WO2015003634A1 - 一种轨道吸振器 - Google Patents

一种轨道吸振器 Download PDF

Info

Publication number
WO2015003634A1
WO2015003634A1 PCT/CN2014/081929 CN2014081929W WO2015003634A1 WO 2015003634 A1 WO2015003634 A1 WO 2015003634A1 CN 2014081929 W CN2014081929 W CN 2014081929W WO 2015003634 A1 WO2015003634 A1 WO 2015003634A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rail
vibration
elastic
elastic member
Prior art date
Application number
PCT/CN2014/081929
Other languages
English (en)
French (fr)
Inventor
李洪
尹学军
孙海富
孔祥斐
郭郦
曲洪啸
徐鹏
付学智
Original Assignee
铁道第三勘察设计院集团有限公司
青岛科而泰环境控制技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 铁道第三勘察设计院集团有限公司, 青岛科而泰环境控制技术有限公司 filed Critical 铁道第三勘察设计院集团有限公司
Priority to EP14822882.8A priority Critical patent/EP3020863B1/en
Priority to PL14822882T priority patent/PL3020863T3/pl
Priority to US14/903,451 priority patent/US9970161B2/en
Priority to ES14822882T priority patent/ES2822352T3/es
Publication of WO2015003634A1 publication Critical patent/WO2015003634A1/zh
Priority to HK16109207.2A priority patent/HK1221269A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B19/00Protection of permanent way against development of dust or against the effect of wind, sun, frost, or corrosion; Means to reduce development of noise
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B19/00Protection of permanent way against development of dust or against the effect of wind, sun, frost, or corrosion; Means to reduce development of noise
    • E01B19/003Means for reducing the development or propagation of noise
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B5/00Rails; Guard rails; Distance-keeping means for them
    • E01B5/02Rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/108Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on plastics springs

Abstract

一种轨道吸振器,包括弹性元件(4)、质量块(3)和至少一个联接框架(2),联接框架(2)与钢轨非工作表面联接部分的表面形状相同,联接框架(2)中包含至少一个吸振腔(100),质量块(3)至少局部设置在联接框架(2)的吸振腔(100)内,质量块(3)与吸振腔(100)的腔壁之间设有弹性元件(4)。该轨道吸振器结构简单,性能稳定,耐候性好,能有效延缓钢轨的磨损,延长钢轨的使用寿命。

