WO2015003497A1 - 一种滑动摩擦发电机、发电方法以及矢量位移传感器 - Google Patents

一种滑动摩擦发电机、发电方法以及矢量位移传感器 Download PDF

Info

Publication number
WO2015003497A1
WO2015003497A1 PCT/CN2014/072244 CN2014072244W WO2015003497A1 WO 2015003497 A1 WO2015003497 A1 WO 2015003497A1 CN 2014072244 W CN2014072244 W CN 2014072244W WO 2015003497 A1 WO2015003497 A1 WO 2015003497A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
conductive layer
layer
conductive
units
Prior art date
Application number
PCT/CN2014/072244
Other languages
English (en)
French (fr)
Inventor
王中林
杨亚
张虎林
Original Assignee
国家纳米科学中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家纳米科学中心 filed Critical 国家纳米科学中心
Priority to EP14823154.1A priority Critical patent/EP3021476B1/en
Priority to KR1020167003465A priority patent/KR101821585B1/ko
Priority to JP2016524658A priority patent/JP6356791B2/ja
Publication of WO2015003497A1 publication Critical patent/WO2015003497A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the invention relates to a generator, and more particularly to a sliding friction generator for converting mechanical energy into electrical energy, and a power generation method, and a vector displacement using the sliding friction generator sensor.
  • a sliding friction electric generator is based on the mutual friction of two different triboelectric materials to generate surface charge transfer.
  • all the reported sliding friction generators are based on the deposition of conductive metal on the surface of the triboelectric thin film material. The electrode layer, thereby achieving external output of electrical energy.
  • the sliding friction generator of this structure is not only complicated in structure, but also causes an increase in the manufacturing cost of the device.
  • the present invention provides a single-electrode sliding friction generator having a simple structure capable of converting mechanical energy of an external force into electric energy.
  • the present invention provides a sliding friction generator, comprising: a friction layer, a lower surface of the friction layer contacts a first conductive layer; the first conductive layer is electrically connected to an equipotential;
  • a second conductive layer disposed above the friction layer, a lower surface of the second conductive layer being disposed opposite to an upper surface of the friction layer;
  • the upper surface material of the friction layer and the lower surface material of the second conductive layer have an electrode sequence difference.
  • the first conductive layer is connected to a ground or an equipotential circuit through an external circuit that requires power supply.
  • the first conductive layer is electrically connected to an equipotential by an external load.
  • a lower surface of the second conductive layer is disposed in contact with an upper surface of the friction layer.
  • the second conductive layer is not in contact with the friction layer when not subjected to an external force, and the lower surface of the second conductive layer is in contact with the upper surface of the friction layer under an external force.
  • the upper surface material of the friction layer is an insulator.
  • the insulator material is selected from the group consisting of polymeric materials.
  • the polymer material is selected from the group consisting of polymethyl methacrylate, nylon, polyvinyl alcohol, polyester, polyisobutylene, polyurethane elastic sponge, polyethylene terephthalate, polyvinyl butyral, Polychloroprene, natural rubber, polyacrylonitrile, polybisphenol carbonate, polychloroether, polyvinylidene chloride, polystyrene, polyethylene, polypropylene, polyimide, polyvinyl chloride, poly Methyl siloxane, polytetrafluoroethylene.
  • the friction layer has a thickness of 100 nm to 5 mm.
  • the material of the lower surface of the second conductive layer is selected from the group consisting of metal, indium tin oxide or organic conductor.
  • the metal is selected from the group consisting of gold, silver, platinum, aluminum, nickel, copper, titanium, chromium or selenium, and an alloy formed of the above metal;
  • the organic conductor is selected from the group consisting of polypyrrole, polyphenylene sulfide, and poly Phthalocyanine compounds, polyanilines and/or polythiophenes.
  • the second conductive layer is a film material.
  • the second conductive layer has a thickness of 10 nm to 5 mm.
  • all or part of the lower surface of the second conductive layer and/or the upper surface of the friction layer are distributed with microstructures on the order of nanometer, micrometer or submicron, and the microstructures are nanowires, nanotubes, and nanometers. Particles, nanorods, nanoflowers, nanogrooves, microchannels, nanocones, microcones, nanospheres, and microspheres, as well as arrays formed from the foregoing structures, or embellishments or coatings of nanomaterials.
  • the lower surface of the second conductive layer and/or the upper surface of the friction layer are chemically modified.
  • the electrode sequence introduces a more electron-depleting functional group relative to the positive material surface, or a more electron-acceptable functional group on the surface of the material whose friction electrode sequence is relatively negative.
  • a positive charge is introduced on the surface having a positive polarity
  • a negative charge is introduced on the surface having a negative polarity
  • the lower surface of the second conductive layer is a plane or a curved surface
  • the upper surface of the friction layer is a flat surface or a curved surface.
  • the lower surface of the second conductive layer and the upper surface of the friction layer are complementary surfaces.
  • the upper surface of the friction layer is an uneven surface of the uneven structure
  • the lower surface of the second conductive layer is an uneven surface of the uneven structure
  • the second conductive layer and/or the friction layer is a flexible material or a hard material.
  • the second conductive layer and/or the friction layer is an elastic material.
  • the first substrate further includes a lower surface of the first conductive layer disposed on the first substrate; and/or a second substrate, an upper surface of the second conductive layer is disposed on the second base
  • the friction layer is composed of a plurality of friction units, and an upper surface of the plurality of friction units forms an upper surface of the friction layer.
  • the lower surface of the second conductive layer cannot simultaneously contact and rub against the upper surfaces of the adjacent two friction units.
  • the friction unit has a shape of a strip or a square block.
  • the plurality of friction units are arranged according to a preset pattern.
  • the first conductive layer is composed of a plurality of first conductive units, and the plurality of first conductive units are in one-to-one correspondence with the plurality of friction units; each of the first conductive units is electrically connected to an equipotential .
  • the second conductive layer is composed of a plurality of second conductive units, and a lower surface of the plurality of second conductive units forms a lower surface of the second conductive layer.
  • the lower surfaces of the plurality of the second conductive units are in the same plane, and the upper surfaces of the plurality of the friction units are in the same plane.
  • a lower surface of the plurality of the second conductive units, and a plurality of the friction units belongs to the same surface.
  • the present invention also provides a vector displacement sensor including the generator, wherein a detecting device is connected between each of the conductive units and an equipotential, and the detecting device is configured to detect the electrical signal;
  • a detecting device is connected between each of the conductive units and an equipotential, and the detecting device is configured to detect the electrical signal;
  • the detecting device is a current or voltage detecting device, and the electrical signal is a current or voltage signal; or the detecting device is a light emitting component or a sound emitting component, and the light emitting component or the sound emitting component detects the electrical energy
  • the signal outputs an optical signal or a sound signal.
  • a voltage dividing resistor is further included between each of the electrode units and the equipotential, and the voltage dividing resistor is connected in parallel or in series with the detecting device.
  • the generator comprises 16 friction units, and the 16 friction units are arranged in groups of four, forming a cross structure in four directions, and the four friction units in each group are arranged in parallel and equidistant.
  • the 16 friction units are long strips of polytetrafluoroethylene film, the friction unit has a width of 10 mm, a length of 2.5 cm, and a distance between the friction units of 2 mm.
  • the present invention also provides a power generation method, including:
  • the second conductive layer is relatively slidably rubbed against the upper surface of the friction layer, and causes a change in the friction area, and a current flows through the load.
  • the present invention has the following beneficial effects:
  • a single-electrode-based sliding friction generator was fabricated, and only one friction layer material having a first conductive layer and a second conductive layer material (for example, a polymer and a metal material) were used, and the first conductive layer material was used. Electrically connected to the equipotential, it can be made into a generator. The externally outputting electric energy can be realized by the sliding friction of the friction layer material and the second conductive layer material.
  • the sliding friction generator of the present invention is a single-electrode sliding friction generator having a simple structure. 2.
  • the first conductive layer (or the first conductive unit) of the sliding friction generator of the present invention needs to be electrically connected to the equipotential, and the second conductive layer does not need to be connected as long as the second conductive layer and the friction layer are ensured.
  • the friction between the first conductive layer (or the first conductive unit) and the equipotential can be supplied by the sliding friction between the two and the frictional area during the friction. Generators of this type can be widely used on moving objects to convert mutual friction during movement into electrical energy, such as the collection of mechanical energy generated by friction between automobile tires and the ground, or in the field of touch screens.
  • Each part of the sliding friction generator of the present invention can be made of a flexible material or an elastic material, and thus can be used in combination with a flexible device.
  • the present invention provides a vector displacement sensor using a sliding friction generator, which is a self-driving sensor, which uses a friction layer composed of a plurality of friction units, and the second conductive layer slides or moves on the friction unit.
  • the detecting device connected between the first conductive unit and the equipotential corresponding to the friction unit can detect the electrical signal without providing power to the sensor, mainly relying on the friction unit and the second conductive triggered by the object during the moving process.
  • the electrical signal generated by the sliding friction between the layers can track the moving direction, moving distance and moving speed of the moving object, and can position the position of the object.
  • the vector displacement sensor of the present invention does not require an additional power supply, and can be applied to small devices such as touch screens, and is particularly suitable for use in environments where power supply replacement is not convenient.
  • the sliding friction generator of the present invention, and the vector displacement sensor using the sliding friction generator, the friction layer or the friction unit is made of an insulating material, and the material has a wide selection range, and the environment-friendly material can be used for large-area laying. It is a wide range of energy harvesting devices.
  • FIG. 1 is a schematic view showing a typical structure of a sliding friction generator of the present invention
  • 2 is a schematic view showing the power generation principle of the sliding friction generator of the present invention
  • 3 is a schematic structural view of a generator in which a lower surface of a first conductive layer is disposed on a first substrate, and an upper surface of the second conductive layer is disposed on a second substrate;
  • FIG. 4 is a schematic structural view of a generator having an upper surface of the friction layer and a lower surface of the second conductive layer being a curved surface;
  • FIG. 5 is a schematic view showing the structure of a generator having an upper surface of the friction layer and a lower surface of the second conductive layer which is an uneven surface of the uneven structure;
  • FIG. 6 is a schematic diagram of a power generation process of a generator in which a friction layer is composed of a plurality of friction units
  • FIG. 7 is a power generation process of a generator in which a friction layer is composed of a plurality of friction units, and a first conductive layer is composed of a plurality of first conductive units;
  • FIG. 8 is a schematic diagram of a generator structure in which a second conductive layer is composed of a plurality of second conductive units
  • FIG. 9 is a schematic diagram of a lower surface of a plurality of second conductive units, and a generator structure in which upper surfaces of the plurality of friction units belong to the same curved surface ;
  • FIG. 10 is a schematic illustration of one embodiment of a vector displacement sensor.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The technical solutions in the embodiments of the present invention will be clearly and completely described in the following with reference to the accompanying drawings. It is apparent that the described embodiments are only a part of the embodiments of the invention, rather than all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the existing sliding friction generator generates electricity by converting surface frictional transfer between two kinds of triboelectric materials to convert mechanical energy into electrical energy.
  • This structure not only complicates the structure of the generator, but also requires two electrode layers for output generation.
  • the electrical energy limits the application of friction generators.
  • the present invention provides a single-electrode sliding friction generator, which is characterized in that surface charge is generated by mutual friction between a conductive material and a triboelectric material having a difference in electrode order, and the electrode layer of the triboelectric material is electrically connected. To equipotential, power is supplied to the load or external circuit connected between the electrode layer and the equipotential.
  • the “friction electrode sequence” as used in the present invention refers to the order of the materials according to their degree of attraction to the charge.
  • the negative charge on the friction surface is compared with the polarity of the friction electrode sequence.
  • the positive material surface is transferred to the surface of the material that is more polar in the friction electrode sequence.
  • the polymer material Teflon is in contact with the aluminum foil of the metal material, the aluminum foil is positively charged, that is, the electron power is weak, and the polymer material Teflon is negatively charged, so that the electron power is strong.
  • the surface of the polymer nylon is positively charged, that is, the electron power is weak, and the aluminum foil is negatively charged, that is, the electron power is strong.
  • this charge transfer is related to the surface work function of the material, and charge transfer is achieved by the transfer of electrons or ions on the contact surface.
  • the friction electrode sequence is only an empirically based statistical result, that is, the further the difference between the two materials in the sequence, the greater the positive and negative charge generated after the contact and the probability of the sequence being coincident, and Actual results are affected by a variety of factors, such as material surface roughness, ambient humidity, and relative friction.
  • the "contact charge” as used in the present invention refers to the charge on the surface of a material having a difference in polarity between two kinds of friction electrode sequences after contact friction and separation, and it is generally considered that the charge is only distributed on the surface of the material. The maximum depth of distribution is only about 10 nanometers. It should be noted that the sign of the contact charge is a sign of the net charge, that is, there may be a concentrated region of negative charge in a local region of the surface of the material with a positive contact charge, but the sign of the net charge of the entire surface is positive.
  • the typical structure of the sliding friction generator of the present embodiment is shown in FIG. 1.
  • the generator includes: a friction layer 100, the lower surface of the friction layer 100 is in contact with the first conductive layer 200, and the first conductive layer 200 is electrically connected to the equipotential 400; a second conductive layer 300 disposed above the layer 100, the lower surface of the second conductive layer 300 is disposed opposite to the upper surface of the friction layer 100; when the upper surface of the friction layer 100 and the lower surface of the second conductive layer 300 are relatively slidably rubbed, While the frictional area changes during the sliding process, an electrical signal is output between the first conductive layer 200 and the equipotential 400.
  • the first conductive layer 200 is an electrode layer provided on the lower surface of the friction layer, that is, an electrode of the generator of the present invention.
  • the friction layer 100 and the second conductive layer 200 have a friction electrode sequence difference in the external force.
  • the surfaces rubbing against each other and changing the area in contact with each other it is possible to supply power to the load or the external circuit 400 connected between the electrode layer 200 and the equipotential 300.
  • the working principle of the generator of the present invention, the structure and material of each part of the generator are described in detail below by taking the structure of FIG. 1 as an example.
  • the working principle of the generator of the present invention is different between the friction layer 100 and the second conductive layer 300, and there is a difference in electron abilities between the two, and the friction layer 100 has a strong electron capability.
  • the second conductive layer 300 is more likely to lose electrons
  • the upper surface of the friction layer 100 is negatively charged
  • the second conductive layer 300 is positive. Charge.
  • Figure 2 a diagram.
  • the sliding friction generator of the present invention is different from the existing sliding friction generator It is only necessary to provide a first conductive layer (ie, an electrode layer) on the lower surface of the friction layer, and another friction material layer is selected from the conductive material (ie, the second conductive layer) and the first conductive layer and an equipotential layer ( Ground or equal potential) electrical connection, the load or the external circuit is connected between the first conductive layer and the equipotential, and the output of the electrical energy generated by the generator does not need to be performed between the first conductive layer and the second conductive layer, the present invention
  • the generator not only simplifies the preparation process, but is also a widely used sliding friction generator that converts mechanical energy into electrical energy.
  • the difference in the friction electrode sequence between the friction layer 100 and the second conductive layer 300 is the key to generating an electrical signal.
  • the friction layer material is preferably an insulator material, and the second conductive layer.
  • the lower surface or all of them are electrically conductive materials.
  • the insulator materials as the friction layer a polymer insulating material is preferred.
