, it is possible to prevent reaching the criticality.
- the manufacturability of neutron absorbing glass was evaluated in the state of glass produced at 1300-1400 ° C.
- the glass was mixed and mixed with a predetermined amount of glass material 500 g in a crucible, and heated to 1300-1400 ° C. at a heating rate of about 10 ° C./min in an electric furnace to melt. At that time, the mixture was kept for 2 to 3 hours with stirring to make the glass uniform. Thereafter, the crucible was taken out from the electric furnace, and the melt therein was poured into a stainless steel jig that had been heated to about 250 ° C. in advance to produce glass.
- the water resistance of the neutron absorbing glass was judged by the state of the glass after the glass prepared in an aqueous solution having a salt concentration of 0.9% by weight was boiled for 3 hours.
- the introduced glass did not change in appearance and no corrosion was observed, it was evaluated as “good”, and when the surface of the glass was white burned or the glass was structurally broken, it was evaluated as “failed”.
- the pH of water after the test was also measured, and even if no change in appearance was observed, it was set as “ ⁇ ” if it was acidic.
- the density of the neutron absorbing glass was measured by pycnometer method using powdered glass and helium gas.
- FIG. 6 shows a DTA curve of a typical glass. Starting temperature transition point T g of the first endothermic peak, the peak temperature is yield point M g. These characteristic temperature is defined by the viscosity, T g 10 13.3 poise, M g is equivalent to a temperature at which the viscosity of 10 11 poise.
- the neutron absorption performance of the neutron absorption glass is determined by using the quantities of Gd element, B element and Li element per unit volume obtained from the composition and density of the glass, and the neutron absorption cross sections of each element shown in Table 1.
- the neutron absorption cross section per unit volume was calculated, and when the density was equal to or greater than B 4 C of 2.52 g / cm 3 , it was evaluated as “good”, and when it was lower, it was evaluated as “failed”.
- Example 1 the composition and characteristics of neutron absorbing glass were examined. Examples are shown in Table 2, and Comparative Examples are shown in Table 3.
- the reagents Gd 2 O 3 , B 2 O 3 , SiO 2 , ZrO 2 , Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Al 2 O 3 manufactured by High Purity Chemical Laboratory are used as raw materials. ZnO, MgO, CaCO 3 , SrCO 3 , and BaCO 3 were used.
- the glasses of Examples A-01 to 22 passed all of the neutron absorption performance, water resistance and glass manufacturability. Also, the density is in the range of 3.0 to 3.7 g / cm 3 , and it is possible to settle stably even when thrown into water.
- B 4 C has a density of 2.52 g / cm 3 , which is larger than that.
- T g and sag M g is a characteristic temperature, secondary processing is likely due to heat. Specifically, (a) the spherical shape shown in FIG. 1 can be heated and pressed (b) into a tablet shape, or the cullet can be heated (c) into a granular shape.
- Comparative Example B-01 was a general borosilicate glass, and had good glass manufacturability and water resistance. However, since it does not contain a Gd element having a large neutron absorption, the neutron absorption cross-section ratio is remarkably small as compared with Examples A-01 to 22, which is inferior to the neutron absorption performance of B 4 C. Moreover, the density of Comparative Example B-01 was smaller than B 4 C.
- Comparative Example B-02 ⁇ 04 are Gd 2 O 3 -B 2 O 3 based glass or a Gd 2 O 3 -B 2 O 3 -SiO 2 based glass, glass manufacture was good, B 2 The O 3 content was very high and the water resistance was insufficient. Comparative Example B-05 was also a Gd 2 O 3 —B 2 O 3 —SiO 2 glass, but had a high high temperature viscosity and poor glass manufacturability. Further, the water resistance was not sufficient.
- Comparative Examples B-06 to 12 are generally well known Al 2 O 3 , ZnO or Gd 2 O 3 —B 2 O 3 —SiO 2 based glass in order to improve the water resistance and glass manufacturability. Contains alkaline earth oxides. However, it became cloudy due to crystallization, and sufficient water resistance could not be obtained. In Comparative Examples B-13 to 19, the inclusion of alkali metal oxide was examined, but only Comparative Example B-13 containing no Al 2 O 3 , ZnO and alkaline earth oxide became a uniform transparent glass. . However, since it contains a large amount of alkali metal oxides, the amount of volatilization of B 2 O 3 is large and the water resistance is insufficient.
- neutron absorbing glass that can be put into water includes gadolinium oxide, boron oxide, silicon oxide, zirconium oxide, and alkali metal oxide. Including the following oxides, B 2 O 3 is 40 to 60 mol% and R 2 O (R: alkali metal) is 5 to 20 mol%, which improves neutron absorption performance, water resistance and glass workability. I found that I could improve everything. In order to improve water resistance, the boric acid abnormality phenomenon peculiar to glass by containing both B 2 O 3 and R 2 O was utilized.
- Example 2 the shape and size of the neutron absorption glass were examined. Since glass has good moldability by heat, we made neutron-absorbing glasses of various shapes and sizes.
- the neutron absorption glass of Example A-11 was melted at 1300 to 1400 ° C. in a glass melting furnace 11 and the stirring blade 12 was rotated to make the molten glass 13 uniform.
- a predetermined amount of the molten glass 13 is poured out, sequentially cut by the cutters 15 and 15 ', and dropped between the rotating forming rolls 16 and 16'. It was.
- semi-circular grooves are continuously formed on the surfaces of the forming rolls 16 and 16 ', and the grooves face each other.
- the molten glass 13 that passed between the forming rolls 16 and 16 ′ was cooled and turned into a spherical neutron absorbing glass 1. Then, to remove thermal strain of the neutron-absorbing glass 1 of the resulting spherical, it was performed stress relief at a temperature slightly higher than the transition point T g. Transition point T g of the Example A-11 is because it is 532 ° C., and stress relief heat treatment at about 550 ° C.. By removing the thermal strain, the mechanical strength and water resistance of the neutron absorbing glass can be improved.
- the average size of the spherical neutron-absorbing glass 1 is roughly determined by the flow rate of the molten glass 13 from the glass melting furnace 11, the cutting speed of the cutters 15 and 15 ', and the groove size of the surfaces of the forming rolls 16 and 16'. Can be controlled. In this example, the diameter was adjusted to about 5 mm. Then, using a 10 mm mesh and a 1 mm mesh sieve, a size of less than 10 mm mesh and 1 mm mesh or more was obtained. With such a size, a spherical neutron absorbing glass can be obtained with a high yield.
- the size is 10 mm or more, there is a possibility that the molten fuel may not be spread over the molten fuel due to being caught in the middle when it is poured into the water or difficult to contact the molten fuel.
- the size is less than 1 mm, there is a risk that the water will drift underwater.
- a 7 mm mesh and a 3 mm mesh sieve are used and the mesh size is less than 7 mm and 3 mm mesh or more.