Description

一种轨道吸振器
技术领域
本发明属于轨道交通的振动及噪声控制领域, 尤其涉及一种设置于钢轨非工 作表面、 用于减轻轨道车辆运行过程中钢轨受迫产生的振动及噪声的减振装置。
背景技术
近年来, 我国轨道交通飞速发展, 给人们提供了快捷、 安全的出行方式的同 时, 其产生的振动和噪声问题也严重影响了周边居民的生活质量, 危及周边建筑 安全, 并且使轨道本身的稳定性、 安全性和使用寿命也受到影响。
研究表明列车运营时形成的铁路噪声中, 轮轨噪声占很高的比重, 而其中钢 轨振动辐射的中、 高频噪声对最终噪声总量的贡献尤其明显, 因此, 进行钢轨的 振动及噪声治理对城市轨道交通减振降噪具有重要意义。 为控制钢轨的振动及噪 声, 工程人员研发了多种类型的减振降噪产品, 其中调谐减振器较为常见, 其利 用质量一一弹簧构成的调谐装置在钢轨振动时产生反作用力作功耗能使得钢轨的 振动减小, 例如专利申请号 200480019707.1中公开的铁轨调谐减振器, 此类产品 可以实现一定的减振降噪效果。 但是工程应用中发现, 由于现有的此类技术方案 中普遍利用橡胶等弹性材料制成弹性元件, 然后在弹性元件中内置质量块, 而轨 道交通地域分布广阔,外界环境条件千差万别,长期直接曝露在外部环境中以后, 橡胶等弹性材料的物理性能易受到外界环境的影响,也容易被夕卜部物体划伤损坏, 进而对调谐减振器的减振降噪性能和使用寿命造成不良影响。 此外, 由于橡胶类 弹性元件对质量块形成的约束力较小, 质量块在弹性元件内部移动过程中对弹性 元件产生的拉压分量大, 剪切分量小, 因此无法实现有效的剪切耗能, 减振效果 也受到极大限制。 另外, 受结构和材料限制, 此类轨道用调谐减振器的适用频率 范围较小, 例如, 对于低频控制, 需要弹性体具有很高的弹性, 材料较软, 容易 被撕裂; 对于高频控制, 需要弹性体具备较大的硬度, 其弹性差, 减振效果不好。 再有, 此类铁轨调谐减振器还普遍存在下列不足: ( 1 )质量块镶嵌在弹性材料里 面,要同时两个方向实现的精准的质量调谐减振比较难; (2 )调谐减振器出厂时 还是半成品, 未与钢轨进行装配, 无法对工作频率进行直接测量或调试; (3 )— 旦材料开裂, 内部会形成裂缝, 弹性元件的刚度和调谐减振器的工作频率就发生 变化; (4 )弹性元件、 阻尼材料、 粘接材料集成在一起, 无法实现全部参数的优 化; (5 )弹性材料一旦开裂, TMD质量块会脱落, 对列车运行带来安全隐患。
综上可以看出, 现有调谐减振器存在减振降噪效果有限, 性能不稳定, 适用 频域窄, 使用寿命短等缺陷。
发明内容
本发明所要解决的技术问题是, 克服上述缺陷, 提供一种减振降噪效果好、 耐候性强、 性能稳定、 适用频域宽、 使用安全、 寿命长的轨道吸振器。
本发明所釆用的技术方案是, 轨道吸振器包括弹性元件、 质量块和至少一 个联接框架, 联接框架与钢轨非工作表面联接部分的表面形状与钢轨对应表面的 形状相同, 联接框架中包含至少一个吸振腔, 质量块至少局部设置在联接框架的 吸振腔内, 质量块与吸振腔的腔壁之间设有弹性元件。
优选的,弹性元件沿钢轨垂向或 /和钢轨横向设置在质量块与吸振腔的腔壁之 间, 或者弹性元件环绕质量块设置在质量块与吸振腔的腔壁之间。
所述弹性元件可以由橡胶、弹性聚氨酯或金属弹簧中的至少一种构成。其中, 金属弹簧包括碟簧、板簧和螺旋弹簧等; 橡胶具体可以是氯丁橡胶、 丁腈橡胶等。 为了保证弹性元件在使用过程中始终对质量块保持有效的弹性支承, 可以使质量 块与吸振腔腔壁之间设置的弹性元件处于预压缩状态, 并且弹性元件的预压缩位 移大于质量块工作时相对于吸振腔腔壁的振幅。 特别是对于金属弹簧, 在本发明 加工制造的过程中与质量块及联结框架进行组装时大多都需要实施预压缩。另夕卜, 弹性元件还可以与质量块及吸振腔腔壁之间粘接、 悍接或硫化连接固定成一体。
本发明轨道吸振器还可以包括阻尼元件, 阻尼元件设置在质量块与吸振腔腔 壁之间。 阻尼元件可以由弹性固体阻尼材料构成; 阻尼元件也可以由液体阻尼材 料构成, 增设液体阻尼时, 吸振腔的开口处设有密封件, 密封件将吸振腔完全封 闭, 液体阻尼材料填充在质量块与吸振腔腔壁之间的部分空隙中。 为了进一步提 高系统阻尼, 还可以在质量块上设置动叶片, 吸振腔腔壁上设有静叶片与动叶片 交错配合, 相邻的静叶片与动叶片之间的部分空隙内设有液体阻尼材料。 此外, 还可以在动叶片或 /和静叶片上设置扰流孔或扰流凸凹结构。 当然, 还可以在质量 块上设置扰流孔或扰流凸凹结构。 为了方便与钢轨进行装配, 联接框架上还可以设有连接板, 连接板上设有连 接孔、 折弯连接部或卡扣结构。 为了增加弹性元件与联接框架及质量块之间连接 的可靠性,还可以在吸振腔与弹性元件配合的腔壁表面或 /和质量块与弹性元件的 配合表面上设有连接加强结构。 所述的连接加强结构包括表面凸凹结构、 表面滚 花结构或表面拉毛结构。
联接框架中吸振腔的数量超过一个时, 吸振腔在联接框架中沿钢轨的垂向并 列设置, 或 /和沿钢轨的横向并列设置, 或 /和沿钢轨的纵向并列设置。
另外, 要说明的是, 本发明轨道吸振器的联接框架沿钢轨纵向设置在钢轨的 非工作表面上,钢轨的非工作表面包括钢轨使用过程中位于限界以外的轨头下部、 轨腰、 翼板及轨底表面。
本发明的有益效果是: 由于将质量块和弹性元件构成的质量一一弹簧系统设 置在联接框架内, 因此,
( 1 )联接框架对质量块和弹性元件构成的质量一一弹簧系统形成有效的保 护, 特别当使用高分子弹性材料时, 弹性材料不易发生老化, 可大大延长产品的 使用寿命;
( 2 ) 由于质量块未像现有技术一样包裹在弹性元件内, 仅与弹性元件串联, 因此弹性元件的选材范围更广, 金属弹簧的使用成为可能, 可以充分发挥金属弹 簧弹性好, 物理性能受温湿度等环境影响小, 减振性能更高效稳定, 使用寿命长 等优势;
( 3 )除了质量调谐减振外, 当质量块和联接框架大于一个模态频率的 1/2波 长时, 质量块和联结框架会对弹性元件及阻尼元件产生约束作用, 二者之间的相 对变形会剪切二者之间的阻尼材料, 实现额外的剪切变形耗能, 因此减振效果更 显著;
( 4 )本发明轨道吸振器在结构上实现突破, 对弹性元件的限制更少, 弹性 元件的选材范围广, 针对低频和高频可以选择金属弹簧等弹性元件替代橡胶, 可 以规避现有橡胶类弹性元件存在的缺陷, 如温度敏感性等, 因此其适用的参数范 围更宽、 性能更加稳定, 耐候性更好;
( 5 ) 由于钢轨表面可利用空间十分有限, 本发明中质量块未设置在弹性元 件内部, 弹性元件占用空间较小, 因此在相同空间条件下可以设置更大更重的质 量块, 进而有效提高质量调谐减振的效果; ( 6 )弹性元件、 阻尼材料、 粘接材料可以独立, 实现各自特性优化, 均可 以工厂化大批量生产, 参数均匀稳定, 粘结材料负责粘结强度, 弹性材料负责调 频, 阻尼负责消能;
( 7 )弹性材料万一开裂, 轨道吸振器中的质量块也不会脱落, 安全可靠;
( 8 )弹性元件在质量块上下、 左右独立设置, 同一个质量块在钢轨垂向和 钢轨横向的频率可以独立调整, 在两个方向实现调谐质量减振;
( 9 )轨道吸振器出厂时就已是成品, 可以在出厂前对产品的工作频率进行 精确测量和调试, 无需现场调试, 只需粘贴、 装卡或紧固件连接安装;
( 10 )如果弹性元件被预压缩, 即使材料开裂、 有内部裂缝, 弹性元件的刚 度和吸振器的工作频率不会发生变化。
综上, 本发明轨道吸振器的结构简单, 减振降噪效果好, 性能稳定, 耐候性 好, 适用频域范围更广, 使用寿命长, 性价比十分优越, 有利于延緩钢轨的磨损, 延长钢轨的使用寿命, 其市场应用前景十分广阔。
图 1为本发明轨道吸振器的结构示意图及应用示意图之一;
图 2为本发明轨道吸振器的结构示意图及应用示意图之二;
图 3为本发明轨道吸振器的结构示意图及应用示意图之三;
图 4为本发明轨道吸振器的结构示意图及应用示意图之四;
图 5为本发明轨道吸振器的结构示意图及应用示意图之五;
图 6为本发明轨道吸振器的结构示意图及应用示意图之六;
图 7为本发明轨道吸振器的结构示意图及应用示意图之七;
图 8为本发明轨道吸振器的结构示意图及应用示意图之八;
图 9为本发明轨道吸振器的结构示意图及应用示意图之九;
图 10为图 9中的 A部放大图之一;
图 11为图 9中的 A部放大图之二;
图 12为本发明轨道吸振器的结构示意图及应用示意图之十;
图 13为本发明轨道吸振器的结构示意图及应用示意图之十一;
图 14为本发明轨道吸振器的结构示意图及应用示意图之十二; 图 15为图 14的 B-B剖视图;
图 16为本发明轨道吸振器的结构示意图及应用示意图之十三;
图 17为本发明轨道吸振器的结构示意图及应用示意图之十四;
图 18为本发明轨道吸振器的结构示意图及应用示意图之十五;
图 19为本发明轨道吸振器的结构示意图及应用示意图之十六;
图 20为本发明轨道吸振器的结构示意图及应用示意图之十七;
图 21为图 20的 C-C剖视图;
图 22为本发明轨道吸振器的结构示意图及应用示意图之十八;
图 23为图 22中的 D部放大图;
图 24为本发明轨道吸振器的结构示意图及应用示意图之十九;
图 25为本发明轨道吸振器的结构示意图及应用示意图之二十;
图 26为本发明轨道吸振器的结构示意图及应用示意图之二十一;
图 27为本发明轨道吸振器的结构示意图及应用示意图之二十二;
图 28为本发明轨道吸振器的结构示意图及应用示意图之二十三;
图 29为图 28中的 E部放大图;
图 30为本发明轨道吸振器的结构示意图及应用示意图之二十四;
图 31为本发明轨道吸振器的结构示意图及应用示意图之二十五。
具体实施方式
实施例一
如图 1所示本发明轨道吸振器, 包括弹性元件 4和质量块 3, 此外还包括联 接框架 2, 联接框架 2与钢轨 1翼板及轨腰联接部分的表面形状与钢轨对应表面 的形状相同, 联接框架 2中包含一个吸振腔 100, 质量块 3设置在联接框架 2的 吸振腔 100内, 质量块 3与吸振腔 100的腔壁之间设有弹性元件 4。 具体的, 弹 性元件 4沿钢轨垂向设置在质量块 3与吸振腔 100腔壁之间, 联接框架 2由铝合 金材料制成, 弹性元件 4由橡胶材料制成, 由于橡胶材料具有良好的阻尼特性, 是常用的弹性固体阻尼材料, 因此弹性元件 4同时也是阻尼元件, 质量块 3为铁 块, 其中, 弹性元件 4通过硫化工艺分别与质量块 3和联接框架 2固连在一起。 为了增加弹性元件与联接框架及质量块之间连接的可靠性, 在联接框架与弹性元 件的部分配合表面以及质量块与弹性元件的部分配合表面上分别设有连接加强结 构,所述的连接加强结构具体为联接框架 2相应表面上设置的凸凹结构 30及质量 块 3相应表面上设置的凸凹结构 31。