  • polymeric materials can be used in the friction layer 100 of the present invention and have increasingly stronger electron-accepting power in the order of alignment: polymethyl methacrylate, nylon, polyvinyl alcohol, polyester, polyisobutylene, polyurethane Elastic sponge, polyethylene terephthalate, polyvinyl butyral, polychloroprene, natural rubber, polyacrylonitrile, polybisphenol carbonate, polychloroether, polyvinylidene chloride, poly Styrene, polyethylene, polypropylene, polyimide, polyvinyl chloride, polydimethylsiloxane (PDMS), polytetrafluoroethylene.
  • PDMS polydimethylsiloxane
  • the appropriate polymer material can be selected as the friction layer 100 according to the order listed above in combination with a simple comparison experiment to obtain an optimum electrical signal output performance.
  • the second conductive layer 300 merely provides a friction surface that rubs against the friction layer 100 in the generator, and does not function as an electrode layer. Therefore, the second conductive layer 300 may be entirely made of a conductive material as a whole, or only a thin layer of the lower surface thereof may be a conductive material.
  • a conductive film is prepared as the second conductive layer 300 on the surface of the insulator material.
  • the second conductive layer 200 may be a flat plate, a sheet or a film, wherein the film thickness may be selected from the range of 10 nm to 5 mm, preferably 100 n ⁇ to 500 ⁇ m.
  • the metal film layer can be printed by existing magnetron sputtering, evaporation and printing. And other technologies to make.
  • the thickness of the friction layer 100 has no significant effect on the implementation of the present invention.
  • the preferred friction layer of the present invention is a film having a thickness of 100 nm to 5 mm, preferably 1 ⁇ m to 2 ⁇ , more preferably 10 ⁇ m to 800 ⁇ m, more preferably 20 ⁇ m to 500 ⁇ m, which are all in the present invention.
  • the technical solutions are applicable.
  • the first conductive layer 200 disposed on the lower surface of the friction layer 100 is an electrode layer of the generator of the present invention. When the electric field formed by the surface charge of the friction layer 100 is unbalanced, the first conductive layer 200 can pass the load or an external circuit that needs to be powered. Electrons are transmitted with the equipotential 400 to balance the charge of the friction layer 100.
  • the conductive material selected for the first electrode layer 200 or the second electrode layer 300 may be selected from metal, indium tin oxide or organic conductors, and commonly used metals include gold, silver, platinum, aluminum, nickel, copper, titanium, chromium or selenium. And an alloy formed of the above metal; the organic conductor is generally a conductive polymer, including self-polypyrrole, polyphenylene sulfide, polyphthalocyanine compound, polyaniline and/or polythiophene. Since the first electrode layer 200 is an electrode layer and needs to have good contact with the friction layer 100, the first electrode layer can be prepared on the lower surface of the friction layer by a conventional technique such as magnetron sputtering, evaporation, and printing. Of course, it is also possible to use a thicker first electrode layer 100, such as a Cu or Al foil, to prepare a friction layer material on the surface thereof to achieve good contact between the first electrode layer and the friction layer.
  • a thicker first electrode layer 100 such as a Cu or Al
  • the first substrate 600 may be disposed on the lower surface of the first electrode layer 200 to enhance the strength of the generator.
  • the second substrate 700 may be provided on the upper surface of the second conductive layer 300 to enhance the mechanical strength of the second conductive layer 300.
  • the combination of the first substrate and the first conductive layer, and the combination of the second substrate and the second conductive layer may be performed by a conventional method, such as pasting, or may be performed by using techniques such as magnetron sputtering, evaporation, and printing.
  • a layer of conductive material is prepared on the surface of the substrate.
  • the generator may also include a first substrate or a second substrate, and the conductive layer is disposed on the substrate to support the conductive layer or to conduct the first or second conductive
  • the layers are isolated from other devices.
  • the material selection of the first substrate 600 and the second substrate 700 is not particularly limited and may be a conductor, an insulator or a semiconductor such as an aluminum plate or a silicon wafer.
  • the first substrate 600 and the second substrate 700 may be a flexible substrate or a rigid substrate such as a rubber or glass plate.
  • the lower surface of the second conductive layer 300 is distributed in whole or in part with microstructures on the order of nanometer, micrometer or submicron to increase the effective contact area of the friction layer 100 and the second conductive layer 300, and improve the two Surface charge density.
  • the microstructures are preferably nanowires, nanotubes, nanoparticles, nanorods, nanoflowers, nanochannels, microchannels, nanocones, microcones, nanospheres, and microspheres, and arrays formed from the foregoing structures
  • a nano-array composed of nanowires, nanotubes or nanorods may be a linear, cubic, or quadrangular pyramid-shaped array prepared by photolithography, plasma etching, or the like, each of such units in the array.
  • the size is on the order of nanometers to micrometers, and the unit size and shape of the specific micro-nanostructure should not limit the scope of the invention. It is also possible to obtain the microstructure of the surface by means of an embellishment or coating of the nanomaterial on the upper surface of the friction layer 100 and/or the lower surface of the second conductive layer 300.
  • One method is to introduce a more electron-releasing functional group (ie, a strong electron donating group) on the surface of the material having a relatively positive frictional electrode sequence for the friction layer 100 and the second conductive layer 300 that rub each other, or to be relatively negative in the friction electrode sequence.
  • the surface of the material is introduced into a more readily available electronic functional group (strong electron-withdrawing electron group), which can further increase the amount of transfer of charge when sliding each other, thereby increasing the frictional charge density and the output power of the generator.
  • Strong electron donating groups include: amino group, hydroxyl group, oxime group, etc.; strong electron withdrawing group includes: acyl group, carboxyl group, nitro group, sulfonic acid group and the like.
  • the introduction of the functional group can be carried out by a conventional method such as plasma surface modification. For example, a mixture of oxygen and nitrogen can be used to generate a plasma at a certain power to introduce an amino group on the surface of the friction layer material.
  • Another method is to introduce a positive charge on the surface of the positive polarity material and a negative charge on the surface of the negative polarity material for the friction layer 100 and the second conductive layer 300 that rub against each other.
  • it can be achieved by chemical bonding.
  • ethyl orthosilicate (TEOS) can be modified on the surface of the polydimethylsiloxane (PDMS) friction layer by a sol-gel method to make it negatively charged.
  • the first conductive layer 200 described in the present invention is electrically connected to the equipotential 400, which is a device capable of providing a large amount of electric charge, and the equipotential may be a ground or an equipotential circuit.
  • the electrical connection may be such that the first conductive layer 200 is connected to the equipotential by an external circuit that is loaded or needs to be powered, and the second conductive layer and the friction layer rub against each other to balance the charge of the surface of the second conductive layer with the surface of the friction layer. Destroyed, the charge in the equipotential 400 can be transferred to the first conductive layer through the load or an external circuit, i.e., the electrical signal is applied to the load or an external circuit that requires power.
  • the first conductive layer 200 may be directly electrically connected to the equipotential through a load; the first conductive layer 200 may also be electrically connected to the equipotential through an external circuit that requires power supply, or may be connected in parallel with the external circuit by using a load.
  • a conductive layer 200 is between the equal potential 400.
  • the external circuit may be a simple resistor or a relatively complicated circuit, and is not particularly limited as long as the equipotential is electrically connected to the electrode layer, and the resistance is not zero.
  • the external circuit that needs to be powered may be an electric appliance such as a lighting device.
  • the friction layer 100 or the second conductive layer 300 may be a flexible material or a hard material, because the hardness of the material does not affect the sliding friction between the two, and the friction surface needs to maintain a plane. It can also be achieved by the support of other components, such as the embodiment of adding a substrate in FIG. Therefore, those skilled in the art can select the material hardness of the friction layer 100 and the second conductive layer 300 according to actual conditions.
  • a generator made of a flexible material has the advantage that a soft and light friction layer or a second conductive layer is deformed by a slight external force, and this deformation causes two friction material layers (friction layer 100 and second conductive layer). The relative displacement of layer 200), thereby outputting an electrical signal outward by sliding friction.
  • a substrate made of ultra-thin, soft, elastic and/or transparent polymer material can be used as a substrate for packaging to facilitate use and increase strength. It will be apparent that all of the structures disclosed herein can be constructed from corresponding supersoft and resilient materials to form a flexible sliding friction generator.
  • the first conductive layer 200 can also be made of a flexible material to make the entire hair The motor is a flexible device.
  • the upper surface of the friction layer 100 and the lower surface of the second conductive layer 300 are disposed in contact with each other, and whether or not an external force is applied thereto, the two are always in surface contact, under the action of an external force,
  • the friction layer 100 and the second conductive layer 300 undergo relative sliding friction that is tangent to the contact surface.
  • the friction layer 100 and the second conductive layer 300 may be disposed in a non-contact manner when not subjected to an external force, as long as the upper surface of the friction layer 100 and the second conductive layer 300 are under external force.
  • the lower surface can be contacted and a relative sliding friction tangential to the contact surface can occur, and the friction layer 100 and the second conductive layer 300 can be completely separated without an external force.
  • Such a design can satisfy the case where space power generation is required, and the friction process can have both contact friction and sliding friction.
  • Conventional components for controlling the distance in the art may be employed.
  • an insulating spring or the like is respectively connected to the lower surface of the first conductive layer 200 and the upper surface of the second conductive layer 300, but it is necessary to pay attention to the use.
  • the spring should not limit the relative sliding between the friction layer 100 and the second conductive layer 200.
  • the generator of this design can be used in combination with other products, and the friction layer 100 and the second conductive layer 200 can be respectively connected to two mutually separated components of other products, and the intermittent contact (or proximity) of the two components is utilized. ) and relative sliding to drive the generator to work, thus achieving intermittent power generation.
  • the upper surface of the friction layer 100 or the lower surface of the second conductive layer 300 may be a flat surface (see FIGS. 1 and 3) or a curved surface.
  • the lower surface of the friction layer 100 of the curved structure or the upper surface of the electrode layer 200 can also achieve relative sliding friction.
  • the lower surface of the friction layer and the upper surface of the conductive layer are both planar or curved to ensure the two Close contact.
  • the friction layer 110 has an arc shape as a whole.
  • the upper surface of the friction layer 110 is curved
  • the second conductive layer 310 has an arc shape as a whole.
  • the lower surface of the second conductive layer 310 is an arc.
  • the first conductive layer 210 disposed on the lower surface of the friction layer 110 is connected to the ground through the load or the external circuit 510. Under the action of the external force F, the upper surface of the friction layer 110 and the lower surface of the second conductive layer 310 are brought into contact with each other. When the surface is tangent to the relative sliding friction, and When the friction area is changed, a current flowing through the load 510 connected between the first conductive layer 210 and the ground flows.
  • the upper surface of the friction layer 110 and the lower surface of the second conductive layer 310 are curved surfaces having complementary shapes, for example, curved surfaces having the same curvature, to ensure the maximum contact area between the second conductive layer 310 and the friction layer 110, and the external force F Under the action, when the upper surface of the friction layer 110 and the lower surface of the second conductive layer 310 are slidable relative to the contact surface, a higher output current can be generated.
  • both the upper surface of the friction layer and the lower surface of the second conductive layer are smooth and flat surfaces, and such a structure requires a relatively large sliding space between the friction layer and the second conductive layer, and When the difference between the size of the friction layer and the second conductive layer is large, the requirement of the change of the contact area during the friction between the friction layer and the second conductive layer cannot be satisfied. Therefore, in the generator of the present invention, the upper surface of the friction layer and the lower surface of the second conductive layer may be prepared as an uneven surface, and the lower surface of the friction layer and the upper surface of the electrode layer are incomplete when the friction layer and the electrode layer slide each other. Contact, referring to FIG.
  • the upper surface of the friction layer 120 is an uneven surface of the uneven structure
  • the lower surface of the second conductive layer 320 is an uneven surface of the uneven structure
  • the first conductive layer 220 disposed on the lower surface of the friction layer 120 is loaded.
  • 520 is connected to the equipotential 420.
  • the upper surface of the friction layer or the lower surface of the second conductive layer is small, and the uneven surface is prepared on the upper surface of the friction layer and the lower surface of the second conductive layer, under external force.
  • the change in the friction area can be satisfied, so that the mechanical energy of the external force can be converted into electric energy.
  • the upper surface of the friction layer is equal in size to the lower surface of the second conductive layer to ensure that the contact area can be maximized during the mutual sliding process. More preferably, the upper surface of the friction layer and the lower surface area and shape of the second conductive layer are identical.
  • the friction layer may be composed of a plurality of friction units, the upper surfaces of the plurality of friction units collectively forming an upper surface of the friction layer; and the upper surface of the friction unit and the second conductive layer
  • the lower surface is relatively slid while the frictional area changes during the sliding process, and an electrical signal is output between the first conductive layer and the equipotential.
  • the lower surface of all the friction units is disposed on the first conductive layer.
  • the friction layer is rubbed
  • the units 131, 132, 133 and 134 are constituted, the upper surfaces of the friction units 131, 232, 333 and 434 collectively constituting the upper surface of the electrode layer, and the lower surfaces of the friction units 131, 232, 333 and 434 are disposed on the first conductive layer 230
  • the first conductive layer 230 is connected to the ground through the resistor 530.
  • the size of the second conductive layer 330 may be smaller than the size of the friction unit or larger than the size of the friction unit.
  • the lower surface of the second conductive layer cannot be adjacent to the same.
  • the upper surfaces of the two friction units are in contact with and rubbed.
  • the working process of the generator is described by taking the size of the second conductive layer 330 and the size of the friction unit as an example.
  • the lower surface of the second conductive layer 330 and the friction unit 131 The upper surface (i.e., the upper surface of the friction layer) contacts and can slide relative to each other without being in contact with the friction units 132, 133, and 134. Since the friction cell material and the second conductive layer material have electrode sequence differences, the lower surface of the second conductive layer 330 has a positive charge, and the upper surface of the friction unit 131 has a negative charge, as shown in FIG.
  • the electrons flow from the first conductive layer 230 to the ground, as shown in the figure. 6 shows a current flowing through the resistor 530 connected between the first conductive layer 230 and the ground. If the detecting device is connected between the first conductive layer and the ground, the pulse electrical signal can be detected until the second When the conductive layer 330 is completely separated from the friction unit 131 and continues to slide, no current flows through the resistor 530, see FIG. 6 c.
  • the second conductive layer 330 continues to slide to the right side with respect to the friction unit 131, and when the lower surface of the second conductive layer 330 is in contact with the upper surface of the friction unit 132 and the contact area with the upper surface of the friction unit 132 is the largest, in the second The lower surface of the conductive layer 330 has a positive charge, and the upper surface of the friction unit 132 is negatively charged, see FIG.
  • the second conductive layer 330 continues to slide to the right side with respect to the friction unit 132, and after the contact area of the second conductive layer 330 and the friction unit 132 is changed, the electrons flow from the first conductive layer 230 to the ground, as shown in FIG. 6.
  • the generator of such a structure can be applied to a case where a second conductive layer is provided on an object fixed and moved by the friction layer to generate electricity.
  • a plurality of friction units are disposed on the road surface, and the lower surfaces of all the friction units are disposed on the first conductive layer, the first conductive layer is connected to the equipotential by a load or the like, and the second conductive layer is disposed on the vehicle, and is driven by the vehicle.
  • Second guide in the process The electrical layer can be slidably rubbed against the friction unit to provide an electrical signal for the load or the like.
  • the generator of the present embodiment can also be applied to touch screen technology for touch positioning and motion detection.
  • the shape of the friction unit may be any shape, and it is preferable that the plurality of friction units have the same shape and size, for example, all of a strip shape or a square block shape.
  • the plurality of friction units may be arranged in any manner, preferably in a predetermined pattern, and the preset patterns may be actually required patterns such as a square, a rectangle, a ring, a cross or the like. For example, they are arranged in four directions along the cross. In other embodiments, preferably, the lower surface of the friction layer cannot simultaneously contact and rub against the upper surfaces of the adjacent two sub-electrodes.
