WO2014169673A1 - 一种转动式静电发电装置 - Google Patents

一种转动式静电发电装置 Download PDF

Info

Publication number
WO2014169673A1
WO2014169673A1 PCT/CN2013/089168 CN2013089168W WO2014169673A1 WO 2014169673 A1 WO2014169673 A1 WO 2014169673A1 CN 2013089168 W CN2013089168 W CN 2013089168W WO 2014169673 A1 WO2014169673 A1 WO 2014169673A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
power generation
friction material
friction
generation device
Prior art date
Application number
PCT/CN2013/089168
Other languages
English (en)
French (fr)
Inventor
王中林
林龙
王思泓
Original Assignee
国家纳米科学中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家纳米科学中心 filed Critical 国家纳米科学中心
Publication of WO2014169673A1 publication Critical patent/WO2014169673A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the present invention relates to the field of frictional electrostatic power generation technology, and in particular to a rotary electrostatic power generation device, and more particularly to a rotary electrostatic power generation device capable of converting mechanical energy in a rotary form into electrical energy.
  • BACKGROUND OF THE INVENTION With the development of today's electronic device industry and wireless sensor network technology, power supplies that can operate independently and lastingly become increasingly important. One of the most promising solutions to this need is to convert energy in the environment into electrical energy, and to implement a self-driven system that does not rely on external power. Mechanical energy is a natural environment and a form of energy that prevails in human life, such as tidal energy, wind energy, etc., as well as vehicle movement and human activities, and there is a large amount of mechanical energy. from
  • nanogenerators have grown rapidly as an effective way to convert mechanical energy into electrical energy, and their output power and conversion efficiency have been increased by several orders of magnitude over several years. Since 2012, the flat-contact nano-generator based on the frictional electrostatic effect has provided a promising future for its efficient output, simple process, and stable performance, which is the conversion of mechanical energy into electrical energy to drive electronic devices. way.
  • the technical problem to be solved by the present invention is to provide a mechanical energy capable of rotating A rotary electrostatic power generation device that is converted into electric energy to solve the problem that the existing electrostatic power generation device has a complicated structure and is not conducive to packaging.
  • the present invention provides a rotary electrostatic power generating device including a first member and a second member, at least one friction material region being disposed on a contact surface of the two members, the two frictions The material regions are respectively provided with friction materials having different friction electrode sequences, the back surface of the friction material of the first component is attached to the first conductive element, and the back surface of the friction material of the second component is attached to the second conductive On the component, the two conductive elements are connected by an external circuit; the first component is rotatable relative to the second component, thereby generating sliding friction on the contact faces of the two components, the two friction materials At least a portion of the zone undergoes periodic coincidence and separation.
  • the first component is a first turntable
  • the second component is a second turntable
  • the contact surface of the first turntable includes a first friction layer
  • the second The contact surface of the turntable includes a second friction layer
  • the first conductive element is a first conductive layer
  • the second conductive element is a second conductive layer
  • the first friction layer and the second friction layer are respectively attached Attached to the first conductive layer and the second conductive layer
  • the surfaces of the first friction layer and the second friction layer are respectively provided with the friction material region.
  • the first member and the second member constitute a three-dimensional coaxial inner jacket structure, such that the first member and the second member are rotatable about an axis to cause friction on the contact surfaces of the two members.
  • the material undergoes relative sliding friction.
  • the present invention can be embodied as a wind energy generator using the above-described rotary type electrostatic power generator.
  • the present invention can be embodied as a brake energy storage device using the above-described rotary type electrostatic power generation device
  • the present invention can be embodied as a multi-layer rotary disk type electrostatic power generating device using the above-described rotary type electrostatic power generating device, in which the output terminals of the external circuits of the plurality of rotary invention devices are connected in series or in parallel.
  • the present invention can be embodied as a rotational speed measuring device using the above-described rotary type electrostatic power generating device.
  • the rotary electrostatic power generating device of the invention has small volume, low rotational resistance and energy conversion High efficiency, can be driven by almost any form and speed of rotating objects, and almost no additional resistance to the rotation of the body itself, can be widely used for power generation, energy saving, speed
  • FIG. 1 is a basic schematic diagram of frictional electrostatic power generation utilized by the present invention
  • Figure 2 is a view showing the basic configuration of a rotary electrostatic power generator of the present invention
  • FIG. 3 is a schematic structural view of a rotary disk type electrostatic power generator according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic view showing a specific embodiment of a friction material region arrangement of two turntables according to Embodiment 1 of the present invention
  • Figure 5 is a schematic view showing a specific embodiment of the periodic sector arrangement of the friction material regions of the two turntables according to the first embodiment of the present invention
  • Figure 6 is a schematic view showing various embodiments of a periodic sector setting friction material region of a rotary disk type power generating device according to Embodiment 1 of the present invention.
  • Figure 7 is a diagram showing short-circuit current data of the first embodiment of the present invention.
  • Figure 8 is a diagram showing an open circuit charge data of the first embodiment of the present invention.
  • Figure 9 is a schematic structural view of a wind energy generator according to a second embodiment of the present invention.
  • Figure 10 is a longitudinal sectional view of a wind power generator according to a second embodiment of the present invention.
  • Figure 11 is a schematic structural view of a brake energy storage device according to a third embodiment of the present invention
  • Figure 12 is a schematic structural view of a multi-layer rotary disk electrostatic power generation device according to a fourth embodiment of the present invention
  • Figure 13 is a schematic structural view of a rotational speed measuring device according to a fifth embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION provides a rotary type electrostatic power generation device capable of generating electrical energy using mechanical energy existing in a rotating form in nature, or converting mechanical energy into a rotational form. For electric energy.
  • the invention is primarily applicable to and provides a matching power source for a variety of miniature electronic devices.
  • the sliding friction electrostatic power generating device comprises at least two sliding members capable of sliding relative to each other, each sliding member comprising a friction layer and a conductive layer, the friction layer is attached to the conductive layer, and the friction layers of the two sliding members are opposite each other and tightly contact.
  • the first sliding member includes a first friction layer 11 and a first conductive layer 12, and the second sliding member includes a second friction layer 21 and a second conductive layer 22.
  • the first friction layer 11 and the second friction layer 21 are opposed to each other and in close contact.
  • the first friction layer 11 is composed of a first friction material
  • the second friction layer 12 is composed of a second friction material. Both friction materials have different frictional electrode sequences.
  • “friction electrode sequence” refers to the order of the materials according to their degree of attraction to the charge. At the instant when the two materials rub against each other, the negative charge on the friction surface is from the surface of the material having a more polar polarity in the friction electrode sequence. Transfer to the surface of the material with a less polar polarity in the friction electrode sequence. To date, there is no unified theory that can fully explain the mechanism of charge transfer. It is generally believed that this charge transfer is related to the surface work function of the material, and charge transfer is achieved by electron or ion transfer on the contact surface.
  • the friction electrode sequence is only an empirically based statistical result, that is, the further the difference between the two materials in the sequence, the greater the positive and negative charge generated after the contact and the probability of the sequence being coincident, and Actual results are affected by a variety of factors, such as material surface roughness, ambient humidity, and relative friction.
  • the charge on the surface of the material with different polarity of the two friction electrode sequences is called "contact charge” after contact friction and separation. It is generally believed that the contact charge is only distributed on the surface of the material, and the maximum depth of distribution is only about 10 nanometers.
  • the sign of the contact charge is a symbol of the net charge, that is, a concentrated region of negative charge may exist in a local region of the surface of the material with a positive contact charge, but the sign of the net charge of the entire surface is positive.
  • the external friction force F causes the first friction layer 11 to slide relative to the second friction layer 21
  • surface charge transfer is induced (see FIG. 1(a)), in order to shield due to separation.
  • the present invention provides a rotary electrostatic power generation device belonging to a sliding friction power generation device, thereby constructing a novel rotary type different from the prior art.
  • the rotary power generating apparatus of the present invention comprises two members in close contact with each other, wherein one of the members is rotatable relative to the other member, thereby generating sliding friction on the contact faces of the two members. At least one friction material zone is disposed on the contact faces of the two components, and the friction material having different friction electrode sequences is disposed in the two friction material zones. Also, when the one member is periodically slidably rubbed against the other member, the two friction material regions of the two members can be periodically overlapped and separated. Further, in the two friction material regions, the back surfaces of the two friction materials are attached to the conductive member.
  • the conductive elements are electrically connected by an external circuit.
  • the two kinds of friction materials are preferably electron energies having a large difference in phase, that is, two kinds of friction materials which are preferably different in friction electrode order.
  • the friction material may be some of the commonly used high molecular polymer materials: polytetrafluoroethylene, polydimethylsiloxane, polyimide, polydiphenylpropionate, polyparaphenylene Acid glycol ester, aniline formaldehyde resin, polyoxymethylene, ethyl cellulose, polyamide, melamine formaldehyde, polyethylene glycol succinate, cellulose, cellulose acetate, polyethylene adipate , diallyl polyphthalate, recycled fiber sponge, polyurethane elastomer, styrene propylene copolymer, styrene butadiene copolymer, rayon, polymethacrylate, polyvinyl alcohol, polyester, poly Isobutylene, polyurethane flexible sponge, polyethylene terephthalate, polyvinyl butyral, phenolic resin, neoprene, butadiene propylene copolymer, natural rubber, polyacrylonitrile, poly(
  • semiconductors and metals have triboelectric properties that tend to lose electrons relative to the insulator, often at the end of the list of friction electrode orders. Therefore, semiconductors and metals can also be used as the preparation of two kinds of friction materials.
  • Commonly used semiconductors include silicon, germanium; Group III and V compounds such as gallium arsenide, gallium phosphide, etc.; Group II and Group VI compounds such as cadmium sulfide, zinc sulfide, etc.; and III-V compounds and A solid solution composed of II-VI compounds, such as gallium aluminum arsenide, gallium arsenide phosphorus, and the like.
  • III-V compounds and A solid solution composed of II-VI compounds such as gallium aluminum arsenide, gallium arsenide phosphorus, and the like.
  • amorphous glass semiconductors, organic semiconductors, and the like are amorphous glass semiconductors, organic semiconductors, and the like.
  • Non-conductive oxides, semiconducting oxides, and complex oxides also have triboelectric properties and are capable of forming surface charges during the rubbing process, and thus can also be used as the friction material of the present invention, such as oxides of manganese, chromium, iron, and copper. Also includes silicon oxide, manganese oxide, chromium oxide, iron oxide, copper oxide, zinc oxide, lanthanum) 2 and ⁇ 2 0 3; commonly used metals include gold, silver, platinum, aluminum, nickel, copper, titanium, chromium or Selenium, and an alloy formed of the above metals.
  • the friction material that easily loses electrons such as indium tin oxide antimony, doped semiconductors, and conductive organics.
  • the conductive organic substance is generally a conductive polymer, including self-polypyrrole, polyphenylene sulfide, polyphthalocyanine compound, polyaniline and/or polythiophene.
  • the material having the negative polarity friction electrode sequence is preferably polystyrene, polyethylene, polypropylene, polydiphenylpropionate carbonate, polyethylene terephthalate, polyimide, polyvinyl chloride, polydi Methyl siloxane, polychlorotrifluoroethylene and polytetrafluoroethylene and parylene, package Including parylene, parylene N, parylene D, parylene HT or parylene AF4; frictional electrode sequence material with positive polarity is preferably aniline formaldehyde resin, polyoxymethylene, ethyl cellulose, polyamide nylon 11 , polyamide nylon 66, wool and its fabric, silk and its fabric, paper, polyethylene glycol succinate, cellulose, cellulose acetate, polyethylene glycol adipate, polyphthalic acid Allyl ester, regenerated cellulose sponge, cotton and fabric thereof, polyure
  • the surface of the above friction material may be physically modified to have a micro- or sub-micron array of microstructures distributed on its surface.
  • the upper surface of the first friction layer 11 and/or the lower surface of the second friction layer 21 may be physically modified to increase the contact area and friction between the first friction layer 11 and the second friction layer 21. , thereby increasing the amount of contact charge.