应用时, 如图 1所示, 沿钢轨纵向利用粘接材料将联接框架 2牢固粘接在钢 轨相应表面, 即可完成本发明轨道吸振器与钢轨的装配, 需要注意的是, 本发明 轨道吸振器不需要在钢轨上连续布置, 安装时应注意避让扣件、 鱼尾板等轨道辅 助元件, 一段一段设置在轨枕之间的钢轨相应非工作表面即可, 这一点适用于本 发明所有技术方案, 在此一并说明。 当然, 除了粘接外, 还可以辅助弹簧夹等进 一步加强固定效果,都是本领域常用的安装手段,都在本发明要求的保护范围内。 当钢轨在车轮的激励下发生振动时, 质量块与弹性元件构成的质量一一弹簧调谐 系统, 产生反作用力作功耗能使得钢轨的振动迅速得以衰减, 趋于静止, 此外, 联接框架、 弹性体及质量块之间还构成约束阻尼耗能结构, 当质量块和联接框架 大于一个模态频率的 1/2波长时,质量块压缩弹性元件向联接框架移动的过程中, 质量块和联结框架会对橡胶材料产生约束作用, 二者之间的相对变形会剪切二者 之间的橡胶材料, 实现额外的剪切变形耗能, 因此可以进一步提高减振耗能的效 果。 另外, 由于钢轨的振动能量衰减快,相应的其振动噪声辐射强度也迅速降低, 因此本发明轨道吸振器可以实现良好的减振降噪效果, 同时, 可以有效减轻钢轨 的磨损, 延长钢轨的使用寿命。 需要指出的是, 本例中, 虽然仅沿钢轨垂向在质 量块 3上、 下表面与联接框架 1之间设置了弹性元件 4, 但由于弹性元件 4在钢 轨横向也具有一定的弹性, 因此本例所述本发明轨道吸振器可以实现同时控制钢 轨在垂向及横向的振动。 实际应用中, 可以通过优化弹性元件 4的弹性以及质量 块 3的总重量, 实现对不同频率振动的控制, 使用时, 将控制不同频率振动的本 发明轨道吸振器交替设置在钢轨非工作表面即可。
本发明中弹性元件、 质量块及联接框架的选材可以多种多样, 例如, 弹性元 件可以釆用橡胶、弹性聚氨酯或金属弹簧中的至少一种构成;质量块可以釆用钢、 铁等比重高的材料制成; 联接框架可以釆用不锈钢、 铝合金、 玻璃钢等高强度、 耐腐蚀的材料制成。 当然根据弹性元件、 质量块及联接框架的具体材料不同, 弹 性元件与质量块及联接框架的具体连接工艺可以有所不同, 例如可以釆用硫化、 热贴合、 粘接或悍接等, 只要能将三者牢固连接在一起, 都能起要同样的效果, 都在本发明要求的保护范围之中。 此外, 根据弹性元件、 质量块及联接框架的具 体材料不同, 也可以仅在联接框架与弹性元件的配合表面设置连接加强结构, 或 者是仅在质量块与弹性元件的配合表面上设置的连接加强结构, 表面凸凹结构的 具体结构可以是凸起、 凹坑、 连续凸棱或连续凹槽等各种形式, 表面凸凹结构的 截面形状可以是矩形、 梯形、 圓弧形、 三角形、 T字形等各种形状, 连接加强结 构除了已提到的表面凸凹结构外, 还可以是表面滚花结构或表面拉毛结构等结构 形式, 也都可以实现很好的效果, 无法——附图说明, 在此仅以文字进行说明, 都在本发明要求的保护范围之中。
与现有技术相比, 本发明轨道吸振器, 将质量块和弹性元件构成的质量一一 弹簧系统设置在联接框架内, 其具有如下优点:
( 1 )联接框架对质量块和弹性元件构成的质量一一弹簧系统形成有效的保 护, 特别当使用高分子弹性材料时, 弹性材料不易发生老化, 可大大延长产品的 使用寿命;
( 2 ) 由于质量块未像现有技术一样包裹在弹性元件内, 仅与弹性元件串联, 因此弹性元件的选材范围更广, 金属弹簧的使用成为可能, 可以充分发挥金属弹 簧弹性好, 物理性能受温湿度等环境影响小, 减振性能更高效稳定, 使用寿命长 等优势;
( 3 )除了质量调谐减振外, 当质量块和联接框架大于一个模态频率的 1/2波 长时, 质量块和联结框架会对弹性元件及阻尼元件产生约束作用, 二者之间的相 对变形会剪切二者之间的阻尼材料, 实现额外的剪切变形耗能, 因此减振效果更 显著;
( 4 )本发明轨道吸振器在结构上实现突破, 对弹性元件的限制更少, 弹性 元件的选材范围广, 针对低频和高频可以选择金属弹簧等弹性元件替代橡胶, 可 以规避现有橡胶类弹性元件存在的缺陷, 如温度敏感性等, 因此其适用的参数范 围更宽、 性能更加稳定, 耐候性更好;
( 5 ) 由于钢轨表面可利用空间十分有限, 本发明中质量块未设置在弹性元 件内部, 弹性元件占用空间较小, 因此在相同空间条件下可以设置更大更重的质 量块, 进而有效提高质量调谐减振的效果;
( 6 )弹性元件、 阻尼材料、 粘接材料可以独立实现各自特性优化, 均可以 工厂化大批量生产, 参数均匀稳定, 粘结材料负责粘结强度, 弹性材料负责调频, 阻尼负责消能;
( 7 )弹性材料万一开裂, 轨道吸振器中的质量块也不会脱落, 安全可靠; ( 8 )弹性元件在质量块上下、 左右独立设置, 同一个质量块在钢轨垂向和 钢轨横向的频率可以独立调整, 在两个方向实现调谐质量减振;
( 9 )轨道吸振器出厂时就已是成品, 可以在出厂前对产品的工作频率进行 精确测量和调试, 无需现场调试, 只需粘贴、 装卡或紧固件连接安装;
( 10 )如果弹性元件被预压缩, 即使材料开裂、 有内部裂缝, 弹性元件的刚 度和轨道吸振器的工作频率不会发生变化, 另一方面, 当用于控制高频振动时, 质量块的振幅较小, 经预压缩后, 弹性元件的刚度呈线性变化, 更容易准确设计 调控; 第三, 由于实施了预紧, 弹性材料万一开裂, 质量块也不会脱落, 安全可 靠。 本发明中弹性元件可以预紧, 也可以不预紧, 不预紧时需要考虑弹性元件的 限位或固定, 这些特点适用于本发明所有实施例, 在此一并说明, 后面实施例中 不再一一重复。 一般来说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低 频振动时, 弹性元件可以不预紧, 实际应用中, 可以根据所需控制结构振动频率 的特点, 选择是否对弹性元件实施预压缩。
综上所述, 本发明轨道吸振器的结构简单, 减振降噪性能好, 成本低, 使用 寿命长, 性价比十分优越, 有利于延緩钢轨的磨损, 延长钢轨的使用寿命, 其市 场应用前景十分广阔。
实施例二
如图 2所示本发明轨道吸振器, 与实施例一的区别在于, 弹性元件 4设置在 质量块 3与吸振腔 100对应钢轨 1垂向的腔壁表面之间, 联接框架 2由玻璃钢材 料制成, 弹性元件 4由高阻尼弹性聚氨酯材料制成, 质量块 3由钢材料制成, 其 中,弹性元件 4通过化学粘接工艺分别与质量块 3和吸振腔 100腔壁固连在一起。 为了增加弹性元件与联接框架及质量块之间连接的可靠性, 在联接框架与弹性元 件的配合表面以及质量块与弹性元件的配合表面上分别设有连接加强结构, 所述 的连接加强结构具体为联接框架 2相应表面上设置的表面拉毛结构 32及质量块 3 相应表面上设置的表面滚花结构 33。 由于弹性元件 4釆用的高阻尼弹性聚氨酯材 料也具有良好的阻尼特性, 也是常用的弹性固体阻尼材料之一, 因此弹性元件 4 同时也是阻尼元件。 此外, 弹性元件 4在与质量块 3及联接框架 2进行装配时被 预压缩, 处于预压缩状态, 并且弹性元件 4的预压缩位移大于质量块 3工作时相 对于吸振腔 100腔壁的振幅。
本例所述的技术方案与钢轨之间的装配方法及优点与实施例一基本相同, 在 此不再重复。 需要指出的是, 本例所述本发明轨道吸振器中, 仅在质量块 3左右 侧面与联接框架 1之间设置了弹性元件 4, 因此本例所述本发明轨道吸振器主要 用于控制钢轨在横向的振动, 当然其对垂向振动也有一定的控制作用。 与实施例 一相比, 本例所述技术方案中, 因为对弹性元件实施了预压缩, 即使弹性元件中 的高阻尼弹性聚氨酯材料开裂, 有内部裂缝, 弹性元件的刚度和本发明轨道吸振 器的工作频率不会发生变化, 其减振性能更加稳定可靠。
实际应用中, 可以通过优化弹性元件 4的弹性以及质量块 3的总重量, 实现 对不同频率振动的控制。 使用时, 可以针对钢轨的多个主要振动频率, 将控制相 应振动频率的本发明轨道吸振器交替设置在钢轨非工作表面即可。
当然, 基于实施例一中所述的技术原理, 本例所述本发明轨道吸振器的装配 过程中, 也可以对质量块与联接框架之间设置的弹性元件不实施预压缩, 实际应 用中, 可以根据所需控制轨道结构振动频率的特点, 选择是否对弹性元件实施预 压缩。
实施例三
如图 3所示本发明轨道吸振器, 与实施例一的区别在于, 联接框架 2由钢材 制成,弹性元件 4设置在质量块 3与吸振腔 100对应钢轨 1横向的腔壁表面之间, 弹性元件 4釆用金属弹簧, 本例中具体为螺旋钢弹簧, 螺旋钢弹簧的两端分别焊 接固定在联接框架 2及质量块 3上。 此外, 为确保使用过程中, 弹性元件 4始终 对质量块 3形成有效的支承, 弹性元件 4在与质量块 3及联接框架 2进行装配时 被预压缩, 处于预压缩状态, 并且弹性元件 4的预压缩位移大于质量块 3工作时 相对于吸振腔 100腔壁的振幅。
本例所述技术方案与实施例一的应用方法相同, 在此不再重复。 此外, 与实 施例一相比, 本例所述本发明轨道吸振器还具有如下优点: 由于釆用螺旋钢弹簧 作为弹性元件, 螺旋钢弹簧除了在垂向具有艮好的弹性外, 其在横向也具有良好 的弹性, 因此通过控制螺旋钢弹簧的垂向刚度和横向刚度之间的关系, 本例所述 本发明轨道吸振器可以同时控制钢轨的横向及垂向振动, 其物理性能受温湿度等 环境因素影响小, 减振性能更高效稳定, 使用寿命更长。 另外, 可以作为弹性元 件的金属弹簧除了已经提到的螺旋弹簧外, 还可以是碟簧或板簧, 都可以实现很 好的效果, 都在本发明要求的保护范围之中。 当然, 为了保证弹性元件在使用过 程中始终对质量块保持有效的弹性支承,对于单独釆用金属弹簧构成的弹性元件, 在本发明加工制造的过程中, 优选的, 弹性元件与质量块及联结框架进行组装时 都实施预压缩, 这一点也适用于本发明其他单独应用金属弹簧构成弹性元件的技 术方案, 在此一并给予说明。
当然, 本发明也不排斥弹性元件未被预压缩的技术方案, 根据不同需要, 弹 性元件也可以不预压缩, 例如本例中可以将金属螺旋弹簧两端分别与质量块及联 接框架焊接固定或粘接固定在一起, 不对弹性元件实施预压缩。 需要指出的是, 将金属螺旋弹簧两端分别与质量块及联接框架粘接固定在一起, 除了可以实现弹 性元件的定位外, 还可以实现某些特殊的功能, 例如利用粘接材料将金属螺旋弹 簧的两端部分弹簧圈锁定,可以消除金属螺旋弹簧因加工误差或 /和装配误差引起 的弹簧刚度初始非线性问题, 都在本发明要求的保护范围之内。 一般来说, 控制 高频振动时, 必须对弹性元件实施预紧,控制低频振动时, 弹性元件可以不预紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹性元件实施 预压缩。
