WO2015007094A1 - 基于钙钛矿类吸光材料的介观太阳能电池及其制备方法 - Google Patents

基于钙钛矿类吸光材料的介观太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2015007094A1
WO2015007094A1 PCT/CN2014/072510 CN2014072510W WO2015007094A1 WO 2015007094 A1 WO2015007094 A1 WO 2015007094A1 CN 2014072510 W CN2014072510 W CN 2014072510W WO 2015007094 A1 WO2015007094 A1 WO 2015007094A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mesoporous
solar cell
hole
nanocrystalline
Prior art date
Application number
PCT/CN2014/072510
Other languages
English (en)
French (fr)
Inventor
韩宏伟
库治良
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to JP2016522194A priority Critical patent/JP6267790B2/ja
Priority to EP14825987.2A priority patent/EP3024044B1/en
Publication of WO2015007094A1 publication Critical patent/WO2015007094A1/zh
Priority to US14/985,470 priority patent/US10199528B2/en
Priority to US15/197,743 priority patent/US9799790B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a mesoscopic solar cell device and belongs to the technical field of solar cells.
  • a mesoscopic solar cell is a solar cell using a mesoporous nanocrystalline material as a photoanode.
  • the light absorbing material is adsorbed on the mesoporous nanocrystalline electrode as a photoanode, and on the one hand, the generated photoelectrons are injected into the mesoporous nanocrystalline electrode and transmitted to the conductive substrate, and on the other hand, the generated holes are passed.
  • the hole transport layer is transported into the hole collecting layer to form a photocurrent. Since the mesoporous nanoelectrode has a very large specific surface area, it is possible to adsorb enough light absorbing material to obtain a large photocurrent with a very high theoretical efficiency.
  • Semiconductor nanocrystalline light absorbing materials have been widely used in the field of mesoscopic solar cells. This is not only because the semiconductor nanocrystalline light absorbing material has a large optical cross section, but also can change the open band voltage of the battery device by adjusting the grain size of these light absorbing materials within a certain range. Although solar cell devices based on such semiconductor nanocrystalline light absorbing materials have very high theoretical efficiencies, in reality these materials still face many problems such as poor stability and short carrier recombination time.
  • lead iodide As a new type of perovskite nano-absorbent semiconductor material, lead iodide (CH 3 NH 3 Pbl 3 ) has many advantages such as wide absorption range, high absorption coefficient, long carrier recombination time and good stability. At present, the photoelectric conversion efficiency of all solid mesoscopic solar cell devices based on this perovskite light absorbing material is as high as 12.3%.
  • batteries using such a perovskite-based semiconductor material as a light absorbing material have conventionally used an organic P-type semiconductor material as a hole transport layer, and a noble metal electrode was prepared by a vapor deposition method as a counter electrode of a battery device to collect air. hole.
  • the object of the present invention is to provide a mesoscopic solar cell based on a perovskite light absorbing material and a preparation method thereof, aiming at a perovskite semiconductor, aiming at the above defects or improvement requirements of the prior art.
  • the hole conduction property of the material itself directly transports the holes to the hole collecting layer, thereby solving the technical problem that the current solar cell performance stability is insufficient, the battery packaging process is too high, and the cost is too high.
  • a mesoscopic solar cell based on a perovskite light absorbing material comprising: a substrate; and a hole blocking layer, a mesoporous nanocrystalline layer, an insulating spacer layer, and a dielectric layer laminated on the substrate in this order Hole hole collecting layer;
  • the mesoporous nanocrystalline layer, the insulating spacer layer and the mesoporous hole collecting layer are filled with a perovskite-based semiconductor material.
  • the mesoporous nanocrystalline layer becomes an active light absorbing layer after filling the perovskite-based semiconductor material.
  • the mesoporous nanocrystalline layer is a mesoporous inorganic nano-oxide film.
  • the insulating spacer layer becomes a hole transport layer after filling the perovskite-based semiconductor material.
  • the insulating spacer layer is a mesoporous inorganic nano-oxide film.
  • the hole blocking layer is a dense titanium oxide film.
  • the perovskite-based semiconductor material is AB3 ⁇ 4, wherein A is at least one of an alkylamine and an alkali group element, B is at least one of lead and tin, and X is iodine, bromine or chlorine. At least one of them.
  • the perovskite-based semiconductor material is iodide methylamine (CH 3 NH 3 Pbl 3 ).
  • the nano-oxide is at least one of titanium oxide oxygen, zirconium dioxide, aluminum oxide, and silicon dioxide.
  • a method of preparing a mesoscopic solar cell based on a perovskite light absorbing material comprising the steps of:
  • the mesoporous nanocrystalline layer and the mesoporous insulating spacer layer are both nano oxides. Film.
  • the mesoporous nanocrystalline layer, the insulating layer and the hole collecting layer are laminated by printing.
  • the hole blocking layer is a dense titanium oxide film.
  • the perovskite-based semiconductor material is AB3 ⁇ 4, wherein A is at least one of methylamine and bismuth, B is at least one of lead and tin, and X is at least one of iodine, bromine and chlorine. Preferred is iodide methylamine (CH 3 NH 3 Pbl 3 ) o
  • the nano-oxide is at least one of titanium oxide oxygen, zirconium dioxide, aluminum oxide, and silicon dioxide.
  • the step (3) further includes filling other auxiliary P-type semiconductor materials to optimize hole transport properties and device stability in the nano-film.
  • the solar cell device of the present invention is sequentially composed of a conductive substrate, a hole blocking layer, a nanocrystalline layer, an insulating spacer layer and a hole collecting layer, wherein the mesoporous nanocrystalline layer, the insulating layer and the cavity in the step (2) are prepared.
  • the collection layer is prepared by printing. This method does not require a vacuum environment compared to the evaporation process, which simplifies the preparation process of the battery and reduces the manufacturing cost of the battery.
  • the nano-oxide of the present invention may be at least one of titanium oxide oxygen, zirconium dioxide, aluminum oxide and silicon dioxide, and the crystal grain size is preferably from 10 to 400 nm.
  • the hole collecting layer is preferably a high work function electrode material such as carbon or indium tin oxide.
  • the film thickness is preferably 50 ⁇ ⁇ ⁇ - 10 ⁇ , and the sintering temperature is 400-50 CTC.
  • the mesoscopic solar cell device of the present invention is prepared by a full printing method, using a perovskite nanocrystal as an active light absorbing material, and forming its own hole conduction property in the mesoporous insulating spacer layer.
  • the hole transport layer directly transports holes into the hole collecting layer, avoiding the use of the organic quinoid material.
  • the relatively inexpensive material such as mesoporous carbon is used as the hole collecting layer, which simplifies the preparation process of the solar cell device and reduces the manufacturing cost, and has a good industrialization prospect.