  • Specific modifications include photolithography, chemical etching, and ion etching. This can also be achieved by means of embellishment or coating of nanomaterials.
  • the microstructure is selected from the group consisting of nanowires, nanorods, nanotubes, nanoparticles, nanochannels, microchannels, nanocones, microcones, nanospheres, and microspheres.
  • the microstructures have ⁇ !
  • the average size of ⁇ 50 ⁇ m, more preferably the average size is 50 ⁇ 10 ⁇ , more preferably 100 nm to 800 nm.
  • One method is to introduce a more electron-releasing functional group (ie, a strong electron donating group) on the surface of a material having a positive polarity for a friction material that is in contact with each other, or to introduce a more electron-friendly functional group on the surface of a material having a negative polarity (strong
  • the electron withdrawing group can further increase the amount of transfer of charges when sliding each other, thereby increasing the frictional charge density and the output power of the generator.
  • the strong electron donating group includes: an amino group, a hydroxyl group, a decyloxy group, etc.; a strong electron withdrawing group includes: an acyl group, a carboxyl group, a nitro group, a sulfonic acid group and the like.
  • the introduction of the functional group can be carried out by a conventional method such as plasma surface modification. For example, a mixture of oxygen and nitrogen can be used to generate a plasma at a certain power to introduce an amino group on the surface of the friction material.
  • Another method is to introduce a positive charge on the surface of the friction material with positive polarity and a negative charge on the surface of the friction material with negative polarity.
  • it can be achieved by chemical bonding.
  • ethyl orthosilicate in English abbreviated as TEOS
  • hydrolysis-condensation in English abbreviated as S0 l-gd
  • the thicknesses of the first friction layer 11 and the second friction layer 21 have no significant effect on the effect of the present invention.
  • the preferred friction layer of the present invention is a film having a thickness of 100 nm to 5 mm, preferably ⁇ : lmm, more preferably ⁇ ! ⁇ 800 ⁇ , most preferably 20 ⁇ ! ⁇ 500 ⁇ m, these thicknesses are applicable to all of the technical solutions of the present invention.
  • the first conductive layer 12 and the second conductive layer 22 are two conductive elements.
  • the two electrodes of the power generating device may be selected from metals or conductive oxides, and commonly used metals include gold and silver. , platinum, aluminum, nickel, copper, titanium, chromium or selenium, and alloys formed from the above metals, more preferably metal films such as aluminum films, gold films, copper films, etc.; commonly used conductive oxides including indium tin oxide Helium, ion doped semiconductors and conductive organics.
  • the electrode layer is in close contact with the surface of the corresponding substrate to ensure the efficiency of charge transfer.
  • the conductive material is deposited on the surface of the corresponding substrate by deposition; the specific deposition method may be electron beam evaporation, plasma. Bulk sputtering, magnetron sputtering or evaporation.
  • the friction layer 11 or the friction 21 when the friction layer 11 or the friction 21 is a conductive material, it can simultaneously serve as a conductive layer, that is, the first friction layer 11 and the first conductive layer 12, or the second friction layer 21 and the second conductive member 22 can Combine into one.
  • Fig. 2 is a view showing the basic configuration of a rotary electrostatic power generator of the present invention. As shown in Fig.
  • the device comprises a first part 1 and a second part 2, which are two mutually independent and intimately contacting parts, wherein the first part 1 is fixed and the second part 2 can be wound around a center 0 Turn.
  • the first friction material region 101 and the second friction material region 201 are respectively disposed on the first component 1 and the second component 2, and the first friction material zone 101 and the second friction material zone 201 are rotated when the second component is rotated around the 0 point. At least part of it will undergo periodic coincidence and separation.
  • the upper diagram of Fig. 2 shows the separation of the friction material regions of the two components, and the lower diagram of Fig. 2 shows the overlap of the friction material regions of the two components. When the two components are coincident, the two friction materials are in close contact with each other and produce a slip.
  • the back surface of the friction material region of the first member 1 (relative to the surface where the two members are in contact with each other) is attached to a first conductive member, and the back surface of the friction material region of the second member 2 is attached to a second conductive portion.
  • an alternating current is generated in the external circuit.
  • FIG. 2 shows only the most basic structure of the rotary electrostatic power generating device of the present invention. Various implementations of the above basic structure can be realized. Hereinafter, preferred embodiments of the present invention will be further described with reference to specific embodiments. .
  • the first embodiment is a rotary disk type electrostatic power generation device, and FIG. 3 shows a schematic structural view thereof.
  • FIG. 3 it comprises two turntables, namely a first turntable 1 and a second turntable 2, both of which are Round cake shape and equal outer diameter.
  • the two turntables coincide with each other in a center-aligned manner, and the first turntable 1 and the second turntable 2 are relatively rotatable about their central axes (can be rotated simultaneously, or one is stationary, the other is rotated), while rotating Relative sliding can occur on the contact surface.
  • the contact faces of both turntables include a friction layer, shown as a first friction layer 11 and a second friction layer 21 in the drawing.
  • the surfaces of the first friction layer 11 and the second friction layer 21 are respectively provided with friction material regions 101 and 201 composed of two different friction materials (having different friction electrode sequences), when the two rotary disks are relatively rotated, Electrically distinct contact charges are produced on the two friction layers by sliding friction between the two different friction materials.
  • the two turntables 1, 2 further include a first conductive layer 12 and a second The conductive layer 22, the back surfaces of the first friction layer 11 and the second friction layer 21 are respectively attached to the first conductive layer 12 and the second conductive layer 22, and the first conductive layer 12 and the second conductive layer 22 Both are connected to an external circuit (not shown).
  • an external circuit not shown.
  • the relatively rotating turntable is equivalent to a power supply unit that converts the rotational mechanical energy of the turntable into electrical energy.
  • the external circuit is used to collect the induced charge generated by the turntable, and generate a current based on the potential difference.
  • the conductive layers 12 and 22 attached to the back surfaces of the friction layers 11 and 21 may be metal films deposited by various thin film preparation techniques (thermal evaporation coating, electron beam coating, sputtering coating, etc.), or may be directly bonded metals.
  • the foil layer may also be various conductive oxides, doped semiconductors, and conductive organics.
  • the first friction layer 11 or the second friction layer 21 when it is a conductive material, it can simultaneously serve as a conductive layer, that is, the first friction layer 11 and the first conductive layer 12, or The two friction layers 21 and the second conductive layer 22 may be combined into one.
  • the external circuit includes an electrical energy storage and output device for storing electrical energy, whereby electrical energy generated by the turntable can be stored and externally outputted by the electrical energy storage and output device.
  • the friction material may be disposed on the friction layer in a variety of manners.
  • the friction material regions of the two turntables are identical in shape and area, and are capable of completely overlapping.
  • Fig. 4 is a schematic view showing a specific embodiment of the friction material region arrangement of the two turntables of the power generating device of the present invention. As shown in FIG. 4, the left figure is the first friction layer 11 of the turntable 1, and the right figure is the second friction layer 21 of the turntable 2.
  • the first friction layer and the second friction layer have the shape, the area and the position in the turntable. Identical friction material zones 101 and 102.
  • the friction material regions shown in Fig. 4 have irregular shapes, they may have regular shapes such as a rectangle, a circle, a sector, and the like.
  • the area of the friction material on the two turntables may be one or more.
  • the present invention preferably has two dials having the same friction material region distribution, and the friction material regions of the two turntables can simultaneously achieve complete coincidence and simultaneous simultaneous rotation of the turntable. Separation is achieved to increase the efficiency of electrical energy conversion.
  • the present invention is more preferably provided in the form of a "periodic sector", which means a plurality of sector-shaped regions of the same size and equal intervals distributed around the center of rotation on the turntable.
  • Figure 5 is a schematic illustration of one embodiment of a periodic sector arrangement of friction material regions of two turntables of the rotary disk power plant.
  • the left figure in Fig. 5 is the first friction layer 11 of the turntable 1, and the right side is the second friction layer 21 of the turntable 2.
  • the first friction layer 11 and the second friction layer 21 have the same "periodic sector" distribution, wherein the angle of the central angle of each sector is 45 degrees.
  • the first friction layer 11 and the second friction layer 21 are each divided into eight sectors of equal area, and friction materials are disposed every other sector, that is, each friction material region and two adjacent friction material regions. The spacing between them has the same size and shape. The difference is that the first friction material 101 is disposed on the first friction layer 11, and the second friction material 201 is disposed on the second friction layer 21.
  • the size and number of sectors can be set differently.
  • the friction material regions of the "periodic sector" distribution may adopt a plurality of distribution modes, it is to be noted that the present invention more preferably is a sector having the same size and equally spaced distribution of sectors.
  • FIGS 6A to 6G show various embodiments of the periodic sector setting friction material region of the rotary power generator.
  • Figures 6A and 6C show an embodiment with five regions of friction material, and the vertices of all of the periodic sectors coincide, all at the center of rotation of the turntable, and
  • Figures 6B and 6D show an embodiment with six regions of friction material.
  • the area of the friction material is preferably equal to the size of the space between the areas of friction material, as shown in Figures 6A and 6B; however, the area of the friction material may also be smaller than the size of the space, as shown in Figures 6C and 6D.
  • the turntable of the present invention may also be partially hollowed out or completely hollowed out in areas where no friction material is provided.
  • FIG. 6E shows the case where the shape and size of the turntable are the same as the shape and size of the friction material region thereon, which is equivalent to the fact that the entire turntable is formed into a plurality of blades, that is, blades having a plurality of surfaces covered with friction material. composition.
  • the turntable of the present invention may be not only a two-dimensional plane but also a three-dimensional curved surface, such as a curved warhead shape as shown in FIG. 6F and a conical shape as shown in FIG. 6-g, and the first turntable and the second turntable form a curved surface.
  • the bullet-shaped or conical coaxial inner jacket layer structure both of which can rotate around the axis, so that the friction material on the contact surfaces of the two surfaces is relatively sliding friction.
  • Figure 6F and Figure 6G shows the case where the friction material region is a periodic sector, but those skilled in the art can fully predict that for the case where the first member and the second member have other shapes and the friction material region has other shapes, it can also be set to three dimensions.
  • the form of the surface to meet different application environments.
  • This distribution of the friction material can change the induced potential difference caused by the separation of the frictional charge surfaces of the two turntables by the frictional charge surface.
  • the friction layers on the two turntables having the friction material can be rotated from the completely coincident state to the completely separated state.
  • the surface of the friction layer of each turntable is evenly divided into eight sectors having a central angle of 45°, wherein four symmetrically distributed sectors are covered with a first friction material 101 and a second friction material 102, when two When the turntables are rotated through 360°, a total of 4 cycles of coincidence and separation occur, and correspondingly 4 cycles of AC signals are output.
  • the central angle of the periodic sector may also be other angles, preferably 360 2 ⁇ , where ⁇ is the number of periodic sectors on the first turntable and/or the second turntable.
  • At least one of the friction materials on the two turntables is an insulating material, i.e., at least one of the first friction material 101 and the second friction material 201 in Fig. 5 is an insulating material.
  • the first friction material 101 on the friction layer 11 of the first turntable 1 is an insulating material, which may be poly-p-dimethyl siloxane, polytetrafluoroethylene, poly A polymer film such as an amide fiber or a polyethylene terephthalate may be a film of an inorganic material such as silica, magnesia or titania.
  • the second friction material may be a conductive material or another insulating material.
  • the electrically conductive material can be a conductor or a semiconductor.
  • the conductor can be, but is not limited to, aluminum, copper, stainless steel, magnesium, gold, and the like.
  • the semiconductor may be, but not limited to, silicon, germanium, Group III and V compounds, Group II and Group VI compounds, solid solution composed of Group III-V compounds and Group II-VI compounds, amorphous glass semiconductors And organic semiconductors, etc.
  • the corresponding conductive layer may be omitted, that is, if the friction layer itself contains a friction material as a conductive material, it may itself Used for output current, it acts as a conductive layer, eliminating the need for a separate conductive layer, or, in this case, the friction layer and The electrical layers can be combined into one.
  • the present invention preferably physically modifies the surface of at least one of the two friction materials to have a micro-nano or micron-sized surface.
  • the array of structures is used to increase the contact area between the two friction layers, thereby increasing the amount of contact charge.