实施例四
如图 4中所示本发明轨道吸振器, 与实施例三的区别在于, 螺旋钢弹簧构成 的弹性元件 4同时设置在质量块 3与吸振腔 100对应钢轨 1横向及垂向的腔壁表 面之间。
与实施例三相比, 本例所述的技术方案中, 弹性元件在质量块上下、 左右独 立设置, 同一个质量块在钢轨垂向和钢轨横向的频率可以独立调整, 在两个方向 实现调谐质量减振, 其相互干扰小, 控制精度更高。 此外, 由于弹性元件支承着 整个质量块四周, 使用过程中质量块的运动更加稳定, 不容易产生摆动和倾覆力 矩。
当然, 根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来 说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可 以不预紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹 性元件实施预压缩。
实施例五
如图 5所示本发明轨道吸振器, 与图 4中所示技术方案的区别在于, 质量块 3四周设置的弹性元件 4由弹性聚氨酯材料制成。 此外, 联接框架 2上还设有连 接板 5, 连接板 5上设有连接孔 6。
应用时, 如图 5所示, 除将钢轨 1左右两侧设置的本发明轨道吸振器分别粘 接固定在钢轨表面上以外, 还利用连接板 5扣在钢轨轨底处, 利用紧固件 7通过 连接孔 6将钢轨 1左右两侧设置的本发明轨道吸振器中的连接板 5固连在一起, 这样可以进一步提高本发明轨道吸振器与钢轨装配的稳定性。 即使粘接失效, 本 发明轨道吸振器仍可以固定在钢轨表面, 不会脱落。 此外, 由于联接框架与钢轨 的连接十分可靠, 弹性元件 4又处于预紧状态, 既使质量块 3与弹性元件 4之间 分离, 质量块 3也不易从吸振腔 100中脱出, 不会对行车造成安全隐患。
当然, 基于实施例一中所述的技术原理, 本例所述本发明轨道吸振器的装配 过程中, 也可以对质量块与联接框架之间设置的弹性元件不实施预压缩, 实际应 用中, 可以根据所需控制轨道结构振动频率的特点, 选择是否对弹性元件实施预 压缩。
实施例六
如图 6所示本发明轨道吸振器, 与实施例五的区别在于, 弹性元件 4为橡胶 及金属弹簧构成的复合弹簧, 此外, 连接板 5上设置卡扣结构, 所述卡扣结构包 括相互配合的连接板 5上分别设置的卡槽 8和卡爪 9。 应用时除粘接外, 再利用 卡扣结构将钢轨两侧的本发明轨道吸振器扣合连接在一起, 进而牢固与钢轨装配 成一体。 在此弹性元件 4中的橡胶材料同时还构成阻尼元件。
本例所述技术方案中, 弹性元件 4由橡胶及金属弹簧的复合弹簧构成, 釆用 橡胶一金属复合弹簧, 既可以充分发挥金属弹簧的高弹性、 长寿命, 又可以利用 橡胶材料有效抑制金属弹簧在使用过程中的共振, 有利于进一步提升产品的减振 性能和使用寿命。
当然, 根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来 说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可 以不预紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹 性元件实施预压缩。
实施例七
如图 7所示本发明轨道吸振器, 与实施例六的区别在于, 连接板 5上设有折 弯连接部 10。 应用时, 联接框架 2贴合在钢轨 1一侧的轨腰及翼板处, 连接板 5 包覆整个轨底,再将折弯连接部 10折弯扣合在钢轨 1另一侧的翼板处, 实现本发 明轨道吸振器与钢轨之间的装配。
与实施例六相比, 本例所述技术方案中, 本发明轨道吸振器利用连接板及折 弯连接部直接扣合在钢轨非工作表面, 装拆方便快捷, 便于维护, 安全可靠, 应 用时, 可以在钢轨左右两侧交替设置。 当然, 也可以同时利用粘接材料将本发明 轨道吸振器与钢轨粘连在一起。 利用折弯连接部直接将本发明轨道吸振器装配在 钢轨上时, 如果联接框架釆用金属材料制成, 为防止联接框架与钢轨之间金属撞 击发声, 也可以在联接框架 2及连接板 5与钢轨的接触表面上增设一层固体阻尼 材料, 此时联接框架 2、连接板 5、钢轨 1及固体阻尼材料层还可以构成约束阻尼 结构, 增强耗能能力, 提高减振效果, 不再一一附图说明, 都在本发明要求的保 护范围之中。
当然, 根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来 说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可 以不预紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹 性元件实施预压缩。
实施例八
如图 8所示本发明轨道吸振器, 与实施例七的区别在于, 联接框架 2通过连 接板 5及连接板 5上设置的折弯连接部 10扣合在钢轨 1轨底下方,实现本发明轨 道吸振器与钢轨之间的装配。 此外, 吸振腔 100中, 弹性元件 4由金属碟簧与弹 性聚氨酯材料制成的复合弹簧构成, 其中金属碟簧的端部与相邻的联接框架 2及 质量块 3 ;):早接固定成一体。
与实施例七相比, 本例所述本发明轨道吸振器利用金属碟簧与弹性聚氨酯材 料制成的复合弹簧作为弹性元件 4, 可以充分利用碟簧承载力强, 使用寿命长, 占用空间小等优点。 此外, 可以充分利用钢轨轨底的空间, 有利于留出空间设置 更大的质量块, 进一步提升减振性能。 当然, 如实施例七中所述, 如果联接框架 釆用金属材料制成, 为防止联接框架与钢轨之间金属撞击发声, 也可以在连接板 5与钢轨的接触表面上设置一层阻尼材料。
当然, 根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来 说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可 以不预紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹 性元件实施预压缩。
实施例九
如图 9、 图 10所示本发明轨道吸振器, 与实施例七的区别在于, 弹性元件 4 由板簧构成, 所述板簧由弹簧钢制成的金属弹片 11及其表面包覆的橡胶层 12共 同组成, 相应的在质量块 3上分别容纳板簧的限位槽。 需要指出的是, 弹性元件 4中, 金属弹片 11主要提供弹性, 橡胶层 12主要提供阻尼, 因此橡胶层 12在此 作为阻尼元件使用。
本例所述轨道吸振器与实施例七的应用方法完全相同, 在此不再重复。 与实 施例七相比, 本例所述的本发明轨道吸振器, 除了质量块与弹性元件构成的调谐 系统可以实现耗能减振以外,弹性元件中的金属弹片 11在工作过程中还在联接框 架的约束下不断剪切二者之间橡胶层 12, 实现剪切耗能, 因此耗能更快, 减振效 果也更好。
当然, 根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来 说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可 以不预紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹 性元件实施预压缩。
实施例十
如图 9和图 11所示本发明轨道吸振器, 与实施例九的区别在于, 弹性元件 4 由板簧构成, 所述板簧由二片弹簧钢制成的金属弹片 14及其中间夹设的橡胶层 13共同组成。 与实施例九相似, 橡胶层 13在此也作为阻尼元件使用。
本例所述技术方案的应用方法及优点均与实施例九基本相同, 唯一要说明的 是, 本例中, 金属弹片 14与橡胶层 13直接构成约束阻尼结构, 在工作过程中也 会实现持续的耗能, 由于金属弹片 14之间剪切阻尼材料的有效面积更大, 因此其 剪切阻尼耗能更多, 衰减钢轨振动能量更快, 减振效果更好。
同样, 根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来 说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可 以不预紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹 性元件实施预压缩。
实施例十一
基于图 6、 图 7和图 8的技术原理, 如图 12所示本发明轨道吸振器, 包括钢 轨 1轨腰右侧设置的联接框架 18和轨底设置的联接框架 15, 以及钢轨左侧设置 的联接框架 22, 其中, 联接框架 18与联接框架 15—体设置, 联接框架 18中包 含一个吸振腔 101,吸振腔 101中设置质量块 19,质量块 19与吸振腔 101沿钢轨 垂向及横向的腔壁表面之间分别设有弹性元件 20, 弹性元件 20由螺旋钢弹簧及 橡胶材料复合而成; 联接框架 15中包含一个吸振腔 102, 吸振腔 102中设置质量 块 16, 质量块 16与吸振腔 102沿钢轨垂向及横向的腔壁表面之间分别设有弹性 元件 17, 弹性元件 17由橡胶材料制成; 联接框架 22中包含一个吸振腔 103, 吸 振腔 103中设置质量块 23, 质量块 23与吸振腔 103沿钢轨垂向及横向的腔壁表 面之间分别设有弹性元件 21, 弹性元件 21 由螺旋钢弹簧及橡胶材料复合而成。 此外, 联接框架 15上设置带有连接孔的连接板 25, 联接框架 22上设置带有连接 孔的连接板 24, 利用紧固件 26通过连接孔将连接板 25及连接板 24连成一体, 进而实现将本发明轨道吸振器与钢轨牢固装配在一起。
当然, 为防止联接框架与钢轨之间金属撞击发声, 也可以在本发明与钢轨的 接触表面上设置一层阻尼材料。 此外, 为了提高连接的可靠性, 也可以同时利用 粘接材料将本发明与钢轨粘连在一起。 都是本发明装配中的简单变化, 都在本发 明要求的保护范围当中。
本例所述技术方案中, 本发明轨道吸振器覆盖了大部分钢轨的非工作表面, 包括轨底、 翼板和部分轨腰, 充分利用了空间, 设置了更多质量块与弹性元件构 成的质量一一弹簧调谐系统, 有利于更快衰减钢轨的振动能量, 进一步提高产品 的减振降噪性能。 另外值得一提的是, 由于设置了多个吸振腔, 因此可以包含多 个质量块和弹性元件构成的调谐系统, 可以利用不同的调谐系统控制不同频率的 振动, 其控制的振动频率更多, 减振效果更好。