  • the first conductive layer may also be composed of a plurality of first conductive units, and the plurality of first conductive units are in one-to-one correspondence with the plurality of friction units, that is, the lower surfaces of each of the friction units are Contacting a first conductive unit; each of the first conductive units is electrically connected to an equipotential.
  • the first conductive layer is composed of first conductive units 231, 232, 233, and 234, and corresponds to the friction units 131, 132, 133, and 134, which respectively constitute the friction layer, and each of the first conductive units passes through the resistor 530. Connect to the ground. Output terminals A1, A2, A3 and A4 may also be drawn between each of the first conductive elements and the resistors for connecting the detecting means to detect whether there is an electrical signal between the respective first conductive elements and the ground.
  • the lower surface of the second conductive layer 330 is in contact with the upper surface of the friction unit 131 and is relatively slidable, and is not in contact with the friction units 132, 133, and 134.
  • the lower surface of the second conductive layer 330 has a positive charge
  • the upper surface of the friction unit 131 has a negative charge, as shown in FIG.
  • the second conductive layer 330 slides to the right relative to the friction unit 131 by the external force F and changes the contact area of the second conductive layer 330 with the friction unit 131
  • electrons flow from the first conductive unit 231 to the ground, as shown in the figure. 7 shows a current flowing through the resistor 530 connected between the first conductive unit 231 and the ground, and the output terminal A1 connected between the first conductive unit 231 and the ground is connected to the detecting device to detect the pulsed electric current.
  • the signal until the second conductive layer 330 is completely slid away from the friction unit 131, no current flows through the resistor 530, see FIG. 7 c.
  • the second conductive layer 330 continues to slide to the right with respect to the friction unit 131, when the lower surface of the second conductive layer 330 is in contact with the upper surface of the friction unit 132 and the second conductive layer is in the sliding process.
  • the lower surface of 330 has a positive charge
  • the upper surface of the friction unit 132 is negatively charged until the lower surface of the second conductive layer 330 has the largest contact area with the upper surface of the friction unit 132 due to the positive charge on the lower surface of the second conductive layer 330.
  • the negative charges on the upper surface of the friction unit 132 are balanced with each other, so that there is no charge flow between the first conductive unit 232 disposed on the lower surface of the friction unit 132 and the ground, see FIG.
  • the second conductive layer 330 continues to slide to the right side with respect to the friction unit 132 and changes the contact area of the second conductive layer 330 with the friction unit 132, a positive charge is generated on the first conductive unit 232 due to electrostatic induction, so that the connection is A current flows through the resistor 530 between the first conductive unit 232 and the ground, and the flow direction of the current flows from the first conductive unit 232 to the ground, similar to the diagram of b in FIG.
  • the substrate 630 may be a semiconductor or an insulator, preferably an insulator such as an insulating substrate such as plexiglass.
  • the generator of such a structure can be applied to a case where a second conductive layer is provided on an object fixed and moved by the friction layer to generate electricity.
  • a plurality of friction units and a first conductive unit disposed on a lower surface of the friction unit are disposed on the road surface, each of the first conductive units is connected to an equipotential by a load or the like, and the second conductive layer is disposed on the vehicle, during the running of the vehicle
  • the two conductive layers may be slidably rubbed against the friction unit to provide an electrical signal for the load or the like.
  • the generator of the present embodiment can also be applied to touch screen technology for touch positioning and motion detection.
  • the shape of the friction unit may be any shape, and it is preferable that the plurality of friction units have the same shape and size, for example, all of a strip shape or a square strip shape.
  • the plurality of friction units may be arranged in any manner, preferably in a predetermined pattern, and the preset patterns may be actually required patterns such as a square, a rectangle, a ring, a cross or the like. For example, they are arranged in four directions along the cross. In other embodiments, preferably, the lower surface of the second conductive layer cannot simultaneously contact and rub against the upper surfaces of the adjacent two friction units.
  • the second conductive layer may be composed of a plurality of second conductive units, and the lower surfaces of the plurality of second conductive units form a lower surface of the second conductive layer, and the upper surface of the friction unit
  • the lower surface of the two conductive units is disposed in contact with each other and can be relatively slid.
  • the first conductive layer can be integral, and the contact is disposed on the lower surface of the plurality of friction units.
  • the first conductive layer can also adopt a plurality of first conductive units, and the plurality of A one-to-one contact of the conductive unit and the friction unit is disposed on a lower surface of each of the friction units, and the first conductive layer or each of the first conductive units is connected to the ground through a resistor, and the working principle is similar to that in FIG. 6 or FIG. No longer detailed here Description. Referring to FIG.
  • the friction layer is composed of a plurality of friction units 131, 132, 133 and 134, and a plurality of friction units are disposed on the first conductive layer 230, and upper surfaces of the plurality of friction units form an upper surface of the friction layer;
  • the layer is composed of a plurality of second conductive units 331, 332, 333 and 334, a lower surface of the plurality of second conductive units forms a lower surface of the second conductive layer, and an upper surface of the plurality of second conductive units is disposed on the second substrate 730
  • the second substrate 730 is configured to support the plurality of second conductive units such that the lower surface of the second conductive layer is in contact with the upper surface of the friction layer and is relatively slidable.
  • the generator of such a structure is formed with a generator set formed by a plurality of generator units, and when the second substrate 730 drives the plurality of second conductive units to slide relative to the plurality of friction units, the first conductive layer 230 is connected between the ground and the ground. A current flows through the resistor 530.
  • the distance between the plurality of second conductive units and the plurality of friction units it is possible to cause relative friction friction between the friction unit and the second conductive unit as much as possible and the contact area is maximized.
  • the second surface may be
  • the two substrates 730 and the first conductive layer 230 are designed as other structures such that the lower surfaces of the plurality of second conductive units are located on the curved surface (for example, a cylindrical surface, a prism surface, etc.) while the upper surfaces of the plurality of friction units are on the same curved surface. That is, the lower surface of the plurality of second conductive units and the upper surfaces of the plurality of friction units all belong to the same curved surface.
  • the second substrate 730 is a cylinder and a plurality of second conductive layers.
  • the cells 331, 332, 333 and 334 are evenly distributed on the cylindrical surface of the second substrate 730, and the lower surfaces of the plurality of second conductive units (ie, the surface away from the second substrate 730) are also located on the same cylindrical surface;
  • the conductive layer 230 has a cylindrical structure, and the lower surfaces of the plurality of friction units 131, 132, 133, and 134 are disposed on the inner surface of the cylindrical first conductive layer 230, and the upper surfaces of the plurality of friction units are also located at the same time.
  • the lower surface of the second conductive unit is on the cylindrical surface; the first conductive layer 230 is electrically connected to the ground through the resistor 530.
  • the lower surface of the plurality of second conductive units and the upper surface of the plurality of friction units are all in the same cylindrical surface, and the first conductive layer 230 drives the plurality of friction units and the second substrate 730 to drive more
  • the second conductive unit undergoes sliding friction in the direction of the arrow and the friction area changes, an alternating current flows through the resistor 530. If the output is pulled out at both ends of the resistor and the load is connected, it can be negative. Power supply.
  • the generator composed of a plurality of friction units can convert the mechanical energy of the external force into electrical energy, and can also be applied to the detection of the sliding position or the sliding distance of the moving object.
  • the friction composed of a plurality of friction units is used.
  • the layer is set as a stationary (or relatively stationary) surface
  • the second conductive layer is a moving object
  • the lower surface of each friction unit is respectively placed in contact with a first conductive unit
  • each of the first conductive units is connected to the ground through a test device.
  • the sliding of the moving object on the surface of the friction layer generates relative friction between the friction unit and the second conductive layer, and when the contact area changes, the corresponding test device connected to the first conductive unit can detect the electrical signal, thereby Determine the position of the moving object.
  • the moving direction of the moving object can also be determined.
  • an output terminal (Al, A2, A3 and A4) is drawn between each of the first conductive units and the resistor 530.
  • the moving object 330 ie, the second conductive layer
  • the preferred moving object 330 can only be in contact with one friction unit, and the output end A1 is not detected when the moving object 330 is in contact with the friction unit 131 and does not slide relative to each other.
  • the electric signal shown as a in FIG. 7
  • the moving object 330 slides to the right side with respect to the friction unit and changes the contact area
  • the output end A1 detects an electric signal (shown in FIG.
  • the output terminal A1 does not detect an electrical signal when the moving object completely leaves the friction unit 131.
  • the moving object 330 continues to slide to the right side, and when the contact area with the friction unit 132 is the largest and the contact area changes, an electrical signal can be detected at the output terminal A2 until the contact area of the moving object with the friction unit 132 does not change.
  • the sliding position, the sliding direction, and the sliding distance of the moving object can be determined based on the position of the friction unit corresponding to the detection signal of the detecting device connected to the output terminals A1 and A2. Therefore, the sliding friction generator of the present invention can accurately position the moving direction and the displacement distance of the object, and is a vector displacement sensor that detects the moving object.
  • a displacement sensor converts a mechanical displacement into a linear or arbitrary function of a resistance or voltage output through a potentiometer element.
  • the vector displacement sensor is developed on the basis of the displacement sensor. It can be used not only to determine the direction in which the object moves, but also to determine the position at which the object moves.
  • the existing vector displacement sensors are mainly based on resistance change type and magnetostrictive type sensors to achieve accurate positioning of displacement. External power supply is essential for the normal operation of these sensors, relying on vector displacement of external energy supply. Sensors are not only difficult to maintain when used in harsh conditions, but are also difficult to use in future energy crises.
  • the vector displacement sensor of the generator of the invention is a self-driving displacement sensor without external power supply, and has the advantages of simple structure, low preparation cost, and fundamentally solving the dependence of the displacement sensor on the external power source, and can work stably for a long time. .
  • the present invention provides a vector displacement sensor including the above-mentioned sliding friction generator in which the friction layer is composed of a plurality of friction units and the first conductive layer is composed of a plurality of first conductive units.
  • a lower surface of each of the friction units is in contact with one of the first conductive units, and a detecting device is connected between each of the first conductive units and an equipotential, and the detecting device is configured to detect the electricity a signal; when a sliding friction occurs between the upper surface of the friction layer and the lower surface of the second conductive layer and the friction area is changed, the position of the second conductive layer can be determined according to the position of the detecting device that detects the electrical signal Or determining the sliding distance, the sliding direction or the sliding speed of the second conductive layer according to the position of the detecting device that sequentially detects the electrical signal.
  • the plurality of friction units and their corresponding first conductive units may be arranged on the surface of the substrate to fix the plurality of friction units.
  • a detecting device is respectively connected between each of the first conductive units and the equipotential.
  • the detecting device can record and generate The position of the friction unit of the current signal, correspondingly, determines the position of the friction unit that produces sliding friction with the second conductive layer, and thus the position of the second conductive layer can be determined.
  • the second conductive layer is slidably rubbed with the two friction units, two detecting devices successively detect the electrical signals, and the second conductive can be determined according to the position, distance and time of the detecting device that sequentially detects the electrical signals.
  • the moving distance, the moving direction and the moving speed of the layer realize the displacement sensing of the moving object (the second conductive layer).
  • the plurality of detecting means may form a detecting system in which the positional correspondence of each of the detecting means and the friction unit may be set in advance.
  • the detecting means may be a current or voltage detecting means for outputting a current or voltage signal when there is a current between the first conductive unit and the equipotential.
  • the detecting device may also be a light-emitting component or a sound-emitting component that can generate sound, light, or the like after being energized, such as a buzzer or an LED lamp, when the light-emitting component Or the sounding element can output an optical signal or a sound signal when receiving the electrical signal.
  • the vector displacement sensor of the present invention can also be connected to a computer processing system.
  • the computer system records the corresponding positional relationship between each detecting device and the plurality of friction units, and the time when each detecting device detects the electrical signal, and can be conveniently based on the recorded information. Calculate the sliding distance, sliding direction or sliding speed of the friction layer.
  • the vector displacement sensor of the present invention it is also possible to include a voltage dividing resistor between each of the first conductive units and the equipotential, and the voltage dividing resistor can adjust the current or voltage between the first conductive unit and the equipotential.
  • the voltage dividing resistor can be connected in parallel or in series with the detecting device.
  • each of the first conductive units may be connected to the same equipotential (for example, ground) through a voltage dividing resistor, and a detecting device is connected between each of the first conductive units and the voltage dividing resistor; when disposed on the moving object When the lower surface of the second conductive layer is slidingly rubbed against the upper surface of the friction unit and the friction area is changed, since the detecting device, the first conductive unit and the friction unit are in one-to-one correspondence, the detecting device according to the detected detection signal Ability to sense the position of moving objects.
  • the present invention also provides a power generation method, including the steps:
  • the second conductive layer is relatively slidably rubbed against the upper surface of the friction layer, and causes a change in the friction area, and a current flows through the load.
  • the material of the friction layer and the material of the second conductive layer have a friction electrode sequence difference.
  • the materials and structures of the friction layer, the first conductive layer and the second conductive layer involved may be the same materials and structures as the first conductive layer and the second conductive layer of the friction layer in the generator mentioned in the present invention, here Not repeating.
  • Example 2 Preparation of a Vector Displacement Sensor Based on Sliding Friction Generator
  • a plexiglass 10 cm long and 10 cm thick and 1.59 mm thick was used as a substrate material for a sensor using a generator.
  • 16 aluminum electrode strips were fabricated as the first conductive unit on the surface of the substrate, and the first conductive unit had a width of 10 mm and a length of 3 cm.
  • the distance between the first conductive units is 2 mm, and the 16 first conductive units are arranged in groups of four, forming a cross structure in four directions, and the four first conductive units in each group are arranged in parallel and equidistantly.
  • a PTFE film is adhered to each of the first conductive units by using a conductive adhesive as a friction unit.
  • the width of the friction unit is 10 mm, the length is 2.5 cm, the thickness is 200 ⁇ m, and the distance between adjacent friction units is 2. Mm, 16 friction units are also grouped in groups of four, forming a cross structure in four directions, and four friction units in each group are arranged in parallel and equidistant.
  • Each of the first conductive units is connected by a copper wire, and is connected to a voltage dividing resistor R. The other end of the voltage dividing resistor is grounded, and an output terminal 01 is drawn between each of the first conductive units and the voltage dividing resistor. 16, the specific connection circuit is shown in Figure 11, the output is used to collect electrical signals.
  • the 16 output terminals are respectively connected to the detecting device, and real-time acquisition of the output signals of the 16 first conductive units is realized by the detecting device.
  • An aluminum piece having a length of 2 cmX and a width of 2 cmX and a thickness of 1 mm was cut as a second conductive layer and placed in a middle blank in which a plurality of electrode strips were patterned. When the second conductive layer slides in any direction, it will slide frictionally with the Teflon friction unit and change the contact area, thereby outputting an electric signal to the outside of the output.
  • the above embodiment shows that the positioning of the moving direction and position of the object can be achieved by collecting the signals at the output.
  • the vector displacement sensor directly utilizes a single-electrode sliding friction generator as a triggering sensor, which does not require external power supply, can effectively save energy, and can work stably for a long time.
  • the vector displacement sensor provided by the present invention can be as needed
  • the plurality of friction units are set to any shape, and can be set in a large area, and can be conveniently applied in an environment where power is not convenient to use in the field.