  • the microstructure is selected from the group consisting of nanowires, nanotubes, nanoparticles, nanochannels, microchannels, nanocones, microcones, nanospheres, and microspheres. Specific modification methods include photolithography, chemical etching, ion etching, and self-assembly modification.
  • the present invention accomplishes this by way of embellishment or coating of nanomaterials. It is also possible to chemically modify the surface of the friction material that is in contact with each other, so that a functional group that easily loses electrons is introduced on the surface of the positive polarity material and/or a functional group that easily acquires electrons is introduced on the surface of the material having a negative polarity, so that As soon as the charge is transferred at the contact instant, the contact charge density and the output power of the power generating device are increased.
  • the first conductive layer 12 and the second conductive layer 22 are each composed of a conductive material such as the aforementioned metal, conductive oxide, doped semiconductor, and conductive organic, preferably a metal thin film or a thin layer.
  • the shape and size of the conductive layer may be the same as or different from the corresponding friction material region, but preferably the same, for example, a conductive layer is completely deposited on the back side of the friction material region.
  • the support member is preferably made of an insulating material such as plastic, rubber, polyester or the like; it may be a thin layer, a sheet or a sheet, and is not necessarily limited to be rigid, may have some elasticity, or be flexible.
  • Fig. 7 is a diagram showing short-circuit current data of the rotary-type electrostatic power generator shown in Fig. 6E in the above embodiment, that is, a current signal measured when the external circuit is short-circuited.
  • Fig. 8 is a diagram showing the open circuit charge data of the embodiment, i.e., the charge amount signal between the turntable 1 and the turntable 2 measured when the external circuit is open.
  • the friction material of the first friction layer is a polyimide film having a thickness of 50 ⁇ , and the surface of the nanorod array having an average diameter and length of 150 nm and 600 nm is etched by plasma coupling, and an Au conductive layer is deposited on the back surface, second
  • the friction material in the friction layer is a metal A1 foil, and the two friction layers have the same shape and size, and are attached to a fan-shaped support layer of the same size made of polymethyl methacrylate to form a rotary disk power generator. .
  • the entire turntable has a diameter of approximately 4 inches and the effective contact area of the friction material area is approximately 40cm2.
  • the second embodiment is a wind energy engine constructed using the above-described rotary disk type electrostatic power generating device, which can be used for collecting wind energy to be converted into electric energy.
  • Figure 9 shows the schematic structure of the wind energy generator. As shown in FIG. 9, the generator utilizes a rotary disk type electrostatic power generating device of the first embodiment shown in FIG. 3, and the generator includes a windmill 3, and the windmill 3 is fixedly coupled to a rotating shaft 4; The turntable 1 is fixed to a fixing device 5, and the rotating shaft 4 is fixedly coupled to the center of the turntable 2.
  • FIG. 10 is a longitudinal sectional view of the wind power generator. As shown in FIG.
  • the rotating shaft 4 can pass through the center of the turntable 1 and the turntable 2 and be inserted into the inside of the fixing device 5, and the turntable 1 and the fixing device are not fixed to the rotating shaft, thus, fixed
  • the device 5 and the turntable 1 correspond to a bearing of the rotating shaft 4 and can function to support the rotating shaft and the windmill.
  • the third embodiment is an embodiment in which the rotary disk type electrostatic power generating device is applied to a vehicle, such as a brake system of an automobile.
  • the brake pads of the existing car are in the process of braking, huge friction Most of the mechanical energy of the friction conversion is emitted in the form of heat, which is not utilized. If the turntable electrostatic power generating device of the present invention can be loaded into the brake component of the brake system, and the mechanical energy of the wheel rotation when the brake is collected, the energy efficiency of the automobile will be greatly improved, and the composite car and the clean energy vehicle can be further improved. Development is of great significance.
  • Fig. 11 is a view showing the principle structure of the brake energy storage device of the third embodiment.
  • the turntable 1 is fixed to the rotating shaft 7 of the wheel 8, and as the wheel 8 rotates, the turntable 2 is fixedly coupled to a brake control member 6, and the brake control member 6 and the turntable 2 pass through the rotating shaft 7 , is not fixed to the rotating shaft 7, so that the rotating shaft 7 does not drive the brake control member 7 and the turntable 2 to rotate during the rotation.
  • the brake control unit 6 is coupled to a brake device such as a brake pedal (not shown) of the automobile. When the car is running normally, the two turntables will be separated by a large distance, and no current will be generated.
  • the brake control unit 6 can push the turntable 2 to the turntable 1 Move and make close contact between the two turntables.
  • the mechanical energy of the wheel rotation is converted into electric energy by the rotary electrostatic power generating device of the present invention, and the external circuit of the device can be connected to the battery of the automobile, and the converted electric energy can be used for charging the battery of the automobile or other equipment, such as The car is powered by pointing lights, brake lights and other equipment.
  • Embodiment 4 Multi-layer rotary disk type electrostatic power generation device
  • Embodiment 4 is a multilayer turntable type electrostatic power generating device. Based on the design and principle of the above-mentioned rotary-type electrostatic nano-generator, the single-layer generator unit of the two turntables can be integrated and designed into a multi-layered rotary-type generator device, which can be used between every two adjacent turntables. According to the above principle and design output power, the output terminals of the external circuit are connected in series or in parallel, which can greatly increase the total output voltage or output current.
  • Fig. 12A shows the principle structure of such a multilayer rotary disk type electrostatic power generator.
  • the power generating device includes a plurality of sets of turntables, each of which has a structure as shown in FIG. Moreover, each set of turntables is placed coaxially and in contact with each other to form the first (1), (2) ... (n) group of power generation devices. These turntables are divided into two groups: the first set of turntables 1, ⁇ , ...,
  • both are fixed and do not rotate, for example, they are fixedly connected to one fixing device 5; the second group of rotating disks 2, 2, and 2n are fixedly connected to each other, and can be driven by the rotating shaft 4 The rate of rotation; the two sets of turntables are staggered so that each turntable is adjacent to the turntable in the other set.
  • each pair of the contact turntable surfaces rotates relative to each other, causing sliding friction between the friction layers, and the relative coincidence area periodically changes, thereby changing two The induced potential between the conductive layers on the side, and the electrical signal is output to the external circuit.
  • This embodiment preferably designs the friction layer materials covered by all the surface of the turntable to have the same shape distribution, and keeps the generator elements in the same set of turntables distributed in the same angle in space, so that with the rotation of a set of turntables, All of the opposite surface friction layer materials can achieve complete synchronic periodic coincidence and separation, so that the electrical output of each pair of surface turntable generator units has the same timing. This allows these output signals to be connected in series or in parallel through connection to achieve an electrical signal superposition, which greatly increases the output power of the rotary power generator.
  • the order of the two turntables of each group of power generating devices may be the same or different. That is, the relative positions of the first turntable and the second turntable of all the groups of power generating devices may be the same, for example, the first turntable is located on the left side of the second turntable. However, the arrangement order of the two upper turntables in each group of power generating devices may also be different, gp, so that the first turntable of some power generating devices may be on the left side of the second turntable, and the others may be on the right side. This change in position of the arrangement order does not affect the signal output of the power generating device of the present invention.
  • the adjacent two sets of power generating devices may be independent of each other or may be integrally connected such that each turntable is in contact with the turntables in the other group on both sides thereof.
  • the surface of each turntable is adhered with a friction element and a generator element composed of conductive elements, wherein the friction layers of the contact surfaces are different materials.
  • the second turntable of a group of power generating devices shown in Figures 12B and 12B will be adjacent to the first or second turntable of another set of power generating devices, and the two can be connected by the insulating member A to enable the same ⁇ Rotate.
  • FIG. 12B shows a case where the first turntable and the second turntable are respectively connected to both sides of the insulating member A, and the first turntable and the second turntable are alternately fixed, and the rotating shaft 4 drives the insulation fixed thereto. Yuan When the first turntable and the second turntable on both sides of the member A and the insulating member A are rotated, the generators of the first group to the nth group can be simultaneously operated.
  • FIG. 12C shows a case where the two sides of the insulating member A are connected to the second turntable, and the working principle thereof is the same as that shown in FIG. 12B, and details are not described herein again.
  • the friction materials on the first turntable in each power generating unit may be the same or different, and similarly, the friction materials on the second turntable may be the same or different.
  • the friction materials are different, multiple devices that require different voltages or currents can be powered simultaneously.
  • Another preferred mode is that at least a portion of the first component or the second component of the plurality of rotary power generating devices shares one of the first conductive component or the second conductive component with a second component or a first component of an adjacent power generating device, In this way, when working, each side of the turntable can generate current, which maximizes energy utilization and reduces costs.
  • the adjacent two sets of power generating devices share one conductive element 22, and in order to prevent the induced charges generated on both sides of the electrodes from neutralizing each other, it is ensured that the friction layers connected to both sides of the same conductive member 22 are sliding. The same electrical charge is generated during the rubbing process.
  • the friction layer connected to both sides of the conductive element 22 is required to be a material having a relatively strong friction electrode sequence or a relatively weak friction electrode sequence in the generator set to which it belongs, preferably a multilayer rotary disk type electrostatic
  • the friction material on all of the first components in the power plant is the same, the friction materials on all of the second components are the same, and the friction materials connected to the sides of the conductive components are the same.
  • Embodiment 5 Rotating speed measuring device
  • the electrostatic inventive device of the present invention can also be used for rotational speed measurement.
  • an electric signal outputted by the rotary electric power generating device under the action of the rotation can be utilized.
  • FIG. 13 shows a schematic view of the measuring device.
  • a signal processing device 9 is connected to the external circuit, and one of the turntable 1 and the turntable 2 is fixed to the object to be tested, and is used to convert the current or voltage signal between the turntable 1 and the turntable 2 into the The rotational speed information of the relative rotation between the turntable 1 and the turntable 2 is output or indicated.
  • n is an even number
  • the friction material region happens to occur.
  • the n/2 cycles coincide and separate, and the n/2 cycles of the AC pulse signal are output.
  • the time frequency of the output AC signal should be n/2t. Therefore, by analyzing the frequency of the output AC signal, we can know the instantaneous relative rotation speed, that is, the rotation of the object to be tested. speed.
  • the amplitude of the output AC short-circuit current signal is determined only by the relative rotational speed, and is proportional to the rotational speed. Therefore, by analyzing the amplitude of the short-circuit current signal, the same can be Know the rotational speed of the object to be tested.
  • the rotary disk type electrostatic power generating device of the present invention can be applied to various application devices that convert rotational mechanical energy into electrical energy.
  • the rotary disk type electrostatic power generating device provided by the present invention has the following advantages:
  • the rotating resistance of the turntable of the power generating device of the invention is small, and only the rotating mechanical energy required to be input can overcome the relative sliding of the friction layer between the turntables, thereby effectively collecting the rotation of various forms and strengths generated by nature and people's daily life. Mechanical energy, and convert it into electrical energy for efficient use of energy.
  • the power generating device of the invention does not need magnets, coils, rotors and the like, has a simple structure, a small volume, is convenient to manufacture, low in cost, and can be installed in various application environments where there is rotation and can rotate the turntable, and no special working environment is required. Therefore, it has high compatibility.
  • the rotary power generating apparatus of the present invention can be used not only as a small power source but also as a high power power generation. 5, can be used as a self-driving speed sensor.
  • the relative velocity at which the adjacent turntables rotate determines the speed of coincidence and separation between the opposing friction layers, which in turn directly determines the peak and frequency of the current pulse signal.
  • the rotary power generator can also be used as a self-driving speed sensor to obtain the rate information of the relative rotation of the turntable by monitoring the magnitude and frequency of the measured current output signal.
  • the sensor can output signals by itself without the need of an external power supply.
  • the device can be miniaturized, portable and easy to operate; on the other hand, it also saves the cost of replacing the battery or other power supply frequently, which is beneficial to realize Green and multi-functional sensor network.