  • Fig. 1 is a schematic view showing the structure of a mesoscopic solar cell based on a perovskite light absorbing material according to an embodiment of the present invention.
  • 1 is a conductive substrate
  • 2 is a hole blocking layer
  • 3 is a nanocrystalline layer
  • 4 is an insulating spacer layer
  • 5 is a hole collecting layer.
  • the structure of the mesoscopic solar cell device of this embodiment is as shown in Fig. 1.
  • the device is composed of a conductive substrate 1, a hole blocking layer 2, a nanocrystalline layer 3, an insulating spacer 4, and a hole collecting layer 5 from bottom to top.
  • the mesoporous nanocrystalline layer 3, the insulating spacer layer 4 and the mesoporous hole collecting layer 5 are filled with a perovskite-based semiconductor material.
  • the mesoporous nanocrystal layer 3 becomes an active light absorbing layer after filling the perovskite-based semiconductor material, and the insulating spacer layer 4 becomes a hole transporting layer after filling the perovskite-based semiconductor material.
  • the mesoporous nanocrystalline layer 3 and the mesoporous insulating spacer 4 are both nano-oxide thin films, and for example, the nano-oxide may be at least one of titanium oxide oxygen, zirconium dioxide, aluminum oxide, and silicon dioxide.
  • the mesoporous nanocrystalline layer, the insulating layer and the hole collecting layer are preferably prepared by lamination in a printed manner.
  • the nanocrystalline layer becomes an active nanocrystalline layer as a battery photoanode after filling the perovskite light absorbing semiconductor material
  • the insulating spacer layer becomes a hole transport layer after filling the perovskite light absorbing semiconductor material to transport holes to the hole. In the hole collection layer.
  • the insulating spacer nano-oxide film can replace the traditional organic P-type semiconductor material as a hole transport layer of the battery after filling the perovskite-type light-absorbing semiconductor material because of the hole-carrying ability of such a semiconductor material.
  • a relatively inexpensive material such as mesoporous carbon is used as a hole collecting layer, and holes are directly transported into the hole collecting layer by utilizing the hole conducting property of the perovskite-based semiconductor material itself, thereby avoiding the organic P. Use of type materials.
  • the device uses conductive glass as the conductive substrate 1 and deposits a dense layer 2 of a thickness of, for example, 50 nm, and then sequentially prepares a titanium dioxide nanocrystal layer 3, a zirconium dioxide insulating spacer layer 4, and a carbon electrode hole by screen printing from bottom to top. Collect layer 5.
  • the nano titanium dioxide grain size is, for example, 18 nm, and the thickness of the titanium dioxide layer is, for example, about 1 ⁇ .
  • the zirconium dioxide grain size is, for example, 20 nm, and the thickness is, for example, about 1 ⁇ .
  • the hole collecting layer of the carbon electrode is a mesoporous conductive film made of graphite or carbon black, and has a thickness of, for example, about 10 ⁇ ?. Will be a certain amount, for example, 4 ⁇ _iodo lead methylamine
  • the device uses conductive glass as the conductive substrate 1 to deposit a certain thickness, for example, a 50 nm titanium dioxide dense layer 2, and sequentially prepares a titanium dioxide nanocrystalline layer 3, a second alumina insulating spacer layer 4, and a carbon electrode hole by screen printing from bottom to top. Collect layer 5.
  • a certain thickness for example, a 50 nm titanium dioxide dense layer 2
  • a second alumina insulating spacer layer 4 and a carbon electrode hole by screen printing from bottom to top. Collect layer 5.
  • the nano titanium dioxide grain size is, for example, 18 nm, and the thickness of the titanium dioxide layer is, for example, about 1 ⁇ .
  • the aluminum oxide grain size is, for example, 20 nm, and the thickness is, for example, about 1 ⁇ .
  • the hole collecting layer of the carbon electrode is a mesoporous conductive film made of graphite or carbon black, and has a thickness of, for example, about 10 ⁇ ?. A certain amount of, for example, 4 ⁇ _ of lead iodide
  • the device uses conductive glass as the conductive substrate 1 and deposits a dense layer 2 of a thickness of, for example, 50 nm, and then sequentially prepares a titanium dioxide nanocrystal layer 3, a zirconium dioxide insulating spacer layer 4, and a carbon electrode hole by screen printing from bottom to top. Collect layer 5.
  • the nano titanium dioxide grain size is, for example, 18 nm, and the thickness of the titanium dioxide layer is, for example, about 1 ⁇ M.
  • the zirconium dioxide grain size is, for example, 20 nm, and the thickness is, for example, about 1 ⁇ M.
  • the carbon electrode hole collecting layer is a mesoporous conductive film made of graphite or carbon black, and has a thickness of, for example, about 10 ⁇ ?.
  • the device uses conductive glass as the conductive substrate 1 and deposits a dense layer 2 of a thickness of, for example, 50 nm, and then sequentially prepares a titanium dioxide nanocrystal layer 3, a zirconium dioxide insulating spacer layer 4, an indium tin oxide electrode by screen printing from bottom to top. Hole collecting layer 5.
  • the nano-titanium dioxide grain size is, for example, 18 nm, and the thickness of the titanium dioxide layer is, for example, about 1 ⁇ M.
  • the zirconium dioxide grain size is, for example, 20 nm, and the thickness is, for example, about 1 ⁇ M.
  • the indium tin oxide electrode hole collecting layer 5 is a mesoporous conductive film made of tin-doped indium oxide nanocrystalline particles, and has a thickness of, for example, about 10 ⁇ M.
  • 4 ⁇ _Iodine lead methylamine (CH 3 NH 3 Pbl 3 ) precursor solution (30 wt%) was added dropwise to the indium tin oxide mesoporous film, and allowed to stand for one minute until it was sufficiently infiltrated into the titanium dioxide nanocrystalline film. Dry at 50 ° C. Tests show that the resulting cell device at 100mW / C m 2 simulated sunlight efficiency of 5, 15%.
  • the conductive substrate 1 may preferably be a conductive glass or a conductive plastic
  • the hole blocking layer 2 is an inorganic metal oxide film, preferably a dense titanium oxide film, preferably having a thickness of 50 nm, but is not limited to a titanium dioxide film, and the thickness may be It is required to be set, for example, 50 nm-1 ( m) .
  • the mesoporous nanocrystalline layer 3 and the insulating spacer layer 4 are both nano oxide films, wherein the mesoporous nanocrystalline layer 3 is preferably a titanium dioxide nanocrystalline layer, but is not limited to titanium dioxide, crystal
  • the grain size is not limited to 18 nm
  • the insulating spacer layer 4 is preferably zirconium dioxide.
  • the grain size and thickness thereof are not limited to the above embodiments, and may be selected as needed, for example, the thickness may be 50 nm-1 ( ⁇ m .
  • the layer 5 is an electrode layer prepared from a mesoporous material, preferably a high work function electrode material including carbon, indium tin oxide, etc., but is not limited thereto.
  • the perovskite-based semiconductor material in the above embodiment has a chemical formula of AB3 ⁇ 4, wherein A is at least one of an alkylamine and an alkali group element, B is at least one of lead and tin, and X is at least one of iodine, bromine and chlorine, preferably iodide methylamine (C) H 3 NH 3 Pbl 3 ) o