基于本例所述的技术原理, 如图 13 所示本发明轨道吸振器, 也可以仅设置 一体的联接框架 18与联接框架 15, 联接框架 15上设置连接板 5, 连接板 5—端 设置折弯连接部 10用于与钢轨 1扣接,也能实现很好的效果,也在本发明要求的 保护范围之中。
另外, 才艮据不同需要, 本例轨道吸振器中, 弹性元件可以预压缩也可以不预 压缩, 一般来说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可以不预紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选 择是否对弹性元件实施预压缩。 实施例十二
如图 14和图 15所示本发明轨道吸振器, 与实施例七的区别在于, 联接框架 2沿钢轨纵向被隔板 48分隔成四个吸振腔,每个吸振腔中均设有质量块及弹性元 件, 其中, 吸振腔 104中设有质量块 40和弹性元件 41, 弹性元件 41环绕质量块 40设置在质量块与吸振腔腔壁之间;吸振腔 105中设有质量块 42和弹性元件 43, 弹性元件 43环绕质量块 42设置在质量块与吸振腔腔壁之间; 吸振腔 106中设有 质量块 44和弹性元件 45, 弹性元件 45环绕质量块 44设置在质量块与吸振腔腔 壁之间;吸振腔 107中设有质量块 46和弹性元件 47,弹性元件 47环绕质量块 46 设置在质量块与吸振腔腔壁之间。质量块 40、 42、 44和 46均釆用铸铁材料制成, 弹性元件 41、 43、 45和 47均釆用高阻尼弹性橡胶材料制成, 同时也作为阻尼元 件使用。
本例所述本发明轨道吸振器与实施例七的应用方式相同, 不再重复。 与实施 例七相比, 本例所述技术方案的最大优势在于, 由于联接框架中沿钢轨纵向设置 了四个尺寸不一的吸振腔, 每一个吸振腔中的质量块尺寸有所不同, 每一个吸振 腔中的弹性元件厚度也有所不同, 因此, 分别优化每一个吸振腔中质量块与弹性 元件的参数, 就可以使每一个吸振腔中质量块与弹性元件构成的质量一一弹簧调 谐系统控制某一特定频率振动, 可以同时控制四个频率的振动, 使用后的减振降 噪效果更好。 此外, 不同吸振腔中釆用的质量块的材质可以不同, 不同吸振腔中 釆用的弹性元件的材质也可以不同, 只要调整好质量与弹性元件刚度, 都可以有 效控制某一特定的振动频率, 都在本发明要求的保护范围当中。 另外, 基于实施 例四中叙述的技术原理, 位于质量块上下和左右的弹性元件也可以由不同的材料 构成, 这样质量块在钢轨垂向和钢轨横向的频率可以独立调整, 在两个方向实现 调谐质量减振, 其相互干扰小, 控制精度更高, 这一特点也适合其他弹性元件环 绕质量块设置在质量块与吸振腔腔壁之间的技术方案,在此一并用文字给予说明, 也在本发明要求的保护范围之中。
同样, 根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来 说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可 以不预紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹 性元件实施预压缩。
实施例十三
如图 14和图 16所示本发明轨道吸振器, 与实施例十二的区别在于, 联接框 架 2中包含一个吸振腔, 吸振腔中设置质量块 40和弹性元件 41, 质量块 40由铸 钢制成,弹性元件 41由高阻尼弹性橡胶制成,弹性元件 41环绕质量块 40四周设 置在质量块与吸振腔的腔壁之间, 在此, 弹性元件 41同时也是阻尼元件。 此外, 质量块 40仅中间段设置在联接框架 2的吸振腔内, 两端分别延伸至联接框架 2 以外。 本例所述技术方案, 除了具有图 5所示本发明轨道吸振器的全部优点外, 由 于其质量块仅部分设置在吸振腔中, 调整质量及弹性元件刚度等参数更加便利, 除可以用于控制中高频振动外, 又由于其可以设置较大的质量块, 还特别适用于 控制低频振动, 适用范围更广。 本例所述轨道吸振器同样沿钢轨纵向固定设置在 相邻轨枕之间的钢轨非工作表面, 装配时避让扣件等轨道元件, 由于联接框架 2 沿钢轨纵向的长度比质量块 40短, 因此还有利于节省材料。
同样, 根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来 说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可 以不预紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹 性元件实施预压缩。
实施例十四
如图 14和图 17所示本发明轨道吸振器, 与实施例十三的区别在于, 包括二 个联接框架 2, 二个联接框架分别设置在质量块 40的端部, 每个联接框架 2中包 含一个吸振腔, 吸振腔中设置质量块 40和弹性元件 41, 其中, 质量块 40仅两个 端部的局部段设置于吸振腔中 , 中间部分棵露在二个联接框架之间。
与实施例十三相比, 本例所述技术方案, 生产装配更加方便, 质量块中间棵 露段的截面尺寸甚至可以大于联接框架截面尺寸, 有利于设置更大的质量块, 控 制更低频率的振动。 同时, 质量块两端与弹性元件及联接框架配合, 工作时稳定 性也更好。 此外, 还有利于进一步降低联接框架的材料使用量, 节约成本。
当然, 基于本例所述的技术原理, 联接框架也可以设置三个甚至更多个, 都 在本发明要求的保护范围之中。 此外, 根据不同需要, 本例中弹性元件可以预压 缩也可以不预压缩, 一般来说, 控制高频振动时, 必须对弹性元件实施预紧, 控 制低频振动时, 弹性元件可以不预紧, 实际应用中, 可以根据所需控制结构振动 频率的特点, 选择是否对弹性元件实施预压缩。
实施例十五
除了如图 15中所示, 联接框架中的多个吸振腔沿钢轨纵向设置外, 如图 18 所示本发明轨道吸振器, 与实施例十二的区别在于, 联接框架 2中包含三个吸振 腔, 三个吸振腔沿钢轨的垂向设置, 其中, 最上方的吸振腔中设有质量块 58和弹 性元件 59, 中间的吸振腔中设有质量块 60和弹性元件 61, 最下方的吸振腔中设 有质量块 62和弹性元件 63。 质量块 58、 60及 62均由重混凝土材料制成, 弹性 元件 59、 61和 63均由弹性聚氨酯材料制成。
应用时, 如图 18 所示, 将本例所述本发明轨道吸振器利用粘接材料直接粘 接固定在钢轨 1的轨头底部及轨腰处, 为增加连接固定的可靠性, 还利用弹簧夹 64配合将本发明轨道吸振器夹紧在钢轨表面,完成本发明轨道吸振器与钢轨之间 的装配。
与实施例十二相似, 通过优化质量和弹性元件刚度, 本发明轨道吸振器可以 同时控制多个频率的振动,使用起来十分方便, 例如, 可以利用质量块 58和弹性 元件 59构成的调谐装置控制轨头处的偏摆振动; 利用质量块 60和弹性元件 61 构成的调谐装置控制轨腰处的横向及垂向振动; 利用质量块 62和弹性元件 63构 成的调谐装置控制轨腰及翼板处的振动, 针对不同区域的振动特点, 有针对性的 给予控制, 减振效果更好。 釆用重混凝土制成质量块, 不会发生锈蝕, 使用寿命 长, 并可以大大降低成本。 此外, 本例中不同吸振腔中的质量块及弹性元件也可 以釆用不同的材料制成, 例如可以分别釆用金属弹簧、 橡胶弹簧和弹性聚氨脂弹 簧等, 另外, 还可以釆用普通混凝土或钢筋混凝土制作质量块, 也可以实现艮好 的效果, 都在本发明要求的保护范围之中。
同样, 根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来 说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可 以不预紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹 性元件实施预压缩。
实施例十六
如图 19所示本发明轨道吸振器, 与实施例十五的区别在于, 联接框架 2中 包含四个吸振腔, 四个吸振腔呈 "田" 字型布置。 其中左上方的吸振腔中设置质 量块 49和弹性元件 50,右上方的吸振腔中设置质量块 51和弹性元件 52,左下方 的吸振腔中设置质量块 53和弹性元件 54,右下方的吸振腔中设置质量块 55和 56 及弹性元件 57。 所有质量块均釆用铸铁材料制成, 弹性元件 50、 52、 54及 57分 别釆用不同类型不同刚度的橡胶材料制成。
与实施例十五相似, 本例所述本发明轨道吸振器也可以同时控制多个频率的 振动, 特别右下方吸振腔中设置了二个质量块, 优化参数后, 可以实现对不同频 率振动的控制, 其减振效率更高。
需要指出的是, 基于实施例十二、 实施例十五及本例的技术原理, 联接框架 中的吸振腔可以沿钢轨垂向、 或 /和沿钢轨横向、 或 /和沿钢轨纵向布置, 其可以 实现控制多个频率的振动, 使用十分方便。 同样, 根据不同需要, 本例中弹性元 件可以预压缩也可以不预压缩, 一般来说, 控制高频振动时, 必须对弹性元件实 施预紧, 控制低频振动时, 弹性元件可以不预紧, 实际应用中, 可以根据所需控 制结构振动频率的特点, 选择是否对弹性元件实施预压缩。
实施例十七
如图 20和图 21所示本发明轨道吸振器,与图 4所示轨道吸振器的区别在于, 联接框架 2由钢板制成, 联接框架的吸振腔 100中还设有阻尼元件 65, 所述阻尼 元件 65由液体阻尼材料构成, 吸振腔 100的两侧开口处设有密封件 66, 密封件 66由钢板制成, 密封件 66与联接框架焊接固连在一起, 将吸振腔 100完全封闭, 液体阻尼材料填充在质量块 3与吸振腔 100腔壁之间的部分空隙中。
本例所述本发明轨道吸振器的应用方法与实施例一完全相同, 在此不再重 复。 与图 4所示轨道吸振器相比, 由于吸振腔 100中增设了液体阻尼材料构成的 阻尼元件 65, 质量块 3吸收钢轨振动能量发生位移时, 液体阻尼材料会产生一个 阻碍质量块移动的反力, 从而将质量块的能量迅速消耗掉。 因此, 不但能够使钢 轨的振动能量迅速衰减, 还可以抑制弹性元件 4的共振, 使弹性元件 4迅速恢复 静止, 从而提高弹性元件的疲劳寿命, 进而延长本发明产品的使用寿命。
根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来说, 控 制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可以不预 紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹性元件 实施预压缩。
实施例十八
如图 22和图 23所示本发明轨道吸振器, 与实施例十七的区别在于, 质量块 3上设有扰流凸凹结构, 扰流凸凹结构具体为质量块 3表面设置的多条截面形状 为三角形的凸棱 67。
与实施例十七相比, 由于质量块 3表面设置了多条凸棱 67, 质量块 3与液体 阻尼材料构成的阻尼元件 65的有效接触面积更大,液体阻尼材料对质量块产生的 阻力也就更大, 因此耗能更快, 减振效果也更好。
基于本例所述的技术原理, 凸棱 67 的截面形状也可以是圓弧形、 矩形、 梯 形等多种形状。 此外, 扰流凸凹结构可以多种多样, 例如, 也可以如图 24所示, 扰流凸凹结构由质量块 3表面设置的多条凹槽 68构成; 或者如图 25所示, 扰流 凸凹结构由质量块 3表面设置的多个局部凸起 69构成; 再或者如图 26所示, 扰 流凸凹结构由质量块 3表面设置的多个局部凹坑 70构成。 当然除了图示形状外, 凹槽 68、局部凸起 69及局部凹坑 70的截面形状也可以多种多样, 只要能提高质 量块与液体阻尼材料的有效接触面积, 都可以实现很好的效果, 都在本发明要求 的保护范围之中。
根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来说, 控 制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可以不预 紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹性元件 实施预压缩。
实施例十九
如图 27 所示本发明轨道吸振器, 与实施例十八的区别在于, 扰流凸凹结构 由质量块 3上设置的多个沿钢轨垂向贯通的扰流孔 71构成。 扰流孔 71浸在液体 阻尼材料构成的阻尼元件 65中。
质量块 3上设置的扰流孔 71可以有效提高质量块与液体阻尼材料的有效接 触面积。 当质量块 3移动时,扰流孔 71中的液体阻尼材料与质量块 3会发生相对 移动, 因此会产生阻力进行耗能,所以在质量块 3上设置扰流孔 71以后可以有效 提高产品的减振性能。由于扰流孔 71沿钢轨垂向设置, 当质量块沿钢轨垂向移动 时, 减振效果最明显, 因此该技术方案更适合控制钢轨的垂向振动。 基于这种原 理, 如图 27中所示, 也可以在质量块上设置沿钢轨横向的 ·ί尤流孔 72, 以控制钢 轨的横向振动。 当然, 可以同时在质量块上设置沿钢轨垂向的扰流孔及沿钢 黄 向的扰流孔, 有利于全面提高控制钢轨振动的能力, 也在本发明要求的保护范围 之中。
根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来说, 控 制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可以不预 紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹性元件 实施预压缩。
实施例二十
如图 28和图 29所示本发明轨道吸振器, 与实施例十六的区别在于, 质量块 3上还设有动叶片 73, 吸振腔 100腔壁上设有静叶片 74与动叶片 73交错配合, 相邻的静叶片 74与动叶片 73之间的部分空隙内设有液体阻尼材料 65。 与实施例十八中记录的技术原理相似, 由于质量块和吸振腔的腔壁上分别设 置了相互配合的动叶片和静叶片, 可以显著提高质量块与液体阻尼材料之间的有 效接触面积, 同时动叶片和静叶片在工作过程中相互配合, 还对液体阻尼材料产 生挤出的效应, 因此耗能更快, 减振效果更好。
根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来说, 控 制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可以不预 紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹性元件 实施预压缩。
实施例二十一
如图 30所示本发明轨道吸振器, 与实施例二十的区别在于, 动叶片 73上设 有扰流孔 75, 静叶片 74上也设有扰流孔 76。
由于动叶片及静叶片上分别设置了扰流孔, 当动叶片靠近静叶片时, 液体阻 尼材料受压迫还会在扰流孔中串动, 进一步提高了耗能能力, 进而提升产品的减 振效果。 当然基于本例所述的技术原理, 也可以仅在动叶片或静叶片之一上设置 扰流孔, 也可以起到很好的减振效果。 另外, 基于本例所述的技术原理以及实施 例十八中所述的技术原理, 也可以在静叶片或 /和动叶片上设置扰流凸凹结构, 例 如设置凸棱、 凸起、 局部凸起或局部凹坑等, 都可以起到相近的效果, 都在本发 明要求的保护范围之中, 在此仅以文字给予说明, 不再另外附图。
根据不同需要, 本例中弹性元件可以预压缩也可以不预压缩, 一般来说, 控 制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可以不预 紧, 实际应用中, 可以根据所需控制结构振动频率的特点, 选择是否对弹性元件 实施预压缩。
实施例二十二
如图 31所示本发明轨道吸振器, 与实施例五的区别在于, 联接框架 2包裹 钢轨 1的部分翼板及部分轨底设置, 联接框架 2中包含一个吸振腔 100, 相应的 质量块 3的形状呈 "C" 字形, 质量块 3与吸振腔 100之间沿钢轨横向及钢轨垂 向分别设有橡胶材料制成的弹性元件 4, 弹性元件 4通过硫化工艺与质量块 3及 联接框架 2固连在一起, 弹性元件 4在与质量块 3及联接框架 2进行装配时被预 压缩, 处于预压缩状态, 并且弹性元件 4的预压缩位移大于质量块 3工作时相对 于吸振腔 100腔壁的振幅。
本例所述轨道吸振器与钢轨之间的装配方法与实施例五基本相同, 在此不再 重复。本例所述技术方案与实施例五相比,轨道吸振器在钢轨上的装配位置较低, 可以为鱼尾板等钢轨辅件让位, 从而提高对钢轨限界的适应能力。 此外, 如图 31 所示, 本例所述本发明轨道吸振器在应用过程中, 还可以与迷宫式约束阻尼板配 合使用, 所述迷宫式约束阻尼板包括连接板 201和约束板 200, 连接板 201与约 束板 200上分别设置相互配合的凸凹结构, 连接板 201与约束板 200之间的配合 间隙中设置阻尼材料层 202。 由于迷宫式约束阻尼板具有宽频减振降噪的效果, 与本发明轨道吸振器共同使用, 可以利用轨道吸振器控制振动噪声贡献突出的特 定频率振动, 再利用迷宫式约束阻尼板在 宽的频率范围内对振动噪声进行有效 抑制, 其对钢轨振动噪声的综合治理效果更加出色。 当然, 基于本例所述的技术 原理, 根据需要, 本发明其他技术方案也可以与迷宫式约束阻尼板配合使用, 例 如图 28所示的轨道吸振器在应用中,也可以同时在轨道吸振器上方的轨腰处增设 迷宫式约束阻尼板,或者图 22所示的轨道吸振器在应用时,也可以同时在轨底处 增设迷宫式约束阻尼板,也都能起到很好减振降噪效果,在此仅以文字给予说明, 不再——附图说明。 要说明的是, 本例中, 根据不同需要, 本例中弹性元件可以 预压缩也可以不预压缩, 一般来说,控制高频振动时, 必须对弹性元件实施预紧, 控制低频振动时, 弹性元件可以不预紧, 实际应用中, 可以根据所需控制结构振 动频率的特点, 选择是否对弹性元件实施预压缩。
通过上述实施例可以看出, 与现有技术相比, 本发明轨道吸振器, 将质量块 和弹性元件构成的质量一一弹簧系统设置在联接框架内, 其至少具有部分如下优 点: ( 1 )联接框架对质量块和弹性元件构成的质量一一弹簧系统形成有效的保护, 特别当使用高分子弹性材料时, 弹性材料不易发生老化, 可大大延长产品的使用 寿命; ( 2 )由于质量块未像现有技术一样包裹在弹性元件内,仅与弹性元件串联, 因此弹性元件的选材范围更广, 金属弹簧的使用成为可能, 可以充分发挥金属弹 簧弹性好, 物理性能受温湿度等环境影响小, 减振性能更高效稳定, 使用寿命长 等优势; (3 ) 除了质量调谐减振外, 当质量块和联接框架大于一个模态频率的 1/2 波长时, 质量块和联结框架会对弹性元件及阻尼元件产生约束作用, 二者之 间的相对变形会剪切二者之间的阻尼材料, 实现额外的剪切变形耗能, 因此减振 效果更显著; (4 )本发明轨道吸振器在结构上实现突破,对弹性元件的限制更少, 弹性元件的选材范围广,针对低频和高频可以选择金属弹簧等弹性元件替代橡胶, 可以规避现有橡胶类弹性元件存在的缺陷, 如温度敏感性等, 因此其适用的参数 范围更宽、性能更加稳定,耐候性更好; ( 5 )由于钢轨表面可利用空间十分有限, 本发明中质量块未设置在弹性元件内部, 弹性元件占用空间较小, 因此在相同空 间条件下可以设置更大更重的质量块, 进而有效提高质量调谐减振的效果; (6 ) 弹性元件、 阻尼材料、 粘接材料可以独立实现各自特性优化, 均可以工厂化大批 量生产, 参数均匀稳定, 粘结材料负责粘结强度, 弹性材料负责调频, 阻尼负责 消能; (7 )弹性材料万一开裂, 轨道吸振器中的质量块也不会脱落, 安全可靠; ( 8 )弹性元件在质量块上下、 左右独立设置, 同一个质量块在钢轨垂向和钢轨横 向的频率可以独立调整, 在两个方向实现调谐质量减振; (9 )轨道吸振器出厂时 就已是成品, 可以在出厂前对产品的工作频率进行精确测量和调试, 无需现场调 试, 只需粘贴、 装卡或紧固件连接安装; (10 )如果弹性元件被预压缩, 即使材 料开裂、 有内部裂缝, 弹性元件的刚度和轨道吸振器的工作频率不会发生变化, 另一方面, 当用于控制高频振动时, 质量块的振幅较小, 经预压缩后, 弹性元件 的刚度呈线性变化, 更容易准确设计调控; 第三, 由于实施了预紧, 弹性材料万 一开裂, 质量块也不会脱落, 安全可靠。
本发明中弹性元件可以预紧, 也可以不预紧, 不预紧时需要考虑弹性元件的 限位或固定。 一般来说, 控制高频振动时, 必须对弹性元件实施预紧, 控制低频 振动时, 弹性元件可以不预紧, 实际应用中, 可以根据所需控制结构振动频率的 特点, 选择是否对弹性元件实施预压缩。
本发明轨道吸振器适用性强, 使用寿命长, 耐候性好, 减振降噪效果好, 市 场应用前景十分广阔。此外,本发明中的实施例仅为更好说明本发明的技术方案, 并不应视为对本发明的限制, 其中许多实施例中的技术特征也可以交叉使用。 另 外本发明也无法穷尽与钢轨之间的装配方法, 除了利用实施例中提到的粘接、 扣 合连接、 紧固件连接等方法外, 还可以利用弹簧夹等技术手段进行装配固定。 基 于本发明技术原理, 本领域技术人员可以对上述实施例所述技术方案重新进行组 合或利用同类技术对其中某些元件进行简单替换, 只要基于本发明的技术原理, 都在本发明要求的保护范围内。