Landscapes

  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种转动式静电发电装置,包括第一部件(1)和第二部件(2)。两个部件的接触面上各设置一个摩擦材料区,两个摩擦材料区中分别设有具有不同摩擦电极序的摩擦材料。第一部件的摩擦材料(101)贴附于第一导电元件(12)上,第二部件的摩擦材料(201)贴附于第二导电元件(22)上,两个导电元件通过一个外部电路相连;第一部件能够相对于第二部件进行转动,从而在两个部件的接触面上产生滑动摩擦,使两个摩擦材料区的至少一部分发生周期性的重合与分离。该转动式静电发电装置体积小、转动阻力小、能量转化率高易于密封集成。

Description

一种转动式静电发电装置 技术领域 本发明属于摩擦静电发电技术领域, 具体涉及一种转动式静电发电 装置, 特别是一种能够将转动形式的机械能转化为电能的转动式静电发 电装置。 背景技术 随着当今电子器件产业和无线传感网络技术的发展, 能独立、 持久 工作的电源变得日益重要。 对于这一需求, 一种最有前景的解决方式是 将环境中的能量转化为电能, 而实现不依赖于外界供电的自驱动系统。 机械能是一种自然环境和人类生活中普遍存在的能量形式, 如潮汐能、 风能等, 还包括车辆移动和人体的活动等, 都存在着大量的机械能。 自
2006年起,纳米发电机作为一种将机械能转化为电能的有效途径得到了 迅速发展, 其输出功率和转化效率已经在几年间被提高了几个量级。 而 从 2012 年开始, 基于摩擦静电效应的平板接触式纳米发电机更是以其 高效的输出、 简单的工艺、 稳定的性能, 为机械能转变为电能来驱动电 子器件提供了一种十分具有前景的途径。
但是目前的摩擦纳米发电机都是接触式的, 通过两个平板式摩擦层 在垂直方向的接触和分离实现电信号的输出。 这种发电机的缺点是两个 摩擦层中间必须要有空隙,并且外力的大小和 /或方向必须是周期性变化 的, 这样两个摩擦层才能够发生周期性的接触和分离, 产生电信号, 这 种结构对于封装很不方便,不利于用于各种液体或腐蚀性气氛中。因此, 如果能够实现一种结构简单、 利于封装, 又能提高发电效率的静电发电 装置, 将在现代工业中具有良好应用前景。 发明内容 本发明的所要解决的技术问题是提供一种能够将转动的机械能转 化为电能的转动式静电发电装置, 以解决现有的静电发电装置结构复 杂, 不利于封装的问题。
为解决上述技术问题, 本发明提出一种转动式静电发电装置, 其包 括第一部件和第二部件, 在所述两个部件的接触面上各设置至少一个摩 擦材料区, 所述两个摩擦材料区中分别设有具有不同摩擦电极序的摩擦 材料, 所述第一部件的摩擦材料的背面贴附于第一导电元件上, 所述第 二部件的摩擦材料的背面贴附于第二导电元件上, 该两个导电元件通过 一外部电路相连; 所述第一部件能够相对于第二部件进行转动, 从而在 所述两个部件的接触面上产生滑动摩擦, 使所述两个摩擦材料区的至少 一部分发生周期性的重合与分离。
根据本发明的一种具体实施方式, 所述第一部件为第一转盘, 所述 第二部件第二转盘, 所述第一转盘的所述接触面上包括第一摩擦层, 所 述第二转盘的所述接触面上包括第二摩擦层; 所述第一导电元件为第一 导电层, 所述第二导电元件为第二导电层, 所述第一摩擦层和第二摩擦 层分别贴附于该第一导电层和第二导电层上; 所述第一摩擦层和第二摩 擦层的表面分别设有所述摩擦材料区。
根据本发明的一种具体实施方式, 所述第一部件和第二部件构成三 维的同轴内外套层结构, 使得第一部件和第二部件能够绕轴旋转, 使二 者接触面上的摩擦材料发生相对滑动摩擦。
本发明可具体实施为一种利用上述转动式静电发电装置的风能发 电机。
本发明可具体实施为一种利用上述转动式静电发电装置的刹车储 能装置
本发明可具体实施为一种利用上述转动式静电发电装置的多层转 盘式静电发电装置, 其所述多个转动式发明装置的外部电路的输出端串 联或并联。
本发明可具体实施为一种利用上述转动式静电发电装置的转速测 量装置。
本发明的转动式静电发电装置具有体积小、 转动阻力小、 能量转化 效率高的特点, 几乎可以被任何形式和速度的转动物体所带动, 且几乎 不对待测体本身的转动增加额外阻力, 可以广泛用于发电、 节能、 转速
附图说明 本发明的附图旨在示意性地显示本发明的若干具体实施方式, 以使 本领域的技术人员更加全面地理解和实现本发明的技术方案。 附图中装 置、 元件的具体形状和尺寸的绘制仅仅是为了更清晰地展现本发明, 而 并非是精确的形状和尺寸, 因此, 本发明的保护范围不应以附图所示的 形状、 大小等为限。
图 1是本发明的利用的摩擦静电发电的基本原理图;
图 2是本发明的转动式静电发电装置基本结构图;
图 3是本发明的实施例一的转盘式静电发电装置的原理结构图; 图 4是本发明的实施例一的两个转盘的摩擦材料区设置的一个具体 实施方式的示意图;
图 5是本发明的实施例一的两个转盘的摩擦材料区的周期扇区设置 的一个具体实施方式的示意图;
图 6是本发明的实施例一的转盘式发电装置的周期扇区设置摩擦材 料区多种实施方式的示意图;
图 7是本发明的实施例一的短路电流数据图;
图 8是本发明的实施例一的开路电荷数据图;
图 9是本发明的实施例二的风能发电机的原理结构图;
图 10是本发明的实施例二的风能发电机的纵向剖面图;
图 11是本发明的实施例三的刹车储能装置的原理结构图; 图 12 是本发明的实施例四的多层转盘式静电发电装置的原理结构 图;
图 13是本发明的实施例五的转速测量装置的原理结构图。 具体实施方式 为解决上述技术问题, 本发明提供一种转动式静电发电装置, 该发 电装置能够利用自然界中以转动形式存在的机械能来产生电能, 或者是 将能够转化为以转动形式存在的机械能转化为电能。 本发明主要适用于 为各类微型电子器件并为其提供匹配的电源。
首先, 我们参照图 1来描述本发明所利用的滑动摩擦静电发电的基 本原理。 滑动摩擦静电发电装置至少包括两个能够相对滑动的滑动部 件, 每个滑动部件均包括摩擦层和导电层, 摩擦层附着于导电层之上, 且两个滑动部件的摩擦层相互对置并紧密接触。
如图 1所示, 第一滑动部件包括第一摩擦层 11和第一导电层 12, 第二滑动部件包括第二摩擦层 21和第二导电层 22。第一摩擦层 11和第 二摩擦层 21相互对置并紧密接触。第一摩擦层 11由第一摩擦材料构成, 第二摩擦层 12 由第二摩擦材料构成。 两种摩擦材料具有不同的摩擦电 极序。
在此, "摩擦电极序 "是指根据材料对电荷的吸引程度将其进行的排 序, 两种材料在相互摩擦的瞬间, 在摩擦面上负电荷从摩擦电极序中极 性较正的材料表面转移至摩擦电极序中极性较负的材料表面。 迄今为 止,还没有一种统一的理论能够完整的解释电荷转移的机制,一般认为, 这种电荷转移和材料的表面功函数相关, 通过电子或者离子在接触面上 的转移而实现电荷转移。 需要说明的是, 摩擦电极序只是一种基于经验 的统计结果, 即两种材料在该序列中相差越远, 接触后所产生电荷的正 负性和该序列相符合的几率就越大, 而且实际的结果受到多种因素的影 响, 比如材料表面粗糙度、 环境湿度和是否有相对摩擦等。 在两种摩擦 电极序极性存在差异的材料在接触摩擦并分离后其表面所带有的电荷 称为"接触电荷", 一般认为, 接触电荷只分布在材料的表面, 分布最大 深度不过约为 10 纳米。 需要说明的是, 接触电荷的符号是净电荷的符 号, 即在带有正接触电荷的材料表面的局部地区可能存在负电荷的聚集 区域, 但整个表面净电荷的符号为正。
在有外力 F使第一摩擦层 11的与第二摩擦层 21的发生相对滑动摩 擦时, 由于第一摩擦层 11的第一摩擦材料与第二摩擦层 21的第二摩擦 材料在摩擦电极序中存在差异, 引发表面电荷转移 (参见图 1 (a)), 为 了屏蔽由于分离错位的第一摩擦层 11和第二摩擦层 21中表面电荷所形 成的电场, 第一导电层 12 中的自由电子就会通过外电路流到第二导电 层 21上, 从而产生一外电流 (参见图 1 (b))。 当反方向施加外力时, 第一摩擦层 11或第二摩擦层 21的相对滑动错位消失, 两导电层间由于 分离摩擦电荷产生的感应电势随之消失, 使得第二导电层 22 中的屏蔽 电子流回第一导电层 12, 从而给出一相反方向的外电流。 如此往复, 形 成交流脉冲电流。
根据上述通过两种不同摩擦材料表面滑动分离而产生电流的原理, 本发明提出一种属于滑动摩擦发电装置的转动式静电发电装置, 从而构 造出一种不同于现有技术的、 新颖的转动式结构, 其能够有效地将以转 动形式存在的机械能转化为电能。
本发明的转动式发电装置包括相互紧密接触的两个部件, 其中一个 部件能够相对于另一个部件进行转动, 从而在所述两个部件的接触面上 产生滑动摩擦。 该两个部件的接触面上各设置至少一个摩擦材料区, 该 两个摩擦材料区中设有具有不同摩擦电极序的摩擦材料。 并且, 使所述 一个部件相对于另一个部件进行周期性滑动摩擦时, 两个部件的两个摩 擦材料区能够周期性的重合与分离。 此外, 在所述两个摩擦材料区中, 所述两种摩擦材料的背面均贴附于导电元件上。 该导电元件通过一个外 部电路电性连接。
这样, 根据前述的摩擦静电产生电流的原理可知, 当两个部件相对 转动时, 将在两个部件上产生接触电荷, 这两个摩擦材料区由分离变成 重合, 以及由重合变成分离的过程能够在外部电路上产生周期性的交流 电流。
根据本发明, 所述两种摩擦材料优选为具有相差较大的得电子能 力, 即优选为摩擦电极序的差异较大的两种摩擦材料。
例如, 摩擦材料可以是下面一些常用的高分子聚合物材料: 聚四氟 乙烯、 聚二甲基硅氧垸、 聚酰亚胺、 聚二苯基丙垸碳酸酯、 聚对苯二甲 酸乙二醇酯、 苯胺甲醛树脂、 聚甲醛、 乙基纤维素、 聚酰胺、 三聚氰胺 甲醛、聚乙二醇丁二酸酯、 纤维素、 纤维素乙酸酯、聚己二酸乙二醇酯、 聚邻苯二甲酸二烯丙酯、 再生纤维海绵、 聚氨酯弹性体、 苯乙烯丙烯共 聚物、 苯乙烯丁二烯共聚物、 人造纤维、 聚甲基丙烯酸酯、 聚乙烯醇、 聚酯、 聚异丁烯、 聚氨酯柔性海绵、 聚对苯二甲酸乙二醇酯、 聚乙烯醇 缩丁醛、 酚醛树脂、 氯丁橡胶、 丁二烯丙烯共聚物、 天然橡胶、 聚丙烯 腈、 聚 (偏氯乙烯 -co-丙烯腈)、 聚乙烯丙二酚碳酸盐, 聚苯乙烯、 聚甲基 丙烯酸甲酯、 聚碳酸酯、 液晶高分子聚合物、 聚氯丁二烯、 聚丙烯腈、 聚双苯酚碳酸酯、 聚氯醚、 聚三氟氯乙烯、 聚偏二氯乙烯、 聚乙烯、 聚 丙烯、 聚氯乙烯和派瑞林。
相对于绝缘体, 半导体和金属均具有容易失去电子的摩擦电特性, 在摩擦电极序的列表中常位于末尾处。 因此, 半导体和金属也可以作为 制备两种摩擦材料。 常用的半导体包括硅、 锗; 第 III和第 V族化合物, 例如砷化镓、磷化镓等; 第 II和第 VI族化合物, 例如硫化镉、硫化锌等; 以及由 III-V族化合物和 II -VI族化合物组成的固溶体, 例如镓铝砷、 镓 砷磷等。 除上述晶态半导体外, 还有非晶态的玻璃半导体、 有机半导体 等。 非导电性氧化物、 半导体氧化物和复杂氧化物也具有摩擦电特性, 能够在摩擦过程形成表面电荷, 因此也可以用来作为本发明的摩擦材 料, 例如锰、 铬、 铁、 铜的氧化物, 还包括氧化硅、 氧化锰、 氧化铬、 氧化铁、 氧化铜、 氧化锌、 Β )2和 Υ203; 常用的金属包括金、 银、 铂、 铝、 镍、 铜、 钛、 铬或硒, 以及由上述金属形成的合金。 当然, 还可以 使用其他具有导电特性的材料充当容易失去电子的摩擦材料, 例如铟锡 氧化物 ΙΤΟ、 掺杂的半导体和导电有机物。 其中, 导电有机物一般为导 电高分子, 包括自聚吡咯、 聚苯硫醚、 聚酞菁类化合物、 聚苯胺和 /或聚 噻吩。
可以根据实际需要, 选择合适的材料来制备两种摩擦材料, 以获得 更好的输出效果。 具有负极性摩擦电极序的材料优选为聚苯乙烯、 聚乙 烯、聚丙烯、 聚二苯基丙垸碳酸酯、聚对苯二甲酸乙二醇酯、 聚酰亚胺、 聚氯乙烯、 聚二甲基硅氧垸、 聚三氟氯乙烯和聚四氟乙烯和派瑞林, 包 括派瑞林 、 派瑞林 N、 派瑞林 D、 派瑞林 HT或派瑞林 AF4; 具有正 极性的摩擦电极序材料优选苯胺甲醛树脂、 聚甲醛、 乙基纤维素、 聚酰 胺尼龙 11、 聚酰胺尼龙 66、 羊毛及其织物、 蚕丝及其织物、 纸、 聚乙 二醇丁二酸酯、 纤维素、 纤维素醋酸酯、 聚乙二醇己二酸酯、 聚邻苯二 甲酸二烯丙酯、 再生纤维素海绵、 棉及其织物、 聚氨酯弹性体、 苯乙烯 -丙烯腈共聚物、 苯乙烯-丁二烯共聚物、 木头、 硬橡胶、 醋酸酯、 人造 纤维、 聚甲基丙烯酸甲酯、 聚乙烯醇、 聚酯、 铜、 铝、 金、 银和钢。