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种基于钙钛矿类吸光材料的介观太阳能电池,包括基底和依次层叠于该基底上的空穴阻挡层、介孔纳米晶层、绝缘间隔层和介孔空穴收集层;其中,介孔纳米晶层、绝缘间隔层和介孔空穴收集层中均填充有钙钛矿类半导体材料。本发明还公开了其制备方法。本发明的介观太阳能电池器件采取全印刷的方法制备而成,采用钙钛矿类纳米晶体作为活性吸光材料,并利用其自身的空穴传导性能在介孔绝缘间隔层中形成空穴传输层,直接将空穴传输至空穴收集层中,避免了有机P型材料的使用。除此之外,采用介孔碳等相对廉价的材料作为空穴收集层,有效简化了太阳能电池器件的制备工艺并降低了制作成本,具有良好的产业化前景。

Description

基于钙钛矿类吸光材料的介观太阳能电池及其制备方法 【技术领域】
本发明涉及一种介观太阳能电池器件, 属于太阳能电池技术领域。
【背景技术】
介观太阳能电池是一种采用介孔纳米晶材料作为光阳极的太阳能电池。在这 种太阳能电池中, 吸光材料吸附在介孔纳米晶电极上作为光阳极, 一方面将生成 的光电子注入到介孔纳米晶电极并传输至导电基底中,另一方面将生成的空穴通 过空穴传输层传输到空穴收集层中从而形成光电流。由于介孔纳米电极具有非常 大的比表面积, 因此可以吸附足够多的吸光材料从而获得较大的光电流, 具有非 常高的理论效率。
一直以来,半导体纳米晶吸光材料在介观太阳能电池领域得到了非常广泛地 应用。这不仅是因为半导体纳米晶吸光材料具有较大的光学截面, 并且在一定范 围内可以通过调节这些吸光材料的晶粒大小而改变其禁带宽度,从而改变电池器 件的开路电压。尽管基于这类半导体纳米晶吸光材料的太阳能电池器件有着非常 高的理论效率,但是实际上这些材料仍然面临着稳定性差、载流子复合时间短等 众多问题。
作为一种新型钙钛矿类纳米吸光半导体材料, 碘铅甲胺 (CH3NH3Pbl3) 具有 吸光范围宽、 吸收系数高、 载流子复合时间长以及稳定性好等众多优点。 目前, 基于这种钙钛矿类吸光材料的全固态介观太阳能电池器件光电转换效率高达 12.3%。 然而, 迄今为止以这种钙钛矿类半导体材料作为吸光材料的电池一般都 采用有机 P型半导体材料作为空穴传输层,并且使用蒸镀的方法制备贵金属电极 作为电池器件的对电极来收集空穴。有机半导体材料的运用对电池器件的封装工 艺提出了更高的要求并且在一定程度上影响器件的长期稳定性,此外, 蒸镀贵金 属电极一方面极大地增加了电池器件的制备成本,另一方面又严重制约着这种电 池器件的大规模生产应用。
【发明内容】
本发明的目的在于针对现有技术的以上缺陷或改进需求,提供一种基于钙钛 矿类吸光材料的介观太阳能电池及其制备方法,其目的在于通过钙钛矿类半导体 材料自身的空穴传导性能直接将空穴传输至空穴收集层,由此解决目前的太阳能 电池性能稳定性不够, 对电池封装工艺要求过高以及成本过高的技术问题。
按照本发明的一个方面, 提供一种基于钙钛矿类吸光材料的介观太阳能电 池, 其包括基底和依次层叠于该基底上的空穴阻挡层、介孔纳米晶层、 绝缘间隔 层和介孔空穴收集层;
其中,所述介孔纳米晶层、绝缘间隔层和介孔空穴收集层中均填充有钙钛矿 类半导体材料。
作为本发明的进一步优选,所述介孔纳米晶层在填充钙钛矿类半导体材料后 成为活性吸光层。
作为本发明的进一步优选, 介孔纳米晶层为介孔无机纳米氧化物薄膜。 作为本发明的进一步优选,所述绝缘间隔层在填充钙钛矿类半导体材料后成 为空穴传输层。
作为本发明的进一步优选, 所述绝缘间隔层为介孔无机纳米氧化物薄膜。 作为本发明的进一步优选, 所述空穴阻挡层为致密二氧化钛薄膜。 作为本发明的进一步优选,所述钙钛矿类半导体材料为 AB¾,其中 A为烷基 胺、 碱族元素中至少一种, B为铅、 锡中至少一种, X为碘、 溴、 氯中至少一种。
作为本发明的进一步优选, 所述钙钛矿类半导体材料优选为碘铅甲胺 ( CH3NH3Pbl3)。
作为本发明的进一步优选, 所述纳米氧化物为二氧化钛氧、二氧化锆、三氧 化二铝和二氧化硅中的至少一种。
按照本发明的另一方面,提供一种基于钙钛矿类吸光材料的介观太阳能电池 的制备方法, 其包括如下步骤:
( 1 ) 在导电基底上制备一层空穴阻挡层;
( 2 ) 在空穴阻挡层上依次层叠介孔纳米晶层、 介孔绝缘间隔层和介孔空穴 收集层并烧结;
( 3 ) 将钙钛矿吸光半导体材料前驱液滴涂在介孔空穴收集层上, 待其能从 上至下依次从介孔空穴收集层填充到介孔纳米晶层纳米孔中后,烘干即得到所述 的全固态介观太阳能电池器件。
作为本发明的进一步优选,介孔纳米晶层和介孔绝缘间隔层均为纳米氧化物 薄膜。
作为本发明的进一步优选,所述介孔纳米晶层、绝缘层和空穴收集层采用印 刷的方式层叠制备。
作为本发明的进一步优选, 所述空穴阻挡层为致密二氧化钛薄膜。 作为本发明的进一步优选,所述钙钛矿类半导体材料为 AB¾,其中 A为甲胺、 铯中至少一种, B为铅、 锡中至少一种, X为碘、 溴、 氯中至少一种, 优选为碘 铅甲胺 ( CH3NH3Pbl3) o
作为本发明的进一步优选, 所述纳米氧化物为二氧化钛氧、二氧化锆、三氧 化二铝和二氧化硅中的至少一种。
作为本发明的进一步优选, 所述步骤 (3)之后还包括填充其他辅助 P型半 导体材料以优化纳米薄膜中的空穴传输性能和器件的稳定性。
本发明中的太阳能电池器件依次由导电基底, 空穴阻挡层, 纳米晶层, 绝缘 间隔层和空穴收集层构成, 其中制备步骤 (2) 中的介孔纳米晶层、 绝缘层和空 穴收集层均采用印刷的方式制备, 这种方法相比于蒸镀工艺来说无需真空环境, 在简化电池的制备工艺的同时也降低了电池的制作成本。
本发明纳米氧化物可以为二氧化钛氧、 二氧化锆、 三氧化二铝和二氧化硅 中的至少一种, 晶粒大小优选为 10-400nm。 空穴收集层优选为碳、 氧化铟锡等 高功函数电极材料。 薄膜厚度优选为 50ηιιι-10μιιι, 烧结温度均为 400-50CTC。
总体而言, 本发明的介观太阳能电池器件采取全印刷的方法制备而成, 采 用钙钛矿类纳米晶体作为活性吸光材料,并利用其自身的空穴传导性能在介孔绝 缘间隔层中形成空穴传输层, 直接将空穴传输至空穴收集层中, 避免了有机 Ρ 型材料的使用。 除此之外, 采用介孔碳等相对廉价的材料作为空穴收集层, 有效 简化了太阳能电池器件的制备工艺并降低了制作成本, 具有良好的产业化前景。 【附图说明】