Landscapes

  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Lubricants (AREA)

Abstract

一种滑动摩擦发电机、发电方法以及应用滑动摩擦发电机的矢量位移传感器,发电机包括一个下表面设置有第一导电层(200)的摩擦层(100),并且第一导电层(200)电连接至等电位(400),以及一个与摩擦层(100)的上表面相对设置的第二导电层(300),当摩擦层(100)的上表面与第二导电层(300)的下表面在外力作用下发生相对滑动,同时摩擦面积在滑动过程中发生变化,在第一导电层(200)和等电位(400)之间能够输出电信号。所述矢量位移传感器中,摩擦层由多个摩擦单元构成,每个摩擦单元的下表面对应设置一个电连接至等电位的第一摩擦单元,第二导电层在摩擦单元上滑动时,根据第一导电单元与等电位之间输出的电信号能够对第二导电层的位置、移动方向和移动距离进行探测,无需为传感器提供电源。

Description

一种滑动摩擦发电机、 发电方法以及矢量位移传感器 技术领域 本发明涉及一种发电机, 特别是涉及将机械能转化为电能的滑动摩 擦发电机以及发电方法, 以及应用该滑动摩擦发电机的矢量位移传感器。 背景技术 滑动摩擦电发电机的工作原理是基于两种不同的摩擦电材料的相 互摩擦产生表面电荷转移, 但是, 所有已经报道的滑动摩擦发电机都是 基于导电金属沉积在摩擦电薄膜材料表面作为电极层, 从而实现对外输 出电能。 这种结构的滑动摩擦发电机不仅结构复杂, 导致器件制作成本 增加, 另外, 现有的滑动摩擦发电机需要两个电极层用于输出产生的电 能。 因此, 现有滑动摩擦发电机的结构极大的妨碍了这种摩擦电发电机 的发展和应用。 发明内容 本发明提供一种结构简单的单电极式滑动摩擦发电机, 能够将外力 的机械能转变为电能。
为实现上述目的, 本发明提供一种滑动摩擦发电机, 包括: 摩擦层, 所述摩擦层的下表面接触设置第一导电层; 所述第一导电 层电连接至等电位;
所述摩擦层上方设置的第二导电层, 所述第二导电层的下表面与所 述摩擦层的上表面相对设置;
当所述摩擦层的上表面与所述第二导电层的下表面发生相对滑动 摩擦, 同时摩擦面积在滑动过程中发生变化时, 在所述第一导电层和所 述等电位之间输出电信号。
优选的, 所述摩擦层的上表面材料与所述第二导电层下表面材料存 在电极序差异。 优选的, 所述第一导电层通过需要供电的外电路连接至地或等电位 电路。
优选的, 所述第一导电层通过外负载电连接至等电位。
优选的, 所述第二导电层的下表面与所述摩擦层的上表面接触设置。 优选的, 在未受外力时所述第二导电层与所述摩擦层不接触, 在外 力作用下所述第二导电层的下表面与所述摩擦层的上表面接触。
优选的, 所述摩擦层的上表面材料选择绝缘体。
优选的, 所述绝缘体材料选自聚合物材料。
优选的,所述聚合物材料选自聚甲基丙烯酸甲酯、尼龙、聚乙烯醇、 聚酯、 聚异丁烯、 聚氨酯弹性海绵、 聚对苯二甲酸乙二醇酯、 聚乙烯醇 缩丁醛、聚氯丁二烯、天然橡胶、聚丙烯腈、聚双苯酚碳酸酯、聚氯醚、 聚偏二氯乙烯、 聚苯乙烯、 聚乙烯、 聚丙烯、 聚酰亚胺、 聚氯乙烯、 聚 二甲基硅氧垸、 聚四氟乙烯。
优选的, 所述摩擦层的厚度为 100nm-5mm。
优选的, 所述第二导电层下表面的材料选自金属, 铟锡氧化物或有 机物导体。
优选的, 所述金属选自金、 银、 铂、 铝、 镍、 铜、 钛、 铬或硒, 以 及由上述金属形成的合金; 所述有机物导体选自自聚吡咯、 聚苯硫醚、 聚酞菁类化合物、 聚苯胺和 /或聚噻吩。
优选的, 所述第二导电层为薄膜材料。
优选的, 所述第二导电层的厚度为 10 nm-5 mm。
优选的,所述第二导电层的下表面和 /或摩擦层的上表面的全部或部 分分布有纳米、 微米或次微米量级的微结构, 所述微结构为纳米线、 纳 米管、 纳米颗粒、 纳米棒、 纳米花、 纳米沟槽、 微米沟槽, 纳米锥、 微 米锥、 纳米球和微米球状结构, 以及由前述结构形成的阵列, 或者纳米 材料的点缀或涂层。
优选的,所述第二导电层的下表面和 /或摩擦层的上表面经过化学改 性。
优选的, 在所述第二导电层的下表面和 /或摩擦层的上表面, 在摩擦 电极序相对为正的材料表面引入更易失电子的官能团, 或者在摩擦电极 序相对为负的材料表面引入更易得电子的官能团。
优选的, 在所述第二导电层的下表面和 /或摩擦层的上表面, 在极性 为正的表面引入正电荷, 而在极性为负的表面引入负电荷。
优选的, 所述第二导电层的下表面为平面或曲面;
和 /或, 所述摩擦层的上表面为平面或曲面。
优选的, 所述第二导电层的下表面与所述摩擦层的上表面为互补表 面。
优选的, 所述摩擦层的上表面为凹凸结构的不平整表面, 所述第二 导电层的下表面为凹凸结构的不平整表面。
优选的, 所述第二导电层和 /或摩擦层为柔性材料或硬性材料。 优选的, 所述第二导电层和 /或摩擦层为弹性材料。
优选的, 还包括第一基板, 所述第一导电层的下表面设置在所述第 一基板上; 和 /或第二基板, 所述第二导电层的上表面设置在所述第二基 优选的, 所述摩擦层由多个摩擦单元构成, 所述多个摩擦单元的上 表面形成所述摩擦层的上表面。
优选的, 所述第二导电层的下表面不能同时与相邻的两个摩擦单元 的上表面接触和摩擦。
优选的, 所述摩擦单元的形状为长条状或正方形块状。
优选的, 所述多个摩擦单元按照预先设定的图形排列。
优选的, 所述第一导电层由多个第一导电单元构成, 所述多个第一 导电单元与所述多个摩擦单元一一对应; 每个所述第一导电单元电连接 至等电位。
优选的, 所述第二导电层由多个第二导电单元构成, 所述多个第二 导电单元的下表面形成所述第二导电层的下表面。
优选的, 多个所述第二导电单元的下表面在同一个平面, 多个所述 摩擦单元的上表面在同一个平面。
优选的, 多个所述第二导电单元的下表面、 以及多个所述摩擦单元 的上表面属于同一曲面。
相应的, 本发明还提供一种矢量位移传感器, 包括所述的发电机, 其中, 在每个所述导电单元与等电位之间连接检测装置, 所述检测装置 用于检测所述电信号; 当所述第二导电层下表面与所述摩擦单元上表面 发生滑动摩擦并且摩擦面积发生改变时, 根据检测到所述电信号的检测 装置的位置能够确定所述第二导电层的位置, 或者根据先后检测到电信 号的检测装置的位置确定所述第二导电层的滑动距离、 滑动方向或滑动 速度。
优选的, 所述检测装置为电流或电压检测装置, 所述电信号为电流 或电压信号; 或者, 所述检测装置为发光元件或发声元件, 当所述发光 元件或发声元件检测到所述电信号时输出光信号或声音信号。
优选的, 在每个所述电极单元与等电位之间还包括分压电阻, 所述 分压电阻与所述检测装置并联或串联。
优选的, 所述发电机包括 16个摩擦单元, 所述 16个摩擦单元以 4 个为一组, 分布在四个方向上形成十字架结构, 每组中的 4个摩擦单元 平行等距排列。
优选的, 所述 16 个摩擦单元为长条状聚四氟乙烯薄膜, 所述摩擦 单元的宽度为 10 mm, 长度为 2.5 cm, 摩擦单元之间的距离为 2 mm。
相应的, 本发明还提供一种发电方法, 包括:
提供下表面设置有第一导电层的摩擦层, 所述第一导电层通过负载 连接至等电位;
第二导电层与所述摩擦层的上表面发生相对滑动摩擦、 并且导致摩 擦面积变化, 所述负载上有电流流过。
与现有技术相比, 本发明具有下列有益效果:
1、 首次制作了基于单电极的滑动摩擦发电机, 只需要用一个表面 设置有第一导电层的摩擦层材料和第二导电层材料 (例如聚合物和金属 材料), 将第一导电层材料电连接至等电位, 便可以制作成发电机。 通 过摩擦层材料和第二导电层材料的滑动摩擦就可以实现对外输出电能, 本发明的滑动摩擦发电机是一种结构简单的单电极式滑动摩擦发电机。 2、 本发明的滑动摩擦发电机的第一导电层 (或第一导电单元) 需 要电连接至等电位, 而第二导电层则无需进行任何连接, 只要能够保证 第二导电层与摩擦层之间能够互相滑动摩擦并且在摩擦过程中摩擦面 积发生变化, 即可对连接在第一导电层 (或第一导电单元) 与等电位之 间的负载供电。 这种结构的发电机可以广泛应用在移动物体上, 将移动 过程中的相互摩擦转变为电能, 例如汽车轮胎与地面的摩擦产生的机械 能的收集, 或者应用在触摸屏等领域。
3、 本发明的滑动摩擦发电机的各部分都可以采用柔性材料或弹性 材料, 因此, 可以与柔性器件结合使用。
4、 本发明提供了一种利用滑动摩擦发电机的矢量位移传感器, 是 一种自驱动的传感器, 采用摩擦层由多个摩擦单元构成的发电机, 第二 导电层在摩擦单元上滑动或移动时, 连接在与摩擦单元对应的第一导电 单元与等电位之间的检测装置能够检测电信号, 不需要为传感器提供电 源, 主要依靠物体在移动过程中, 先后触发的摩擦单元与第二导电层之 间滑动摩擦产生的电信号即可追踪移动物体的移动方向、 移动距离和移 动速度, 并且可以实现对物体位置的定位。 本发明的矢量位移传感器不 需要额外提供电源, 除了可以应用在小型器件例如触摸屏中, 也特别适 用在不便于进行电源更换的环境中。
5、 本发明的滑动摩擦发电机, 以及利用滑动摩擦发电机的矢量位 移传感器,摩擦层或摩擦单元的材料采用绝缘材料,材料的选择范围广, 选择环境友好的材料可以进行大面积的铺设, 是一种应用范围广泛的能 量收集装置。 附图说明 通过附图所示,本发明的上述及其它目的、特征和优势将更加清晰。 在全部附图中相同的附图标记指示相同的部分。 并未刻意按实际尺寸等 比例缩放绘制附图, 重点在于示出本发明的主旨。
图 1为本发明滑动摩擦发电机的典型结构示意图;
图 2为本发明滑动摩擦发电机的发电原理示意图; 图 3为第一导电层下表面设置在第一基板上、 第二导电层的上表面 设置在第二基板上的发电机结构示意图;
图 4为摩擦层的上表面和第二导电层的下表面为弯曲表面的发电机 结构示意图;
图 5为摩擦层的上表面和第二导电层的下表面为凹凸结构不平整表 面的发电机结构示意图;
图 6为摩擦层由多个摩擦单元构成的发电机的发电过程示意图; 图 7为摩擦层由多个摩擦单元构成, 以及第一导电层由多个第一导 电单元构成的发电机的发电过程示意图;
图 8为第二导电层由多个第二导电单元构成的发电机结构示意图; 图 9为多个第二导电单元的下表面, 以及多个摩擦单元的上表面属 于同一曲面的发电机结构示意图;
图 10为矢量位移传感器的一个具体实施例示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述。 显然, 所描述的实施例仅是本发明一部分实施 例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人 员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发 明保护的范围。
其次, 本发明结合示意图进行详细描述, 在详述本发明实施例时, 为便于说明,所述示意图只是示例,其在此不应限制本发明保护的范围。
现有的滑动摩擦发电机是通过两种摩擦电材料互相摩擦产生表面 电荷转移从而将机械能转变为电能来发电, 这种结构不仅使发电机的结 构复杂, 而且需要两个电极层用于输出产生的电能, 限制了摩擦发电机 的应用。 本发明提供一种单电极式的滑动摩擦发电机, 技术方案是, 依 靠存在电极序差异的导电材料和摩擦电材料之间的互相摩擦产生表面 电荷, 并且通过将摩擦电材料的电极层电连接至等电位, 为连接在电极 层与等电位之间的负载或外电路供电。 本发明中所述的 "摩擦电极序", 是指根据材料对电荷的吸引程度 将其进行的排序, 两种材料在相互摩擦的瞬间, 在摩擦面上负电荷从摩 擦电极序中极性较正的材料表面转移至摩擦电极序中极性较负的材料 表面。例如, 高分子材料聚四氟乙烯(Teflon)与金属材料铝箔接触时, 铝箔带正电, 即得电子能力较弱, 高分子材料聚四氟乙烯 (Teflon) 带 负电, 即得电子能力较强; 而聚合物尼龙与铝箔接触时, 聚合物尼龙表 面带正电, 即得电子能力较弱, 铝箔带负电, 即得电子能力较强。 迄今 为止, 还没有一种统一的理论能够完整的解释电荷转移的机制, 一般认 为, 这种电荷转移和材料的表面功函数相关, 通过电子或者离子在接触 面上的转移而实现电荷转移。 需要说明的是, 摩擦电极序只是一种基于 经验的统计结果, 即两种材料在该序列中相差越远, 接触后所产生电荷 的正负性和该序列相符合的几率就越大, 而且实际的结果受到多种因素 的影响, 比如材料表面粗糙度、 环境湿度和是否有相对摩擦等。
本发明中所述的 "接触电荷", 是指在两种摩擦电极序极性存在差 异的材料在接触摩擦并分离后其表面所带有的电荷, 一般认为, 该电荷 只分布在材料的表面,分布最大深度不过约为 10纳米。需要说明的是, 接触电荷的符号是净电荷的符号, 即在带有正接触电荷的材料表面的局 部地区可能存在负电荷的聚集区域, 但整个表面净电荷的符号为正。
下面结合附图详细介绍本发明滑动摩擦发电机的具体实施方式。 本实施例的滑动摩擦发电机的典型结构参见图 1, 发电机包括: 摩 擦层 100, 摩擦层 100的下表面接触设置第一导电层 200, 第一导电层 200电连接至等电位 400; 摩擦层 100上方设置的第二导电层 300, 第二 导电层 300的下表面与摩擦层 100的上表面相对设置; 当摩擦层 100的 上表面与第二导电层 300的下表面发生相对滑动摩擦, 同时摩擦面积在 滑动过程中发生变化时, 在第一导电层 200和等电位 400之间输出电信 号。 如果在第一导电层 200和等电位 400之间连接负载或需要供电的外 电路 500, 在负载或外电路 500有电流流过。 第一导电层 200为设置在 摩擦层下表面的电极层, 也即本发明的发电机的电极。
摩擦层 100与第二导电层 200的材料存在摩擦电极序差异, 在外力 作用下互相摩擦并且使互相接触的面积发生改变时, 能够为连接在电极 层 200与等电位 300之间的负载或外电路 400提供电源。 下面以图 1的 结构为例详细介绍本发明的发电机的工作原理, 发电机各部分的结构、 材料等信息。
本发明的发电机的工作原理参见图 2, 由于摩擦层 100与第二导电 层 300的材料存在电极序差异, 二者之间存在得电子能力的差异, 以摩 擦层 100得电子能力强而第二导电层 300更容易失去电子为例, 当第二 导电层 300的下表面与摩擦层 100的上表面接触时, 使摩擦层 100上表 面带有负电荷, 而第二导电层 300则带正电荷。 如图 2中 a图所示。 在 外力 F作用下摩擦层 100与第二导电层 300相对滑动并且使接触面积发 生变化后, 破坏了在摩擦层 100和第二导电层 300表面电荷的平衡, 摩 擦层 100上多余的负电荷会对第一导电层 200上的电子有排斥力,因此, 电子会从第一导电层 200向等电位 400流动, 如图 2中 b图所示, 从而 使连接在第一导电层 200与等电位之间的负载或外电路有电流流过。 当 摩擦层 100和第二导电层 200完全分离后,摩擦层 100与第一电极层 200 整体的正负电荷达到平衡, 并没有电子的流动, 第二导电层 300下表面 无正电荷, 如图 2中 c图所示。 当反方向的外力 F使摩擦层 100与第二 导电层 200发生相对滑动, 摩擦层 100的上表面和第二导电层 300下表 面互相摩擦并使接触面积改变, 由于第二导电层 300上正电荷对第一导 电层 200上正电荷的排斥作用, 将导致电子从等电位 400向第一导电层 200流动, 对连接在第一导电层 200与等电位之间的负载或外电路输出 电流,如图 2中 d图所示。当摩擦层 100和第二导电层 300完全接触后, 摩擦层 100与第二导电层 200的正负电荷平衡, 此时, 并没有电子在外 电路中流动, 如图 2中 a图所示, 在第一导电层 200与等电位之间观察 不到电流输出。 如此往复, 形成脉冲电流。
现有的依靠两种摩擦电材料进行摩擦并产生电信号输出的发电机 中, 均需要在摩擦电材料的表面沉积电极层, 用于在两种摩擦电材料互 相摩擦而导致两种材料表面的电荷不平衡而产生电势时通过两个电极 层传输电荷。 本发明的滑动摩擦发电机与现有的滑动摩擦发电机的不同 之处在于, 只需要在摩擦层的下表面设置第一导电层 (即电极层), 另 外一个摩擦材料层选自导电材料 (即第二导电层) 并将第一导电层与一 等电位 (地或等电势) 电连接, 负载或者外电路连接在第一导电层与等 电位之间即可, 发电机产生电能的输出不需要在第一导电层与第二导电 层之间进行, 本发明的发电机不仅简化了制备过程, 而且是一种应用广 泛的将机械能转变为电能的滑动摩擦发电机。