- a tablet-like neutron absorbing glass shown in FIG. 1 was produced using the glass of Example A-11 in the same manner as described above.
- the tablet-shaped neutron absorbing glass was produced by hot pressing the spherically produced neutron absorbing glass. Thereafter, in the same manner as described above, the strain was removed and sieved to obtain a desired size. Since the tablet shape is less likely to roll than the spherical shape, handling is easy. Further, since the surface area per weight is larger than that of a sphere, an improvement in neutron absorption performance can be expected.
- Example A-11 The granular neutron absorbing glass shown in FIG. 1 was also produced using the glass of Example A-11 in the same manner as described above.
- the glass of Example A-11 was melted and produced, and pulverized to an appropriate size cullet by a crusher.
- the cullet was heated to about 800 ° C. in a tunnel furnace, and the edges were rounded to form particles. At that time, the same tunnel furnace was also used for strain relief. Thereafter, a sieve was applied in the same manner as described above to obtain a desired size.
- the (d) bead-like neutron absorbing glass shown in FIG. 1 was also produced using the glass of Example A-11 in the same manner as described above.
- a glass tube having a diameter of about 5 mm was produced from the glass of Example A-11.
- the glass tube was scratched at intervals of about 5 mm and cut by thermal shock. This was heated to about 800 ° C. in a tunnel furnace in the same manner as described above, and the edges were rounded to form beads. At that time, the same tunnel furnace was also used for strain relief. Thereafter, a sieve was applied in the same manner as described above to obtain a desired size. In the bead shape, the surface area can be further increased, which is considered to contribute to the improvement of neutron absorption performance.
- Example 3 the combination of neutron absorption glass and B 4 C was studied.
- Neutron-absorbing glass and B 4 C powder were mixed, molded in a mold, and heated in a low-oxygen atmosphere to produce a sintered body of neutron-absorbing material 3 shown in FIG.
- the reason for heating in a low oxygen atmosphere is to suppress or prevent the oxidation of B 4 C as much as possible.
- the neutron absorbing glass the glass of Example A-07 shown in Table 2 was used and pulverized to 30 ⁇ m or less by a stamp mill and a jet mill.
- B 4 C used a commercially available powder of 150 ⁇ m or less.
- Example 1 As a result of carrying out the same water resistance test as in Example 1 using the obtained sintered body, good water resistance was obtained without being corroded. Further, since both the glass of Example A-07 and B 4 C have a large neutron absorption cross section per unit volume, the neutron absorption performance is good. On the other hand, B 4 C alone may react with water gradually in water to produce boric acid, resulting in an acidic corrosive environment. By combining with neutron absorbing glass, the area where B 4 C comes into contact with water can be reduced, and the water resistance of neutron absorbing glass is high, so that B does not easily dissolve even when exposed to water for a long time. Moreover, it becomes easy to make a sintered body of B 4 C.
- this neutron absorbing material is not limited to the application to be put into water, but can be developed for substitution of B 4 C powder loaded in a control rod, substitution of a B 4 C sintered body used in a fast reactor, and the like.
- Example 4 in the same manner as in Example 3, the combination of neutron absorbing glass and B 4 C was studied, and the neutron absorbing material 3 ′ shown in FIG. 3 was produced.
- the neutron absorbing glass 1 ′ the glass of Example A-16 shown in Table 2 was used.
- the B 4 C particles 2 ′ commercially available granular particles of 1 to 3 mm were used.
- FIG. 8 shows the equipment used for producing the neutron absorbing material 3 ′ shown in FIG. In FIG. 8, the equipment shown in FIG. 7 is devised so that granular B 4 C particles 2 ′ can be introduced from the plunger 14 into the molten glass 13 at 1300 to 1400 ° C.
- the B 4 C particles 2 ′ were introduced into the upper container 17 of the glass melting furnace 13 and heated with the residual heat of the glass melting furnace 13. Further, in order to prevent oxidation of B 4 C, the inside of the container 17 was made an inert atmosphere. Granular B 4 C particles 2 ′ were sequentially dropped from the container 17, and were poured from the lower part of the glass melting furnace 11 together with the molten glass 13. It was cut with cutters 15 and 15 ′ and dropped between forming rolls 16 and 16 ′ in the same manner as in Example 2 to produce a spherical neutron absorbing material 3 ′ as shown in FIG.
- neutron absorption glass is applied to the surface portion of one B 4 C particle.
- Example 4 there were many cases where a plurality of B 4 C particles entered. This is not a problem unless the size of the neutron absorbing material 3 ′ becomes too large. Thereafter, the resulting neutron absorbing material 3 'was subjected to heat treatment slightly temperatures greater about 550 ° C. above the transition point T g of the Example A-16, the neutron absorbing glass 2' to remove heat distortion.
- Example 1 The same water resistance test as that of Example 1 was performed using the obtained neutron absorbing material. As a result, good water resistance was obtained without being corroded. Further, regarding the neutron absorption performance, it goes without saying that both the glass of Example A-16 and B 4 C have a large neutron absorption cross-sectional area per unit volume, and thus are good.
- the fourth embodiment as compared to Example 3, and the neutron absorbing glass powder, B 4 C powder and uniformly mixed, molded, does not require firing, the neutron absorbing glass and B 4 C The neutron absorbing material can be manufactured at low cost.
- this neutron absorbing material is not limited to the application to be put into water, but it is an alternative to the B 4 C powder loaded in the control rod or the B 4 C sintered body used in the fast reactor. There is a possibility that it can also be deployed.
- Neutron-absorbing glass or neutron-absorbing material is introduced into the reactor to maintain the subcriticality of the molten fuel and enhance safety.
- a lump of molten fuel 5 is submerged in water 4, and a neutron absorber 18 (neutron absorbing glass, neutron absorbing material) is introduced into water 4 so as to directly cover the upper surface of the lump of molten fuel 5. Touching. Since the density of the neutron absorber 18 is sufficiently larger than that of water, it is likely to deposit on the surface of the molten fuel 5. Further, when there are cracks in the molten fuel 5 mass or when there is a gap between the molten fuel 5 masses, the neutron absorber 18 enters these cracks or gaps.
- the neutrons generated from the molten fuel 5 are shielded and the chain reaction is suppressed so that the criticality is not reached. can do. It is effective to make the size of the neutron absorber 18 smaller than the mass of the molten fuel 5.
- the neutron absorbing glass is a uniform transparent glass, but has a characteristic of being colored by neutron irradiation. Since the degree of coloring tends to increase as the amount of neutron irradiation increases, the position of the molten fuel in the nuclear reactor is detected by examining the degree of coloring of the neutron absorbing glass of the present invention introduced into the nuclear reactor. It is also possible to make predictions.
- the neutron absorber 18 is introduced into the reactor so as not to cause recriticality when the molten fuel 5 is taken out.
- the molten fuel 5 is crushed by the drill 6 of the excavator 8 and the particulate molten fuel 5 ′ is sucked through the suction pipe 7 of the excavator 8.