Claims

权利要求书
1. 一种轨道吸振器, 包括弹性元件和质量块, 其特征在于还包括至少一个联 接框架, 所述联接框架与钢轨非工作表面联接部分的表面形状与钢轨对应表面的 形状相同, 所述联接框架中包含至少一个吸振腔, 所述质量块至少局部设置在联 接框架的吸振腔内, 质量块与吸振腔的腔壁之间设有弹性元件。
2.根据权利要求 1所述的轨道吸振器, 其特征在于, 所述弹性元件沿钢轨垂 向或 /和钢轨横向设置在质量块与吸振腔的腔壁之间,或者弹性元件环绕质量块设 置在质量块与吸振腔的腔壁之间。
3.根据权利要求 1或 2所述的轨道吸振器, 其特征在于, 所述弹性元件由橡 胶、 弹性聚氨酯或金属弹簧中的至少一种构成; 其中, 所述金属弹簧包括碟簧、 板簧和螺旋弹簧。
4.根据权利要求 1所述的轨道吸振器, 其特征在于, 所述质量块与吸振腔腔 壁之间设置的弹性元件处于预压缩状态时, 弹性元件的预压缩位移要大于质量块 工作时相对于吸振腔腔壁的振幅。
5.根据权利要求 1所述的轨道吸振器, 其特征在于还包括有阻尼元件, 所述 阻尼元件设置在质量块与吸振腔腔壁之间; 所述阻尼元件由弹性固体阻尼材料或 液体阻尼材料构成; 所述阻尼元件为液体时, 吸振腔的开口处设有密封件, 密封 件将吸振腔完全封闭, 液体阻尼材料填充在质量块与吸振腔腔壁之间的部分空隙 中。
6.根据权利要求 5所述的轨道吸振器, 其特征在于, 所述质量块上设有动叶 片, 所述吸振腔腔壁上设有静叶片, 静叶片与动叶片交错配合, 相邻的静叶片与 动叶片之间的部分空隙内设有液体阻尼材料。
7.根据权利要求 6 所述的轨道吸振器, 其特征在于, 所述动叶片或 /和静叶 片上设有扰流孔或扰流凸凹结构。
8.根据权利要求 5所述的轨道吸振器, 其特征在于, 所述质量块上设有扰流 孔或 ·ί尤流凸凹结构。
9.根据权利要求 1所述的轨道吸振器, 其特征在于, 所述联接框架上设有连 接板, 连接板上设有连接孔、 折弯连接部或卡扣结构。
10. 根据权利要求 1所述的轨道吸振器, 其特征在于, 所述吸振腔与弹性元 件配合的腔壁表面或 /和质量块与弹性元件的配合表面上设有连接加强结构;所述 连接加强结构包括表面凸凹结构、 表面滚花结构或表面拉毛结构。
11. 根据权利要求 1所述的轨道吸振器, 其特征在于, 所述联接框架沿钢轨 纵向设置在钢轨的非工作表面上, 钢轨的非工作表面包括钢轨使用过程中位于限 界以外的轨头下部、 轨腰、 翼板及轨底表面。
12. 根据权利要求 1所述的轨道吸振器, 其特征在于, 所述联接框架中吸振 腔的数量超过一个, 吸振腔在联接框架中沿钢轨的垂向并列设置, 或 /和沿钢轨的 横向并列设置, 或 /和沿钢轨的纵向并列设置。
13. 根据权利要求 3所述的轨道吸振器, 其特征在于, 所述弹性元件与质量 块及吸振腔腔壁之间粘接、 焊接或硫化连接固定成一体。
PCT/CN2014/081929 2013-07-10 2014-07-10 一种轨道吸振器 WO2015003634A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14822882.8A EP3020863B1 (en) 2013-07-10 2014-07-10 Rail vibration absorber
PL14822882T PL3020863T3 (pl) 2013-07-10 2014-07-10 Amortyzator drgań szyny
US14/903,451 US9970161B2 (en) 2013-07-10 2014-07-10 Rail vibration absorber
ES14822882T ES2822352T3 (es) 2013-07-10 2014-07-10 Amortiguador de vibraciones de rieles
HK16109207.2A HK1221269A1 (zh) 2013-07-10 2016-08-02 種軌道吸振器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310287329.6 2013-07-10
CN201310287329.6A CN103343496B (zh) 2013-07-10 2013-07-10 一种轨道吸振器

Publications (1)

Publication Number Publication Date
WO2015003634A1 true WO2015003634A1 (zh) 2015-01-15

Family

ID=49278321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081929 WO2015003634A1 (zh) 2013-07-10 2014-07-10 一种轨道吸振器

Country Status (8)

Country Link
US (1) US9970161B2 (zh)
EP (1) EP3020863B1 (zh)
CN (1) CN103343496B (zh)
ES (1) ES2822352T3 (zh)
HK (1) HK1221269A1 (zh)
HU (1) HUE052478T2 (zh)
PL (1) PL3020863T3 (zh)
WO (1) WO2015003634A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20154061A1 (it) * 2015-09-30 2017-03-30 Pregymix S R L Dispositivo di attenuazione acustica sotto-rotaia
CN109235165A (zh) * 2018-11-23 2019-01-18 深圳市市政设计研究院有限公司 一种用于建筑结构和轨道结构的三维减振器
CN115434195A (zh) * 2022-10-11 2022-12-06 洛阳双瑞橡塑科技有限公司 一种钢轨用动力吸振装置
WO2023052828A1 (en) * 2021-10-01 2023-04-06 Arcelormittal Vibration damper for railway tracks and a method of manufacturing thereof
CN116219805A (zh) * 2023-01-10 2023-06-06 株洲时代新材料科技股份有限公司 一种动力吸振式阻尼器

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335057B (zh) * 2013-07-10 2015-07-22 青岛科而泰环境控制技术有限公司 带有框架的调谐质量减振器
CN103343496B (zh) * 2013-07-10 2016-06-08 铁道第三勘察设计院集团有限公司 一种轨道吸振器
ES2703379T3 (es) * 2014-05-14 2019-03-08 Pregymix S R L Dispositivo de atenuación acústica para carriles
CN107254814B (zh) * 2017-03-14 2023-08-29 上海工程技术大学 一种多阶剪切型钢轨动力阻尼吸振器
CN107829891B (zh) * 2017-10-13 2021-12-17 石家庄铁道大学 吸振发电装置
KR101900615B1 (ko) * 2017-10-25 2018-09-20 박정근 관성댐퍼를 갖는 수지고정궤도의 구조
CN108086065A (zh) * 2017-11-23 2018-05-29 中铁二院工程集团有限责任公司 一种钢轨共振吸声装置
US10443670B2 (en) * 2018-03-05 2019-10-15 Nhk International Corporation Damping device
US10500648B1 (en) * 2018-06-12 2019-12-10 Iscar, Ltd. Tool holder having integrally formed anti-vibration component and cutting tool provided with tool holder
FR3083580B1 (fr) * 2018-07-05 2021-03-19 Renault Sas Dispositif d'amortissement de vibrations d'un composant mecanique
KR102171822B1 (ko) * 2018-09-06 2020-10-29 한양대학교 산학협력단 진동 저감 장치
US11268246B2 (en) * 2018-09-17 2022-03-08 Polycorp Ltd. System and method for securing tuned mass dampers to rail
CN110450639A (zh) * 2019-08-16 2019-11-15 上海工程技术大学 一种电气化列车受电弓碳滑板装置
CN112413027B (zh) * 2019-08-23 2022-04-15 比亚迪股份有限公司 吸振装置、吸振装置的优化设计方法及汽车
CN110485220A (zh) * 2019-09-17 2019-11-22 西南交通大学 一种横向连续支撑式浮轨型扣件系统
DE102019216009A1 (de) * 2019-10-17 2021-04-22 Volkswagen Aktiengesellschaft Schwingungstilger
CN110593025B (zh) * 2019-10-22 2024-03-26 中铁二院工程集团有限责任公司 一种用于波磨钢轨的动力吸振器
US11300176B2 (en) * 2019-11-07 2022-04-12 METAseismic, Inc. Vibration absorbing metamaterial apparatus and associated methods
CN111022547B (zh) * 2019-12-18 2022-03-22 东莞理工学院 一种基于卯榫连接的颗粒阻尼轨道减振装置
CN111535082B (zh) * 2020-05-09 2021-08-10 上海工程技术大学 一种钢轨的多向液压减振动力吸振器结构
CN111749056A (zh) * 2020-06-18 2020-10-09 中铁工程设计咨询集团有限公司 质量分布式钢轨综合阻尼减振降噪装置
CN112252089A (zh) * 2020-09-29 2021-01-22 北京九州一轨环境科技股份有限公司 钢轨阻尼器
CN112343952A (zh) * 2020-11-25 2021-02-09 日立电梯(中国)有限公司 减振装置、电梯导靴及电梯
CN113435062B (zh) * 2021-07-22 2023-05-02 同济大学 一种集合悬臂式高频吸振装置及其快速设计方法
CN113494048B (zh) * 2021-08-02 2022-11-15 淮南市公路管理局直属分局 一种公路桥梁用抗震装置
CN113864531B (zh) * 2021-10-20 2023-08-11 徐州徐工挖掘机械有限公司 一种液压挖掘机管路三向多层阻尼减振装置及匹配方法
CN114737420B (zh) * 2021-11-03 2023-06-20 无锡希声科技有限公司 一种负刚度钢轨阻尼器及钢轨减震系统
CN114517425A (zh) * 2022-03-03 2022-05-20 株洲时代新材料科技股份有限公司 一种高阻尼钢轨稳定器及稳定方法
CN117431790B (zh) * 2023-12-20 2024-03-26 西南石油大学 一种能高效回收宽频振动能量的自适应性钢轨吸振器