图 1为本发明实施例的基于钙钛矿类吸光材料的介观太阳能电池结构示意 图。
其中, 1为导电基底, 2为空穴阻挡层, 3为纳米晶层, 4为绝缘间隔层, 5 为空穴收集层。
【具体实肺式】 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图, 对本 发明进行进一步详细说明。 此处说明若涉及到具体实例时仅仅用以解释本发明, 并不限定本发明。
本实施例的介观太阳能电池器件结构如图 1所示,器件自下而上依次由导电 基底 1, 空穴阻挡层 2, 纳米晶层 3, 绝缘间隔层 4, 空穴收集层 5组成。
其中, 介孔纳米晶层 3、 绝缘间隔层 4和介孔空穴收集层 5中均填充有钙钛 矿类半导体材料。 介孔纳米晶层 3在填充钙钛矿类半导体材料后成为活性吸光 层, 绝缘间隔层 4在填充钙钛矿类半导体材料后成为空穴传输层。
另外, 介孔纳米晶层 3和介孔绝缘间隔层 4均为纳米氧化物薄膜,例如纳米 氧化物可以为二氧化钛氧、 二氧化锆、 三氧化二铝和二氧化硅中的至少一种。
介孔纳米晶层、 绝缘层和空穴收集层优选采用印刷的方式层叠制备。
在烧结后,纳米晶层在填充钙钛矿类吸光半导体材料后成为活性纳米晶层作 为电池光阳极,绝缘间隔层在填充钙钛矿类吸光半导体材料后成为空穴传输层将 空穴传输至空穴收集层中。
绝缘间隔层纳米氧化物薄膜在填充钙钛矿类吸光半导体材料后,由于此类半 导体材料具备一定的空穴传到能力,因此可替代传统的有机 P型半导体材料作为 电池的空穴传输层。另外,本发明中采用介孔碳等相对廉价的材料作为空穴收集 层,并利用钙钛矿类半导体材料自身的空穴传导性能直接将空穴传输至空穴收集 层中, 避免了有机 P型材料的使用。
下面结合具体的实施例对介观太阳能电池的制备方法进行详细说明。
实施例 1
器件以导电玻璃为导电基板 1, 沉积一定厚度例如 50nm二氧化钛致密层 2 后, 自下而上以丝网印刷的方式依次制备二氧化钛纳米晶层 3, 二氧化锆绝缘间 隔层 4, 碳电极空穴收集层 5。
纳米二氧化钛晶粒大小例如为 18nm, 二氧化钛层厚度例如约为 1μΓΤΊ。 二氧 化锆晶粒大小例如为 20n m, 厚度例如约为 1μΓΠ。 碳电极空穴收集层为石墨、 炭 黑制成的介孔导电薄膜, 厚度例如约为 10μΓϊΊ。 将一定量例如 4μΙ_碘铅甲胺
( CH3NH3Pbl3) 前驱液 (30wt%) 滴加在碳介孔膜上, 静置一分钟待其充分渗透 至二氧化钛纳米晶薄膜中后, 在一定温度例如 50°C下烘干。 测试表明, 所得电 池器件在 100mW/Cm2模拟太阳光下效率为 6.64%。
实施例 2
器件以导电玻璃为导电基板 1, 沉积一定厚度例如 50nm二氧化钛致密层 2 后, 自下而上以丝网印刷的方式依次制备二氧化钛纳米晶层 3, 二氧化铝绝缘间 隔层 4, 碳电极空穴收集层 5。
纳米二氧化钛晶粒大小例如为 18nm, 二氧化钛层厚度例如约为 1μΓΤΊ。 二氧 化铝晶粒大小例如为 20n m, 厚度例如约为 1μΓΠ。 碳电极空穴收集层为石墨、 炭 黑制成的介孔导电薄膜, 厚度例如约为 10μΓϊΊ。 将一定量例如 4μΙ_的碘铅甲胺
( CH3NH3Pbl3 ) 前驱液 (30wt% ) 滴加在碳介孔膜上, 静置例如一分钟待其充分 渗透至二氧化钛纳米晶薄膜中后, 在一定温度例如 50 °C下烘干。 测试表明, 所 得电池器件在 100mW/Cm2模拟太阳光下效率为 6.03%。
实施例 3
器件以导电玻璃为导电基板 1, 沉积一定厚度例如 50nm二氧化钛致密层 2 后, 自下而上以丝网印刷的方式依次制备二氧化钛纳米晶层 3, 二氧化锆绝缘间 隔层 4, 碳电极空穴收集层 5。纳米二氧化钛晶粒大小为例如 18nm, 二氧化钛层 厚度例如约为 1μ ΓΤΊ。 二氧化锆晶粒大小为例如 20nm, 厚度约为例如 1μ ΓϊΊ。 碳电 极空穴收集层为石墨、 炭黑制成的介孔导电薄膜, 厚度例如约为 10μΓΤΊ。 将一定 量例如 4μΙ_碘 /溴铅甲胺 (CH3NH3Pbl2Br) 前驱液 (30wt% ) 滴加在碳介孔膜上, 静置一分钟待其充分渗透至二氧化钛纳米晶薄膜中后, 在一定温度例如 50 °C下 烘干。 测试表明, 所得电池器件在 100mW/Cm2模拟太阳光下效率为 5.87%。
实施例 4
器件以导电玻璃为导电基板 1, 沉积一定厚度例如 50nm二氧化钛致密层 2 后, 自下而上以丝网印刷的方式依次制备二氧化钛纳米晶层 3, 二氧化锆绝缘间 隔层 4, 氧化铟锡电极空穴收集层 5。纳米二氧化钛晶粒大小为例如 18nm, 二氧 化钛层厚度约为例如 1μ ΓΤΊ。二氧化锆晶粒大小为例如 20nm,厚度约为例如 1μ ΓϊΊ。 氧化铟锡电极空穴收集层 5为掺锡氧化铟纳米晶颗粒制成的介孔导电薄膜,厚度 约为例如 10μΓΠ。 将 4μΙ_碘铅甲胺(CH3NH3Pbl3 )前驱液(30wt%)滴加在氧化铟 锡介孔膜上,静置一分钟待其充分渗透至二氧化钛纳米晶薄膜中后,在一定温度 50°C下烘干。测试表明, 所得电池器件在 100mW/Cm2模拟太阳光下效率为 5, 15%。 上述各实施例中, 导电基底 1可以优选为导电玻璃或导电塑料, 空穴阻挡层 2为无机金属氧化物薄膜, 优选为致密二氧化钛薄膜, 厚度优选为 50nm, 但不 限于二氧化钛薄膜, 厚度可根据需要设置, 例如 50nm-l(^m。 介孔纳米晶层 3和 绝缘间隔层 4均为纳米氧化物薄膜,其中介孔纳米晶层 3优选为二氧化钛纳米晶 层, 但并不限于二氧化钛, 晶粒大小并不限定在 18nm, 绝缘间隔层 4优选为二 氧化锆, 其晶粒大小和厚度也不限于上述实施例, 可根据需要选择, 例如厚度可 以为 50nm-l(^m。 空穴收集层 5为介孔材料制备的电极层, 优选为包括碳、 氧化 铟锡等高功函数电极材料, 但并不限于此。 另外,上述实施例中的钙钛矿类半导体材料化学式为 AB¾,其中 A为烷基胺、 碱族元素中至少一种, B为铅、 锡中至少一种, X为碘、 溴、 氯中至少一种, 优 选为碘铅甲胺 ( CH3NH3Pbl3 ) o
本领域的技术人员容易理解, 以上所述仅为本发明的较佳实施例而已, 并不 用以限制本发明, 凡在本发明的精神和原则之内所作的任何修改、等同替换和改 进等, 均应包含在本发明的保护范围之内。