- a part of the excavated particulate molten fuel 5 ′ may not be sucked into the suction pipe 7 of the excavator 8 and may be scattered in the surrounding water 4.
- the volume ratio of the particulate molten fuel 5 ′ in the water 4 changes and becomes recritical.
- the neutron absorber 18 is also scattered together with the particulate molten fuel 5 ′ scattered in the water 4 so that neutrons in the water 4 can be absorbed and blocked. Thereby, a chain reaction can be suppressed and it can prevent reaching a recriticality also during excavation work. Further, even if the neutron absorber 18 is damaged by cutting with the drill 6 of the excavator 8 during excavation work, the neutron absorption performance is not impaired.
- the excavating method may be a power shovel and is not limited to an excavator.
- Example 7 describes an example of controlling a nuclear fission reaction by introducing neutron absorbing glass or neutron absorbing material.
- the above-mentioned neutron absorbing glass or neutron absorbing material is introduced so that the neutron absorbing glass or neutron absorbing material is deposited around the fuel rod inside the reactor.
- the nuclear fission reaction of the nuclear reactor can be controlled and the nuclear reactor can be stopped urgently.
- neutron absorbing glass or neutron absorbing material it is possible to prevent boric acid from eluting into the water inside the reactor, or to prevent pH from being lowered even if boric acid is eluted. For this reason, corrosion of the reactor internal structure can be prevented and the reaction of the nuclear fuel can be continuously suppressed, so that the nuclear reactor can be stopped for a long period of time.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Glass Compositions (AREA)
Abstract
水中に投入可能な中性子吸収ガラスにおいて、酸化ガドリニウム、酸化ホウ素、酸化ケイ素、酸化ジルコニウム及びアルカリ金属酸化物を含み、次の酸化物換算でB2O3を40~60モル%及びR2O(R:アルカリ金属)を5~20モル%含む。
Description
本発明は、中性子吸収ガラス及びそれを用いた中性子吸収材料、並びにこれらを適用した溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法に関する。
沸騰水型原子力プラント及び加圧水型原子力プラント等の原子力プラントでは、核燃料物質(ウランペレット)を含む複数の燃料集合体が原子炉の炉心に装荷されている。通常の運転サイクルにおいて燃料集合体を搬出する際は、燃料集合体がそれ一体では臨界とならない大きさとなるように設計されており、そのため、燃料集合体を一体ずつ搬出すれば臨界となるおそれはなく、安全に搬出することができる。
しかし、万一、スリーマイル原子力発電所の原子力プラントのように、原子炉内の炉心に装荷している燃料集合体に含まれる核燃料物質(ウランペレット)が溶融する事故が発生した場合には、この溶融した核燃料物質(以下、「溶融燃料」と呼ぶ。)の臨界発生を防止し、安全に管理する方法が必要である。この溶融燃料は、原子炉圧力容器に溜まった、もしくはその格納容器内に漏れた状態となっている。さらに、その溶融燃料は、原子炉内部の燃料棒内のウランペレットが周囲の構造体と共に溶解したものである。また、その溶融燃料を切削し、原子炉から搬出する必要があるが、その際にも万一の臨界発生を防止するための取り出し方法が必要不可欠である。
特許文献1には、X線やγ線等の放射線を遮蔽する能力を有する透明窓ガラス用として、SiO2、B2O3、Al2O3、La2O3及びGd2O3等を含むガラス組成物が提案されている。この特許文献1の実施例よりSiO2が18~30モル%、B2O3が18~38モル%、Al2O3が2.8~19.8モル%、La2O3が6~13モル%及びGd2O3が15~20モル%の範囲にある7種類のガラス組成物が具体的に開示されている。
B(ホウ素)は水と反応してホウ酸を生成するため、Bが含まれたガラスが水中に存在すると、ガラスからBが溶け出してホウ酸が生成し水に溶解する可能性がある。ホウ酸が水に溶解すると炉内が酸性の腐食環境となり、炉内構造物や周辺機器が腐食される可能性がある。
特許文献1に記載されたガラス組成物は、耐洗剤性及び耐酸性を改善し、洗浄等を行ってもヤケが生じないようにしたものである。このガラス組成物は、中性子吸収の大きいGd(ガドリニウム)やBを多く含むので中性子も吸収できるが、ガラスの耐水性が低く、水中に浸漬した状態で長時間使用するとBが溶け出すという課題がある。
本発明は、中性子吸収ガラスの耐水性を向上させることを目的とする。
上記目的を達成するために、本発明は、水中に投入可能な中性子吸収ガラスにおいて、酸化ガドリニウム、酸化ホウ素、酸化ケイ素、酸化ジルコニウム及びアルカリ金属酸化物を含み、次の酸化物換算でB2O3を40~60モル%及びR2O(R:アルカリ金属)を5~20モル%含むことを特徴とする。
本発明によれば、中性子吸収ガラスの耐水性を向上させることができる。
本発明は、水を減速材とする原子炉に用いる中性子吸収ガラス及び中性子吸収材料に関し、特に、原子炉内の水中に投入して用いる場合に好適なものである。また、本発明は、前記中性子吸収ガラス又は前記中性子吸収材料を適用した溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法に関する。
以下、本発明の実施形態について説明する。
本実施形態の中性子吸収ガラスは、酸化ガドリニウム、酸化ホウ素、酸化ケイ素、酸化ジルコニウム及びアルカリ金属酸化物を含み、次の酸化物換算でB2O3が40~60モル%及びR2O(R:アルカリ金属)が5~20モル%であることによって、良好な耐水性と中性子吸収性能が得られる。耐水性が向上することで、中性子を吸収したBが水に溶け込みにくくなるため、水の処理や廃棄も容易になる。なお、本文中で酸化物が「x~yモル%」と記載されている場合、「xモル%以上yモル%以下」(xモル%≦酸化物≦yモル%)であることを示す。以下も同様である。
Gdは、高価ではあるが、Bの約60倍の中性子吸収断面積をもつ元素であり、Gdをガラスに含有することによって、中性子吸収量を増加させることができる。主に酸化ガドリニウムと酸化ホウ素が中性子吸収を担っている。表1に中性子吸収が大きい元素とその中性子吸収断面積を示す。放射される中性子の状態にもよるが、中性子吸収断面積が大きい元素ほど、中性子吸収性能が高い傾向を示す。
また、中性子吸収量を増やすために、B2O3の含有量(40~60モル%)を多くするが、一方で耐水性が低下するので、耐水性向上に効果がある酸化ケイ素と酸化ジルコニウムとアルカリ金属酸化物を含有する。その中で、R2Oを適正量含有(5~20モル%)することによって、ガラス特有のホウ酸異常現象を発現し、耐水性の低下を抑制或いは防止している。
中性子吸収ガラスの好ましい組成範囲は、次の酸化物換算でGd2O3が5~12モル%、B2O3が40~60モル%、SiO2が8~35モル%、ZrO2が3~12モル%及びR2Oが5~20モル%である。さらに好ましくは、次の酸化物換算でGd2O3が6~9モル%、B2O3が45~55モル%、SiO2が15~30モル%、ZrO2が5~10モル%及びR2Oが5~15モル%である。
R2Oは、少なくともLi2Oを含むことが望ましい。Liは、表1で示したとおりGdやBの中性子吸収断面より小さいが、中性子吸収量の大きい元素の一つであるため、中性子吸収ガラスがLi2Oを含有することにより、中性子吸収性能を向上することができる。また、二種類以上のR2O(たとえばLi2OとNa2O、Li2OとK2O等)を含有すると、ガラス特有の混合アルカリ効果を発現でき、ガラス製作性や耐水性を向上できる。しかし、R2Oの入れ過ぎは、ガラス製作時にBの揮発量を著しく増加させるので、注意が必要である。
また、中性子吸収ガラスの密度を3.0~3.7g/cm3とすることで、水中に投入しても、安定して沈降させることができる。また、適切な形状とサイズによって、水の循環で水中を舞うことはなく、安定して溶融燃料上に堆積させることができる。形状としては、図1に示すような(a)球状、(b)タブレット状、(c)粒状或いは(d)ビーズ状の中性子吸収ガラス1が挙げられる。ガラスは、セラミックスとは異なり、熱成形性がよい材料であるために、これらの(a)~(d)の形状を安価に製作することが可能である。
適切な平均サイズとしては、10mmメッシュ未満1mmメッシュ以上であることが望ましい。サイズが大き過ぎると、投入時に途中で引っかかったり、溶融燃料に接触しにくかったりする等して、溶融燃料上に行き渡らない可能性がある。一方、サイズが小さ過ぎると、水流により水中を舞ってしまう可能性がある。さらに好ましい平均的サイズは、7mmメッシュ未満3mmメッシュ以上である。
本実施形態の中性子吸収材料は、図2に示すように中性子吸収性能が高いBを多数含有するB4C(炭化ホウ素)粒子2を中性子吸収ガラス1’で焼結した中性子吸収材料3である。また、図3に示すように粒状のB4C粒子2’の表面に中性子吸収ガラス1’を被覆した中性子吸収材料3’である。B4Cは、一般に知られている中性子吸収材料の一つであり、原子炉において中性子遮蔽材料や核反応制御材料として広く用いられている。例えば、沸騰水型原子炉において、B4Cを詰めた制御棒は、通常運転時及び緊急時における原子炉の核分裂反応の制御に用いられている。しかし、B4Cは単体では焼結しにくく、しかも表面酸化等によりBが水中へ溶出し、酸性の腐食環境を作り出す可能性がある。このようなB4Cと、本実施形態の中性子吸収ガラスとを組み合わせることによって、所望の形状とサイズにすることが容易になり、しかも良好な耐水性と中性子吸収性能が得られる。
次に、本実施形態の溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法について説明する。図4は、原子炉圧力容器内に溜まった、もしくは格納容器内に漏れ出た溶融燃料5の表面に、中性子吸収体18(中性子吸収ガラス1又は中性子吸収材料3或いは3’)が接触した状態を示す。中性子吸収体18は、水中4で管理されている溶融燃料5の上方から水中4へ投入される。中性子吸収体18が溶融燃料5に接触するか、溶融燃料5の近傍に存在することで、溶融燃料5からの中性子を吸収し、溶融燃料5の未臨界の状態を維持することができる。
図5に燃料棒内のウランペレット等が周囲の構造物ともども溶解した溶融燃料を原子炉の外部に安全に取り出す方法の概略断面図を示す。図4の状態(溶融燃料5の表面に中性子吸収体18が接触した状態)から、溶融燃料5を掘削する。掘削によって溶融燃料5’が水中を舞ってしまうが、その溶融燃料5’と共に中性子吸収体18も舞うことにより、再臨界を防止して、溶融燃料5’を安全に原子炉の外部に取り出すことができる。また、ドリル6の周囲に吸引管7を有する掘削機8を用いると、掘削した溶融燃料5’を切削しながら吸引することができるので周りに散る量が減り、より安全に原子炉の外部に取り出すことが可能である。
また、本実施形態の原子炉の停止方法は、非常の際に原子炉を停止する方法であって、原子炉の内部に本実施形態の中性子吸収ガラス又は中性子吸収材料を投入し、原子炉内の燃料棒の周囲に本実施形態の中性子吸収ガラス又は中性子吸収材料を堆積した状態とすることによって、臨界に達することを防止することができる。
以下、中性子吸収ガラスの評価項目であるガラス製作性(作製し易さ)、耐水性、密度、特性温度及び中性子吸収性能について説明する。
中性子吸収ガラスの製作性は、1300~1400℃で作製されたガラスの状態で評価した。ガラスは、所定量配合、混合したガラス原料500gをルツボに入れ、電気炉中で約10℃/分の昇温速度で1300~1400℃まで加熱し、溶融した。その際にガラスの均一化を図るために攪拌しながら2~3時間保持した。その後、電気炉よりルツボを取り出し、その中の溶融物を予め250℃程度に加熱しておいたステンレス製のジグに流し込み、ガラスを作製した。
このようなガラス作製条件で、均一な透明ガラスの状態になった場合には合格「○」、結晶化(白濁化)した場合には不合格「×」と評価した。また、均一な透明ガラスの状態であってもガラス作製時の揮発が多かったり、或いは高温粘度が高く、流し込みにくかったりした場合には「△」と評価した。ガラス製作性が良いと、良好な熱成形性が得られ、図1で示したようにいろいろな形状、サイズの中性子吸収ガラスが得られやすい。
中性子吸収ガラスの耐水性は、塩分濃度0.9重量%の水溶液に作製したガラスを投入し、3時間煮沸した後のガラスの状態で判定した。投入したガラスが外観上変化なく、腐食が認められない場合には合格「○」、ガラスの表面に白ヤケが発生したり、ガラスが構造崩壊した場合には不合格「×」と評価した。また、試験後の水のpHも測定し、外観上変化が認められなくても、酸性であれば「△」とした。
中性子吸収ガラスの密度は、ガラスを粉末にし、ヘリウムガスを用いてピクノメータ法によって測定した。
中性子吸収ガラスの特性温度は、ガラスを粉末にし、示差熱分析(DTA)によって転移点Tgと屈伏点Mgを測定した。図6に代表的なガラスのDTAカーブを示す。第一吸熱ピークの開始温度が転移点Tg、そのピーク温度が屈伏点Mgである。これらの特性温度は、粘度により定義されており、Tgは1013.3ポイズ、Mgは1011ポイズの粘度になる温度に相当する。
中性子吸収ガラスの中性子吸収性能は、ガラスの組成と密度から求めた単位体積当たりのGd元素、B元素及びLi元素の数量と、表1で示したそれぞれの元素の中性子吸収断面積を用いて、単位体積当たりの中性子吸収断面積を算出し、密度が2.52g/cm3のB4Cと同等以上の場合には合格「○」、下回る場合には不合格「×」と評価した。