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631492A1 (de) * 1986-09-16 1988-03-17 Schwartz Heinz Koerperschall-minderung am schienenstrang eines eisenbahngleises
CN1774543A (zh) * 2003-03-05 2006-05-17 克里斯英国有限公司 钢轨减震器
CN1928235A (zh) * 2006-09-21 2007-03-14 尹学军 减振轨道
CN101368356A (zh) * 2008-09-12 2009-02-18 北京交通大学 轨道噪声控制器
CN201396393Y (zh) * 2009-03-19 2010-02-03 尹学军 弹簧阻尼隔振器
CN101849068A (zh) * 2007-11-07 2010-09-29 何伟麟 可调谐震动吸收装置
CN201722566U (zh) * 2010-07-14 2011-01-26 中国船舶重工集团公司第七二五研究所 一种钢轨轨腰吸振器
EP2415933A1 (en) * 2009-04-03 2012-02-08 Sekisui Chemical Co., Ltd. Noise insulation device for rail
JP4921833B2 (ja) * 2005-08-30 2012-04-25 積水化学工業株式会社 レールの防音装置
JP5156209B2 (ja) * 2006-09-07 2013-03-06 積水化学工業株式会社 レールの防音装置
WO2013058082A1 (ja) * 2011-10-17 2013-04-25 積水化学工業株式会社 レールの防音装置
CN103343496A (zh) * 2013-07-10 2013-10-09 铁道第三勘察设计院集团有限公司 一种轨道吸振器
CN203346739U (zh) * 2013-07-10 2013-12-18 铁道第三勘察设计院集团有限公司 轨道吸振器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8807195U1 (zh) * 1988-06-01 1988-09-15 Trelleborg Gummiwerke Gmbh, 2351 Wasbek, De
US6402044B1 (en) * 1997-02-03 2002-06-11 Yugen Kaisha Koshinsha Method of damping railroad noise and railroad noise damping members
US7556209B2 (en) * 2006-06-16 2009-07-07 Ryan Michael Sears Rubber laminate and composites including the laminate
CN101372823B (zh) 2008-10-14 2011-07-20 洛阳双瑞橡塑科技有限公司 谐振式动态轨道减振降噪扣件设计方法及结构
KR101326926B1 (ko) 2008-12-19 2013-11-11 신닛테츠스미킨 카부시키카이샤 철도 차량용 브레이크 디스크
US8985476B1 (en) * 2011-04-05 2015-03-24 L. B. Foster Company Rail cover and clip system for embedded track systems
US9822490B2 (en) * 2012-12-06 2017-11-21 Gunther Veit Vibration absorber arrangement
PL2789737T3 (pl) * 2013-04-11 2018-01-31 Osborn Int Ab Urządzenie zabezpieczające przed wiatrem, śniegiem i piaskiem dla torów kolejowych
CN203348739U (zh) 2013-05-29 2013-12-18 江苏华灿电讯股份有限公司 抱箍型馈线卡

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631492A1 (de) * 1986-09-16 1988-03-17 Schwartz Heinz Koerperschall-minderung am schienenstrang eines eisenbahngleises
CN1774543A (zh) * 2003-03-05 2006-05-17 克里斯英国有限公司 钢轨减震器
JP4921833B2 (ja) * 2005-08-30 2012-04-25 積水化学工業株式会社 レールの防音装置
JP5156209B2 (ja) * 2006-09-07 2013-03-06 積水化学工業株式会社 レールの防音装置
CN1928235A (zh) * 2006-09-21 2007-03-14 尹学军 减振轨道
CN101849068A (zh) * 2007-11-07 2010-09-29 何伟麟 可调谐震动吸收装置
CN101368356A (zh) * 2008-09-12 2009-02-18 北京交通大学 轨道噪声控制器
CN201396393Y (zh) * 2009-03-19 2010-02-03 尹学军 弹簧阻尼隔振器
EP2415933A1 (en) * 2009-04-03 2012-02-08 Sekisui Chemical Co., Ltd. Noise insulation device for rail
CN201722566U (zh) * 2010-07-14 2011-01-26 中国船舶重工集团公司第七二五研究所 一种钢轨轨腰吸振器
WO2013058082A1 (ja) * 2011-10-17 2013-04-25 積水化学工業株式会社 レールの防音装置
CN103343496A (zh) * 2013-07-10 2013-10-09 铁道第三勘察设计院集团有限公司 一种轨道吸振器
CN203346739U (zh) * 2013-07-10 2013-12-18 铁道第三勘察设计院集团有限公司 轨道吸振器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20154061A1 (it) * 2015-09-30 2017-03-30 Pregymix S R L Dispositivo di attenuazione acustica sotto-rotaia
EP3150764A1 (en) * 2015-09-30 2017-04-05 Pregymix S.r.l. Acoustic attenuation device for rails
CN109235165A (zh) * 2018-11-23 2019-01-18 深圳市市政设计研究院有限公司 一种用于建筑结构和轨道结构的三维减振器
WO2023052828A1 (en) * 2021-10-01 2023-04-06 Arcelormittal Vibration damper for railway tracks and a method of manufacturing thereof
CN115434195A (zh) * 2022-10-11 2022-12-06 洛阳双瑞橡塑科技有限公司 一种钢轨用动力吸振装置
CN116219805A (zh) * 2023-01-10 2023-06-06 株洲时代新材料科技股份有限公司 一种动力吸振式阻尼器

Also Published As

Publication number Publication date
EP3020863A1 (en) 2016-05-18
ES2822352T3 (es) 2021-04-30
CN103343496A (zh) 2013-10-09
CN103343496B (zh) 2016-06-08
EP3020863B1 (en) 2020-09-02
EP3020863A4 (en) 2017-04-26
HK1221269A1 (zh) 2017-05-26
HUE052478T2 (hu) 2021-04-28
US9970161B2 (en) 2018-05-15
US20160298300A1 (en) 2016-10-13
PL3020863T3 (pl) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2015003634A1 (zh) 一种轨道吸振器
WO2015003632A1 (zh) 带有框架的调谐质量减振器
CN103335061B (zh) 车轮吸振器
CN100575610C (zh) 吸隔声屏障
CN112922182B (zh) 一种自复位变阻尼变刚度粘弹性及摩擦复合阻尼器
KR101403230B1 (ko) 오메가 형상 강재 댐퍼를 갖는 철골 접합부 구조
CN101781880B (zh) 吸隔声屏障
CN103088723B (zh) 轨道弹性固定装置
WO2008043249A1 (en) A rail with vibration damper
CN107254814B (zh) 一种多阶剪切型钢轨动力阻尼吸振器
RU2624147C1 (ru) Пассивно поглощающая динамические вибрации плита для рельсового пути
KR101197971B1 (ko) 라멘 골조의 층간변형을 이용한 제진댐퍼
CN203346739U (zh) 轨道吸振器
KR101452937B1 (ko) 철도 레일
CN114775410A (zh) 一种内置波纹腹板阻尼器的限位自复位铁路摇摆空心桥墩
WO2008043248A1 (fr) Roue d'amortissement
KR100773880B1 (ko) 수직진동 감쇠 베어링
CN110820960B (zh) 一种房建伸缩缝结构
CN203363000U (zh) 车轮吸振器
KR101140161B1 (ko) 탄성 받침
JPH10152801A (ja) 鉄道の騒音減少方法
CN212335660U (zh) 一种嵌入式轨道动力吸振器
CN205329535U (zh) 一种新型桥梁双缝式伸缩缝装置
CN211645788U (zh) 一种钢轨阻尼动力吸振装置
CN203320365U (zh) 一种用于轨道交通浮置板的金属橡胶隔振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822882

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14903451

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016000448

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014822882

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016000448

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160108