Claims

1、 一种基于钙钛矿类吸光材料的介观太阳能电池, 其特征在于, 该介观太 阳能电池包括基底 (1)和依次层叠于该基底(1)上的空穴阻挡层 (2)、 介孔纳 米晶层 (3)、 介孔绝缘间隔层 (4) 和介孔空穴收集层 (5);
其中, 所述介孔纳米晶层(3)、介孔绝缘间隔层(4)和介孔空穴收集层(5) 中均填充有钙钛矿类半导体材料, 从而使得所述介孔纳米晶层 (3) 成为活性吸 光层, 以作为电池光阳极, 所述介孔绝缘间隔层 (4) 成为空穴传输层。
2、 根据权利要求 1所述的一种基于钙钛矿类吸光材料的介观太阳能电池, 其特征在于, 所述介孔纳米晶层(3)和介孔绝缘间隔层(4)均为介孔无机纳米 氧化物薄膜。
3、 根据权利要求 2所述的一种基于钙钛矿类吸光材料的介观太阳能电池, 其特征在于, 所述介孔无机纳米氧化物为二氧化钛、二氧化锆、三氧化二铝和二 氧化硅中的至少一种。
4、 根据权利要求 1-3中任一项所述的一种基于钙钛矿类吸光材料的介观太 阳能电池, 其特征在于, 所述钙钛矿类半导体材料为 AB¾, 其中 A为烷基胺、碱 族元素中至少一种, B为铅、 锡中至少一种, X为碘、 溴和氯中至少一种。
5、 根据权利要求 1-4中任一项所述的一种基于钙钛矿类吸光材料的介观太 阳能电池, 其特征在于, 所述空穴阻挡层 (5) 为致密二氧化钛薄膜。
6、 根据权利要求 1-5中任一项所述的一种基于钙钛矿类吸光材料的介观太 阳能电池,其特征在于,所述钙钛矿类半导体材料的填充通过将其前驱液滴涂在 所述介孔空穴收集层(5)上, 并使其从上至下从介孔空穴收集层(5)依次渗透 填充到介孔纳米晶层 (3) 的纳米孔中实现。
7、一种基于钙钛矿类吸光材料的介观太阳能电池的制备方法,其特征在于, 包括如下步骤:
(1) 在导电基底 (1) 上制备一层空穴阻挡层 (2);
(2)在所述空穴阻挡层(2)上依次层叠介孔纳米晶层(3)、 介孔绝缘间隔 层 (4) 和介孔空穴收集层 (5) 并烧结;
(3) 将钙钛矿吸光半导体材料前驱液滴涂在所述介孔空穴收集层 (5) 上, 使其从上至下依次从所述介孔空穴收集层(5)填充到介孔纳米晶层(3) 的纳米 孔中, 烘干即得到介观太阳能电池器件。
8、 根据权利要求 7所述的基于钙钛矿类吸光材料的介观太阳能电池的制备 方法, 其特征在于, 所述介孔纳米晶层(3)和介孔绝缘间隔层 (4)均为介孔无 机纳米氧化物薄膜。
9、 根据权利要求 7或 8所述的基于钙钛矿类吸光材料的介观太阳能电池的 制备方法, 其特征在于, 所述介孔纳米晶层 (3)、 介孔绝缘间隔层 (4) 和空穴 收集层 (5) 采用印刷或刮涂的方式层叠制备。
10、根据权利要求 7-9中任一项所述的基于钙钛矿类吸光材料的介观太阳能 电池的制备方法, 其特征在于, 所述步骤 (3) 之后还可以包括填充辅助 P型半 导体材料的步骤, 以优化所述介孔纳米晶层 (3)、 介孔绝缘间隔层 (4) 和介孔 空穴收集层 (5) 薄膜中的空穴传输性能。
PCT/CN2014/072510 2013-07-16 2014-02-25 基于钙钛矿类吸光材料的介观太阳能电池及其制备方法 WO2015007094A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016522194A JP6267790B2 (ja) 2013-07-16 2014-02-25 ペロブスカイト型半導体材料に基づくメゾスコピック太陽電池及びその製造方法
EP14825987.2A EP3024044B1 (en) 2013-07-16 2014-02-25 Mesoscopic solar cell based on perovskite light absorption material and preparation method thereof
US14/985,470 US10199528B2 (en) 2013-07-16 2015-12-31 Mesoscopic solar cell based on perovskite light absorption material and method for making the same
US15/197,743 US9799790B2 (en) 2013-07-16 2016-06-29 Mesoscopic solar cell based on perovskite light absorption material and method for making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310297115.7 2013-07-16
CN201310297115.7A CN103441217B (zh) 2013-07-16 2013-07-16 基于钙钛矿类吸光材料的介观太阳能电池及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/985,470 Continuation-In-Part US10199528B2 (en) 2013-07-16 2015-12-31 Mesoscopic solar cell based on perovskite light absorption material and method for making the same

Publications (1)

Publication Number Publication Date
WO2015007094A1 true WO2015007094A1 (zh) 2015-01-22

Family

ID=49694901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072510 WO2015007094A1 (zh) 2013-07-16 2014-02-25 基于钙钛矿类吸光材料的介观太阳能电池及其制备方法

Country Status (5)

Country Link
US (2) US10199528B2 (zh)
EP (1) EP3024044B1 (zh)
JP (1) JP6267790B2 (zh)
CN (1) CN103441217B (zh)
WO (1) WO2015007094A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152296A (ja) * 2015-02-17 2016-08-22 大阪瓦斯株式会社 非真空プロセスで製造可能な無機光電変換装置。
JP2016174118A (ja) * 2015-03-18 2016-09-29 株式会社東芝 光電変換素子およびその製造方法
CN118497823A (zh) * 2024-07-16 2024-08-16 三峡智能工程有限公司 一种光能电解水池半导体阳极及其制备方法和系统