根据上述的发电原理可以看出, 摩擦层 100和第二导电层 300之间 摩擦电极序的差异是产生可输出电信号的关键, 本发明中, 优选摩擦层 材料为绝缘体材料, 第二导电层的下表面或者全部为导电材料。 作为摩 擦层的绝缘体材料中, 优选聚合物绝缘材料。 以下聚合物材料均可用于 本发明的摩擦层 100中, 并且按照排列的顺序具有越来越强的得电子能 力: 聚甲基丙烯酸甲酯、 尼龙、 聚乙烯醇、 聚酯、 聚异丁烯、 聚氨酯弹 性海绵、 聚对苯二甲酸乙二醇酯、 聚乙烯醇缩丁醛、 聚氯丁二烯、 天然 橡胶、聚丙烯腈、聚双苯酚碳酸酯、聚氯醚、聚偏二氯乙烯、聚苯乙烯、 聚乙烯、 聚丙烯、 聚酰亚胺、 聚氯乙烯、 聚二甲基硅氧垸(PDMS)、 聚 四氟乙烯。 限于篇幅的原因, 并不能对所有可能的材料进行穷举, 此处 仅列出几种具体的聚合物材料供参考, 但是显然这些具体的材料并不能 成为本发明保护范围的限制性因素, 因为在发明的启示下, 本领域的技 术人员根据这些材料所具有的摩擦电特性很容易选择其他类似的材料。
通过实验发现, 当摩擦层 100的材料与第二导电层 300下表面的材 料之间得电子能力相差越大,滑动摩擦发电机输出的电信号越强。所以, 可以根据上面列出的顺序并结合简单的对比实验, 选择合适的聚合物材 料作为摩擦层 100, 以获得最佳的电信号输出性能。
第二导电层 300在发电机中只是提供与摩擦层 100进行摩擦的一个 摩擦表面, 并不作为电极层。 因此, 第二导电层 300可以全部整体采用 导电材料, 也可以仅为其下表面的一个薄层为导电材料, 例如在绝缘体 材料的表面制备有导电薄膜作为第二导电层 300。 第二导电层 200可以 为平板、 薄片或薄膜, 其中薄膜厚度的可选范围为 10 nm-5 mm, 优选为 100ηπι-500μπι。 金属薄膜层可以采用现有的磁控溅射、 蒸镀和印刷打印 等技术来制作。
摩擦层 100的厚度对本发明的实施没有显著影响, 本发明优选摩擦 层为薄膜, 厚度为 100nm-5mm,优选 1μπι-2πιπι, 更优选 10μπι-800μπι, 更优选 20μπι-500μπι, 这些厚度对本发明中所有的技术方案都适用。 设 置在摩擦层 100下表面的第一导电层 200为本发明发电机的电极层, 当 摩擦层 100表面电荷所构成的电场不平衡时, 第一导电层 200能通过负 载或需要供电的外电路与等电位 400传输电子, 以平衡摩擦层 100的电 荷。 第一电极层 200或者第二电极层 300选用的导电材料可选自金属、 铟锡氧化物或有机物导体, 常用的金属包括金、 银、 铂、 铝、 镍、 铜、 钛、 铬或硒, 以及由上述金属形成的合金; 有机物导体一般为导电高分 子, 包括自聚吡咯、 聚苯硫醚、 聚酞菁类化合物、 聚苯胺和 /或聚噻吩。 由于第一电极层 200为电极层, 需要与摩擦层 100有良好的接触, 可以 采用现有的磁控溅射、 蒸镀和印刷打印等技术在摩擦层的下表面来制备 第一电极层。 当然, 也可以采用较厚的第一电极层 100, 例如 Cu或 A1 箔, 在其表面制备摩擦层材料, 实现第一电极层与摩擦层的良好接触。
参见图 3,对于第一导电层 200和摩擦层 100厚度比较薄的发电机, 可以在第一电极层 200的下表面设置第一基板 600, 以增强发电机的强 度。 同样, 对于第二导电层 300厚度比较薄的情况 (例如采用导电薄膜 材料), 还可以在第二导电层 300的上表面设置第二基板 700, 以增强第 二导电层 300的机械强度。 第一基板与第一导电层的结合、 第二基板与 第二导电层的结合可以采用常规的方法, 例如粘贴、 或者可以采用现有 的磁控溅射、 蒸镀和印刷打印等技术, 在基板表面制备导电材料层。 当 然对于第一导电层或第二导电层厚度较大的情况, 发电机也可以包括第 一基板或第二基板, 将导电层设置在基板上, 来支撑导电层或者将第一 或第二导电层与其他器件进行隔离。
第一基板 600和第二基板 700的材料选择无特殊要求,可以为导体、 绝缘体或半导体, 例如铝板或硅片。 第一基板 600和第二基板 700可以 为柔性基板也可以为硬性基板, 例如橡胶或玻璃板。
为了提高发电机的输出性能, 优选在所述摩擦层 100的上表面, 和 /或, 所述第二导电层 300的下表面, 全部或部分分布有纳米、 微米或次 微米量级的微结构, 以增加摩擦层 100和第二导电层 300的有效接触面 积, 提高二者的表面电荷密度。 所述微结构优选为纳米线、 纳米管、 纳 米颗粒、 纳米棒、 纳米花、 纳米沟槽、 微米沟槽, 纳米锥、 微米锥、 纳 米球和微米球状结构, 以及由前述结构形成的阵列, 特别是由纳米线、 纳米管或纳米棒组成的纳米阵列, 可以是通过光刻蚀、 等离子刻蚀等方 法制备的线状、 立方体、 或者四棱锥形状的阵列, 阵列中每个这种单元 的尺寸在纳米到微米量级, 具体微纳米结构的单元尺寸、 形状不应该限 制本发明的范围。还可以在摩擦层 100的上表面和 /或第二导电层 300的 下表面通过纳米材料的点缀或涂层的方式, 获得表面的微结构。
除上述的在摩擦层 (或第二导电层) 表面进行物理改性的方法外, 也可以对相互摩擦的摩擦层 100和 /或第二导电层 300的表面进行化学改 性, 能够进一歩提高电荷在接触瞬间的转移量, 从而提高接触电荷密度 和发电机的输出功率。 化学改性又分为如下两种类型:
一种方法是对于相互摩擦的摩擦层 100和第二导电层 300, 在摩擦 电极序相对为正的材料表面引入更易失电子的官能团 (即强给电子团), 或者在摩擦电极序相对为负的材料表面引入更易得电子的官能团 (强吸 电子团), 都能够进一歩提高电荷在相互滑动时的转移量, 从而提高摩 擦电荷密度和发电机的输出功率。 强给电子团包括: 氨基、 羟基、 垸氧 基等; 强吸电子团包括: 酰基、 羧基、 硝基、 磺酸基等。 官能团的引入 可以采用等离子体表面改性等常规方法。 例如可以使氧气和氮气的混合 气在一定功率下产生等离子体, 从而在摩擦层材料表面引入氨基。
另外一种方法是对于相互摩擦的摩擦层 100和第二导电层 300, 在 极性为正的材料表面引入正电荷, 而在极性为负的材料表面引入负电荷。 具体可以通过化学键合的方式实现。例如,可以在聚二甲基硅氧垸 PDMS 摩擦层表面利用溶胶-凝胶的方法修饰上正硅酸乙酯(TEOS) , 而使其带 负电。也可以在金属金薄膜层上利用金 -硫的键结修饰上表面含十六垸基 三甲基溴化铵 (CTAB ) 的金纳米粒子,由于十六垸基三甲基溴化铵为阳 离子, 故会使整个摩擦层变成带正电性。 本领域的技术人员可以根据摩 擦层或电极层材料的得失电子性质和表面化学键的种类, 选择合适的修 饰材料与其键合, 以达到本发明的目的, 因此这样的变形都在本发明的 保护范围之内。
本发明中所述的第一导电层 200电连接至等电位 400中是本发明的 关键, 所述等电位 400为可以提供大量电荷的装置, 所述等电位可以为 地或者等电位电路, 所述的电连接可以为第一导电层 200通过负载或者 需要供电的外电路连接至等电位, 当第二导电层与摩擦层互相摩擦使第 二导电层表面与摩擦层表面的的整体的电荷平衡被破坏, 等电位 400中 的电荷可以通过负载或者外电路传输到第一导电层上, 即所述电信号施 加在所述负载或者需要供电的外电路上。 在本发明中, 第一导电层 200 可以直接通过负载与等电位电连接; 第一导电层 200也可以通过需要供 电的外电路与等电位电连接, 也可以采用负载与外电路并联连接在第一 导电层 200与等电位 400之间。 所述的外电路可以为简单的电阻, 也可 以为较复杂的电路, 在这里不做特别限定, 只要能够将等电位与电极层 进行电连接, 且电阻不为零即可。 所述的需要供电的外电路可以为照明 设备等用电器。
本发明的发电机中,摩擦层 100或第二导电层 300可以为柔性材料, 也可以为硬性材料, 因为材料的硬度并不影响二者之间的滑动摩擦效果, 如需摩擦面维持平面, 还可以通过其他部件的支撑来实现, 例如图 3中 增加基板的实施例。 因此, 本领域的技术人员可以根据实际情况来选择 摩擦层 100和第二导电层 300的材料硬度。 采用柔性材料制成的发电机 其优势在于柔软轻薄的摩擦层或第二导电层受到轻微的外力作用就会 发生形变, 而这种形变会引起两个摩擦材料层 (摩擦层 100和第二导电 层 200) 的相对位移, 从而通过滑动摩擦向外输出电信号。 柔性材料的 使用使本发明的纳米发电机可以在生物和医学领域中得到广泛的应用。 在使用的过程中还可以用具有超薄、柔软、具有弹性和 /或透明的高分子 材料做基底, 进行封装以方便使用并提高强度。 显然, 本发明公开的所 有结构都可以用相应的超软并具有弹性的材料做成, 从而形成柔性的滑 动摩擦发电机。 另外, 第一导电层 200也可以采用柔性材料, 使整个发 电机为柔性器件。
本发明发电机的最典型结构中, 摩擦层 100的上表面和第二导电层 300 的下表面相对接触设置, 无论是否有外力施加于其上, 二者始终保 持面接触, 在外力作用下, 摩擦层 100和第二导电层 300发生与接触面 相切的相对滑动摩擦。 通过控制摩擦层 100上表面和第二导电层 300下 表面的尺寸以及相对位移量, 很容易实现在相对滑动摩擦的过程中摩擦 面积发生变化。
在本发明的其他实施例中, 在未受外力作用时, 摩擦层 100和第二 导电层 300可以为不接触设置, 只要在外力作用下, 摩擦层 100的上表 面和第二导电层 300的下表面能够接触并发生与接触面相切的相对滑动 摩擦即可, 而在没有外力作用时, 摩擦层 100和第二导电层 300可以完 全分离。 这样的设计能够满足需要间隔式发电的情况, 而且摩擦过程可 以同时有接触摩擦, 也可以有滑动摩擦。 实现这一目的的技术手段有很 多, 可以采用本领域中控制距离的常规部件, 例如在第一导电层 200下 表面和第二导电层 300的上表面分别连接绝缘弹簧等部件, 但是需要注 意使用的弹簧不应限制摩擦层 100和第二导电层 200之间的相对滑动。 这种设计的发电机能够与其他产品结合使用, 可以将摩擦层 100和第二 导电层 200分别连接到其他产品中 2个互相分隔的部件上, 利用这 2个 部件的间歇性接触 (或靠近) 和相对滑动来带动发电机工作, 从而实现 间隔式发电。
本发明中, 摩擦层 100的上表面或第二导电层 300的下表面可以为 平面(参见图 1和图 3 ), 也可以为曲面。 曲面结构的摩擦层 100的下表 面或电极层 200的上表面也同样可以实现相对滑动摩擦, 优选的, 摩擦 层的下表面和导电层的上表面同为平面或曲面结构, 以保证二者的紧密 接触。 参见图 4, 摩擦层 110整体为弧形结构, 特别的, 摩擦层 110的 上表面为弧形, 第二导电层 310整体为弧形结构, 特别的, 第二导电层 310的下表面为弧形, 设置在摩擦层 110的下表面的第一导电层 210通 过负载或外电路 510连接至地, 在外力 F作用下, 摩擦层 110的上表面 与第二导电层 310的下表面发生与接触面相切的相对滑动摩擦时, 并且 摩擦面积发生改变时, 连接在第一导电层 210和地之间的负载 510有电 流流过。 优选的, 摩擦层 110的上表面与第二导电层 310的下表面为形 状互补的曲面, 例如为曲率相同的曲面, 以保证第二导电层 310与摩擦 层 110的接触面积最大, 在外力 F作用下, 摩擦层 110的上表面与第二 导电层 310的下表面发生与接触面相切的相对滑动摩擦时, 能够产生较 高的输出电流。
图 1和图 4所示的实施例中, 摩擦层的上表面和第二导电层的下表 面均为光滑平整表面, 这样的结构需要摩擦层与第二导电层的相对滑动 空间较大, 而且对于摩擦层与第二导电层的尺寸相差较大时的情况, 无 法满足摩擦层与第二导电层互相摩擦过程中接触面积变化的要求。 因此, 本发明的发电机中, 摩擦层的上表面和第二导电层的下表面可以制备为 不平整表面, 摩擦层与电极层互相滑动时摩擦层的下表面与电极层的上 表面不完全接触, 参见图 5, 摩擦层 120的上表面为凹凸结构的不平整 表面, 第二导电层 320的下表面为凹凸结构的不平整表面, 摩擦层 120 下表面设置的第一导电层 220通过负载 520连接至等电位 420, 当摩擦 层 120与第二导电层 220在外力作用下发生相对滑动, 并使接触面积发 生变化时, 连接在第一导电层 220与等电位 420之间的负载 520有脉冲 电流流过。 本实施例中, 还可以适用在摩擦层的上表面或者第二导电层 的下表面较小的情况, 在摩擦层的上表面和第二导电层的下表面制备不 平整表面, 在外力作用下摩擦层的上表面和第二导电层的下表面互相摩 擦时能够满足摩擦面积的变化, 从而可以将外力的机械能转变为电能。
本发明中, 优选为摩擦层的上表面与第二导电层的下表面尺寸相当, 以保证在互相滑动过程中能够出现接触面积最大的情况。 更优选的, 摩 擦层的上表面与第二导电层的下表面面积和形状完全相同。
在本发明的其他实施例中, 摩擦层可以由多个摩擦单元构成, 多个 摩擦单元的上表面共同形成摩擦层的上表面; 当所述摩擦单元的上表面 与所述第二导电层的下表面发生相对滑动, 同时摩擦面积在滑动过程中 发生变化时, 在所述第一导电层和所述等电位之间输出电信号。 其中, 所有摩擦单元的下表面设置在第一导电层上。 参见图 6, 摩擦层由摩擦 单元 131、 132、 133和 134构成, 摩擦单元 131、 232、 333和 434的上 表面共同构成电极层的上表面, 摩擦单元 131、 232、 333和 434的下表 面设置在第一导电层 230上, 第一导电层 230通过电阻 530连接至地, 第二导电层 330的尺寸可以小于摩擦单元的尺寸也可以大于摩擦单元的 尺寸, 优选为, 第二导电层的下表面不能同时与相邻的两个摩擦单元的 上表面接触和摩擦。 这里以第二导电层 330的尺寸与摩擦单元的尺寸相 当为例介绍发电机工作过程, 参见图 6中 a图至 e图, 初始状态时, 第 二导电层 330的下表面与摩擦单元 131 的上表面 (即摩擦层的上表面) 接触并可以相对滑动, 未与摩擦单元 132、 133和 134接触。 由于摩擦 单元材料和第二导电层材料存在电极序差异, 因此, 第二导电层 330下 表面带有正电荷, 而摩擦单元 131上表面则带负电荷, 如图 6中 a图所 示。 当外力 F作用下第二导电层 330相对于摩擦单元 131向右滑动并且 使第二导电层 330与摩擦单元 131的接触面积发生变化后, 电子会从第 一导电层 230向地流动, 如图 6中 b图所示, 使连接在第一导电层 230 与地之间的电阻 530有电流流过, 如果在第一导电层与地之间连接检测 装置可以检测到脉冲电信号, 直至第二导电层 330完全与摩擦单元 131 分离并继续滑动时, 在电阻 530上无电流流过, 参见图 6中 c图。 第二 导电层 330相对于摩擦单元 131继续向右侧滑动摩擦,当第二导电层 330 的下表面与摩擦单元 132的上表面接触并且与摩擦单元 132的上表面接 触面积最大时, 在第二导电层 330下表面带有正电荷, 摩擦单元 132上 表面带负电荷, 参见图 6中 d图。 第二导电层 330相对于摩擦单元 132 继续向右侧滑动摩擦, 并且使第二导电层 330与摩擦单元 132的接触面 积发生变化后,电子会从第一导电层 230向地流动,如图 6中 e图所示, 使连接在第一导电层 230与地之间的电阻 530再次有电流流过。 当第二 导电层 330继续向右侧运动时, 重复上述过程, 因此可以在电阻上形成 脉冲电流。 这样结构的发电机, 可以应用在摩擦层固定而移动的物体上 设置第二导电层进行发电的情况。 例如在路面上设置多个摩擦单元, 并 且将所有摩擦单元的下表面设置在第一导电层上, 第一导电层通过负载 等连接至等电位, 第二导电层设置在车辆上, 在车辆行驶过程中第二导 电层可以与摩擦单元相对滑动摩擦, 从而为负载等提供电信号。 本实施 例的发电机也可以应用在触摸屏技术中, 用于触摸的定位和移动探测。
上述实施例中, 摩擦单元的形状可以为任意形状, 优选为多个摩擦 单元的形状和尺寸相同, 例如都为长条状或正方形块状。 多个摩擦单元 可以按照任意方式排列, 优选为按照预先设定的图形排列, 预先设定的 图形可以为实际需要的图形, 如正方形、 长方形、 环形、 十字形等。 例 如沿着十字型的四个方向排列。 在其他实施例中, 优选的, 所述摩擦层 的下表面不能同时与相邻的两个子电极的上表面接触和摩擦。
本发明的发电机中, 第一导电层也可以由多个第一导电单元构成, 所述多个第一导电单元与所述多个摩擦单元一一对应, 即每个摩擦单元 的下表面都接触设置一个第一导电单元; 每个所述第一导电单元电连接 至等电位参。 下面结合一个具体的实施例介绍发电机工作过程, 参见图
7, 第一导电层由第一导电单元 231、 232、 233和 234构成, 并且分别 与构成摩擦层的摩擦单元 131、 132、 133和 134—一对应, 每个第一导 电单元分别通过电阻 530连接至地。 还可以在每个第一导电单元与电阻 之间引出输出端 Al、 A2、 A3和 A4, 所述输出端用于连接检测装置来 检测相应的第一导电单元与地之间是否有电信号。 初始状态时, 第二导 电层 330的下表面与摩擦单元 131的上表面接触并可以相对滑动, 未与 摩擦单元 132、 133和 134接触。 由于摩擦单元材料和第二导电层材料 存在电极序差异, 因此, 第二导电层 330下表面带有正电荷, 而摩擦单 元 131上表面则带负电荷, 如图 7中 a图所示。 当外力 F作用下第二导 电层 330相对于摩擦单元 131向右滑动并且使第二导电层 330与摩擦单 元 131 的接触面积发生变化后, 电子会从第一导电单元 231 向地流动, 如图 7中 b图所示, 使连接在第一导电单元 231与地之间的电阻 530有 电流流过, 在第一导电单元 231与地之间引出的输出端 A1连接检测装 置可以检测到脉冲电信号, 直至第二导电层 330完全与摩擦单元 131分 离后继续滑动时, 在电阻 530上无电流流过, 参见图 7中 c图。 第二导 电层 330相对于摩擦单元 131继续向右侧滑动摩擦, 当第二导电层 330 的下表面与摩擦单元 132 的上表面接触并且在滑动过程中第二导电层 330下表面带有正电荷, 而摩擦单元 132上表面则带负电荷, 直到第二 导电层 330的下表面与摩擦单元 132的上表面接触面积最大, 由于第二 导电层 330下表面的正电荷与摩擦单元 132上表面的负电荷互相平衡, 因此在摩擦单元 132下表面设置的第一导电单元 232与地之间无电荷流 动, 参见图 7中 d图。 当第二导电层 330相对摩擦单元 132继续向右侧 滑动并且使第二导电层 330与摩擦单元 132的接触面积发生变化时, 第 一导电单元 232上由于静电感应会出现正的电荷, 使连接在第一导电单 元 232与地之间的电阻 530有电流流过, 电流的流动方向是从第一导电 单元 232向地流动, 与图 7中 b图类似。 本实施例中, 基板 630可以为 半导体或绝缘体, 优选为绝缘体, 例如有机玻璃等绝缘基板。 这样结构 的发电机, 可以应用在摩擦层固定而移动的物体上设置第二导电层进行 发电的情况。 例如在路面上设置多个摩擦单元以及摩擦单元下表面设置 的第一导电单元, 每个第一导电单元通过负载等连接至等电位, 第二导 电层设置在车辆上, 在车辆行驶过程中第二导电层可以与摩擦单元相对 滑动摩擦, 从而为负载等提供电信号。 本实施例的发电机也可以应用在 触摸屏技术中, 用于触摸的定位和移动探测。
上述实施例中, 摩擦单元的形状可以为任意形状, 优选为多个摩擦 单元的形状和尺寸相同, 例如都为长条状或正方形条状。 多个摩擦单元 可以按照任意方式排列, 优选为按照预先设定的图形排列, 预先设定的 图形可以为实际需要的图形, 如正方形、 长方形、 环形、 十字形等。 例 如沿着十字型的四个方向排列。 在其他实施例中, 优选的, 所述第二导 电层的下表面不能同时与相邻的两个摩擦单元的上表面接触和摩擦。
同样的原理, 本实施例中, 也可以为第二导电层由多个第二导电单 元构成, 多个第二导电单元的下表面形成第二导电层的下表面, 摩擦单 元的上表面与第二导电单元的下表面接触设置并可以相对滑动, 第一导 电层可以为整体, 接触设置在多个摩擦单元的下表面, 当然第一导电层 也可以采用多个第一导电单元, 多个第一导电单元与摩擦单元一一对应 的接触设置在每个摩擦单元的下表面, 第一导电层或者每个第一导电单 元通过电阻连接至地, 其工作原理与图 6或图 7中类似, 这里不再详细 说明。 参见图 8, 摩擦层由多个摩擦单元 131、 132、 133和 134构成, 多个摩擦单元设置在第一导电层 230上, 多个摩擦单元的上表面形成摩 擦层的上表面; 第二导电层由多个第二导电单元 331、 332、 333和 334 构成, 多个第二导电单元的下表面形成第二导电层的下表面, 多个第二 导电单元的上表面设置在第二基板 730上, 第二基板 730用于支撑多个 第二导电单元, 使第二导电层的下表面与摩擦层的上表面接触并可以相 对滑动。 这样结构的发电机形成有多个发电机机单元形成的发电机组, 当第二基板 730 带动多个第二导电单元与多个摩擦单元发生相对滑动, 连接在第一导电层 230与地之间的电阻 530上有电流流过。 实际中通过 调节多个第二导电单元、 以及多个摩擦单元的距离, 能够使尽量多的摩 擦单元与第二导电单元发生相对滑动摩擦且接触面积最大。
图 8中只示意出了由多个第二导电单元形成的第二导电层的下表面 为平面、由多个摩擦单元形成的摩擦层的上表面为平面的情况,实际中, 也可以将第二基板 730、 以及第一导电层 230设计为其他结构, 使得多 个第二导电单元的下表面位于曲面 (例如圆柱面、 棱柱面等) 上, 同时 多个摩擦单元的上表面位于同一曲面上, 即多个第二导电单元的下表面、 以及多个摩擦单元的上表面都属于同一曲面。 下面以多个第二导电单元 的下表面位于圆柱面为例, 介绍本实施例的发电机结构, 参见图 9, 为 发电机截面的示意图,第二基板 730为圆柱体,多个第二导电单元 331、 332、 333和 334均匀分布在第二基板 730的圆柱面上, 并且多个第二导 电单元的下表面(即远离第二基板 730的表面)也位于同一个圆柱面上; 第一导电层 230采用圆筒状结构, 多个摩擦单元 131、 132、 133和 134 的下表面接触设置在圆筒状第一导电层 230的内表面上, 并且多个摩擦 单元的上表面也位于多个第二导电单元的下表面所在的圆柱面上; 第一 导电层 230通过电阻 530与地电连接。 这样结构的发电机, 多个第二导 电单元的下表面与多个摩擦单元的上表面都在同一个圆柱面内, 当第一 导电层 230带动多个摩擦单元与第二基板 730带动的多个第二导电单元 发生沿着箭头方向的滑动摩擦并且摩擦面积发生变化时, 电阻 530上有 交流电流流过。 如果在电阻的两端引出输出端并且连接负载, 可以为负 载供电。
由多个摩擦单元构成摩擦层的发电机除了可以将外力的机械能转 化为电能外, 也可以应用在移动物体的滑动位置或滑动距离等的探测方 面, 实际应用中将由多个摩擦单元构成的摩擦层设定为静止 (或者相对 静止) 表面, 第二导电层为移动物体, 每个摩擦单元的下表面分别接触 设置一个第一导电单元, 每个第一导电单元通过测试设备连接至地, 当 移动物体在摩擦层表面上滑动产生摩擦单元和第二导电层之间的相对 摩擦, 并且使接触面积发生变化时, 相应的与第一导电单元连接的测试 设备能够检测到电信号, 据此可以确定移动物体的位置。 另外根据先后 两个测试设备的测试信号,还可以确定移动物体的移动方向,参见图 7, 在每个第一导电单元与电阻 530之间引出一个输出端 (Al、 A2、 A3和 A4) 用于连接接触装置, 移动物体 330 (即第二导电层) 尺寸较小, 优 选的移动物体 330仅可以与一个摩擦单元接触, 移动物体 330与摩擦单 元 131接触且不相对滑动时输出端 A1检测不到电信号 (图 7中 a图所 示), 移动物体 330 相对于摩擦单元向右侧滑动并使接触面积发生变化 时, 输出端 A1检测到电信号(图 7中 b图所示), 直到移动物体完全离 开摩擦单元 131时输出端 A1检测不到电信号。 移动物体 330继续向右 侧滑动, 当与摩擦单元 132接触面积最大后并且接触面积发生变化时, 在输出端 A2可以检测到电信号, 直到移动物体与摩擦单元 132的接触 面积不再发生变化。根据连接在输出端 A1与 A2的检测设备的检测信号 对应的摩擦单元的位置, 可以确定移动物体的滑动位置、 滑动方向以及 滑动距离。 因此本发明的滑动摩擦发电机可以对物体移动的方向和位移 距离进行准确定位, 是对移动物体进行探测的矢量位移传感器。
位移传感器是通过电位器元件将机械位移转化成与之成线性或者 任意函数关系的电阻或者电压输出。 矢量位移传感器是在位移传感器的 基础上发展起来的, 其不但可以用来确定物体移动的方向, 同时, 也可 以用来确定物体移动的位置。 现有的矢量位移传感器主要是基于电阻变 化型和磁致伸缩型的传感器来实现对位移的准确定位, 外部电源供电对 于这些传感器的正常工作是必不可少的, 依赖外部能源供电的矢量位移 传感器不仅在条件恶劣的环境下使用时不便于维护, 而且很难在未来的 能源危机中得到广泛地应用。 利用本发明发电机的矢量位移传感器, 无 需外部电源供电, 是一种自驱动的位移传感器, 不仅结构简单制备成本 低, 而且能够从根本上解决位移传感器对外部电源的依赖, 可以长期而 稳定工作。
具体的, 根据以上滑动摩擦发电机的工作原理, 本发明提供一种矢 量位移传感器, 包括上述由多个摩擦单元构成摩擦层、 由多个第一导电 单元构成第一导电层的滑动摩擦发电机, 其中, 每个所述摩擦单元的下 表面接触设置一个所述第一导电单元, 在每个所述第一导电单元与等电 位之间连接检测装置, 所述检测装置用于检测所述电信号; 当所述摩擦 层上表面与所述第二导电层下表面发生滑动摩擦并且摩擦面积发生改 变时, 根据检测到所述电信号的检测装置的位置能够确定所述第二导电 层的位置, 或者根据先后检测到电信号的检测装置的位置确定所述第二 导电层的滑动距离、 滑动方向或滑动速度。 所述多个摩擦单元以及其对 应的第一导电单元可以排列设置在基板表面, 来固定多个摩擦单元。 在 每个第一导电单元与等电位之间分别连接检测装置, 当第一导电单元与 等电位之间有电流流过时, 由于第一导电单元与摩擦单元一一对应, 因 此检测装置能够记录产生电流信号的摩擦单元的位置, 相应的就可以确 定与第二导电层产生滑动摩擦的摩擦单元的位置, 因此可以确定第二导 电层的位置。 第二导电层先后与两个摩擦单元发生滑动摩擦时, 相应的 会有两个检测装置先后检测到电信号, 根据先后检测到电信号的检测装 置的位置、 距离和时间, 能够确定第二导电层的移动距离、 移动方向和 移动速度, 实现移动物体 (第二导电层) 的位移感应。 多个检测装置可 以形成检测系统, 在检测系统中可以预先设定每个检测装置与摩擦单元 的位置对应关系。
本发明的矢量位移传感器中, 检测装置可以为电流或电压检测装置, 用于当所述第一导电单元与所述等电位之间有电流时输出电流或电压 信号。 在其他实施例中, 检测装置也可以为其他通电后可以产生声、 光 等信号的发光元件或者发声元件,例如蜂鸣器或者 LED灯, 当发光元件 或发声元件接收到所述电信号时能够输出光信号或声音信号。
本发明的矢量位移传感器, 还可以与计算机处理系统连接, 所述计 算机系统记录各检测装置与多个摩擦单元的对应位置关系、 各检测装置 检测到电信号的时间, 并且根据这些记录信息可以方便的计算出所述摩 擦层的滑动距离、 滑动方向或滑动速度。
另外, 本发明的矢量位移传感器中, 还可以在每个第一导电单元与 等电位之间包括分压电阻, 分压电阻可以调节第一导电单元与等电位之 间的电流或电压。 具体的, 分压电阻可以与检测装置并联或者串联。
具体的, 可以将每个第一导电单元分别通过分压电阻连接至同一个 等电位(例如地),在每个第一导电单元与分压电阻之间连接检测装置; 当设置在移动物体上的第二导电层下表面与摩擦单元上表面发生滑动 摩擦并且摩擦面积发生改变时, 由于检测装置、 第一导电单元和摩擦单 元一一对应, 因此, 所述根据检测到的检测信号的检测装置能够感应移 动物体的位置。
相应的, 本发明还提供一种发电方法, 包括歩骤:
提供下表面设置有第一导电层的摩擦层, 所述第一导电层通过负载 连接至等电位;
第二导电层与所述摩擦层的上表面发生相对滑动摩擦、 并且导致摩 擦面积变化, 所述负载上有电流流过。
其中, 所述摩擦层的材料与第二导电层的材料具有摩擦电极序差异。 涉及到的摩擦层、 第一导电层与第二导电层的材料和结构可以采用与本 发明提到的发电机中的摩擦层第一导电层和第二导电层相同的材料和 结构, 在这里不在重复。
示例 1 : 滑动摩擦发电机的制备
切割一个长 10 cmX宽 5 cmX厚 ΙΟΟμπι的聚二甲基硅氧垸薄膜作为 器件的摩擦层, 在聚二甲基硅氧垸薄膜的下表面沉积金膜作为第一导电 层, 用铜导线连接金膜, 并和一个电阻相连接, 电阻的另外一端接地; 用胶布把一片长 10 cmX宽 5 cmX厚 25 μπι铝箔固定在一个一样大小的 有机玻璃材料基板上, 该铝箔为第二导电层。 将铝箔面向聚二甲基硅氧 垸薄膜接触放置, 外力作用下当聚二甲基硅氧垸和铝箔发生相对滑动并 且摩擦面积发生变化后, 连接在电阻两端的电压表有相应的电信号输出, 说明能够将外力的机械能转化为电能进行发电。
示例 2: 基于滑动摩擦发电机的矢量位移传感器的制备
利用激光切割一个长 10 cmX宽 10 cm X厚 1.59 mm的有机玻璃作 为利用发电机的传感器的基板材料。 利用磁控溅射的方法, 在基板上表 面制作 16个铝电极条作为第一导电单元,第一导电单元的宽度为 10 mm, 长度为 3 cm。第一导电单元之间的距离为 2 mm, 16个第一导电单元以 4 个为一组, 分布在四个方向上形成十字架结构, 每组中的 4个第一导电 单元平行等距排列, 如图 10所示。 在每个第一导电单元上采用导电胶 粘贴一个聚四氟乙烯薄膜作为摩擦单元, 摩擦单元的宽度为 10 mm, 长 度为 2.5 cm, 厚度为 200μπι, 相邻摩擦单元之间的距离为 2 mm, 16个 摩擦单元也按照 4个为一组, 分布在四个方向上形成十字架结构, 每组 中的 4个摩擦单元平行等距排列。 用铜导线连接每个第一导电单元, 并 和一个分压电阻 R相连接, 分压电阻的另外一端接地, 在每个第一导电 单元与分压电阻之间引出一个输出端 01…… 15、 16, 具体连接电路见图 11, 输出端用于采集电信号。 16个输出端分别和检测装置相连接, 通过 检测装置来实现对 16个第一导电单元输出信号的实时采集。 切割一个 长 2 cmX宽 2 cmX厚 1 mm的铝片作为第二导电层,并放置在多个电极 条形成图形的中间空白处。 当第二导电层向任何方向滑动时候, 其将和 聚四氟乙烯摩擦单元相对滑动摩擦并且使接触面积变化, 从而在输出端 对外输出电信号。 并且, 当包括第二导电层的物体在传感器上面移动的 时候, 不同的摩擦单元先后和第二导电层接触, 将导致不同的第一导电 单元对外输出电信号, 通过分析这些信号, 可以知道物体在哪个方向移 动和移动的位置。
以上实施例表明通过对输出端这些信号的采集, 可以实现对物体移 动方向和位置的定位。 该矢量位移传感器直接利用单电极式的滑动摩擦 发电机作为触发的传感器, 不需要外部供电, 可以有效的节约能源, 并 能长期稳定的工作。 另外, 本发明提供的矢量位移传感器可以根据需要 将多个摩擦单元设置为任意形状, 并且可以进行大面积设置, 可以方便 的应用在野外等不便于使用电源的环境中。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形 式上的限制。 任何熟悉本领域的技术人员, 在不脱离本发明技术方案范 围情况下, 都可利用上述揭示的方法和技术内容对本发明技术方案做出 许多可能的变动和修饰, 或修改为等同变化的等效实施例。 因此, 凡是 未脱离本发明技术方案的内容, 依据本发明的技术实质对以上实施例所 做的任何简单修改、 等同变化及修饰, 均仍属于本发明技术方案保护的 范围内。

Claims

权 利 要 求
1、 一种滑动摩擦发电机, 其特征在于, 所述发电机包括: 摩擦层, 所述摩擦层的下表面接触设置第一导电层, 所述第一导电 层电连接至等电位;
所述摩擦层上方设置第二导电层, 所述第二导电层的下表面与所述 摩擦层的上表面相对设置;
当所述摩擦层的上表面与所述第二导电层的下表面发生相对滑动 摩擦, 同时摩擦面积在滑动过程中发生变化时, 在所述第一导电层和所 述等电位之间输出电信号。
2、 根据权利要求 1 所述的发电机, 其特征在于, 所述摩擦层的上 表面材料与所述第二导电层下表面材料存在电极序差异。
3、 根据权利要求 1或 2所述的发电机, 其特征在于, 所述第一导 电层通过需要供电的外电路连接至地或等电位电路。
4、 根据权利要求 1或 2所述的发电机, 其特征在于, 所述第一导 电层通过负载电连接至等电位。
5、 根据权利要求 1-4任一项所述的发电机, 其特征在于, 所述第二 导电层的下表面与所述摩擦层的上表面接触设置。
6、 根据权利要求 1-4任一项所述的发电机, 其特征在于, 在未受外 力时所述第二导电层与所述摩擦层不接触, 在外力作用下所述第二导电 层的下表面与所述摩擦层的上表面接触。
7、 根据权利要求 1-6任一项所述的发电机, 其特征在于, 所述摩擦 层的上表面材料为绝缘体。
8、 根据权利要求 7 所述的发电机, 其特征在于, 所述绝缘体材料 为聚合物材料。
9、 根据权利要求 8所述的发电机, 其特征在于, 所述聚合物材料 选自聚甲基丙烯酸甲酯、 尼龙、 聚乙烯醇、 聚酯、 聚异丁烯、 聚氨酯弹 性海绵、 聚对苯二甲酸乙二醇酯、 聚乙烯醇缩丁醛、 聚氯丁二烯、 天然 橡胶、聚丙烯腈、聚双苯酚碳酸酯、聚氯醚、聚偏二氯乙烯、聚苯乙烯、 聚乙烯、聚丙烯、聚酰亚胺、聚氯乙烯、聚二甲基硅氧垸、聚四氟乙烯。
10、 根据权利要求 1-9任一项所述的发电机, 其特征在于, 所述摩 擦层的厚度为 100nm-5mm。
11、 根据权利要求 1-10任一项所述的发电机, 其特征在于, 所述第 二导电层下表面的材料选自金属、 铟锡氧化物或有机物导体。
12、 根据权利要求 11 所述的发电机, 其特征在于, 所述金属选自 金、 银、 铂、 铝、 镍、 铜、 钛、 铬或硒, 以及由上述金属形成的合金; 所述有机物导体选自自聚吡咯、 聚苯硫醚、 聚酞菁类化合物、 聚苯胺和 /或聚噻吩。
13、 根据权利要求 1-12任一项所述的发电机, 其特征在于, 所述第 二导电层为薄膜材料。
14、 根据权利要求 1-13任一项所述的发电机, 其特征在于, 所述第 二导电层的厚度为 10 nm-5 mm。
15、 根据权利要求 1-14任一项所述的发电机, 其特征在于, 所述第 二导电层的下表面和 /或摩擦层的上表面的全部或部分分布有纳米、微米 或次微米量级的微结构, 所述微结构为纳米线、 纳米管、 纳米颗粒、 纳 米棒、 纳米花、 纳米沟槽、 微米沟槽, 纳米锥、 微米锥、 纳米球和微米 球状结构, 以及由前述结构形成的阵列, 或者纳米材料的点缀或涂层。
16、 根据权利要求 1-15任一项所述的发电机, 其特征在于, 所述第 二导电层的下表面和 /或摩擦层的上表面经过化学改性。
17、 根据权利要求 16所述的发电机, 其特征在于, 在摩擦电极序 相对为正的材料表面引入更易失电子的官能团, 或者在摩擦电极序相对 为负的材料表面引入更易得电子的官能团。
18、 根据权利要求 16所述的发电机, 其特征在于, 在极性为正的 表面引入正电荷, 而在极性为负的表面引入负电荷。
19、 根据权利要求 1-18任一项所述的发电机, 其特征在于, 所述第 二导电层的下表面为平面或曲面; 和 /或, 所述摩擦层的上表面为平面或 曲面。
20、 根据权利要求 19所述的发电机, 其特征在于, 所述第二导电 层的下表面与所述摩擦层的上表面为互补表面。
21、 根据权利要求 1-20任一项所述的发电机, 其特征在于, 所述摩 擦层的上表面为凹凸结构的不平整表面, 所述第二导电层的下表面为凹 凸结构的不平整表面。
22、 根据权利要求 1-21任一项所述的发电机, 其特征在于, 所述第 二导电层和 /或摩擦层为柔性材料或硬性材料。
23、 根据权利要求 1-22任一项所述的发电机, 其特征在于, 所述第 二导电层和 /或摩擦层为弹性材料。
24、 根据权利要求 1-23任一项所述的发电机, 其特征在于, 还包括 第一基板, 所述第一导电层的下表面设置在所述第一基板上;
和 /或
第二基板, 所述第二导电层的上表面设置在所述第二基板上。
25、 根据权利要求 1-24任一项所述的发电机, 其特征在于, 所述摩 擦层由多个摩擦单元构成, 所述多个摩擦单元的上表面形成所述摩擦层 的上表面。
26、 根据权利要求 25 所述的发电机, 其特征在于, 所述第二导电 层的下表面不同时与相邻的两个摩擦单元的上表面接触和摩擦。
27、 根据权利要求 25或 26所述的发电机, 其特征在于, 所述摩擦 单元的形状为长条状或正方形块状。
28、 根据权利要求 25-27任一项所述的发电机, 其特征在于, 所述 多个摩擦单元按照预先设定的图形排列。
29、 根据权利要求 25-28任一项所述的发电机, 其特征在于, 所述 第一导电层由多个第一导电单元构成, 所述多个第一导电单元与所述多 个摩擦单元一一对应, 每个所述第一导电单元电连接至等电位。
30、 根据权利要求 25-29任一项所述的发电机, 其特征在于, 所述 第二导电层由多个第二导电单元构成, 所述多个第二导电单元的下表面 形成所述第二导电层的下表面。
31、 根据权利要求 30所述的发电机, 其特征在于, 多个所述第二 导电单元的下表面在同一个平面, 多个所述摩擦单元的上表面在同一个 平面。
32、 根据权利要求 30所述的发电机, 其特征在于, 多个所述第二 导电单元的下表面、 以及多个所述摩擦单元的上表面属于同一曲面。
33、 一种矢量位移传感器, 其特征在于, 包括如权利要求 29所述 的发电机, 其中,
在每个所述导电单元与等电位之间连接检测装置, 所述检测装置用 于检测所述电信号;
当所述第二导电层下表面与所述摩擦单元上表面发生滑动摩擦并 且摩擦面积发生改变时, 根据检测到所述电信号的检测装置的位置能够 确定所述第二导电层的位置, 或者根据先后检测到电信号的检测装置的 位置确定所述第二导电层的滑动距离、 滑动方向或滑动速度。
34、 根据权利要求 33 所述的矢量位移传感器, 其特征在于, 所述 检测装置为电流或电压检测装置, 所述电信号为电流或电压信号;
或者, 所述检测装置为发光元件或发声元件, 当所述发光元件或发 声元件检测到所述电信号时输出光信号或声音信号。
35、 根据权利要求 33或 34所述的矢量位移传感器, 其特征在于, 在每个所述电极单元与等电位之间还包括分压电阻, 所述分压电阻与所 述检测装置并联或串联。
36、 根据权利要求 33至 35任一项所述的矢量位移传感器, 其特征 在于, 所述发电机包括十六个摩擦单元, 所述十六个摩擦单元以四个为 一组, 分布在四个方向上形成十字架结构, 每组中的四个摩擦单元平行 等距排列。
37、 根据权利要求 36所述的矢量位移传感器, 其特征在于, 所述 十六个摩擦单元为长条状聚四氟乙烯薄膜, 所述摩擦单元的宽度为 10 mm, 长度为 2.5 cm, 摩擦单元之间的距离为 2 mm。
38、 一种发电方法, 其特征在于, 包括:
提供下表面设置有第一导电层的摩擦层, 所述第一导电层通过负载 连接至等电位; 第二导电层与所述摩擦层的上表面发生相对滑动摩擦、 并且导致摩擦面积变化, 所述负载上有电流流过。
PCT/CN2014/072244 2013-07-11 2014-02-19 一种滑动摩擦发电机、发电方法以及矢量位移传感器 WO2015003497A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14823154.1A EP3021476B1 (en) 2013-07-11 2014-02-19 Sliding-friction power generator, power generation method and vector displacement sensor
KR1020167003465A KR101821585B1 (ko) 2013-07-11 2014-02-19 슬라이드 마찰식 발전기, 발전 방법 및 벡터 변위 센서
JP2016524658A JP6356791B2 (ja) 2013-07-11 2014-02-19 スライド摩擦式発電機、発電方法及びベクトル変位センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310291321.7 2013-07-11
CN201310291321.7A CN104283453B (zh) 2013-07-11 2013-07-11 滑动摩擦发电机、发电方法以及矢量位移传感器