以下、実施例を用いて更に詳細に説明する。ただし、本発明は、ここで取り上げた実施例の記載に限定されるものではない。
本実施例1では、中性子吸収ガラスの組成と特性について検討した。実施例を表2、比較例を表3に示す。ガラスの作製には、原料として高純度化学研究所製試薬Gd2O3、B2O3、SiO2、ZrO2、Li2CO3、Na2CO3、K2CO3、Al2O3、ZnO、MgO、CaCO3、SrCO3、及びBaCO3を用いた。
表2に示すように、実施例A-01~22のガラスは、中性子吸収性能、耐水性及びガラス製作性のすべてが合格であった。また、密度も3.0~3.7g/cm3の範囲にあり、水中に投入しても安定して沈降させることが可能である。B4Cの密度は2.52g/cm3であり、それよりも大きいと言った特長がある。さらに、特性温度である転移点Tgや屈伏点Mgも高くないことから、熱による二次加工がしやすい。具体的には図1で示した(a)球状を加熱プレスして(b)タブレット状にしたり、或いはカレットを加熱して(c)粒状にしたりすることが可能である。
表2で示した実施例A-01~22に対して、表3の比較例B-01~26では、ガラス製作性を合格できたものが一部あったものの、耐水性と中性子吸収性能の両方を合格できたものはなかった。比較例B-01は、一般的なホウケイ酸ガラスであり、ガラス製作性と耐水性が良好であった。しかし、中性子吸収が大きいGd元素を含まないため、実施例A-01~22に比べ、中性子吸収断面積比が著しく小さく、B4Cの中性子吸収性能より劣っていた。また、比較例B-01の密度は、B4Cよりも小さかった。比較例B-02~04は、Gd2O3-B2O3系ガラス或いはGd2O3-B2O3-SiO2系ガラスであり、ガラス製作性は良好であったが、B2O3含有量が非常に多く、耐水性は不十分であった。比較例B-05もGd2O3-B2O3-SiO2系ガラスであるが、高温粘度が高く、ガラス製作性が良くなかった。また、耐水性も十分とは言えなかった。
比較例B-06~12は、Gd2O3-B2O3-SiO2系ガラスの耐水性とガラス製作性を改善するために、一般的によく知られたAl2O3、ZnO或いはアルカリ土類酸化物を含有した。しかし、結晶化により白濁してしまい、十分な耐水性が得られなかった。比較例B-13~19では、アルカリ金属酸化物の含有について検討したが、Al2O3、ZnO及びアルカリ土類酸化物を含有しない比較例B-13のみが均一な透明なガラスとなった。しかし、アルカリ金属酸化物を多く含むため、B2O3の揮発量が多く、しかも耐水性が不十分であった。それ以外の比較例B-14~19は、比較例B-06~12と同様にAl2O3、ZnO或いはアルカリ土類酸化物の含有よる白濁化(結晶化)が発生し、しかも耐水性は良好ではなかった。比較例B-20~26では、さらにZrO2を含有した系について検討したが、どれも白濁化(結晶化)し、ガラス製作性は良好とは言えなかった。また、これらの耐水性も良好とは言えず、白濁化(結晶化)が耐水性へ悪影響を及ぼしている可能性がある。
以上の実施例A-01~22と比較例B-01~26の検討結果から、水中に投入可能な中性子吸収ガラスとしては、酸化ガドリニウム、酸化ホウ素、酸化ケイ素、酸化ジルコニウム及びアルカリ金属酸化物を含み、次の酸化物換算でB2O3が40~60モル%及びR2O(R:アルカリ金属)が5~20モル%であることによって、中性子吸収性能、耐水性及びガラス製作性のすべてを改善できることを見出した。耐水性の改善には、B2O3とR2Oをともに含有することによるガラス特有のホウ酸異常現象を活用した。
本実施例2では、中性子吸収ガラスの形状やサイズについて検討した。ガラスは、熱による成形性が良好なため、いろいろな形状やサイズの中性子吸収ガラスの作製を試みた。先ずは、図1で示した(a)球状の中性子吸収ガラス1を作製した。この中性子吸収ガラス1には、表2の実施例A-11のガラスを用いた。使用した設備を図7に示す。この設備は、基本的にはビー玉を製造する設備と同じである。
図7において、ガラス溶融炉11で実施例A-11の中性子吸収ガラスを1300~1400℃で溶融し、撹拌羽12を回転させることによって、その溶融ガラス13の均一化を図った。ガラス溶融炉11の下部よりプランジャー14を上げることによって、所定量の溶融ガラス13を流し出し、カッター15と15’で順次切断し、回転している成形ロール16と16’の間に落下させた。成形ロール16と16’の表面には、溶融ガラス13を球状とするために、半円状の溝が連続的に施してあり、その溝が対面している。成形ロール16と16’の間を通過した溶融ガラス13は冷却されるとともに、球状の中性子吸収ガラス1となった。その後、得られた球状の中性子吸収ガラス1の熱歪を除去するために、転移点Tgより若干高い温度で歪取りを実施した。実施例A-11の転移点Tgは532℃であることから、約550℃の熱処理で歪取りした。熱歪を除去することによって、中性子吸収ガラスの機械的強度や耐水性を向上することができる。
球状の中性子吸収ガラス1の平均サイズは、ガラス溶融炉11からの溶融ガラス13の流し出し量と、カッター15と15’の切断速度と、成形ロール16と16’の表面の溝サイズによって大まかにはコントロールすることができる。本実施例では、直径が5mm程度になるように調整した。その後、10mmメッシュと1mmメッシュのふるいを用いて、10mmメッシュ未満1mmメッシュ以上のサイズを得た。このぐらいのサイズであると、高い歩留まりで球状の中性子吸収ガラスが得られる。サイズが10mm以上では、水中投入時に途中で引っかかったり、溶融燃料に接触しにくかったりする等して、溶融燃料上に行き渡らない恐れがある。一方、サイズが1mm未満であると、水流により水中を舞ってしまう恐れがある。好ましくは、7mmメッシュと3mmメッシュのふるいを用いて、7mmメッシュ未満3mmメッシュ以上とすることである。
次に、図1で示した(b)タブレット状の中性子吸収ガラスを上記同様にして実施例A-11のガラスを用いて作製した。タブレット状の中性子吸収ガラスの作製は、球状に作製した中性子吸収ガラスを熱プレスすることによってつぶした。その後、上記同様に、歪取りを行い、さらにふるいをかけ、所望のサイズを得た。タブレット状は、上記球状に比べると、転がりにくいため、取り扱いが容易になる。また、同じ重量当たりの表面積が球状より大きくなることから、中性子吸収性能の向上も期待できる。
図1で示した(c)粒状の中性子吸収ガラスも上記同様にして実施例A-11のガラスを用いて作製した。先ずは、実施例A-11のガラスを溶融、作製し、クラッシャーによって適度なサイズのカレットにまで粉砕した。このカレットをトンネル炉で約800℃にまで加熱して、エッジ部を丸めることによって、粒状とした。その際に同じトンネル炉で歪取りも同時に行った。その後、上記と同様にふるいをかけ、所望のサイズを得た。
図1で示した(d)ビーズ状の中性子吸収ガラスも上記同様にして実施例A-11のガラスを用いて作製した。先ずは、実施例A-11のガラスで直径5mm程度のガラス管を作製した。このガラス管を長さ5mm程度の間隔で傷を付け、熱衝撃でカットした。これを、上記同様にトンネル炉で約800℃にまで加熱して、エッジ部を丸めることによって、ビーズ状とした。その際に同じトンネル炉で歪取りも同時に行った。その後、上記と同様にふるいをかけ、所望のサイズを得た。ビーズ状では、さらに表面積を大きくできることから、中性子吸収性能の向上に貢献できるものと考えられる。
本実施例3では、中性子吸収ガラスとB4Cの複合化を検討した。中性子吸収ガラスとB4Cの粉末を混合し、金型で成形し、低酸素雰囲気中で加熱することによって図2で示した中性子吸収材料3の焼結体を作製した。低酸素雰囲気中で加熱する理由は、B4Cの酸化を少しでも抑制、防止するためである。中性子吸収ガラスとしては、表2で示した実施例A-07のガラスを用い、スタンプミルとジェットミルによって30μm以下に粉砕した。B4Cは150μm以下の市販の粉末を用いた。実施例A-07の中性子吸収ガラス粉末を30体積%、B4C粉末を70体積%の割合で配合、混合し、金型を用いて1トン/cm2の条件で直径5mm、厚み5mmの円柱状の成形体を多数作製した。これらの成形体を低酸素雰囲気中のトンネル炉に流し、約800℃で実施例A-07のガラス粉末を軟化流動させることによって中性子吸収材料の焼結体を作製した。得られた焼結体は、10~20%程度体積が収縮していた。
得られた焼結体を用いて、実施例1と同じ耐水性試験を実施した結果、腐食されることなく、良好な耐水性が得られた。また、実施例A-07のガラスとB4Cはどちらも単位体積当たりの中性子吸収断面積が大きいから、中性子吸収性能は良好である。一方、B4C単体では、水中で水と徐々に反応してホウ酸を生成し、酸性の腐食環境となる可能性がある。中性子吸収ガラスと組み合わせることによってB4Cが水と接触する面積を減らすことができ、しかも中性子吸収ガラスの耐水性が高いことで長期間水にさらされてもBが溶け出しにくい。また、B4Cの焼結体が作り易くなる。さらにB4C単体で用いるより、密度を大きくすることができることから、水流により動きにくくなる特長も有する。また、この中性子吸収材料は、水中に投入する用途に限らず、制御棒に装填されるB4C粉末の代替や高速炉で用いるB4C焼結体の代替等にも展開可能である。
本実施例4においても、実施例3と同様に中性子吸収ガラスとB4Cの複合化を検討し、図3で示した中性子吸収材料3’を作製した。中性子吸収ガラス1’には、表2で示した実施例A-16のガラスを用いた。また、B4C粒子2’には、1~3mmの市販の粒状粒子を用いた。図3で示した中性子吸収材料3’の作製に使用した設備を図8に示す。図8は、図7で示した設備を工夫して、プランジャー14から粒状のB4C粒子2’を1300~1400℃の溶融ガラス13中に投入できるようにした。B4C粒子2’はガラス溶融炉13の上部の容器17に導入され、ガラス溶融炉13の余熱で加熱した。また、B4Cの酸化を防止するために、その容器17内は不活性雰囲気とした。容器17から粒状のB4C粒子2’を順次投下し、溶融ガラス13とともにガラス溶融炉11の下部より流し落とした。それを、実施例2と同様にして、カッター15と15’で切断し、成形ロール16と16’の間に落下し、図3で示したような球状の中性子吸収材料3’を作製した。
図3では、1つのB4C粒子の表面部分に中性子吸収ガラスが施されているが、本実施例4では、複数個のB4C粒子が入るケースが多々あった。これは、中性子吸収材料3’のサイズが大きくなりすぎなければ問題ではない。その後、得られた中性子吸収材料3’を実施例A-16の転移点Tgより若干高い約550℃の温度で熱処理を行い、中性子吸収ガラス2’の熱歪を除去した。
得られた中性子吸収材料を用いて、実施例1と同じ耐水性試験を実施した。その結果、腐食されることなく、良好な耐水性が得られた。また、中性子吸収性能に関しては、実施例A-16のガラスとB4Cはどちらも単位体積当たりの中性子吸収断面積が大きいから、良好であることは言うまでもない。本実施例4は、前記実施例3に比べると、中性子吸収ガラスを粉末にして、B4C粉末と均一混合し、成形、焼成することを必要としないので、中性子吸収ガラスとB4Cからなる中性子吸収材料を安価に作製できる特長がある。また、この中性子吸収材料は、実施例3と同様に、水中に投入する用途に限らず、制御棒に装填されるB4C粉末の代替や高速炉で用いるB4C焼結体の代替等にも展開できる可能性がある。
本実施例5では、上記実施例1~4で検討した中性子吸収ガラス或いは中性子吸収材料を適用した溶融燃料の管理方法の例について説明する。
溶融燃料の未臨界を維持し、安全性を高めるために中性子吸収ガラス、又は中性子吸収材料が原子炉内に投入される。図4では、塊の溶融燃料5が水中4に沈んでいて、中性子吸収体18(中性子吸収ガラス、中性子吸収材料)が水中4に投入され、溶融燃料5の塊の上面を覆うように直接的に接触している。中性子吸収体18の密度は、水よりも十分に大きいために、溶融燃料5の表面に堆積しやすい。また、溶融燃料5の塊内に割れ目がある場合や溶融燃料5の塊同士の間に隙間がある場合等には、これらの割れ目や隙間に中性子吸収体18が入り込む。これにより、何らかの理由で、溶融燃料5に正の反応度が印加された場合であっても、溶融燃料5から発生する中性子を遮蔽し、連鎖反応を抑制することによって、臨界に達しないようにすることができる。中性子吸収体18のサイズは、溶融燃料5の塊より小さくすることが有効である。
また、中性子吸収ガラスは、均一な透明ガラスであるが、中性子の照射によって着色する特性を有する。中性子の照射量の多いほど、着色の度合いも増加する傾向があるから、原子炉に投入した本発明の中性子吸収ガラスの着色の度合いを調べることによって、原子炉内での溶融燃料の位置を検知したり、予測したりすることも可能である。
本実施例6では、上記実施例1~4で検討した中性子吸収ガラス或いは中性子吸収材料を適用した溶融燃料の取り出し方法の例について説明する。
図5で示したとおり、溶融燃料5の取り出し作業の際に、再臨界を起こさせないために中性子吸収体18が原子炉内に投入される。溶融燃料5を掘削機8のドリル6により破砕し、掘削機8の吸引管7を介して粒子状になった溶融燃料5’を吸引している状態を示している。この際、掘削した粒子状の溶融燃料5’の一部は、掘削機8の吸引管7に吸引されず、周りの水中4に飛散する可能性がある。この状態で、水中4での粒子状の溶融燃料5’の体積割合が変化し、再臨界となる恐れがある。そこで、水中4に飛散した粒子状の溶融燃料5’とともに、中性子吸収体18も飛散させ、水中4での中性子を吸収及び遮断できるようにする。これにより、連鎖反応を抑制し、掘削作業中においても再臨界に達しないようにすることができる。また、掘削作業中に中性子吸収体18が、掘削機8のドリル6で削られる等して破損したとしても中性子吸収性能が損なわれることはない。
上記の溶融燃料は、ドリルで掘削して掘り出す方法を例として説明しているが、掘り出す方法はパワーショベルでもよく、掘削機に限定されるものではない。
本実施例7では、中性子吸収ガラス又は中性子吸収材料を投入することにより原子炉の核分裂反応を制御する例について説明する。
従来、制御棒以外で原子炉を緊急停止する方法の一つとして、ホウ酸水を原子炉の炉心に注入する方法がある。しかし、炉心にホウ酸水を投入すると、炉内を酸性の腐食環境とする可能性がある。
そこで、ホウ酸水を注入する代わりに、上記の中性子吸収ガラス又は中性子吸収材料を投入し、中性子吸収ガラス又は中性子吸収材が原子炉の内部の燃料棒の周囲に堆積した状態とする。これにより、原子炉の核分裂反応を制御し、原子炉を緊急停止することができる。また、中性子吸収ガラス又は中性子吸収材料を用いた場合、原子炉の内部の水にホウ酸が溶出しないように、又はホウ酸が溶出してもpHが低くならないようにすることができる。このため、炉内構造物の腐食を防止できると共に核燃料の反応を抑制し続けることができるので、長期間原子炉を停止することが可能である。
1, 1’:中性子吸収ガラス
2, 2’:B4C粒子
3, 3’:中性子吸収材料
4:水中
5, 5’:溶融燃料
6:ドリル
7:吸引管
8:切削機
11:ガラス溶融炉
12:撹拌羽
13:溶融ガラス
14:プランジャー
15, 15’:カッター
16, 16’:成形ロール
17:容器
18:中性子吸収体
2, 2’:B4C粒子
3, 3’:中性子吸収材料
4:水中
5, 5’:溶融燃料
6:ドリル
7:吸引管
8:切削機
11:ガラス溶融炉
12:撹拌羽
13:溶融ガラス
14:プランジャー
15, 15’:カッター
16, 16’:成形ロール
17:容器
18:中性子吸収体
Claims (14)
- 水中に投入可能な中性子吸収ガラスにおいて、酸化ガドリニウム、酸化ホウ素、酸化ケイ素、酸化ジルコニウム及びアルカリ金属酸化物を含み、次の酸化物換算でB2O3を40~60モル%及びR2O(R:アルカリ金属)を5~20モル%含むことを特徴とする中性子吸収ガラス。
- 請求項1において、次の酸化物換算でGd2O3を5~12モル%、SiO2を8~35モル%及びZrO2を3~12モル%含むことを特徴とする中性子吸収ガラス。
- 請求項1又は2において、次の酸化物換算でGd2O3を6~9モル%、B2O3を45~55モル%、SiO2を15~30モル%、ZrO2を5~10モル%及びR2Oを5~15モル%含むことを特徴とする中性子吸収ガラス。
- 請求項1乃至3の何れかにおいて、前記R2Oが少なくともLi2Oを含むことを特徴とする中性子吸収ガラス。
- 請求項1乃至4の何れかにおいて、前記中性子吸収ガラスの密度が3.0~3.7g/cm3であることを特徴とする中性子吸収ガラス。
- 請求項1乃至5の何れかにおいて、前記中性子吸収ガラスの形状が粒状、球状、タブレット状或いはビーズ状の何れかであることを特徴とする中性子吸収ガラス。
- 請求項1乃至6の何れかにおいて、前記中性子吸収ガラスの平均サイズが10mmメッシュ未満1mmメッシュ以上であることを特徴とする中性子吸収ガラス。
- 請求項1乃至7の何れかにおいて、前記中性子吸収ガラスの平均サイズが7mmメッシュ未満3mmメッシュ以上であることを特徴とする中性子吸収ガラス。
- B4C粉末と請求項1乃至8の何れかの中性子吸収ガラスとを含むことを特徴とする中性子吸収材料。
- 粒状のB4Cの表面に請求項1乃至8の何れかの中性子吸収ガラスが被覆されたことを特徴とする中性子吸収材料。
- 原子炉圧力容器内又は格納容器内の溶融燃料の管理方法において、請求項1乃至8の何れかの中性子吸収ガラス、又は請求項9若しくは10の中性子吸収材料を水中に配置された前記溶融燃料に向けて投入し、前記中性子吸収ガラス又は前記中性子吸収材料を前記溶融燃料の表面に接触させることを特徴とする溶融燃料の管理方法。
- 原子炉の内部の溶融燃料を前記原子炉の外部に取り出す方法において、請求項1乃至8の何れかの中性子吸収ガラス、又は請求項9若しくは10の中性子吸収材料を水中に配置された前記溶融燃料に向けて投入し、前記中性子吸収ガラス又は前記中性子吸収材料が前記溶融燃料の表面に接触させ、前記溶融燃料を砕いて前記原子炉の外部に取り出すことを特徴とする溶融燃料の取り出し方法。
- 請求項12において、前記溶融燃料を砕きながら吸引することにより、前記原子炉の外部に取り出すことを特徴とする溶融燃料の取り出し方法。
- 原子炉の停止方法において、前記原子炉の内部に請求項1乃至8の何れかの中性子吸収ガラス、又は請求項9若しくは10の中性子吸収材料を投入し、前記中性子吸収ガラス又は前記中性子吸収材料が前記原子炉の内部の燃料棒の周囲に堆積させることを特徴とする原子炉の停止方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/069577 WO2015008369A1 (ja) | 2013-07-19 | 2013-07-19 | 中性子吸収ガラス及びそれを用いた中性子吸収材料、並びにこれらを適用した溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 |
JP2015527117A JPWO2015008369A1 (ja) | 2013-07-19 | 2013-07-19 | 中性子吸収ガラス及びそれを用いた中性子吸収材料、並びにこれらを適用した溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/069577 WO2015008369A1 (ja) | 2013-07-19 | 2013-07-19 | 中性子吸収ガラス及びそれを用いた中性子吸収材料、並びにこれらを適用した溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015008369A1 true WO2015008369A1 (ja) | 2015-01-22 |
Family
ID=52345862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/069577 WO2015008369A1 (ja) | 2013-07-19 | 2013-07-19 | 中性子吸収ガラス及びそれを用いた中性子吸収材料、並びにこれらを適用した溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015008369A1 (ja) |
WO (1) | WO2015008369A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017038378A1 (ja) * | 2015-09-03 | 2017-03-09 | 株式会社日立製作所 | ガラス組成物及びそれを用いた中性子吸収材料、溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 |
WO2022145401A1 (ja) * | 2020-12-28 | 2022-07-07 | 新日本繊維株式会社 | 無機組成物及びその繊維並びにフレーク |
CN117263519A (zh) * | 2023-09-15 | 2023-12-22 | 凯盛君恒药玻(重庆)有限公司 | 一种无氯根无亚硝酸盐的拉管用中硼硅玻璃及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5957195A (ja) * | 1982-09-27 | 1984-04-02 | 株式会社東芝 | 中性子吸収棒 |
JPS63184095A (ja) * | 1987-01-27 | 1988-07-29 | 株式会社東芝 | 原子炉停止装置 |
JPH10226533A (ja) * | 1997-02-10 | 1998-08-25 | Nikon Corp | 放射線遮蔽ガラス |
JP2013015375A (ja) * | 2011-07-01 | 2013-01-24 | Toshiba Corp | 核燃料の反応度抑制方法およびその反応度抑制装置 |
JP2013019875A (ja) * | 2011-07-14 | 2013-01-31 | Hitachi-Ge Nuclear Energy Ltd | 原子力プラントにおける核燃料物質の搬出方法 |
-
2013
- 2013-07-19 WO PCT/JP2013/069577 patent/WO2015008369A1/ja active Application Filing
- 2013-07-19 JP JP2015527117A patent/JPWO2015008369A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5957195A (ja) * | 1982-09-27 | 1984-04-02 | 株式会社東芝 | 中性子吸収棒 |
JPS63184095A (ja) * | 1987-01-27 | 1988-07-29 | 株式会社東芝 | 原子炉停止装置 |
JPH10226533A (ja) * | 1997-02-10 | 1998-08-25 | Nikon Corp | 放射線遮蔽ガラス |
JP2013015375A (ja) * | 2011-07-01 | 2013-01-24 | Toshiba Corp | 核燃料の反応度抑制方法およびその反応度抑制装置 |
JP2013019875A (ja) * | 2011-07-14 | 2013-01-31 | Hitachi-Ge Nuclear Energy Ltd | 原子力プラントにおける核燃料物質の搬出方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017038378A1 (ja) * | 2015-09-03 | 2017-03-09 | 株式会社日立製作所 | ガラス組成物及びそれを用いた中性子吸収材料、溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 |
JPWO2017038378A1 (ja) * | 2015-09-03 | 2018-03-29 | 株式会社日立製作所 | ガラス組成物及びそれを用いた中性子吸収材料、溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 |
CN107922246A (zh) * | 2015-09-03 | 2018-04-17 | 株式会社日立制作所 | 玻璃组合物和使用该玻璃组合物的中子吸收材料、熔融燃料的管理方法、熔融燃料的取出方法以及反应堆的停止方法 |
WO2022145401A1 (ja) * | 2020-12-28 | 2022-07-07 | 新日本繊維株式会社 | 無機組成物及びその繊維並びにフレーク |
JPWO2022145401A1 (ja) * | 2020-12-28 | 2022-07-07 | ||
JP7401079B2 (ja) | 2020-12-28 | 2023-12-19 | 新日本繊維株式会社 | 無機組成物及びその繊維並びにフレーク |
CN117263519A (zh) * | 2023-09-15 | 2023-12-22 | 凯盛君恒药玻(重庆)有限公司 | 一种无氯根无亚硝酸盐的拉管用中硼硅玻璃及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015008369A1 (ja) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6038323B2 (ja) | 中性子吸収ガラス及びそれを用いた中性子吸収材料、並びにこれらを適用した溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 | |
JP6476303B2 (ja) | ガラス組成物及びそれを用いた中性子吸収材料、溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 | |
Lee et al. | Immobilisation of radioactive waste in glasses, glass composite materials and ceramics | |
CN110092588B (zh) | 一种硼硅酸盐玻璃陶瓷固化基材及其制备方法和应用 | |
Caurant et al. | Glasses, glass-ceramics and ceramics for immobilization of highly radioactive nuclear wastes | |
EP2556511B1 (en) | Isotope-specific separation and vitrification using ion-specific media | |
CN110970146A (zh) | 一种硼硅酸盐玻璃陶瓷固化基材及其制备方法和应用 | |
Kaushik | Indian program for vitrification of high level radioactive liquid waste | |
Shiryaev et al. | Physico-chemical properties of Chernobyl lava and their destruction products | |
WO2015008369A1 (ja) | 中性子吸収ガラス及びそれを用いた中性子吸収材料、並びにこれらを適用した溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 | |
JP2013167586A (ja) | 中性子吸収材およびその製造方法ならびに溶融燃料の処理方法 | |
Martynov et al. | Phase distribution of uranium in matrices obtained by co-melting basalt and uranium-containing aluminum oxide | |
Bingham et al. | The use of surrogates in waste immobilization studies: a case study of plutonium | |
McGann et al. | The synthesis of graphite–glass composites intended for the immobilisation of waste irradiated graphite | |
JPH05273368A (ja) | 核燃料要素中に発生する核分裂生成物の放射能の捕捉剤 | |
JP5922610B2 (ja) | 原子炉の炉内投入用中性子吸収ガラス及び原子炉の炉内投入用中性子吸収材並びにこれらを用いる溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 | |
Barlow et al. | Synthesis of simulant ‘lava-like’fuel containing materials (LFCM) from the Chernobyl reactor Unit 4 meltdown | |
US8969646B2 (en) | Ceramic ingot of spent filter having trapped radioactive cesium and method of preparing the same | |
Thornber | The Development of Zirconolite Glass-Ceramics for the Disposition of Actinide Wastes. | |
Stewart et al. | Low-risk alternative waste forms for actinide immobilization | |
Vaishnav | Structural characterization of sulphate and chloride doped glasses for radioactive waste immobilisation | |
Ross et al. | Annual report Development and characterization of solidified forms for high-level wastes: 1978. | |
JP2020085863A (ja) | 中性子吸収材、溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 | |
JP2009145251A (ja) | 燃料棒およびその製造方法 | |
Tumurugoti | Phase-Pure and Multiphase Ceramic Waste Forms: Microstructure Evolution and Cesium Immobilization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13889599 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015527117 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13889599 Country of ref document: EP Kind code of ref document: A1 |