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441217B (zh) * 2013-07-16 2015-11-04 华中科技大学 基于钙钛矿类吸光材料的介观太阳能电池及其制备方法
CN103490011B (zh) * 2013-09-30 2016-08-17 中国科学院物理研究所 钙钛矿基薄膜太阳电池及其制备方法
CN104733183B (zh) * 2013-12-19 2017-10-03 清华大学 钙钛矿型太阳能电池及其制备方法
CN103681886B (zh) * 2013-12-26 2017-09-22 中国科学院物理研究所 用于钙钛矿基薄膜太阳电池的支架层及其制备方法
CN103956392A (zh) * 2014-02-13 2014-07-30 大连七色光太阳能科技开发有限公司 基于碳对电极的钙钛矿型电池及其制备方法
CN103794377B (zh) * 2014-02-21 2017-01-25 南京大学昆山创新研究院 一种染料敏化太阳能电池光阳极及其制备方法和应用
GB201405095D0 (en) * 2014-03-21 2014-05-07 Oxford Photovoltaics Ltd Structure of an optoelectronic device
CN103904218A (zh) * 2014-03-28 2014-07-02 中国科学院上海技术物理研究所 基于金属颗粒的钙钛矿薄膜太阳能电池结构
CN104979421B (zh) * 2014-04-11 2017-09-26 中国科学院大连化学物理研究所 一种叠层太阳能电池
CN104022226B (zh) * 2014-05-14 2017-07-28 中国科学院物理研究所 钙钛矿基薄膜太阳电池及其制备方法
CN104091889B (zh) * 2014-07-24 2015-08-05 华中科技大学 半导体钙钛矿太阳能电池及其制备方法
CN104124291B (zh) * 2014-07-24 2016-08-31 华中科技大学 一种钙钛矿太阳电池及其制备方法
US10297754B2 (en) * 2014-08-01 2019-05-21 International Business Machines Corporation Techniques for perovskite layer crystallization
CN104124295A (zh) * 2014-08-12 2014-10-29 中国乐凯集团有限公司 一种平面异质结钙钛矿太阳能电池及其制备方法
TWI527259B (zh) 2014-08-13 2016-03-21 國立清華大學 鈣鈦礦太陽能電池的製造方法
CN104157788B (zh) * 2014-08-19 2017-03-29 武汉大学 一种基于SnO2的钙钛矿薄膜光伏电池及其制备方法
CN104332560B (zh) * 2014-09-04 2017-01-11 武汉大学 一种氯溴碘共混钙钛矿光吸收层材料的制备方法
CN105655422A (zh) * 2014-11-12 2016-06-08 东莞日阵薄膜光伏技术有限公司 双节钙钛矿/铜铟镓硒太阳能电池
CN104538552A (zh) * 2014-12-30 2015-04-22 南京信息工程大学 一种钙钛矿太阳能电池及其制备方法
CN104576930B (zh) * 2015-01-06 2017-05-03 宁波大学 钙钛矿太阳能电池及其制备方法
JP6732405B2 (ja) * 2015-02-24 2020-07-29 大阪瓦斯株式会社 ペロブスカイト型太陽電池及びその製造方法
CN107210368B (zh) * 2015-05-18 2019-11-08 高丽大学校产学协力团 钙钛矿太阳能电池模块
CN105405973A (zh) * 2015-10-30 2016-03-16 华中科技大学 基于钙钛矿类吸光材料的介观太阳能电池及其制备方法
US10775671B2 (en) * 2015-12-23 2020-09-15 Avantama Ag Display device
CN105826473B (zh) * 2016-05-12 2019-06-21 东莞市联洲知识产权运营管理有限公司 一种钙钛矿型太阳能电池及其制备方法
EP3446344B1 (en) * 2016-07-15 2020-06-17 Tronox Pigment UK Limited Solar cell materials for increased efficiency
CN109661733A (zh) * 2016-09-21 2019-04-19 积水化学工业株式会社 太阳能电池
KR102629585B1 (ko) 2016-10-04 2024-01-25 삼성전자주식회사 광전 변환 소자 및 이를 포함하는 촬상 장치
CN106847956B (zh) * 2017-03-08 2018-12-07 中国工程物理研究院材料研究所 一种基于全无机钙钛矿单晶的辐射探测器的制备方法
TWI651862B (zh) * 2017-06-05 2019-02-21 國立成功大學 太陽能電池的製造方法
CN107482119A (zh) * 2017-06-29 2017-12-15 华中光电技术研究所(中国船舶重工集团公司第七七研究所) 一种钙钛矿太阳能电池及其制备方法
CN109698251B (zh) 2017-10-24 2020-05-19 华中科技大学 一种铁电增强型的太阳能电池及其制备方法
CN110350093B (zh) * 2018-04-08 2021-07-27 华中科技大学 一种基于熔融法制备太阳能电池吸光层的方法及其应用
CN110660918B (zh) * 2018-06-28 2022-09-06 湖北万度光能有限责任公司 钙钛矿太阳能电池封装方法
JP2020088316A (ja) * 2018-11-30 2020-06-04 国立大学法人東京工業大学 積層体、太陽電池、及び太陽電池の製造方法
CN110473973A (zh) * 2019-07-17 2019-11-19 北京大学深圳研究生院 碳基钙钛矿太阳能电池的界面后处理方法和太阳能电池
WO2021199045A1 (en) * 2020-04-03 2021-10-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Printable hole conductor free mesoporous indium tin oxide based perovskite solar cells
CN112071988B (zh) * 2020-09-02 2021-12-10 西北工业大学 一种全丝网印刷钙钛矿太阳能电池的制备方法