Publications (1)

Publication Number Publication Date
WO2015003497A1 true WO2015003497A1 (zh) 2015-01-15

Family

ID=52258023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072244 WO2015003497A1 (zh) 2013-07-11 2014-02-19 一种滑动摩擦发电机、发电方法以及矢量位移传感器

Country Status (5)

Country Link
EP (1) EP3021476B1 (zh)
JP (1) JP6356791B2 (zh)
KR (1) KR101821585B1 (zh)
CN (1) CN104283453B (zh)
WO (1) WO2015003497A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160125710A (ko) * 2015-04-22 2016-11-01 성균관대학교산학협력단 다상 마찰전기 에너지 발전소자
US20170170749A1 (en) * 2015-12-11 2017-06-15 Yuko Arizumi Power generating device
US20180145244A1 (en) * 2016-11-18 2018-05-24 Mizuki Otagiri Sensor and sensor system
US10270369B2 (en) 2015-03-18 2019-04-23 Ricoh Company, Ltd. Electric generating element and electric generator
CN110696641A (zh) * 2019-10-17 2020-01-17 贵州电网有限责任公司 一种汽车充电装置
US10770990B2 (en) * 2016-05-10 2020-09-08 Samsung Electronics Co., Ltd. Triboelectric generator
CN111800032A (zh) * 2020-07-28 2020-10-20 大连海事大学 一种三维密集摩擦纳米发电模块及系统
US10873277B2 (en) 2016-05-10 2020-12-22 Samsung Electronics Co., Ltd. Triboelectric generator
CN113008945A (zh) * 2021-02-09 2021-06-22 中国石油大学(华东) 一种摩擦纳米发电机驱动的微型气体检测系统及其制备方法及应用
US11114953B2 (en) * 2014-11-11 2021-09-07 Samsung Electronics Co., Ltd. Charge pump-based artificial lightning generator and method for manufacturing same
CN113483881A (zh) * 2021-06-30 2021-10-08 科思技术(温州)研究院 摩擦电式振动传感器及实时监测预警系统
CN113697101A (zh) * 2021-09-03 2021-11-26 电子科技大学 摩擦纳米发电集成的微型扑翼飞行器能量自回收柔性翅翼
CN113848179A (zh) * 2021-09-23 2021-12-28 北京理工大学 一种测量接触面之间滑移或分离运动的实验装置
CN114047353A (zh) * 2022-01-07 2022-02-15 浙江中自庆安新能源技术有限公司 一种自供电运动传感器的信号处理方法及系统
CN114362585A (zh) * 2022-01-12 2022-04-15 科思技术(温州)研究院 一种利用风能波浪能的摩擦纳米发电装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635984B (zh) * 2015-01-21 2018-08-07 北京大学 一种单表面位置传感器及其定位方法
CN104779831B (zh) * 2015-02-16 2017-06-06 纳米新能源(唐山)有限责任公司 基于摩擦发电机的位移传感器
CN106289330B (zh) * 2015-06-26 2019-02-19 北京纳米能源与系统研究所 运动矢量监测单元、监测方法及监测装置
US11189778B2 (en) 2016-03-07 2021-11-30 Ricoh Company, Ltd. Element, cell, and power generation device
KR101871602B1 (ko) * 2016-12-01 2018-06-26 성균관대학교산학협력단 마찰전기 에너지 발생 장치
CN108269594B (zh) * 2016-12-30 2021-12-17 北京纳米能源与系统研究所 信息存储介质、装置和存储方法
CN108667338B (zh) * 2017-04-01 2021-06-15 北京纳米能源与系统研究所 一种摩擦纳米发电机的能量管理电路和能量管理方法
CN106961228A (zh) * 2017-04-25 2017-07-18 北京化工大学 多功能摩擦发电轮胎及基于该轮胎的传感器和供电设备
CN108109342A (zh) * 2018-01-22 2018-06-01 华东师范大学 一种自供电的全柔性疲劳驾驶提醒装置
JP7061357B2 (ja) * 2018-03-05 2022-04-28 学校法人 関西大学 状態計測装置
CN110174196B (zh) * 2018-04-10 2021-05-14 北京纳米能源与系统研究所 多应力传感的自驱动复合传感器
CN110154888A (zh) * 2018-06-28 2019-08-23 北京纳米能源与系统研究所 驾驶行为监控装置和方法
CN110631517B (zh) * 2019-08-26 2021-06-22 江苏大学 基于力反馈原理的摩擦纳米发电机接触面积实时检测装置
JP2021041312A (ja) * 2019-09-06 2021-03-18 三菱ケミカル株式会社 摩擦帯電ユニット、並びに該摩擦帯電ユニットを備えた摩擦発電デバイス及び集塵デバイス
KR102317989B1 (ko) * 2019-09-23 2021-10-27 한국생산기술연구원 마찰대전발전기가 구비된 보도블록
KR20210045661A (ko) 2019-10-17 2021-04-27 한양대학교 산학협력단 빗면 구조를 가진 고전력 슬라이딩 모드 마찰전기 발전기 및 그 제조 방법
CN111245283B (zh) * 2020-02-20 2022-10-25 北京纳米能源与系统研究所 具有润滑剂的摩擦纳米发电机
KR20210114093A (ko) 2020-03-09 2021-09-23 (주)선영시스텍 마찰 발전기 및 이를 활용한 센서
CN113266524A (zh) * 2021-05-14 2021-08-17 母志长 运行气流发电机
KR102602592B1 (ko) 2021-06-30 2023-11-16 (주)선영시스텍 진동 전력 발전기 및 이를 이용한 응용제품
CN113556054B (zh) * 2021-08-11 2022-12-23 浙江大学杭州国际科创中心 基于液态金属和固-液摩擦界面的自驱动、免通道、可扩展传感器及其制备方法
CN113541526B (zh) * 2021-08-30 2023-08-29 深圳清华大学研究院 一种基于多介质的微发电机和发电机组
CN114166739A (zh) * 2021-12-09 2022-03-11 中国科学院兰州化学物理研究所 一种实时检测含氢类金刚石碳膜摩擦状态的装置及应用
CN114754661A (zh) * 2022-04-15 2022-07-15 北京纳米能源与系统研究所 基于摩擦纳米发电机的智能裂缝监测装置
CN115305769A (zh) * 2022-08-19 2022-11-08 北京化工大学 跑道面层、储能跑道、智能跑道与运动数据监测方法
KR20240085049A (ko) * 2022-12-07 2024-06-14 한국기술교육대학교 산학협력단 가소제를 포함하는 마찰대전 에너지 하베스터용 고분자 겔 및 이를 포함하는 마찰대전 에너지 하베스터

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100253184A1 (en) * 2009-04-06 2010-10-07 Samsung Electronics Co., Ltd. Apparatus for generating electrical energy and method for manufacturing the same
CN102684546A (zh) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 一种摩擦发电机
DE102011051370A1 (de) * 2011-06-27 2012-12-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung mit Reibkontakt
CN202818150U (zh) * 2012-09-20 2013-03-20 纳米新能源(唐山)有限责任公司 纳米摩擦发电机
CN103107732A (zh) * 2013-01-30 2013-05-15 天津理工大学 一种生物医用可降解微型摩擦发电机及其制备方法
CN202949379U (zh) * 2012-12-07 2013-05-22 纳米新能源(唐山)有限责任公司 高功率纳米摩擦发电机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286782A (ja) * 1988-05-11 1989-11-17 Seiko Epson Corp エキソ電子発電装置
DE4028313A1 (de) * 1990-09-06 1992-03-12 Hans Josef Werding Stromreibe
DE4429029A1 (de) * 1994-08-16 1996-02-29 Gore & Ass Generator für die Erzeugung elektrischer Energie
JPH09263177A (ja) * 1995-06-12 1997-10-07 Yamaguchi Sogo Syst Kk 自転車の夜間警告用発光装置
JPH1198868A (ja) * 1997-09-12 1999-04-09 Terumo Corp 静電型発電装置
US20090174281A1 (en) * 2007-10-19 2009-07-09 Lo Hsi-Wen Electret power generator
JP2010041813A (ja) * 2008-08-05 2010-02-18 Sanyo Electric Co Ltd 発電装置
JP5126038B2 (ja) * 2008-12-08 2013-01-23 オムロン株式会社 静電誘導型のエネルギー変換素子
JP5434305B2 (ja) * 2009-06-30 2014-03-05 トヨタ紡織株式会社 発電マット
WO2012006460A1 (en) * 2010-07-07 2012-01-12 Drexel University Asymmetric sensor
US9178446B2 (en) 2011-08-30 2015-11-03 Georgia Tech Research Corporation Triboelectric generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100253184A1 (en) * 2009-04-06 2010-10-07 Samsung Electronics Co., Ltd. Apparatus for generating electrical energy and method for manufacturing the same
DE102011051370A1 (de) * 2011-06-27 2012-12-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung mit Reibkontakt
CN102684546A (zh) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 一种摩擦发电机
CN202818150U (zh) * 2012-09-20 2013-03-20 纳米新能源(唐山)有限责任公司 纳米摩擦发电机
CN202949379U (zh) * 2012-12-07 2013-05-22 纳米新能源(唐山)有限责任公司 高功率纳米摩擦发电机
CN103107732A (zh) * 2013-01-30 2013-05-15 天津理工大学 一种生物医用可降解微型摩擦发电机及其制备方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114953B2 (en) * 2014-11-11 2021-09-07 Samsung Electronics Co., Ltd. Charge pump-based artificial lightning generator and method for manufacturing same
EP3070833B1 (en) * 2015-03-18 2023-09-27 Ricoh Company, Ltd. Electric generating element and electric generator
US10270369B2 (en) 2015-03-18 2019-04-23 Ricoh Company, Ltd. Electric generating element and electric generator
KR20160125710A (ko) * 2015-04-22 2016-11-01 성균관대학교산학협력단 다상 마찰전기 에너지 발전소자
KR101705974B1 (ko) * 2015-04-22 2017-02-13 성균관대학교산학협력단 다상 마찰전기 에너지 발전소자
US10541628B2 (en) * 2015-12-11 2020-01-21 Ricoh Company, Ltd. Power generating device having a deformable element that generates power when deforming
US20170170749A1 (en) * 2015-12-11 2017-06-15 Yuko Arizumi Power generating device
US10770990B2 (en) * 2016-05-10 2020-09-08 Samsung Electronics Co., Ltd. Triboelectric generator
US11431265B2 (en) 2016-05-10 2022-08-30 Samsung Electronics Co., Ltd. Triboelectric generator
US10873277B2 (en) 2016-05-10 2020-12-22 Samsung Electronics Co., Ltd. Triboelectric generator
US11463023B2 (en) 2016-05-10 2022-10-04 Samsung Electronics Co., Ltd. Triboelectric generator
US10714676B2 (en) * 2016-11-18 2020-07-14 Ricoh Company, Ltd. Sensor and sensor system
US20180145244A1 (en) * 2016-11-18 2018-05-24 Mizuki Otagiri Sensor and sensor system
CN110696641A (zh) * 2019-10-17 2020-01-17 贵州电网有限责任公司 一种汽车充电装置
CN111800032A (zh) * 2020-07-28 2020-10-20 大连海事大学 一种三维密集摩擦纳米发电模块及系统
CN111800032B (zh) * 2020-07-28 2023-10-20 大连海事大学 一种三维密集摩擦纳米发电模块及系统
CN113008945A (zh) * 2021-02-09 2021-06-22 中国石油大学(华东) 一种摩擦纳米发电机驱动的微型气体检测系统及其制备方法及应用
CN113483881A (zh) * 2021-06-30 2021-10-08 科思技术(温州)研究院 摩擦电式振动传感器及实时监测预警系统
CN113483881B (zh) * 2021-06-30 2024-06-07 北京纳米能源与系统研究所 摩擦电式振动传感器及实时监测预警系统
CN113697101A (zh) * 2021-09-03 2021-11-26 电子科技大学 摩擦纳米发电集成的微型扑翼飞行器能量自回收柔性翅翼
CN113848179B (zh) * 2021-09-23 2023-11-10 北京理工大学 一种测量接触面之间滑移或分离运动的实验装置
CN113848179A (zh) * 2021-09-23 2021-12-28 北京理工大学 一种测量接触面之间滑移或分离运动的实验装置
CN114047353A (zh) * 2022-01-07 2022-02-15 浙江中自庆安新能源技术有限公司 一种自供电运动传感器的信号处理方法及系统
CN114047353B (zh) * 2022-01-07 2022-05-17 浙江中自庆安新能源技术有限公司 一种自供电运动传感器的信号处理方法及系统
CN114362585B (zh) * 2022-01-12 2023-09-22 合肥工业大学 一种利用风能波浪能的摩擦纳米发电装置
CN114362585A (zh) * 2022-01-12 2022-04-15 科思技术(温州)研究院 一种利用风能波浪能的摩擦纳米发电装置

Also Published As

Publication number Publication date
CN104283453B (zh) 2017-02-15
EP3021476B1 (en) 2019-12-11
CN104283453A (zh) 2015-01-14
JP2016526870A (ja) 2016-09-05
KR20160053913A (ko) 2016-05-13
JP6356791B2 (ja) 2018-07-11
EP3021476A1 (en) 2016-05-18
EP3021476A4 (en) 2017-03-01
KR101821585B1 (ko) 2018-01-24

Similar Documents

Publication Publication Date Title
WO2015003497A1 (zh) 一种滑动摩擦发电机、发电方法以及矢量位移传感器
WO2014206077A1 (zh) 一种滑动摩擦发电机、发电方法以及矢量位移传感器
EP3010138B1 (en) Single-electrode friction nano generator, power generation method and self-driven tracker
KR101982691B1 (ko) 슬라이드 마찰식 나노발전기 및 발전 방법
JP6510429B2 (ja) スライド摩擦式ナノ発電機および発電方法
US9178446B2 (en) Triboelectric generator
WO2014169673A1 (zh) 一种转动式静电发电装置
EP3035398B1 (en) Single-electrode touch sensor and preparation method therefor
WO2014206098A1 (zh) 包围式单电极摩擦纳米发电机、发电方法和追踪装置
EP3133375B1 (en) Sensor and power generator based on electrostatic induction, and sensing method and power generation method
WO2014044077A1 (zh) 多层高功率纳米摩擦发电机
Wang et al. Triboelectric nanogenerator: Lateral sliding mode
WO2015010419A1 (zh) 一种基于滑动摩擦的脉冲发电机和发电方法
WO2013152695A1 (zh) 摩擦发电装置
CN115127439A (zh) 一种转动角度向量传感器及旋转密码锁
WO2014139348A1 (zh) 一种滑动式摩擦纳米发电机组
Wang et al. Triboelectric generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016524658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014823154

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167003465

Country of ref document: KR

Kind code of ref document: A