上述摩擦材料的表面可以进行物理改性, 使其表面分布有微米或次 微米量级的微结构阵列。 参照图 1, 可以对第一摩擦层 11 上表面和 /或 第二摩擦层 21的下表面进行物理改性, 以增加第一摩擦层 11与第二摩 擦层 21 之间的接触面积和摩擦效果, 从而增大接触电荷量。 具体的改 性方法包括光刻蚀、 化学刻蚀和离子体刻蚀等。 也可以通过纳米材料的 点缀或涂层的方式来实现该目的。 所述微结构选自纳米线、 纳米棒、 纳 米管、 纳米颗粒、 纳米沟槽、 微米沟槽、 纳米锥、 微米锥、 纳米球和微 米球状结构, 优选所述微结构具有 ΙΟηπ!〜 50μπι的平均尺寸, 更优选平 均尺寸为 50ηπι〜10μπι, 更优选 100nm〜800nm。
也可以对摩擦材料的表面进行化学改性, 能够进一歩提高电荷在接 触瞬间的转移量, 从而提高接触电荷密度和发电机的输出功率。 化学改 性又分为如下两种类型:
一种方法是对于相互接触的摩擦材料, 在极性为正的材料表面引入 更易失电子的官能团 (即强给电子团), 或者在极性为负的材料表面引 入更易得电子的官能团 (强吸电子团), 都能够进一歩提高电荷在相互 滑动时的转移量, 从而提高摩擦电荷密度和发电机的输出功率。 强给电 子团包括: 氨基、 羟基、 垸氧基等; 强吸电子团包括: 酰基、 羧基、 硝 基、 磺酸基等。 官能团的引入可以采用等离子体表面改性等常规方法。 例如可以使氧气和氮气的混合气在一定功率下产生等离子体, 从而在摩 擦材料表面引入氨基。
另外一种方法是在极性为正的摩擦材料表面引入正电荷, 而在极性 为负的摩擦材料表面引入负电荷。 具体可以通过化学键合的方式实现。 例如, 可以在 PDMS摩擦材料表面利用水解 -缩合 (英文简写为 S0l-gd) 的方法修饰上正硅酸乙酯(英文简写为 TEOS) , 而使其带负电。 也可以 在金属金薄膜层上利用金-硫的键结修饰上表面含十六垸基三甲基溴化 铵 (CTAB) 的金纳米粒子,由于十六垸基三甲基溴化铵为阳离子, 故会 使整个摩擦材料变成带正电性。 本领域的技术人员可以根据摩擦材料的 得失电子性质和表面化学键的种类, 选择合适的修饰材料与其键合, 以 达到本发明的目的, 因此这样的变形都在本发明的保护范围之内。
所述第一摩擦层 11和第二摩擦层 21的厚度对本发明的实施效果没 有显著影响, 本发明优选的摩擦层为薄膜, 厚度为 100nm〜5mm, 优选 Ιμπι〜: lmm, 更优选 ΙΟμπ!〜 800μπι, 最优选 20μπ!〜 500μπι, 这些厚度 对本发明所有的技术方案都适用。
第一导电层 12和第二导电层 22是两个导电元件, 作为发电装置的 两个电极, 只要具备能够导电的特性即可, 可选自金属或导电氧化物, 常用的金属包括金、 银、 铂、 铝、 镍、 铜、 钛、 铬或硒, 以及由上述金 属形成的合金, 更优选为金属薄膜, 例如铝膜、 金膜、 铜膜等; 常用的 导电氧化物包括铟锡氧化物 ΙΤΟ、 离子掺杂型的半导体和导电有机物。 电极层最好与相应的基板表面紧密接触, 以保证电荷的传输效率, 较好 的方式是将导电材料通过沉积的方式在相应基板的表面成膜; 具体的沉 积方法可以为电子束蒸发、 等离子体溅射、 磁控溅射或蒸镀。
根据本发明, 当摩擦层 11或摩擦 21为导电材料时, 其可以同时用 作导电层, 即第一摩擦层 11与第一导电层 12, 或者第二摩擦层 21与第 二导元件 22可以合二为一。
以上参照图 1 说明了本发明所基于的滑动摩擦静电发电的原理结 构, 本发明所提出的转动式静电发电装置是在上述基本结构的基础上进 行开发的适于实际应用的静电发电装置。 因此, 本发明的装置中所采用 的摩擦材料、 摩擦材料层 (或区域)、 导电层 (导电元件) 的结构等, 均可直接采用上述提到的设置。 为使本发明的目的、 技术方案和优点更 加清楚明白, 以下结合具体实施例, 并参照附图对本发明作进一歩的详 细说明。 图 2是本发明的转动式静电发电装置基本结构图。 如图 2所示, 该 装置包括第一部件 1和第二部件 2, 它们是两个相互独立并能够紧密接 触的部件, 其中, 第一部件 1固定, 第二部件 2能够绕一个圆心 0进行 转动。 第一部件 1和第二部件 2上分别设置有第一摩擦材料区 101和第 二摩擦材料区 201, 当第二部件绕 0点转动时, 第一摩擦材料区 101和 第二摩擦材料区 201的至少一部分将发生周期性的重合与分离。 图 2的 上图显示了两个部件的摩擦材料区分离的情形, 图 2的下图显示了两个 部件的摩擦材料区重合的情形。 在两个部件重合时, 两个摩擦材料相互 紧密接触并产生滑动。 并且, 第一部件 1的摩擦材料区的背面 (相对于 两个部件相互接触的面) 贴附于一个第一导电元件上, 第二部件 2的摩 擦材料区的背面贴附于一个第二导电元件上 (图中未示), 因此, 根据 上述原理, 当两个部件的导电元件通过外部电路 (图中未示) 相连时, 将在外部电路中产生交流电流。
值得说明的是, 图 2显示的仅仅是本发明的转动式静电发电装置的 最基本结构, 实现上述基本结构可以有多种实现方式, 下面将参照具体 实施例来进一歩说明本发明的优选方式。 实施例一 转盘式静电发电装置
该实施例一是一种转盘式静电发电装置,图 3显示了其原理结构图, 如图 3所示, 其包括两个转盘, 即第一转盘 1和第二转盘 2, 两个转盘 均呈圆饼形且外径相等。 并且, 两个转盘以中心对准的方式相互重合, 第一转盘 1和第二转盘 2能绕其中心轴进行相对地转动 (可同时转 动, 或者一个静止, 另一个转动), 在转动时在其接触面上能产生相对 的滑动。 两个转盘的接触面上均包括摩擦层, 在图中显示为第一摩擦层 11和第二摩擦层 21。所述第一摩擦层 11和第二摩擦层 21的表面分别设 有由两种不同的摩擦材料 (具有不同摩擦电极序的) 构成的摩擦材料区 101 和 201, 当两个转盘相对转动时, 通过该两种不同的摩擦材料之间 的滑动摩擦, 在两个摩擦层上产生电性相异的接触电荷。
如图 3所示, 所述两个转盘 1、 2还分别包括第一导电层 12和第二 导电层 22,所述第一摩擦层 11和第二摩擦层 21的背面分别贴附于该第 一导电层 12和第二导电层 22上, 所述第一导电层 12和第二导电层 22 均与外部电路 (未显示) 相连。 这样, 当两个转盘相对转动时, 两个摩 擦层的摩擦材料区由分离变为接接触后再由接触变为分离, 从而在两个 导电层之间形成感应电势, 产生电势差, 可以通过导电部件向外输出电 信号。 这样, 相对转动的转盘就相当于一个电源装置, 将转盘的转动机 械能转化为电能该外部电路用于收集所述转盘产生的感应电荷, 根据所 述电势差产生电流。 所述摩擦层 11、 21的背面所附着的导电层 12、 22 可是通过各种薄膜制备技术 (热蒸发镀膜、 电子束镀膜、 溅射镀膜等) 沉积的金属薄膜, 也可为直接粘贴的金属箔层, 还可以是各种导电的氧 化物、 掺杂半导体以及导电有机物。
根据该实施例的一种实施方式, 当第一摩擦层 11或第二摩擦层 21 为导电材料时, 其可以同时用作导电层, 即第一摩擦层 11 与第一导电 层 12, 或者第二摩擦层 21与第二导电层 22可以合二为一。
根据该实施例的一种实施方式, 所述外部电路包括用于储存电能的 电能储存与输出装置, 由此, 由转盘产生的电能可以通过该电能储存与 输出装置加以储存和对外输出。
所述摩擦材料在摩擦层上的设置可以有多种方式, 根据该实施例的 一种优选实施方式, 所述两个转盘的摩擦材料区的形状和面积相同, 并 且能够完全重合。 图 4显示了本发明的发电装置的两个转盘的摩擦材料 区设置的一个具体实施方式的示意图。 如图 4所示, 其中左图为转盘 1 的第一摩擦层 11, 右图为转盘 2的第二摩擦层 21, 第一摩擦层和第二 摩擦层具有形状、 面积以及在转盘中的位置完全相同的摩擦材料区 101 和 102。 虽然图 4中显示的摩擦材料区具有不规则形状, 但是它们也可 以是具有规则的形状, 例如矩形、 圆形、 扇形等。
两个转盘上的摩擦材料区可以是一个, 也可以是多个。 但是, 当各 转盘上存在不止一个摩擦材料区时, 本发明优选为两个转盘具有相同的 摩擦材料区分布, 并且两个转盘的摩擦材料区能够在转盘发生相对转动 时同时达到完全重合以及同时达到分离, 以提高电能转化的效率。 本发明更优选为"周期扇区"的方式来设置, 所谓"周期扇区"是指在 转盘上绕转动中心分布的多个大小相同且间隔相等的扇形区域。
图 5是该转盘式发电装置的两个转盘的摩擦材料区的周期扇区设置 的一个具体实施方式的示意图。图 5中的左图为转盘 1的第一摩擦层 11, 右图为转盘 2的第二摩擦层 21。 如图 5所示, 在该实施方式中, 第一摩 擦层 11和第二摩层层 21具有相同的"周期扇区"分布形式, 其中每个扇 区中心角的角度均为 45度。 这样, 第一摩擦层 11和第二摩层层 21均 被分成 8个面积相等的扇区, 并且, 每隔一个扇区设置摩擦材料, 即每 个摩擦材料区和两个相邻摩擦材料区之间的间隔具有相同的大小和形 状。 所不同的是, 第一摩擦层 11上设置第一摩擦材料 101, 第二摩擦层 21上设置第二摩擦材料 201。
除了图 5显示的方式, 扇形的大小和数量可以有不同的设置方式。 虽然"周期扇形"分布的摩擦材料区可以采用多种分布方式, 但是仍需说 明的是, 本发明更优选为各扇区具有相同大小, 并且等间隔分布的扇形 区。
图 6A〜图 6G显示了转盘式发电装置的周期扇区设置摩擦材料区多 种实施方式。图 6A和图 6C显示了具有五个摩擦材料区的实施方式, 并 且所有周期扇区的顶点重合,均位于转盘的转动中心, 图 6B和图 6D显 示了具有六个摩擦材料区的实施方式。 摩擦材料区优选为与摩擦材料区 之间的间隔区的大小相等,如图 6A和图 6B所示;但摩擦材料区也可以 小于间隔区的大小, 如图 6C和图 6D所示。
本发明的转盘在没设有摩擦材料的区域也可以是部分镂空或完全 镂空的。 例如图 6E显示了转盘的形状和大小与其上的摩擦材料区形状 和大小均相同的情形, 这相当于整个转盘成为形成了多个扇叶, 即由多 个表面全覆盖有摩擦材料的扇叶组成。
本发明的转盘不仅可以是二维平面的, 还可以是三维曲面的, 例如 图 6F所示的弧面弹头形和图 6-g所示的圆锥形,第一转盘和第二转盘形 成弧面弹头形或圆锥形的同轴内外套层结构, 两个转盘均能能够绕轴旋 转, 使得二者接触面上的摩擦材料发生相对滑动摩擦。 虽然图 6F和图 6G显示的是摩擦材料区为周期扇区的情况, 但是本领域的技术人员完 全可以预测, 对于第一部件和第二部件为其他形状、 摩擦材料区为其他 形状的情况, 也可以设置成三维曲面的形式, 以满足不同的应用环境。
摩擦材料的这种分布方式可以改变两个转盘的摩擦层因异号摩擦 电荷面分离而产生的感应电势差。 当两个转盘相对转动时, 由于扇形区 分布模式相同, 且每个扇形区的大小相同, 因此两个转盘上的具有摩擦 材料的摩擦层可以相互从完全重合的状态转动到完全分离状态。 例如在 图 5中, 每个转盘的摩擦层表面均匀分割为 8个圆心角为 45°的扇形, 其中 4个相隔对称分布的扇形覆盖有第一摩擦材料 101和第二摩擦材料 102, 当两个转盘相对转过 360°时, 共发生 4个周期的重合与分离, 而 相应输出 4个周期的交流电信号。 当然, 周期扇区的圆心角还可以为其 他角度, 优选为 360 2η, 其中 η为第一转盘和 /或第二转盘上周期扇区 的个数。
根据本发明, 上述两个转盘上的摩擦材料中的至少一种为绝缘材 料, 即图 5中的第一摩擦材料 101和第二摩擦材料 201中至少一种为绝 缘材料。
例如, 如前所述, 在上述实施例中, 第一转盘 1 的摩擦层 11上的 第一摩擦材料 101为绝缘材料, 其可以是聚对二甲基硅氧垸、 聚四氟乙 烯、 聚酰胺纤维、 聚对苯二甲酸二乙酯等高分子薄膜, 也可以是二氧化 硅、氧化镁、二氧化钛等无机材料薄膜。 当第一摩擦材料是绝缘材料时, 第二摩擦材料可以是导电材料, 也可以是另一种绝缘材料。