CN112071991B (zh) * 2020-09-02 2022-02-08 西北工业大学 一种丝网印刷制备钙钛矿薄膜的方法
CN112151679B (zh) * 2020-09-29 2022-12-09 西北工业大学 一种纳米晶体复合钙钛矿太阳能电池及其制备方法
CN113363391A (zh) * 2021-05-24 2021-09-07 桂林电子科技大学 一种基于离子液体添加剂的碳基全印刷钙钛矿太阳能电池及其制备方法
TWI803049B (zh) * 2021-11-11 2023-05-21 國立雲林科技大學 奈米結構修飾之有機元件製造方法及其結構
WO2024029426A1 (ja) * 2022-08-01 2024-02-08 シャープ株式会社 ペロブスカイト太陽電池及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299063A (ja) * 2001-04-03 2002-10-11 Japan Science & Technology Corp 臭化鉛系層状ペロブスカイト化合物を発光層とした電界発光素子
US20030015728A1 (en) * 2001-07-17 2003-01-23 Motorola, Inc. Photonic biasing and integrated solar charging networks for integrated circuits
CN101740238A (zh) * 2010-03-12 2010-06-16 华中科技大学 一种染料敏化太阳能电池及其制备方法
US20100218825A1 (en) * 2007-04-06 2010-09-02 Kyungpook National University Industry Academic Cooperation Foundation Dye for dye-sensitized solar cell and Solar cell using it
CN103441217A (zh) * 2013-07-16 2013-12-11 华中科技大学 基于钙钛矿类吸光材料的介观太阳能电池及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069313A (en) * 1995-10-31 2000-05-30 Ecole Polytechnique Federale De Lausanne Battery of photovoltaic cells and process for manufacturing same
US20090056791A1 (en) * 2007-06-22 2009-03-05 William Matthew Pfenninger Solar modules with enhanced efficiencies via use of spectral concentrators
US9496442B2 (en) * 2009-01-22 2016-11-15 Omnipv Solar modules including spectral concentrators and related manufacturing methods
ES2467924T3 (es) * 2009-04-15 2014-06-13 Sharp Kabushiki Kaisha Célula solar sensibilizada por colorante y módulo de células solares sensibilizadas por colorante
US20110088758A1 (en) * 2009-10-19 2011-04-21 Tadao Yagi Glass paste composition, electrode substrate prepared using same, method of preparing electrode substrate, and dye sensitized solar cell including electrode substrate
GB201008144D0 (en) * 2010-05-14 2010-06-30 Solar Press Uk The Ltd Surface modified electrode layers in organic photovoltaic cells
JP2012014849A (ja) * 2010-06-29 2012-01-19 Sony Corp 光電変換素子およびその製造方法ならびに光電変換素子モジュールおよびその製造方法
KR101172374B1 (ko) * 2011-02-14 2012-08-08 성균관대학교산학협력단 페로브스카이트계 염료를 이용한 염료감응 태양 전지 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299063A (ja) * 2001-04-03 2002-10-11 Japan Science & Technology Corp 臭化鉛系層状ペロブスカイト化合物を発光層とした電界発光素子
US20030015728A1 (en) * 2001-07-17 2003-01-23 Motorola, Inc. Photonic biasing and integrated solar charging networks for integrated circuits
US20100218825A1 (en) * 2007-04-06 2010-09-02 Kyungpook National University Industry Academic Cooperation Foundation Dye for dye-sensitized solar cell and Solar cell using it
CN101740238A (zh) * 2010-03-12 2010-06-16 华中科技大学 一种染料敏化太阳能电池及其制备方法
CN103441217A (zh) * 2013-07-16 2013-12-11 华中科技大学 基于钙钛矿类吸光材料的介观太阳能电池及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152296A (ja) * 2015-02-17 2016-08-22 大阪瓦斯株式会社 非真空プロセスで製造可能な無機光電変換装置。
JP2016174118A (ja) * 2015-03-18 2016-09-29 株式会社東芝 光電変換素子およびその製造方法
CN118497823A (zh) * 2024-07-16 2024-08-16 三峡智能工程有限公司 一种光能电解水池半导体阳极及其制备方法和系统