所述导电材料可以是导体或半导体。导体可以是但并不限于铝、铜、 不锈钢、 镁、 金等。 半导体可以是但并不限于, 硅、 锗、 第 III和第 V族 化合物、 第 II和第 VI族化合物、 由 III-V族化合物和 II -VI族化合物组成 的固溶体、 非晶态的玻璃半导体和有机半导体等。
值得说明的是, 如果第一或第二摩擦材料为导电材料时, 则与之相 应的导电层可以省略, 也就是说, 如果摩擦层本身包含有作为导电材料 的摩擦材料时, 其本身就可以用于输出电流, 本身就充当了导电层的作 用, 而不再需要单独的导电层, 或者说, 在这种情况下, 该摩擦层与导 电层可以合二为一。
为了增大摩擦电荷密度以提高发电机输出功率, 本发明优选为对所 述两种摩擦材料中的至少一种的表面进行物理改性, 使其表面分布有微 米或次微米量级的微纳结构阵列, 以增加两个摩擦层之间的接触面积, 从而增大接触电荷量。 所述微结构选自纳米线, 纳米管, 纳米颗粒, 纳 米沟槽、 微米沟槽, 纳米锥、 微米锥、 纳米球和微米球状结构。 具体的 改性方法包括光刻蚀、 化学刻蚀、 离子体刻蚀和自主装修饰等。
本发明更优选为通过纳米材料的点缀或涂层的方式来实现该目的。 也可以对相互接触的摩擦材料表面进行化学改性, 使得在极性为正的材 料表面引入容易失去电子的官能团和 /或在极性为负的材料表面引入容 易得到电子的官能团, 这样能够进一歩提高电荷在接触瞬间的转移量, 从而提高接触电荷密度和发电装置的输出功率。
所述第一导电层 12和第二导电层 22均由导电材料组成, 例如前述 的金属、导电氧化物、掺杂半导体和导电有机物, 优选金属薄膜或薄层。 导电层的形状和大小可以与相应的摩擦材料区相同, 也可以不同, 但优 选二者相同, 例如在摩擦材料区的背面完全沉积一层导电层。
为了增强本发明发电装置的机械强度、 延长其使用寿命, 还可以在 两个导电层的外侧设置支撑部件。 该支撑部件优选使用绝缘材料, 例如 塑料、 橡胶、 聚酯等; 可以是薄层、 薄片或薄板, 并不限定必须是硬性 的, 也可以有一定弹性, 或者是柔性的。
图 7是上述实施例中图 6E所示的转盘式静电发电装置的短路电流 数据图, 即当外部电路短路时测得的电流信号图。 图 8是该实施例的开 路电荷数据图, 即当外部电路为开路时所测得的转盘 1与转盘 2之间的 电荷量信号。 其中第一摩擦层的摩擦材料为 50μπι厚的聚酰亚胺薄膜, 其表面通过等离子耦合刻蚀出平均直径和长度分别为 150nm和 600nm 的纳米棒阵列, 其背面沉积有 Au导电层, 第二摩擦层中的摩擦材料为 金属 A1薄片, 两个摩擦层具有相同的形状与尺寸, 均附着在由聚甲基 丙烯酸甲酯制成的具有同样大小的扇形支撑层上, 以形成转盘式发电装 置。 整个转盘的直径约为 4 英寸, 摩擦材料区的有效接触面积约为 40cm2。 当第一转盘固定、 第二转盘以 1000 转 /分的速度旋转时, 所测 得的信号图如图 7和图 8所示。 可以看到, 当该发电装置工作时, 其短 路电流和开路电荷量均呈振荡波形, 幅度稳定, 并且电信号的产生频率 相当高,几乎是连续发电,这是以往的接触式纳米发电机所无法实现的, 是对纳米发电机只能产生间歇性电信号的一种突破。 实施例二: 风能发电机
该实施例二是一种利用所述的转盘式静电发电装置构造的风能发 明机, 其可以用于收集风能将转化为电能。 图 9显示了该风能发电机的 原理结构图。 如图 9所示, 该发电机利用了图 3所示的实施例一的转盘 式静电发电装置, 并且, 该发电机包括一个风车 3, 风车 3与一个转动 轴 4固定连接; 并且, 所述转盘 1固定于一个固定装置 5, 而该转动轴 4固定连接于所述转盘 2的圆心位置。 由此, 当风车 3在外部风力的驱 动下进行转动时,其能够通过转动轴带动转盘 2相对于转盘 1进行转动, 从而在转盘 1和转盘 2之间产生交变的感应电势, 以在外部电路驱动产 生感应电流,当外部电路中包括有电能储存 /输出装置(图中未显示)时, 以所述感应电势存在的电能便可通过该外部电路储存或输出, 从而将风 能转化为电能。 图 10是该风能发电机的纵向剖面图。 如图 10所示, 所 述转动轴 4可穿过转盘 1和转盘 2的中心并插入到所述固定装置 5的内 部, 并且, 转盘 1和固定装置均与转动轴不进行固定, 这样, 固定装置 5和转盘 1就相当于是转动轴 4的一个轴承, 可以起到支承转动轴和风 车的作用。
值得注意的是, 图 9和图 10所示的实施例二仅仅显示了本发明的 风能发电机的基本原理结构, 具体实现该发电机的机械结构可由所属技 术领域的技术人员根据实际需要以各种可能的方式实施。 实施例三: 刹车储能装置
实施例三是将所述的转盘式静电发电装置应用于车辆, 如汽车的刹 车系统的一种实施方式。 现有的汽车的刹车片在制动过程中, 巨大的摩 擦力转化的机械能大多以热能形式散发出去, 没有得到利用。 如果能将 本发明的转盘静电发电装置加载到刹车系统的刹车部件中, 收集刹车时 车轮转动的机械能, 将会很大程度上提高汽车的能源效率, 对复合型汽 车和清洁能源汽车的进一歩发展具有重大意义。
图 11显示了实施例三的刹车储能装置的原理结构图。如图 11所示, 转盘 1固定在车轮 8的转动轴 7上, 随着车轮 8—起转动, 转盘 2与一 个刹车控制部件 6固定连接,该刹车控制部件 6和转盘 2穿过转动轴 7, 未与转动轴 7固定, 使得转动轴 7在转动的过程中不会带动该刹车控制 部件 7和转盘 2—起转动。 该刹车控制部件 6与制动装置, 例如汽车的 刹车踏板 (未显示) 连接。 在汽车正常行驶的时候, 两个转盘之间会分 离较大的距离, 不会有电流产生; 而当需要制动, 刹车踏板被踩下的时 候, 刹车控制部件 6能够推动转盘 2向转盘 1移动, 并使两个转盘之间 会发生紧密接触。 这样, 车轮转动的机械能就会通过本发明的转动式静 电发电装置转化为电能, 该装置的外部电路可连接汽车的蓄电池, 转化 之后的电能可以为汽车的蓄电池充电,也可为其他设备,如汽车指向灯、 刹车灯等设备供电。
同样, 图 11 显示的实施方式仅仅是一种示例, 所属技术领域的技 术人员根据汽车的刹车系统的机械、 电学结构, 可以对该实施例做各种 不同的变化。 实施例四: 多层转盘式静电发电装置
实施例四是一种多层转盘式静电发电装置。 基于上述转盘式静电纳 米发电机的设计和原理, 可以将两个转盘的单层发电机单元进行集成, 设计成多层协同工作的转盘式发电机装置, 每两个相邻转盘之间都可以 根据上述原理和设计输出电能, 将外部电路的输出端进行串联或者并 联, 可以分别大幅度提高总的输出电压或输出电流。
图 12A显示了这种多层转盘式静电发电装置的原理结构。如图 12A 所示, 在该实施例四中, 发电装置包括多组转盘, 每一组转盘均采用如 图 3所示的结构。并且, 每组转盘保持同轴放置, 相互接触形成第(1 )、 (2) ... ... (n)组发电装置。这些转盘被分为两组:第一组转盘 1、 Γ、 ...、
In均保持固定, 不发生转动, 例如均与一个固定装置 5固定连接; 第二 组转盘 2、 2 ...、 2n均转动轴 4固定相连, 可以在转动轴 4的带动下 随轴以相同的速率转动; 这两组转盘交错放置, 使得每一个转盘都与另 一组中的转盘相邻。 在这种设计下, 当第一组转盘随轴发生转动时, 每 一对相接触转盘表面均发生相对转动, 使得摩擦层之间发生滑动摩擦, 并且相对重合面积发生周期性改变, 进而改变两侧的导电层之间的感应 电势, 而向外电路输出电信号。
该实施例优选为将所有转盘表面覆盖的摩擦层材料设计为完全相 同的形状分布, 并且保持同一组转盘内的发电机元件分布在空间上具有 相同的角度, 这样随着一组转盘的转动, 所有相对表面的摩擦层材料可 以实现完全同歩的周期性重合与分离, 进而使得每一对表面的转盘式发 电机单元的电输出具有相同的时序。 这使得这些输出信号可以通过连接 时的串联或者并联以实现电信号的叠加, 大幅度增大转盘式发电装置的 输出功率。
各组发电装置的两个转盘排列顺序可以相同, 也可以不同。 即所有 各组发电装置的第一转盘和第二转盘的相对位置可以均相同, 如第一转 盘位于第二转盘的左侧。 但各组发电装置中的两上转盘的排列顺序也可 以各不相同, gp, 可以使某些发电装置的第一转盘在第二转盘的左侧, 而另一些则在右侧。 这种排列顺序的位置变化都不影响本发明发电装置 的信号输出。
相邻两组发电装置之间可以互相独立, 也可以连接成一体, 使得每 一个转盘都与在其两侧另一组中的转盘相互接触。 在这一转盘组的内 部, 每个转盘的两侧表面均粘附有摩擦层和导电元件组成的发电机元 件, 其中相接触表面的摩擦层为不同材料。例如图 12B和图 12B所示的 一组发电装置的第二转盘将与另一组发电装置的第一或第二转盘相邻, 二者之间就可以通过绝缘元件 A连接, 使其能够同歩转动。 其中图 12B 所示的是绝缘元件 A的两侧分别连有第一转盘和第二转盘的情况,此时 第一转盘和第二转盘交替被固定, 当转动轴 4带动固定于其上的绝缘元 件 A及绝缘元件 A两侧的第一转盘和第二转盘进行旋转时,能够同时使 第 1组至第 n组的发电机同时工作。图 12C所示的是绝缘元件 A两侧均 连接第二转盘的情况, 其工作原理与图 12B所示的情况相同, 在此不再 赘述。
对于上述的多层发电机组, 各个发电单元中第一转盘上的摩擦材料 可以相同也可以不同, 同样,第二转盘上的摩擦材料也可以相同或不同。 当摩擦材料不同时, 可以同时对多个需要不同电压或电流的设备供电。
另外一种优选方式是多个转动式发电装置中至少部分第一部件或 第二部件与相邻发电装置中的第二部件或第一部件共用一个所述第一 导电元件或第二导电元件, 这样在工作时, 每个转盘的两侧都可以产生 电流, 使得能量利用达到最大化, 同时也能降低成本。 例如图 12D所示 的: 相邻的两组发电装置共用一个导电元件 22, 并且, 为了防止电极两 侧产生的感应电荷相互中和, 应确保连在同一导电元件 22 两侧的摩擦 层在滑动摩擦过程中产生相同电性的电荷。 为了达到这种目的, 需要导 电元件 22 两侧连接的摩擦层在其所属的发电机组中均属于摩擦电极序 相对较强的材料或摩擦电极序相对较弱的材料, 优选为多层转盘式静电 发电装置中所有第一部件上的摩擦材料都相同, 所有第二部件上的摩擦 材料都相同, 并且导电元件两侧连接的摩擦材料相同。 实施例五: 转速测量装置
本发明的静电发明装置还可以用于转速测量。 在该实施例五中, 可 以利用转盘式静电发电装置在转动的作用下输出的电信号, 通过对该电 信号进行分析, 我们可以获得两个转盘相对转动速度的信息。
根据这一原理, 我们可以在实施例一的发明装置的外部电路连接信 号处理装置, 用于将发明装置产生的电流或电压信息转换为两个转盘的 相对转速信息。 图 13显示了该测量装置的示意图。 如图 13所示, 外部 电路中连接有信号处理装置 9, 转盘 1与转盘 2中的一个转盘与待测物 体固定, 其用于将转盘 1与转盘 2之间电流或电压信号转换为所述转盘 1与转盘 2之间相对转动的转速信息后输出或指示。 对于摩擦材料区呈"周期扇区"分布的转盘式发电装置, 如果转盘上 分布的扇形区域数目为 n ( n为偶数), 则当两个转盘表面发生一周的相 对转动, 摩擦材料区恰好发生 n/2个周期的重合与分离, 而输出 n/2个 周期的交流脉冲信号。 发生相对转动一周所需时间为 t时, 输出的交流 信号的时间频率应为 n/2t, 因此, 通过分析输出交流电信号的频率, 我 们可以获知即时的相对转动速度, 也就是待测体转动的速度。
除此之外, 对于转盘式静电发电机, 其输出交流短路电流信号的幅 值只由相对转动速度决定, 并且和转动速度呈正比对应关系, 因此, 通 过分析短路电流信号的幅值, 同样可以获知待测物体的转动速度。
综上所述, 本发明的转盘式静电发电装置可以应用于将转动机械能 转换为电能的多种应用设备中。 与现有技术相比, 本发明提供的转盘式 静电发电装置具有下列优点:
1、 能量的更高效利用。 本发明的发电装置的转盘的转动阻力小, 仅需输入的转动机械能能够克服转盘之间摩擦层的相对滑动即可, 因此 可有效收集自然界和人们日常生活中产生的各种形式和强度的转动机 械能, 并将其转化为电能, 实现能量的高效利用。
2、 结构简单、 轻巧便携和高度兼容。 本发明的发电装置无需磁铁、 线圈、 转子等部件, 结构简单, 体积很小, 制作方便、 成本低廉、 能够 安装在各种存在转动和能够带动转盘转动的应用环境中, 无需特殊的工 作环境, 因此具有很高的兼容性。
3、 能量输出密度高。 由于转动可以以很高的速率存在, 因此在单 位时间里, 随着转盘较高速的转动, 相对的摩擦薄膜层可以发生很多次 的周期性重合与分离, 而输出频率很高的电流脉冲信号, 具有极高的能 量密度。
4、 用途广泛。 通过对转盘发电装置中的摩擦材料层进行物理改性 或化学改性, 引入纳米结构图案或涂纳米材料等, 还可以进一歩其中提 高摩擦纳米发电装置在转动作用下两基片接触并相对滑动时产生的接 触电荷密度, 从而提高发电装置的输出能力。 因此, 本发明的转动发电 装置不仅能作为小型功率源, 同时也可用于大功率发电。 5、 可用作自驱动转速传感器。 相邻转盘发生转动的相对速率决定 了相对摩擦层之间重合和分离的速度, 进而会直接决定电流脉冲信号的 峰值和频率。 因此该转盘式发电装置也可以用作自驱动转速传感器, 通 过监控测量电流输出信号的大小和频率, 来获得转盘相对转动的速率信 息。 该传感器可以自己输出信号, 而不需要外接电源供电, 这样一方面 可以使器件的尺寸小型化、 便于携带和操作; 另一方面, 也节省了需要 经常更换电池或其他电源的成本, 有利于实现绿色化和多功能化的传感 器网络。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进 行了进一歩详细说明, 应理解的是, 以上所述仅为本发明的具体实施例 而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的任 何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种转动式静电发电装置, 包括第一部件和第二部件, 在所述 两个部件的接触面上各设置至少一个摩擦材料区, 所述第一部件的摩擦 材料区中设置的摩擦材料与所述第二部件的摩擦材料区中设置的摩擦 材料具有不同的摩擦电极序, 其特征在于:
所述第一部件的摩擦材料的背面贴附于第一导电元件上, 所述第二 部件的摩擦材料的背面贴附于第二导电元件上, 该两个导电元件通过一 外部电路相连;
所述第一部件能够相对于第二部件进行转动, 从而在所述两个部件 的接触面上产生滑动摩擦, 使所述两个摩擦材料区的至少一部分发生周 期性的重合与分离。
2、 如权利要求 1 所述的转动式静电发电装置, 其特征在于: 所述 第一部件和第二部件的摩擦材料区中的摩擦材料不同, 并且是聚四氟乙 烯、 聚二甲基硅氧垸、 聚酰亚胺、 聚二苯基丙垸碳酸酯、 聚对苯二甲酸 乙二醇酯、 苯胺甲醛树脂、 聚甲醛、 乙基纤维素、 聚酰胺、 三聚氰胺甲 醛、 聚乙二醇丁二酸酯、 纤维素、 纤维素乙酸酯、 聚己二酸乙二醇酯、 聚邻苯二甲酸二烯丙酯、 再生纤维海绵、 聚氨酯弹性体、 苯乙烯丙烯共 聚物、 苯乙烯丁二烯共聚物、 人造纤维、 聚甲基丙烯酸酯、 聚乙烯醇、 聚酯、 聚异丁烯、 聚氨酯柔性海绵、 聚对苯二甲酸乙二醇酯、 聚乙烯醇 缩丁醛、 酚醛树脂、 氯丁橡胶、 丁二烯丙烯共聚物、 天然橡胶、 聚丙烯 腈、 聚 (偏氯乙烯 -co-丙烯腈)、 聚乙烯丙二酚碳酸盐, 聚苯乙烯、 聚甲基 丙烯酸甲酯、 聚碳酸酯、 液晶高分子聚合物、 聚氯丁二烯、 聚丙烯腈、 聚双苯酚碳酸酯、 聚氯醚、 聚三氟氯乙烯、 聚偏二氯乙烯、 聚乙烯、 聚 丙烯、 聚氯乙烯、 派瑞林、 硅、 锗、 第 III和第 V族化合物、 第 Π和第 VI 族化合物、 玻璃半导体、 有机半导体、 非导电性氧化物、 半导体氧化物 和复杂氧化物、 金属、 铟锡氧化物 ITO、 掺杂的半导体和导电有机物、 聚吡咯、 聚苯硫醚、 聚酞菁类化合物、 聚苯胺和 /或聚噻吩中的至少一种 或几种的组合。
3、 如权利要求 2所述的转动式静电发电装置, 其特征在于: 所述第一部件的摩擦材料区中的摩擦材料选自聚苯乙烯、 聚乙烯、 聚丙烯、 聚二苯基丙垸碳酸酯、 聚对苯二甲酸乙二醇酯、 聚酰亚胺、 聚 氯乙烯、 聚二甲基硅氧垸、 聚三氟氯乙烯和聚四氟乙烯和派瑞林;
所述第二部件的摩擦材料区中的摩擦材料选自苯胺甲醛树脂、 聚甲 醛、 乙基纤维素、 聚酰胺尼龙 11、 聚酰胺尼龙 66、 羊毛及其织物、 蚕 丝及其织物、 纸、 聚乙二醇丁二酸酯、 纤维素、 纤维素醋酸酯、 聚乙二 醇己二酸酯、 聚邻苯二甲酸二烯丙酯、 再生纤维素海绵、 棉及其织物、 聚氨酯弹性体、 苯乙烯-丙烯腈共聚物、 苯乙烯-丁二烯共聚物、 木头、 硬橡胶、 醋酸酯、 人造纤维、 聚甲基丙烯酸甲酯、 聚乙烯醇、 聚酯、 铜、 铝、 金、 银和钢。
4、 如权利要求 2 所述的转动式静电发电装置, 其特征在于: 所述 第一部件中的摩擦材料为导体并且与所述第一导电元件合二为一, 或, 所述第二部件中的摩擦材料为导体并且与所述第二导电元件合二为一。
5、 如权利要求 1至 4中任一项所述的转动式静电发电装置, 其特 征在于: 至少一种所述摩擦材料的表面具有微米或次微米的微纳结构。
6、 如权利要求 5 所述的转动式静电发电装置, 其特征在于: 所述 微纳结构选自纳米线、 纳米棒、 纳米管、 纳米颗粒、 纳米沟槽、 微米沟 槽、 纳米锥、 微米锥、 纳米球和微米球状结构。
7、 如权利要求 1至 6中任一项所述的转动式静电发电装置, 其特 征在于: 所述第一部件为第一转盘(1 ), 所述第二部件为第二转盘(2)。
8、 如权利要求 7 所述的转动式静电发电装置, 其特征在于: 所述 两个转盘接触面上的摩擦材料区的形状和面积相同, 并且能够完全重 合。
9、 如权利要求 8 所述的转动式静电发电装置, 其特征在于: 所述 第一转盘 (1 ) 和第二转盘 (2) 上的摩擦材料区均不止一个, 且二者具 有相同的摩擦材料区分布, 并且两个转盘的摩擦材料区能够在转盘发生 相对转动时同时达到完全重合以及同时达到分离。
10、 如权利要求 9所述的转动式静电发电装置, 其特征在于: 所述 两个转盘上的摩擦材料区均以"周期扇区"的方式来设置, 所谓"周期扇 区"是指在转盘上绕转动中心分布的多个大小相同且间隔相等的扇形区 域。
11、 如权利要求 10 所述的转动式静电发电装置, 其特征在于: 所 述摩擦材料区, 与相邻两个摩擦材料区之间的间隔区, 具有相同的大小 和形状。
12、如权利要求 10或 11所述的转动式静电发电装置,其特征在于: 所述第一转盘和 /或第二转盘上的所有所述周期扇区的顶点重合。
13、 如权利要求 12所述的转动式静电发电装置, 其特征在于: 所 述周期扇区的顶点位于其所在转盘的转动中心。
14、 如权利要求 10至 13中任一项所述的转动式静电发电装置, 其 特征在于: 所述周期扇区的圆心角为 360 2η, 其中 η为第一转盘和 /或 第二转盘上周期扇区的个数。
15、 如权利要求 7至 14任一项所述的转动式静电发电装置, 其特 征在于: 所述两个转盘同轴。
16、 如权利要求 7至 15任一项所述的转动式静电发电装置, 其特 征在于:所述第一转盘和 /或第二转盘与其上的摩擦材料区形状和大小相 同。
17、 如权利要求 1至 16任一项所述的转动式静电发电装置, 其特 征在于: 所述第一部件和第二部件构成三维的同轴内外套层结构, 使得 第一部件和第二部件能够绕轴相对旋转, 使二者接触面上的摩擦材料发 生相对滑动摩擦。
18、 如权利要求 1至 17中任一项所述的转动式静电发电装置, 其 特征在于: 所述第一导电元件和第二导电元件的外侧均设有支撑部件。
19、 如权利要求 1至 18中任一项所述的转动式静电发电装置, 其 特征在于: 所述外部电路包括用于储存电能的电能整流、 储存与输出装 置。
20、 一种风能发电机, 其特征在于, 包括如权利要求 1至 19中任 一项所述的转动式静电发电装置。
21、 如权利要求 20所述的风能发电机, 其特征在于: 还包括一个 风车, 所述风车与一个转动轴固定连接;
所述第一部件固定于一个固定装置; 所述转动轴固定连接于所述第 二部件的中心位置。
22、 如权利要求 21所述的风能发电机, 其特征在于:
所述转动轴穿过所述第一部件和第二部件的中心, 并且, 所述第一 部件和所述固定装置均未与所述转动轴进行固定。
23、 一种刹车储能装置, 其特征在于: 包括如权利要求 1至 19中 任一项所述的转动式静电发电装置。
24、 如权利要求 23 所述的刹车储能装置, 用于车辆的刹车系统, 其特征在于:
所述第一部件固定在所述车辆车轮的转动轴上, 随着车轮一起转 动;
所述第二部件与一个刹车控制部件固定;
其中, 当所述车辆制动时, 所述刹车控制部件能够推动所述第二部 件向所述第一部件移动, 使两个部件之间发生紧密接触。
25、 如权利要求 24所述的刹车储能装置, 其特征在于: 该刹车控 制部件和所述第二部件穿过所述转动轴, 并未与该转动轴固定。
26、 如权利要求 25 所述的刹车储能装置, 其特征在于: 所述外部 电路连接所述车辆的蓄电池。
27、 一种多层转盘式静电发电装置, 其特征在于: 包括多个如权利 要求 1至 19中任一项所述的转动式发电装置, 所述多个转动式发电装 置的输出端通过导线串联或并联。
28、 如权利要求 27所述的多层转盘式静电发电装置, 其特征在于: 所述每一个转动式发电装置的第一部件 (1、 Γ、 ...、 In) 均保持固定, 每一个转动式发电装置的第二部件(2、 2'、 ...、 2η) 能够以相同的速率 转动。
29、 如权利要求 27或 28所述的多层转盘式静电发电装置, 其特征 在于: 所述多个转动式发电装置中每个所述第一部件上的摩擦材料均相 同, 和 /或, 每个所述第二部件上的摩擦材料均相同。
30、 如权利要求 27至 29任一项所述的多层转盘式静电发电装置, 其特征在于: 所述多个转动式发电装置中至少部分第一部件或第二部件 与相邻发电装置中的第二部件或第一部件绝缘连接。
31、 如权利要求 27至 29任一项所述的多层转盘式静电发电装置, 其特征在于: 所述多个转动式发电装置中至少部分第一部件或第二部件 与相邻发电装置中的第二部件或第一部件共用一个所述第一导电元件 或第二导电元件。
32、 一种转速测量装置, 其特征在于, 包括如权利要求 1至 19中 任一项所述的转动式发电装置, 且该转动式发电装置的外部电路连接一 个信号处理装置 (9), 该信号处理装置 (9 ) 用于将所述第一部件与第 二部件之间电流或电压信号转换为所述第一部件与第二部件之间相对 转动的转速信息。
33、 如权利要求 32所述的转速测量装置, 其特征在于:
所述第一部件与第二部件中的一个与待测物体固定, 所述两个部件 上的摩擦材料区均以 "周期扇区"的方式来设置, 所谓"周期扇区"是指在 转盘上绕转动中心分布的 n个大小相同且间隔相等的扇形区域, 所述的 电流或电压信号的频率为 n/2t, t为所述两个部件相对转动一周所需的时 间。
34、 如权利要求 33 所述的转速测量装置, 其特征在于: 信号处理 装置通过分析短路电流信号的幅值来计算所述待测物体的转动速度。
35、 如权利要求 33 所述的转速测量装置, 其特征在于: 信号处理 装置通过分析短路电流信号或开路电压信号的频率来计算所述待测物 体的转动速度。
PCT/CN2013/089168 2013-04-19 2013-12-12 一种转动式静电发电装置 WO2014169673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310136823.2A CN103795288B (zh) 2013-04-19 2013-04-19 一种转动式静电发电装置
CN201310136823.2 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014169673A1 true WO2014169673A1 (zh) 2014-10-23

Family

ID=50670679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089168 WO2014169673A1 (zh) 2013-04-19 2013-12-12 一种转动式静电发电装置

Country Status (2)

Country Link
CN (1) CN103795288B (zh)
WO (1) WO2014169673A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105577023B (zh) * 2014-10-11 2018-06-12 北京纳米能源与系统研究所 一种旋转式的脉冲摩擦发电机和轮轴偏心角传感器
KR101691552B1 (ko) 2014-11-04 2016-12-30 삼성전자주식회사 에너지 하베스터
CN105645522A (zh) * 2014-12-02 2016-06-08 北京纳米能源与系统研究所 一种自驱动海水淡化和海水电解的装置及方法
CN105790631B (zh) * 2014-12-24 2018-10-30 北京纳米能源与系统研究所 一种滚动式摩擦纳米发电机
CN105797861B (zh) * 2014-12-31 2018-05-11 北京纳米能源与系统研究所 一种基于摩擦发电机的空气净化系统
RU2716857C2 (ru) 2015-03-31 2020-03-17 Конинклейке Филипс Н.В. Система и способ генерации энергии
US10855205B2 (en) * 2015-03-31 2020-12-01 Koninklijke Philips N.V. Triboelectric energy generator
CN105490579B (zh) * 2015-12-23 2017-05-31 河南师范大学 一种多层联动折叠式摩擦发电机
CN106602684B (zh) * 2016-03-01 2019-06-25 北京纳米能源与系统研究所 摩擦纳米发电机的能量储存方法和能量储存系统
KR102600148B1 (ko) * 2016-08-23 2023-11-08 삼성전자주식회사 표면 플라즈몬 공명을 이용한 마찰전기 발전기
CN107961420B (zh) * 2016-12-02 2022-04-29 北京纳米能源与系统研究所 一种自驱动药物注射装置和注射方法
CN108667338B (zh) * 2017-04-01 2021-06-15 北京纳米能源与系统研究所 一种摩擦纳米发电机的能量管理电路和能量管理方法
CN106963097A (zh) * 2017-05-20 2017-07-21 冯阳 一种负离子梳以及一种去除梳头发静电的方法
CN107222125B (zh) * 2017-06-14 2019-10-18 华南理工大学 镂空双圆环旋转式纳米发电机和发电方法
CN109120180A (zh) * 2017-06-22 2019-01-01 北京纳米能源与系统研究所 摩擦纳米发电装置和浮子
CN107933803A (zh) * 2017-11-08 2018-04-20 上海大学 一种具有摩擦发电功能的车辆抱刹装置
CN107907200A (zh) * 2017-11-13 2018-04-13 广东永衡良品科技有限公司 一种免电池便携电子秤
CN110146113A (zh) * 2018-04-24 2019-08-20 北京纳米能源与系统研究所 基于摩擦纳米发电机的自驱动霍尔车载传感器
CN109067235A (zh) * 2018-07-25 2018-12-21 天津科技大学 一种基于偏心结构和纳米材料的自发电装置
CN109412455A (zh) * 2018-09-28 2019-03-01 北京纳米能源与系统研究所 一种摩擦发电机及发电系统
CN109322652B (zh) * 2018-12-10 2023-09-22 中国地质大学(武汉) 一种基于纳米系统的涡轮钻具转速测量短节
CN109525141B (zh) * 2018-12-28 2020-09-25 大连民族大学 风力纳米摩擦发电机
CN109682989B (zh) * 2018-12-28 2020-11-13 大连民族大学 基于摩擦纳米发电机的自驱动农业物联网风速传感器
CN109861579B (zh) * 2018-12-28 2021-09-10 赵延军 自驱动农业物联网风速传感器纳米摩擦生电方法
CN109546885B (zh) * 2018-12-28 2020-06-30 大连民族大学 水面浮动摩擦发电、电能存储、存电供应水面信号源电量的方法
CN109625213B (zh) * 2018-12-28 2021-01-12 大连民族大学 水面自供电信号发射装置
CN110445304B (zh) * 2019-07-29 2021-01-08 南京航空航天大学 基于摩擦纳米发电机的野外能量收集装置
CN110646632A (zh) * 2019-09-25 2020-01-03 北京纳米能源与系统研究所 摩擦电式转速传感装置、轴系组件及标定方法
CN110995053B (zh) * 2019-12-27 2022-11-18 江苏大学 一种基于盘式制动器的摩擦纳米发电机
CN111578317B (zh) * 2020-05-21 2022-05-31 重庆大学 一种基于摩擦或电磁发电的自供电燃气灶
CN111692250B (zh) * 2020-06-17 2023-05-09 腾讯科技(深圳)有限公司 基于摩擦式制动器的摩擦发电装置及摩擦式制动器
CN113030505B (zh) * 2021-02-26 2022-12-16 北京纳米能源与系统研究所 一种摩擦电式旋转传感器及监测系统
CN112953293B (zh) * 2021-04-01 2023-01-24 重庆大学 采用多元介电材料实现软接触的摩擦纳米发电机和应用
CN113364339B (zh) * 2021-07-14 2022-09-27 上海电力大学 基于摩擦纳米发电机实时监测驾驶员行为的自驱动传感器
CN113746365B (zh) * 2021-09-01 2023-08-29 深圳清华大学研究院 结构超滑的集成微发电机、电容式电路及微型分布式器件
CN115158071A (zh) * 2022-09-07 2022-10-11 华中科技大学 一种用于电动汽车的充电系统
CN117219396B (zh) * 2023-11-08 2024-02-23 德州靖瑞新能源科技有限公司 一种基于电子中和的节电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527528A (zh) * 2009-03-24 2009-09-09 华北电力大学 旋转摩擦发电机
CN102710166A (zh) * 2012-04-13 2012-10-03 纳米新能源(唐山)有限责任公司 一种摩擦发电机
CN103368453A (zh) * 2013-03-12 2013-10-23 国家纳米科学中心 一种滑动摩擦纳米发电机及发电方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595852A (en) * 1984-04-11 1986-06-17 Gundlach Robert W Electrostatic generator
JP2000246141A (ja) * 1999-02-26 2000-09-12 Hitachi Zosen Corp 摩擦帯電装置
US20040119375A1 (en) * 2002-12-24 2004-06-24 Ney Robert Johan Cosmic flux driven electrostatic turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527528A (zh) * 2009-03-24 2009-09-09 华北电力大学 旋转摩擦发电机
CN102710166A (zh) * 2012-04-13 2012-10-03 纳米新能源(唐山)有限责任公司 一种摩擦发电机
CN103368453A (zh) * 2013-03-12 2013-10-23 国家纳米科学中心 一种滑动摩擦纳米发电机及发电方法

Also Published As

Publication number Publication date
CN103795288A (zh) 2014-05-14
CN103795288B (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2014169673A1 (zh) 一种转动式静电发电装置
JP6356791B2 (ja) スライド摩擦式発電機、発電方法及びベクトル変位センサ
CN108322083B (zh) 基于摩擦纳米发电机的波浪能高效发电装置
WO2014206077A1 (zh) 一种滑动摩擦发电机、发电方法以及矢量位移传感器
JP6510429B2 (ja) スライド摩擦式ナノ発電機および発電方法
JP6298155B2 (ja) 単電極摩擦式ナノ発電機、発電方法及び自己駆動の追跡装置
KR101982691B1 (ko) 슬라이드 마찰식 나노발전기 및 발전 방법
WO2013170651A1 (zh) 一种摩擦发电机及摩擦发电机组
WO2015010419A1 (zh) 一种基于滑动摩擦的脉冲发电机和发电方法
WO2014154017A1 (zh) 一种摩擦电纳米传感器
CN104682767B (zh) 基于单电极的旋转式摩擦电纳米发电机和流体流速传感器
CN104426419B (zh) 摩擦发电和电磁发电的混合发电系统
CN104426417A (zh) 一种产生交流输出的摩擦发电机和发电机组
WO2014169665A1 (zh) 一种摩擦纳米发电机
CN110995050B (zh) 放电摩擦发电机
WO2014139364A1 (zh) 一种套层滑动式摩擦纳米发电机
WO2015158302A1 (zh) 基于静电感应的传感器、发电机、传感方法与发电方法
CN103780135B (zh) 一种直流摩擦电发电机
CN103780136A (zh) 一种输出恒定电流的旋转摩擦发电机
CN103731063B (zh) 混合式发电机
Haque et al. Triboelectric freestanding flapping film generator for energy harvesting from gas flow in pipes
CN115127439A (zh) 一种转动角度向量传感器及旋转密码锁
CN104779835B (zh) 一种混合式发电机和发电方法
CN104242722A (zh) 风力发电系统
WO2014139348A1 (zh) 一种滑动式摩擦纳米发电机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882453

Country of ref document: EP

Kind code of ref document: A1