Also Published As

Publication number Publication date
US20160315213A1 (en) 2016-10-27
CN103441217A (zh) 2013-12-11
US10199528B2 (en) 2019-02-05
JP2016523453A (ja) 2016-08-08
EP3024044B1 (en) 2019-04-10
US9799790B2 (en) 2017-10-24
EP3024044A4 (en) 2016-07-20
US20160111575A1 (en) 2016-04-21
JP6267790B2 (ja) 2018-01-24
EP3024044A1 (en) 2016-05-25
CN103441217B (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2015007094A1 (zh) 基于钙钛矿类吸光材料的介观太阳能电池及其制备方法
US10971312B2 (en) Dye-sensitized solar cell and a method for manufacturing the solar cell
CN104124291B (zh) 一种钙钛矿太阳电池及其制备方法
CN103872248B (zh) 一种钙钛矿薄膜光伏电池及其制备方法
CN102074590B (zh) 碲化镉薄膜太阳能电池结构中的背接触电极及制备方法
CN105576150B (zh) 一种量子点尺寸梯度变化的钙钛矿型太阳能电池及制备方法
JP2020504455A (ja) 強誘電体強化太陽電池及びその製造方法
CN108123046A (zh) 一种钙钛矿/n型晶体硅叠层太阳电池及其制造方法
CN114824094A (zh) 一种钙钛矿/晶体硅叠层太阳电池的电荷传输层结构及钙钛矿/晶体硅叠层太阳电池
CN208986026U (zh) 一种双tco异质结钙钛矿叠层光伏电池
CN207441751U (zh) 一种同质结钙钛矿薄膜太阳能电池
CN113903823A (zh) 太阳能叠层电池组件及其制备方法、光伏系统
CN105576127A (zh) 一种多异质结界面钙钛矿太阳能电池及其制备方法
CN105280822A (zh) 适于生产的低成本太阳能电池结构
CN107452879A (zh) 一种具有银/二氧化钛纳米复合材料致密薄膜的钙钛矿太阳能电池
KR20110047533A (ko) 염료감응 태양전지 및 그 제조방법
CN203932119U (zh) 石墨烯电极柔性薄膜钙钛矿太阳能电池
CN112490365A (zh) 一种叠层太阳能电池及其制备方法
Huang et al. A new figure of merit for qualifying the fluorine-doped tin oxide glass used in dye-sensitized solar cells
CN213816196U (zh) 一种叠层太阳能电池
CN103021669A (zh) 一种染料敏化太阳能电池的对电极及其制备方法
KR102138155B1 (ko) 염료감응 태양전지의 다층구조 제조방법
CN209266442U (zh) 一种钙钛矿电池
Li et al. Enhanced photoelectric conversion of dye-sensitized solar cell by addition of inorganic particles
CN106711334A (zh) 一种包含钙钛矿材料的太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016522194

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014825987

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE